Browse Source

Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "ARM:
   - Improved guest IPA space support (32 to 52 bits)

   - RAS event delivery for 32bit

   - PMU fixes

   - Guest entry hardening

   - Various cleanups

   - Port of dirty_log_test selftest

  PPC:
   - Nested HV KVM support for radix guests on POWER9. The performance
     is much better than with PR KVM. Migration and arbitrary level of
     nesting is supported.

   - Disable nested HV-KVM on early POWER9 chips that need a particular
     hardware bug workaround

   - One VM per core mode to prevent potential data leaks

   - PCI pass-through optimization

   - merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base

  s390:
   - Initial version of AP crypto virtualization via vfio-mdev

   - Improvement for vfio-ap

   - Set the host program identifier

   - Optimize page table locking

  x86:
   - Enable nested virtualization by default

   - Implement Hyper-V IPI hypercalls

   - Improve #PF and #DB handling

   - Allow guests to use Enlightened VMCS

   - Add migration selftests for VMCS and Enlightened VMCS

   - Allow coalesced PIO accesses

   - Add an option to perform nested VMCS host state consistency check
     through hardware

   - Automatic tuning of lapic_timer_advance_ns

   - Many fixes, minor improvements, and cleanups"

* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
  KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
  Revert "kvm: x86: optimize dr6 restore"
  KVM: PPC: Optimize clearing TCEs for sparse tables
  x86/kvm/nVMX: tweak shadow fields
  selftests/kvm: add missing executables to .gitignore
  KVM: arm64: Safety check PSTATE when entering guest and handle IL
  KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
  arm/arm64: KVM: Enable 32 bits kvm vcpu events support
  arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
  KVM: arm64: Fix caching of host MDCR_EL2 value
  KVM: VMX: enable nested virtualization by default
  KVM/x86: Use 32bit xor to clear registers in svm.c
  kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
  kvm: vmx: Defer setting of DR6 until #DB delivery
  kvm: x86: Defer setting of CR2 until #PF delivery
  kvm: x86: Add payload operands to kvm_multiple_exception
  kvm: x86: Add exception payload fields to kvm_vcpu_events
  kvm: x86: Add has_payload and payload to kvm_queued_exception
  KVM: Documentation: Fix omission in struct kvm_vcpu_events
  KVM: selftests: add Enlightened VMCS test
  ...
Linus Torvalds 6 years ago
parent
commit
0d1e8b8d2b
100 changed files with 9517 additions and 2422 deletions
  1. 837 0
      Documentation/s390/vfio-ap.txt
  2. 129 6
      Documentation/virtual/kvm/api.txt
  3. 12 0
      MAINTAINERS
  4. 1 2
      arch/arm/include/asm/kvm_arm.h
  5. 12 1
      arch/arm/include/asm/kvm_host.h
  6. 10 5
      arch/arm/include/asm/kvm_mmu.h
  7. 32 22
      arch/arm/include/asm/stage2_pgtable.h
  8. 21 0
      arch/arm64/include/asm/cpufeature.h
  9. 125 30
      arch/arm64/include/asm/kvm_arm.h
  10. 1 2
      arch/arm64/include/asm/kvm_asm.h
  11. 9 9
      arch/arm64/include/asm/kvm_host.h
  12. 10 0
      arch/arm64/include/asm/kvm_hyp.h
  13. 34 8
      arch/arm64/include/asm/kvm_mmu.h
  14. 3 0
      arch/arm64/include/asm/ptrace.h
  15. 0 42
      arch/arm64/include/asm/stage2_pgtable-nopmd.h
  16. 0 39
      arch/arm64/include/asm/stage2_pgtable-nopud.h
  17. 170 66
      arch/arm64/include/asm/stage2_pgtable.h
  18. 3 3
      arch/arm64/kvm/guest.c
  19. 7 0
      arch/arm64/kvm/handle_exit.c
  20. 0 1
      arch/arm64/kvm/hyp/Makefile
  21. 15 1
      arch/arm64/kvm/hyp/hyp-entry.S
  22. 0 90
      arch/arm64/kvm/hyp/s2-setup.c
  23. 2 2
      arch/arm64/kvm/hyp/switch.c
  24. 18 1
      arch/arm64/kvm/hyp/sysreg-sr.c
  25. 2 2
      arch/arm64/kvm/hyp/tlb.c
  26. 105 3
      arch/arm64/kvm/reset.c
  27. 21 0
      arch/powerpc/include/asm/asm-prototypes.h
  28. 12 0
      arch/powerpc/include/asm/book3s/64/mmu-hash.h
  29. 1 0
      arch/powerpc/include/asm/book3s/64/tlbflush-radix.h
  30. 41 0
      arch/powerpc/include/asm/hvcall.h
  31. 1 1
      arch/powerpc/include/asm/iommu.h
  32. 1 3
      arch/powerpc/include/asm/kvm_asm.h
  33. 40 5
      arch/powerpc/include/asm/kvm_book3s.h
  34. 116 2
      arch/powerpc/include/asm/kvm_book3s_64.h
  35. 3 0
      arch/powerpc/include/asm/kvm_book3s_asm.h
  36. 2 2
      arch/powerpc/include/asm/kvm_booke.h
  37. 14 2
      arch/powerpc/include/asm/kvm_host.h
  38. 5 3
      arch/powerpc/include/asm/kvm_ppc.h
  39. 1 0
      arch/powerpc/include/asm/ppc-opcode.h
  40. 2 0
      arch/powerpc/include/asm/reg.h
  41. 1 0
      arch/powerpc/include/uapi/asm/kvm.h
  42. 3 2
      arch/powerpc/kernel/asm-offsets.c
  43. 2 2
      arch/powerpc/kernel/cpu_setup_power.S
  44. 2 1
      arch/powerpc/kvm/Makefile
  45. 36 10
      arch/powerpc/kvm/book3s.c
  46. 3 4
      arch/powerpc/kvm/book3s_64_mmu_hv.c
  47. 536 182
      arch/powerpc/kvm/book3s_64_mmu_radix.c
  48. 67 27
      arch/powerpc/kvm/book3s_64_vio.c
  49. 49 38
      arch/powerpc/kvm/book3s_64_vio_hv.c
  50. 6 7
      arch/powerpc/kvm/book3s_emulate.c
  51. 818 55
      arch/powerpc/kvm/book3s_hv.c
  52. 84 8
      arch/powerpc/kvm/book3s_hv_builtin.c
  53. 49 46
      arch/powerpc/kvm/book3s_hv_interrupts.S
  54. 1291 0
      arch/powerpc/kvm/book3s_hv_nested.c
  55. 10 0
      arch/powerpc/kvm/book3s_hv_ras.c
  56. 10 3
      arch/powerpc/kvm/book3s_hv_rm_xics.c
  57. 460 363
      arch/powerpc/kvm/book3s_hv_rmhandlers.S
  58. 3 3
      arch/powerpc/kvm/book3s_hv_tm.c
  59. 3 2
      arch/powerpc/kvm/book3s_hv_tm_builtin.c
  60. 2 3
      arch/powerpc/kvm/book3s_pr.c
  61. 6 8
      arch/powerpc/kvm/book3s_xics.c
  62. 63 0
      arch/powerpc/kvm/book3s_xive.c
  63. 0 8
      arch/powerpc/kvm/book3s_xive_template.c
  64. 4 4
      arch/powerpc/kvm/bookehv_interrupts.S
  65. 0 1
      arch/powerpc/kvm/emulate_loadstore.c
  66. 14 1
      arch/powerpc/kvm/powerpc.c
  67. 136 114
      arch/powerpc/kvm/tm.S
  68. 0 1
      arch/powerpc/kvm/trace_book3s.h
  69. 9 0
      arch/powerpc/mm/tlb-radix.c
  70. 11 0
      arch/s390/Kconfig
  71. 14 1
      arch/s390/include/asm/kvm_host.h
  72. 2 0
      arch/s390/include/uapi/asm/kvm.h
  73. 142 42
      arch/s390/kvm/kvm-s390.c
  74. 1 0
      arch/s390/kvm/kvm-s390.h
  75. 192 18
      arch/s390/kvm/vsie.c
  76. 8 2
      arch/s390/mm/gmap.c
  77. 2 0
      arch/s390/tools/gen_facilities.c
  78. 61 9
      arch/x86/include/asm/kvm_host.h
  79. 1 1
      arch/x86/include/asm/virtext.h
  80. 0 13
      arch/x86/include/asm/vmx.h
  81. 6 2
      arch/x86/include/uapi/asm/kvm.h
  82. 212 68
      arch/x86/kvm/hyperv.c
  83. 4 0
      arch/x86/kvm/hyperv.h
  84. 38 7
      arch/x86/kvm/lapic.c
  85. 1 1
      arch/x86/kvm/lapic.h
  86. 235 158
      arch/x86/kvm/mmu.c
  87. 4 9
      arch/x86/kvm/mmu.h
  88. 6 6
      arch/x86/kvm/mmu_audit.c
  89. 8 7
      arch/x86/kvm/paging_tmpl.h
  90. 35 29
      arch/x86/kvm/svm.c
  91. 42 0
      arch/x86/kvm/trace.h
  92. 1614 749
      arch/x86/kvm/vmx.c
  93. 1 4
      arch/x86/kvm/vmx_shadow_fields.h
  94. 194 50
      arch/x86/kvm/x86.c
  95. 2 0
      arch/x86/kvm/x86.h
  96. 8 0
      drivers/iommu/Kconfig
  97. 4 0
      drivers/s390/crypto/Makefile
  98. 157 0
      drivers/s390/crypto/vfio_ap_drv.c
  99. 939 0
      drivers/s390/crypto/vfio_ap_ops.c
  100. 88 0
      drivers/s390/crypto/vfio_ap_private.h

+ 837 - 0
Documentation/s390/vfio-ap.txt

@@ -0,0 +1,837 @@
+Introduction:
+============
+The Adjunct Processor (AP) facility is an IBM Z cryptographic facility comprised
+of three AP instructions and from 1 up to 256 PCIe cryptographic adapter cards.
+The AP devices provide cryptographic functions to all CPUs assigned to a
+linux system running in an IBM Z system LPAR.
+
+The AP adapter cards are exposed via the AP bus. The motivation for vfio-ap
+is to make AP cards available to KVM guests using the VFIO mediated device
+framework. This implementation relies considerably on the s390 virtualization
+facilities which do most of the hard work of providing direct access to AP
+devices.
+
+AP Architectural Overview:
+=========================
+To facilitate the comprehension of the design, let's start with some
+definitions:
+
+* AP adapter
+
+  An AP adapter is an IBM Z adapter card that can perform cryptographic
+  functions. There can be from 0 to 256 adapters assigned to an LPAR. Adapters
+  assigned to the LPAR in which a linux host is running will be available to
+  the linux host. Each adapter is identified by a number from 0 to 255; however,
+  the maximum adapter number is determined by machine model and/or adapter type.
+  When installed, an AP adapter is accessed by AP instructions executed by any
+  CPU.
+
+  The AP adapter cards are assigned to a given LPAR via the system's Activation
+  Profile which can be edited via the HMC. When the linux host system is IPL'd
+  in the LPAR, the AP bus detects the AP adapter cards assigned to the LPAR and
+  creates a sysfs device for each assigned adapter. For example, if AP adapters
+  4 and 10 (0x0a) are assigned to the LPAR, the AP bus will create the following
+  sysfs device entries:
+
+    /sys/devices/ap/card04
+    /sys/devices/ap/card0a
+
+  Symbolic links to these devices will also be created in the AP bus devices
+  sub-directory:
+
+    /sys/bus/ap/devices/[card04]
+    /sys/bus/ap/devices/[card04]
+
+* AP domain
+
+  An adapter is partitioned into domains. An adapter can hold up to 256 domains
+  depending upon the adapter type and hardware configuration. A domain is
+  identified by a number from 0 to 255; however, the maximum domain number is
+  determined by machine model and/or adapter type.. A domain can be thought of
+  as a set of hardware registers and memory used for processing AP commands. A
+  domain can be configured with a secure private key used for clear key
+  encryption. A domain is classified in one of two ways depending upon how it
+  may be accessed:
+
+    * Usage domains are domains that are targeted by an AP instruction to
+      process an AP command.
+
+    * Control domains are domains that are changed by an AP command sent to a
+      usage domain; for example, to set the secure private key for the control
+      domain.
+
+  The AP usage and control domains are assigned to a given LPAR via the system's
+  Activation Profile which can be edited via the HMC. When a linux host system
+  is IPL'd in the LPAR, the AP bus module detects the AP usage and control
+  domains assigned to the LPAR. The domain number of each usage domain and
+  adapter number of each AP adapter are combined to create AP queue devices
+  (see AP Queue section below). The domain number of each control domain will be
+  represented in a bitmask and stored in a sysfs file
+  /sys/bus/ap/ap_control_domain_mask. The bits in the mask, from most to least
+  significant bit, correspond to domains 0-255.
+
+* AP Queue
+
+  An AP queue is the means by which an AP command is sent to a usage domain
+  inside a specific adapter. An AP queue is identified by a tuple
+  comprised of an AP adapter ID (APID) and an AP queue index (APQI). The
+  APQI corresponds to a given usage domain number within the adapter. This tuple
+  forms an AP Queue Number (APQN) uniquely identifying an AP queue. AP
+  instructions include a field containing the APQN to identify the AP queue to
+  which the AP command is to be sent for processing.
+
+  The AP bus will create a sysfs device for each APQN that can be derived from
+  the cross product of the AP adapter and usage domain numbers detected when the
+  AP bus module is loaded. For example, if adapters 4 and 10 (0x0a) and usage
+  domains 6 and 71 (0x47) are assigned to the LPAR, the AP bus will create the
+  following sysfs entries:
+
+    /sys/devices/ap/card04/04.0006
+    /sys/devices/ap/card04/04.0047
+    /sys/devices/ap/card0a/0a.0006
+    /sys/devices/ap/card0a/0a.0047
+
+  The following symbolic links to these devices will be created in the AP bus
+  devices subdirectory:
+
+    /sys/bus/ap/devices/[04.0006]
+    /sys/bus/ap/devices/[04.0047]
+    /sys/bus/ap/devices/[0a.0006]
+    /sys/bus/ap/devices/[0a.0047]
+
+* AP Instructions:
+
+  There are three AP instructions:
+
+  * NQAP: to enqueue an AP command-request message to a queue
+  * DQAP: to dequeue an AP command-reply message from a queue
+  * PQAP: to administer the queues
+
+  AP instructions identify the domain that is targeted to process the AP
+  command; this must be one of the usage domains. An AP command may modify a
+  domain that is not one of the usage domains, but the modified domain
+  must be one of the control domains.
+
+AP and SIE:
+==========
+Let's now take a look at how AP instructions executed on a guest are interpreted
+by the hardware.
+
+A satellite control block called the Crypto Control Block (CRYCB) is attached to
+our main hardware virtualization control block. The CRYCB contains three fields
+to identify the adapters, usage domains and control domains assigned to the KVM
+guest:
+
+* The AP Mask (APM) field is a bit mask that identifies the AP adapters assigned
+  to the KVM guest. Each bit in the mask, from left to right (i.e. from most
+  significant to least significant bit in big endian order), corresponds to
+  an APID from 0-255. If a bit is set, the corresponding adapter is valid for
+  use by the KVM guest.
+
+* The AP Queue Mask (AQM) field is a bit mask identifying the AP usage domains
+  assigned to the KVM guest. Each bit in the mask, from left to right (i.e. from
+  most significant to least significant bit in big endian order), corresponds to
+  an AP queue index (APQI) from 0-255. If a bit is set, the corresponding queue
+  is valid for use by the KVM guest.
+
+* The AP Domain Mask field is a bit mask that identifies the AP control domains
+  assigned to the KVM guest. The ADM bit mask controls which domains can be
+  changed by an AP command-request message sent to a usage domain from the
+  guest. Each bit in the mask, from left to right (i.e. from most significant to
+  least significant bit in big endian order), corresponds to a domain from
+  0-255. If a bit is set, the corresponding domain can be modified by an AP
+  command-request message sent to a usage domain.
+
+If you recall from the description of an AP Queue, AP instructions include
+an APQN to identify the AP queue to which an AP command-request message is to be
+sent (NQAP and PQAP instructions), or from which a command-reply message is to
+be received (DQAP instruction). The validity of an APQN is defined by the matrix
+calculated from the APM and AQM; it is the cross product of all assigned adapter
+numbers (APM) with all assigned queue indexes (AQM). For example, if adapters 1
+and 2 and usage domains 5 and 6 are assigned to a guest, the APQNs (1,5), (1,6),
+(2,5) and (2,6) will be valid for the guest.
+
+The APQNs can provide secure key functionality - i.e., a private key is stored
+on the adapter card for each of its domains - so each APQN must be assigned to
+at most one guest or to the linux host.
+
+   Example 1: Valid configuration:
+   ------------------------------
+   Guest1: adapters 1,2  domains 5,6
+   Guest2: adapter  1,2  domain 7
+
+   This is valid because both guests have a unique set of APQNs:
+      Guest1 has APQNs (1,5), (1,6), (2,5), (2,6);
+      Guest2 has APQNs (1,7), (2,7)
+
+   Example 2: Valid configuration:
+   ------------------------------
+   Guest1: adapters 1,2 domains 5,6
+   Guest2: adapters 3,4 domains 5,6
+
+   This is also valid because both guests have a unique set of APQNs:
+      Guest1 has APQNs (1,5), (1,6), (2,5), (2,6);
+      Guest2 has APQNs (3,5), (3,6), (4,5), (4,6)
+
+   Example 3: Invalid configuration:
+   --------------------------------
+   Guest1: adapters 1,2  domains 5,6
+   Guest2: adapter  1    domains 6,7
+
+   This is an invalid configuration because both guests have access to
+   APQN (1,6).
+
+The Design:
+===========
+The design introduces three new objects:
+
+1. AP matrix device
+2. VFIO AP device driver (vfio_ap.ko)
+3. VFIO AP mediated matrix pass-through device
+
+The VFIO AP device driver
+-------------------------
+The VFIO AP (vfio_ap) device driver serves the following purposes:
+
+1. Provides the interfaces to secure APQNs for exclusive use of KVM guests.
+
+2. Sets up the VFIO mediated device interfaces to manage a mediated matrix
+   device and creates the sysfs interfaces for assigning adapters, usage
+   domains, and control domains comprising the matrix for a KVM guest.
+
+3. Configures the APM, AQM and ADM in the CRYCB referenced by a KVM guest's
+   SIE state description to grant the guest access to a matrix of AP devices
+
+Reserve APQNs for exclusive use of KVM guests
+---------------------------------------------
+The following block diagram illustrates the mechanism by which APQNs are
+reserved:
+
+                              +------------------+
+               7 remove       |                  |
+         +--------------------> cex4queue driver |
+         |                    |                  |
+         |                    +------------------+
+         |
+         |
+         |                    +------------------+          +-----------------+
+         |  5 register driver |                  | 3 create |                 |
+         |   +---------------->   Device core    +---------->  matrix device  |
+         |   |                |                  |          |                 |
+         |   |                +--------^---------+          +-----------------+
+         |   |                         |
+         |   |                         +-------------------+
+         |   | +-----------------------------------+       |
+         |   | |      4 register AP driver         |       | 2 register device
+         |   | |                                   |       |
++--------+---+-v---+                      +--------+-------+-+
+|                  |                      |                  |
+|      ap_bus      +--------------------- >  vfio_ap driver  |
+|                  |       8 probe        |                  |
++--------^---------+                      +--^--^------------+
+6 edit   |                                   |  |
+  apmask |     +-----------------------------+  | 9 mdev create
+  aqmask |     |           1 modprobe           |
++--------+-----+---+           +----------------+-+         +------------------+
+|                  |           |                  |8 create |     mediated     |
+|      admin       |           | VFIO device core |--------->     matrix       |
+|                  +           |                  |         |     device       |
++------+-+---------+           +--------^---------+         +--------^---------+
+       | |                              |                            |
+       | | 9 create vfio_ap-passthrough |                            |
+       | +------------------------------+                            |
+       +-------------------------------------------------------------+
+                   10  assign adapter/domain/control domain
+
+The process for reserving an AP queue for use by a KVM guest is:
+
+1. The administrator loads the vfio_ap device driver
+2. The vfio-ap driver during its initialization will register a single 'matrix'
+   device with the device core. This will serve as the parent device for
+   all mediated matrix devices used to configure an AP matrix for a guest.
+3. The /sys/devices/vfio_ap/matrix device is created by the device core
+4  The vfio_ap device driver will register with the AP bus for AP queue devices
+   of type 10 and higher (CEX4 and newer). The driver will provide the vfio_ap
+   driver's probe and remove callback interfaces. Devices older than CEX4 queues
+   are not supported to simplify the implementation by not needlessly
+   complicating the design by supporting older devices that will go out of
+   service in the relatively near future, and for which there are few older
+   systems around on which to test.
+5. The AP bus registers the vfio_ap device driver with the device core
+6. The administrator edits the AP adapter and queue masks to reserve AP queues
+   for use by the vfio_ap device driver.
+7. The AP bus removes the AP queues reserved for the vfio_ap driver from the
+   default zcrypt cex4queue driver.
+8. The AP bus probes the vfio_ap device driver to bind the queues reserved for
+   it.
+9. The administrator creates a passthrough type mediated matrix device to be
+   used by a guest
+10 The administrator assigns the adapters, usage domains and control domains
+   to be exclusively used by a guest.
+
+Set up the VFIO mediated device interfaces
+------------------------------------------
+The VFIO AP device driver utilizes the common interface of the VFIO mediated
+device core driver to:
+* Register an AP mediated bus driver to add a mediated matrix device to and
+  remove it from a VFIO group.
+* Create and destroy a mediated matrix device
+* Add a mediated matrix device to and remove it from the AP mediated bus driver
+* Add a mediated matrix device to and remove it from an IOMMU group
+
+The following high-level block diagram shows the main components and interfaces
+of the VFIO AP mediated matrix device driver:
+
+ +-------------+
+ |             |
+ | +---------+ | mdev_register_driver() +--------------+
+ | |  Mdev   | +<-----------------------+              |
+ | |  bus    | |                        | vfio_mdev.ko |
+ | | driver  | +----------------------->+              |<-> VFIO user
+ | +---------+ |    probe()/remove()    +--------------+    APIs
+ |             |
+ |  MDEV CORE  |
+ |   MODULE    |
+ |   mdev.ko   |
+ | +---------+ | mdev_register_device() +--------------+
+ | |Physical | +<-----------------------+              |
+ | | device  | |                        |  vfio_ap.ko  |<-> matrix
+ | |interface| +----------------------->+              |    device
+ | +---------+ |       callback         +--------------+
+ +-------------+
+
+During initialization of the vfio_ap module, the matrix device is registered
+with an 'mdev_parent_ops' structure that provides the sysfs attribute
+structures, mdev functions and callback interfaces for managing the mediated
+matrix device.
+
+* sysfs attribute structures:
+  * supported_type_groups
+    The VFIO mediated device framework supports creation of user-defined
+    mediated device types. These mediated device types are specified
+    via the 'supported_type_groups' structure when a device is registered
+    with the mediated device framework. The registration process creates the
+    sysfs structures for each mediated device type specified in the
+    'mdev_supported_types' sub-directory of the device being registered. Along
+    with the device type, the sysfs attributes of the mediated device type are
+    provided.
+
+    The VFIO AP device driver will register one mediated device type for
+    passthrough devices:
+      /sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough
+    Only the read-only attributes required by the VFIO mdev framework will
+    be provided:
+        ... name
+        ... device_api
+        ... available_instances
+        ... device_api
+        Where:
+        * name: specifies the name of the mediated device type
+        * device_api: the mediated device type's API
+        * available_instances: the number of mediated matrix passthrough devices
+                               that can be created
+        * device_api: specifies the VFIO API
+  * mdev_attr_groups
+    This attribute group identifies the user-defined sysfs attributes of the
+    mediated device. When a device is registered with the VFIO mediated device
+    framework, the sysfs attribute files identified in the 'mdev_attr_groups'
+    structure will be created in the mediated matrix device's directory. The
+    sysfs attributes for a mediated matrix device are:
+    * assign_adapter:
+    * unassign_adapter:
+      Write-only attributes for assigning/unassigning an AP adapter to/from the
+      mediated matrix device. To assign/unassign an adapter, the APID of the
+      adapter is echoed to the respective attribute file.
+    * assign_domain:
+    * unassign_domain:
+      Write-only attributes for assigning/unassigning an AP usage domain to/from
+      the mediated matrix device. To assign/unassign a domain, the domain
+      number of the the usage domain is echoed to the respective attribute
+      file.
+    * matrix:
+      A read-only file for displaying the APQNs derived from the cross product
+      of the adapter and domain numbers assigned to the mediated matrix device.
+    * assign_control_domain:
+    * unassign_control_domain:
+      Write-only attributes for assigning/unassigning an AP control domain
+      to/from the mediated matrix device. To assign/unassign a control domain,
+      the ID of the domain to be assigned/unassigned is echoed to the respective
+      attribute file.
+    * control_domains:
+      A read-only file for displaying the control domain numbers assigned to the
+      mediated matrix device.
+
+* functions:
+  * create:
+    allocates the ap_matrix_mdev structure used by the vfio_ap driver to:
+    * Store the reference to the KVM structure for the guest using the mdev
+    * Store the AP matrix configuration for the adapters, domains, and control
+      domains assigned via the corresponding sysfs attributes files
+  * remove:
+    deallocates the mediated matrix device's ap_matrix_mdev structure. This will
+    be allowed only if a running guest is not using the mdev.
+
+* callback interfaces
+  * open:
+    The vfio_ap driver uses this callback to register a
+    VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the mdev matrix
+    device. The open is invoked when QEMU connects the VFIO iommu group
+    for the mdev matrix device to the MDEV bus. Access to the KVM structure used
+    to configure the KVM guest is provided via this callback. The KVM structure,
+    is used to configure the guest's access to the AP matrix defined via the
+    mediated matrix device's sysfs attribute files.
+  * release:
+    unregisters the VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the
+    mdev matrix device and deconfigures the guest's AP matrix.
+
+Configure the APM, AQM and ADM in the CRYCB:
+-------------------------------------------
+Configuring the AP matrix for a KVM guest will be performed when the
+VFIO_GROUP_NOTIFY_SET_KVM notifier callback is invoked. The notifier
+function is called when QEMU connects to KVM. The guest's AP matrix is
+configured via it's CRYCB by:
+* Setting the bits in the APM corresponding to the APIDs assigned to the
+  mediated matrix device via its 'assign_adapter' interface.
+* Setting the bits in the AQM corresponding to the domains assigned to the
+  mediated matrix device via its 'assign_domain' interface.
+* Setting the bits in the ADM corresponding to the domain dIDs assigned to the
+  mediated matrix device via its 'assign_control_domains' interface.
+
+The CPU model features for AP
+-----------------------------
+The AP stack relies on the presence of the AP instructions as well as two
+facilities: The AP Facilities Test (APFT) facility; and the AP Query
+Configuration Information (QCI) facility. These features/facilities are made
+available to a KVM guest via the following CPU model features:
+
+1. ap: Indicates whether the AP instructions are installed on the guest. This
+   feature will be enabled by KVM only if the AP instructions are installed
+   on the host.
+
+2. apft: Indicates the APFT facility is available on the guest. This facility
+   can be made available to the guest only if it is available on the host (i.e.,
+   facility bit 15 is set).
+
+3. apqci: Indicates the AP QCI facility is available on the guest. This facility
+   can be made available to the guest only if it is available on the host (i.e.,
+   facility bit 12 is set).
+
+Note: If the user chooses to specify a CPU model different than the 'host'
+model to QEMU, the CPU model features and facilities need to be turned on
+explicitly; for example:
+
+     /usr/bin/qemu-system-s390x ... -cpu z13,ap=on,apqci=on,apft=on
+
+A guest can be precluded from using AP features/facilities by turning them off
+explicitly; for example:
+
+     /usr/bin/qemu-system-s390x ... -cpu host,ap=off,apqci=off,apft=off
+
+Note: If the APFT facility is turned off (apft=off) for the guest, the guest
+will not see any AP devices. The zcrypt device drivers that register for type 10
+and newer AP devices - i.e., the cex4card and cex4queue device drivers - need
+the APFT facility to ascertain the facilities installed on a given AP device. If
+the APFT facility is not installed on the guest, then the probe of device
+drivers will fail since only type 10 and newer devices can be configured for
+guest use.
+
+Example:
+=======
+Let's now provide an example to illustrate how KVM guests may be given
+access to AP facilities. For this example, we will show how to configure
+three guests such that executing the lszcrypt command on the guests would
+look like this:
+
+Guest1
+------
+CARD.DOMAIN TYPE  MODE
+------------------------------
+05          CEX5C CCA-Coproc
+05.0004     CEX5C CCA-Coproc
+05.00ab     CEX5C CCA-Coproc
+06          CEX5A Accelerator
+06.0004     CEX5A Accelerator
+06.00ab     CEX5C CCA-Coproc
+
+Guest2
+------
+CARD.DOMAIN TYPE  MODE
+------------------------------
+05          CEX5A Accelerator
+05.0047     CEX5A Accelerator
+05.00ff     CEX5A Accelerator
+
+Guest2
+------
+CARD.DOMAIN TYPE  MODE
+------------------------------
+06          CEX5A Accelerator
+06.0047     CEX5A Accelerator
+06.00ff     CEX5A Accelerator
+
+These are the steps:
+
+1. Install the vfio_ap module on the linux host. The dependency chain for the
+   vfio_ap module is:
+   * iommu
+   * s390
+   * zcrypt
+   * vfio
+   * vfio_mdev
+   * vfio_mdev_device
+   * KVM
+
+   To build the vfio_ap module, the kernel build must be configured with the
+   following Kconfig elements selected:
+   * IOMMU_SUPPORT
+   * S390
+   * ZCRYPT
+   * S390_AP_IOMMU
+   * VFIO
+   * VFIO_MDEV
+   * VFIO_MDEV_DEVICE
+   * KVM
+
+   If using make menuconfig select the following to build the vfio_ap module:
+   -> Device Drivers
+      -> IOMMU Hardware Support
+         select S390 AP IOMMU Support
+      -> VFIO Non-Privileged userspace driver framework
+         -> Mediated device driver frramework
+            -> VFIO driver for Mediated devices
+   -> I/O subsystem
+      -> VFIO support for AP devices
+
+2. Secure the AP queues to be used by the three guests so that the host can not
+   access them. To secure them, there are two sysfs files that specify
+   bitmasks marking a subset of the APQN range as 'usable by the default AP
+   queue device drivers' or 'not usable by the default device drivers' and thus
+   available for use by the vfio_ap device driver'. The location of the sysfs
+   files containing the masks are:
+
+   /sys/bus/ap/apmask
+   /sys/bus/ap/aqmask
+
+   The 'apmask' is a 256-bit mask that identifies a set of AP adapter IDs
+   (APID). Each bit in the mask, from left to right (i.e., from most significant
+   to least significant bit in big endian order), corresponds to an APID from
+   0-255. If a bit is set, the APID is marked as usable only by the default AP
+   queue device drivers; otherwise, the APID is usable by the vfio_ap
+   device driver.
+
+   The 'aqmask' is a 256-bit mask that identifies a set of AP queue indexes
+   (APQI). Each bit in the mask, from left to right (i.e., from most significant
+   to least significant bit in big endian order), corresponds to an APQI from
+   0-255. If a bit is set, the APQI is marked as usable only by the default AP
+   queue device drivers; otherwise, the APQI is usable by the vfio_ap device
+   driver.
+
+   Take, for example, the following mask:
+
+      0x7dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
+
+    It indicates:
+
+      1, 2, 3, 4, 5, and 7-255 belong to the default drivers' pool, and 0 and 6
+      belong to the vfio_ap device driver's pool.
+
+   The APQN of each AP queue device assigned to the linux host is checked by the
+   AP bus against the set of APQNs derived from the cross product of APIDs
+   and APQIs marked as usable only by the default AP queue device drivers. If a
+   match is detected,  only the default AP queue device drivers will be probed;
+   otherwise, the vfio_ap device driver will be probed.
+
+   By default, the two masks are set to reserve all APQNs for use by the default
+   AP queue device drivers. There are two ways the default masks can be changed:
+
+   1. The sysfs mask files can be edited by echoing a string into the
+      respective sysfs mask file in one of two formats:
+
+      * An absolute hex string starting with 0x - like "0x12345678" - sets
+        the mask. If the given string is shorter than the mask, it is padded
+        with 0s on the right; for example, specifying a mask value of 0x41 is
+        the same as specifying:
+
+           0x4100000000000000000000000000000000000000000000000000000000000000
+
+        Keep in mind that the mask reads from left to right (i.e., most
+        significant to least significant bit in big endian order), so the mask
+        above identifies device numbers 1 and 7 (01000001).
+
+        If the string is longer than the mask, the operation is terminated with
+        an error (EINVAL).
+
+      * Individual bits in the mask can be switched on and off by specifying
+        each bit number to be switched in a comma separated list. Each bit
+        number string must be prepended with a ('+') or minus ('-') to indicate
+        the corresponding bit is to be switched on ('+') or off ('-'). Some
+        valid values are:
+
+           "+0"    switches bit 0 on
+           "-13"   switches bit 13 off
+           "+0x41" switches bit 65 on
+           "-0xff" switches bit 255 off
+
+           The following example:
+              +0,-6,+0x47,-0xf0
+
+              Switches bits 0 and 71 (0x47) on
+              Switches bits 6 and 240 (0xf0) off
+
+        Note that the bits not specified in the list remain as they were before
+        the operation.
+
+   2. The masks can also be changed at boot time via parameters on the kernel
+      command line like this:
+
+         ap.apmask=0xffff ap.aqmask=0x40
+
+         This would create the following masks:
+
+            apmask:
+            0xffff000000000000000000000000000000000000000000000000000000000000
+
+            aqmask:
+            0x4000000000000000000000000000000000000000000000000000000000000000
+
+         Resulting in these two pools:
+
+            default drivers pool:    adapter 0-15, domain 1
+            alternate drivers pool:  adapter 16-255, domains 0, 2-255
+
+   Securing the APQNs for our example:
+   ----------------------------------
+   To secure the AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004, 06.0047,
+   06.00ab, and 06.00ff for use by the vfio_ap device driver, the corresponding
+   APQNs can either be removed from the default masks:
+
+      echo -5,-6 > /sys/bus/ap/apmask
+
+      echo -4,-0x47,-0xab,-0xff > /sys/bus/ap/aqmask
+
+   Or the masks can be set as follows:
+
+      echo 0xf9ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff \
+      > apmask
+
+      echo 0xf7fffffffffffffffeffffffffffffffffffffffffeffffffffffffffffffffe \
+      > aqmask
+
+   This will result in AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004,
+   06.0047, 06.00ab, and 06.00ff getting bound to the vfio_ap device driver. The
+   sysfs directory for the vfio_ap device driver will now contain symbolic links
+   to the AP queue devices bound to it:
+
+   /sys/bus/ap
+   ... [drivers]
+   ...... [vfio_ap]
+   ......... [05.0004]
+   ......... [05.0047]
+   ......... [05.00ab]
+   ......... [05.00ff]
+   ......... [06.0004]
+   ......... [06.0047]
+   ......... [06.00ab]
+   ......... [06.00ff]
+
+   Keep in mind that only type 10 and newer adapters (i.e., CEX4 and later)
+   can be bound to the vfio_ap device driver. The reason for this is to
+   simplify the implementation by not needlessly complicating the design by
+   supporting older devices that will go out of service in the relatively near
+   future and for which there are few older systems on which to test.
+
+   The administrator, therefore, must take care to secure only AP queues that
+   can be bound to the vfio_ap device driver. The device type for a given AP
+   queue device can be read from the parent card's sysfs directory. For example,
+   to see the hardware type of the queue 05.0004:
+
+   cat /sys/bus/ap/devices/card05/hwtype
+
+   The hwtype must be 10 or higher (CEX4 or newer) in order to be bound to the
+   vfio_ap device driver.
+
+3. Create the mediated devices needed to configure the AP matrixes for the
+   three guests and to provide an interface to the vfio_ap driver for
+   use by the guests:
+
+   /sys/devices/vfio_ap/matrix/
+   --- [mdev_supported_types]
+   ------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
+   --------- create
+   --------- [devices]
+
+   To create the mediated devices for the three guests:
+
+	uuidgen > create
+	uuidgen > create
+	uuidgen > create
+
+        or
+
+        echo $uuid1 > create
+        echo $uuid2 > create
+        echo $uuid3 > create
+
+   This will create three mediated devices in the [devices] subdirectory named
+   after the UUID written to the create attribute file. We call them $uuid1,
+   $uuid2 and $uuid3 and this is the sysfs directory structure after creation:
+
+   /sys/devices/vfio_ap/matrix/
+   --- [mdev_supported_types]
+   ------ [vfio_ap-passthrough]
+   --------- [devices]
+   ------------ [$uuid1]
+   --------------- assign_adapter
+   --------------- assign_control_domain
+   --------------- assign_domain
+   --------------- matrix
+   --------------- unassign_adapter
+   --------------- unassign_control_domain
+   --------------- unassign_domain
+
+   ------------ [$uuid2]
+   --------------- assign_adapter
+   --------------- assign_control_domain
+   --------------- assign_domain
+   --------------- matrix
+   --------------- unassign_adapter
+   ----------------unassign_control_domain
+   ----------------unassign_domain
+
+   ------------ [$uuid3]
+   --------------- assign_adapter
+   --------------- assign_control_domain
+   --------------- assign_domain
+   --------------- matrix
+   --------------- unassign_adapter
+   ----------------unassign_control_domain
+   ----------------unassign_domain
+
+4. The administrator now needs to configure the matrixes for the mediated
+   devices $uuid1 (for Guest1), $uuid2 (for Guest2) and $uuid3 (for Guest3).
+
+   This is how the matrix is configured for Guest1:
+
+      echo 5 > assign_adapter
+      echo 6 > assign_adapter
+      echo 4 > assign_domain
+      echo 0xab > assign_domain
+
+      Control domains can similarly be assigned using the assign_control_domain
+      sysfs file.
+
+      If a mistake is made configuring an adapter, domain or control domain,
+      you can use the unassign_xxx files to unassign the adapter, domain or
+      control domain.
+
+      To display the matrix configuration for Guest1:
+
+         cat matrix
+
+   This is how the matrix is configured for Guest2:
+
+      echo 5 > assign_adapter
+      echo 0x47 > assign_domain
+      echo 0xff > assign_domain
+
+   This is how the matrix is configured for Guest3:
+
+      echo 6 > assign_adapter
+      echo 0x47 > assign_domain
+      echo 0xff > assign_domain
+
+   In order to successfully assign an adapter:
+
+   * The adapter number specified must represent a value from 0 up to the
+     maximum adapter number configured for the system. If an adapter number
+     higher than the maximum is specified, the operation will terminate with
+     an error (ENODEV).
+
+   * All APQNs that can be derived from the adapter ID and the IDs of
+     the previously assigned domains must be bound to the vfio_ap device
+     driver. If no domains have yet been assigned, then there must be at least
+     one APQN with the specified APID bound to the vfio_ap driver. If no such
+     APQNs are bound to the driver, the operation will terminate with an
+     error (EADDRNOTAVAIL).
+
+     No APQN that can be derived from the adapter ID and the IDs of the
+     previously assigned domains can be assigned to another mediated matrix
+     device. If an APQN is assigned to another mediated matrix device, the
+     operation will terminate with an error (EADDRINUSE).
+
+   In order to successfully assign a domain:
+
+   * The domain number specified must represent a value from 0 up to the
+     maximum domain number configured for the system. If a domain number
+     higher than the maximum is specified, the operation will terminate with
+     an error (ENODEV).
+
+   * All APQNs that can be derived from the domain ID and the IDs of
+     the previously assigned adapters must be bound to the vfio_ap device
+     driver. If no domains have yet been assigned, then there must be at least
+     one APQN with the specified APQI bound to the vfio_ap driver. If no such
+     APQNs are bound to the driver, the operation will terminate with an
+     error (EADDRNOTAVAIL).
+
+     No APQN that can be derived from the domain ID and the IDs of the
+     previously assigned adapters can be assigned to another mediated matrix
+     device. If an APQN is assigned to another mediated matrix device, the
+     operation will terminate with an error (EADDRINUSE).
+
+   In order to successfully assign a control domain, the domain number
+   specified must represent a value from 0 up to the maximum domain number
+   configured for the system. If a control domain number higher than the maximum
+   is specified, the operation will terminate with an error (ENODEV).
+
+5. Start Guest1:
+
+   /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+      -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...
+
+7. Start Guest2:
+
+   /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+      -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...
+
+7. Start Guest3:
+
+   /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+      -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...
+
+When the guest is shut down, the mediated matrix devices may be removed.
+
+Using our example again, to remove the mediated matrix device $uuid1:
+
+   /sys/devices/vfio_ap/matrix/
+      --- [mdev_supported_types]
+      ------ [vfio_ap-passthrough]
+      --------- [devices]
+      ------------ [$uuid1]
+      --------------- remove
+
+
+   echo 1 > remove
+
+   This will remove all of the mdev matrix device's sysfs structures including
+   the mdev device itself. To recreate and reconfigure the mdev matrix device,
+   all of the steps starting with step 3 will have to be performed again. Note
+   that the remove will fail if a guest using the mdev is still running.
+
+   It is not necessary to remove an mdev matrix device, but one may want to
+   remove it if no guest will use it during the remaining lifetime of the linux
+   host. If the mdev matrix device is removed, one may want to also reconfigure
+   the pool of adapters and queues reserved for use by the default drivers.
+
+Limitations
+===========
+* The KVM/kernel interfaces do not provide a way to prevent restoring an APQN
+  to the default drivers pool of a queue that is still assigned to a mediated
+  device in use by a guest. It is incumbent upon the administrator to
+  ensure there is no mediated device in use by a guest to which the APQN is
+  assigned lest the host be given access to the private data of the AP queue
+  device such as a private key configured specifically for the guest.
+
+* Dynamically modifying the AP matrix for a running guest (which would amount to
+  hot(un)plug of AP devices for the guest) is currently not supported
+
+* Live guest migration is not supported for guests using AP devices.

+ 129 - 6
Documentation/virtual/kvm/api.txt

@@ -123,6 +123,37 @@ memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
 flag KVM_VM_MIPS_VZ.
 flag KVM_VM_MIPS_VZ.
 
 
 
 
+On arm64, the physical address size for a VM (IPA Size limit) is limited
+to 40bits by default. The limit can be configured if the host supports the
+extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use
+KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type
+identifier, where IPA_Bits is the maximum width of any physical
+address used by the VM. The IPA_Bits is encoded in bits[7-0] of the
+machine type identifier.
+
+e.g, to configure a guest to use 48bit physical address size :
+
+    vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48));
+
+The requested size (IPA_Bits) must be :
+  0 - Implies default size, 40bits (for backward compatibility)
+
+  or
+
+  N - Implies N bits, where N is a positive integer such that,
+      32 <= N <= Host_IPA_Limit
+
+Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and
+is dependent on the CPU capability and the kernel configuration. The limit can
+be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION
+ioctl() at run-time.
+
+Please note that configuring the IPA size does not affect the capability
+exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects
+size of the address translated by the stage2 level (guest physical to
+host physical address translations).
+
+
 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST
 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST
 
 
 Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST
 Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST
@@ -850,7 +881,7 @@ struct kvm_vcpu_events {
 		__u8 injected;
 		__u8 injected;
 		__u8 nr;
 		__u8 nr;
 		__u8 has_error_code;
 		__u8 has_error_code;
-		__u8 pad;
+		__u8 pending;
 		__u32 error_code;
 		__u32 error_code;
 	} exception;
 	} exception;
 	struct {
 	struct {
@@ -873,15 +904,23 @@ struct kvm_vcpu_events {
 		__u8 smm_inside_nmi;
 		__u8 smm_inside_nmi;
 		__u8 latched_init;
 		__u8 latched_init;
 	} smi;
 	} smi;
+	__u8 reserved[27];
+	__u8 exception_has_payload;
+	__u64 exception_payload;
 };
 };
 
 
-Only two fields are defined in the flags field:
+The following bits are defined in the flags field:
 
 
-- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
+- KVM_VCPUEVENT_VALID_SHADOW may be set to signal that
   interrupt.shadow contains a valid state.
   interrupt.shadow contains a valid state.
 
 
-- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
-  smi contains a valid state.
+- KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a
+  valid state.
+
+- KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the
+  exception_has_payload, exception_payload, and exception.pending
+  fields contain a valid state. This bit will be set whenever
+  KVM_CAP_EXCEPTION_PAYLOAD is enabled.
 
 
 ARM/ARM64:
 ARM/ARM64:
 
 
@@ -961,6 +1000,11 @@ shall be written into the VCPU.
 
 
 KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
 KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
 
 
+If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD
+can be set in the flags field to signal that the
+exception_has_payload, exception_payload, and exception.pending fields
+contain a valid state and shall be written into the VCPU.
+
 ARM/ARM64:
 ARM/ARM64:
 
 
 Set the pending SError exception state for this VCPU. It is not possible to
 Set the pending SError exception state for this VCPU. It is not possible to
@@ -1922,6 +1966,7 @@ registers, find a list below:
   PPC   | KVM_REG_PPC_TIDR              | 64
   PPC   | KVM_REG_PPC_TIDR              | 64
   PPC   | KVM_REG_PPC_PSSCR             | 64
   PPC   | KVM_REG_PPC_PSSCR             | 64
   PPC   | KVM_REG_PPC_DEC_EXPIRY        | 64
   PPC   | KVM_REG_PPC_DEC_EXPIRY        | 64
+  PPC   | KVM_REG_PPC_PTCR              | 64
   PPC   | KVM_REG_PPC_TM_GPR0           | 64
   PPC   | KVM_REG_PPC_TM_GPR0           | 64
           ...
           ...
   PPC   | KVM_REG_PPC_TM_GPR31          | 64
   PPC   | KVM_REG_PPC_TM_GPR31          | 64
@@ -2269,6 +2314,10 @@ The supported flags are:
         The emulated MMU supports 1T segments in addition to the
         The emulated MMU supports 1T segments in addition to the
         standard 256M ones.
         standard 256M ones.
 
 
+    - KVM_PPC_NO_HASH
+	This flag indicates that HPT guests are not supported by KVM,
+	thus all guests must use radix MMU mode.
+
 The "slb_size" field indicates how many SLB entries are supported
 The "slb_size" field indicates how many SLB entries are supported
 
 
 The "sps" array contains 8 entries indicating the supported base
 The "sps" array contains 8 entries indicating the supported base
@@ -3676,6 +3725,34 @@ Returns: 0 on success, -1 on error
 This copies the vcpu's kvm_nested_state struct from userspace to the kernel.  For
 This copies the vcpu's kvm_nested_state struct from userspace to the kernel.  For
 the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
 the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
 
 
+4.116 KVM_(UN)REGISTER_COALESCED_MMIO
+
+Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio)
+	    KVM_CAP_COALESCED_PIO (for coalesced pio)
+Architectures: all
+Type: vm ioctl
+Parameters: struct kvm_coalesced_mmio_zone
+Returns: 0 on success, < 0 on error
+
+Coalesced I/O is a performance optimization that defers hardware
+register write emulation so that userspace exits are avoided.  It is
+typically used to reduce the overhead of emulating frequently accessed
+hardware registers.
+
+When a hardware register is configured for coalesced I/O, write accesses
+do not exit to userspace and their value is recorded in a ring buffer
+that is shared between kernel and userspace.
+
+Coalesced I/O is used if one or more write accesses to a hardware
+register can be deferred until a read or a write to another hardware
+register on the same device.  This last access will cause a vmexit and
+userspace will process accesses from the ring buffer before emulating
+it. That will avoid exiting to userspace on repeated writes.
+
+Coalesced pio is based on coalesced mmio. There is little difference
+between coalesced mmio and pio except that coalesced pio records accesses
+to I/O ports.
+
 5. The kvm_run structure
 5. The kvm_run structure
 ------------------------
 ------------------------
 
 
@@ -4522,7 +4599,7 @@ hpage module parameter is not set to 1, -EINVAL is returned.
 While it is generally possible to create a huge page backed VM without
 While it is generally possible to create a huge page backed VM without
 this capability, the VM will not be able to run.
 this capability, the VM will not be able to run.
 
 
-7.14 KVM_CAP_MSR_PLATFORM_INFO
+7.15 KVM_CAP_MSR_PLATFORM_INFO
 
 
 Architectures: x86
 Architectures: x86
 Parameters: args[0] whether feature should be enabled or not
 Parameters: args[0] whether feature should be enabled or not
@@ -4531,6 +4608,45 @@ With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise,
 a #GP would be raised when the guest tries to access. Currently, this
 a #GP would be raised when the guest tries to access. Currently, this
 capability does not enable write permissions of this MSR for the guest.
 capability does not enable write permissions of this MSR for the guest.
 
 
+7.16 KVM_CAP_PPC_NESTED_HV
+
+Architectures: ppc
+Parameters: none
+Returns: 0 on success, -EINVAL when the implementation doesn't support
+	 nested-HV virtualization.
+
+HV-KVM on POWER9 and later systems allows for "nested-HV"
+virtualization, which provides a way for a guest VM to run guests that
+can run using the CPU's supervisor mode (privileged non-hypervisor
+state).  Enabling this capability on a VM depends on the CPU having
+the necessary functionality and on the facility being enabled with a
+kvm-hv module parameter.
+
+7.17 KVM_CAP_EXCEPTION_PAYLOAD
+
+Architectures: x86
+Parameters: args[0] whether feature should be enabled or not
+
+With this capability enabled, CR2 will not be modified prior to the
+emulated VM-exit when L1 intercepts a #PF exception that occurs in
+L2. Similarly, for kvm-intel only, DR6 will not be modified prior to
+the emulated VM-exit when L1 intercepts a #DB exception that occurs in
+L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or
+#DB) exception for L2, exception.has_payload will be set and the
+faulting address (or the new DR6 bits*) will be reported in the
+exception_payload field. Similarly, when userspace injects a #PF (or
+#DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set
+exception.has_payload and to put the faulting address (or the new DR6
+bits*) in the exception_payload field.
+
+This capability also enables exception.pending in struct
+kvm_vcpu_events, which allows userspace to distinguish between pending
+and injected exceptions.
+
+
+* For the new DR6 bits, note that bit 16 is set iff the #DB exception
+  will clear DR6.RTM.
+
 8. Other capabilities.
 8. Other capabilities.
 ----------------------
 ----------------------
 
 
@@ -4772,3 +4888,10 @@ CPU when the exception is taken. If this virtual SError is taken to EL1 using
 AArch64, this value will be reported in the ISS field of ESR_ELx.
 AArch64, this value will be reported in the ISS field of ESR_ELx.
 
 
 See KVM_CAP_VCPU_EVENTS for more details.
 See KVM_CAP_VCPU_EVENTS for more details.
+8.20 KVM_CAP_HYPERV_SEND_IPI
+
+Architectures: x86
+
+This capability indicates that KVM supports paravirtualized Hyper-V IPI send
+hypercalls:
+HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx.

+ 12 - 0
MAINTAINERS

@@ -12800,6 +12800,18 @@ W:	http://www.ibm.com/developerworks/linux/linux390/
 S:	Supported
 S:	Supported
 F:	drivers/s390/crypto/
 F:	drivers/s390/crypto/
 
 
+S390 VFIO AP DRIVER
+M:	Tony Krowiak <akrowiak@linux.ibm.com>
+M:	Pierre Morel <pmorel@linux.ibm.com>
+M:	Halil Pasic <pasic@linux.ibm.com>
+L:	linux-s390@vger.kernel.org
+W:	http://www.ibm.com/developerworks/linux/linux390/
+S:	Supported
+F:	drivers/s390/crypto/vfio_ap_drv.c
+F:	drivers/s390/crypto/vfio_ap_private.h
+F:	drivers/s390/crypto/vfio_ap_ops.c
+F:	Documentation/s390/vfio-ap.txt
+
 S390 ZFCP DRIVER
 S390 ZFCP DRIVER
 M:	Steffen Maier <maier@linux.ibm.com>
 M:	Steffen Maier <maier@linux.ibm.com>
 M:	Benjamin Block <bblock@linux.ibm.com>
 M:	Benjamin Block <bblock@linux.ibm.com>

+ 1 - 2
arch/arm/include/asm/kvm_arm.h

@@ -133,8 +133,7 @@
  * space.
  * space.
  */
  */
 #define KVM_PHYS_SHIFT	(40)
 #define KVM_PHYS_SHIFT	(40)
-#define KVM_PHYS_SIZE	(_AC(1, ULL) << KVM_PHYS_SHIFT)
-#define KVM_PHYS_MASK	(KVM_PHYS_SIZE - _AC(1, ULL))
+
 #define PTRS_PER_S2_PGD	(_AC(1, ULL) << (KVM_PHYS_SHIFT - 30))
 #define PTRS_PER_S2_PGD	(_AC(1, ULL) << (KVM_PHYS_SHIFT - 30))
 
 
 /* Virtualization Translation Control Register (VTCR) bits */
 /* Virtualization Translation Control Register (VTCR) bits */

+ 12 - 1
arch/arm/include/asm/kvm_host.h

@@ -273,7 +273,7 @@ static inline void __cpu_init_stage2(void)
 	kvm_call_hyp(__init_stage2_translation);
 	kvm_call_hyp(__init_stage2_translation);
 }
 }
 
 
-static inline int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
+static inline int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 {
 {
 	return 0;
 	return 0;
 }
 }
@@ -354,4 +354,15 @@ static inline void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu) {}
 struct kvm *kvm_arch_alloc_vm(void);
 struct kvm *kvm_arch_alloc_vm(void);
 void kvm_arch_free_vm(struct kvm *kvm);
 void kvm_arch_free_vm(struct kvm *kvm);
 
 
+static inline int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
+{
+	/*
+	 * On 32bit ARM, VMs get a static 40bit IPA stage2 setup,
+	 * so any non-zero value used as type is illegal.
+	 */
+	if (type)
+		return -EINVAL;
+	return 0;
+}
+
 #endif /* __ARM_KVM_HOST_H__ */
 #endif /* __ARM_KVM_HOST_H__ */

+ 10 - 5
arch/arm/include/asm/kvm_mmu.h

@@ -35,16 +35,12 @@
 		addr;							\
 		addr;							\
 	})
 	})
 
 
-/*
- * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels.
- */
-#define KVM_MMU_CACHE_MIN_PAGES	2
-
 #ifndef __ASSEMBLY__
 #ifndef __ASSEMBLY__
 
 
 #include <linux/highmem.h>
 #include <linux/highmem.h>
 #include <asm/cacheflush.h>
 #include <asm/cacheflush.h>
 #include <asm/cputype.h>
 #include <asm/cputype.h>
+#include <asm/kvm_arm.h>
 #include <asm/kvm_hyp.h>
 #include <asm/kvm_hyp.h>
 #include <asm/pgalloc.h>
 #include <asm/pgalloc.h>
 #include <asm/stage2_pgtable.h>
 #include <asm/stage2_pgtable.h>
@@ -52,6 +48,13 @@
 /* Ensure compatibility with arm64 */
 /* Ensure compatibility with arm64 */
 #define VA_BITS			32
 #define VA_BITS			32
 
 
+#define kvm_phys_shift(kvm)		KVM_PHYS_SHIFT
+#define kvm_phys_size(kvm)		(1ULL << kvm_phys_shift(kvm))
+#define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - 1ULL)
+#define kvm_vttbr_baddr_mask(kvm)	VTTBR_BADDR_MASK
+
+#define stage2_pgd_size(kvm)		(PTRS_PER_S2_PGD * sizeof(pgd_t))
+
 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 			   void __iomem **kaddr,
 			   void __iomem **kaddr,
@@ -355,6 +358,8 @@ static inline int hyp_map_aux_data(void)
 
 
 #define kvm_phys_to_vttbr(addr)		(addr)
 #define kvm_phys_to_vttbr(addr)		(addr)
 
 
+static inline void kvm_set_ipa_limit(void) {}
+
 static inline bool kvm_cpu_has_cnp(void)
 static inline bool kvm_cpu_has_cnp(void)
 {
 {
 	return false;
 	return false;

+ 32 - 22
arch/arm/include/asm/stage2_pgtable.h

@@ -19,43 +19,53 @@
 #ifndef __ARM_S2_PGTABLE_H_
 #ifndef __ARM_S2_PGTABLE_H_
 #define __ARM_S2_PGTABLE_H_
 #define __ARM_S2_PGTABLE_H_
 
 
-#define stage2_pgd_none(pgd)			pgd_none(pgd)
-#define stage2_pgd_clear(pgd)			pgd_clear(pgd)
-#define stage2_pgd_present(pgd)			pgd_present(pgd)
-#define stage2_pgd_populate(pgd, pud)		pgd_populate(NULL, pgd, pud)
-#define stage2_pud_offset(pgd, address)		pud_offset(pgd, address)
-#define stage2_pud_free(pud)			pud_free(NULL, pud)
-
-#define stage2_pud_none(pud)			pud_none(pud)
-#define stage2_pud_clear(pud)			pud_clear(pud)
-#define stage2_pud_present(pud)			pud_present(pud)
-#define stage2_pud_populate(pud, pmd)		pud_populate(NULL, pud, pmd)
-#define stage2_pmd_offset(pud, address)		pmd_offset(pud, address)
-#define stage2_pmd_free(pmd)			pmd_free(NULL, pmd)
-
-#define stage2_pud_huge(pud)			pud_huge(pud)
+/*
+ * kvm_mmu_cache_min_pages() is the number of pages required
+ * to install a stage-2 translation. We pre-allocate the entry
+ * level table at VM creation. Since we have a 3 level page-table,
+ * we need only two pages to add a new mapping.
+ */
+#define kvm_mmu_cache_min_pages(kvm)	2
+
+#define stage2_pgd_none(kvm, pgd)		pgd_none(pgd)
+#define stage2_pgd_clear(kvm, pgd)		pgd_clear(pgd)
+#define stage2_pgd_present(kvm, pgd)		pgd_present(pgd)
+#define stage2_pgd_populate(kvm, pgd, pud)	pgd_populate(NULL, pgd, pud)
+#define stage2_pud_offset(kvm, pgd, address)	pud_offset(pgd, address)
+#define stage2_pud_free(kvm, pud)		pud_free(NULL, pud)
+
+#define stage2_pud_none(kvm, pud)		pud_none(pud)
+#define stage2_pud_clear(kvm, pud)		pud_clear(pud)
+#define stage2_pud_present(kvm, pud)		pud_present(pud)
+#define stage2_pud_populate(kvm, pud, pmd)	pud_populate(NULL, pud, pmd)
+#define stage2_pmd_offset(kvm, pud, address)	pmd_offset(pud, address)
+#define stage2_pmd_free(kvm, pmd)		pmd_free(NULL, pmd)
+
+#define stage2_pud_huge(kvm, pud)		pud_huge(pud)
 
 
 /* Open coded p*d_addr_end that can deal with 64bit addresses */
 /* Open coded p*d_addr_end that can deal with 64bit addresses */
-static inline phys_addr_t stage2_pgd_addr_end(phys_addr_t addr, phys_addr_t end)
+static inline phys_addr_t
+stage2_pgd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
 {
 {
 	phys_addr_t boundary = (addr + PGDIR_SIZE) & PGDIR_MASK;
 	phys_addr_t boundary = (addr + PGDIR_SIZE) & PGDIR_MASK;
 
 
 	return (boundary - 1 < end - 1) ? boundary : end;
 	return (boundary - 1 < end - 1) ? boundary : end;
 }
 }
 
 
-#define stage2_pud_addr_end(addr, end)		(end)
+#define stage2_pud_addr_end(kvm, addr, end)	(end)
 
 
-static inline phys_addr_t stage2_pmd_addr_end(phys_addr_t addr, phys_addr_t end)
+static inline phys_addr_t
+stage2_pmd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
 {
 {
 	phys_addr_t boundary = (addr + PMD_SIZE) & PMD_MASK;
 	phys_addr_t boundary = (addr + PMD_SIZE) & PMD_MASK;
 
 
 	return (boundary - 1 < end - 1) ? boundary : end;
 	return (boundary - 1 < end - 1) ? boundary : end;
 }
 }
 
 
-#define stage2_pgd_index(addr)				pgd_index(addr)
+#define stage2_pgd_index(kvm, addr)		pgd_index(addr)
 
 
-#define stage2_pte_table_empty(ptep)			kvm_page_empty(ptep)
-#define stage2_pmd_table_empty(pmdp)			kvm_page_empty(pmdp)
-#define stage2_pud_table_empty(pudp)			false
+#define stage2_pte_table_empty(kvm, ptep)	kvm_page_empty(ptep)
+#define stage2_pmd_table_empty(kvm, pmdp)	kvm_page_empty(pmdp)
+#define stage2_pud_table_empty(kvm, pudp)	false
 
 
 #endif	/* __ARM_S2_PGTABLE_H_ */
 #endif	/* __ARM_S2_PGTABLE_H_ */

+ 21 - 0
arch/arm64/include/asm/cpufeature.h

@@ -537,6 +537,27 @@ static inline void arm64_set_ssbd_mitigation(bool state) {}
 #endif
 #endif
 
 
 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
+
+static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
+{
+	switch (parange) {
+	case 0: return 32;
+	case 1: return 36;
+	case 2: return 40;
+	case 3: return 42;
+	case 4: return 44;
+	case 5: return 48;
+	case 6: return 52;
+	/*
+	 * A future PE could use a value unknown to the kernel.
+	 * However, by the "D10.1.4 Principles of the ID scheme
+	 * for fields in ID registers", ARM DDI 0487C.a, any new
+	 * value is guaranteed to be higher than what we know already.
+	 * As a safe limit, we return the limit supported by the kernel.
+	 */
+	default: return CONFIG_ARM64_PA_BITS;
+	}
+}
 #endif /* __ASSEMBLY__ */
 #endif /* __ASSEMBLY__ */
 
 
 #endif
 #endif

+ 125 - 30
arch/arm64/include/asm/kvm_arm.h

@@ -107,6 +107,7 @@
 #define VTCR_EL2_RES1		(1 << 31)
 #define VTCR_EL2_RES1		(1 << 31)
 #define VTCR_EL2_HD		(1 << 22)
 #define VTCR_EL2_HD		(1 << 22)
 #define VTCR_EL2_HA		(1 << 21)
 #define VTCR_EL2_HA		(1 << 21)
+#define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
@@ -120,63 +121,150 @@
 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
 #define VTCR_EL2_SL0_SHIFT	6
 #define VTCR_EL2_SL0_SHIFT	6
 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
-#define VTCR_EL2_SL0_LVL1	(1 << VTCR_EL2_SL0_SHIFT)
 #define VTCR_EL2_T0SZ_MASK	0x3f
 #define VTCR_EL2_T0SZ_MASK	0x3f
-#define VTCR_EL2_T0SZ_40B	24
 #define VTCR_EL2_VS_SHIFT	19
 #define VTCR_EL2_VS_SHIFT	19
 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
 
 
+#define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
+
 /*
 /*
  * We configure the Stage-2 page tables to always restrict the IPA space to be
  * We configure the Stage-2 page tables to always restrict the IPA space to be
  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
  * not known to exist and will break with this configuration.
  * not known to exist and will break with this configuration.
  *
  *
- * VTCR_EL2.PS is extracted from ID_AA64MMFR0_EL1.PARange at boot time
- * (see hyp-init.S).
+ * The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
  *
  *
  * Note that when using 4K pages, we concatenate two first level page tables
  * Note that when using 4K pages, we concatenate two first level page tables
  * together. With 16K pages, we concatenate 16 first level page tables.
  * together. With 16K pages, we concatenate 16 first level page tables.
  *
  *
- * The magic numbers used for VTTBR_X in this patch can be found in Tables
- * D4-23 and D4-25 in ARM DDI 0487A.b.
  */
  */
 
 
-#define VTCR_EL2_T0SZ_IPA	VTCR_EL2_T0SZ_40B
 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
 
 
-#ifdef CONFIG_ARM64_64K_PAGES
 /*
 /*
- * Stage2 translation configuration:
- * 64kB pages (TG0 = 1)
- * 2 level page tables (SL = 1)
+ * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
+ * Interestingly, it depends on the page size.
+ * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
+ *
+ *	-----------------------------------------
+ *	| Entry level		|  4K  | 16K/64K |
+ *	------------------------------------------
+ *	| Level: 0		|  2   |   -     |
+ *	------------------------------------------
+ *	| Level: 1		|  1   |   2     |
+ *	------------------------------------------
+ *	| Level: 2		|  0   |   1     |
+ *	------------------------------------------
+ *	| Level: 3		|  -   |   0     |
+ *	------------------------------------------
+ *
+ * The table roughly translates to :
+ *
+ *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
+ *
+ * Where TGRAN_SL0_BASE is a magic number depending on the page size:
+ * 	TGRAN_SL0_BASE(4K) = 2
+ *	TGRAN_SL0_BASE(16K) = 3
+ *	TGRAN_SL0_BASE(64K) = 3
+ * provided we take care of ruling out the unsupported cases and
+ * Entry_Level = 4 - Number_of_levels.
+ *
  */
  */
-#define VTCR_EL2_TGRAN_FLAGS		(VTCR_EL2_TG0_64K | VTCR_EL2_SL0_LVL1)
-#define VTTBR_X_TGRAN_MAGIC		38
+#ifdef CONFIG_ARM64_64K_PAGES
+
+#define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
+#define VTCR_EL2_TGRAN_SL0_BASE		3UL
+
 #elif defined(CONFIG_ARM64_16K_PAGES)
 #elif defined(CONFIG_ARM64_16K_PAGES)
-/*
- * Stage2 translation configuration:
- * 16kB pages (TG0 = 2)
- * 2 level page tables (SL = 1)
- */
-#define VTCR_EL2_TGRAN_FLAGS		(VTCR_EL2_TG0_16K | VTCR_EL2_SL0_LVL1)
-#define VTTBR_X_TGRAN_MAGIC		42
+
+#define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
+#define VTCR_EL2_TGRAN_SL0_BASE		3UL
+
 #else	/* 4K */
 #else	/* 4K */
-/*
- * Stage2 translation configuration:
- * 4kB pages (TG0 = 0)
- * 3 level page tables (SL = 1)
- */
-#define VTCR_EL2_TGRAN_FLAGS		(VTCR_EL2_TG0_4K | VTCR_EL2_SL0_LVL1)
-#define VTTBR_X_TGRAN_MAGIC		37
+
+#define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
+#define VTCR_EL2_TGRAN_SL0_BASE		2UL
+
 #endif
 #endif
 
 
-#define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN_FLAGS)
-#define VTTBR_X				(VTTBR_X_TGRAN_MAGIC - VTCR_EL2_T0SZ_IPA)
+#define VTCR_EL2_LVLS_TO_SL0(levels)	\
+	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
+#define VTCR_EL2_SL0_TO_LVLS(sl0)	\
+	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
+#define VTCR_EL2_LVLS(vtcr)		\
+	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
+
+#define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
+#define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
+
+/*
+ * ARM VMSAv8-64 defines an algorithm for finding the translation table
+ * descriptors in section D4.2.8 in ARM DDI 0487C.a.
+ *
+ * The algorithm defines the expectations on the translation table
+ * addresses for each level, based on PAGE_SIZE, entry level
+ * and the translation table size (T0SZ). The variable "x" in the
+ * algorithm determines the alignment of a table base address at a given
+ * level and thus determines the alignment of VTTBR:BADDR for stage2
+ * page table entry level.
+ * Since the number of bits resolved at the entry level could vary
+ * depending on the T0SZ, the value of "x" is defined based on a
+ * Magic constant for a given PAGE_SIZE and Entry Level. The
+ * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
+ * x = PAGE_SHIFT).
+ *
+ * The value of "x" for entry level is calculated as :
+ *    x = Magic_N - T0SZ
+ *
+ * where Magic_N is an integer depending on the page size and the entry
+ * level of the page table as below:
+ *
+ *	--------------------------------------------
+ *	| Entry level		|  4K    16K   64K |
+ *	--------------------------------------------
+ *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
+ *	--------------------------------------------
+ *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
+ *	--------------------------------------------
+ *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
+ *	--------------------------------------------
+ *	| Level: 3 (1 level)	| -    | 53  | 51  |
+ *	--------------------------------------------
+ *
+ * We have a magic formula for the Magic_N below:
+ *
+ *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
+ *
+ * where Number_of_levels = (4 - Level). We are only interested in the
+ * value for Entry_Level for the stage2 page table.
+ *
+ * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
+ *
+ *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
+ *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
+ *
+ * Here is one way to explain the Magic Formula:
+ *
+ *  x = log2(Size_of_Entry_Level_Table)
+ *
+ * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
+ * PAGE_SHIFT bits in the PTE, we have :
+ *
+ *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
+ *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
+ *  where n = number of levels, and since each pointer is 8bytes, we have:
+ *
+ *  x = Bits_Entry_Level + 3
+ *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
+ *
+ * The only constraint here is that, we have to find the number of page table
+ * levels for a given IPA size (which we do, see stage2_pt_levels())
+ */
+#define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
 
 
 #define VTTBR_CNP_BIT     (UL(1))
 #define VTTBR_CNP_BIT     (UL(1))
-#define VTTBR_BADDR_MASK  (((UL(1) << (PHYS_MASK_SHIFT - VTTBR_X)) - 1) << VTTBR_X)
 #define VTTBR_VMID_SHIFT  (UL(48))
 #define VTTBR_VMID_SHIFT  (UL(48))
 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
 
 
@@ -224,6 +312,13 @@
 
 
 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
 #define HPFAR_MASK	(~UL(0xf))
 #define HPFAR_MASK	(~UL(0xf))
+/*
+ * We have
+ *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
+ *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
+ */
+#define PAR_TO_HPFAR(par)		\
+	(((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
 
 
 #define kvm_arm_exception_type	\
 #define kvm_arm_exception_type	\
 	{0, "IRQ" }, 		\
 	{0, "IRQ" }, 		\

+ 1 - 2
arch/arm64/include/asm/kvm_asm.h

@@ -30,6 +30,7 @@
 #define ARM_EXCEPTION_IRQ	  0
 #define ARM_EXCEPTION_IRQ	  0
 #define ARM_EXCEPTION_EL1_SERROR  1
 #define ARM_EXCEPTION_EL1_SERROR  1
 #define ARM_EXCEPTION_TRAP	  2
 #define ARM_EXCEPTION_TRAP	  2
+#define ARM_EXCEPTION_IL	  3
 /* The hyp-stub will return this for any kvm_call_hyp() call */
 /* The hyp-stub will return this for any kvm_call_hyp() call */
 #define ARM_EXCEPTION_HYP_GONE	  HVC_STUB_ERR
 #define ARM_EXCEPTION_HYP_GONE	  HVC_STUB_ERR
 
 
@@ -72,8 +73,6 @@ extern void __vgic_v3_init_lrs(void);
 
 
 extern u32 __kvm_get_mdcr_el2(void);
 extern u32 __kvm_get_mdcr_el2(void);
 
 
-extern u32 __init_stage2_translation(void);
-
 /* Home-grown __this_cpu_{ptr,read} variants that always work at HYP */
 /* Home-grown __this_cpu_{ptr,read} variants that always work at HYP */
 #define __hyp_this_cpu_ptr(sym)						\
 #define __hyp_this_cpu_ptr(sym)						\
 	({								\
 	({								\

+ 9 - 9
arch/arm64/include/asm/kvm_host.h

@@ -53,7 +53,7 @@ DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
 
 
 int __attribute_const__ kvm_target_cpu(void);
 int __attribute_const__ kvm_target_cpu(void);
 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
-int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext);
+int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
 
 
 struct kvm_arch {
 struct kvm_arch {
@@ -61,11 +61,13 @@ struct kvm_arch {
 	u64    vmid_gen;
 	u64    vmid_gen;
 	u32    vmid;
 	u32    vmid;
 
 
-	/* 1-level 2nd stage table, protected by kvm->mmu_lock */
+	/* stage2 entry level table */
 	pgd_t *pgd;
 	pgd_t *pgd;
 
 
 	/* VTTBR value associated with above pgd and vmid */
 	/* VTTBR value associated with above pgd and vmid */
 	u64    vttbr;
 	u64    vttbr;
+	/* VTCR_EL2 value for this VM */
+	u64    vtcr;
 
 
 	/* The last vcpu id that ran on each physical CPU */
 	/* The last vcpu id that ran on each physical CPU */
 	int __percpu *last_vcpu_ran;
 	int __percpu *last_vcpu_ran;
@@ -451,13 +453,7 @@ int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
 			       struct kvm_device_attr *attr);
 			       struct kvm_device_attr *attr);
 
 
-static inline void __cpu_init_stage2(void)
-{
-	u32 parange = kvm_call_hyp(__init_stage2_translation);
-
-	WARN_ONCE(parange < 40,
-		  "PARange is %d bits, unsupported configuration!", parange);
-}
+static inline void __cpu_init_stage2(void) {}
 
 
 /* Guest/host FPSIMD coordination helpers */
 /* Guest/host FPSIMD coordination helpers */
 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
@@ -520,8 +516,12 @@ static inline int kvm_arm_have_ssbd(void)
 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
 
 
+void kvm_set_ipa_limit(void);
+
 #define __KVM_HAVE_ARCH_VM_ALLOC
 #define __KVM_HAVE_ARCH_VM_ALLOC
 struct kvm *kvm_arch_alloc_vm(void);
 struct kvm *kvm_arch_alloc_vm(void);
 void kvm_arch_free_vm(struct kvm *kvm);
 void kvm_arch_free_vm(struct kvm *kvm);
 
 
+int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
+
 #endif /* __ARM64_KVM_HOST_H__ */
 #endif /* __ARM64_KVM_HOST_H__ */

+ 10 - 0
arch/arm64/include/asm/kvm_hyp.h

@@ -155,5 +155,15 @@ void deactivate_traps_vhe_put(void);
 u64 __guest_enter(struct kvm_vcpu *vcpu, struct kvm_cpu_context *host_ctxt);
 u64 __guest_enter(struct kvm_vcpu *vcpu, struct kvm_cpu_context *host_ctxt);
 void __noreturn __hyp_do_panic(unsigned long, ...);
 void __noreturn __hyp_do_panic(unsigned long, ...);
 
 
+/*
+ * Must be called from hyp code running at EL2 with an updated VTTBR
+ * and interrupts disabled.
+ */
+static __always_inline void __hyp_text __load_guest_stage2(struct kvm *kvm)
+{
+	write_sysreg(kvm->arch.vtcr, vtcr_el2);
+	write_sysreg(kvm->arch.vttbr, vttbr_el2);
+}
+
 #endif /* __ARM64_KVM_HYP_H__ */
 #endif /* __ARM64_KVM_HYP_H__ */
 
 

+ 34 - 8
arch/arm64/include/asm/kvm_mmu.h

@@ -141,8 +141,16 @@ static inline unsigned long __kern_hyp_va(unsigned long v)
  * We currently only support a 40bit IPA.
  * We currently only support a 40bit IPA.
  */
  */
 #define KVM_PHYS_SHIFT	(40)
 #define KVM_PHYS_SHIFT	(40)
-#define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
-#define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
+
+#define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
+#define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
+#define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
+
+static inline bool kvm_page_empty(void *ptr)
+{
+	struct page *ptr_page = virt_to_page(ptr);
+	return page_count(ptr_page) == 1;
+}
 
 
 #include <asm/stage2_pgtable.h>
 #include <asm/stage2_pgtable.h>
 
 
@@ -238,12 +246,6 @@ static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
 }
 }
 
 
-static inline bool kvm_page_empty(void *ptr)
-{
-	struct page *ptr_page = virt_to_page(ptr);
-	return page_count(ptr_page) == 1;
-}
-
 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
 
 
 #ifdef __PAGETABLE_PMD_FOLDED
 #ifdef __PAGETABLE_PMD_FOLDED
@@ -517,6 +519,30 @@ static inline int hyp_map_aux_data(void)
 
 
 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
 
 
+/*
+ * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
+ * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
+ * 52bit IPS.
+ */
+static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
+{
+	int x = ARM64_VTTBR_X(ipa_shift, levels);
+
+	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
+}
+
+static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
+{
+	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
+
+	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
+}
+
+static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
+{
+	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
+}
+
 static inline bool kvm_cpu_has_cnp(void)
 static inline bool kvm_cpu_has_cnp(void)
 {
 {
 	return system_supports_cnp();
 	return system_supports_cnp();

+ 3 - 0
arch/arm64/include/asm/ptrace.h

@@ -25,6 +25,9 @@
 #define CurrentEL_EL1		(1 << 2)
 #define CurrentEL_EL1		(1 << 2)
 #define CurrentEL_EL2		(2 << 2)
 #define CurrentEL_EL2		(2 << 2)
 
 
+/* Additional SPSR bits not exposed in the UABI */
+#define PSR_IL_BIT		(1 << 20)
+
 /* AArch32-specific ptrace requests */
 /* AArch32-specific ptrace requests */
 #define COMPAT_PTRACE_GETREGS		12
 #define COMPAT_PTRACE_GETREGS		12
 #define COMPAT_PTRACE_SETREGS		13
 #define COMPAT_PTRACE_SETREGS		13

+ 0 - 42
arch/arm64/include/asm/stage2_pgtable-nopmd.h

@@ -1,42 +0,0 @@
-/*
- * Copyright (C) 2016 - ARM Ltd
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef __ARM64_S2_PGTABLE_NOPMD_H_
-#define __ARM64_S2_PGTABLE_NOPMD_H_
-
-#include <asm/stage2_pgtable-nopud.h>
-
-#define __S2_PGTABLE_PMD_FOLDED
-
-#define S2_PMD_SHIFT		S2_PUD_SHIFT
-#define S2_PTRS_PER_PMD		1
-#define S2_PMD_SIZE		(1UL << S2_PMD_SHIFT)
-#define S2_PMD_MASK		(~(S2_PMD_SIZE-1))
-
-#define stage2_pud_none(pud)			(0)
-#define stage2_pud_present(pud)			(1)
-#define stage2_pud_clear(pud)			do { } while (0)
-#define stage2_pud_populate(pud, pmd)		do { } while (0)
-#define stage2_pmd_offset(pud, address)		((pmd_t *)(pud))
-
-#define stage2_pmd_free(pmd)			do { } while (0)
-
-#define stage2_pmd_addr_end(addr, end)		(end)
-
-#define stage2_pud_huge(pud)			(0)
-#define stage2_pmd_table_empty(pmdp)		(0)
-
-#endif

+ 0 - 39
arch/arm64/include/asm/stage2_pgtable-nopud.h

@@ -1,39 +0,0 @@
-/*
- * Copyright (C) 2016 - ARM Ltd
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef __ARM64_S2_PGTABLE_NOPUD_H_
-#define __ARM64_S2_PGTABLE_NOPUD_H_
-
-#define __S2_PGTABLE_PUD_FOLDED
-
-#define S2_PUD_SHIFT		S2_PGDIR_SHIFT
-#define S2_PTRS_PER_PUD		1
-#define S2_PUD_SIZE		(_AC(1, UL) << S2_PUD_SHIFT)
-#define S2_PUD_MASK		(~(S2_PUD_SIZE-1))
-
-#define stage2_pgd_none(pgd)			(0)
-#define stage2_pgd_present(pgd)			(1)
-#define stage2_pgd_clear(pgd)			do { } while (0)
-#define stage2_pgd_populate(pgd, pud)	do { } while (0)
-
-#define stage2_pud_offset(pgd, address)		((pud_t *)(pgd))
-
-#define stage2_pud_free(x)			do { } while (0)
-
-#define stage2_pud_addr_end(addr, end)		(end)
-#define stage2_pud_table_empty(pmdp)		(0)
-
-#endif

+ 170 - 66
arch/arm64/include/asm/stage2_pgtable.h

@@ -19,8 +19,16 @@
 #ifndef __ARM64_S2_PGTABLE_H_
 #ifndef __ARM64_S2_PGTABLE_H_
 #define __ARM64_S2_PGTABLE_H_
 #define __ARM64_S2_PGTABLE_H_
 
 
+#include <linux/hugetlb.h>
 #include <asm/pgtable.h>
 #include <asm/pgtable.h>
 
 
+/*
+ * PGDIR_SHIFT determines the size a top-level page table entry can map
+ * and depends on the number of levels in the page table. Compute the
+ * PGDIR_SHIFT for a given number of levels.
+ */
+#define pt_levels_pgdir_shift(lvls)	ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - (lvls))
+
 /*
 /*
  * The hardware supports concatenation of up to 16 tables at stage2 entry level
  * The hardware supports concatenation of up to 16 tables at stage2 entry level
  * and we use the feature whenever possible.
  * and we use the feature whenever possible.
@@ -29,112 +37,208 @@
  * On arm64, the smallest PAGE_SIZE supported is 4k, which means
  * On arm64, the smallest PAGE_SIZE supported is 4k, which means
  *             (PAGE_SHIFT - 3) > 4 holds for all page sizes.
  *             (PAGE_SHIFT - 3) > 4 holds for all page sizes.
  * This implies, the total number of page table levels at stage2 expected
  * This implies, the total number of page table levels at stage2 expected
- * by the hardware is actually the number of levels required for (KVM_PHYS_SHIFT - 4)
+ * by the hardware is actually the number of levels required for (IPA_SHIFT - 4)
  * in normal translations(e.g, stage1), since we cannot have another level in
  * in normal translations(e.g, stage1), since we cannot have another level in
- * the range (KVM_PHYS_SHIFT, KVM_PHYS_SHIFT - 4).
+ * the range (IPA_SHIFT, IPA_SHIFT - 4).
  */
  */
-#define STAGE2_PGTABLE_LEVELS		ARM64_HW_PGTABLE_LEVELS(KVM_PHYS_SHIFT - 4)
+#define stage2_pgtable_levels(ipa)	ARM64_HW_PGTABLE_LEVELS((ipa) - 4)
+#define kvm_stage2_levels(kvm)		VTCR_EL2_LVLS(kvm->arch.vtcr)
 
 
-/*
- * With all the supported VA_BITs and 40bit guest IPA, the following condition
- * is always true:
- *
- *       STAGE2_PGTABLE_LEVELS <= CONFIG_PGTABLE_LEVELS
- *
- * We base our stage-2 page table walker helpers on this assumption and
- * fall back to using the host version of the helper wherever possible.
- * i.e, if a particular level is not folded (e.g, PUD) at stage2, we fall back
- * to using the host version, since it is guaranteed it is not folded at host.
- *
- * If the condition breaks in the future, we can rearrange the host level
- * definitions and reuse them for stage2. Till then...
- */
-#if STAGE2_PGTABLE_LEVELS > CONFIG_PGTABLE_LEVELS
-#error "Unsupported combination of guest IPA and host VA_BITS."
-#endif
-
-/* S2_PGDIR_SHIFT is the size mapped by top-level stage2 entry */
-#define S2_PGDIR_SHIFT			ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - STAGE2_PGTABLE_LEVELS)
-#define S2_PGDIR_SIZE			(_AC(1, UL) << S2_PGDIR_SHIFT)
-#define S2_PGDIR_MASK			(~(S2_PGDIR_SIZE - 1))
+/* stage2_pgdir_shift() is the size mapped by top-level stage2 entry for the VM */
+#define stage2_pgdir_shift(kvm)		pt_levels_pgdir_shift(kvm_stage2_levels(kvm))
+#define stage2_pgdir_size(kvm)		(1ULL << stage2_pgdir_shift(kvm))
+#define stage2_pgdir_mask(kvm)		~(stage2_pgdir_size(kvm) - 1)
 
 
 /*
 /*
  * The number of PTRS across all concatenated stage2 tables given by the
  * The number of PTRS across all concatenated stage2 tables given by the
  * number of bits resolved at the initial level.
  * number of bits resolved at the initial level.
+ * If we force more levels than necessary, we may have (stage2_pgdir_shift > IPA),
+ * in which case, stage2_pgd_ptrs will have one entry.
  */
  */
-#define PTRS_PER_S2_PGD			(1 << (KVM_PHYS_SHIFT - S2_PGDIR_SHIFT))
+#define pgd_ptrs_shift(ipa, pgdir_shift)	\
+	((ipa) > (pgdir_shift) ? ((ipa) - (pgdir_shift)) : 0)
+#define __s2_pgd_ptrs(ipa, lvls)		\
+	(1 << (pgd_ptrs_shift((ipa), pt_levels_pgdir_shift(lvls))))
+#define __s2_pgd_size(ipa, lvls)	(__s2_pgd_ptrs((ipa), (lvls)) * sizeof(pgd_t))
+
+#define stage2_pgd_ptrs(kvm)		__s2_pgd_ptrs(kvm_phys_shift(kvm), kvm_stage2_levels(kvm))
+#define stage2_pgd_size(kvm)		__s2_pgd_size(kvm_phys_shift(kvm), kvm_stage2_levels(kvm))
 
 
 /*
 /*
- * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
- * levels in addition to the PGD.
+ * kvm_mmmu_cache_min_pages() is the number of pages required to install
+ * a stage-2 translation. We pre-allocate the entry level page table at
+ * the VM creation.
  */
  */
-#define KVM_MMU_CACHE_MIN_PAGES		(STAGE2_PGTABLE_LEVELS - 1)
+#define kvm_mmu_cache_min_pages(kvm)	(kvm_stage2_levels(kvm) - 1)
 
 
-
-#if STAGE2_PGTABLE_LEVELS > 3
+/* Stage2 PUD definitions when the level is present */
+static inline bool kvm_stage2_has_pud(struct kvm *kvm)
+{
+	return (CONFIG_PGTABLE_LEVELS > 3) && (kvm_stage2_levels(kvm) > 3);
+}
 
 
 #define S2_PUD_SHIFT			ARM64_HW_PGTABLE_LEVEL_SHIFT(1)
 #define S2_PUD_SHIFT			ARM64_HW_PGTABLE_LEVEL_SHIFT(1)
-#define S2_PUD_SIZE			(_AC(1, UL) << S2_PUD_SHIFT)
+#define S2_PUD_SIZE			(1UL << S2_PUD_SHIFT)
 #define S2_PUD_MASK			(~(S2_PUD_SIZE - 1))
 #define S2_PUD_MASK			(~(S2_PUD_SIZE - 1))
 
 
-#define stage2_pgd_none(pgd)				pgd_none(pgd)
-#define stage2_pgd_clear(pgd)				pgd_clear(pgd)
-#define stage2_pgd_present(pgd)				pgd_present(pgd)
-#define stage2_pgd_populate(pgd, pud)			pgd_populate(NULL, pgd, pud)
-#define stage2_pud_offset(pgd, address)			pud_offset(pgd, address)
-#define stage2_pud_free(pud)				pud_free(NULL, pud)
+static inline bool stage2_pgd_none(struct kvm *kvm, pgd_t pgd)
+{
+	if (kvm_stage2_has_pud(kvm))
+		return pgd_none(pgd);
+	else
+		return 0;
+}
 
 
-#define stage2_pud_table_empty(pudp)			kvm_page_empty(pudp)
+static inline void stage2_pgd_clear(struct kvm *kvm, pgd_t *pgdp)
+{
+	if (kvm_stage2_has_pud(kvm))
+		pgd_clear(pgdp);
+}
 
 
-static inline phys_addr_t stage2_pud_addr_end(phys_addr_t addr, phys_addr_t end)
+static inline bool stage2_pgd_present(struct kvm *kvm, pgd_t pgd)
 {
 {
-	phys_addr_t boundary = (addr + S2_PUD_SIZE) & S2_PUD_MASK;
+	if (kvm_stage2_has_pud(kvm))
+		return pgd_present(pgd);
+	else
+		return 1;
+}
 
 
-	return (boundary - 1 < end - 1) ? boundary : end;
+static inline void stage2_pgd_populate(struct kvm *kvm, pgd_t *pgd, pud_t *pud)
+{
+	if (kvm_stage2_has_pud(kvm))
+		pgd_populate(NULL, pgd, pud);
+}
+
+static inline pud_t *stage2_pud_offset(struct kvm *kvm,
+				       pgd_t *pgd, unsigned long address)
+{
+	if (kvm_stage2_has_pud(kvm))
+		return pud_offset(pgd, address);
+	else
+		return (pud_t *)pgd;
 }
 }
 
 
-#endif		/* STAGE2_PGTABLE_LEVELS > 3 */
+static inline void stage2_pud_free(struct kvm *kvm, pud_t *pud)
+{
+	if (kvm_stage2_has_pud(kvm))
+		pud_free(NULL, pud);
+}
 
 
+static inline bool stage2_pud_table_empty(struct kvm *kvm, pud_t *pudp)
+{
+	if (kvm_stage2_has_pud(kvm))
+		return kvm_page_empty(pudp);
+	else
+		return false;
+}
 
 
-#if STAGE2_PGTABLE_LEVELS > 2
+static inline phys_addr_t
+stage2_pud_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
+{
+	if (kvm_stage2_has_pud(kvm)) {
+		phys_addr_t boundary = (addr + S2_PUD_SIZE) & S2_PUD_MASK;
+
+		return (boundary - 1 < end - 1) ? boundary : end;
+	} else {
+		return end;
+	}
+}
+
+/* Stage2 PMD definitions when the level is present */
+static inline bool kvm_stage2_has_pmd(struct kvm *kvm)
+{
+	return (CONFIG_PGTABLE_LEVELS > 2) && (kvm_stage2_levels(kvm) > 2);
+}
 
 
 #define S2_PMD_SHIFT			ARM64_HW_PGTABLE_LEVEL_SHIFT(2)
 #define S2_PMD_SHIFT			ARM64_HW_PGTABLE_LEVEL_SHIFT(2)
-#define S2_PMD_SIZE			(_AC(1, UL) << S2_PMD_SHIFT)
+#define S2_PMD_SIZE			(1UL << S2_PMD_SHIFT)
 #define S2_PMD_MASK			(~(S2_PMD_SIZE - 1))
 #define S2_PMD_MASK			(~(S2_PMD_SIZE - 1))
 
 
-#define stage2_pud_none(pud)				pud_none(pud)
-#define stage2_pud_clear(pud)				pud_clear(pud)
-#define stage2_pud_present(pud)				pud_present(pud)
-#define stage2_pud_populate(pud, pmd)			pud_populate(NULL, pud, pmd)
-#define stage2_pmd_offset(pud, address)			pmd_offset(pud, address)
-#define stage2_pmd_free(pmd)				pmd_free(NULL, pmd)
+static inline bool stage2_pud_none(struct kvm *kvm, pud_t pud)
+{
+	if (kvm_stage2_has_pmd(kvm))
+		return pud_none(pud);
+	else
+		return 0;
+}
+
+static inline void stage2_pud_clear(struct kvm *kvm, pud_t *pud)
+{
+	if (kvm_stage2_has_pmd(kvm))
+		pud_clear(pud);
+}
 
 
-#define stage2_pud_huge(pud)				pud_huge(pud)
-#define stage2_pmd_table_empty(pmdp)			kvm_page_empty(pmdp)
+static inline bool stage2_pud_present(struct kvm *kvm, pud_t pud)
+{
+	if (kvm_stage2_has_pmd(kvm))
+		return pud_present(pud);
+	else
+		return 1;
+}
 
 
-static inline phys_addr_t stage2_pmd_addr_end(phys_addr_t addr, phys_addr_t end)
+static inline void stage2_pud_populate(struct kvm *kvm, pud_t *pud, pmd_t *pmd)
 {
 {
-	phys_addr_t boundary = (addr + S2_PMD_SIZE) & S2_PMD_MASK;
+	if (kvm_stage2_has_pmd(kvm))
+		pud_populate(NULL, pud, pmd);
+}
 
 
-	return (boundary - 1 < end - 1) ? boundary : end;
+static inline pmd_t *stage2_pmd_offset(struct kvm *kvm,
+				       pud_t *pud, unsigned long address)
+{
+	if (kvm_stage2_has_pmd(kvm))
+		return pmd_offset(pud, address);
+	else
+		return (pmd_t *)pud;
 }
 }
 
 
-#endif		/* STAGE2_PGTABLE_LEVELS > 2 */
+static inline void stage2_pmd_free(struct kvm *kvm, pmd_t *pmd)
+{
+	if (kvm_stage2_has_pmd(kvm))
+		pmd_free(NULL, pmd);
+}
+
+static inline bool stage2_pud_huge(struct kvm *kvm, pud_t pud)
+{
+	if (kvm_stage2_has_pmd(kvm))
+		return pud_huge(pud);
+	else
+		return 0;
+}
+
+static inline bool stage2_pmd_table_empty(struct kvm *kvm, pmd_t *pmdp)
+{
+	if (kvm_stage2_has_pmd(kvm))
+		return kvm_page_empty(pmdp);
+	else
+		return 0;
+}
 
 
-#define stage2_pte_table_empty(ptep)			kvm_page_empty(ptep)
+static inline phys_addr_t
+stage2_pmd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
+{
+	if (kvm_stage2_has_pmd(kvm)) {
+		phys_addr_t boundary = (addr + S2_PMD_SIZE) & S2_PMD_MASK;
 
 
-#if STAGE2_PGTABLE_LEVELS == 2
-#include <asm/stage2_pgtable-nopmd.h>
-#elif STAGE2_PGTABLE_LEVELS == 3
-#include <asm/stage2_pgtable-nopud.h>
-#endif
+		return (boundary - 1 < end - 1) ? boundary : end;
+	} else {
+		return end;
+	}
+}
 
 
+static inline bool stage2_pte_table_empty(struct kvm *kvm, pte_t *ptep)
+{
+	return kvm_page_empty(ptep);
+}
 
 
-#define stage2_pgd_index(addr)				(((addr) >> S2_PGDIR_SHIFT) & (PTRS_PER_S2_PGD - 1))
+static inline unsigned long stage2_pgd_index(struct kvm *kvm, phys_addr_t addr)
+{
+	return (((addr) >> stage2_pgdir_shift(kvm)) & (stage2_pgd_ptrs(kvm) - 1));
+}
 
 
-static inline phys_addr_t stage2_pgd_addr_end(phys_addr_t addr, phys_addr_t end)
+static inline phys_addr_t
+stage2_pgd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
 {
 {
-	phys_addr_t boundary = (addr + S2_PGDIR_SIZE) & S2_PGDIR_MASK;
+	phys_addr_t boundary = (addr + stage2_pgdir_size(kvm)) & stage2_pgdir_mask(kvm);
 
 
 	return (boundary - 1 < end - 1) ? boundary : end;
 	return (boundary - 1 < end - 1) ? boundary : end;
 }
 }

+ 3 - 3
arch/arm64/kvm/guest.c

@@ -391,15 +391,15 @@ int __attribute_const__ kvm_target_cpu(void)
 			return KVM_ARM_TARGET_CORTEX_A53;
 			return KVM_ARM_TARGET_CORTEX_A53;
 		case ARM_CPU_PART_CORTEX_A57:
 		case ARM_CPU_PART_CORTEX_A57:
 			return KVM_ARM_TARGET_CORTEX_A57;
 			return KVM_ARM_TARGET_CORTEX_A57;
-		};
+		}
 		break;
 		break;
 	case ARM_CPU_IMP_APM:
 	case ARM_CPU_IMP_APM:
 		switch (part_number) {
 		switch (part_number) {
 		case APM_CPU_PART_POTENZA:
 		case APM_CPU_PART_POTENZA:
 			return KVM_ARM_TARGET_XGENE_POTENZA;
 			return KVM_ARM_TARGET_XGENE_POTENZA;
-		};
+		}
 		break;
 		break;
-	};
+	}
 
 
 	/* Return a default generic target */
 	/* Return a default generic target */
 	return KVM_ARM_TARGET_GENERIC_V8;
 	return KVM_ARM_TARGET_GENERIC_V8;

+ 7 - 0
arch/arm64/kvm/handle_exit.c

@@ -284,6 +284,13 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
 		 */
 		 */
 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 		return 0;
 		return 0;
+	case ARM_EXCEPTION_IL:
+		/*
+		 * We attempted an illegal exception return.  Guest state must
+		 * have been corrupted somehow.  Give up.
+		 */
+		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+		return -EINVAL;
 	default:
 	default:
 		kvm_pr_unimpl("Unsupported exception type: %d",
 		kvm_pr_unimpl("Unsupported exception type: %d",
 			      exception_index);
 			      exception_index);

+ 0 - 1
arch/arm64/kvm/hyp/Makefile

@@ -19,7 +19,6 @@ obj-$(CONFIG_KVM_ARM_HOST) += switch.o
 obj-$(CONFIG_KVM_ARM_HOST) += fpsimd.o
 obj-$(CONFIG_KVM_ARM_HOST) += fpsimd.o
 obj-$(CONFIG_KVM_ARM_HOST) += tlb.o
 obj-$(CONFIG_KVM_ARM_HOST) += tlb.o
 obj-$(CONFIG_KVM_ARM_HOST) += hyp-entry.o
 obj-$(CONFIG_KVM_ARM_HOST) += hyp-entry.o
-obj-$(CONFIG_KVM_ARM_HOST) += s2-setup.o
 
 
 # KVM code is run at a different exception code with a different map, so
 # KVM code is run at a different exception code with a different map, so
 # compiler instrumentation that inserts callbacks or checks into the code may
 # compiler instrumentation that inserts callbacks or checks into the code may

+ 15 - 1
arch/arm64/kvm/hyp/hyp-entry.S

@@ -162,6 +162,20 @@ el1_error:
 	mov	x0, #ARM_EXCEPTION_EL1_SERROR
 	mov	x0, #ARM_EXCEPTION_EL1_SERROR
 	b	__guest_exit
 	b	__guest_exit
 
 
+el2_sync:
+	/* Check for illegal exception return, otherwise panic */
+	mrs	x0, spsr_el2
+
+	/* if this was something else, then panic! */
+	tst	x0, #PSR_IL_BIT
+	b.eq	__hyp_panic
+
+	/* Let's attempt a recovery from the illegal exception return */
+	get_vcpu_ptr	x1, x0
+	mov	x0, #ARM_EXCEPTION_IL
+	b	__guest_exit
+
+
 el2_error:
 el2_error:
 	ldp	x0, x1, [sp], #16
 	ldp	x0, x1, [sp], #16
 
 
@@ -240,7 +254,7 @@ ENTRY(__kvm_hyp_vector)
 	invalid_vect	el2t_fiq_invalid	// FIQ EL2t
 	invalid_vect	el2t_fiq_invalid	// FIQ EL2t
 	invalid_vect	el2t_error_invalid	// Error EL2t
 	invalid_vect	el2t_error_invalid	// Error EL2t
 
 
-	invalid_vect	el2h_sync_invalid	// Synchronous EL2h
+	valid_vect	el2_sync		// Synchronous EL2h
 	invalid_vect	el2h_irq_invalid	// IRQ EL2h
 	invalid_vect	el2h_irq_invalid	// IRQ EL2h
 	invalid_vect	el2h_fiq_invalid	// FIQ EL2h
 	invalid_vect	el2h_fiq_invalid	// FIQ EL2h
 	valid_vect	el2_error		// Error EL2h
 	valid_vect	el2_error		// Error EL2h

+ 0 - 90
arch/arm64/kvm/hyp/s2-setup.c

@@ -1,90 +0,0 @@
-/*
- * Copyright (C) 2016 - ARM Ltd
- * Author: Marc Zyngier <marc.zyngier@arm.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <http://www.gnu.org/licenses/>.
- */
-
-#include <linux/types.h>
-#include <asm/kvm_arm.h>
-#include <asm/kvm_asm.h>
-#include <asm/kvm_hyp.h>
-
-u32 __hyp_text __init_stage2_translation(void)
-{
-	u64 val = VTCR_EL2_FLAGS;
-	u64 parange;
-	u64 tmp;
-
-	/*
-	 * Read the PARange bits from ID_AA64MMFR0_EL1 and set the PS
-	 * bits in VTCR_EL2. Amusingly, the PARange is 4 bits, while
-	 * PS is only 3. Fortunately, bit 19 is RES0 in VTCR_EL2...
-	 */
-	parange = read_sysreg(id_aa64mmfr0_el1) & 7;
-	if (parange > ID_AA64MMFR0_PARANGE_MAX)
-		parange = ID_AA64MMFR0_PARANGE_MAX;
-	val |= parange << 16;
-
-	/* Compute the actual PARange... */
-	switch (parange) {
-	case 0:
-		parange = 32;
-		break;
-	case 1:
-		parange = 36;
-		break;
-	case 2:
-		parange = 40;
-		break;
-	case 3:
-		parange = 42;
-		break;
-	case 4:
-		parange = 44;
-		break;
-	case 5:
-	default:
-		parange = 48;
-		break;
-	}
-
-	/*
-	 * ... and clamp it to 40 bits, unless we have some braindead
-	 * HW that implements less than that. In all cases, we'll
-	 * return that value for the rest of the kernel to decide what
-	 * to do.
-	 */
-	val |= 64 - (parange > 40 ? 40 : parange);
-
-	/*
-	 * Check the availability of Hardware Access Flag / Dirty Bit
-	 * Management in ID_AA64MMFR1_EL1 and enable the feature in VTCR_EL2.
-	 */
-	tmp = (read_sysreg(id_aa64mmfr1_el1) >> ID_AA64MMFR1_HADBS_SHIFT) & 0xf;
-	if (tmp)
-		val |= VTCR_EL2_HA;
-
-	/*
-	 * Read the VMIDBits bits from ID_AA64MMFR1_EL1 and set the VS
-	 * bit in VTCR_EL2.
-	 */
-	tmp = (read_sysreg(id_aa64mmfr1_el1) >> ID_AA64MMFR1_VMIDBITS_SHIFT) & 0xf;
-	val |= (tmp == ID_AA64MMFR1_VMIDBITS_16) ?
-			VTCR_EL2_VS_16BIT :
-			VTCR_EL2_VS_8BIT;
-
-	write_sysreg(val, vtcr_el2);
-
-	return parange;
-}

+ 2 - 2
arch/arm64/kvm/hyp/switch.c

@@ -198,7 +198,7 @@ void deactivate_traps_vhe_put(void)
 
 
 static void __hyp_text __activate_vm(struct kvm *kvm)
 static void __hyp_text __activate_vm(struct kvm *kvm)
 {
 {
-	write_sysreg(kvm->arch.vttbr, vttbr_el2);
+	__load_guest_stage2(kvm);
 }
 }
 
 
 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
@@ -263,7 +263,7 @@ static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
 		return false; /* Translation failed, back to guest */
 		return false; /* Translation failed, back to guest */
 
 
 	/* Convert PAR to HPFAR format */
 	/* Convert PAR to HPFAR format */
-	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
+	*hpfar = PAR_TO_HPFAR(tmp);
 	return true;
 	return true;
 }
 }
 
 

+ 18 - 1
arch/arm64/kvm/hyp/sysreg-sr.c

@@ -152,8 +152,25 @@ static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
 static void __hyp_text
 static void __hyp_text
 __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
 __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
 {
 {
+	u64 pstate = ctxt->gp_regs.regs.pstate;
+	u64 mode = pstate & PSR_AA32_MODE_MASK;
+
+	/*
+	 * Safety check to ensure we're setting the CPU up to enter the guest
+	 * in a less privileged mode.
+	 *
+	 * If we are attempting a return to EL2 or higher in AArch64 state,
+	 * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
+	 * we'll take an illegal exception state exception immediately after
+	 * the ERET to the guest.  Attempts to return to AArch32 Hyp will
+	 * result in an illegal exception return because EL2's execution state
+	 * is determined by SCR_EL3.RW.
+	 */
+	if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
+		pstate = PSR_MODE_EL2h | PSR_IL_BIT;
+
 	write_sysreg_el2(ctxt->gp_regs.regs.pc,		elr);
 	write_sysreg_el2(ctxt->gp_regs.regs.pc,		elr);
-	write_sysreg_el2(ctxt->gp_regs.regs.pstate,	spsr);
+	write_sysreg_el2(pstate,			spsr);
 
 
 	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
 	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
 		write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
 		write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);

+ 2 - 2
arch/arm64/kvm/hyp/tlb.c

@@ -30,7 +30,7 @@ static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm)
 	 * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
 	 * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
 	 * let's flip TGE before executing the TLB operation.
 	 * let's flip TGE before executing the TLB operation.
 	 */
 	 */
-	write_sysreg(kvm->arch.vttbr, vttbr_el2);
+	__load_guest_stage2(kvm);
 	val = read_sysreg(hcr_el2);
 	val = read_sysreg(hcr_el2);
 	val &= ~HCR_TGE;
 	val &= ~HCR_TGE;
 	write_sysreg(val, hcr_el2);
 	write_sysreg(val, hcr_el2);
@@ -39,7 +39,7 @@ static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm)
 
 
 static void __hyp_text __tlb_switch_to_guest_nvhe(struct kvm *kvm)
 static void __hyp_text __tlb_switch_to_guest_nvhe(struct kvm *kvm)
 {
 {
-	write_sysreg(kvm->arch.vttbr, vttbr_el2);
+	__load_guest_stage2(kvm);
 	isb();
 	isb();
 }
 }
 
 

+ 105 - 3
arch/arm64/kvm/reset.c

@@ -26,6 +26,7 @@
 
 
 #include <kvm/arm_arch_timer.h>
 #include <kvm/arm_arch_timer.h>
 
 
+#include <asm/cpufeature.h>
 #include <asm/cputype.h>
 #include <asm/cputype.h>
 #include <asm/ptrace.h>
 #include <asm/ptrace.h>
 #include <asm/kvm_arm.h>
 #include <asm/kvm_arm.h>
@@ -33,6 +34,9 @@
 #include <asm/kvm_coproc.h>
 #include <asm/kvm_coproc.h>
 #include <asm/kvm_mmu.h>
 #include <asm/kvm_mmu.h>
 
 
+/* Maximum phys_shift supported for any VM on this host */
+static u32 kvm_ipa_limit;
+
 /*
 /*
  * ARMv8 Reset Values
  * ARMv8 Reset Values
  */
  */
@@ -55,12 +59,12 @@ static bool cpu_has_32bit_el1(void)
 }
 }
 
 
 /**
 /**
- * kvm_arch_dev_ioctl_check_extension
+ * kvm_arch_vm_ioctl_check_extension
  *
  *
  * We currently assume that the number of HW registers is uniform
  * We currently assume that the number of HW registers is uniform
  * across all CPUs (see cpuinfo_sanity_check).
  * across all CPUs (see cpuinfo_sanity_check).
  */
  */
-int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
+int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 {
 {
 	int r;
 	int r;
 
 
@@ -82,9 +86,11 @@ int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
 		break;
 		break;
 	case KVM_CAP_SET_GUEST_DEBUG:
 	case KVM_CAP_SET_GUEST_DEBUG:
 	case KVM_CAP_VCPU_ATTRIBUTES:
 	case KVM_CAP_VCPU_ATTRIBUTES:
-	case KVM_CAP_VCPU_EVENTS:
 		r = 1;
 		r = 1;
 		break;
 		break;
+	case KVM_CAP_ARM_VM_IPA_SIZE:
+		r = kvm_ipa_limit;
+		break;
 	default:
 	default:
 		r = 0;
 		r = 0;
 	}
 	}
@@ -133,3 +139,99 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
 	/* Reset timer */
 	/* Reset timer */
 	return kvm_timer_vcpu_reset(vcpu);
 	return kvm_timer_vcpu_reset(vcpu);
 }
 }
+
+void kvm_set_ipa_limit(void)
+{
+	unsigned int ipa_max, pa_max, va_max, parange;
+
+	parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 0x7;
+	pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
+
+	/* Clamp the IPA limit to the PA size supported by the kernel */
+	ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
+	/*
+	 * Since our stage2 table is dependent on the stage1 page table code,
+	 * we must always honor the following condition:
+	 *
+	 *  Number of levels in Stage1 >= Number of levels in Stage2.
+	 *
+	 * So clamp the ipa limit further down to limit the number of levels.
+	 * Since we can concatenate upto 16 tables at entry level, we could
+	 * go upto 4bits above the maximum VA addressible with the current
+	 * number of levels.
+	 */
+	va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
+	va_max += 4;
+
+	if (va_max < ipa_max)
+		ipa_max = va_max;
+
+	/*
+	 * If the final limit is lower than the real physical address
+	 * limit of the CPUs, report the reason.
+	 */
+	if (ipa_max < pa_max)
+		pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
+			(va_max < pa_max) ? "Virtual" : "Physical");
+
+	WARN(ipa_max < KVM_PHYS_SHIFT,
+	     "KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
+	kvm_ipa_limit = ipa_max;
+	kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
+}
+
+/*
+ * Configure the VTCR_EL2 for this VM. The VTCR value is common
+ * across all the physical CPUs on the system. We use system wide
+ * sanitised values to fill in different fields, except for Hardware
+ * Management of Access Flags. HA Flag is set unconditionally on
+ * all CPUs, as it is safe to run with or without the feature and
+ * the bit is RES0 on CPUs that don't support it.
+ */
+int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
+{
+	u64 vtcr = VTCR_EL2_FLAGS;
+	u32 parange, phys_shift;
+	u8 lvls;
+
+	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
+		return -EINVAL;
+
+	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
+	if (phys_shift) {
+		if (phys_shift > kvm_ipa_limit ||
+		    phys_shift < 32)
+			return -EINVAL;
+	} else {
+		phys_shift = KVM_PHYS_SHIFT;
+	}
+
+	parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 7;
+	if (parange > ID_AA64MMFR0_PARANGE_MAX)
+		parange = ID_AA64MMFR0_PARANGE_MAX;
+	vtcr |= parange << VTCR_EL2_PS_SHIFT;
+
+	vtcr |= VTCR_EL2_T0SZ(phys_shift);
+	/*
+	 * Use a minimum 2 level page table to prevent splitting
+	 * host PMD huge pages at stage2.
+	 */
+	lvls = stage2_pgtable_levels(phys_shift);
+	if (lvls < 2)
+		lvls = 2;
+	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
+
+	/*
+	 * Enable the Hardware Access Flag management, unconditionally
+	 * on all CPUs. The features is RES0 on CPUs without the support
+	 * and must be ignored by the CPUs.
+	 */
+	vtcr |= VTCR_EL2_HA;
+
+	/* Set the vmid bits */
+	vtcr |= (kvm_get_vmid_bits() == 16) ?
+		VTCR_EL2_VS_16BIT :
+		VTCR_EL2_VS_8BIT;
+	kvm->arch.vtcr = vtcr;
+	return 0;
+}

+ 21 - 0
arch/powerpc/include/asm/asm-prototypes.h

@@ -150,4 +150,25 @@ extern s32 patch__memset_nocache, patch__memcpy_nocache;
 
 
 extern long flush_count_cache;
 extern long flush_count_cache;
 
 
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+void kvmppc_save_tm_hv(struct kvm_vcpu *vcpu, u64 msr, bool preserve_nv);
+void kvmppc_restore_tm_hv(struct kvm_vcpu *vcpu, u64 msr, bool preserve_nv);
+#else
+static inline void kvmppc_save_tm_hv(struct kvm_vcpu *vcpu, u64 msr,
+				     bool preserve_nv) { }
+static inline void kvmppc_restore_tm_hv(struct kvm_vcpu *vcpu, u64 msr,
+					bool preserve_nv) { }
+#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
+
+void kvmhv_save_host_pmu(void);
+void kvmhv_load_host_pmu(void);
+void kvmhv_save_guest_pmu(struct kvm_vcpu *vcpu, bool pmu_in_use);
+void kvmhv_load_guest_pmu(struct kvm_vcpu *vcpu);
+
+int __kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu);
+
+long kvmppc_h_set_dabr(struct kvm_vcpu *vcpu, unsigned long dabr);
+long kvmppc_h_set_xdabr(struct kvm_vcpu *vcpu, unsigned long dabr,
+			unsigned long dabrx);
+
 #endif /* _ASM_POWERPC_ASM_PROTOTYPES_H */
 #endif /* _ASM_POWERPC_ASM_PROTOTYPES_H */

+ 12 - 0
arch/powerpc/include/asm/book3s/64/mmu-hash.h

@@ -203,6 +203,18 @@ static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
 	BUG();
 	BUG();
 }
 }
 
 
+static inline unsigned int ap_to_shift(unsigned long ap)
+{
+	int psize;
+
+	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
+		if (mmu_psize_defs[psize].ap == ap)
+			return mmu_psize_defs[psize].shift;
+	}
+
+	return -1;
+}
+
 static inline unsigned long get_sllp_encoding(int psize)
 static inline unsigned long get_sllp_encoding(int psize)
 {
 {
 	unsigned long sllp;
 	unsigned long sllp;

+ 1 - 0
arch/powerpc/include/asm/book3s/64/tlbflush-radix.h

@@ -53,6 +53,7 @@ extern void radix__flush_tlb_lpid_page(unsigned int lpid,
 					unsigned long addr,
 					unsigned long addr,
 					unsigned long page_size);
 					unsigned long page_size);
 extern void radix__flush_pwc_lpid(unsigned int lpid);
 extern void radix__flush_pwc_lpid(unsigned int lpid);
+extern void radix__flush_tlb_lpid(unsigned int lpid);
 extern void radix__local_flush_tlb_lpid(unsigned int lpid);
 extern void radix__local_flush_tlb_lpid(unsigned int lpid);
 extern void radix__local_flush_tlb_lpid_guest(unsigned int lpid);
 extern void radix__local_flush_tlb_lpid_guest(unsigned int lpid);
 
 

+ 41 - 0
arch/powerpc/include/asm/hvcall.h

@@ -322,6 +322,11 @@
 #define H_GET_24X7_DATA		0xF07C
 #define H_GET_24X7_DATA		0xF07C
 #define H_GET_PERF_COUNTER_INFO	0xF080
 #define H_GET_PERF_COUNTER_INFO	0xF080
 
 
+/* Platform-specific hcalls used for nested HV KVM */
+#define H_SET_PARTITION_TABLE	0xF800
+#define H_ENTER_NESTED		0xF804
+#define H_TLB_INVALIDATE	0xF808
+
 /* Values for 2nd argument to H_SET_MODE */
 /* Values for 2nd argument to H_SET_MODE */
 #define H_SET_MODE_RESOURCE_SET_CIABR		1
 #define H_SET_MODE_RESOURCE_SET_CIABR		1
 #define H_SET_MODE_RESOURCE_SET_DAWR		2
 #define H_SET_MODE_RESOURCE_SET_DAWR		2
@@ -461,6 +466,42 @@ struct h_cpu_char_result {
 	u64 behaviour;
 	u64 behaviour;
 };
 };
 
 
+/* Register state for entering a nested guest with H_ENTER_NESTED */
+struct hv_guest_state {
+	u64 version;		/* version of this structure layout */
+	u32 lpid;
+	u32 vcpu_token;
+	/* These registers are hypervisor privileged (at least for writing) */
+	u64 lpcr;
+	u64 pcr;
+	u64 amor;
+	u64 dpdes;
+	u64 hfscr;
+	s64 tb_offset;
+	u64 dawr0;
+	u64 dawrx0;
+	u64 ciabr;
+	u64 hdec_expiry;
+	u64 purr;
+	u64 spurr;
+	u64 ic;
+	u64 vtb;
+	u64 hdar;
+	u64 hdsisr;
+	u64 heir;
+	u64 asdr;
+	/* These are OS privileged but need to be set late in guest entry */
+	u64 srr0;
+	u64 srr1;
+	u64 sprg[4];
+	u64 pidr;
+	u64 cfar;
+	u64 ppr;
+};
+
+/* Latest version of hv_guest_state structure */
+#define HV_GUEST_STATE_VERSION	1
+
 #endif /* __ASSEMBLY__ */
 #endif /* __ASSEMBLY__ */
 #endif /* __KERNEL__ */
 #endif /* __KERNEL__ */
 #endif /* _ASM_POWERPC_HVCALL_H */
 #endif /* _ASM_POWERPC_HVCALL_H */

+ 1 - 1
arch/powerpc/include/asm/iommu.h

@@ -126,7 +126,7 @@ struct iommu_table {
 	int it_nid;
 	int it_nid;
 };
 };
 
 
-#define IOMMU_TABLE_USERSPACE_ENTRY_RM(tbl, entry) \
+#define IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry) \
 		((tbl)->it_ops->useraddrptr((tbl), (entry), false))
 		((tbl)->it_ops->useraddrptr((tbl), (entry), false))
 #define IOMMU_TABLE_USERSPACE_ENTRY(tbl, entry) \
 #define IOMMU_TABLE_USERSPACE_ENTRY(tbl, entry) \
 		((tbl)->it_ops->useraddrptr((tbl), (entry), true))
 		((tbl)->it_ops->useraddrptr((tbl), (entry), true))

+ 1 - 3
arch/powerpc/include/asm/kvm_asm.h

@@ -84,7 +84,6 @@
 #define BOOK3S_INTERRUPT_INST_STORAGE	0x400
 #define BOOK3S_INTERRUPT_INST_STORAGE	0x400
 #define BOOK3S_INTERRUPT_INST_SEGMENT	0x480
 #define BOOK3S_INTERRUPT_INST_SEGMENT	0x480
 #define BOOK3S_INTERRUPT_EXTERNAL	0x500
 #define BOOK3S_INTERRUPT_EXTERNAL	0x500
-#define BOOK3S_INTERRUPT_EXTERNAL_LEVEL	0x501
 #define BOOK3S_INTERRUPT_EXTERNAL_HV	0x502
 #define BOOK3S_INTERRUPT_EXTERNAL_HV	0x502
 #define BOOK3S_INTERRUPT_ALIGNMENT	0x600
 #define BOOK3S_INTERRUPT_ALIGNMENT	0x600
 #define BOOK3S_INTERRUPT_PROGRAM	0x700
 #define BOOK3S_INTERRUPT_PROGRAM	0x700
@@ -134,8 +133,7 @@
 #define BOOK3S_IRQPRIO_EXTERNAL			14
 #define BOOK3S_IRQPRIO_EXTERNAL			14
 #define BOOK3S_IRQPRIO_DECREMENTER		15
 #define BOOK3S_IRQPRIO_DECREMENTER		15
 #define BOOK3S_IRQPRIO_PERFORMANCE_MONITOR	16
 #define BOOK3S_IRQPRIO_PERFORMANCE_MONITOR	16
-#define BOOK3S_IRQPRIO_EXTERNAL_LEVEL		17
-#define BOOK3S_IRQPRIO_MAX			18
+#define BOOK3S_IRQPRIO_MAX			17
 
 
 #define BOOK3S_HFLAG_DCBZ32			0x1
 #define BOOK3S_HFLAG_DCBZ32			0x1
 #define BOOK3S_HFLAG_SLB			0x2
 #define BOOK3S_HFLAG_SLB			0x2

+ 40 - 5
arch/powerpc/include/asm/kvm_book3s.h

@@ -188,14 +188,37 @@ extern int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hc);
 extern int kvmppc_book3s_radix_page_fault(struct kvm_run *run,
 extern int kvmppc_book3s_radix_page_fault(struct kvm_run *run,
 			struct kvm_vcpu *vcpu,
 			struct kvm_vcpu *vcpu,
 			unsigned long ea, unsigned long dsisr);
 			unsigned long ea, unsigned long dsisr);
+extern int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
+				      struct kvmppc_pte *gpte, u64 root,
+				      u64 *pte_ret_p);
+extern int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
+			struct kvmppc_pte *gpte, u64 table,
+			int table_index, u64 *pte_ret_p);
 extern int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 extern int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 			struct kvmppc_pte *gpte, bool data, bool iswrite);
 			struct kvmppc_pte *gpte, bool data, bool iswrite);
+extern void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
+			unsigned int shift, struct kvm_memory_slot *memslot,
+			unsigned int lpid);
+extern bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable,
+				    bool writing, unsigned long gpa,
+				    unsigned int lpid);
+extern int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
+				unsigned long gpa,
+				struct kvm_memory_slot *memslot,
+				bool writing, bool kvm_ro,
+				pte_t *inserted_pte, unsigned int *levelp);
 extern int kvmppc_init_vm_radix(struct kvm *kvm);
 extern int kvmppc_init_vm_radix(struct kvm *kvm);
 extern void kvmppc_free_radix(struct kvm *kvm);
 extern void kvmppc_free_radix(struct kvm *kvm);
+extern void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd,
+				      unsigned int lpid);
 extern int kvmppc_radix_init(void);
 extern int kvmppc_radix_init(void);
 extern void kvmppc_radix_exit(void);
 extern void kvmppc_radix_exit(void);
 extern int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 extern int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 			unsigned long gfn);
 			unsigned long gfn);
+extern void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
+			     unsigned long gpa, unsigned int shift,
+			     struct kvm_memory_slot *memslot,
+			     unsigned int lpid);
 extern int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 extern int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 			unsigned long gfn);
 			unsigned long gfn);
 extern int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 extern int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
@@ -271,6 +294,21 @@ static inline void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) {}
 static inline void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) {}
 static inline void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) {}
 #endif
 #endif
 
 
+long kvmhv_nested_init(void);
+void kvmhv_nested_exit(void);
+void kvmhv_vm_nested_init(struct kvm *kvm);
+long kvmhv_set_partition_table(struct kvm_vcpu *vcpu);
+void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1);
+void kvmhv_release_all_nested(struct kvm *kvm);
+long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu);
+long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu);
+int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu,
+			  u64 time_limit, unsigned long lpcr);
+void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr);
+void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
+				   struct hv_guest_state *hr);
+long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu);
+
 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
 
 
 extern int kvm_irq_bypass;
 extern int kvm_irq_bypass;
@@ -301,12 +339,12 @@ static inline ulong kvmppc_get_gpr(struct kvm_vcpu *vcpu, int num)
 
 
 static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val)
 static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val)
 {
 {
-	vcpu->arch.cr = val;
+	vcpu->arch.regs.ccr = val;
 }
 }
 
 
 static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu)
 static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu)
 {
 {
-	return vcpu->arch.cr;
+	return vcpu->arch.regs.ccr;
 }
 }
 
 
 static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, ulong val)
 static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, ulong val)
@@ -384,9 +422,6 @@ extern int kvmppc_h_logical_ci_store(struct kvm_vcpu *vcpu);
 /* TO = 31 for unconditional trap */
 /* TO = 31 for unconditional trap */
 #define INS_TW				0x7fe00008
 #define INS_TW				0x7fe00008
 
 
-/* LPIDs we support with this build -- runtime limit may be lower */
-#define KVMPPC_NR_LPIDS			(LPID_RSVD + 1)
-
 #define SPLIT_HACK_MASK			0xff000000
 #define SPLIT_HACK_MASK			0xff000000
 #define SPLIT_HACK_OFFS			0xfb000000
 #define SPLIT_HACK_OFFS			0xfb000000
 
 

+ 116 - 2
arch/powerpc/include/asm/kvm_book3s_64.h

@@ -23,6 +23,108 @@
 #include <linux/string.h>
 #include <linux/string.h>
 #include <asm/bitops.h>
 #include <asm/bitops.h>
 #include <asm/book3s/64/mmu-hash.h>
 #include <asm/book3s/64/mmu-hash.h>
+#include <asm/cpu_has_feature.h>
+#include <asm/ppc-opcode.h>
+
+#ifdef CONFIG_PPC_PSERIES
+static inline bool kvmhv_on_pseries(void)
+{
+	return !cpu_has_feature(CPU_FTR_HVMODE);
+}
+#else
+static inline bool kvmhv_on_pseries(void)
+{
+	return false;
+}
+#endif
+
+/*
+ * Structure for a nested guest, that is, for a guest that is managed by
+ * one of our guests.
+ */
+struct kvm_nested_guest {
+	struct kvm *l1_host;		/* L1 VM that owns this nested guest */
+	int l1_lpid;			/* lpid L1 guest thinks this guest is */
+	int shadow_lpid;		/* real lpid of this nested guest */
+	pgd_t *shadow_pgtable;		/* our page table for this guest */
+	u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */
+	u64 process_table;		/* process table entry for this guest */
+	long refcnt;			/* number of pointers to this struct */
+	struct mutex tlb_lock;		/* serialize page faults and tlbies */
+	struct kvm_nested_guest *next;
+	cpumask_t need_tlb_flush;
+	cpumask_t cpu_in_guest;
+	short prev_cpu[NR_CPUS];
+};
+
+/*
+ * We define a nested rmap entry as a single 64-bit quantity
+ * 0xFFF0000000000000	12-bit lpid field
+ * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number
+ * 0x0000000000000001	1-bit  single entry flag
+ */
+#define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL
+#define RMAP_NESTED_LPID_SHIFT		(52)
+#define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL
+#define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL
+
+/* Structure for a nested guest rmap entry */
+struct rmap_nested {
+	struct llist_node list;
+	u64 rmap;
+};
+
+/*
+ * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
+ *			     safe against removal of the list entry or NULL list
+ * @pos:	a (struct rmap_nested *) to use as a loop cursor
+ * @node:	pointer to the first entry
+ *		NOTE: this can be NULL
+ * @rmapp:	an (unsigned long *) in which to return the rmap entries on each
+ *		iteration
+ *		NOTE: this must point to already allocated memory
+ *
+ * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
+ * rmap entry in the memslot. The list is always terminated by a "single entry"
+ * stored in the list element of the final entry of the llist. If there is ONLY
+ * a single entry then this is itself in the rmap entry of the memslot, not a
+ * llist head pointer.
+ *
+ * Note that the iterator below assumes that a nested rmap entry is always
+ * non-zero.  This is true for our usage because the LPID field is always
+ * non-zero (zero is reserved for the host).
+ *
+ * This should be used to iterate over the list of rmap_nested entries with
+ * processing done on the u64 rmap value given by each iteration. This is safe
+ * against removal of list entries and it is always safe to call free on (pos).
+ *
+ * e.g.
+ * struct rmap_nested *cursor;
+ * struct llist_node *first;
+ * unsigned long rmap;
+ * for_each_nest_rmap_safe(cursor, first, &rmap) {
+ *	do_something(rmap);
+ *	free(cursor);
+ * }
+ */
+#define for_each_nest_rmap_safe(pos, node, rmapp)			       \
+	for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \
+	     (node) &&							       \
+	     (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
+			  ((u64) (node)) : ((pos)->rmap))) &&		       \
+	     (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
+			 ((struct llist_node *) ((pos) = NULL)) :	       \
+			 (pos)->list.next)), true);			       \
+	     (pos) = llist_entry((node), typeof(*(pos)), list))
+
+struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
+					  bool create);
+void kvmhv_put_nested(struct kvm_nested_guest *gp);
+int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
+
+/* Encoding of first parameter for H_TLB_INVALIDATE */
+#define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \
+					 ___PPC_R(r))
 
 
 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
 #define PPC_MIN_HPT_ORDER	18
 #define PPC_MIN_HPT_ORDER	18
@@ -435,6 +537,7 @@ static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
 }
 }
 
 
 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
+extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
 
 
 extern void kvmhv_rm_send_ipi(int cpu);
 extern void kvmhv_rm_send_ipi(int cpu);
 
 
@@ -482,7 +585,7 @@ static inline u64 sanitize_msr(u64 msr)
 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
 {
 {
-	vcpu->arch.cr  = vcpu->arch.cr_tm;
+	vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
 	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
 	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
@@ -499,7 +602,7 @@ static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
 
 
 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
 {
 {
-	vcpu->arch.cr_tm  = vcpu->arch.cr;
+	vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
 	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
 	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
@@ -515,6 +618,17 @@ static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
 }
 }
 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 
 
+extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
+			     unsigned long gpa, unsigned int level,
+			     unsigned long mmu_seq, unsigned int lpid,
+			     unsigned long *rmapp, struct rmap_nested **n_rmap);
+extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
+				   struct rmap_nested **n_rmap);
+extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
+				struct kvm_memory_slot *memslot,
+				unsigned long gpa, unsigned long hpa,
+				unsigned long nbytes);
+
 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
 
 
 #endif /* __ASM_KVM_BOOK3S_64_H__ */
 #endif /* __ASM_KVM_BOOK3S_64_H__ */

+ 3 - 0
arch/powerpc/include/asm/kvm_book3s_asm.h

@@ -25,6 +25,9 @@
 #define XICS_MFRR		0xc
 #define XICS_MFRR		0xc
 #define XICS_IPI		2	/* interrupt source # for IPIs */
 #define XICS_IPI		2	/* interrupt source # for IPIs */
 
 
+/* LPIDs we support with this build -- runtime limit may be lower */
+#define KVMPPC_NR_LPIDS			(LPID_RSVD + 1)
+
 /* Maximum number of threads per physical core */
 /* Maximum number of threads per physical core */
 #define MAX_SMT_THREADS		8
 #define MAX_SMT_THREADS		8
 
 

+ 2 - 2
arch/powerpc/include/asm/kvm_booke.h

@@ -46,12 +46,12 @@ static inline ulong kvmppc_get_gpr(struct kvm_vcpu *vcpu, int num)
 
 
 static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val)
 static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val)
 {
 {
-	vcpu->arch.cr = val;
+	vcpu->arch.regs.ccr = val;
 }
 }
 
 
 static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu)
 static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu)
 {
 {
-	return vcpu->arch.cr;
+	return vcpu->arch.regs.ccr;
 }
 }
 
 
 static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, ulong val)
 static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, ulong val)

+ 14 - 2
arch/powerpc/include/asm/kvm_host.h

@@ -46,6 +46,7 @@
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 #include <asm/kvm_book3s_asm.h>		/* for MAX_SMT_THREADS */
 #include <asm/kvm_book3s_asm.h>		/* for MAX_SMT_THREADS */
 #define KVM_MAX_VCPU_ID		(MAX_SMT_THREADS * KVM_MAX_VCORES)
 #define KVM_MAX_VCPU_ID		(MAX_SMT_THREADS * KVM_MAX_VCORES)
+#define KVM_MAX_NESTED_GUESTS	KVMPPC_NR_LPIDS
 
 
 #else
 #else
 #define KVM_MAX_VCPU_ID		KVM_MAX_VCPUS
 #define KVM_MAX_VCPU_ID		KVM_MAX_VCPUS
@@ -94,6 +95,7 @@ struct dtl_entry;
 
 
 struct kvmppc_vcpu_book3s;
 struct kvmppc_vcpu_book3s;
 struct kvmppc_book3s_shadow_vcpu;
 struct kvmppc_book3s_shadow_vcpu;
+struct kvm_nested_guest;
 
 
 struct kvm_vm_stat {
 struct kvm_vm_stat {
 	ulong remote_tlb_flush;
 	ulong remote_tlb_flush;
@@ -287,10 +289,12 @@ struct kvm_arch {
 	u8 radix;
 	u8 radix;
 	u8 fwnmi_enabled;
 	u8 fwnmi_enabled;
 	bool threads_indep;
 	bool threads_indep;
+	bool nested_enable;
 	pgd_t *pgtable;
 	pgd_t *pgtable;
 	u64 process_table;
 	u64 process_table;
 	struct dentry *debugfs_dir;
 	struct dentry *debugfs_dir;
 	struct dentry *htab_dentry;
 	struct dentry *htab_dentry;
+	struct dentry *radix_dentry;
 	struct kvm_resize_hpt *resize_hpt; /* protected by kvm->lock */
 	struct kvm_resize_hpt *resize_hpt; /* protected by kvm->lock */
 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
@@ -311,6 +315,9 @@ struct kvm_arch {
 #endif
 #endif
 	struct kvmppc_ops *kvm_ops;
 	struct kvmppc_ops *kvm_ops;
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+	u64 l1_ptcr;
+	int max_nested_lpid;
+	struct kvm_nested_guest *nested_guests[KVM_MAX_NESTED_GUESTS];
 	/* This array can grow quite large, keep it at the end */
 	/* This array can grow quite large, keep it at the end */
 	struct kvmppc_vcore *vcores[KVM_MAX_VCORES];
 	struct kvmppc_vcore *vcores[KVM_MAX_VCORES];
 #endif
 #endif
@@ -360,7 +367,9 @@ struct kvmppc_pte {
 	bool may_write		: 1;
 	bool may_write		: 1;
 	bool may_execute	: 1;
 	bool may_execute	: 1;
 	unsigned long wimg;
 	unsigned long wimg;
+	unsigned long rc;
 	u8 page_size;		/* MMU_PAGE_xxx */
 	u8 page_size;		/* MMU_PAGE_xxx */
+	u8 page_shift;
 };
 };
 
 
 struct kvmppc_mmu {
 struct kvmppc_mmu {
@@ -537,8 +546,6 @@ struct kvm_vcpu_arch {
 	ulong tar;
 	ulong tar;
 #endif
 #endif
 
 
-	u32 cr;
-
 #ifdef CONFIG_PPC_BOOK3S
 #ifdef CONFIG_PPC_BOOK3S
 	ulong hflags;
 	ulong hflags;
 	ulong guest_owned_ext;
 	ulong guest_owned_ext;
@@ -707,6 +714,7 @@ struct kvm_vcpu_arch {
 	u8 hcall_needed;
 	u8 hcall_needed;
 	u8 epr_flags; /* KVMPPC_EPR_xxx */
 	u8 epr_flags; /* KVMPPC_EPR_xxx */
 	u8 epr_needed;
 	u8 epr_needed;
+	u8 external_oneshot;	/* clear external irq after delivery */
 
 
 	u32 cpr0_cfgaddr; /* holds the last set cpr0_cfgaddr */
 	u32 cpr0_cfgaddr; /* holds the last set cpr0_cfgaddr */
 
 
@@ -781,6 +789,10 @@ struct kvm_vcpu_arch {
 	u32 emul_inst;
 	u32 emul_inst;
 
 
 	u32 online;
 	u32 online;
+
+	/* For support of nested guests */
+	struct kvm_nested_guest *nested;
+	u32 nested_vcpu_id;
 #endif
 #endif
 
 
 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING

+ 5 - 3
arch/powerpc/include/asm/kvm_ppc.h

@@ -194,9 +194,7 @@ extern struct kvmppc_spapr_tce_table *kvmppc_find_table(
 		(iommu_tce_check_ioba((stt)->page_shift, (stt)->offset, \
 		(iommu_tce_check_ioba((stt)->page_shift, (stt)->offset, \
 				(stt)->size, (ioba), (npages)) ?        \
 				(stt)->size, (ioba), (npages)) ?        \
 				H_PARAMETER : H_SUCCESS)
 				H_PARAMETER : H_SUCCESS)
-extern long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *tt,
-		unsigned long tce);
-extern long kvmppc_gpa_to_ua(struct kvm *kvm, unsigned long gpa,
+extern long kvmppc_tce_to_ua(struct kvm *kvm, unsigned long tce,
 		unsigned long *ua, unsigned long **prmap);
 		unsigned long *ua, unsigned long **prmap);
 extern void kvmppc_tce_put(struct kvmppc_spapr_tce_table *tt,
 extern void kvmppc_tce_put(struct kvmppc_spapr_tce_table *tt,
 		unsigned long idx, unsigned long tce);
 		unsigned long idx, unsigned long tce);
@@ -327,6 +325,7 @@ struct kvmppc_ops {
 	int (*set_smt_mode)(struct kvm *kvm, unsigned long mode,
 	int (*set_smt_mode)(struct kvm *kvm, unsigned long mode,
 			    unsigned long flags);
 			    unsigned long flags);
 	void (*giveup_ext)(struct kvm_vcpu *vcpu, ulong msr);
 	void (*giveup_ext)(struct kvm_vcpu *vcpu, ulong msr);
+	int (*enable_nested)(struct kvm *kvm);
 };
 };
 
 
 extern struct kvmppc_ops *kvmppc_hv_ops;
 extern struct kvmppc_ops *kvmppc_hv_ops;
@@ -585,6 +584,7 @@ extern int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval);
 
 
 extern int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
 extern int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
 			       int level, bool line_status);
 			       int level, bool line_status);
+extern void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu);
 #else
 #else
 static inline int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
 static inline int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
 				       u32 priority) { return -1; }
 				       u32 priority) { return -1; }
@@ -607,6 +607,7 @@ static inline int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) { retur
 
 
 static inline int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
 static inline int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
 				      int level, bool line_status) { return -ENODEV; }
 				      int level, bool line_status) { return -ENODEV; }
+static inline void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) { }
 #endif /* CONFIG_KVM_XIVE */
 #endif /* CONFIG_KVM_XIVE */
 
 
 /*
 /*
@@ -652,6 +653,7 @@ int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
                     unsigned long mfrr);
                     unsigned long mfrr);
 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr);
 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr);
 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr);
 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr);
+void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu);
 
 
 /*
 /*
  * Host-side operations we want to set up while running in real
  * Host-side operations we want to set up while running in real

+ 1 - 0
arch/powerpc/include/asm/ppc-opcode.h

@@ -104,6 +104,7 @@
 #define OP_31_XOP_LHZUX     311
 #define OP_31_XOP_LHZUX     311
 #define OP_31_XOP_MSGSNDP   142
 #define OP_31_XOP_MSGSNDP   142
 #define OP_31_XOP_MSGCLRP   174
 #define OP_31_XOP_MSGCLRP   174
+#define OP_31_XOP_TLBIE     306
 #define OP_31_XOP_MFSPR     339
 #define OP_31_XOP_MFSPR     339
 #define OP_31_XOP_LWAX      341
 #define OP_31_XOP_LWAX      341
 #define OP_31_XOP_LHAX      343
 #define OP_31_XOP_LHAX      343

+ 2 - 0
arch/powerpc/include/asm/reg.h

@@ -415,6 +415,7 @@
 #define   HFSCR_DSCR	__MASK(FSCR_DSCR_LG)
 #define   HFSCR_DSCR	__MASK(FSCR_DSCR_LG)
 #define   HFSCR_VECVSX	__MASK(FSCR_VECVSX_LG)
 #define   HFSCR_VECVSX	__MASK(FSCR_VECVSX_LG)
 #define   HFSCR_FP	__MASK(FSCR_FP_LG)
 #define   HFSCR_FP	__MASK(FSCR_FP_LG)
+#define   HFSCR_INTR_CAUSE (ASM_CONST(0xFF) << 56)	/* interrupt cause */
 #define SPRN_TAR	0x32f	/* Target Address Register */
 #define SPRN_TAR	0x32f	/* Target Address Register */
 #define SPRN_LPCR	0x13E	/* LPAR Control Register */
 #define SPRN_LPCR	0x13E	/* LPAR Control Register */
 #define   LPCR_VPM0		ASM_CONST(0x8000000000000000)
 #define   LPCR_VPM0		ASM_CONST(0x8000000000000000)
@@ -766,6 +767,7 @@
 #define SPRN_HSRR0	0x13A	/* Save/Restore Register 0 */
 #define SPRN_HSRR0	0x13A	/* Save/Restore Register 0 */
 #define SPRN_HSRR1	0x13B	/* Save/Restore Register 1 */
 #define SPRN_HSRR1	0x13B	/* Save/Restore Register 1 */
 #define   HSRR1_DENORM		0x00100000 /* Denorm exception */
 #define   HSRR1_DENORM		0x00100000 /* Denorm exception */
+#define   HSRR1_HISI_WRITE	0x00010000 /* HISI bcs couldn't update mem */
 
 
 #define SPRN_TBCTL	0x35f	/* PA6T Timebase control register */
 #define SPRN_TBCTL	0x35f	/* PA6T Timebase control register */
 #define   TBCTL_FREEZE		0x0000000000000000ull /* Freeze all tbs */
 #define   TBCTL_FREEZE		0x0000000000000000ull /* Freeze all tbs */

+ 1 - 0
arch/powerpc/include/uapi/asm/kvm.h

@@ -634,6 +634,7 @@ struct kvm_ppc_cpu_char {
 
 
 #define KVM_REG_PPC_DEC_EXPIRY	(KVM_REG_PPC | KVM_REG_SIZE_U64 | 0xbe)
 #define KVM_REG_PPC_DEC_EXPIRY	(KVM_REG_PPC | KVM_REG_SIZE_U64 | 0xbe)
 #define KVM_REG_PPC_ONLINE	(KVM_REG_PPC | KVM_REG_SIZE_U32 | 0xbf)
 #define KVM_REG_PPC_ONLINE	(KVM_REG_PPC | KVM_REG_SIZE_U32 | 0xbf)
+#define KVM_REG_PPC_PTCR	(KVM_REG_PPC | KVM_REG_SIZE_U64 | 0xc0)
 
 
 /* Transactional Memory checkpointed state:
 /* Transactional Memory checkpointed state:
  * This is all GPRs, all VSX regs and a subset of SPRs
  * This is all GPRs, all VSX regs and a subset of SPRs

+ 3 - 2
arch/powerpc/kernel/asm-offsets.c

@@ -438,7 +438,7 @@ int main(void)
 #ifdef CONFIG_PPC_BOOK3S
 #ifdef CONFIG_PPC_BOOK3S
 	OFFSET(VCPU_TAR, kvm_vcpu, arch.tar);
 	OFFSET(VCPU_TAR, kvm_vcpu, arch.tar);
 #endif
 #endif
-	OFFSET(VCPU_CR, kvm_vcpu, arch.cr);
+	OFFSET(VCPU_CR, kvm_vcpu, arch.regs.ccr);
 	OFFSET(VCPU_PC, kvm_vcpu, arch.regs.nip);
 	OFFSET(VCPU_PC, kvm_vcpu, arch.regs.nip);
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 	OFFSET(VCPU_MSR, kvm_vcpu, arch.shregs.msr);
 	OFFSET(VCPU_MSR, kvm_vcpu, arch.shregs.msr);
@@ -503,6 +503,7 @@ int main(void)
 	OFFSET(VCPU_VPA, kvm_vcpu, arch.vpa.pinned_addr);
 	OFFSET(VCPU_VPA, kvm_vcpu, arch.vpa.pinned_addr);
 	OFFSET(VCPU_VPA_DIRTY, kvm_vcpu, arch.vpa.dirty);
 	OFFSET(VCPU_VPA_DIRTY, kvm_vcpu, arch.vpa.dirty);
 	OFFSET(VCPU_HEIR, kvm_vcpu, arch.emul_inst);
 	OFFSET(VCPU_HEIR, kvm_vcpu, arch.emul_inst);
+	OFFSET(VCPU_NESTED, kvm_vcpu, arch.nested);
 	OFFSET(VCPU_CPU, kvm_vcpu, cpu);
 	OFFSET(VCPU_CPU, kvm_vcpu, cpu);
 	OFFSET(VCPU_THREAD_CPU, kvm_vcpu, arch.thread_cpu);
 	OFFSET(VCPU_THREAD_CPU, kvm_vcpu, arch.thread_cpu);
 #endif
 #endif
@@ -695,7 +696,7 @@ int main(void)
 #endif /* CONFIG_PPC_BOOK3S_64 */
 #endif /* CONFIG_PPC_BOOK3S_64 */
 
 
 #else /* CONFIG_PPC_BOOK3S */
 #else /* CONFIG_PPC_BOOK3S */
-	OFFSET(VCPU_CR, kvm_vcpu, arch.cr);
+	OFFSET(VCPU_CR, kvm_vcpu, arch.regs.ccr);
 	OFFSET(VCPU_XER, kvm_vcpu, arch.regs.xer);
 	OFFSET(VCPU_XER, kvm_vcpu, arch.regs.xer);
 	OFFSET(VCPU_LR, kvm_vcpu, arch.regs.link);
 	OFFSET(VCPU_LR, kvm_vcpu, arch.regs.link);
 	OFFSET(VCPU_CTR, kvm_vcpu, arch.regs.ctr);
 	OFFSET(VCPU_CTR, kvm_vcpu, arch.regs.ctr);

+ 2 - 2
arch/powerpc/kernel/cpu_setup_power.S

@@ -147,8 +147,8 @@ __init_hvmode_206:
 	rldicl.	r0,r3,4,63
 	rldicl.	r0,r3,4,63
 	bnelr
 	bnelr
 	ld	r5,CPU_SPEC_FEATURES(r4)
 	ld	r5,CPU_SPEC_FEATURES(r4)
-	LOAD_REG_IMMEDIATE(r6,CPU_FTR_HVMODE)
-	xor	r5,r5,r6
+	LOAD_REG_IMMEDIATE(r6,CPU_FTR_HVMODE | CPU_FTR_P9_TM_HV_ASSIST)
+	andc	r5,r5,r6
 	std	r5,CPU_SPEC_FEATURES(r4)
 	std	r5,CPU_SPEC_FEATURES(r4)
 	blr
 	blr
 
 

+ 2 - 1
arch/powerpc/kvm/Makefile

@@ -75,7 +75,8 @@ kvm-hv-y += \
 	book3s_hv.o \
 	book3s_hv.o \
 	book3s_hv_interrupts.o \
 	book3s_hv_interrupts.o \
 	book3s_64_mmu_hv.o \
 	book3s_64_mmu_hv.o \
-	book3s_64_mmu_radix.o
+	book3s_64_mmu_radix.o \
+	book3s_hv_nested.o
 
 
 kvm-hv-$(CONFIG_PPC_TRANSACTIONAL_MEM) += \
 kvm-hv-$(CONFIG_PPC_TRANSACTIONAL_MEM) += \
 	book3s_hv_tm.o
 	book3s_hv_tm.o

+ 36 - 10
arch/powerpc/kvm/book3s.c

@@ -78,8 +78,11 @@ void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
 {
 {
 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
 		ulong pc = kvmppc_get_pc(vcpu);
 		ulong pc = kvmppc_get_pc(vcpu);
+		ulong lr = kvmppc_get_lr(vcpu);
 		if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
 		if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
 			kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
 			kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
+		if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
+			kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
 		vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
 		vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
 	}
 	}
 }
 }
@@ -150,7 +153,6 @@ static int kvmppc_book3s_vec2irqprio(unsigned int vec)
 	case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE;		break;
 	case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE;		break;
 	case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT;		break;
 	case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT;		break;
 	case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL;		break;
 	case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL;		break;
-	case 0x501: prio = BOOK3S_IRQPRIO_EXTERNAL_LEVEL;	break;
 	case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT;		break;
 	case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT;		break;
 	case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM;		break;
 	case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM;		break;
 	case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL;		break;
 	case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL;		break;
@@ -236,18 +238,35 @@ EXPORT_SYMBOL_GPL(kvmppc_core_dequeue_dec);
 void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
 void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
                                 struct kvm_interrupt *irq)
                                 struct kvm_interrupt *irq)
 {
 {
-	unsigned int vec = BOOK3S_INTERRUPT_EXTERNAL;
-
-	if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
-		vec = BOOK3S_INTERRUPT_EXTERNAL_LEVEL;
+	/*
+	 * This case (KVM_INTERRUPT_SET) should never actually arise for
+	 * a pseries guest (because pseries guests expect their interrupt
+	 * controllers to continue asserting an external interrupt request
+	 * until it is acknowledged at the interrupt controller), but is
+	 * included to avoid ABI breakage and potentially for other
+	 * sorts of guest.
+	 *
+	 * There is a subtlety here: HV KVM does not test the
+	 * external_oneshot flag in the code that synthesizes
+	 * external interrupts for the guest just before entering
+	 * the guest.  That is OK even if userspace did do a
+	 * KVM_INTERRUPT_SET on a pseries guest vcpu, because the
+	 * caller (kvm_vcpu_ioctl_interrupt) does a kvm_vcpu_kick()
+	 * which ends up doing a smp_send_reschedule(), which will
+	 * pull the guest all the way out to the host, meaning that
+	 * we will call kvmppc_core_prepare_to_enter() before entering
+	 * the guest again, and that will handle the external_oneshot
+	 * flag correctly.
+	 */
+	if (irq->irq == KVM_INTERRUPT_SET)
+		vcpu->arch.external_oneshot = 1;
 
 
-	kvmppc_book3s_queue_irqprio(vcpu, vec);
+	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
 }
 }
 
 
 void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
 void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
 {
 {
 	kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
 	kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
-	kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
 }
 }
 
 
 void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu, ulong dar,
 void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu, ulong dar,
@@ -278,7 +297,6 @@ static int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu,
 		vec = BOOK3S_INTERRUPT_DECREMENTER;
 		vec = BOOK3S_INTERRUPT_DECREMENTER;
 		break;
 		break;
 	case BOOK3S_IRQPRIO_EXTERNAL:
 	case BOOK3S_IRQPRIO_EXTERNAL:
-	case BOOK3S_IRQPRIO_EXTERNAL_LEVEL:
 		deliver = (kvmppc_get_msr(vcpu) & MSR_EE) && !crit;
 		deliver = (kvmppc_get_msr(vcpu) & MSR_EE) && !crit;
 		vec = BOOK3S_INTERRUPT_EXTERNAL;
 		vec = BOOK3S_INTERRUPT_EXTERNAL;
 		break;
 		break;
@@ -352,8 +370,16 @@ static bool clear_irqprio(struct kvm_vcpu *vcpu, unsigned int priority)
 		case BOOK3S_IRQPRIO_DECREMENTER:
 		case BOOK3S_IRQPRIO_DECREMENTER:
 			/* DEC interrupts get cleared by mtdec */
 			/* DEC interrupts get cleared by mtdec */
 			return false;
 			return false;
-		case BOOK3S_IRQPRIO_EXTERNAL_LEVEL:
-			/* External interrupts get cleared by userspace */
+		case BOOK3S_IRQPRIO_EXTERNAL:
+			/*
+			 * External interrupts get cleared by userspace
+			 * except when set by the KVM_INTERRUPT ioctl with
+			 * KVM_INTERRUPT_SET (not KVM_INTERRUPT_SET_LEVEL).
+			 */
+			if (vcpu->arch.external_oneshot) {
+				vcpu->arch.external_oneshot = 0;
+				return true;
+			}
 			return false;
 			return false;
 	}
 	}
 
 

+ 3 - 4
arch/powerpc/kvm/book3s_64_mmu_hv.c

@@ -268,14 +268,13 @@ int kvmppc_mmu_hv_init(void)
 {
 {
 	unsigned long host_lpid, rsvd_lpid;
 	unsigned long host_lpid, rsvd_lpid;
 
 
-	if (!cpu_has_feature(CPU_FTR_HVMODE))
-		return -EINVAL;
-
 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
 		return -EINVAL;
 		return -EINVAL;
 
 
 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
-	host_lpid = mfspr(SPRN_LPID);
+	host_lpid = 0;
+	if (cpu_has_feature(CPU_FTR_HVMODE))
+		host_lpid = mfspr(SPRN_LPID);
 	rsvd_lpid = LPID_RSVD;
 	rsvd_lpid = LPID_RSVD;
 
 
 	kvmppc_init_lpid(rsvd_lpid + 1);
 	kvmppc_init_lpid(rsvd_lpid + 1);

+ 536 - 182
arch/powerpc/kvm/book3s_64_mmu_radix.c

@@ -10,6 +10,9 @@
 #include <linux/string.h>
 #include <linux/string.h>
 #include <linux/kvm.h>
 #include <linux/kvm.h>
 #include <linux/kvm_host.h>
 #include <linux/kvm_host.h>
+#include <linux/anon_inodes.h>
+#include <linux/file.h>
+#include <linux/debugfs.h>
 
 
 #include <asm/kvm_ppc.h>
 #include <asm/kvm_ppc.h>
 #include <asm/kvm_book3s.h>
 #include <asm/kvm_book3s.h>
@@ -26,87 +29,74 @@
  */
  */
 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
 
 
-int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
-			   struct kvmppc_pte *gpte, bool data, bool iswrite)
+int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
+			       struct kvmppc_pte *gpte, u64 root,
+			       u64 *pte_ret_p)
 {
 {
 	struct kvm *kvm = vcpu->kvm;
 	struct kvm *kvm = vcpu->kvm;
-	u32 pid;
 	int ret, level, ps;
 	int ret, level, ps;
-	__be64 prte, rpte;
-	unsigned long ptbl;
-	unsigned long root, pte, index;
-	unsigned long rts, bits, offset;
-	unsigned long gpa;
-	unsigned long proc_tbl_size;
-
-	/* Work out effective PID */
-	switch (eaddr >> 62) {
-	case 0:
-		pid = vcpu->arch.pid;
-		break;
-	case 3:
-		pid = 0;
-		break;
-	default:
-		return -EINVAL;
-	}
-	proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
-	if (pid * 16 >= proc_tbl_size)
-		return -EINVAL;
-
-	/* Read partition table to find root of tree for effective PID */
-	ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
-	ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
-	if (ret)
-		return ret;
+	unsigned long rts, bits, offset, index;
+	u64 pte, base, gpa;
+	__be64 rpte;
 
 
-	root = be64_to_cpu(prte);
 	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
 	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
 		((root & RTS2_MASK) >> RTS2_SHIFT);
 		((root & RTS2_MASK) >> RTS2_SHIFT);
 	bits = root & RPDS_MASK;
 	bits = root & RPDS_MASK;
-	root = root & RPDB_MASK;
+	base = root & RPDB_MASK;
 
 
 	offset = rts + 31;
 	offset = rts + 31;
 
 
-	/* current implementations only support 52-bit space */
+	/* Current implementations only support 52-bit space */
 	if (offset != 52)
 	if (offset != 52)
 		return -EINVAL;
 		return -EINVAL;
 
 
+	/* Walk each level of the radix tree */
 	for (level = 3; level >= 0; --level) {
 	for (level = 3; level >= 0; --level) {
+		u64 addr;
+		/* Check a valid size */
 		if (level && bits != p9_supported_radix_bits[level])
 		if (level && bits != p9_supported_radix_bits[level])
 			return -EINVAL;
 			return -EINVAL;
 		if (level == 0 && !(bits == 5 || bits == 9))
 		if (level == 0 && !(bits == 5 || bits == 9))
 			return -EINVAL;
 			return -EINVAL;
 		offset -= bits;
 		offset -= bits;
 		index = (eaddr >> offset) & ((1UL << bits) - 1);
 		index = (eaddr >> offset) & ((1UL << bits) - 1);
-		/* check that low bits of page table base are zero */
-		if (root & ((1UL << (bits + 3)) - 1))
+		/* Check that low bits of page table base are zero */
+		if (base & ((1UL << (bits + 3)) - 1))
 			return -EINVAL;
 			return -EINVAL;
-		ret = kvm_read_guest(kvm, root + index * 8,
-				     &rpte, sizeof(rpte));
-		if (ret)
+		/* Read the entry from guest memory */
+		addr = base + (index * sizeof(rpte));
+		ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
+		if (ret) {
+			if (pte_ret_p)
+				*pte_ret_p = addr;
 			return ret;
 			return ret;
+		}
 		pte = __be64_to_cpu(rpte);
 		pte = __be64_to_cpu(rpte);
 		if (!(pte & _PAGE_PRESENT))
 		if (!(pte & _PAGE_PRESENT))
 			return -ENOENT;
 			return -ENOENT;
+		/* Check if a leaf entry */
 		if (pte & _PAGE_PTE)
 		if (pte & _PAGE_PTE)
 			break;
 			break;
-		bits = pte & 0x1f;
-		root = pte & 0x0fffffffffffff00ul;
+		/* Get ready to walk the next level */
+		base = pte & RPDB_MASK;
+		bits = pte & RPDS_MASK;
 	}
 	}
-	/* need a leaf at lowest level; 512GB pages not supported */
+
+	/* Need a leaf at lowest level; 512GB pages not supported */
 	if (level < 0 || level == 3)
 	if (level < 0 || level == 3)
 		return -EINVAL;
 		return -EINVAL;
 
 
-	/* offset is now log base 2 of the page size */
+	/* We found a valid leaf PTE */
+	/* Offset is now log base 2 of the page size */
 	gpa = pte & 0x01fffffffffff000ul;
 	gpa = pte & 0x01fffffffffff000ul;
 	if (gpa & ((1ul << offset) - 1))
 	if (gpa & ((1ul << offset) - 1))
 		return -EINVAL;
 		return -EINVAL;
-	gpa += eaddr & ((1ul << offset) - 1);
+	gpa |= eaddr & ((1ul << offset) - 1);
 	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
 	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
 		if (offset == mmu_psize_defs[ps].shift)
 		if (offset == mmu_psize_defs[ps].shift)
 			break;
 			break;
 	gpte->page_size = ps;
 	gpte->page_size = ps;
+	gpte->page_shift = offset;
 
 
 	gpte->eaddr = eaddr;
 	gpte->eaddr = eaddr;
 	gpte->raddr = gpa;
 	gpte->raddr = gpa;
@@ -115,6 +105,77 @@ int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 	gpte->may_read = !!(pte & _PAGE_READ);
 	gpte->may_read = !!(pte & _PAGE_READ);
 	gpte->may_write = !!(pte & _PAGE_WRITE);
 	gpte->may_write = !!(pte & _PAGE_WRITE);
 	gpte->may_execute = !!(pte & _PAGE_EXEC);
 	gpte->may_execute = !!(pte & _PAGE_EXEC);
+
+	gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
+
+	if (pte_ret_p)
+		*pte_ret_p = pte;
+
+	return 0;
+}
+
+/*
+ * Used to walk a partition or process table radix tree in guest memory
+ * Note: We exploit the fact that a partition table and a process
+ * table have the same layout, a partition-scoped page table and a
+ * process-scoped page table have the same layout, and the 2nd
+ * doubleword of a partition table entry has the same layout as
+ * the PTCR register.
+ */
+int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
+				     struct kvmppc_pte *gpte, u64 table,
+				     int table_index, u64 *pte_ret_p)
+{
+	struct kvm *kvm = vcpu->kvm;
+	int ret;
+	unsigned long size, ptbl, root;
+	struct prtb_entry entry;
+
+	if ((table & PRTS_MASK) > 24)
+		return -EINVAL;
+	size = 1ul << ((table & PRTS_MASK) + 12);
+
+	/* Is the table big enough to contain this entry? */
+	if ((table_index * sizeof(entry)) >= size)
+		return -EINVAL;
+
+	/* Read the table to find the root of the radix tree */
+	ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
+	ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
+	if (ret)
+		return ret;
+
+	/* Root is stored in the first double word */
+	root = be64_to_cpu(entry.prtb0);
+
+	return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
+}
+
+int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
+			   struct kvmppc_pte *gpte, bool data, bool iswrite)
+{
+	u32 pid;
+	u64 pte;
+	int ret;
+
+	/* Work out effective PID */
+	switch (eaddr >> 62) {
+	case 0:
+		pid = vcpu->arch.pid;
+		break;
+	case 3:
+		pid = 0;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
+				vcpu->kvm->arch.process_table, pid, &pte);
+	if (ret)
+		return ret;
+
+	/* Check privilege (applies only to process scoped translations) */
 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
 		if (pte & _PAGE_PRIVILEGED) {
 		if (pte & _PAGE_PRIVILEGED) {
 			gpte->may_read = 0;
 			gpte->may_read = 0;
@@ -137,20 +198,46 @@ int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 }
 }
 
 
 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
-				    unsigned int pshift)
+				    unsigned int pshift, unsigned int lpid)
 {
 {
 	unsigned long psize = PAGE_SIZE;
 	unsigned long psize = PAGE_SIZE;
+	int psi;
+	long rc;
+	unsigned long rb;
 
 
 	if (pshift)
 	if (pshift)
 		psize = 1UL << pshift;
 		psize = 1UL << pshift;
+	else
+		pshift = PAGE_SHIFT;
 
 
 	addr &= ~(psize - 1);
 	addr &= ~(psize - 1);
-	radix__flush_tlb_lpid_page(kvm->arch.lpid, addr, psize);
+
+	if (!kvmhv_on_pseries()) {
+		radix__flush_tlb_lpid_page(lpid, addr, psize);
+		return;
+	}
+
+	psi = shift_to_mmu_psize(pshift);
+	rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
+	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
+				lpid, rb);
+	if (rc)
+		pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
 }
 }
 
 
-static void kvmppc_radix_flush_pwc(struct kvm *kvm)
+static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
 {
 {
-	radix__flush_pwc_lpid(kvm->arch.lpid);
+	long rc;
+
+	if (!kvmhv_on_pseries()) {
+		radix__flush_pwc_lpid(lpid);
+		return;
+	}
+
+	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
+				lpid, TLBIEL_INVAL_SET_LPID);
+	if (rc)
+		pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
 }
 }
 
 
 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
@@ -195,23 +282,38 @@ static void kvmppc_pmd_free(pmd_t *pmdp)
 	kmem_cache_free(kvm_pmd_cache, pmdp);
 	kmem_cache_free(kvm_pmd_cache, pmdp);
 }
 }
 
 
-static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
-			     unsigned long gpa, unsigned int shift)
+/* Called with kvm->mmu_lock held */
+void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
+		      unsigned int shift, struct kvm_memory_slot *memslot,
+		      unsigned int lpid)
 
 
 {
 {
-	unsigned long page_size = 1ul << shift;
 	unsigned long old;
 	unsigned long old;
+	unsigned long gfn = gpa >> PAGE_SHIFT;
+	unsigned long page_size = PAGE_SIZE;
+	unsigned long hpa;
 
 
 	old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
 	old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
-	kvmppc_radix_tlbie_page(kvm, gpa, shift);
-	if (old & _PAGE_DIRTY) {
-		unsigned long gfn = gpa >> PAGE_SHIFT;
-		struct kvm_memory_slot *memslot;
+	kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
+
+	/* The following only applies to L1 entries */
+	if (lpid != kvm->arch.lpid)
+		return;
 
 
+	if (!memslot) {
 		memslot = gfn_to_memslot(kvm, gfn);
 		memslot = gfn_to_memslot(kvm, gfn);
-		if (memslot && memslot->dirty_bitmap)
-			kvmppc_update_dirty_map(memslot, gfn, page_size);
+		if (!memslot)
+			return;
 	}
 	}
+	if (shift)
+		page_size = 1ul << shift;
+
+	gpa &= ~(page_size - 1);
+	hpa = old & PTE_RPN_MASK;
+	kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
+
+	if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
+		kvmppc_update_dirty_map(memslot, gfn, page_size);
 }
 }
 
 
 /*
 /*
@@ -224,7 +326,8 @@ static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
  * and emit a warning if encountered, but there may already be data
  * and emit a warning if encountered, but there may already be data
  * corruption due to the unexpected mappings.
  * corruption due to the unexpected mappings.
  */
  */
-static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full)
+static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
+				  unsigned int lpid)
 {
 {
 	if (full) {
 	if (full) {
 		memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
 		memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
@@ -238,14 +341,15 @@ static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full)
 			WARN_ON_ONCE(1);
 			WARN_ON_ONCE(1);
 			kvmppc_unmap_pte(kvm, p,
 			kvmppc_unmap_pte(kvm, p,
 					 pte_pfn(*p) << PAGE_SHIFT,
 					 pte_pfn(*p) << PAGE_SHIFT,
-					 PAGE_SHIFT);
+					 PAGE_SHIFT, NULL, lpid);
 		}
 		}
 	}
 	}
 
 
 	kvmppc_pte_free(pte);
 	kvmppc_pte_free(pte);
 }
 }
 
 
-static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full)
+static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
+				  unsigned int lpid)
 {
 {
 	unsigned long im;
 	unsigned long im;
 	pmd_t *p = pmd;
 	pmd_t *p = pmd;
@@ -260,20 +364,21 @@ static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full)
 				WARN_ON_ONCE(1);
 				WARN_ON_ONCE(1);
 				kvmppc_unmap_pte(kvm, (pte_t *)p,
 				kvmppc_unmap_pte(kvm, (pte_t *)p,
 					 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
 					 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
-					 PMD_SHIFT);
+					 PMD_SHIFT, NULL, lpid);
 			}
 			}
 		} else {
 		} else {
 			pte_t *pte;
 			pte_t *pte;
 
 
 			pte = pte_offset_map(p, 0);
 			pte = pte_offset_map(p, 0);
-			kvmppc_unmap_free_pte(kvm, pte, full);
+			kvmppc_unmap_free_pte(kvm, pte, full, lpid);
 			pmd_clear(p);
 			pmd_clear(p);
 		}
 		}
 	}
 	}
 	kvmppc_pmd_free(pmd);
 	kvmppc_pmd_free(pmd);
 }
 }
 
 
-static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud)
+static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
+				  unsigned int lpid)
 {
 {
 	unsigned long iu;
 	unsigned long iu;
 	pud_t *p = pud;
 	pud_t *p = pud;
@@ -287,36 +392,40 @@ static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud)
 			pmd_t *pmd;
 			pmd_t *pmd;
 
 
 			pmd = pmd_offset(p, 0);
 			pmd = pmd_offset(p, 0);
-			kvmppc_unmap_free_pmd(kvm, pmd, true);
+			kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
 			pud_clear(p);
 			pud_clear(p);
 		}
 		}
 	}
 	}
 	pud_free(kvm->mm, pud);
 	pud_free(kvm->mm, pud);
 }
 }
 
 
-void kvmppc_free_radix(struct kvm *kvm)
+void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
 {
 {
 	unsigned long ig;
 	unsigned long ig;
-	pgd_t *pgd;
 
 
-	if (!kvm->arch.pgtable)
-		return;
-	pgd = kvm->arch.pgtable;
 	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
 	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
 		pud_t *pud;
 		pud_t *pud;
 
 
 		if (!pgd_present(*pgd))
 		if (!pgd_present(*pgd))
 			continue;
 			continue;
 		pud = pud_offset(pgd, 0);
 		pud = pud_offset(pgd, 0);
-		kvmppc_unmap_free_pud(kvm, pud);
+		kvmppc_unmap_free_pud(kvm, pud, lpid);
 		pgd_clear(pgd);
 		pgd_clear(pgd);
 	}
 	}
-	pgd_free(kvm->mm, kvm->arch.pgtable);
-	kvm->arch.pgtable = NULL;
+}
+
+void kvmppc_free_radix(struct kvm *kvm)
+{
+	if (kvm->arch.pgtable) {
+		kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
+					  kvm->arch.lpid);
+		pgd_free(kvm->mm, kvm->arch.pgtable);
+		kvm->arch.pgtable = NULL;
+	}
 }
 }
 
 
 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
-					      unsigned long gpa)
+					unsigned long gpa, unsigned int lpid)
 {
 {
 	pte_t *pte = pte_offset_kernel(pmd, 0);
 	pte_t *pte = pte_offset_kernel(pmd, 0);
 
 
@@ -326,13 +435,13 @@ static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
 	 * flushing the PWC again.
 	 * flushing the PWC again.
 	 */
 	 */
 	pmd_clear(pmd);
 	pmd_clear(pmd);
-	kvmppc_radix_flush_pwc(kvm);
+	kvmppc_radix_flush_pwc(kvm, lpid);
 
 
-	kvmppc_unmap_free_pte(kvm, pte, false);
+	kvmppc_unmap_free_pte(kvm, pte, false, lpid);
 }
 }
 
 
 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
-					unsigned long gpa)
+					unsigned long gpa, unsigned int lpid)
 {
 {
 	pmd_t *pmd = pmd_offset(pud, 0);
 	pmd_t *pmd = pmd_offset(pud, 0);
 
 
@@ -342,9 +451,9 @@ static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
 	 * so can be freed without flushing the PWC again.
 	 * so can be freed without flushing the PWC again.
 	 */
 	 */
 	pud_clear(pud);
 	pud_clear(pud);
-	kvmppc_radix_flush_pwc(kvm);
+	kvmppc_radix_flush_pwc(kvm, lpid);
 
 
-	kvmppc_unmap_free_pmd(kvm, pmd, false);
+	kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
 }
 }
 
 
 /*
 /*
@@ -356,8 +465,10 @@ static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
  */
  */
 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
 
 
-static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
-			     unsigned int level, unsigned long mmu_seq)
+int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
+		      unsigned long gpa, unsigned int level,
+		      unsigned long mmu_seq, unsigned int lpid,
+		      unsigned long *rmapp, struct rmap_nested **n_rmap)
 {
 {
 	pgd_t *pgd;
 	pgd_t *pgd;
 	pud_t *pud, *new_pud = NULL;
 	pud_t *pud, *new_pud = NULL;
@@ -366,7 +477,7 @@ static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 	int ret;
 	int ret;
 
 
 	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
 	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
-	pgd = kvm->arch.pgtable + pgd_index(gpa);
+	pgd = pgtable + pgd_index(gpa);
 	pud = NULL;
 	pud = NULL;
 	if (pgd_present(*pgd))
 	if (pgd_present(*pgd))
 		pud = pud_offset(pgd, gpa);
 		pud = pud_offset(pgd, gpa);
@@ -423,7 +534,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 			goto out_unlock;
 			goto out_unlock;
 		}
 		}
 		/* Valid 1GB page here already, remove it */
 		/* Valid 1GB page here already, remove it */
-		kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT);
+		kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
+				 lpid);
 	}
 	}
 	if (level == 2) {
 	if (level == 2) {
 		if (!pud_none(*pud)) {
 		if (!pud_none(*pud)) {
@@ -432,9 +544,11 @@ static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 			 * install a large page, so remove and free the page
 			 * install a large page, so remove and free the page
 			 * table page.
 			 * table page.
 			 */
 			 */
-			kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa);
+			kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
 		}
 		}
 		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
 		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
+		if (rmapp && n_rmap)
+			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
 		ret = 0;
 		ret = 0;
 		goto out_unlock;
 		goto out_unlock;
 	}
 	}
@@ -458,7 +572,7 @@ static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 			WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
 			WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
 							PTE_BITS_MUST_MATCH);
 							PTE_BITS_MUST_MATCH);
 			kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
 			kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
-					      0, pte_val(pte), lgpa, PMD_SHIFT);
+					0, pte_val(pte), lgpa, PMD_SHIFT);
 			ret = 0;
 			ret = 0;
 			goto out_unlock;
 			goto out_unlock;
 		}
 		}
@@ -472,7 +586,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 			goto out_unlock;
 			goto out_unlock;
 		}
 		}
 		/* Valid 2MB page here already, remove it */
 		/* Valid 2MB page here already, remove it */
-		kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT);
+		kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
+				 lpid);
 	}
 	}
 	if (level == 1) {
 	if (level == 1) {
 		if (!pmd_none(*pmd)) {
 		if (!pmd_none(*pmd)) {
@@ -481,9 +596,11 @@ static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 			 * install a large page, so remove and free the page
 			 * install a large page, so remove and free the page
 			 * table page.
 			 * table page.
 			 */
 			 */
-			kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa);
+			kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
 		}
 		}
 		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
 		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
+		if (rmapp && n_rmap)
+			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
 		ret = 0;
 		ret = 0;
 		goto out_unlock;
 		goto out_unlock;
 	}
 	}
@@ -508,6 +625,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 		goto out_unlock;
 		goto out_unlock;
 	}
 	}
 	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
 	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
+	if (rmapp && n_rmap)
+		kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
 	ret = 0;
 	ret = 0;
 
 
  out_unlock:
  out_unlock:
@@ -521,95 +640,49 @@ static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 	return ret;
 	return ret;
 }
 }
 
 
-int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
-				   unsigned long ea, unsigned long dsisr)
+bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing,
+			     unsigned long gpa, unsigned int lpid)
+{
+	unsigned long pgflags;
+	unsigned int shift;
+	pte_t *ptep;
+
+	/*
+	 * Need to set an R or C bit in the 2nd-level tables;
+	 * since we are just helping out the hardware here,
+	 * it is sufficient to do what the hardware does.
+	 */
+	pgflags = _PAGE_ACCESSED;
+	if (writing)
+		pgflags |= _PAGE_DIRTY;
+	/*
+	 * We are walking the secondary (partition-scoped) page table here.
+	 * We can do this without disabling irq because the Linux MM
+	 * subsystem doesn't do THP splits and collapses on this tree.
+	 */
+	ptep = __find_linux_pte(pgtable, gpa, NULL, &shift);
+	if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
+		kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
+		return true;
+	}
+	return false;
+}
+
+int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
+				   unsigned long gpa,
+				   struct kvm_memory_slot *memslot,
+				   bool writing, bool kvm_ro,
+				   pte_t *inserted_pte, unsigned int *levelp)
 {
 {
 	struct kvm *kvm = vcpu->kvm;
 	struct kvm *kvm = vcpu->kvm;
-	unsigned long mmu_seq;
-	unsigned long gpa, gfn, hva;
-	struct kvm_memory_slot *memslot;
 	struct page *page = NULL;
 	struct page *page = NULL;
-	long ret;
-	bool writing;
+	unsigned long mmu_seq;
+	unsigned long hva, gfn = gpa >> PAGE_SHIFT;
 	bool upgrade_write = false;
 	bool upgrade_write = false;
 	bool *upgrade_p = &upgrade_write;
 	bool *upgrade_p = &upgrade_write;
 	pte_t pte, *ptep;
 	pte_t pte, *ptep;
-	unsigned long pgflags;
 	unsigned int shift, level;
 	unsigned int shift, level;
-
-	/* Check for unusual errors */
-	if (dsisr & DSISR_UNSUPP_MMU) {
-		pr_err("KVM: Got unsupported MMU fault\n");
-		return -EFAULT;
-	}
-	if (dsisr & DSISR_BADACCESS) {
-		/* Reflect to the guest as DSI */
-		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
-		kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
-		return RESUME_GUEST;
-	}
-
-	/* Translate the logical address and get the page */
-	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
-	gpa &= ~0xF000000000000000ul;
-	gfn = gpa >> PAGE_SHIFT;
-	if (!(dsisr & DSISR_PRTABLE_FAULT))
-		gpa |= ea & 0xfff;
-	memslot = gfn_to_memslot(kvm, gfn);
-
-	/* No memslot means it's an emulated MMIO region */
-	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
-		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
-			     DSISR_SET_RC)) {
-			/*
-			 * Bad address in guest page table tree, or other
-			 * unusual error - reflect it to the guest as DSI.
-			 */
-			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
-			return RESUME_GUEST;
-		}
-		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
-					      dsisr & DSISR_ISSTORE);
-	}
-
-	writing = (dsisr & DSISR_ISSTORE) != 0;
-	if (memslot->flags & KVM_MEM_READONLY) {
-		if (writing) {
-			/* give the guest a DSI */
-			dsisr = DSISR_ISSTORE | DSISR_PROTFAULT;
-			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
-			return RESUME_GUEST;
-		}
-		upgrade_p = NULL;
-	}
-
-	if (dsisr & DSISR_SET_RC) {
-		/*
-		 * Need to set an R or C bit in the 2nd-level tables;
-		 * since we are just helping out the hardware here,
-		 * it is sufficient to do what the hardware does.
-		 */
-		pgflags = _PAGE_ACCESSED;
-		if (writing)
-			pgflags |= _PAGE_DIRTY;
-		/*
-		 * We are walking the secondary page table here. We can do this
-		 * without disabling irq.
-		 */
-		spin_lock(&kvm->mmu_lock);
-		ptep = __find_linux_pte(kvm->arch.pgtable,
-					gpa, NULL, &shift);
-		if (ptep && pte_present(*ptep) &&
-		    (!writing || pte_write(*ptep))) {
-			kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
-						gpa, shift);
-			dsisr &= ~DSISR_SET_RC;
-		}
-		spin_unlock(&kvm->mmu_lock);
-		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
-			       DSISR_PROTFAULT | DSISR_SET_RC)))
-			return RESUME_GUEST;
-	}
+	int ret;
 
 
 	/* used to check for invalidations in progress */
 	/* used to check for invalidations in progress */
 	mmu_seq = kvm->mmu_notifier_seq;
 	mmu_seq = kvm->mmu_notifier_seq;
@@ -622,7 +695,7 @@ int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 	 * is that the page is writable.
 	 * is that the page is writable.
 	 */
 	 */
 	hva = gfn_to_hva_memslot(memslot, gfn);
 	hva = gfn_to_hva_memslot(memslot, gfn);
-	if (upgrade_p && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
+	if (!kvm_ro && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
 		upgrade_write = true;
 		upgrade_write = true;
 	} else {
 	} else {
 		unsigned long pfn;
 		unsigned long pfn;
@@ -690,7 +763,12 @@ int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 	}
 	}
 
 
 	/* Allocate space in the tree and write the PTE */
 	/* Allocate space in the tree and write the PTE */
-	ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
+	ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
+				mmu_seq, kvm->arch.lpid, NULL, NULL);
+	if (inserted_pte)
+		*inserted_pte = pte;
+	if (levelp)
+		*levelp = level;
 
 
 	if (page) {
 	if (page) {
 		if (!ret && (pte_val(pte) & _PAGE_WRITE))
 		if (!ret && (pte_val(pte) & _PAGE_WRITE))
@@ -698,6 +776,82 @@ int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 		put_page(page);
 		put_page(page);
 	}
 	}
 
 
+	return ret;
+}
+
+int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
+				   unsigned long ea, unsigned long dsisr)
+{
+	struct kvm *kvm = vcpu->kvm;
+	unsigned long gpa, gfn;
+	struct kvm_memory_slot *memslot;
+	long ret;
+	bool writing = !!(dsisr & DSISR_ISSTORE);
+	bool kvm_ro = false;
+
+	/* Check for unusual errors */
+	if (dsisr & DSISR_UNSUPP_MMU) {
+		pr_err("KVM: Got unsupported MMU fault\n");
+		return -EFAULT;
+	}
+	if (dsisr & DSISR_BADACCESS) {
+		/* Reflect to the guest as DSI */
+		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
+		kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
+		return RESUME_GUEST;
+	}
+
+	/* Translate the logical address */
+	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
+	gpa &= ~0xF000000000000000ul;
+	gfn = gpa >> PAGE_SHIFT;
+	if (!(dsisr & DSISR_PRTABLE_FAULT))
+		gpa |= ea & 0xfff;
+
+	/* Get the corresponding memslot */
+	memslot = gfn_to_memslot(kvm, gfn);
+
+	/* No memslot means it's an emulated MMIO region */
+	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
+		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
+			     DSISR_SET_RC)) {
+			/*
+			 * Bad address in guest page table tree, or other
+			 * unusual error - reflect it to the guest as DSI.
+			 */
+			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
+			return RESUME_GUEST;
+		}
+		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing);
+	}
+
+	if (memslot->flags & KVM_MEM_READONLY) {
+		if (writing) {
+			/* give the guest a DSI */
+			kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE |
+						       DSISR_PROTFAULT);
+			return RESUME_GUEST;
+		}
+		kvm_ro = true;
+	}
+
+	/* Failed to set the reference/change bits */
+	if (dsisr & DSISR_SET_RC) {
+		spin_lock(&kvm->mmu_lock);
+		if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable,
+					    writing, gpa, kvm->arch.lpid))
+			dsisr &= ~DSISR_SET_RC;
+		spin_unlock(&kvm->mmu_lock);
+
+		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
+			       DSISR_PROTFAULT | DSISR_SET_RC)))
+			return RESUME_GUEST;
+	}
+
+	/* Try to insert a pte */
+	ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
+					     kvm_ro, NULL, NULL);
+
 	if (ret == 0 || ret == -EAGAIN)
 	if (ret == 0 || ret == -EAGAIN)
 		ret = RESUME_GUEST;
 		ret = RESUME_GUEST;
 	return ret;
 	return ret;
@@ -710,20 +864,11 @@ int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 	pte_t *ptep;
 	pte_t *ptep;
 	unsigned long gpa = gfn << PAGE_SHIFT;
 	unsigned long gpa = gfn << PAGE_SHIFT;
 	unsigned int shift;
 	unsigned int shift;
-	unsigned long old;
 
 
 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
 	ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
-	if (ptep && pte_present(*ptep)) {
-		old = kvmppc_radix_update_pte(kvm, ptep, ~0UL, 0,
-					      gpa, shift);
-		kvmppc_radix_tlbie_page(kvm, gpa, shift);
-		if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
-			unsigned long psize = PAGE_SIZE;
-			if (shift)
-				psize = 1ul << shift;
-			kvmppc_update_dirty_map(memslot, gfn, psize);
-		}
-	}
+	if (ptep && pte_present(*ptep))
+		kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
+				 kvm->arch.lpid);
 	return 0;				
 	return 0;				
 }
 }
 
 
@@ -778,7 +923,7 @@ static int kvm_radix_test_clear_dirty(struct kvm *kvm,
 			ret = 1 << (shift - PAGE_SHIFT);
 			ret = 1 << (shift - PAGE_SHIFT);
 		kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
 		kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
 					gpa, shift);
 					gpa, shift);
-		kvmppc_radix_tlbie_page(kvm, gpa, shift);
+		kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
 	}
 	}
 	return ret;
 	return ret;
 }
 }
@@ -863,6 +1008,215 @@ static void pmd_ctor(void *addr)
 	memset(addr, 0, RADIX_PMD_TABLE_SIZE);
 	memset(addr, 0, RADIX_PMD_TABLE_SIZE);
 }
 }
 
 
+struct debugfs_radix_state {
+	struct kvm	*kvm;
+	struct mutex	mutex;
+	unsigned long	gpa;
+	int		lpid;
+	int		chars_left;
+	int		buf_index;
+	char		buf[128];
+	u8		hdr;
+};
+
+static int debugfs_radix_open(struct inode *inode, struct file *file)
+{
+	struct kvm *kvm = inode->i_private;
+	struct debugfs_radix_state *p;
+
+	p = kzalloc(sizeof(*p), GFP_KERNEL);
+	if (!p)
+		return -ENOMEM;
+
+	kvm_get_kvm(kvm);
+	p->kvm = kvm;
+	mutex_init(&p->mutex);
+	file->private_data = p;
+
+	return nonseekable_open(inode, file);
+}
+
+static int debugfs_radix_release(struct inode *inode, struct file *file)
+{
+	struct debugfs_radix_state *p = file->private_data;
+
+	kvm_put_kvm(p->kvm);
+	kfree(p);
+	return 0;
+}
+
+static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
+				 size_t len, loff_t *ppos)
+{
+	struct debugfs_radix_state *p = file->private_data;
+	ssize_t ret, r;
+	unsigned long n;
+	struct kvm *kvm;
+	unsigned long gpa;
+	pgd_t *pgt;
+	struct kvm_nested_guest *nested;
+	pgd_t pgd, *pgdp;
+	pud_t pud, *pudp;
+	pmd_t pmd, *pmdp;
+	pte_t *ptep;
+	int shift;
+	unsigned long pte;
+
+	kvm = p->kvm;
+	if (!kvm_is_radix(kvm))
+		return 0;
+
+	ret = mutex_lock_interruptible(&p->mutex);
+	if (ret)
+		return ret;
+
+	if (p->chars_left) {
+		n = p->chars_left;
+		if (n > len)
+			n = len;
+		r = copy_to_user(buf, p->buf + p->buf_index, n);
+		n -= r;
+		p->chars_left -= n;
+		p->buf_index += n;
+		buf += n;
+		len -= n;
+		ret = n;
+		if (r) {
+			if (!n)
+				ret = -EFAULT;
+			goto out;
+		}
+	}
+
+	gpa = p->gpa;
+	nested = NULL;
+	pgt = NULL;
+	while (len != 0 && p->lpid >= 0) {
+		if (gpa >= RADIX_PGTABLE_RANGE) {
+			gpa = 0;
+			pgt = NULL;
+			if (nested) {
+				kvmhv_put_nested(nested);
+				nested = NULL;
+			}
+			p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
+			p->hdr = 0;
+			if (p->lpid < 0)
+				break;
+		}
+		if (!pgt) {
+			if (p->lpid == 0) {
+				pgt = kvm->arch.pgtable;
+			} else {
+				nested = kvmhv_get_nested(kvm, p->lpid, false);
+				if (!nested) {
+					gpa = RADIX_PGTABLE_RANGE;
+					continue;
+				}
+				pgt = nested->shadow_pgtable;
+			}
+		}
+		n = 0;
+		if (!p->hdr) {
+			if (p->lpid > 0)
+				n = scnprintf(p->buf, sizeof(p->buf),
+					      "\nNested LPID %d: ", p->lpid);
+			n += scnprintf(p->buf + n, sizeof(p->buf) - n,
+				      "pgdir: %lx\n", (unsigned long)pgt);
+			p->hdr = 1;
+			goto copy;
+		}
+
+		pgdp = pgt + pgd_index(gpa);
+		pgd = READ_ONCE(*pgdp);
+		if (!(pgd_val(pgd) & _PAGE_PRESENT)) {
+			gpa = (gpa & PGDIR_MASK) + PGDIR_SIZE;
+			continue;
+		}
+
+		pudp = pud_offset(&pgd, gpa);
+		pud = READ_ONCE(*pudp);
+		if (!(pud_val(pud) & _PAGE_PRESENT)) {
+			gpa = (gpa & PUD_MASK) + PUD_SIZE;
+			continue;
+		}
+		if (pud_val(pud) & _PAGE_PTE) {
+			pte = pud_val(pud);
+			shift = PUD_SHIFT;
+			goto leaf;
+		}
+
+		pmdp = pmd_offset(&pud, gpa);
+		pmd = READ_ONCE(*pmdp);
+		if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
+			gpa = (gpa & PMD_MASK) + PMD_SIZE;
+			continue;
+		}
+		if (pmd_val(pmd) & _PAGE_PTE) {
+			pte = pmd_val(pmd);
+			shift = PMD_SHIFT;
+			goto leaf;
+		}
+
+		ptep = pte_offset_kernel(&pmd, gpa);
+		pte = pte_val(READ_ONCE(*ptep));
+		if (!(pte & _PAGE_PRESENT)) {
+			gpa += PAGE_SIZE;
+			continue;
+		}
+		shift = PAGE_SHIFT;
+	leaf:
+		n = scnprintf(p->buf, sizeof(p->buf),
+			      " %lx: %lx %d\n", gpa, pte, shift);
+		gpa += 1ul << shift;
+	copy:
+		p->chars_left = n;
+		if (n > len)
+			n = len;
+		r = copy_to_user(buf, p->buf, n);
+		n -= r;
+		p->chars_left -= n;
+		p->buf_index = n;
+		buf += n;
+		len -= n;
+		ret += n;
+		if (r) {
+			if (!ret)
+				ret = -EFAULT;
+			break;
+		}
+	}
+	p->gpa = gpa;
+	if (nested)
+		kvmhv_put_nested(nested);
+
+ out:
+	mutex_unlock(&p->mutex);
+	return ret;
+}
+
+static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
+			   size_t len, loff_t *ppos)
+{
+	return -EACCES;
+}
+
+static const struct file_operations debugfs_radix_fops = {
+	.owner	 = THIS_MODULE,
+	.open	 = debugfs_radix_open,
+	.release = debugfs_radix_release,
+	.read	 = debugfs_radix_read,
+	.write	 = debugfs_radix_write,
+	.llseek	 = generic_file_llseek,
+};
+
+void kvmhv_radix_debugfs_init(struct kvm *kvm)
+{
+	kvm->arch.radix_dentry = debugfs_create_file("radix", 0400,
+						     kvm->arch.debugfs_dir, kvm,
+						     &debugfs_radix_fops);
+}
+
 int kvmppc_radix_init(void)
 int kvmppc_radix_init(void)
 {
 {
 	unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
 	unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;

+ 67 - 27
arch/powerpc/kvm/book3s_64_vio.c

@@ -363,6 +363,40 @@ long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
 	return ret;
 	return ret;
 }
 }
 
 
+static long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *stt,
+		unsigned long tce)
+{
+	unsigned long gpa = tce & ~(TCE_PCI_READ | TCE_PCI_WRITE);
+	enum dma_data_direction dir = iommu_tce_direction(tce);
+	struct kvmppc_spapr_tce_iommu_table *stit;
+	unsigned long ua = 0;
+
+	/* Allow userspace to poison TCE table */
+	if (dir == DMA_NONE)
+		return H_SUCCESS;
+
+	if (iommu_tce_check_gpa(stt->page_shift, gpa))
+		return H_TOO_HARD;
+
+	if (kvmppc_tce_to_ua(stt->kvm, tce, &ua, NULL))
+		return H_TOO_HARD;
+
+	list_for_each_entry_rcu(stit, &stt->iommu_tables, next) {
+		unsigned long hpa = 0;
+		struct mm_iommu_table_group_mem_t *mem;
+		long shift = stit->tbl->it_page_shift;
+
+		mem = mm_iommu_lookup(stt->kvm->mm, ua, 1ULL << shift);
+		if (!mem)
+			return H_TOO_HARD;
+
+		if (mm_iommu_ua_to_hpa(mem, ua, shift, &hpa))
+			return H_TOO_HARD;
+	}
+
+	return H_SUCCESS;
+}
+
 static void kvmppc_clear_tce(struct iommu_table *tbl, unsigned long entry)
 static void kvmppc_clear_tce(struct iommu_table *tbl, unsigned long entry)
 {
 {
 	unsigned long hpa = 0;
 	unsigned long hpa = 0;
@@ -376,11 +410,10 @@ static long kvmppc_tce_iommu_mapped_dec(struct kvm *kvm,
 {
 {
 	struct mm_iommu_table_group_mem_t *mem = NULL;
 	struct mm_iommu_table_group_mem_t *mem = NULL;
 	const unsigned long pgsize = 1ULL << tbl->it_page_shift;
 	const unsigned long pgsize = 1ULL << tbl->it_page_shift;
-	__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY(tbl, entry);
+	__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
 
 
 	if (!pua)
 	if (!pua)
-		/* it_userspace allocation might be delayed */
-		return H_TOO_HARD;
+		return H_SUCCESS;
 
 
 	mem = mm_iommu_lookup(kvm->mm, be64_to_cpu(*pua), pgsize);
 	mem = mm_iommu_lookup(kvm->mm, be64_to_cpu(*pua), pgsize);
 	if (!mem)
 	if (!mem)
@@ -401,7 +434,7 @@ static long kvmppc_tce_iommu_do_unmap(struct kvm *kvm,
 	long ret;
 	long ret;
 
 
 	if (WARN_ON_ONCE(iommu_tce_xchg(tbl, entry, &hpa, &dir)))
 	if (WARN_ON_ONCE(iommu_tce_xchg(tbl, entry, &hpa, &dir)))
-		return H_HARDWARE;
+		return H_TOO_HARD;
 
 
 	if (dir == DMA_NONE)
 	if (dir == DMA_NONE)
 		return H_SUCCESS;
 		return H_SUCCESS;
@@ -449,15 +482,15 @@ long kvmppc_tce_iommu_do_map(struct kvm *kvm, struct iommu_table *tbl,
 		return H_TOO_HARD;
 		return H_TOO_HARD;
 
 
 	if (WARN_ON_ONCE(mm_iommu_ua_to_hpa(mem, ua, tbl->it_page_shift, &hpa)))
 	if (WARN_ON_ONCE(mm_iommu_ua_to_hpa(mem, ua, tbl->it_page_shift, &hpa)))
-		return H_HARDWARE;
+		return H_TOO_HARD;
 
 
 	if (mm_iommu_mapped_inc(mem))
 	if (mm_iommu_mapped_inc(mem))
-		return H_CLOSED;
+		return H_TOO_HARD;
 
 
 	ret = iommu_tce_xchg(tbl, entry, &hpa, &dir);
 	ret = iommu_tce_xchg(tbl, entry, &hpa, &dir);
 	if (WARN_ON_ONCE(ret)) {
 	if (WARN_ON_ONCE(ret)) {
 		mm_iommu_mapped_dec(mem);
 		mm_iommu_mapped_dec(mem);
-		return H_HARDWARE;
+		return H_TOO_HARD;
 	}
 	}
 
 
 	if (dir != DMA_NONE)
 	if (dir != DMA_NONE)
@@ -517,8 +550,7 @@ long kvmppc_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
 
 
 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 
 
-	if ((dir != DMA_NONE) && kvmppc_gpa_to_ua(vcpu->kvm,
-			tce & ~(TCE_PCI_READ | TCE_PCI_WRITE), &ua, NULL)) {
+	if ((dir != DMA_NONE) && kvmppc_tce_to_ua(vcpu->kvm, tce, &ua, NULL)) {
 		ret = H_PARAMETER;
 		ret = H_PARAMETER;
 		goto unlock_exit;
 		goto unlock_exit;
 	}
 	}
@@ -533,14 +565,10 @@ long kvmppc_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
 			ret = kvmppc_tce_iommu_map(vcpu->kvm, stt, stit->tbl,
 			ret = kvmppc_tce_iommu_map(vcpu->kvm, stt, stit->tbl,
 					entry, ua, dir);
 					entry, ua, dir);
 
 
-		if (ret == H_SUCCESS)
-			continue;
-
-		if (ret == H_TOO_HARD)
+		if (ret != H_SUCCESS) {
+			kvmppc_clear_tce(stit->tbl, entry);
 			goto unlock_exit;
 			goto unlock_exit;
-
-		WARN_ON_ONCE(1);
-		kvmppc_clear_tce(stit->tbl, entry);
+		}
 	}
 	}
 
 
 	kvmppc_tce_put(stt, entry, tce);
 	kvmppc_tce_put(stt, entry, tce);
@@ -583,7 +611,7 @@ long kvmppc_h_put_tce_indirect(struct kvm_vcpu *vcpu,
 		return ret;
 		return ret;
 
 
 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 	idx = srcu_read_lock(&vcpu->kvm->srcu);
-	if (kvmppc_gpa_to_ua(vcpu->kvm, tce_list, &ua, NULL)) {
+	if (kvmppc_tce_to_ua(vcpu->kvm, tce_list, &ua, NULL)) {
 		ret = H_TOO_HARD;
 		ret = H_TOO_HARD;
 		goto unlock_exit;
 		goto unlock_exit;
 	}
 	}
@@ -599,10 +627,26 @@ long kvmppc_h_put_tce_indirect(struct kvm_vcpu *vcpu,
 		ret = kvmppc_tce_validate(stt, tce);
 		ret = kvmppc_tce_validate(stt, tce);
 		if (ret != H_SUCCESS)
 		if (ret != H_SUCCESS)
 			goto unlock_exit;
 			goto unlock_exit;
+	}
+
+	for (i = 0; i < npages; ++i) {
+		/*
+		 * This looks unsafe, because we validate, then regrab
+		 * the TCE from userspace which could have been changed by
+		 * another thread.
+		 *
+		 * But it actually is safe, because the relevant checks will be
+		 * re-executed in the following code.  If userspace tries to
+		 * change this dodgily it will result in a messier failure mode
+		 * but won't threaten the host.
+		 */
+		if (get_user(tce, tces + i)) {
+			ret = H_TOO_HARD;
+			goto unlock_exit;
+		}
+		tce = be64_to_cpu(tce);
 
 
-		if (kvmppc_gpa_to_ua(vcpu->kvm,
-				tce & ~(TCE_PCI_READ | TCE_PCI_WRITE),
-				&ua, NULL))
+		if (kvmppc_tce_to_ua(vcpu->kvm, tce, &ua, NULL))
 			return H_PARAMETER;
 			return H_PARAMETER;
 
 
 		list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
 		list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
@@ -610,14 +654,10 @@ long kvmppc_h_put_tce_indirect(struct kvm_vcpu *vcpu,
 					stit->tbl, entry + i, ua,
 					stit->tbl, entry + i, ua,
 					iommu_tce_direction(tce));
 					iommu_tce_direction(tce));
 
 
-			if (ret == H_SUCCESS)
-				continue;
-
-			if (ret == H_TOO_HARD)
+			if (ret != H_SUCCESS) {
+				kvmppc_clear_tce(stit->tbl, entry);
 				goto unlock_exit;
 				goto unlock_exit;
-
-			WARN_ON_ONCE(1);
-			kvmppc_clear_tce(stit->tbl, entry);
+			}
 		}
 		}
 
 
 		kvmppc_tce_put(stt, entry + i, tce);
 		kvmppc_tce_put(stt, entry + i, tce);

+ 49 - 38
arch/powerpc/kvm/book3s_64_vio_hv.c

@@ -87,6 +87,7 @@ struct kvmppc_spapr_tce_table *kvmppc_find_table(struct kvm *kvm,
 }
 }
 EXPORT_SYMBOL_GPL(kvmppc_find_table);
 EXPORT_SYMBOL_GPL(kvmppc_find_table);
 
 
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 /*
 /*
  * Validates TCE address.
  * Validates TCE address.
  * At the moment flags and page mask are validated.
  * At the moment flags and page mask are validated.
@@ -94,14 +95,14 @@ EXPORT_SYMBOL_GPL(kvmppc_find_table);
  * to the table and user space is supposed to process them), we can skip
  * to the table and user space is supposed to process them), we can skip
  * checking other things (such as TCE is a guest RAM address or the page
  * checking other things (such as TCE is a guest RAM address or the page
  * was actually allocated).
  * was actually allocated).
- *
- * WARNING: This will be called in real-mode on HV KVM and virtual
- *          mode on PR KVM
  */
  */
-long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *stt, unsigned long tce)
+static long kvmppc_rm_tce_validate(struct kvmppc_spapr_tce_table *stt,
+		unsigned long tce)
 {
 {
 	unsigned long gpa = tce & ~(TCE_PCI_READ | TCE_PCI_WRITE);
 	unsigned long gpa = tce & ~(TCE_PCI_READ | TCE_PCI_WRITE);
 	enum dma_data_direction dir = iommu_tce_direction(tce);
 	enum dma_data_direction dir = iommu_tce_direction(tce);
+	struct kvmppc_spapr_tce_iommu_table *stit;
+	unsigned long ua = 0;
 
 
 	/* Allow userspace to poison TCE table */
 	/* Allow userspace to poison TCE table */
 	if (dir == DMA_NONE)
 	if (dir == DMA_NONE)
@@ -110,9 +111,25 @@ long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *stt, unsigned long tce)
 	if (iommu_tce_check_gpa(stt->page_shift, gpa))
 	if (iommu_tce_check_gpa(stt->page_shift, gpa))
 		return H_PARAMETER;
 		return H_PARAMETER;
 
 
+	if (kvmppc_tce_to_ua(stt->kvm, tce, &ua, NULL))
+		return H_TOO_HARD;
+
+	list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
+		unsigned long hpa = 0;
+		struct mm_iommu_table_group_mem_t *mem;
+		long shift = stit->tbl->it_page_shift;
+
+		mem = mm_iommu_lookup_rm(stt->kvm->mm, ua, 1ULL << shift);
+		if (!mem)
+			return H_TOO_HARD;
+
+		if (mm_iommu_ua_to_hpa_rm(mem, ua, shift, &hpa))
+			return H_TOO_HARD;
+	}
+
 	return H_SUCCESS;
 	return H_SUCCESS;
 }
 }
-EXPORT_SYMBOL_GPL(kvmppc_tce_validate);
+#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
 
 
 /* Note on the use of page_address() in real mode,
 /* Note on the use of page_address() in real mode,
  *
  *
@@ -164,10 +181,10 @@ void kvmppc_tce_put(struct kvmppc_spapr_tce_table *stt,
 }
 }
 EXPORT_SYMBOL_GPL(kvmppc_tce_put);
 EXPORT_SYMBOL_GPL(kvmppc_tce_put);
 
 
-long kvmppc_gpa_to_ua(struct kvm *kvm, unsigned long gpa,
+long kvmppc_tce_to_ua(struct kvm *kvm, unsigned long tce,
 		unsigned long *ua, unsigned long **prmap)
 		unsigned long *ua, unsigned long **prmap)
 {
 {
-	unsigned long gfn = gpa >> PAGE_SHIFT;
+	unsigned long gfn = tce >> PAGE_SHIFT;
 	struct kvm_memory_slot *memslot;
 	struct kvm_memory_slot *memslot;
 
 
 	memslot = search_memslots(kvm_memslots(kvm), gfn);
 	memslot = search_memslots(kvm_memslots(kvm), gfn);
@@ -175,7 +192,7 @@ long kvmppc_gpa_to_ua(struct kvm *kvm, unsigned long gpa,
 		return -EINVAL;
 		return -EINVAL;
 
 
 	*ua = __gfn_to_hva_memslot(memslot, gfn) |
 	*ua = __gfn_to_hva_memslot(memslot, gfn) |
-		(gpa & ~(PAGE_MASK | TCE_PCI_READ | TCE_PCI_WRITE));
+		(tce & ~(PAGE_MASK | TCE_PCI_READ | TCE_PCI_WRITE));
 
 
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 	if (prmap)
 	if (prmap)
@@ -184,7 +201,7 @@ long kvmppc_gpa_to_ua(struct kvm *kvm, unsigned long gpa,
 
 
 	return 0;
 	return 0;
 }
 }
-EXPORT_SYMBOL_GPL(kvmppc_gpa_to_ua);
+EXPORT_SYMBOL_GPL(kvmppc_tce_to_ua);
 
 
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 static long iommu_tce_xchg_rm(struct mm_struct *mm, struct iommu_table *tbl,
 static long iommu_tce_xchg_rm(struct mm_struct *mm, struct iommu_table *tbl,
@@ -197,7 +214,7 @@ static long iommu_tce_xchg_rm(struct mm_struct *mm, struct iommu_table *tbl,
 
 
 	if (!ret && ((*direction == DMA_FROM_DEVICE) ||
 	if (!ret && ((*direction == DMA_FROM_DEVICE) ||
 				(*direction == DMA_BIDIRECTIONAL))) {
 				(*direction == DMA_BIDIRECTIONAL))) {
-		__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RM(tbl, entry);
+		__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
 		/*
 		/*
 		 * kvmppc_rm_tce_iommu_do_map() updates the UA cache after
 		 * kvmppc_rm_tce_iommu_do_map() updates the UA cache after
 		 * calling this so we still get here a valid UA.
 		 * calling this so we still get here a valid UA.
@@ -223,7 +240,7 @@ static long kvmppc_rm_tce_iommu_mapped_dec(struct kvm *kvm,
 {
 {
 	struct mm_iommu_table_group_mem_t *mem = NULL;
 	struct mm_iommu_table_group_mem_t *mem = NULL;
 	const unsigned long pgsize = 1ULL << tbl->it_page_shift;
 	const unsigned long pgsize = 1ULL << tbl->it_page_shift;
-	__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RM(tbl, entry);
+	__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
 
 
 	if (!pua)
 	if (!pua)
 		/* it_userspace allocation might be delayed */
 		/* it_userspace allocation might be delayed */
@@ -287,7 +304,7 @@ static long kvmppc_rm_tce_iommu_do_map(struct kvm *kvm, struct iommu_table *tbl,
 {
 {
 	long ret;
 	long ret;
 	unsigned long hpa = 0;
 	unsigned long hpa = 0;
-	__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RM(tbl, entry);
+	__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
 	struct mm_iommu_table_group_mem_t *mem;
 	struct mm_iommu_table_group_mem_t *mem;
 
 
 	if (!pua)
 	if (!pua)
@@ -300,10 +317,10 @@ static long kvmppc_rm_tce_iommu_do_map(struct kvm *kvm, struct iommu_table *tbl,
 
 
 	if (WARN_ON_ONCE_RM(mm_iommu_ua_to_hpa_rm(mem, ua, tbl->it_page_shift,
 	if (WARN_ON_ONCE_RM(mm_iommu_ua_to_hpa_rm(mem, ua, tbl->it_page_shift,
 			&hpa)))
 			&hpa)))
-		return H_HARDWARE;
+		return H_TOO_HARD;
 
 
 	if (WARN_ON_ONCE_RM(mm_iommu_mapped_inc(mem)))
 	if (WARN_ON_ONCE_RM(mm_iommu_mapped_inc(mem)))
-		return H_CLOSED;
+		return H_TOO_HARD;
 
 
 	ret = iommu_tce_xchg_rm(kvm->mm, tbl, entry, &hpa, &dir);
 	ret = iommu_tce_xchg_rm(kvm->mm, tbl, entry, &hpa, &dir);
 	if (ret) {
 	if (ret) {
@@ -368,13 +385,12 @@ long kvmppc_rm_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
 	if (ret != H_SUCCESS)
 	if (ret != H_SUCCESS)
 		return ret;
 		return ret;
 
 
-	ret = kvmppc_tce_validate(stt, tce);
+	ret = kvmppc_rm_tce_validate(stt, tce);
 	if (ret != H_SUCCESS)
 	if (ret != H_SUCCESS)
 		return ret;
 		return ret;
 
 
 	dir = iommu_tce_direction(tce);
 	dir = iommu_tce_direction(tce);
-	if ((dir != DMA_NONE) && kvmppc_gpa_to_ua(vcpu->kvm,
-			tce & ~(TCE_PCI_READ | TCE_PCI_WRITE), &ua, NULL))
+	if ((dir != DMA_NONE) && kvmppc_tce_to_ua(vcpu->kvm, tce, &ua, NULL))
 		return H_PARAMETER;
 		return H_PARAMETER;
 
 
 	entry = ioba >> stt->page_shift;
 	entry = ioba >> stt->page_shift;
@@ -387,14 +403,10 @@ long kvmppc_rm_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
 			ret = kvmppc_rm_tce_iommu_map(vcpu->kvm, stt,
 			ret = kvmppc_rm_tce_iommu_map(vcpu->kvm, stt,
 					stit->tbl, entry, ua, dir);
 					stit->tbl, entry, ua, dir);
 
 
-		if (ret == H_SUCCESS)
-			continue;
-
-		if (ret == H_TOO_HARD)
+		if (ret != H_SUCCESS) {
+			kvmppc_rm_clear_tce(vcpu->kvm, stit->tbl, entry);
 			return ret;
 			return ret;
-
-		WARN_ON_ONCE_RM(1);
-		kvmppc_rm_clear_tce(vcpu->kvm, stit->tbl, entry);
+		}
 	}
 	}
 
 
 	kvmppc_tce_put(stt, entry, tce);
 	kvmppc_tce_put(stt, entry, tce);
@@ -480,7 +492,7 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
 		 */
 		 */
 		struct mm_iommu_table_group_mem_t *mem;
 		struct mm_iommu_table_group_mem_t *mem;
 
 
-		if (kvmppc_gpa_to_ua(vcpu->kvm, tce_list, &ua, NULL))
+		if (kvmppc_tce_to_ua(vcpu->kvm, tce_list, &ua, NULL))
 			return H_TOO_HARD;
 			return H_TOO_HARD;
 
 
 		mem = mm_iommu_lookup_rm(vcpu->kvm->mm, ua, IOMMU_PAGE_SIZE_4K);
 		mem = mm_iommu_lookup_rm(vcpu->kvm->mm, ua, IOMMU_PAGE_SIZE_4K);
@@ -496,12 +508,12 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
 		 * We do not require memory to be preregistered in this case
 		 * We do not require memory to be preregistered in this case
 		 * so lock rmap and do __find_linux_pte_or_hugepte().
 		 * so lock rmap and do __find_linux_pte_or_hugepte().
 		 */
 		 */
-		if (kvmppc_gpa_to_ua(vcpu->kvm, tce_list, &ua, &rmap))
+		if (kvmppc_tce_to_ua(vcpu->kvm, tce_list, &ua, &rmap))
 			return H_TOO_HARD;
 			return H_TOO_HARD;
 
 
 		rmap = (void *) vmalloc_to_phys(rmap);
 		rmap = (void *) vmalloc_to_phys(rmap);
 		if (WARN_ON_ONCE_RM(!rmap))
 		if (WARN_ON_ONCE_RM(!rmap))
-			return H_HARDWARE;
+			return H_TOO_HARD;
 
 
 		/*
 		/*
 		 * Synchronize with the MMU notifier callbacks in
 		 * Synchronize with the MMU notifier callbacks in
@@ -521,14 +533,16 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
 	for (i = 0; i < npages; ++i) {
 	for (i = 0; i < npages; ++i) {
 		unsigned long tce = be64_to_cpu(((u64 *)tces)[i]);
 		unsigned long tce = be64_to_cpu(((u64 *)tces)[i]);
 
 
-		ret = kvmppc_tce_validate(stt, tce);
+		ret = kvmppc_rm_tce_validate(stt, tce);
 		if (ret != H_SUCCESS)
 		if (ret != H_SUCCESS)
 			goto unlock_exit;
 			goto unlock_exit;
+	}
+
+	for (i = 0; i < npages; ++i) {
+		unsigned long tce = be64_to_cpu(((u64 *)tces)[i]);
 
 
 		ua = 0;
 		ua = 0;
-		if (kvmppc_gpa_to_ua(vcpu->kvm,
-				tce & ~(TCE_PCI_READ | TCE_PCI_WRITE),
-				&ua, NULL))
+		if (kvmppc_tce_to_ua(vcpu->kvm, tce, &ua, NULL))
 			return H_PARAMETER;
 			return H_PARAMETER;
 
 
 		list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
 		list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
@@ -536,14 +550,11 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
 					stit->tbl, entry + i, ua,
 					stit->tbl, entry + i, ua,
 					iommu_tce_direction(tce));
 					iommu_tce_direction(tce));
 
 
-			if (ret == H_SUCCESS)
-				continue;
-
-			if (ret == H_TOO_HARD)
+			if (ret != H_SUCCESS) {
+				kvmppc_rm_clear_tce(vcpu->kvm, stit->tbl,
+						entry);
 				goto unlock_exit;
 				goto unlock_exit;
-
-			WARN_ON_ONCE_RM(1);
-			kvmppc_rm_clear_tce(vcpu->kvm, stit->tbl, entry);
+			}
 		}
 		}
 
 
 		kvmppc_tce_put(stt, entry + i, tce);
 		kvmppc_tce_put(stt, entry + i, tce);

+ 6 - 7
arch/powerpc/kvm/book3s_emulate.c

@@ -36,7 +36,6 @@
 #define OP_31_XOP_MTSR		210
 #define OP_31_XOP_MTSR		210
 #define OP_31_XOP_MTSRIN	242
 #define OP_31_XOP_MTSRIN	242
 #define OP_31_XOP_TLBIEL	274
 #define OP_31_XOP_TLBIEL	274
-#define OP_31_XOP_TLBIE		306
 /* Opcode is officially reserved, reuse it as sc 1 when sc 1 doesn't trap */
 /* Opcode is officially reserved, reuse it as sc 1 when sc 1 doesn't trap */
 #define OP_31_XOP_FAKE_SC1	308
 #define OP_31_XOP_FAKE_SC1	308
 #define OP_31_XOP_SLBMTE	402
 #define OP_31_XOP_SLBMTE	402
@@ -110,7 +109,7 @@ static inline void kvmppc_copyto_vcpu_tm(struct kvm_vcpu *vcpu)
 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
 	vcpu->arch.tar_tm = vcpu->arch.tar;
 	vcpu->arch.tar_tm = vcpu->arch.tar;
 	vcpu->arch.lr_tm = vcpu->arch.regs.link;
 	vcpu->arch.lr_tm = vcpu->arch.regs.link;
-	vcpu->arch.cr_tm = vcpu->arch.cr;
+	vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
 	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
 	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
 }
 }
@@ -129,7 +128,7 @@ static inline void kvmppc_copyfrom_vcpu_tm(struct kvm_vcpu *vcpu)
 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
 	vcpu->arch.tar = vcpu->arch.tar_tm;
 	vcpu->arch.tar = vcpu->arch.tar_tm;
 	vcpu->arch.regs.link = vcpu->arch.lr_tm;
 	vcpu->arch.regs.link = vcpu->arch.lr_tm;
-	vcpu->arch.cr = vcpu->arch.cr_tm;
+	vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
 	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
 	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
 }
 }
@@ -141,7 +140,7 @@ static void kvmppc_emulate_treclaim(struct kvm_vcpu *vcpu, int ra_val)
 	uint64_t texasr;
 	uint64_t texasr;
 
 
 	/* CR0 = 0 | MSR[TS] | 0 */
 	/* CR0 = 0 | MSR[TS] | 0 */
-	vcpu->arch.cr = (vcpu->arch.cr & ~(CR0_MASK << CR0_SHIFT)) |
+	vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) |
 		(((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
 		(((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
 		 << CR0_SHIFT);
 		 << CR0_SHIFT);
 
 
@@ -220,7 +219,7 @@ void kvmppc_emulate_tabort(struct kvm_vcpu *vcpu, int ra_val)
 	tm_abort(ra_val);
 	tm_abort(ra_val);
 
 
 	/* CR0 = 0 | MSR[TS] | 0 */
 	/* CR0 = 0 | MSR[TS] | 0 */
-	vcpu->arch.cr = (vcpu->arch.cr & ~(CR0_MASK << CR0_SHIFT)) |
+	vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) |
 		(((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
 		(((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
 		 << CR0_SHIFT);
 		 << CR0_SHIFT);
 
 
@@ -494,8 +493,8 @@ int kvmppc_core_emulate_op_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
 
 
 			if (!(kvmppc_get_msr(vcpu) & MSR_PR)) {
 			if (!(kvmppc_get_msr(vcpu) & MSR_PR)) {
 				preempt_disable();
 				preempt_disable();
-				vcpu->arch.cr = (CR0_TBEGIN_FAILURE |
-				  (vcpu->arch.cr & ~(CR0_MASK << CR0_SHIFT)));
+				vcpu->arch.regs.ccr = (CR0_TBEGIN_FAILURE |
+				  (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)));
 
 
 				vcpu->arch.texasr = (TEXASR_FS | TEXASR_EXACT |
 				vcpu->arch.texasr = (TEXASR_FS | TEXASR_EXACT |
 					(((u64)(TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
 					(((u64)(TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))

+ 818 - 55
arch/powerpc/kvm/book3s_hv.c

@@ -50,6 +50,7 @@
 #include <asm/reg.h>
 #include <asm/reg.h>
 #include <asm/ppc-opcode.h>
 #include <asm/ppc-opcode.h>
 #include <asm/asm-prototypes.h>
 #include <asm/asm-prototypes.h>
+#include <asm/archrandom.h>
 #include <asm/debug.h>
 #include <asm/debug.h>
 #include <asm/disassemble.h>
 #include <asm/disassemble.h>
 #include <asm/cputable.h>
 #include <asm/cputable.h>
@@ -104,6 +105,10 @@ static bool indep_threads_mode = true;
 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
 
 
+static bool one_vm_per_core;
+module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
+
 #ifdef CONFIG_KVM_XICS
 #ifdef CONFIG_KVM_XICS
 static struct kernel_param_ops module_param_ops = {
 static struct kernel_param_ops module_param_ops = {
 	.set = param_set_int,
 	.set = param_set_int,
@@ -117,6 +122,16 @@ module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
 #endif
 #endif
 
 
+/* If set, guests are allowed to create and control nested guests */
+static bool nested = true;
+module_param(nested, bool, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
+
+static inline bool nesting_enabled(struct kvm *kvm)
+{
+	return kvm->arch.nested_enable && kvm_is_radix(kvm);
+}
+
 /* If set, the threads on each CPU core have to be in the same MMU mode */
 /* If set, the threads on each CPU core have to be in the same MMU mode */
 static bool no_mixing_hpt_and_radix;
 static bool no_mixing_hpt_and_radix;
 
 
@@ -173,6 +188,10 @@ static bool kvmppc_ipi_thread(int cpu)
 {
 {
 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 
 
+	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
+	if (kvmhv_on_pseries())
+		return false;
+
 	/* On POWER9 we can use msgsnd to IPI any cpu */
 	/* On POWER9 we can use msgsnd to IPI any cpu */
 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 		msg |= get_hard_smp_processor_id(cpu);
 		msg |= get_hard_smp_processor_id(cpu);
@@ -410,8 +429,8 @@ static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
-	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
-	       vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
+	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
+	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
@@ -730,8 +749,7 @@ static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
 	/*
 	/*
 	 * Ensure that the read of vcore->dpdes comes after the read
 	 * Ensure that the read of vcore->dpdes comes after the read
 	 * of vcpu->doorbell_request.  This barrier matches the
 	 * of vcpu->doorbell_request.  This barrier matches the
-	 * lwsync in book3s_hv_rmhandlers.S just before the
-	 * fast_guest_return label.
+	 * smb_wmb() in kvmppc_guest_entry_inject().
 	 */
 	 */
 	smp_rmb();
 	smp_rmb();
 	vc = vcpu->arch.vcore;
 	vc = vcpu->arch.vcore;
@@ -912,6 +930,19 @@ int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 			break;
 			break;
 		}
 		}
 		return RESUME_HOST;
 		return RESUME_HOST;
+	case H_SET_DABR:
+		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
+		break;
+	case H_SET_XDABR:
+		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
+						kvmppc_get_gpr(vcpu, 5));
+		break;
+	case H_GET_TCE:
+		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
+						kvmppc_get_gpr(vcpu, 5));
+		if (ret == H_TOO_HARD)
+			return RESUME_HOST;
+		break;
 	case H_PUT_TCE:
 	case H_PUT_TCE:
 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 						kvmppc_get_gpr(vcpu, 5),
 						kvmppc_get_gpr(vcpu, 5),
@@ -935,6 +966,32 @@ int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 		if (ret == H_TOO_HARD)
 		if (ret == H_TOO_HARD)
 			return RESUME_HOST;
 			return RESUME_HOST;
 		break;
 		break;
+	case H_RANDOM:
+		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
+			ret = H_HARDWARE;
+		break;
+
+	case H_SET_PARTITION_TABLE:
+		ret = H_FUNCTION;
+		if (nesting_enabled(vcpu->kvm))
+			ret = kvmhv_set_partition_table(vcpu);
+		break;
+	case H_ENTER_NESTED:
+		ret = H_FUNCTION;
+		if (!nesting_enabled(vcpu->kvm))
+			break;
+		ret = kvmhv_enter_nested_guest(vcpu);
+		if (ret == H_INTERRUPT) {
+			kvmppc_set_gpr(vcpu, 3, 0);
+			return -EINTR;
+		}
+		break;
+	case H_TLB_INVALIDATE:
+		ret = H_FUNCTION;
+		if (nesting_enabled(vcpu->kvm))
+			ret = kvmhv_do_nested_tlbie(vcpu);
+		break;
+
 	default:
 	default:
 		return RESUME_HOST;
 		return RESUME_HOST;
 	}
 	}
@@ -943,6 +1000,24 @@ int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 	return RESUME_GUEST;
 	return RESUME_GUEST;
 }
 }
 
 
+/*
+ * Handle H_CEDE in the nested virtualization case where we haven't
+ * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
+ * This has to be done early, not in kvmppc_pseries_do_hcall(), so
+ * that the cede logic in kvmppc_run_single_vcpu() works properly.
+ */
+static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
+{
+	vcpu->arch.shregs.msr |= MSR_EE;
+	vcpu->arch.ceded = 1;
+	smp_mb();
+	if (vcpu->arch.prodded) {
+		vcpu->arch.prodded = 0;
+		smp_mb();
+		vcpu->arch.ceded = 0;
+	}
+}
+
 static int kvmppc_hcall_impl_hv(unsigned long cmd)
 static int kvmppc_hcall_impl_hv(unsigned long cmd)
 {
 {
 	switch (cmd) {
 	switch (cmd) {
@@ -1085,7 +1160,6 @@ static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
 	return RESUME_GUEST;
 	return RESUME_GUEST;
 }
 }
 
 
-/* Called with vcpu->arch.vcore->lock held */
 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 				 struct task_struct *tsk)
 				 struct task_struct *tsk)
 {
 {
@@ -1190,7 +1264,10 @@ static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 		break;
 		break;
 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
-		vcpu->arch.fault_dsisr = 0;
+		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
+			DSISR_SRR1_MATCH_64S;
+		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
+			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
 		r = RESUME_PAGE_FAULT;
 		r = RESUME_PAGE_FAULT;
 		break;
 		break;
 	/*
 	/*
@@ -1206,10 +1283,7 @@ static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 				swab32(vcpu->arch.emul_inst) :
 				swab32(vcpu->arch.emul_inst) :
 				vcpu->arch.emul_inst;
 				vcpu->arch.emul_inst;
 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
-			/* Need vcore unlocked to call kvmppc_get_last_inst */
-			spin_unlock(&vcpu->arch.vcore->lock);
 			r = kvmppc_emulate_debug_inst(run, vcpu);
 			r = kvmppc_emulate_debug_inst(run, vcpu);
-			spin_lock(&vcpu->arch.vcore->lock);
 		} else {
 		} else {
 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 			r = RESUME_GUEST;
 			r = RESUME_GUEST;
@@ -1225,12 +1299,8 @@ static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
 		r = EMULATE_FAIL;
 		r = EMULATE_FAIL;
 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
-		    cpu_has_feature(CPU_FTR_ARCH_300)) {
-			/* Need vcore unlocked to call kvmppc_get_last_inst */
-			spin_unlock(&vcpu->arch.vcore->lock);
+		    cpu_has_feature(CPU_FTR_ARCH_300))
 			r = kvmppc_emulate_doorbell_instr(vcpu);
 			r = kvmppc_emulate_doorbell_instr(vcpu);
-			spin_lock(&vcpu->arch.vcore->lock);
-		}
 		if (r == EMULATE_FAIL) {
 		if (r == EMULATE_FAIL) {
 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 			r = RESUME_GUEST;
 			r = RESUME_GUEST;
@@ -1265,6 +1335,104 @@ static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 	return r;
 	return r;
 }
 }
 
 
+static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
+{
+	int r;
+	int srcu_idx;
+
+	vcpu->stat.sum_exits++;
+
+	/*
+	 * This can happen if an interrupt occurs in the last stages
+	 * of guest entry or the first stages of guest exit (i.e. after
+	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
+	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
+	 * That can happen due to a bug, or due to a machine check
+	 * occurring at just the wrong time.
+	 */
+	if (vcpu->arch.shregs.msr & MSR_HV) {
+		pr_emerg("KVM trap in HV mode while nested!\n");
+		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
+			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
+			 vcpu->arch.shregs.msr);
+		kvmppc_dump_regs(vcpu);
+		return RESUME_HOST;
+	}
+	switch (vcpu->arch.trap) {
+	/* We're good on these - the host merely wanted to get our attention */
+	case BOOK3S_INTERRUPT_HV_DECREMENTER:
+		vcpu->stat.dec_exits++;
+		r = RESUME_GUEST;
+		break;
+	case BOOK3S_INTERRUPT_EXTERNAL:
+		vcpu->stat.ext_intr_exits++;
+		r = RESUME_HOST;
+		break;
+	case BOOK3S_INTERRUPT_H_DOORBELL:
+	case BOOK3S_INTERRUPT_H_VIRT:
+		vcpu->stat.ext_intr_exits++;
+		r = RESUME_GUEST;
+		break;
+	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
+	case BOOK3S_INTERRUPT_HMI:
+	case BOOK3S_INTERRUPT_PERFMON:
+	case BOOK3S_INTERRUPT_SYSTEM_RESET:
+		r = RESUME_GUEST;
+		break;
+	case BOOK3S_INTERRUPT_MACHINE_CHECK:
+		/* Pass the machine check to the L1 guest */
+		r = RESUME_HOST;
+		/* Print the MCE event to host console. */
+		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
+		break;
+	/*
+	 * We get these next two if the guest accesses a page which it thinks
+	 * it has mapped but which is not actually present, either because
+	 * it is for an emulated I/O device or because the corresonding
+	 * host page has been paged out.
+	 */
+	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
+		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+		r = kvmhv_nested_page_fault(vcpu);
+		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+		break;
+	case BOOK3S_INTERRUPT_H_INST_STORAGE:
+		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
+		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
+					 DSISR_SRR1_MATCH_64S;
+		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
+			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
+		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+		r = kvmhv_nested_page_fault(vcpu);
+		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+		break;
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
+		/*
+		 * This occurs for various TM-related instructions that
+		 * we need to emulate on POWER9 DD2.2.  We have already
+		 * handled the cases where the guest was in real-suspend
+		 * mode and was transitioning to transactional state.
+		 */
+		r = kvmhv_p9_tm_emulation(vcpu);
+		break;
+#endif
+
+	case BOOK3S_INTERRUPT_HV_RM_HARD:
+		vcpu->arch.trap = 0;
+		r = RESUME_GUEST;
+		if (!xive_enabled())
+			kvmppc_xics_rm_complete(vcpu, 0);
+		break;
+	default:
+		r = RESUME_HOST;
+		break;
+	}
+
+	return r;
+}
+
 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
 					    struct kvm_sregs *sregs)
 					    struct kvm_sregs *sregs)
 {
 {
@@ -1555,6 +1723,9 @@ static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
 	case KVM_REG_PPC_ONLINE:
 	case KVM_REG_PPC_ONLINE:
 		*val = get_reg_val(id, vcpu->arch.online);
 		*val = get_reg_val(id, vcpu->arch.online);
 		break;
 		break;
+	case KVM_REG_PPC_PTCR:
+		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
+		break;
 	default:
 	default:
 		r = -EINVAL;
 		r = -EINVAL;
 		break;
 		break;
@@ -1786,6 +1957,9 @@ static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
 			atomic_dec(&vcpu->arch.vcore->online_count);
 			atomic_dec(&vcpu->arch.vcore->online_count);
 		vcpu->arch.online = i;
 		vcpu->arch.online = i;
 		break;
 		break;
+	case KVM_REG_PPC_PTCR:
+		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
+		break;
 	default:
 	default:
 		r = -EINVAL;
 		r = -EINVAL;
 		break;
 		break;
@@ -2019,15 +2193,18 @@ static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
 	 * Set the default HFSCR for the guest from the host value.
 	 * Set the default HFSCR for the guest from the host value.
 	 * This value is only used on POWER9.
 	 * This value is only used on POWER9.
 	 * On POWER9, we want to virtualize the doorbell facility, so we
 	 * On POWER9, we want to virtualize the doorbell facility, so we
-	 * turn off the HFSCR bit, which causes those instructions to trap.
+	 * don't set the HFSCR_MSGP bit, and that causes those instructions
+	 * to trap and then we emulate them.
 	 */
 	 */
-	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
-	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
+	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
+		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
+	if (cpu_has_feature(CPU_FTR_HVMODE)) {
+		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
+		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
+			vcpu->arch.hfscr |= HFSCR_TM;
+	}
+	if (cpu_has_feature(CPU_FTR_TM_COMP))
 		vcpu->arch.hfscr |= HFSCR_TM;
 		vcpu->arch.hfscr |= HFSCR_TM;
-	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
-		vcpu->arch.hfscr &= ~HFSCR_TM;
-	if (cpu_has_feature(CPU_FTR_ARCH_300))
-		vcpu->arch.hfscr &= ~HFSCR_MSGP;
 
 
 	kvmppc_mmu_book3s_hv_init(vcpu);
 	kvmppc_mmu_book3s_hv_init(vcpu);
 
 
@@ -2242,10 +2419,18 @@ static void kvmppc_release_hwthread(int cpu)
 
 
 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
 {
 {
+	struct kvm_nested_guest *nested = vcpu->arch.nested;
+	cpumask_t *cpu_in_guest;
 	int i;
 	int i;
 
 
 	cpu = cpu_first_thread_sibling(cpu);
 	cpu = cpu_first_thread_sibling(cpu);
-	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
+	if (nested) {
+		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
+		cpu_in_guest = &nested->cpu_in_guest;
+	} else {
+		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
+		cpu_in_guest = &kvm->arch.cpu_in_guest;
+	}
 	/*
 	/*
 	 * Make sure setting of bit in need_tlb_flush precedes
 	 * Make sure setting of bit in need_tlb_flush precedes
 	 * testing of cpu_in_guest bits.  The matching barrier on
 	 * testing of cpu_in_guest bits.  The matching barrier on
@@ -2253,13 +2438,23 @@ static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
 	 */
 	 */
 	smp_mb();
 	smp_mb();
 	for (i = 0; i < threads_per_core; ++i)
 	for (i = 0; i < threads_per_core; ++i)
-		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
+		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
 }
 }
 
 
 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
 {
 {
+	struct kvm_nested_guest *nested = vcpu->arch.nested;
 	struct kvm *kvm = vcpu->kvm;
 	struct kvm *kvm = vcpu->kvm;
+	int prev_cpu;
+
+	if (!cpu_has_feature(CPU_FTR_HVMODE))
+		return;
+
+	if (nested)
+		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
+	else
+		prev_cpu = vcpu->arch.prev_cpu;
 
 
 	/*
 	/*
 	 * With radix, the guest can do TLB invalidations itself,
 	 * With radix, the guest can do TLB invalidations itself,
@@ -2273,12 +2468,46 @@ static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
 	 * ran to flush the TLB.  The TLB is shared between threads,
 	 * ran to flush the TLB.  The TLB is shared between threads,
 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
 	 */
 	 */
-	if (vcpu->arch.prev_cpu != pcpu) {
-		if (vcpu->arch.prev_cpu >= 0 &&
-		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
+	if (prev_cpu != pcpu) {
+		if (prev_cpu >= 0 &&
+		    cpu_first_thread_sibling(prev_cpu) !=
 		    cpu_first_thread_sibling(pcpu))
 		    cpu_first_thread_sibling(pcpu))
-			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
-		vcpu->arch.prev_cpu = pcpu;
+			radix_flush_cpu(kvm, prev_cpu, vcpu);
+		if (nested)
+			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
+		else
+			vcpu->arch.prev_cpu = pcpu;
+	}
+}
+
+static void kvmppc_radix_check_need_tlb_flush(struct kvm *kvm, int pcpu,
+					      struct kvm_nested_guest *nested)
+{
+	cpumask_t *need_tlb_flush;
+	int lpid;
+
+	if (!cpu_has_feature(CPU_FTR_HVMODE))
+		return;
+
+	if (cpu_has_feature(CPU_FTR_ARCH_300))
+		pcpu &= ~0x3UL;
+
+	if (nested) {
+		lpid = nested->shadow_lpid;
+		need_tlb_flush = &nested->need_tlb_flush;
+	} else {
+		lpid = kvm->arch.lpid;
+		need_tlb_flush = &kvm->arch.need_tlb_flush;
+	}
+
+	mtspr(SPRN_LPID, lpid);
+	isync();
+	smp_mb();
+
+	if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
+		radix__local_flush_tlb_lpid_guest(lpid);
+		/* Clear the bit after the TLB flush */
+		cpumask_clear_cpu(pcpu, need_tlb_flush);
 	}
 	}
 }
 }
 
 
@@ -2493,6 +2722,10 @@ static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
 		return false;
 		return false;
 
 
+	/* In one_vm_per_core mode, require all vcores to be from the same vm */
+	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
+		return false;
+
 	/* Some POWER9 chips require all threads to be in the same MMU mode */
 	/* Some POWER9 chips require all threads to be in the same MMU mode */
 	if (no_mixing_hpt_and_radix &&
 	if (no_mixing_hpt_and_radix &&
 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
@@ -2600,6 +2833,14 @@ static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
 	spin_lock(&vc->lock);
 	spin_lock(&vc->lock);
 	now = get_tb();
 	now = get_tb();
 	for_each_runnable_thread(i, vcpu, vc) {
 	for_each_runnable_thread(i, vcpu, vc) {
+		/*
+		 * It's safe to unlock the vcore in the loop here, because
+		 * for_each_runnable_thread() is safe against removal of
+		 * the vcpu, and the vcore state is VCORE_EXITING here,
+		 * so any vcpus becoming runnable will have their arch.trap
+		 * set to zero and can't actually run in the guest.
+		 */
+		spin_unlock(&vc->lock);
 		/* cancel pending dec exception if dec is positive */
 		/* cancel pending dec exception if dec is positive */
 		if (now < vcpu->arch.dec_expires &&
 		if (now < vcpu->arch.dec_expires &&
 		    kvmppc_core_pending_dec(vcpu))
 		    kvmppc_core_pending_dec(vcpu))
@@ -2615,6 +2856,7 @@ static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
 		vcpu->arch.ret = ret;
 		vcpu->arch.ret = ret;
 		vcpu->arch.trap = 0;
 		vcpu->arch.trap = 0;
 
 
+		spin_lock(&vc->lock);
 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
 			if (vcpu->arch.pending_exceptions)
 			if (vcpu->arch.pending_exceptions)
 				kvmppc_core_prepare_to_enter(vcpu);
 				kvmppc_core_prepare_to_enter(vcpu);
@@ -2963,8 +3205,6 @@ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
 		spin_unlock(&core_info.vc[sub]->lock);
 		spin_unlock(&core_info.vc[sub]->lock);
 
 
 	if (kvm_is_radix(vc->kvm)) {
 	if (kvm_is_radix(vc->kvm)) {
-		int tmp = pcpu;
-
 		/*
 		/*
 		 * Do we need to flush the process scoped TLB for the LPAR?
 		 * Do we need to flush the process scoped TLB for the LPAR?
 		 *
 		 *
@@ -2975,17 +3215,7 @@ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
 		 *
 		 *
 		 * Hash must be flushed in realmode in order to use tlbiel.
 		 * Hash must be flushed in realmode in order to use tlbiel.
 		 */
 		 */
-		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
-		isync();
-
-		if (cpu_has_feature(CPU_FTR_ARCH_300))
-			tmp &= ~0x3UL;
-
-		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
-			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
-			/* Clear the bit after the TLB flush */
-			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
-		}
+		kvmppc_radix_check_need_tlb_flush(vc->kvm, pcpu, NULL);
 	}
 	}
 
 
 	/*
 	/*
@@ -3079,6 +3309,300 @@ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
 	trace_kvmppc_run_core(vc, 1);
 	trace_kvmppc_run_core(vc, 1);
 }
 }
 
 
+/*
+ * Load up hypervisor-mode registers on P9.
+ */
+static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
+				     unsigned long lpcr)
+{
+	struct kvmppc_vcore *vc = vcpu->arch.vcore;
+	s64 hdec;
+	u64 tb, purr, spurr;
+	int trap;
+	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
+	unsigned long host_ciabr = mfspr(SPRN_CIABR);
+	unsigned long host_dawr = mfspr(SPRN_DAWR);
+	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
+	unsigned long host_psscr = mfspr(SPRN_PSSCR);
+	unsigned long host_pidr = mfspr(SPRN_PID);
+
+	hdec = time_limit - mftb();
+	if (hdec < 0)
+		return BOOK3S_INTERRUPT_HV_DECREMENTER;
+	mtspr(SPRN_HDEC, hdec);
+
+	if (vc->tb_offset) {
+		u64 new_tb = mftb() + vc->tb_offset;
+		mtspr(SPRN_TBU40, new_tb);
+		tb = mftb();
+		if ((tb & 0xffffff) < (new_tb & 0xffffff))
+			mtspr(SPRN_TBU40, new_tb + 0x1000000);
+		vc->tb_offset_applied = vc->tb_offset;
+	}
+
+	if (vc->pcr)
+		mtspr(SPRN_PCR, vc->pcr);
+	mtspr(SPRN_DPDES, vc->dpdes);
+	mtspr(SPRN_VTB, vc->vtb);
+
+	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
+	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
+	mtspr(SPRN_PURR, vcpu->arch.purr);
+	mtspr(SPRN_SPURR, vcpu->arch.spurr);
+
+	if (cpu_has_feature(CPU_FTR_DAWR)) {
+		mtspr(SPRN_DAWR, vcpu->arch.dawr);
+		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
+	}
+	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
+	mtspr(SPRN_IC, vcpu->arch.ic);
+	mtspr(SPRN_PID, vcpu->arch.pid);
+
+	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
+	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
+
+	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
+
+	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
+	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
+	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
+	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
+
+	mtspr(SPRN_AMOR, ~0UL);
+
+	mtspr(SPRN_LPCR, lpcr);
+	isync();
+
+	kvmppc_xive_push_vcpu(vcpu);
+
+	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
+	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
+
+	trap = __kvmhv_vcpu_entry_p9(vcpu);
+
+	/* Advance host PURR/SPURR by the amount used by guest */
+	purr = mfspr(SPRN_PURR);
+	spurr = mfspr(SPRN_SPURR);
+	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
+	      purr - vcpu->arch.purr);
+	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
+	      spurr - vcpu->arch.spurr);
+	vcpu->arch.purr = purr;
+	vcpu->arch.spurr = spurr;
+
+	vcpu->arch.ic = mfspr(SPRN_IC);
+	vcpu->arch.pid = mfspr(SPRN_PID);
+	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
+
+	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
+	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
+	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
+	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
+
+	mtspr(SPRN_PSSCR, host_psscr);
+	mtspr(SPRN_HFSCR, host_hfscr);
+	mtspr(SPRN_CIABR, host_ciabr);
+	mtspr(SPRN_DAWR, host_dawr);
+	mtspr(SPRN_DAWRX, host_dawrx);
+	mtspr(SPRN_PID, host_pidr);
+
+	/*
+	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
+	 * case we interrupted the guest between a tlbie and a ptesync.
+	 */
+	asm volatile("eieio; tlbsync; ptesync");
+
+	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
+	isync();
+
+	vc->dpdes = mfspr(SPRN_DPDES);
+	vc->vtb = mfspr(SPRN_VTB);
+	mtspr(SPRN_DPDES, 0);
+	if (vc->pcr)
+		mtspr(SPRN_PCR, 0);
+
+	if (vc->tb_offset_applied) {
+		u64 new_tb = mftb() - vc->tb_offset_applied;
+		mtspr(SPRN_TBU40, new_tb);
+		tb = mftb();
+		if ((tb & 0xffffff) < (new_tb & 0xffffff))
+			mtspr(SPRN_TBU40, new_tb + 0x1000000);
+		vc->tb_offset_applied = 0;
+	}
+
+	mtspr(SPRN_HDEC, 0x7fffffff);
+	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
+
+	return trap;
+}
+
+/*
+ * Virtual-mode guest entry for POWER9 and later when the host and
+ * guest are both using the radix MMU.  The LPIDR has already been set.
+ */
+int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
+			 unsigned long lpcr)
+{
+	struct kvmppc_vcore *vc = vcpu->arch.vcore;
+	unsigned long host_dscr = mfspr(SPRN_DSCR);
+	unsigned long host_tidr = mfspr(SPRN_TIDR);
+	unsigned long host_iamr = mfspr(SPRN_IAMR);
+	s64 dec;
+	u64 tb;
+	int trap, save_pmu;
+
+	dec = mfspr(SPRN_DEC);
+	tb = mftb();
+	if (dec < 512)
+		return BOOK3S_INTERRUPT_HV_DECREMENTER;
+	local_paca->kvm_hstate.dec_expires = dec + tb;
+	if (local_paca->kvm_hstate.dec_expires < time_limit)
+		time_limit = local_paca->kvm_hstate.dec_expires;
+
+	vcpu->arch.ceded = 0;
+
+	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
+
+	kvmppc_subcore_enter_guest();
+
+	vc->entry_exit_map = 1;
+	vc->in_guest = 1;
+
+	if (vcpu->arch.vpa.pinned_addr) {
+		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
+		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
+		lp->yield_count = cpu_to_be32(yield_count);
+		vcpu->arch.vpa.dirty = 1;
+	}
+
+	if (cpu_has_feature(CPU_FTR_TM) ||
+	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
+		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
+
+	kvmhv_load_guest_pmu(vcpu);
+
+	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
+	load_fp_state(&vcpu->arch.fp);
+#ifdef CONFIG_ALTIVEC
+	load_vr_state(&vcpu->arch.vr);
+#endif
+
+	mtspr(SPRN_DSCR, vcpu->arch.dscr);
+	mtspr(SPRN_IAMR, vcpu->arch.iamr);
+	mtspr(SPRN_PSPB, vcpu->arch.pspb);
+	mtspr(SPRN_FSCR, vcpu->arch.fscr);
+	mtspr(SPRN_TAR, vcpu->arch.tar);
+	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
+	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
+	mtspr(SPRN_BESCR, vcpu->arch.bescr);
+	mtspr(SPRN_WORT, vcpu->arch.wort);
+	mtspr(SPRN_TIDR, vcpu->arch.tid);
+	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
+	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
+	mtspr(SPRN_AMR, vcpu->arch.amr);
+	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
+
+	if (!(vcpu->arch.ctrl & 1))
+		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
+
+	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
+
+	if (kvmhv_on_pseries()) {
+		/* call our hypervisor to load up HV regs and go */
+		struct hv_guest_state hvregs;
+
+		kvmhv_save_hv_regs(vcpu, &hvregs);
+		hvregs.lpcr = lpcr;
+		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
+		hvregs.version = HV_GUEST_STATE_VERSION;
+		if (vcpu->arch.nested) {
+			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
+			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
+		} else {
+			hvregs.lpid = vcpu->kvm->arch.lpid;
+			hvregs.vcpu_token = vcpu->vcpu_id;
+		}
+		hvregs.hdec_expiry = time_limit;
+		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
+					  __pa(&vcpu->arch.regs));
+		kvmhv_restore_hv_return_state(vcpu, &hvregs);
+		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
+		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
+		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
+
+		/* H_CEDE has to be handled now, not later */
+		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
+		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
+			kvmppc_nested_cede(vcpu);
+			trap = 0;
+		}
+	} else {
+		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
+	}
+
+	vcpu->arch.slb_max = 0;
+	dec = mfspr(SPRN_DEC);
+	tb = mftb();
+	vcpu->arch.dec_expires = dec + tb;
+	vcpu->cpu = -1;
+	vcpu->arch.thread_cpu = -1;
+	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
+
+	vcpu->arch.iamr = mfspr(SPRN_IAMR);
+	vcpu->arch.pspb = mfspr(SPRN_PSPB);
+	vcpu->arch.fscr = mfspr(SPRN_FSCR);
+	vcpu->arch.tar = mfspr(SPRN_TAR);
+	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
+	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
+	vcpu->arch.bescr = mfspr(SPRN_BESCR);
+	vcpu->arch.wort = mfspr(SPRN_WORT);
+	vcpu->arch.tid = mfspr(SPRN_TIDR);
+	vcpu->arch.amr = mfspr(SPRN_AMR);
+	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
+	vcpu->arch.dscr = mfspr(SPRN_DSCR);
+
+	mtspr(SPRN_PSPB, 0);
+	mtspr(SPRN_WORT, 0);
+	mtspr(SPRN_AMR, 0);
+	mtspr(SPRN_UAMOR, 0);
+	mtspr(SPRN_DSCR, host_dscr);
+	mtspr(SPRN_TIDR, host_tidr);
+	mtspr(SPRN_IAMR, host_iamr);
+	mtspr(SPRN_PSPB, 0);
+
+	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
+	store_fp_state(&vcpu->arch.fp);
+#ifdef CONFIG_ALTIVEC
+	store_vr_state(&vcpu->arch.vr);
+#endif
+
+	if (cpu_has_feature(CPU_FTR_TM) ||
+	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
+		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
+
+	save_pmu = 1;
+	if (vcpu->arch.vpa.pinned_addr) {
+		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
+		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
+		lp->yield_count = cpu_to_be32(yield_count);
+		vcpu->arch.vpa.dirty = 1;
+		save_pmu = lp->pmcregs_in_use;
+	}
+
+	kvmhv_save_guest_pmu(vcpu, save_pmu);
+
+	vc->entry_exit_map = 0x101;
+	vc->in_guest = 0;
+
+	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
+
+	kvmhv_load_host_pmu();
+
+	kvmppc_subcore_exit_guest();
+
+	return trap;
+}
+
 /*
 /*
  * Wait for some other vcpu thread to execute us, and
  * Wait for some other vcpu thread to execute us, and
  * wake us up when we need to handle something in the host.
  * wake us up when we need to handle something in the host.
@@ -3256,6 +3780,11 @@ out:
 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
 }
 }
 
 
+/*
+ * This never fails for a radix guest, as none of the operations it does
+ * for a radix guest can fail or have a way to report failure.
+ * kvmhv_run_single_vcpu() relies on this fact.
+ */
 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
 {
 {
 	int r = 0;
 	int r = 0;
@@ -3405,6 +3934,171 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
 	return vcpu->arch.ret;
 	return vcpu->arch.ret;
 }
 }
 
 
+int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
+			  struct kvm_vcpu *vcpu, u64 time_limit,
+			  unsigned long lpcr)
+{
+	int trap, r, pcpu;
+	int srcu_idx;
+	struct kvmppc_vcore *vc;
+	struct kvm *kvm = vcpu->kvm;
+	struct kvm_nested_guest *nested = vcpu->arch.nested;
+
+	trace_kvmppc_run_vcpu_enter(vcpu);
+
+	kvm_run->exit_reason = 0;
+	vcpu->arch.ret = RESUME_GUEST;
+	vcpu->arch.trap = 0;
+
+	vc = vcpu->arch.vcore;
+	vcpu->arch.ceded = 0;
+	vcpu->arch.run_task = current;
+	vcpu->arch.kvm_run = kvm_run;
+	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
+	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
+	vcpu->arch.busy_preempt = TB_NIL;
+	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
+	vc->runnable_threads[0] = vcpu;
+	vc->n_runnable = 1;
+	vc->runner = vcpu;
+
+	/* See if the MMU is ready to go */
+	if (!kvm->arch.mmu_ready)
+		kvmhv_setup_mmu(vcpu);
+
+	if (need_resched())
+		cond_resched();
+
+	kvmppc_update_vpas(vcpu);
+
+	init_vcore_to_run(vc);
+	vc->preempt_tb = TB_NIL;
+
+	preempt_disable();
+	pcpu = smp_processor_id();
+	vc->pcpu = pcpu;
+	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
+
+	local_irq_disable();
+	hard_irq_disable();
+	if (signal_pending(current))
+		goto sigpend;
+	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
+		goto out;
+
+	if (!nested) {
+		kvmppc_core_prepare_to_enter(vcpu);
+		if (vcpu->arch.doorbell_request) {
+			vc->dpdes = 1;
+			smp_wmb();
+			vcpu->arch.doorbell_request = 0;
+		}
+		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
+			     &vcpu->arch.pending_exceptions))
+			lpcr |= LPCR_MER;
+	} else if (vcpu->arch.pending_exceptions ||
+		   vcpu->arch.doorbell_request ||
+		   xive_interrupt_pending(vcpu)) {
+		vcpu->arch.ret = RESUME_HOST;
+		goto out;
+	}
+
+	kvmppc_clear_host_core(pcpu);
+
+	local_paca->kvm_hstate.tid = 0;
+	local_paca->kvm_hstate.napping = 0;
+	local_paca->kvm_hstate.kvm_split_mode = NULL;
+	kvmppc_start_thread(vcpu, vc);
+	kvmppc_create_dtl_entry(vcpu, vc);
+	trace_kvm_guest_enter(vcpu);
+
+	vc->vcore_state = VCORE_RUNNING;
+	trace_kvmppc_run_core(vc, 0);
+
+	if (cpu_has_feature(CPU_FTR_HVMODE))
+		kvmppc_radix_check_need_tlb_flush(kvm, pcpu, nested);
+
+	trace_hardirqs_on();
+	guest_enter_irqoff();
+
+	srcu_idx = srcu_read_lock(&kvm->srcu);
+
+	this_cpu_disable_ftrace();
+
+	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
+	vcpu->arch.trap = trap;
+
+	this_cpu_enable_ftrace();
+
+	srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+	if (cpu_has_feature(CPU_FTR_HVMODE)) {
+		mtspr(SPRN_LPID, kvm->arch.host_lpid);
+		isync();
+	}
+
+	trace_hardirqs_off();
+	set_irq_happened(trap);
+
+	kvmppc_set_host_core(pcpu);
+
+	local_irq_enable();
+	guest_exit();
+
+	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
+
+	preempt_enable();
+
+	/* cancel pending decrementer exception if DEC is now positive */
+	if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
+		kvmppc_core_dequeue_dec(vcpu);
+
+	trace_kvm_guest_exit(vcpu);
+	r = RESUME_GUEST;
+	if (trap) {
+		if (!nested)
+			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
+		else
+			r = kvmppc_handle_nested_exit(vcpu);
+	}
+	vcpu->arch.ret = r;
+
+	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
+	    !kvmppc_vcpu_woken(vcpu)) {
+		kvmppc_set_timer(vcpu);
+		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
+			if (signal_pending(current)) {
+				vcpu->stat.signal_exits++;
+				kvm_run->exit_reason = KVM_EXIT_INTR;
+				vcpu->arch.ret = -EINTR;
+				break;
+			}
+			spin_lock(&vc->lock);
+			kvmppc_vcore_blocked(vc);
+			spin_unlock(&vc->lock);
+		}
+	}
+	vcpu->arch.ceded = 0;
+
+	vc->vcore_state = VCORE_INACTIVE;
+	trace_kvmppc_run_core(vc, 1);
+
+ done:
+	kvmppc_remove_runnable(vc, vcpu);
+	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
+
+	return vcpu->arch.ret;
+
+ sigpend:
+	vcpu->stat.signal_exits++;
+	kvm_run->exit_reason = KVM_EXIT_INTR;
+	vcpu->arch.ret = -EINTR;
+ out:
+	local_irq_enable();
+	preempt_enable();
+	goto done;
+}
+
 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
 {
 {
 	int r;
 	int r;
@@ -3480,7 +4174,20 @@ static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
 
 
 	do {
 	do {
-		r = kvmppc_run_vcpu(run, vcpu);
+		/*
+		 * The early POWER9 chips that can't mix radix and HPT threads
+		 * on the same core also need the workaround for the problem
+		 * where the TLB would prefetch entries in the guest exit path
+		 * for radix guests using the guest PIDR value and LPID 0.
+		 * The workaround is in the old path (kvmppc_run_vcpu())
+		 * but not the new path (kvmhv_run_single_vcpu()).
+		 */
+		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
+		    !no_mixing_hpt_and_radix)
+			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
+						  vcpu->arch.vcore->lpcr);
+		else
+			r = kvmppc_run_vcpu(run, vcpu);
 
 
 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
@@ -3559,6 +4266,10 @@ static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
 
 
+	/* If running as a nested hypervisor, we don't support HPT guests */
+	if (kvmhv_on_pseries())
+		info->flags |= KVM_PPC_NO_HASH;
+
 	return 0;
 	return 0;
 }
 }
 
 
@@ -3723,8 +4434,7 @@ void kvmppc_setup_partition_table(struct kvm *kvm)
 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
 		dw1 = PATB_GR | kvm->arch.process_table;
 		dw1 = PATB_GR | kvm->arch.process_table;
 	}
 	}
-
-	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
+	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
 }
 }
 
 
 /*
 /*
@@ -3820,6 +4530,8 @@ static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
 {
 {
+	if (nesting_enabled(kvm))
+		kvmhv_release_all_nested(kvm);
 	kvmppc_free_radix(kvm);
 	kvmppc_free_radix(kvm);
 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
@@ -3841,6 +4553,7 @@ int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
 	kvmppc_free_hpt(&kvm->arch.hpt);
 	kvmppc_free_hpt(&kvm->arch.hpt);
 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
+	kvmppc_rmap_reset(kvm);
 	kvm->arch.radix = 1;
 	kvm->arch.radix = 1;
 	return 0;
 	return 0;
 }
 }
@@ -3940,6 +4653,8 @@ static int kvmppc_core_init_vm_hv(struct kvm *kvm)
 
 
 	kvmppc_alloc_host_rm_ops();
 	kvmppc_alloc_host_rm_ops();
 
 
+	kvmhv_vm_nested_init(kvm);
+
 	/*
 	/*
 	 * Since we don't flush the TLB when tearing down a VM,
 	 * Since we don't flush the TLB when tearing down a VM,
 	 * and this lpid might have previously been used,
 	 * and this lpid might have previously been used,
@@ -3958,9 +4673,13 @@ static int kvmppc_core_init_vm_hv(struct kvm *kvm)
 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
 
 
 	/* Init LPCR for virtual RMA mode */
 	/* Init LPCR for virtual RMA mode */
-	kvm->arch.host_lpid = mfspr(SPRN_LPID);
-	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
-	lpcr &= LPCR_PECE | LPCR_LPES;
+	if (cpu_has_feature(CPU_FTR_HVMODE)) {
+		kvm->arch.host_lpid = mfspr(SPRN_LPID);
+		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
+		lpcr &= LPCR_PECE | LPCR_LPES;
+	} else {
+		lpcr = 0;
+	}
 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
 		LPCR_VPM0 | LPCR_VPM1;
 		LPCR_VPM0 | LPCR_VPM1;
 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
@@ -4027,8 +4746,14 @@ static int kvmppc_core_init_vm_hv(struct kvm *kvm)
 	 * On POWER9, we only need to do this if the "indep_threads_mode"
 	 * On POWER9, we only need to do this if the "indep_threads_mode"
 	 * module parameter has been set to N.
 	 * module parameter has been set to N.
 	 */
 	 */
-	if (cpu_has_feature(CPU_FTR_ARCH_300))
-		kvm->arch.threads_indep = indep_threads_mode;
+	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
+			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
+			kvm->arch.threads_indep = true;
+		} else {
+			kvm->arch.threads_indep = indep_threads_mode;
+		}
+	}
 	if (!kvm->arch.threads_indep)
 	if (!kvm->arch.threads_indep)
 		kvm_hv_vm_activated();
 		kvm_hv_vm_activated();
 
 
@@ -4051,6 +4776,8 @@ static int kvmppc_core_init_vm_hv(struct kvm *kvm)
 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
 	kvmppc_mmu_debugfs_init(kvm);
 	kvmppc_mmu_debugfs_init(kvm);
+	if (radix_enabled())
+		kvmhv_radix_debugfs_init(kvm);
 
 
 	return 0;
 	return 0;
 }
 }
@@ -4073,13 +4800,21 @@ static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
 
 
 	kvmppc_free_vcores(kvm);
 	kvmppc_free_vcores(kvm);
 
 
-	kvmppc_free_lpid(kvm->arch.lpid);
 
 
 	if (kvm_is_radix(kvm))
 	if (kvm_is_radix(kvm))
 		kvmppc_free_radix(kvm);
 		kvmppc_free_radix(kvm);
 	else
 	else
 		kvmppc_free_hpt(&kvm->arch.hpt);
 		kvmppc_free_hpt(&kvm->arch.hpt);
 
 
+	/* Perform global invalidation and return lpid to the pool */
+	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+		if (nesting_enabled(kvm))
+			kvmhv_release_all_nested(kvm);
+		kvm->arch.process_table = 0;
+		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
+	}
+	kvmppc_free_lpid(kvm->arch.lpid);
+
 	kvmppc_free_pimap(kvm);
 	kvmppc_free_pimap(kvm);
 }
 }
 
 
@@ -4104,11 +4839,15 @@ static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
 
 
 static int kvmppc_core_check_processor_compat_hv(void)
 static int kvmppc_core_check_processor_compat_hv(void)
 {
 {
-	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
-	    !cpu_has_feature(CPU_FTR_ARCH_206))
-		return -EIO;
+	if (cpu_has_feature(CPU_FTR_HVMODE) &&
+	    cpu_has_feature(CPU_FTR_ARCH_206))
+		return 0;
 
 
-	return 0;
+	/* POWER9 in radix mode is capable of being a nested hypervisor. */
+	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
+		return 0;
+
+	return -EIO;
 }
 }
 
 
 #ifdef CONFIG_KVM_XICS
 #ifdef CONFIG_KVM_XICS
@@ -4426,6 +5165,10 @@ static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
 	if (radix && !radix_enabled())
 	if (radix && !radix_enabled())
 		return -EINVAL;
 		return -EINVAL;
 
 
+	/* If we're a nested hypervisor, we currently only support radix */
+	if (kvmhv_on_pseries() && !radix)
+		return -EINVAL;
+
 	mutex_lock(&kvm->lock);
 	mutex_lock(&kvm->lock);
 	if (radix != kvm_is_radix(kvm)) {
 	if (radix != kvm_is_radix(kvm)) {
 		if (kvm->arch.mmu_ready) {
 		if (kvm->arch.mmu_ready) {
@@ -4458,6 +5201,19 @@ static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
 	return err;
 	return err;
 }
 }
 
 
+static int kvmhv_enable_nested(struct kvm *kvm)
+{
+	if (!nested)
+		return -EPERM;
+	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
+		return -ENODEV;
+
+	/* kvm == NULL means the caller is testing if the capability exists */
+	if (kvm)
+		kvm->arch.nested_enable = true;
+	return 0;
+}
+
 static struct kvmppc_ops kvm_ops_hv = {
 static struct kvmppc_ops kvm_ops_hv = {
 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
@@ -4497,6 +5253,7 @@ static struct kvmppc_ops kvm_ops_hv = {
 	.configure_mmu = kvmhv_configure_mmu,
 	.configure_mmu = kvmhv_configure_mmu,
 	.get_rmmu_info = kvmhv_get_rmmu_info,
 	.get_rmmu_info = kvmhv_get_rmmu_info,
 	.set_smt_mode = kvmhv_set_smt_mode,
 	.set_smt_mode = kvmhv_set_smt_mode,
+	.enable_nested = kvmhv_enable_nested,
 };
 };
 
 
 static int kvm_init_subcore_bitmap(void)
 static int kvm_init_subcore_bitmap(void)
@@ -4547,6 +5304,10 @@ static int kvmppc_book3s_init_hv(void)
 	if (r < 0)
 	if (r < 0)
 		return -ENODEV;
 		return -ENODEV;
 
 
+	r = kvmhv_nested_init();
+	if (r)
+		return r;
+
 	r = kvm_init_subcore_bitmap();
 	r = kvm_init_subcore_bitmap();
 	if (r)
 	if (r)
 		return r;
 		return r;
@@ -4557,7 +5318,8 @@ static int kvmppc_book3s_init_hv(void)
 	 * indirectly, via OPAL.
 	 * indirectly, via OPAL.
 	 */
 	 */
 #ifdef CONFIG_SMP
 #ifdef CONFIG_SMP
-	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
+	if (!xive_enabled() && !kvmhv_on_pseries() &&
+	    !local_paca->kvm_hstate.xics_phys) {
 		struct device_node *np;
 		struct device_node *np;
 
 
 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
@@ -4605,6 +5367,7 @@ static void kvmppc_book3s_exit_hv(void)
 	if (kvmppc_radix_possible())
 	if (kvmppc_radix_possible())
 		kvmppc_radix_exit();
 		kvmppc_radix_exit();
 	kvmppc_hv_ops = NULL;
 	kvmppc_hv_ops = NULL;
+	kvmhv_nested_exit();
 }
 }
 
 
 module_init(kvmppc_book3s_init_hv);
 module_init(kvmppc_book3s_init_hv);

+ 84 - 8
arch/powerpc/kvm/book3s_hv_builtin.c

@@ -231,6 +231,15 @@ void kvmhv_rm_send_ipi(int cpu)
 	void __iomem *xics_phys;
 	void __iomem *xics_phys;
 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 
 
+	/* For a nested hypervisor, use the XICS via hcall */
+	if (kvmhv_on_pseries()) {
+		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
+
+		plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu),
+				IPI_PRIORITY);
+		return;
+	}
+
 	/* On POWER9 we can use msgsnd for any destination cpu. */
 	/* On POWER9 we can use msgsnd for any destination cpu. */
 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 		msg |= get_hard_smp_processor_id(cpu);
 		msg |= get_hard_smp_processor_id(cpu);
@@ -460,12 +469,19 @@ static long kvmppc_read_one_intr(bool *again)
 		return 1;
 		return 1;
 
 
 	/* Now read the interrupt from the ICP */
 	/* Now read the interrupt from the ICP */
-	xics_phys = local_paca->kvm_hstate.xics_phys;
-	rc = 0;
-	if (!xics_phys)
-		rc = opal_int_get_xirr(&xirr, false);
-	else
-		xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
+	if (kvmhv_on_pseries()) {
+		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
+
+		rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF);
+		xirr = cpu_to_be32(retbuf[0]);
+	} else {
+		xics_phys = local_paca->kvm_hstate.xics_phys;
+		rc = 0;
+		if (!xics_phys)
+			rc = opal_int_get_xirr(&xirr, false);
+		else
+			xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
+	}
 	if (rc < 0)
 	if (rc < 0)
 		return 1;
 		return 1;
 
 
@@ -494,7 +510,13 @@ static long kvmppc_read_one_intr(bool *again)
 	 */
 	 */
 	if (xisr == XICS_IPI) {
 	if (xisr == XICS_IPI) {
 		rc = 0;
 		rc = 0;
-		if (xics_phys) {
+		if (kvmhv_on_pseries()) {
+			unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
+
+			plpar_hcall_raw(H_IPI, retbuf,
+					hard_smp_processor_id(), 0xff);
+			plpar_hcall_raw(H_EOI, retbuf, h_xirr);
+		} else if (xics_phys) {
 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
 		} else {
 		} else {
@@ -520,7 +542,13 @@ static long kvmppc_read_one_intr(bool *again)
 			/* We raced with the host,
 			/* We raced with the host,
 			 * we need to resend that IPI, bummer
 			 * we need to resend that IPI, bummer
 			 */
 			 */
-			if (xics_phys)
+			if (kvmhv_on_pseries()) {
+				unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
+
+				plpar_hcall_raw(H_IPI, retbuf,
+						hard_smp_processor_id(),
+						IPI_PRIORITY);
+			} else if (xics_phys)
 				__raw_rm_writeb(IPI_PRIORITY,
 				__raw_rm_writeb(IPI_PRIORITY,
 						xics_phys + XICS_MFRR);
 						xics_phys + XICS_MFRR);
 			else
 			else
@@ -729,3 +757,51 @@ void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip)
 	smp_mb();
 	smp_mb();
 	local_paca->kvm_hstate.kvm_split_mode = NULL;
 	local_paca->kvm_hstate.kvm_split_mode = NULL;
 }
 }
+
+/*
+ * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
+ * Can we inject a Decrementer or a External interrupt?
+ */
+void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
+{
+	int ext;
+	unsigned long vec = 0;
+	unsigned long lpcr;
+
+	/* Insert EXTERNAL bit into LPCR at the MER bit position */
+	ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
+	lpcr = mfspr(SPRN_LPCR);
+	lpcr |= ext << LPCR_MER_SH;
+	mtspr(SPRN_LPCR, lpcr);
+	isync();
+
+	if (vcpu->arch.shregs.msr & MSR_EE) {
+		if (ext) {
+			vec = BOOK3S_INTERRUPT_EXTERNAL;
+		} else {
+			long int dec = mfspr(SPRN_DEC);
+			if (!(lpcr & LPCR_LD))
+				dec = (int) dec;
+			if (dec < 0)
+				vec = BOOK3S_INTERRUPT_DECREMENTER;
+		}
+	}
+	if (vec) {
+		unsigned long msr, old_msr = vcpu->arch.shregs.msr;
+
+		kvmppc_set_srr0(vcpu, kvmppc_get_pc(vcpu));
+		kvmppc_set_srr1(vcpu, old_msr);
+		kvmppc_set_pc(vcpu, vec);
+		msr = vcpu->arch.intr_msr;
+		if (MSR_TM_ACTIVE(old_msr))
+			msr |= MSR_TS_S;
+		vcpu->arch.shregs.msr = msr;
+	}
+
+	if (vcpu->arch.doorbell_request) {
+		mtspr(SPRN_DPDES, 1);
+		vcpu->arch.vcore->dpdes = 1;
+		smp_wmb();
+		vcpu->arch.doorbell_request = 0;
+	}
+}

+ 49 - 46
arch/powerpc/kvm/book3s_hv_interrupts.S

@@ -64,52 +64,7 @@ BEGIN_FTR_SECTION
 END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
 END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
 
 
 	/* Save host PMU registers */
 	/* Save host PMU registers */
-BEGIN_FTR_SECTION
-	/* Work around P8 PMAE bug */
-	li	r3, -1
-	clrrdi	r3, r3, 10
-	mfspr	r8, SPRN_MMCR2
-	mtspr	SPRN_MMCR2, r3		/* freeze all counters using MMCR2 */
-	isync
-END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
-	li	r3, 1
-	sldi	r3, r3, 31		/* MMCR0_FC (freeze counters) bit */
-	mfspr	r7, SPRN_MMCR0		/* save MMCR0 */
-	mtspr	SPRN_MMCR0, r3		/* freeze all counters, disable interrupts */
-	mfspr	r6, SPRN_MMCRA
-	/* Clear MMCRA in order to disable SDAR updates */
-	li	r5, 0
-	mtspr	SPRN_MMCRA, r5
-	isync
-	lbz	r5, PACA_PMCINUSE(r13)	/* is the host using the PMU? */
-	cmpwi	r5, 0
-	beq	31f			/* skip if not */
-	mfspr	r5, SPRN_MMCR1
-	mfspr	r9, SPRN_SIAR
-	mfspr	r10, SPRN_SDAR
-	std	r7, HSTATE_MMCR0(r13)
-	std	r5, HSTATE_MMCR1(r13)
-	std	r6, HSTATE_MMCRA(r13)
-	std	r9, HSTATE_SIAR(r13)
-	std	r10, HSTATE_SDAR(r13)
-BEGIN_FTR_SECTION
-	mfspr	r9, SPRN_SIER
-	std	r8, HSTATE_MMCR2(r13)
-	std	r9, HSTATE_SIER(r13)
-END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
-	mfspr	r3, SPRN_PMC1
-	mfspr	r5, SPRN_PMC2
-	mfspr	r6, SPRN_PMC3
-	mfspr	r7, SPRN_PMC4
-	mfspr	r8, SPRN_PMC5
-	mfspr	r9, SPRN_PMC6
-	stw	r3, HSTATE_PMC1(r13)
-	stw	r5, HSTATE_PMC2(r13)
-	stw	r6, HSTATE_PMC3(r13)
-	stw	r7, HSTATE_PMC4(r13)
-	stw	r8, HSTATE_PMC5(r13)
-	stw	r9, HSTATE_PMC6(r13)
-31:
+	bl	kvmhv_save_host_pmu
 
 
 	/*
 	/*
 	 * Put whatever is in the decrementer into the
 	 * Put whatever is in the decrementer into the
@@ -161,3 +116,51 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
 	ld	r0, PPC_LR_STKOFF(r1)
 	ld	r0, PPC_LR_STKOFF(r1)
 	mtlr	r0
 	mtlr	r0
 	blr
 	blr
+
+_GLOBAL(kvmhv_save_host_pmu)
+BEGIN_FTR_SECTION
+	/* Work around P8 PMAE bug */
+	li	r3, -1
+	clrrdi	r3, r3, 10
+	mfspr	r8, SPRN_MMCR2
+	mtspr	SPRN_MMCR2, r3		/* freeze all counters using MMCR2 */
+	isync
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+	li	r3, 1
+	sldi	r3, r3, 31		/* MMCR0_FC (freeze counters) bit */
+	mfspr	r7, SPRN_MMCR0		/* save MMCR0 */
+	mtspr	SPRN_MMCR0, r3		/* freeze all counters, disable interrupts */
+	mfspr	r6, SPRN_MMCRA
+	/* Clear MMCRA in order to disable SDAR updates */
+	li	r5, 0
+	mtspr	SPRN_MMCRA, r5
+	isync
+	lbz	r5, PACA_PMCINUSE(r13)	/* is the host using the PMU? */
+	cmpwi	r5, 0
+	beq	31f			/* skip if not */
+	mfspr	r5, SPRN_MMCR1
+	mfspr	r9, SPRN_SIAR
+	mfspr	r10, SPRN_SDAR
+	std	r7, HSTATE_MMCR0(r13)
+	std	r5, HSTATE_MMCR1(r13)
+	std	r6, HSTATE_MMCRA(r13)
+	std	r9, HSTATE_SIAR(r13)
+	std	r10, HSTATE_SDAR(r13)
+BEGIN_FTR_SECTION
+	mfspr	r9, SPRN_SIER
+	std	r8, HSTATE_MMCR2(r13)
+	std	r9, HSTATE_SIER(r13)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+	mfspr	r3, SPRN_PMC1
+	mfspr	r5, SPRN_PMC2
+	mfspr	r6, SPRN_PMC3
+	mfspr	r7, SPRN_PMC4
+	mfspr	r8, SPRN_PMC5
+	mfspr	r9, SPRN_PMC6
+	stw	r3, HSTATE_PMC1(r13)
+	stw	r5, HSTATE_PMC2(r13)
+	stw	r6, HSTATE_PMC3(r13)
+	stw	r7, HSTATE_PMC4(r13)
+	stw	r8, HSTATE_PMC5(r13)
+	stw	r9, HSTATE_PMC6(r13)
+31:	blr

+ 1291 - 0
arch/powerpc/kvm/book3s_hv_nested.c

@@ -0,0 +1,1291 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright IBM Corporation, 2018
+ * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
+ *	   Paul Mackerras <paulus@ozlabs.org>
+ *
+ * Description: KVM functions specific to running nested KVM-HV guests
+ * on Book3S processors (specifically POWER9 and later).
+ */
+
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/llist.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/mmu.h>
+#include <asm/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/pte-walk.h>
+#include <asm/reg.h>
+
+static struct patb_entry *pseries_partition_tb;
+
+static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
+static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
+
+void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
+{
+	struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+	hr->pcr = vc->pcr;
+	hr->dpdes = vc->dpdes;
+	hr->hfscr = vcpu->arch.hfscr;
+	hr->tb_offset = vc->tb_offset;
+	hr->dawr0 = vcpu->arch.dawr;
+	hr->dawrx0 = vcpu->arch.dawrx;
+	hr->ciabr = vcpu->arch.ciabr;
+	hr->purr = vcpu->arch.purr;
+	hr->spurr = vcpu->arch.spurr;
+	hr->ic = vcpu->arch.ic;
+	hr->vtb = vc->vtb;
+	hr->srr0 = vcpu->arch.shregs.srr0;
+	hr->srr1 = vcpu->arch.shregs.srr1;
+	hr->sprg[0] = vcpu->arch.shregs.sprg0;
+	hr->sprg[1] = vcpu->arch.shregs.sprg1;
+	hr->sprg[2] = vcpu->arch.shregs.sprg2;
+	hr->sprg[3] = vcpu->arch.shregs.sprg3;
+	hr->pidr = vcpu->arch.pid;
+	hr->cfar = vcpu->arch.cfar;
+	hr->ppr = vcpu->arch.ppr;
+}
+
+static void byteswap_pt_regs(struct pt_regs *regs)
+{
+	unsigned long *addr = (unsigned long *) regs;
+
+	for (; addr < ((unsigned long *) (regs + 1)); addr++)
+		*addr = swab64(*addr);
+}
+
+static void byteswap_hv_regs(struct hv_guest_state *hr)
+{
+	hr->version = swab64(hr->version);
+	hr->lpid = swab32(hr->lpid);
+	hr->vcpu_token = swab32(hr->vcpu_token);
+	hr->lpcr = swab64(hr->lpcr);
+	hr->pcr = swab64(hr->pcr);
+	hr->amor = swab64(hr->amor);
+	hr->dpdes = swab64(hr->dpdes);
+	hr->hfscr = swab64(hr->hfscr);
+	hr->tb_offset = swab64(hr->tb_offset);
+	hr->dawr0 = swab64(hr->dawr0);
+	hr->dawrx0 = swab64(hr->dawrx0);
+	hr->ciabr = swab64(hr->ciabr);
+	hr->hdec_expiry = swab64(hr->hdec_expiry);
+	hr->purr = swab64(hr->purr);
+	hr->spurr = swab64(hr->spurr);
+	hr->ic = swab64(hr->ic);
+	hr->vtb = swab64(hr->vtb);
+	hr->hdar = swab64(hr->hdar);
+	hr->hdsisr = swab64(hr->hdsisr);
+	hr->heir = swab64(hr->heir);
+	hr->asdr = swab64(hr->asdr);
+	hr->srr0 = swab64(hr->srr0);
+	hr->srr1 = swab64(hr->srr1);
+	hr->sprg[0] = swab64(hr->sprg[0]);
+	hr->sprg[1] = swab64(hr->sprg[1]);
+	hr->sprg[2] = swab64(hr->sprg[2]);
+	hr->sprg[3] = swab64(hr->sprg[3]);
+	hr->pidr = swab64(hr->pidr);
+	hr->cfar = swab64(hr->cfar);
+	hr->ppr = swab64(hr->ppr);
+}
+
+static void save_hv_return_state(struct kvm_vcpu *vcpu, int trap,
+				 struct hv_guest_state *hr)
+{
+	struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+	hr->dpdes = vc->dpdes;
+	hr->hfscr = vcpu->arch.hfscr;
+	hr->purr = vcpu->arch.purr;
+	hr->spurr = vcpu->arch.spurr;
+	hr->ic = vcpu->arch.ic;
+	hr->vtb = vc->vtb;
+	hr->srr0 = vcpu->arch.shregs.srr0;
+	hr->srr1 = vcpu->arch.shregs.srr1;
+	hr->sprg[0] = vcpu->arch.shregs.sprg0;
+	hr->sprg[1] = vcpu->arch.shregs.sprg1;
+	hr->sprg[2] = vcpu->arch.shregs.sprg2;
+	hr->sprg[3] = vcpu->arch.shregs.sprg3;
+	hr->pidr = vcpu->arch.pid;
+	hr->cfar = vcpu->arch.cfar;
+	hr->ppr = vcpu->arch.ppr;
+	switch (trap) {
+	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
+		hr->hdar = vcpu->arch.fault_dar;
+		hr->hdsisr = vcpu->arch.fault_dsisr;
+		hr->asdr = vcpu->arch.fault_gpa;
+		break;
+	case BOOK3S_INTERRUPT_H_INST_STORAGE:
+		hr->asdr = vcpu->arch.fault_gpa;
+		break;
+	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
+		hr->heir = vcpu->arch.emul_inst;
+		break;
+	}
+}
+
+static void sanitise_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
+{
+	/*
+	 * Don't let L1 enable features for L2 which we've disabled for L1,
+	 * but preserve the interrupt cause field.
+	 */
+	hr->hfscr &= (HFSCR_INTR_CAUSE | vcpu->arch.hfscr);
+
+	/* Don't let data address watchpoint match in hypervisor state */
+	hr->dawrx0 &= ~DAWRX_HYP;
+
+	/* Don't let completed instruction address breakpt match in HV state */
+	if ((hr->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
+		hr->ciabr &= ~CIABR_PRIV;
+}
+
+static void restore_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
+{
+	struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+	vc->pcr = hr->pcr;
+	vc->dpdes = hr->dpdes;
+	vcpu->arch.hfscr = hr->hfscr;
+	vcpu->arch.dawr = hr->dawr0;
+	vcpu->arch.dawrx = hr->dawrx0;
+	vcpu->arch.ciabr = hr->ciabr;
+	vcpu->arch.purr = hr->purr;
+	vcpu->arch.spurr = hr->spurr;
+	vcpu->arch.ic = hr->ic;
+	vc->vtb = hr->vtb;
+	vcpu->arch.shregs.srr0 = hr->srr0;
+	vcpu->arch.shregs.srr1 = hr->srr1;
+	vcpu->arch.shregs.sprg0 = hr->sprg[0];
+	vcpu->arch.shregs.sprg1 = hr->sprg[1];
+	vcpu->arch.shregs.sprg2 = hr->sprg[2];
+	vcpu->arch.shregs.sprg3 = hr->sprg[3];
+	vcpu->arch.pid = hr->pidr;
+	vcpu->arch.cfar = hr->cfar;
+	vcpu->arch.ppr = hr->ppr;
+}
+
+void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
+				   struct hv_guest_state *hr)
+{
+	struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+	vc->dpdes = hr->dpdes;
+	vcpu->arch.hfscr = hr->hfscr;
+	vcpu->arch.purr = hr->purr;
+	vcpu->arch.spurr = hr->spurr;
+	vcpu->arch.ic = hr->ic;
+	vc->vtb = hr->vtb;
+	vcpu->arch.fault_dar = hr->hdar;
+	vcpu->arch.fault_dsisr = hr->hdsisr;
+	vcpu->arch.fault_gpa = hr->asdr;
+	vcpu->arch.emul_inst = hr->heir;
+	vcpu->arch.shregs.srr0 = hr->srr0;
+	vcpu->arch.shregs.srr1 = hr->srr1;
+	vcpu->arch.shregs.sprg0 = hr->sprg[0];
+	vcpu->arch.shregs.sprg1 = hr->sprg[1];
+	vcpu->arch.shregs.sprg2 = hr->sprg[2];
+	vcpu->arch.shregs.sprg3 = hr->sprg[3];
+	vcpu->arch.pid = hr->pidr;
+	vcpu->arch.cfar = hr->cfar;
+	vcpu->arch.ppr = hr->ppr;
+}
+
+long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
+{
+	long int err, r;
+	struct kvm_nested_guest *l2;
+	struct pt_regs l2_regs, saved_l1_regs;
+	struct hv_guest_state l2_hv, saved_l1_hv;
+	struct kvmppc_vcore *vc = vcpu->arch.vcore;
+	u64 hv_ptr, regs_ptr;
+	u64 hdec_exp;
+	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
+	u64 mask;
+	unsigned long lpcr;
+
+	if (vcpu->kvm->arch.l1_ptcr == 0)
+		return H_NOT_AVAILABLE;
+
+	/* copy parameters in */
+	hv_ptr = kvmppc_get_gpr(vcpu, 4);
+	err = kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv,
+				  sizeof(struct hv_guest_state));
+	if (err)
+		return H_PARAMETER;
+	if (kvmppc_need_byteswap(vcpu))
+		byteswap_hv_regs(&l2_hv);
+	if (l2_hv.version != HV_GUEST_STATE_VERSION)
+		return H_P2;
+
+	regs_ptr = kvmppc_get_gpr(vcpu, 5);
+	err = kvm_vcpu_read_guest(vcpu, regs_ptr, &l2_regs,
+				  sizeof(struct pt_regs));
+	if (err)
+		return H_PARAMETER;
+	if (kvmppc_need_byteswap(vcpu))
+		byteswap_pt_regs(&l2_regs);
+	if (l2_hv.vcpu_token >= NR_CPUS)
+		return H_PARAMETER;
+
+	/* translate lpid */
+	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
+	if (!l2)
+		return H_PARAMETER;
+	if (!l2->l1_gr_to_hr) {
+		mutex_lock(&l2->tlb_lock);
+		kvmhv_update_ptbl_cache(l2);
+		mutex_unlock(&l2->tlb_lock);
+	}
+
+	/* save l1 values of things */
+	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
+	saved_l1_regs = vcpu->arch.regs;
+	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
+
+	/* convert TB values/offsets to host (L0) values */
+	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
+	vc->tb_offset += l2_hv.tb_offset;
+
+	/* set L1 state to L2 state */
+	vcpu->arch.nested = l2;
+	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
+	vcpu->arch.regs = l2_regs;
+	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
+	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
+		LPCR_LPES | LPCR_MER;
+	lpcr = (vc->lpcr & ~mask) | (l2_hv.lpcr & mask);
+	sanitise_hv_regs(vcpu, &l2_hv);
+	restore_hv_regs(vcpu, &l2_hv);
+
+	vcpu->arch.ret = RESUME_GUEST;
+	vcpu->arch.trap = 0;
+	do {
+		if (mftb() >= hdec_exp) {
+			vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
+			r = RESUME_HOST;
+			break;
+		}
+		r = kvmhv_run_single_vcpu(vcpu->arch.kvm_run, vcpu, hdec_exp,
+					  lpcr);
+	} while (is_kvmppc_resume_guest(r));
+
+	/* save L2 state for return */
+	l2_regs = vcpu->arch.regs;
+	l2_regs.msr = vcpu->arch.shregs.msr;
+	delta_purr = vcpu->arch.purr - l2_hv.purr;
+	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
+	delta_ic = vcpu->arch.ic - l2_hv.ic;
+	delta_vtb = vc->vtb - l2_hv.vtb;
+	save_hv_return_state(vcpu, vcpu->arch.trap, &l2_hv);
+
+	/* restore L1 state */
+	vcpu->arch.nested = NULL;
+	vcpu->arch.regs = saved_l1_regs;
+	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
+	/* set L1 MSR TS field according to L2 transaction state */
+	if (l2_regs.msr & MSR_TS_MASK)
+		vcpu->arch.shregs.msr |= MSR_TS_S;
+	vc->tb_offset = saved_l1_hv.tb_offset;
+	restore_hv_regs(vcpu, &saved_l1_hv);
+	vcpu->arch.purr += delta_purr;
+	vcpu->arch.spurr += delta_spurr;
+	vcpu->arch.ic += delta_ic;
+	vc->vtb += delta_vtb;
+
+	kvmhv_put_nested(l2);
+
+	/* copy l2_hv_state and regs back to guest */
+	if (kvmppc_need_byteswap(vcpu)) {
+		byteswap_hv_regs(&l2_hv);
+		byteswap_pt_regs(&l2_regs);
+	}
+	err = kvm_vcpu_write_guest(vcpu, hv_ptr, &l2_hv,
+				   sizeof(struct hv_guest_state));
+	if (err)
+		return H_AUTHORITY;
+	err = kvm_vcpu_write_guest(vcpu, regs_ptr, &l2_regs,
+				   sizeof(struct pt_regs));
+	if (err)
+		return H_AUTHORITY;
+
+	if (r == -EINTR)
+		return H_INTERRUPT;
+
+	return vcpu->arch.trap;
+}
+
+long kvmhv_nested_init(void)
+{
+	long int ptb_order;
+	unsigned long ptcr;
+	long rc;
+
+	if (!kvmhv_on_pseries())
+		return 0;
+	if (!radix_enabled())
+		return -ENODEV;
+
+	/* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
+	ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
+	if (ptb_order < 8)
+		ptb_order = 8;
+	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
+				       GFP_KERNEL);
+	if (!pseries_partition_tb) {
+		pr_err("kvm-hv: failed to allocated nested partition table\n");
+		return -ENOMEM;
+	}
+
+	ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
+	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
+	if (rc != H_SUCCESS) {
+		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
+		       rc);
+		kfree(pseries_partition_tb);
+		pseries_partition_tb = NULL;
+		return -ENODEV;
+	}
+
+	return 0;
+}
+
+void kvmhv_nested_exit(void)
+{
+	/*
+	 * N.B. the kvmhv_on_pseries() test is there because it enables
+	 * the compiler to remove the call to plpar_hcall_norets()
+	 * when CONFIG_PPC_PSERIES=n.
+	 */
+	if (kvmhv_on_pseries() && pseries_partition_tb) {
+		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
+		kfree(pseries_partition_tb);
+		pseries_partition_tb = NULL;
+	}
+}
+
+static void kvmhv_flush_lpid(unsigned int lpid)
+{
+	long rc;
+
+	if (!kvmhv_on_pseries()) {
+		radix__flush_tlb_lpid(lpid);
+		return;
+	}
+
+	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
+				lpid, TLBIEL_INVAL_SET_LPID);
+	if (rc)
+		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
+}
+
+void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
+{
+	if (!kvmhv_on_pseries()) {
+		mmu_partition_table_set_entry(lpid, dw0, dw1);
+		return;
+	}
+
+	pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
+	pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
+	/* L0 will do the necessary barriers */
+	kvmhv_flush_lpid(lpid);
+}
+
+static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
+{
+	unsigned long dw0;
+
+	dw0 = PATB_HR | radix__get_tree_size() |
+		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
+	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
+}
+
+void kvmhv_vm_nested_init(struct kvm *kvm)
+{
+	kvm->arch.max_nested_lpid = -1;
+}
+
+/*
+ * Handle the H_SET_PARTITION_TABLE hcall.
+ * r4 = guest real address of partition table + log_2(size) - 12
+ * (formatted as for the PTCR).
+ */
+long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
+{
+	struct kvm *kvm = vcpu->kvm;
+	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
+	int srcu_idx;
+	long ret = H_SUCCESS;
+
+	srcu_idx = srcu_read_lock(&kvm->srcu);
+	/*
+	 * Limit the partition table to 4096 entries (because that's what
+	 * hardware supports), and check the base address.
+	 */
+	if ((ptcr & PRTS_MASK) > 12 - 8 ||
+	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
+		ret = H_PARAMETER;
+	srcu_read_unlock(&kvm->srcu, srcu_idx);
+	if (ret == H_SUCCESS)
+		kvm->arch.l1_ptcr = ptcr;
+	return ret;
+}
+
+/*
+ * Reload the partition table entry for a guest.
+ * Caller must hold gp->tlb_lock.
+ */
+static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
+{
+	int ret;
+	struct patb_entry ptbl_entry;
+	unsigned long ptbl_addr;
+	struct kvm *kvm = gp->l1_host;
+
+	ret = -EFAULT;
+	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
+	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8)))
+		ret = kvm_read_guest(kvm, ptbl_addr,
+				     &ptbl_entry, sizeof(ptbl_entry));
+	if (ret) {
+		gp->l1_gr_to_hr = 0;
+		gp->process_table = 0;
+	} else {
+		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
+		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
+	}
+	kvmhv_set_nested_ptbl(gp);
+}
+
+struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
+{
+	struct kvm_nested_guest *gp;
+	long shadow_lpid;
+
+	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
+	if (!gp)
+		return NULL;
+	gp->l1_host = kvm;
+	gp->l1_lpid = lpid;
+	mutex_init(&gp->tlb_lock);
+	gp->shadow_pgtable = pgd_alloc(kvm->mm);
+	if (!gp->shadow_pgtable)
+		goto out_free;
+	shadow_lpid = kvmppc_alloc_lpid();
+	if (shadow_lpid < 0)
+		goto out_free2;
+	gp->shadow_lpid = shadow_lpid;
+
+	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
+
+	return gp;
+
+ out_free2:
+	pgd_free(kvm->mm, gp->shadow_pgtable);
+ out_free:
+	kfree(gp);
+	return NULL;
+}
+
+/*
+ * Free up any resources allocated for a nested guest.
+ */
+static void kvmhv_release_nested(struct kvm_nested_guest *gp)
+{
+	struct kvm *kvm = gp->l1_host;
+
+	if (gp->shadow_pgtable) {
+		/*
+		 * No vcpu is using this struct and no call to
+		 * kvmhv_get_nested can find this struct,
+		 * so we don't need to hold kvm->mmu_lock.
+		 */
+		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
+					  gp->shadow_lpid);
+		pgd_free(kvm->mm, gp->shadow_pgtable);
+	}
+	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
+	kvmppc_free_lpid(gp->shadow_lpid);
+	kfree(gp);
+}
+
+static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
+{
+	struct kvm *kvm = gp->l1_host;
+	int lpid = gp->l1_lpid;
+	long ref;
+
+	spin_lock(&kvm->mmu_lock);
+	if (gp == kvm->arch.nested_guests[lpid]) {
+		kvm->arch.nested_guests[lpid] = NULL;
+		if (lpid == kvm->arch.max_nested_lpid) {
+			while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
+				;
+			kvm->arch.max_nested_lpid = lpid;
+		}
+		--gp->refcnt;
+	}
+	ref = gp->refcnt;
+	spin_unlock(&kvm->mmu_lock);
+	if (ref == 0)
+		kvmhv_release_nested(gp);
+}
+
+/*
+ * Free up all nested resources allocated for this guest.
+ * This is called with no vcpus of the guest running, when
+ * switching the guest to HPT mode or when destroying the
+ * guest.
+ */
+void kvmhv_release_all_nested(struct kvm *kvm)
+{
+	int i;
+	struct kvm_nested_guest *gp;
+	struct kvm_nested_guest *freelist = NULL;
+	struct kvm_memory_slot *memslot;
+	int srcu_idx;
+
+	spin_lock(&kvm->mmu_lock);
+	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
+		gp = kvm->arch.nested_guests[i];
+		if (!gp)
+			continue;
+		kvm->arch.nested_guests[i] = NULL;
+		if (--gp->refcnt == 0) {
+			gp->next = freelist;
+			freelist = gp;
+		}
+	}
+	kvm->arch.max_nested_lpid = -1;
+	spin_unlock(&kvm->mmu_lock);
+	while ((gp = freelist) != NULL) {
+		freelist = gp->next;
+		kvmhv_release_nested(gp);
+	}
+
+	srcu_idx = srcu_read_lock(&kvm->srcu);
+	kvm_for_each_memslot(memslot, kvm_memslots(kvm))
+		kvmhv_free_memslot_nest_rmap(memslot);
+	srcu_read_unlock(&kvm->srcu, srcu_idx);
+}
+
+/* caller must hold gp->tlb_lock */
+static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
+{
+	struct kvm *kvm = gp->l1_host;
+
+	spin_lock(&kvm->mmu_lock);
+	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
+	spin_unlock(&kvm->mmu_lock);
+	kvmhv_flush_lpid(gp->shadow_lpid);
+	kvmhv_update_ptbl_cache(gp);
+	if (gp->l1_gr_to_hr == 0)
+		kvmhv_remove_nested(gp);
+}
+
+struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
+					  bool create)
+{
+	struct kvm_nested_guest *gp, *newgp;
+
+	if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
+	    l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
+		return NULL;
+
+	spin_lock(&kvm->mmu_lock);
+	gp = kvm->arch.nested_guests[l1_lpid];
+	if (gp)
+		++gp->refcnt;
+	spin_unlock(&kvm->mmu_lock);
+
+	if (gp || !create)
+		return gp;
+
+	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
+	if (!newgp)
+		return NULL;
+	spin_lock(&kvm->mmu_lock);
+	if (kvm->arch.nested_guests[l1_lpid]) {
+		/* someone else beat us to it */
+		gp = kvm->arch.nested_guests[l1_lpid];
+	} else {
+		kvm->arch.nested_guests[l1_lpid] = newgp;
+		++newgp->refcnt;
+		gp = newgp;
+		newgp = NULL;
+		if (l1_lpid > kvm->arch.max_nested_lpid)
+			kvm->arch.max_nested_lpid = l1_lpid;
+	}
+	++gp->refcnt;
+	spin_unlock(&kvm->mmu_lock);
+
+	if (newgp)
+		kvmhv_release_nested(newgp);
+
+	return gp;
+}
+
+void kvmhv_put_nested(struct kvm_nested_guest *gp)
+{
+	struct kvm *kvm = gp->l1_host;
+	long ref;
+
+	spin_lock(&kvm->mmu_lock);
+	ref = --gp->refcnt;
+	spin_unlock(&kvm->mmu_lock);
+	if (ref == 0)
+		kvmhv_release_nested(gp);
+}
+
+static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid)
+{
+	if (lpid > kvm->arch.max_nested_lpid)
+		return NULL;
+	return kvm->arch.nested_guests[lpid];
+}
+
+static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
+{
+	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
+				       RMAP_NESTED_GPA_MASK));
+}
+
+void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
+			    struct rmap_nested **n_rmap)
+{
+	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
+	struct rmap_nested *cursor;
+	u64 rmap, new_rmap = (*n_rmap)->rmap;
+
+	/* Are there any existing entries? */
+	if (!(*rmapp)) {
+		/* No -> use the rmap as a single entry */
+		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
+		return;
+	}
+
+	/* Do any entries match what we're trying to insert? */
+	for_each_nest_rmap_safe(cursor, entry, &rmap) {
+		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
+			return;
+	}
+
+	/* Do we need to create a list or just add the new entry? */
+	rmap = *rmapp;
+	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
+		*rmapp = 0UL;
+	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
+	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
+		(*n_rmap)->list.next = (struct llist_node *) rmap;
+
+	/* Set NULL so not freed by caller */
+	*n_rmap = NULL;
+}
+
+static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
+				   unsigned long hpa, unsigned long mask)
+{
+	struct kvm_nested_guest *gp;
+	unsigned long gpa;
+	unsigned int shift, lpid;
+	pte_t *ptep;
+
+	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
+	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
+	gp = kvmhv_find_nested(kvm, lpid);
+	if (!gp)
+		return;
+
+	/* Find and invalidate the pte */
+	ptep = __find_linux_pte(gp->shadow_pgtable, gpa, NULL, &shift);
+	/* Don't spuriously invalidate ptes if the pfn has changed */
+	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
+		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
+}
+
+static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
+					unsigned long hpa, unsigned long mask)
+{
+	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
+	struct rmap_nested *cursor;
+	unsigned long rmap;
+
+	for_each_nest_rmap_safe(cursor, entry, &rmap) {
+		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
+		kfree(cursor);
+	}
+}
+
+/* called with kvm->mmu_lock held */
+void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
+				  struct kvm_memory_slot *memslot,
+				  unsigned long gpa, unsigned long hpa,
+				  unsigned long nbytes)
+{
+	unsigned long gfn, end_gfn;
+	unsigned long addr_mask;
+
+	if (!memslot)
+		return;
+	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
+	end_gfn = gfn + (nbytes >> PAGE_SHIFT);
+
+	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
+	hpa &= addr_mask;
+
+	for (; gfn < end_gfn; gfn++) {
+		unsigned long *rmap = &memslot->arch.rmap[gfn];
+		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
+	}
+}
+
+static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
+{
+	unsigned long page;
+
+	for (page = 0; page < free->npages; page++) {
+		unsigned long rmap, *rmapp = &free->arch.rmap[page];
+		struct rmap_nested *cursor;
+		struct llist_node *entry;
+
+		entry = llist_del_all((struct llist_head *) rmapp);
+		for_each_nest_rmap_safe(cursor, entry, &rmap)
+			kfree(cursor);
+	}
+}
+
+static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
+					struct kvm_nested_guest *gp,
+					long gpa, int *shift_ret)
+{
+	struct kvm *kvm = vcpu->kvm;
+	bool ret = false;
+	pte_t *ptep;
+	int shift;
+
+	spin_lock(&kvm->mmu_lock);
+	ptep = __find_linux_pte(gp->shadow_pgtable, gpa, NULL, &shift);
+	if (!shift)
+		shift = PAGE_SHIFT;
+	if (ptep && pte_present(*ptep)) {
+		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
+		ret = true;
+	}
+	spin_unlock(&kvm->mmu_lock);
+
+	if (shift_ret)
+		*shift_ret = shift;
+	return ret;
+}
+
+static inline int get_ric(unsigned int instr)
+{
+	return (instr >> 18) & 0x3;
+}
+
+static inline int get_prs(unsigned int instr)
+{
+	return (instr >> 17) & 0x1;
+}
+
+static inline int get_r(unsigned int instr)
+{
+	return (instr >> 16) & 0x1;
+}
+
+static inline int get_lpid(unsigned long r_val)
+{
+	return r_val & 0xffffffff;
+}
+
+static inline int get_is(unsigned long r_val)
+{
+	return (r_val >> 10) & 0x3;
+}
+
+static inline int get_ap(unsigned long r_val)
+{
+	return (r_val >> 5) & 0x7;
+}
+
+static inline long get_epn(unsigned long r_val)
+{
+	return r_val >> 12;
+}
+
+static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
+					int ap, long epn)
+{
+	struct kvm *kvm = vcpu->kvm;
+	struct kvm_nested_guest *gp;
+	long npages;
+	int shift, shadow_shift;
+	unsigned long addr;
+
+	shift = ap_to_shift(ap);
+	addr = epn << 12;
+	if (shift < 0)
+		/* Invalid ap encoding */
+		return -EINVAL;
+
+	addr &= ~((1UL << shift) - 1);
+	npages = 1UL << (shift - PAGE_SHIFT);
+
+	gp = kvmhv_get_nested(kvm, lpid, false);
+	if (!gp) /* No such guest -> nothing to do */
+		return 0;
+	mutex_lock(&gp->tlb_lock);
+
+	/* There may be more than one host page backing this single guest pte */
+	do {
+		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
+
+		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
+		addr += 1UL << shadow_shift;
+	} while (npages > 0);
+
+	mutex_unlock(&gp->tlb_lock);
+	kvmhv_put_nested(gp);
+	return 0;
+}
+
+static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
+				     struct kvm_nested_guest *gp, int ric)
+{
+	struct kvm *kvm = vcpu->kvm;
+
+	mutex_lock(&gp->tlb_lock);
+	switch (ric) {
+	case 0:
+		/* Invalidate TLB */
+		spin_lock(&kvm->mmu_lock);
+		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
+					  gp->shadow_lpid);
+		kvmhv_flush_lpid(gp->shadow_lpid);
+		spin_unlock(&kvm->mmu_lock);
+		break;
+	case 1:
+		/*
+		 * Invalidate PWC
+		 * We don't cache this -> nothing to do
+		 */
+		break;
+	case 2:
+		/* Invalidate TLB, PWC and caching of partition table entries */
+		kvmhv_flush_nested(gp);
+		break;
+	default:
+		break;
+	}
+	mutex_unlock(&gp->tlb_lock);
+}
+
+static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
+{
+	struct kvm *kvm = vcpu->kvm;
+	struct kvm_nested_guest *gp;
+	int i;
+
+	spin_lock(&kvm->mmu_lock);
+	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
+		gp = kvm->arch.nested_guests[i];
+		if (gp) {
+			spin_unlock(&kvm->mmu_lock);
+			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
+			spin_lock(&kvm->mmu_lock);
+		}
+	}
+	spin_unlock(&kvm->mmu_lock);
+}
+
+static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
+				    unsigned long rsval, unsigned long rbval)
+{
+	struct kvm *kvm = vcpu->kvm;
+	struct kvm_nested_guest *gp;
+	int r, ric, prs, is, ap;
+	int lpid;
+	long epn;
+	int ret = 0;
+
+	ric = get_ric(instr);
+	prs = get_prs(instr);
+	r = get_r(instr);
+	lpid = get_lpid(rsval);
+	is = get_is(rbval);
+
+	/*
+	 * These cases are invalid and are not handled:
+	 * r   != 1 -> Only radix supported
+	 * prs == 1 -> Not HV privileged
+	 * ric == 3 -> No cluster bombs for radix
+	 * is  == 1 -> Partition scoped translations not associated with pid
+	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
+	 */
+	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
+	    ((!is) && (ric == 1 || ric == 2)))
+		return -EINVAL;
+
+	switch (is) {
+	case 0:
+		/*
+		 * We know ric == 0
+		 * Invalidate TLB for a given target address
+		 */
+		epn = get_epn(rbval);
+		ap = get_ap(rbval);
+		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
+		break;
+	case 2:
+		/* Invalidate matching LPID */
+		gp = kvmhv_get_nested(kvm, lpid, false);
+		if (gp) {
+			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
+			kvmhv_put_nested(gp);
+		}
+		break;
+	case 3:
+		/* Invalidate ALL LPIDs */
+		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
+		break;
+	default:
+		ret = -EINVAL;
+		break;
+	}
+
+	return ret;
+}
+
+/*
+ * This handles the H_TLB_INVALIDATE hcall.
+ * Parameters are (r4) tlbie instruction code, (r5) rS contents,
+ * (r6) rB contents.
+ */
+long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
+{
+	int ret;
+
+	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
+			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
+	if (ret)
+		return H_PARAMETER;
+	return H_SUCCESS;
+}
+
+/* Used to convert a nested guest real address to a L1 guest real address */
+static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
+				       struct kvm_nested_guest *gp,
+				       unsigned long n_gpa, unsigned long dsisr,
+				       struct kvmppc_pte *gpte_p)
+{
+	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
+	int ret;
+
+	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
+					 &fault_addr);
+
+	if (ret) {
+		/* We didn't find a pte */
+		if (ret == -EINVAL) {
+			/* Unsupported mmu config */
+			flags |= DSISR_UNSUPP_MMU;
+		} else if (ret == -ENOENT) {
+			/* No translation found */
+			flags |= DSISR_NOHPTE;
+		} else if (ret == -EFAULT) {
+			/* Couldn't access L1 real address */
+			flags |= DSISR_PRTABLE_FAULT;
+			vcpu->arch.fault_gpa = fault_addr;
+		} else {
+			/* Unknown error */
+			return ret;
+		}
+		goto forward_to_l1;
+	} else {
+		/* We found a pte -> check permissions */
+		if (dsisr & DSISR_ISSTORE) {
+			/* Can we write? */
+			if (!gpte_p->may_write) {
+				flags |= DSISR_PROTFAULT;
+				goto forward_to_l1;
+			}
+		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
+			/* Can we execute? */
+			if (!gpte_p->may_execute) {
+				flags |= SRR1_ISI_N_OR_G;
+				goto forward_to_l1;
+			}
+		} else {
+			/* Can we read? */
+			if (!gpte_p->may_read && !gpte_p->may_write) {
+				flags |= DSISR_PROTFAULT;
+				goto forward_to_l1;
+			}
+		}
+	}
+
+	return 0;
+
+forward_to_l1:
+	vcpu->arch.fault_dsisr = flags;
+	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
+		vcpu->arch.shregs.msr &= ~0x783f0000ul;
+		vcpu->arch.shregs.msr |= flags;
+	}
+	return RESUME_HOST;
+}
+
+static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
+				       struct kvm_nested_guest *gp,
+				       unsigned long n_gpa,
+				       struct kvmppc_pte gpte,
+				       unsigned long dsisr)
+{
+	struct kvm *kvm = vcpu->kvm;
+	bool writing = !!(dsisr & DSISR_ISSTORE);
+	u64 pgflags;
+	bool ret;
+
+	/* Are the rc bits set in the L1 partition scoped pte? */
+	pgflags = _PAGE_ACCESSED;
+	if (writing)
+		pgflags |= _PAGE_DIRTY;
+	if (pgflags & ~gpte.rc)
+		return RESUME_HOST;
+
+	spin_lock(&kvm->mmu_lock);
+	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
+	ret = kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable, writing,
+				     gpte.raddr, kvm->arch.lpid);
+	spin_unlock(&kvm->mmu_lock);
+	if (!ret)
+		return -EINVAL;
+
+	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
+	ret = kvmppc_hv_handle_set_rc(kvm, gp->shadow_pgtable, writing, n_gpa,
+				      gp->shadow_lpid);
+	if (!ret)
+		return -EINVAL;
+	return 0;
+}
+
+static inline int kvmppc_radix_level_to_shift(int level)
+{
+	switch (level) {
+	case 2:
+		return PUD_SHIFT;
+	case 1:
+		return PMD_SHIFT;
+	default:
+		return PAGE_SHIFT;
+	}
+}
+
+static inline int kvmppc_radix_shift_to_level(int shift)
+{
+	if (shift == PUD_SHIFT)
+		return 2;
+	if (shift == PMD_SHIFT)
+		return 1;
+	if (shift == PAGE_SHIFT)
+		return 0;
+	WARN_ON_ONCE(1);
+	return 0;
+}
+
+/* called with gp->tlb_lock held */
+static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
+					  struct kvm_nested_guest *gp)
+{
+	struct kvm *kvm = vcpu->kvm;
+	struct kvm_memory_slot *memslot;
+	struct rmap_nested *n_rmap;
+	struct kvmppc_pte gpte;
+	pte_t pte, *pte_p;
+	unsigned long mmu_seq;
+	unsigned long dsisr = vcpu->arch.fault_dsisr;
+	unsigned long ea = vcpu->arch.fault_dar;
+	unsigned long *rmapp;
+	unsigned long n_gpa, gpa, gfn, perm = 0UL;
+	unsigned int shift, l1_shift, level;
+	bool writing = !!(dsisr & DSISR_ISSTORE);
+	bool kvm_ro = false;
+	long int ret;
+
+	if (!gp->l1_gr_to_hr) {
+		kvmhv_update_ptbl_cache(gp);
+		if (!gp->l1_gr_to_hr)
+			return RESUME_HOST;
+	}
+
+	/* Convert the nested guest real address into a L1 guest real address */
+
+	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
+	if (!(dsisr & DSISR_PRTABLE_FAULT))
+		n_gpa |= ea & 0xFFF;
+	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
+
+	/*
+	 * If the hardware found a translation but we don't now have a usable
+	 * translation in the l1 partition-scoped tree, remove the shadow pte
+	 * and let the guest retry.
+	 */
+	if (ret == RESUME_HOST &&
+	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
+		      DSISR_BAD_COPYPASTE)))
+		goto inval;
+	if (ret)
+		return ret;
+
+	/* Failed to set the reference/change bits */
+	if (dsisr & DSISR_SET_RC) {
+		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
+		if (ret == RESUME_HOST)
+			return ret;
+		if (ret)
+			goto inval;
+		dsisr &= ~DSISR_SET_RC;
+		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
+			       DSISR_PROTFAULT)))
+			return RESUME_GUEST;
+	}
+
+	/*
+	 * We took an HISI or HDSI while we were running a nested guest which
+	 * means we have no partition scoped translation for that. This means
+	 * we need to insert a pte for the mapping into our shadow_pgtable.
+	 */
+
+	l1_shift = gpte.page_shift;
+	if (l1_shift < PAGE_SHIFT) {
+		/* We don't support l1 using a page size smaller than our own */
+		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
+			l1_shift, PAGE_SHIFT);
+		return -EINVAL;
+	}
+	gpa = gpte.raddr;
+	gfn = gpa >> PAGE_SHIFT;
+
+	/* 1. Get the corresponding host memslot */
+
+	memslot = gfn_to_memslot(kvm, gfn);
+	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
+		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
+			/* unusual error -> reflect to the guest as a DSI */
+			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
+			return RESUME_GUEST;
+		}
+		/* passthrough of emulated MMIO case... */
+		pr_err("emulated MMIO passthrough?\n");
+		return -EINVAL;
+	}
+	if (memslot->flags & KVM_MEM_READONLY) {
+		if (writing) {
+			/* Give the guest a DSI */
+			kvmppc_core_queue_data_storage(vcpu, ea,
+					DSISR_ISSTORE | DSISR_PROTFAULT);
+			return RESUME_GUEST;
+		}
+		kvm_ro = true;
+	}
+
+	/* 2. Find the host pte for this L1 guest real address */
+
+	/* Used to check for invalidations in progress */
+	mmu_seq = kvm->mmu_notifier_seq;
+	smp_rmb();
+
+	/* See if can find translation in our partition scoped tables for L1 */
+	pte = __pte(0);
+	spin_lock(&kvm->mmu_lock);
+	pte_p = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
+	if (!shift)
+		shift = PAGE_SHIFT;
+	if (pte_p)
+		pte = *pte_p;
+	spin_unlock(&kvm->mmu_lock);
+
+	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
+		/* No suitable pte found -> try to insert a mapping */
+		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
+					writing, kvm_ro, &pte, &level);
+		if (ret == -EAGAIN)
+			return RESUME_GUEST;
+		else if (ret)
+			return ret;
+		shift = kvmppc_radix_level_to_shift(level);
+	}
+
+	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
+
+	/* The permissions is the combination of the host and l1 guest ptes */
+	perm |= gpte.may_read ? 0UL : _PAGE_READ;
+	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
+	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
+	pte = __pte(pte_val(pte) & ~perm);
+
+	/* What size pte can we insert? */
+	if (shift > l1_shift) {
+		u64 mask;
+		unsigned int actual_shift = PAGE_SHIFT;
+		if (PMD_SHIFT < l1_shift)
+			actual_shift = PMD_SHIFT;
+		mask = (1UL << shift) - (1UL << actual_shift);
+		pte = __pte(pte_val(pte) | (gpa & mask));
+		shift = actual_shift;
+	}
+	level = kvmppc_radix_shift_to_level(shift);
+	n_gpa &= ~((1UL << shift) - 1);
+
+	/* 4. Insert the pte into our shadow_pgtable */
+
+	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
+	if (!n_rmap)
+		return RESUME_GUEST; /* Let the guest try again */
+	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
+		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
+	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
+	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
+				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
+	if (n_rmap)
+		kfree(n_rmap);
+	if (ret == -EAGAIN)
+		ret = RESUME_GUEST;	/* Let the guest try again */
+
+	return ret;
+
+ inval:
+	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
+	return RESUME_GUEST;
+}
+
+long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
+{
+	struct kvm_nested_guest *gp = vcpu->arch.nested;
+	long int ret;
+
+	mutex_lock(&gp->tlb_lock);
+	ret = __kvmhv_nested_page_fault(vcpu, gp);
+	mutex_unlock(&gp->tlb_lock);
+	return ret;
+}
+
+int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
+{
+	int ret = -1;
+
+	spin_lock(&kvm->mmu_lock);
+	while (++lpid <= kvm->arch.max_nested_lpid) {
+		if (kvm->arch.nested_guests[lpid]) {
+			ret = lpid;
+			break;
+		}
+	}
+	spin_unlock(&kvm->mmu_lock);
+	return ret;
+}

+ 10 - 0
arch/powerpc/kvm/book3s_hv_ras.c

@@ -177,6 +177,7 @@ void kvmppc_subcore_enter_guest(void)
 
 
 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
 }
 }
+EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
 
 
 void kvmppc_subcore_exit_guest(void)
 void kvmppc_subcore_exit_guest(void)
 {
 {
@@ -187,6 +188,7 @@ void kvmppc_subcore_exit_guest(void)
 
 
 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
 }
 }
+EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
 
 
 static bool kvmppc_tb_resync_required(void)
 static bool kvmppc_tb_resync_required(void)
 {
 {
@@ -331,5 +333,13 @@ long kvmppc_realmode_hmi_handler(void)
 	} else {
 	} else {
 		wait_for_tb_resync();
 		wait_for_tb_resync();
 	}
 	}
+
+	/*
+	 * Reset tb_offset_applied so the guest exit code won't try
+	 * to subtract the previous timebase offset from the timebase.
+	 */
+	if (local_paca->kvm_hstate.kvm_vcore)
+		local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
+
 	return 0;
 	return 0;
 }
 }

+ 10 - 3
arch/powerpc/kvm/book3s_hv_rm_xics.c

@@ -136,7 +136,7 @@ static void icp_rm_set_vcpu_irq(struct kvm_vcpu *vcpu,
 
 
 	/* Mark the target VCPU as having an interrupt pending */
 	/* Mark the target VCPU as having an interrupt pending */
 	vcpu->stat.queue_intr++;
 	vcpu->stat.queue_intr++;
-	set_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
+	set_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
 
 
 	/* Kick self ? Just set MER and return */
 	/* Kick self ? Just set MER and return */
 	if (vcpu == this_vcpu) {
 	if (vcpu == this_vcpu) {
@@ -170,8 +170,7 @@ static void icp_rm_set_vcpu_irq(struct kvm_vcpu *vcpu,
 static void icp_rm_clr_vcpu_irq(struct kvm_vcpu *vcpu)
 static void icp_rm_clr_vcpu_irq(struct kvm_vcpu *vcpu)
 {
 {
 	/* Note: Only called on self ! */
 	/* Note: Only called on self ! */
-	clear_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL,
-		  &vcpu->arch.pending_exceptions);
+	clear_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
 	mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_MER);
 	mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_MER);
 }
 }
 
 
@@ -768,6 +767,14 @@ static void icp_eoi(struct irq_chip *c, u32 hwirq, __be32 xirr, bool *again)
 	void __iomem *xics_phys;
 	void __iomem *xics_phys;
 	int64_t rc;
 	int64_t rc;
 
 
+	if (kvmhv_on_pseries()) {
+		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
+
+		iosync();
+		plpar_hcall_raw(H_EOI, retbuf, hwirq);
+		return;
+	}
+
 	rc = pnv_opal_pci_msi_eoi(c, hwirq);
 	rc = pnv_opal_pci_msi_eoi(c, hwirq);
 
 
 	if (rc)
 	if (rc)

+ 460 - 363
arch/powerpc/kvm/book3s_hv_rmhandlers.S

@@ -28,6 +28,7 @@
 #include <asm/exception-64s.h>
 #include <asm/exception-64s.h>
 #include <asm/kvm_book3s_asm.h>
 #include <asm/kvm_book3s_asm.h>
 #include <asm/book3s/64/mmu-hash.h>
 #include <asm/book3s/64/mmu-hash.h>
+#include <asm/export.h>
 #include <asm/tm.h>
 #include <asm/tm.h>
 #include <asm/opal.h>
 #include <asm/opal.h>
 #include <asm/xive-regs.h>
 #include <asm/xive-regs.h>
@@ -46,8 +47,9 @@ END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_300)
 #define NAPPING_NOVCPU	2
 #define NAPPING_NOVCPU	2
 
 
 /* Stack frame offsets for kvmppc_hv_entry */
 /* Stack frame offsets for kvmppc_hv_entry */
-#define SFS			160
+#define SFS			208
 #define STACK_SLOT_TRAP		(SFS-4)
 #define STACK_SLOT_TRAP		(SFS-4)
+#define STACK_SLOT_SHORT_PATH	(SFS-8)
 #define STACK_SLOT_TID		(SFS-16)
 #define STACK_SLOT_TID		(SFS-16)
 #define STACK_SLOT_PSSCR	(SFS-24)
 #define STACK_SLOT_PSSCR	(SFS-24)
 #define STACK_SLOT_PID		(SFS-32)
 #define STACK_SLOT_PID		(SFS-32)
@@ -56,6 +58,8 @@ END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_300)
 #define STACK_SLOT_DAWR		(SFS-56)
 #define STACK_SLOT_DAWR		(SFS-56)
 #define STACK_SLOT_DAWRX	(SFS-64)
 #define STACK_SLOT_DAWRX	(SFS-64)
 #define STACK_SLOT_HFSCR	(SFS-72)
 #define STACK_SLOT_HFSCR	(SFS-72)
+/* the following is used by the P9 short path */
+#define STACK_SLOT_NVGPRS	(SFS-152)	/* 18 gprs */
 
 
 /*
 /*
  * Call kvmppc_hv_entry in real mode.
  * Call kvmppc_hv_entry in real mode.
@@ -113,45 +117,7 @@ END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
 	mtspr	SPRN_SPRG_VDSO_WRITE,r3
 	mtspr	SPRN_SPRG_VDSO_WRITE,r3
 
 
 	/* Reload the host's PMU registers */
 	/* Reload the host's PMU registers */
-	lbz	r4, PACA_PMCINUSE(r13) /* is the host using the PMU? */
-	cmpwi	r4, 0
-	beq	23f			/* skip if not */
-BEGIN_FTR_SECTION
-	ld	r3, HSTATE_MMCR0(r13)
-	andi.	r4, r3, MMCR0_PMAO_SYNC | MMCR0_PMAO
-	cmpwi	r4, MMCR0_PMAO
-	beql	kvmppc_fix_pmao
-END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
-	lwz	r3, HSTATE_PMC1(r13)
-	lwz	r4, HSTATE_PMC2(r13)
-	lwz	r5, HSTATE_PMC3(r13)
-	lwz	r6, HSTATE_PMC4(r13)
-	lwz	r8, HSTATE_PMC5(r13)
-	lwz	r9, HSTATE_PMC6(r13)
-	mtspr	SPRN_PMC1, r3
-	mtspr	SPRN_PMC2, r4
-	mtspr	SPRN_PMC3, r5
-	mtspr	SPRN_PMC4, r6
-	mtspr	SPRN_PMC5, r8
-	mtspr	SPRN_PMC6, r9
-	ld	r3, HSTATE_MMCR0(r13)
-	ld	r4, HSTATE_MMCR1(r13)
-	ld	r5, HSTATE_MMCRA(r13)
-	ld	r6, HSTATE_SIAR(r13)
-	ld	r7, HSTATE_SDAR(r13)
-	mtspr	SPRN_MMCR1, r4
-	mtspr	SPRN_MMCRA, r5
-	mtspr	SPRN_SIAR, r6
-	mtspr	SPRN_SDAR, r7
-BEGIN_FTR_SECTION
-	ld	r8, HSTATE_MMCR2(r13)
-	ld	r9, HSTATE_SIER(r13)
-	mtspr	SPRN_MMCR2, r8
-	mtspr	SPRN_SIER, r9
-END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
-	mtspr	SPRN_MMCR0, r3
-	isync
-23:
+	bl	kvmhv_load_host_pmu
 
 
 	/*
 	/*
 	 * Reload DEC.  HDEC interrupts were disabled when
 	 * Reload DEC.  HDEC interrupts were disabled when
@@ -796,66 +762,23 @@ BEGIN_FTR_SECTION
 	b	91f
 	b	91f
 END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 	/*
 	/*
-	 * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS INCLUDING CR
+	 * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS (but not CR)
 	 */
 	 */
 	mr      r3, r4
 	mr      r3, r4
 	ld      r4, VCPU_MSR(r3)
 	ld      r4, VCPU_MSR(r3)
+	li	r5, 0			/* don't preserve non-vol regs */
 	bl	kvmppc_restore_tm_hv
 	bl	kvmppc_restore_tm_hv
+	nop
 	ld	r4, HSTATE_KVM_VCPU(r13)
 	ld	r4, HSTATE_KVM_VCPU(r13)
 91:
 91:
 #endif
 #endif
 
 
-	/* Load guest PMU registers */
-	/* R4 is live here (vcpu pointer) */
-	li	r3, 1
-	sldi	r3, r3, 31		/* MMCR0_FC (freeze counters) bit */
-	mtspr	SPRN_MMCR0, r3		/* freeze all counters, disable ints */
-	isync
-BEGIN_FTR_SECTION
-	ld	r3, VCPU_MMCR(r4)
-	andi.	r5, r3, MMCR0_PMAO_SYNC | MMCR0_PMAO
-	cmpwi	r5, MMCR0_PMAO
-	beql	kvmppc_fix_pmao
-END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
-	lwz	r3, VCPU_PMC(r4)	/* always load up guest PMU registers */
-	lwz	r5, VCPU_PMC + 4(r4)	/* to prevent information leak */
-	lwz	r6, VCPU_PMC + 8(r4)
-	lwz	r7, VCPU_PMC + 12(r4)
-	lwz	r8, VCPU_PMC + 16(r4)
-	lwz	r9, VCPU_PMC + 20(r4)
-	mtspr	SPRN_PMC1, r3
-	mtspr	SPRN_PMC2, r5
-	mtspr	SPRN_PMC3, r6
-	mtspr	SPRN_PMC4, r7
-	mtspr	SPRN_PMC5, r8
-	mtspr	SPRN_PMC6, r9
-	ld	r3, VCPU_MMCR(r4)
-	ld	r5, VCPU_MMCR + 8(r4)
-	ld	r6, VCPU_MMCR + 16(r4)
-	ld	r7, VCPU_SIAR(r4)
-	ld	r8, VCPU_SDAR(r4)
-	mtspr	SPRN_MMCR1, r5
-	mtspr	SPRN_MMCRA, r6
-	mtspr	SPRN_SIAR, r7
-	mtspr	SPRN_SDAR, r8
-BEGIN_FTR_SECTION
-	ld	r5, VCPU_MMCR + 24(r4)
-	ld	r6, VCPU_SIER(r4)
-	mtspr	SPRN_MMCR2, r5
-	mtspr	SPRN_SIER, r6
-BEGIN_FTR_SECTION_NESTED(96)
-	lwz	r7, VCPU_PMC + 24(r4)
-	lwz	r8, VCPU_PMC + 28(r4)
-	ld	r9, VCPU_MMCR + 32(r4)
-	mtspr	SPRN_SPMC1, r7
-	mtspr	SPRN_SPMC2, r8
-	mtspr	SPRN_MMCRS, r9
-END_FTR_SECTION_NESTED(CPU_FTR_ARCH_300, 0, 96)
-END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
-	mtspr	SPRN_MMCR0, r3
-	isync
+	/* Load guest PMU registers; r4 = vcpu pointer here */
+	mr	r3, r4
+	bl	kvmhv_load_guest_pmu
 
 
 	/* Load up FP, VMX and VSX registers */
 	/* Load up FP, VMX and VSX registers */
+	ld	r4, HSTATE_KVM_VCPU(r13)
 	bl	kvmppc_load_fp
 	bl	kvmppc_load_fp
 
 
 	ld	r14, VCPU_GPR(R14)(r4)
 	ld	r14, VCPU_GPR(R14)(r4)
@@ -1100,73 +1023,40 @@ ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_300)
 no_xive:
 no_xive:
 #endif /* CONFIG_KVM_XICS */
 #endif /* CONFIG_KVM_XICS */
 
 
-deliver_guest_interrupt:
-	ld	r6, VCPU_CTR(r4)
-	ld	r7, VCPU_XER(r4)
-
-	mtctr	r6
-	mtxer	r7
+	li	r0, 0
+	stw	r0, STACK_SLOT_SHORT_PATH(r1)
 
 
-kvmppc_cede_reentry:		/* r4 = vcpu, r13 = paca */
-	ld	r10, VCPU_PC(r4)
-	ld	r11, VCPU_MSR(r4)
+deliver_guest_interrupt:	/* r4 = vcpu, r13 = paca */
+	/* Check if we can deliver an external or decrementer interrupt now */
+	ld	r0, VCPU_PENDING_EXC(r4)
+BEGIN_FTR_SECTION
+	/* On POWER9, also check for emulated doorbell interrupt */
+	lbz	r3, VCPU_DBELL_REQ(r4)
+	or	r0, r0, r3
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
+	cmpdi	r0, 0
+	beq	71f
+	mr	r3, r4
+	bl	kvmppc_guest_entry_inject_int
+	ld	r4, HSTATE_KVM_VCPU(r13)
+71:
 	ld	r6, VCPU_SRR0(r4)
 	ld	r6, VCPU_SRR0(r4)
 	ld	r7, VCPU_SRR1(r4)
 	ld	r7, VCPU_SRR1(r4)
 	mtspr	SPRN_SRR0, r6
 	mtspr	SPRN_SRR0, r6
 	mtspr	SPRN_SRR1, r7
 	mtspr	SPRN_SRR1, r7
 
 
+fast_guest_entry_c:
+	ld	r10, VCPU_PC(r4)
+	ld	r11, VCPU_MSR(r4)
 	/* r11 = vcpu->arch.msr & ~MSR_HV */
 	/* r11 = vcpu->arch.msr & ~MSR_HV */
 	rldicl	r11, r11, 63 - MSR_HV_LG, 1
 	rldicl	r11, r11, 63 - MSR_HV_LG, 1
 	rotldi	r11, r11, 1 + MSR_HV_LG
 	rotldi	r11, r11, 1 + MSR_HV_LG
 	ori	r11, r11, MSR_ME
 	ori	r11, r11, MSR_ME
 
 
-	/* Check if we can deliver an external or decrementer interrupt now */
-	ld	r0, VCPU_PENDING_EXC(r4)
-	rldicl	r0, r0, 64 - BOOK3S_IRQPRIO_EXTERNAL_LEVEL, 63
-	cmpdi	cr1, r0, 0
-	andi.	r8, r11, MSR_EE
-	mfspr	r8, SPRN_LPCR
-	/* Insert EXTERNAL_LEVEL bit into LPCR at the MER bit position */
-	rldimi	r8, r0, LPCR_MER_SH, 63 - LPCR_MER_SH
-	mtspr	SPRN_LPCR, r8
-	isync
-	beq	5f
-	li	r0, BOOK3S_INTERRUPT_EXTERNAL
-	bne	cr1, 12f
-	mfspr	r0, SPRN_DEC
-BEGIN_FTR_SECTION
-	/* On POWER9 check whether the guest has large decrementer enabled */
-	andis.	r8, r8, LPCR_LD@h
-	bne	15f
-END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
-	extsw	r0, r0
-15:	cmpdi	r0, 0
-	li	r0, BOOK3S_INTERRUPT_DECREMENTER
-	bge	5f
-
-12:	mtspr	SPRN_SRR0, r10
-	mr	r10,r0
-	mtspr	SPRN_SRR1, r11
-	mr	r9, r4
-	bl	kvmppc_msr_interrupt
-5:
-BEGIN_FTR_SECTION
-	b	fast_guest_return
-END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_300)
-	/* On POWER9, check for pending doorbell requests */
-	lbz	r0, VCPU_DBELL_REQ(r4)
-	cmpwi	r0, 0
-	beq	fast_guest_return
-	ld	r5, HSTATE_KVM_VCORE(r13)
-	/* Set DPDES register so the CPU will take a doorbell interrupt */
-	li	r0, 1
-	mtspr	SPRN_DPDES, r0
-	std	r0, VCORE_DPDES(r5)
-	/* Make sure other cpus see vcore->dpdes set before dbell req clear */
-	lwsync
-	/* Clear the pending doorbell request */
-	li	r0, 0
-	stb	r0, VCPU_DBELL_REQ(r4)
+	ld	r6, VCPU_CTR(r4)
+	ld	r7, VCPU_XER(r4)
+	mtctr	r6
+	mtxer	r7
 
 
 /*
 /*
  * Required state:
  * Required state:
@@ -1202,7 +1092,7 @@ BEGIN_FTR_SECTION
 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
 
 
 	ld	r5, VCPU_LR(r4)
 	ld	r5, VCPU_LR(r4)
-	lwz	r6, VCPU_CR(r4)
+	ld	r6, VCPU_CR(r4)
 	mtlr	r5
 	mtlr	r5
 	mtcr	r6
 	mtcr	r6
 
 
@@ -1234,6 +1124,83 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
 	HRFI_TO_GUEST
 	HRFI_TO_GUEST
 	b	.
 	b	.
 
 
+/*
+ * Enter the guest on a P9 or later system where we have exactly
+ * one vcpu per vcore and we don't need to go to real mode
+ * (which implies that host and guest are both using radix MMU mode).
+ * r3 = vcpu pointer
+ * Most SPRs and all the VSRs have been loaded already.
+ */
+_GLOBAL(__kvmhv_vcpu_entry_p9)
+EXPORT_SYMBOL_GPL(__kvmhv_vcpu_entry_p9)
+	mflr	r0
+	std	r0, PPC_LR_STKOFF(r1)
+	stdu	r1, -SFS(r1)
+
+	li	r0, 1
+	stw	r0, STACK_SLOT_SHORT_PATH(r1)
+
+	std	r3, HSTATE_KVM_VCPU(r13)
+	mfcr	r4
+	stw	r4, SFS+8(r1)
+
+	std	r1, HSTATE_HOST_R1(r13)
+
+	reg = 14
+	.rept	18
+	std	reg, STACK_SLOT_NVGPRS + ((reg - 14) * 8)(r1)
+	reg = reg + 1
+	.endr
+
+	reg = 14
+	.rept	18
+	ld	reg, __VCPU_GPR(reg)(r3)
+	reg = reg + 1
+	.endr
+
+	mfmsr	r10
+	std	r10, HSTATE_HOST_MSR(r13)
+
+	mr	r4, r3
+	b	fast_guest_entry_c
+guest_exit_short_path:
+
+	li	r0, KVM_GUEST_MODE_NONE
+	stb	r0, HSTATE_IN_GUEST(r13)
+
+	reg = 14
+	.rept	18
+	std	reg, __VCPU_GPR(reg)(r9)
+	reg = reg + 1
+	.endr
+
+	reg = 14
+	.rept	18
+	ld	reg, STACK_SLOT_NVGPRS + ((reg - 14) * 8)(r1)
+	reg = reg + 1
+	.endr
+
+	lwz	r4, SFS+8(r1)
+	mtcr	r4
+
+	mr	r3, r12		/* trap number */
+
+	addi	r1, r1, SFS
+	ld	r0, PPC_LR_STKOFF(r1)
+	mtlr	r0
+
+	/* If we are in real mode, do a rfid to get back to the caller */
+	mfmsr	r4
+	andi.	r5, r4, MSR_IR
+	bnelr
+	rldicl	r5, r4, 64 - MSR_TS_S_LG, 62	/* extract TS field */
+	mtspr	SPRN_SRR0, r0
+	ld	r10, HSTATE_HOST_MSR(r13)
+	rldimi	r10, r5, MSR_TS_S_LG, 63 - MSR_TS_T_LG
+	mtspr	SPRN_SRR1, r10
+	RFI_TO_KERNEL
+	b	.
+
 secondary_too_late:
 secondary_too_late:
 	li	r12, 0
 	li	r12, 0
 	stw	r12, STACK_SLOT_TRAP(r1)
 	stw	r12, STACK_SLOT_TRAP(r1)
@@ -1313,7 +1280,7 @@ kvmppc_interrupt_hv:
 	std	r3, VCPU_GPR(R12)(r9)
 	std	r3, VCPU_GPR(R12)(r9)
 	/* CR is in the high half of r12 */
 	/* CR is in the high half of r12 */
 	srdi	r4, r12, 32
 	srdi	r4, r12, 32
-	stw	r4, VCPU_CR(r9)
+	std	r4, VCPU_CR(r9)
 BEGIN_FTR_SECTION
 BEGIN_FTR_SECTION
 	ld	r3, HSTATE_CFAR(r13)
 	ld	r3, HSTATE_CFAR(r13)
 	std	r3, VCPU_CFAR(r9)
 	std	r3, VCPU_CFAR(r9)
@@ -1387,18 +1354,26 @@ END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
 	std	r3, VCPU_CTR(r9)
 	std	r3, VCPU_CTR(r9)
 	std	r4, VCPU_XER(r9)
 	std	r4, VCPU_XER(r9)
 
 
-#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
-	/* For softpatch interrupt, go off and do TM instruction emulation */
-	cmpwi	r12, BOOK3S_INTERRUPT_HV_SOFTPATCH
-	beq	kvmppc_tm_emul
-#endif
+	/* Save more register state  */
+	mfdar	r3
+	mfdsisr	r4
+	std	r3, VCPU_DAR(r9)
+	stw	r4, VCPU_DSISR(r9)
 
 
 	/* If this is a page table miss then see if it's theirs or ours */
 	/* If this is a page table miss then see if it's theirs or ours */
 	cmpwi	r12, BOOK3S_INTERRUPT_H_DATA_STORAGE
 	cmpwi	r12, BOOK3S_INTERRUPT_H_DATA_STORAGE
 	beq	kvmppc_hdsi
 	beq	kvmppc_hdsi
+	std	r3, VCPU_FAULT_DAR(r9)
+	stw	r4, VCPU_FAULT_DSISR(r9)
 	cmpwi	r12, BOOK3S_INTERRUPT_H_INST_STORAGE
 	cmpwi	r12, BOOK3S_INTERRUPT_H_INST_STORAGE
 	beq	kvmppc_hisi
 	beq	kvmppc_hisi
 
 
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+	/* For softpatch interrupt, go off and do TM instruction emulation */
+	cmpwi	r12, BOOK3S_INTERRUPT_HV_SOFTPATCH
+	beq	kvmppc_tm_emul
+#endif
+
 	/* See if this is a leftover HDEC interrupt */
 	/* See if this is a leftover HDEC interrupt */
 	cmpwi	r12,BOOK3S_INTERRUPT_HV_DECREMENTER
 	cmpwi	r12,BOOK3S_INTERRUPT_HV_DECREMENTER
 	bne	2f
 	bne	2f
@@ -1418,10 +1393,14 @@ END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
 BEGIN_FTR_SECTION
 BEGIN_FTR_SECTION
 	PPC_MSGSYNC
 	PPC_MSGSYNC
 	lwsync
 	lwsync
+	/* always exit if we're running a nested guest */
+	ld	r0, VCPU_NESTED(r9)
+	cmpdi	r0, 0
+	bne	guest_exit_cont
 END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
 END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
 	lbz	r0, HSTATE_HOST_IPI(r13)
 	lbz	r0, HSTATE_HOST_IPI(r13)
 	cmpwi	r0, 0
 	cmpwi	r0, 0
-	beq	4f
+	beq	maybe_reenter_guest
 	b	guest_exit_cont
 	b	guest_exit_cont
 3:
 3:
 	/* If it's a hypervisor facility unavailable interrupt, save HFSCR */
 	/* If it's a hypervisor facility unavailable interrupt, save HFSCR */
@@ -1433,82 +1412,16 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
 14:
 14:
 	/* External interrupt ? */
 	/* External interrupt ? */
 	cmpwi	r12, BOOK3S_INTERRUPT_EXTERNAL
 	cmpwi	r12, BOOK3S_INTERRUPT_EXTERNAL
-	bne+	guest_exit_cont
-
-	/* External interrupt, first check for host_ipi. If this is
-	 * set, we know the host wants us out so let's do it now
-	 */
-	bl	kvmppc_read_intr
-
-	/*
-	 * Restore the active volatile registers after returning from
-	 * a C function.
-	 */
-	ld	r9, HSTATE_KVM_VCPU(r13)
-	li	r12, BOOK3S_INTERRUPT_EXTERNAL
-
-	/*
-	 * kvmppc_read_intr return codes:
-	 *
-	 * Exit to host (r3 > 0)
-	 *   1 An interrupt is pending that needs to be handled by the host
-	 *     Exit guest and return to host by branching to guest_exit_cont
-	 *
-	 *   2 Passthrough that needs completion in the host
-	 *     Exit guest and return to host by branching to guest_exit_cont
-	 *     However, we also set r12 to BOOK3S_INTERRUPT_HV_RM_HARD
-	 *     to indicate to the host to complete handling the interrupt
-	 *
-	 * Before returning to guest, we check if any CPU is heading out
-	 * to the host and if so, we head out also. If no CPUs are heading
-	 * check return values <= 0.
-	 *
-	 * Return to guest (r3 <= 0)
-	 *  0 No external interrupt is pending
-	 * -1 A guest wakeup IPI (which has now been cleared)
-	 *    In either case, we return to guest to deliver any pending
-	 *    guest interrupts.
-	 *
-	 * -2 A PCI passthrough external interrupt was handled
-	 *    (interrupt was delivered directly to guest)
-	 *    Return to guest to deliver any pending guest interrupts.
-	 */
-
-	cmpdi	r3, 1
-	ble	1f
-
-	/* Return code = 2 */
-	li	r12, BOOK3S_INTERRUPT_HV_RM_HARD
-	stw	r12, VCPU_TRAP(r9)
-	b	guest_exit_cont
-
-1:	/* Return code <= 1 */
-	cmpdi	r3, 0
-	bgt	guest_exit_cont
-
-	/* Return code <= 0 */
-4:	ld	r5, HSTATE_KVM_VCORE(r13)
-	lwz	r0, VCORE_ENTRY_EXIT(r5)
-	cmpwi	r0, 0x100
-	mr	r4, r9
-	blt	deliver_guest_interrupt
-
-guest_exit_cont:		/* r9 = vcpu, r12 = trap, r13 = paca */
-	/* Save more register state  */
-	mfdar	r6
-	mfdsisr	r7
-	std	r6, VCPU_DAR(r9)
-	stw	r7, VCPU_DSISR(r9)
-	/* don't overwrite fault_dar/fault_dsisr if HDSI */
-	cmpwi	r12,BOOK3S_INTERRUPT_H_DATA_STORAGE
-	beq	mc_cont
-	std	r6, VCPU_FAULT_DAR(r9)
-	stw	r7, VCPU_FAULT_DSISR(r9)
-
+	beq	kvmppc_guest_external
 	/* See if it is a machine check */
 	/* See if it is a machine check */
 	cmpwi	r12, BOOK3S_INTERRUPT_MACHINE_CHECK
 	cmpwi	r12, BOOK3S_INTERRUPT_MACHINE_CHECK
 	beq	machine_check_realmode
 	beq	machine_check_realmode
-mc_cont:
+	/* Or a hypervisor maintenance interrupt */
+	cmpwi	r12, BOOK3S_INTERRUPT_HMI
+	beq	hmi_realmode
+
+guest_exit_cont:		/* r9 = vcpu, r12 = trap, r13 = paca */
+
 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
 	addi	r3, r9, VCPU_TB_RMEXIT
 	addi	r3, r9, VCPU_TB_RMEXIT
 	mr	r4, r9
 	mr	r4, r9
@@ -1552,6 +1465,11 @@ mc_cont:
 1:
 1:
 #endif /* CONFIG_KVM_XICS */
 #endif /* CONFIG_KVM_XICS */
 
 
+	/* If we came in through the P9 short path, go back out to C now */
+	lwz	r0, STACK_SLOT_SHORT_PATH(r1)
+	cmpwi	r0, 0
+	bne	guest_exit_short_path
+
 	/* For hash guest, read the guest SLB and save it away */
 	/* For hash guest, read the guest SLB and save it away */
 	ld	r5, VCPU_KVM(r9)
 	ld	r5, VCPU_KVM(r9)
 	lbz	r0, KVM_RADIX(r5)
 	lbz	r0, KVM_RADIX(r5)
@@ -1780,11 +1698,13 @@ BEGIN_FTR_SECTION
 	b	91f
 	b	91f
 END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 	/*
 	/*
-	 * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS INCLUDING CR
+	 * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS (but not CR)
 	 */
 	 */
 	mr      r3, r9
 	mr      r3, r9
 	ld      r4, VCPU_MSR(r3)
 	ld      r4, VCPU_MSR(r3)
+	li	r5, 0			/* don't preserve non-vol regs */
 	bl	kvmppc_save_tm_hv
 	bl	kvmppc_save_tm_hv
+	nop
 	ld	r9, HSTATE_KVM_VCPU(r13)
 	ld	r9, HSTATE_KVM_VCPU(r13)
 91:
 91:
 #endif
 #endif
@@ -1802,90 +1722,19 @@ END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 25:
 25:
 	/* Save PMU registers if requested */
 	/* Save PMU registers if requested */
 	/* r8 and cr0.eq are live here */
 	/* r8 and cr0.eq are live here */
+	mr	r3, r9
+	li	r4, 1
+	beq	21f			/* if no VPA, save PMU stuff anyway */
+	lbz	r4, LPPACA_PMCINUSE(r8)
+21:	bl	kvmhv_save_guest_pmu
+	ld	r9, HSTATE_KVM_VCPU(r13)
+
+	/* Restore host values of some registers */
 BEGIN_FTR_SECTION
 BEGIN_FTR_SECTION
-	/*
-	 * POWER8 seems to have a hardware bug where setting
-	 * MMCR0[PMAE] along with MMCR0[PMC1CE] and/or MMCR0[PMCjCE]
-	 * when some counters are already negative doesn't seem
-	 * to cause a performance monitor alert (and hence interrupt).
-	 * The effect of this is that when saving the PMU state,
-	 * if there is no PMU alert pending when we read MMCR0
-	 * before freezing the counters, but one becomes pending
-	 * before we read the counters, we lose it.
-	 * To work around this, we need a way to freeze the counters
-	 * before reading MMCR0.  Normally, freezing the counters
-	 * is done by writing MMCR0 (to set MMCR0[FC]) which
-	 * unavoidably writes MMCR0[PMA0] as well.  On POWER8,
-	 * we can also freeze the counters using MMCR2, by writing
-	 * 1s to all the counter freeze condition bits (there are
-	 * 9 bits each for 6 counters).
-	 */
-	li	r3, -1			/* set all freeze bits */
-	clrrdi	r3, r3, 10
-	mfspr	r10, SPRN_MMCR2
-	mtspr	SPRN_MMCR2, r3
-	isync
-END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
-	li	r3, 1
-	sldi	r3, r3, 31		/* MMCR0_FC (freeze counters) bit */
-	mfspr	r4, SPRN_MMCR0		/* save MMCR0 */
-	mtspr	SPRN_MMCR0, r3		/* freeze all counters, disable ints */
-	mfspr	r6, SPRN_MMCRA
-	/* Clear MMCRA in order to disable SDAR updates */
-	li	r7, 0
-	mtspr	SPRN_MMCRA, r7
-	isync
-	beq	21f			/* if no VPA, save PMU stuff anyway */
-	lbz	r7, LPPACA_PMCINUSE(r8)
-	cmpwi	r7, 0			/* did they ask for PMU stuff to be saved? */
-	bne	21f
-	std	r3, VCPU_MMCR(r9)	/* if not, set saved MMCR0 to FC */
-	b	22f
-21:	mfspr	r5, SPRN_MMCR1
-	mfspr	r7, SPRN_SIAR
-	mfspr	r8, SPRN_SDAR
-	std	r4, VCPU_MMCR(r9)
-	std	r5, VCPU_MMCR + 8(r9)
-	std	r6, VCPU_MMCR + 16(r9)
-BEGIN_FTR_SECTION
-	std	r10, VCPU_MMCR + 24(r9)
-END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
-	std	r7, VCPU_SIAR(r9)
-	std	r8, VCPU_SDAR(r9)
-	mfspr	r3, SPRN_PMC1
-	mfspr	r4, SPRN_PMC2
-	mfspr	r5, SPRN_PMC3
-	mfspr	r6, SPRN_PMC4
-	mfspr	r7, SPRN_PMC5
-	mfspr	r8, SPRN_PMC6
-	stw	r3, VCPU_PMC(r9)
-	stw	r4, VCPU_PMC + 4(r9)
-	stw	r5, VCPU_PMC + 8(r9)
-	stw	r6, VCPU_PMC + 12(r9)
-	stw	r7, VCPU_PMC + 16(r9)
-	stw	r8, VCPU_PMC + 20(r9)
-BEGIN_FTR_SECTION
-	mfspr	r5, SPRN_SIER
-	std	r5, VCPU_SIER(r9)
-BEGIN_FTR_SECTION_NESTED(96)
-	mfspr	r6, SPRN_SPMC1
-	mfspr	r7, SPRN_SPMC2
-	mfspr	r8, SPRN_MMCRS
-	stw	r6, VCPU_PMC + 24(r9)
-	stw	r7, VCPU_PMC + 28(r9)
-	std	r8, VCPU_MMCR + 32(r9)
-	lis	r4, 0x8000
-	mtspr	SPRN_MMCRS, r4
-END_FTR_SECTION_NESTED(CPU_FTR_ARCH_300, 0, 96)
-END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
-22:
-
-	/* Restore host values of some registers */
-BEGIN_FTR_SECTION
-	ld	r5, STACK_SLOT_CIABR(r1)
-	ld	r6, STACK_SLOT_DAWR(r1)
-	ld	r7, STACK_SLOT_DAWRX(r1)
-	mtspr	SPRN_CIABR, r5
+	ld	r5, STACK_SLOT_CIABR(r1)
+	ld	r6, STACK_SLOT_DAWR(r1)
+	ld	r7, STACK_SLOT_DAWRX(r1)
+	mtspr	SPRN_CIABR, r5
 	/*
 	/*
 	 * If the DAWR doesn't work, it's ok to write these here as
 	 * If the DAWR doesn't work, it's ok to write these here as
 	 * this value should always be zero
 	 * this value should always be zero
@@ -2010,24 +1859,6 @@ BEGIN_FTR_SECTION
 	mtspr	SPRN_DPDES, r8
 	mtspr	SPRN_DPDES, r8
 END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
 END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
 
 
-	/* If HMI, call kvmppc_realmode_hmi_handler() */
-	lwz	r12, STACK_SLOT_TRAP(r1)
-	cmpwi	r12, BOOK3S_INTERRUPT_HMI
-	bne	27f
-	bl	kvmppc_realmode_hmi_handler
-	nop
-	cmpdi	r3, 0
-	/*
-	 * At this point kvmppc_realmode_hmi_handler may have resync-ed
-	 * the TB, and if it has, we must not subtract the guest timebase
-	 * offset from the timebase. So, skip it.
-	 *
-	 * Also, do not call kvmppc_subcore_exit_guest() because it has
-	 * been invoked as part of kvmppc_realmode_hmi_handler().
-	 */
-	beq	30f
-
-27:
 	/* Subtract timebase offset from timebase */
 	/* Subtract timebase offset from timebase */
 	ld	r8, VCORE_TB_OFFSET_APPL(r5)
 	ld	r8, VCORE_TB_OFFSET_APPL(r5)
 	cmpdi	r8,0
 	cmpdi	r8,0
@@ -2045,7 +1876,16 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
 	addis	r8,r8,0x100		/* if so, increment upper 40 bits */
 	addis	r8,r8,0x100		/* if so, increment upper 40 bits */
 	mtspr	SPRN_TBU40,r8
 	mtspr	SPRN_TBU40,r8
 
 
-17:	bl	kvmppc_subcore_exit_guest
+17:
+	/*
+	 * If this is an HMI, we called kvmppc_realmode_hmi_handler
+	 * above, which may or may not have already called
+	 * kvmppc_subcore_exit_guest.  Fortunately, all that
+	 * kvmppc_subcore_exit_guest does is clear a flag, so calling
+	 * it again here is benign even if kvmppc_realmode_hmi_handler
+	 * has already called it.
+	 */
+	bl	kvmppc_subcore_exit_guest
 	nop
 	nop
 30:	ld	r5,HSTATE_KVM_VCORE(r13)
 30:	ld	r5,HSTATE_KVM_VCORE(r13)
 	ld	r4,VCORE_KVM(r5)	/* pointer to struct kvm */
 	ld	r4,VCORE_KVM(r5)	/* pointer to struct kvm */
@@ -2099,6 +1939,67 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
 	mtlr	r0
 	mtlr	r0
 	blr
 	blr
 
 
+kvmppc_guest_external:
+	/* External interrupt, first check for host_ipi. If this is
+	 * set, we know the host wants us out so let's do it now
+	 */
+	bl	kvmppc_read_intr
+
+	/*
+	 * Restore the active volatile registers after returning from
+	 * a C function.
+	 */
+	ld	r9, HSTATE_KVM_VCPU(r13)
+	li	r12, BOOK3S_INTERRUPT_EXTERNAL
+
+	/*
+	 * kvmppc_read_intr return codes:
+	 *
+	 * Exit to host (r3 > 0)
+	 *   1 An interrupt is pending that needs to be handled by the host
+	 *     Exit guest and return to host by branching to guest_exit_cont
+	 *
+	 *   2 Passthrough that needs completion in the host
+	 *     Exit guest and return to host by branching to guest_exit_cont
+	 *     However, we also set r12 to BOOK3S_INTERRUPT_HV_RM_HARD
+	 *     to indicate to the host to complete handling the interrupt
+	 *
+	 * Before returning to guest, we check if any CPU is heading out
+	 * to the host and if so, we head out also. If no CPUs are heading
+	 * check return values <= 0.
+	 *
+	 * Return to guest (r3 <= 0)
+	 *  0 No external interrupt is pending
+	 * -1 A guest wakeup IPI (which has now been cleared)
+	 *    In either case, we return to guest to deliver any pending
+	 *    guest interrupts.
+	 *
+	 * -2 A PCI passthrough external interrupt was handled
+	 *    (interrupt was delivered directly to guest)
+	 *    Return to guest to deliver any pending guest interrupts.
+	 */
+
+	cmpdi	r3, 1
+	ble	1f
+
+	/* Return code = 2 */
+	li	r12, BOOK3S_INTERRUPT_HV_RM_HARD
+	stw	r12, VCPU_TRAP(r9)
+	b	guest_exit_cont
+
+1:	/* Return code <= 1 */
+	cmpdi	r3, 0
+	bgt	guest_exit_cont
+
+	/* Return code <= 0 */
+maybe_reenter_guest:
+	ld	r5, HSTATE_KVM_VCORE(r13)
+	lwz	r0, VCORE_ENTRY_EXIT(r5)
+	cmpwi	r0, 0x100
+	mr	r4, r9
+	blt	deliver_guest_interrupt
+	b	guest_exit_cont
+
 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 /*
 /*
  * Softpatch interrupt for transactional memory emulation cases
  * Softpatch interrupt for transactional memory emulation cases
@@ -2302,6 +2203,10 @@ hcall_try_real_mode:
 	andi.	r0,r11,MSR_PR
 	andi.	r0,r11,MSR_PR
 	/* sc 1 from userspace - reflect to guest syscall */
 	/* sc 1 from userspace - reflect to guest syscall */
 	bne	sc_1_fast_return
 	bne	sc_1_fast_return
+	/* sc 1 from nested guest - give it to L1 to handle */
+	ld	r0, VCPU_NESTED(r9)
+	cmpdi	r0, 0
+	bne	guest_exit_cont
 	clrrdi	r3,r3,2
 	clrrdi	r3,r3,2
 	cmpldi	r3,hcall_real_table_end - hcall_real_table
 	cmpldi	r3,hcall_real_table_end - hcall_real_table
 	bge	guest_exit_cont
 	bge	guest_exit_cont
@@ -2561,6 +2466,7 @@ hcall_real_table:
 hcall_real_table_end:
 hcall_real_table_end:
 
 
 _GLOBAL(kvmppc_h_set_xdabr)
 _GLOBAL(kvmppc_h_set_xdabr)
+EXPORT_SYMBOL_GPL(kvmppc_h_set_xdabr)
 	andi.	r0, r5, DABRX_USER | DABRX_KERNEL
 	andi.	r0, r5, DABRX_USER | DABRX_KERNEL
 	beq	6f
 	beq	6f
 	li	r0, DABRX_USER | DABRX_KERNEL | DABRX_BTI
 	li	r0, DABRX_USER | DABRX_KERNEL | DABRX_BTI
@@ -2570,6 +2476,7 @@ _GLOBAL(kvmppc_h_set_xdabr)
 	blr
 	blr
 
 
 _GLOBAL(kvmppc_h_set_dabr)
 _GLOBAL(kvmppc_h_set_dabr)
+EXPORT_SYMBOL_GPL(kvmppc_h_set_dabr)
 	li	r5, DABRX_USER | DABRX_KERNEL
 	li	r5, DABRX_USER | DABRX_KERNEL
 3:
 3:
 BEGIN_FTR_SECTION
 BEGIN_FTR_SECTION
@@ -2682,11 +2589,13 @@ BEGIN_FTR_SECTION
 	b	91f
 	b	91f
 END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 	/*
 	/*
-	 * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS INCLUDING CR
+	 * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS (but not CR)
 	 */
 	 */
 	ld	r3, HSTATE_KVM_VCPU(r13)
 	ld	r3, HSTATE_KVM_VCPU(r13)
 	ld      r4, VCPU_MSR(r3)
 	ld      r4, VCPU_MSR(r3)
+	li	r5, 0			/* don't preserve non-vol regs */
 	bl	kvmppc_save_tm_hv
 	bl	kvmppc_save_tm_hv
+	nop
 91:
 91:
 #endif
 #endif
 
 
@@ -2802,11 +2711,13 @@ BEGIN_FTR_SECTION
 	b	91f
 	b	91f
 END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 	/*
 	/*
-	 * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS INCLUDING CR
+	 * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS (but not CR)
 	 */
 	 */
 	mr      r3, r4
 	mr      r3, r4
 	ld      r4, VCPU_MSR(r3)
 	ld      r4, VCPU_MSR(r3)
+	li	r5, 0			/* don't preserve non-vol regs */
 	bl	kvmppc_restore_tm_hv
 	bl	kvmppc_restore_tm_hv
+	nop
 	ld	r4, HSTATE_KVM_VCPU(r13)
 	ld	r4, HSTATE_KVM_VCPU(r13)
 91:
 91:
 #endif
 #endif
@@ -2874,13 +2785,7 @@ END_FTR_SECTION(CPU_FTR_TM | CPU_FTR_P9_TM_HV_ASSIST, 0)
 	mr	r9, r4
 	mr	r9, r4
 	cmpdi	r3, 0
 	cmpdi	r3, 0
 	bgt	guest_exit_cont
 	bgt	guest_exit_cont
-
-	/* see if any other thread is already exiting */
-	lwz	r0,VCORE_ENTRY_EXIT(r5)
-	cmpwi	r0,0x100
-	bge	guest_exit_cont
-
-	b	kvmppc_cede_reentry	/* if not go back to guest */
+	b	maybe_reenter_guest
 
 
 	/* cede when already previously prodded case */
 	/* cede when already previously prodded case */
 kvm_cede_prodded:
 kvm_cede_prodded:
@@ -2947,12 +2852,12 @@ machine_check_realmode:
 	 */
 	 */
 	ld	r11, VCPU_MSR(r9)
 	ld	r11, VCPU_MSR(r9)
 	rldicl.	r0, r11, 64-MSR_HV_LG, 63 /* check if it happened in HV mode */
 	rldicl.	r0, r11, 64-MSR_HV_LG, 63 /* check if it happened in HV mode */
-	bne	mc_cont			/* if so, exit to host */
+	bne	guest_exit_cont		/* if so, exit to host */
 	/* Check if guest is capable of handling NMI exit */
 	/* Check if guest is capable of handling NMI exit */
 	ld	r10, VCPU_KVM(r9)
 	ld	r10, VCPU_KVM(r9)
 	lbz	r10, KVM_FWNMI(r10)
 	lbz	r10, KVM_FWNMI(r10)
 	cmpdi	r10, 1			/* FWNMI capable? */
 	cmpdi	r10, 1			/* FWNMI capable? */
-	beq	mc_cont			/* if so, exit with KVM_EXIT_NMI. */
+	beq	guest_exit_cont		/* if so, exit with KVM_EXIT_NMI. */
 
 
 	/* if not, fall through for backward compatibility. */
 	/* if not, fall through for backward compatibility. */
 	andi.	r10, r11, MSR_RI	/* check for unrecoverable exception */
 	andi.	r10, r11, MSR_RI	/* check for unrecoverable exception */
@@ -2965,6 +2870,21 @@ machine_check_realmode:
 	bl	kvmppc_msr_interrupt
 	bl	kvmppc_msr_interrupt
 2:	b	fast_interrupt_c_return
 2:	b	fast_interrupt_c_return
 
 
+/*
+ * Call C code to handle a HMI in real mode.
+ * Only the primary thread does the call, secondary threads are handled
+ * by calling hmi_exception_realmode() after kvmppc_hv_entry returns.
+ * r9 points to the vcpu on entry
+ */
+hmi_realmode:
+	lbz	r0, HSTATE_PTID(r13)
+	cmpwi	r0, 0
+	bne	guest_exit_cont
+	bl	kvmppc_realmode_hmi_handler
+	ld	r9, HSTATE_KVM_VCPU(r13)
+	li	r12, BOOK3S_INTERRUPT_HMI
+	b	guest_exit_cont
+
 /*
 /*
  * Check the reason we woke from nap, and take appropriate action.
  * Check the reason we woke from nap, and take appropriate action.
  * Returns (in r3):
  * Returns (in r3):
@@ -3130,10 +3050,12 @@ END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
  * Save transactional state and TM-related registers.
  * Save transactional state and TM-related registers.
  * Called with r3 pointing to the vcpu struct and r4 containing
  * Called with r3 pointing to the vcpu struct and r4 containing
  * the guest MSR value.
  * the guest MSR value.
- * This can modify all checkpointed registers, but
+ * r5 is non-zero iff non-volatile register state needs to be maintained.
+ * If r5 == 0, this can modify all checkpointed registers, but
  * restores r1 and r2 before exit.
  * restores r1 and r2 before exit.
  */
  */
-kvmppc_save_tm_hv:
+_GLOBAL_TOC(kvmppc_save_tm_hv)
+EXPORT_SYMBOL_GPL(kvmppc_save_tm_hv)
 	/* See if we need to handle fake suspend mode */
 	/* See if we need to handle fake suspend mode */
 BEGIN_FTR_SECTION
 BEGIN_FTR_SECTION
 	b	__kvmppc_save_tm
 	b	__kvmppc_save_tm
@@ -3161,12 +3083,6 @@ BEGIN_FTR_SECTION
 END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_XER_SO_BUG)
 END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_XER_SO_BUG)
 	nop
 	nop
 
 
-	std	r1, HSTATE_HOST_R1(r13)
-
-	/* Clear the MSR RI since r1, r13 may be foobar. */
-	li	r5, 0
-	mtmsrd	r5, 1
-
 	/* We have to treclaim here because that's the only way to do S->N */
 	/* We have to treclaim here because that's the only way to do S->N */
 	li	r3, TM_CAUSE_KVM_RESCHED
 	li	r3, TM_CAUSE_KVM_RESCHED
 	TRECLAIM(R3)
 	TRECLAIM(R3)
@@ -3175,22 +3091,13 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_XER_SO_BUG)
 	 * We were in fake suspend, so we are not going to save the
 	 * We were in fake suspend, so we are not going to save the
 	 * register state as the guest checkpointed state (since
 	 * register state as the guest checkpointed state (since
 	 * we already have it), therefore we can now use any volatile GPR.
 	 * we already have it), therefore we can now use any volatile GPR.
+	 * In fact treclaim in fake suspend state doesn't modify
+	 * any registers.
 	 */
 	 */
-	/* Reload PACA pointer, stack pointer and TOC. */
-	GET_PACA(r13)
-	ld	r1, HSTATE_HOST_R1(r13)
-	ld	r2, PACATOC(r13)
 
 
-	/* Set MSR RI now we have r1 and r13 back. */
-	li	r5, MSR_RI
-	mtmsrd	r5, 1
-
-	HMT_MEDIUM
-	ld	r6, HSTATE_DSCR(r13)
-	mtspr	SPRN_DSCR, r6
-BEGIN_FTR_SECTION_NESTED(96)
+BEGIN_FTR_SECTION
 	bl	pnv_power9_force_smt4_release
 	bl	pnv_power9_force_smt4_release
-END_FTR_SECTION_NESTED(CPU_FTR_P9_TM_XER_SO_BUG, CPU_FTR_P9_TM_XER_SO_BUG, 96)
+END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_XER_SO_BUG)
 	nop
 	nop
 
 
 4:
 4:
@@ -3216,10 +3123,12 @@ END_FTR_SECTION_NESTED(CPU_FTR_P9_TM_XER_SO_BUG, CPU_FTR_P9_TM_XER_SO_BUG, 96)
  * Restore transactional state and TM-related registers.
  * Restore transactional state and TM-related registers.
  * Called with r3 pointing to the vcpu struct
  * Called with r3 pointing to the vcpu struct
  * and r4 containing the guest MSR value.
  * and r4 containing the guest MSR value.
+ * r5 is non-zero iff non-volatile register state needs to be maintained.
  * This potentially modifies all checkpointed registers.
  * This potentially modifies all checkpointed registers.
  * It restores r1 and r2 from the PACA.
  * It restores r1 and r2 from the PACA.
  */
  */
-kvmppc_restore_tm_hv:
+_GLOBAL_TOC(kvmppc_restore_tm_hv)
+EXPORT_SYMBOL_GPL(kvmppc_restore_tm_hv)
 	/*
 	/*
 	 * If we are doing TM emulation for the guest on a POWER9 DD2,
 	 * If we are doing TM emulation for the guest on a POWER9 DD2,
 	 * then we don't actually do a trechkpt -- we either set up
 	 * then we don't actually do a trechkpt -- we either set up
@@ -3423,6 +3332,194 @@ kvmppc_msr_interrupt:
 1:	rldimi	r11, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
 1:	rldimi	r11, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
 	blr
 	blr
 
 
+/*
+ * Load up guest PMU state.  R3 points to the vcpu struct.
+ */
+_GLOBAL(kvmhv_load_guest_pmu)
+EXPORT_SYMBOL_GPL(kvmhv_load_guest_pmu)
+	mr	r4, r3
+	mflr	r0
+	li	r3, 1
+	sldi	r3, r3, 31		/* MMCR0_FC (freeze counters) bit */
+	mtspr	SPRN_MMCR0, r3		/* freeze all counters, disable ints */
+	isync
+BEGIN_FTR_SECTION
+	ld	r3, VCPU_MMCR(r4)
+	andi.	r5, r3, MMCR0_PMAO_SYNC | MMCR0_PMAO
+	cmpwi	r5, MMCR0_PMAO
+	beql	kvmppc_fix_pmao
+END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
+	lwz	r3, VCPU_PMC(r4)	/* always load up guest PMU registers */
+	lwz	r5, VCPU_PMC + 4(r4)	/* to prevent information leak */
+	lwz	r6, VCPU_PMC + 8(r4)
+	lwz	r7, VCPU_PMC + 12(r4)
+	lwz	r8, VCPU_PMC + 16(r4)
+	lwz	r9, VCPU_PMC + 20(r4)
+	mtspr	SPRN_PMC1, r3
+	mtspr	SPRN_PMC2, r5
+	mtspr	SPRN_PMC3, r6
+	mtspr	SPRN_PMC4, r7
+	mtspr	SPRN_PMC5, r8
+	mtspr	SPRN_PMC6, r9
+	ld	r3, VCPU_MMCR(r4)
+	ld	r5, VCPU_MMCR + 8(r4)
+	ld	r6, VCPU_MMCR + 16(r4)
+	ld	r7, VCPU_SIAR(r4)
+	ld	r8, VCPU_SDAR(r4)
+	mtspr	SPRN_MMCR1, r5
+	mtspr	SPRN_MMCRA, r6
+	mtspr	SPRN_SIAR, r7
+	mtspr	SPRN_SDAR, r8
+BEGIN_FTR_SECTION
+	ld	r5, VCPU_MMCR + 24(r4)
+	ld	r6, VCPU_SIER(r4)
+	mtspr	SPRN_MMCR2, r5
+	mtspr	SPRN_SIER, r6
+BEGIN_FTR_SECTION_NESTED(96)
+	lwz	r7, VCPU_PMC + 24(r4)
+	lwz	r8, VCPU_PMC + 28(r4)
+	ld	r9, VCPU_MMCR + 32(r4)
+	mtspr	SPRN_SPMC1, r7
+	mtspr	SPRN_SPMC2, r8
+	mtspr	SPRN_MMCRS, r9
+END_FTR_SECTION_NESTED(CPU_FTR_ARCH_300, 0, 96)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+	mtspr	SPRN_MMCR0, r3
+	isync
+	mtlr	r0
+	blr
+
+/*
+ * Reload host PMU state saved in the PACA by kvmhv_save_host_pmu.
+ */
+_GLOBAL(kvmhv_load_host_pmu)
+EXPORT_SYMBOL_GPL(kvmhv_load_host_pmu)
+	mflr	r0
+	lbz	r4, PACA_PMCINUSE(r13) /* is the host using the PMU? */
+	cmpwi	r4, 0
+	beq	23f			/* skip if not */
+BEGIN_FTR_SECTION
+	ld	r3, HSTATE_MMCR0(r13)
+	andi.	r4, r3, MMCR0_PMAO_SYNC | MMCR0_PMAO
+	cmpwi	r4, MMCR0_PMAO
+	beql	kvmppc_fix_pmao
+END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
+	lwz	r3, HSTATE_PMC1(r13)
+	lwz	r4, HSTATE_PMC2(r13)
+	lwz	r5, HSTATE_PMC3(r13)
+	lwz	r6, HSTATE_PMC4(r13)
+	lwz	r8, HSTATE_PMC5(r13)
+	lwz	r9, HSTATE_PMC6(r13)
+	mtspr	SPRN_PMC1, r3
+	mtspr	SPRN_PMC2, r4
+	mtspr	SPRN_PMC3, r5
+	mtspr	SPRN_PMC4, r6
+	mtspr	SPRN_PMC5, r8
+	mtspr	SPRN_PMC6, r9
+	ld	r3, HSTATE_MMCR0(r13)
+	ld	r4, HSTATE_MMCR1(r13)
+	ld	r5, HSTATE_MMCRA(r13)
+	ld	r6, HSTATE_SIAR(r13)
+	ld	r7, HSTATE_SDAR(r13)
+	mtspr	SPRN_MMCR1, r4
+	mtspr	SPRN_MMCRA, r5
+	mtspr	SPRN_SIAR, r6
+	mtspr	SPRN_SDAR, r7
+BEGIN_FTR_SECTION
+	ld	r8, HSTATE_MMCR2(r13)
+	ld	r9, HSTATE_SIER(r13)
+	mtspr	SPRN_MMCR2, r8
+	mtspr	SPRN_SIER, r9
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+	mtspr	SPRN_MMCR0, r3
+	isync
+	mtlr	r0
+23:	blr
+
+/*
+ * Save guest PMU state into the vcpu struct.
+ * r3 = vcpu, r4 = full save flag (PMU in use flag set in VPA)
+ */
+_GLOBAL(kvmhv_save_guest_pmu)
+EXPORT_SYMBOL_GPL(kvmhv_save_guest_pmu)
+	mr	r9, r3
+	mr	r8, r4
+BEGIN_FTR_SECTION
+	/*
+	 * POWER8 seems to have a hardware bug where setting
+	 * MMCR0[PMAE] along with MMCR0[PMC1CE] and/or MMCR0[PMCjCE]
+	 * when some counters are already negative doesn't seem
+	 * to cause a performance monitor alert (and hence interrupt).
+	 * The effect of this is that when saving the PMU state,
+	 * if there is no PMU alert pending when we read MMCR0
+	 * before freezing the counters, but one becomes pending
+	 * before we read the counters, we lose it.
+	 * To work around this, we need a way to freeze the counters
+	 * before reading MMCR0.  Normally, freezing the counters
+	 * is done by writing MMCR0 (to set MMCR0[FC]) which
+	 * unavoidably writes MMCR0[PMA0] as well.  On POWER8,
+	 * we can also freeze the counters using MMCR2, by writing
+	 * 1s to all the counter freeze condition bits (there are
+	 * 9 bits each for 6 counters).
+	 */
+	li	r3, -1			/* set all freeze bits */
+	clrrdi	r3, r3, 10
+	mfspr	r10, SPRN_MMCR2
+	mtspr	SPRN_MMCR2, r3
+	isync
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+	li	r3, 1
+	sldi	r3, r3, 31		/* MMCR0_FC (freeze counters) bit */
+	mfspr	r4, SPRN_MMCR0		/* save MMCR0 */
+	mtspr	SPRN_MMCR0, r3		/* freeze all counters, disable ints */
+	mfspr	r6, SPRN_MMCRA
+	/* Clear MMCRA in order to disable SDAR updates */
+	li	r7, 0
+	mtspr	SPRN_MMCRA, r7
+	isync
+	cmpwi	r8, 0			/* did they ask for PMU stuff to be saved? */
+	bne	21f
+	std	r3, VCPU_MMCR(r9)	/* if not, set saved MMCR0 to FC */
+	b	22f
+21:	mfspr	r5, SPRN_MMCR1
+	mfspr	r7, SPRN_SIAR
+	mfspr	r8, SPRN_SDAR
+	std	r4, VCPU_MMCR(r9)
+	std	r5, VCPU_MMCR + 8(r9)
+	std	r6, VCPU_MMCR + 16(r9)
+BEGIN_FTR_SECTION
+	std	r10, VCPU_MMCR + 24(r9)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+	std	r7, VCPU_SIAR(r9)
+	std	r8, VCPU_SDAR(r9)
+	mfspr	r3, SPRN_PMC1
+	mfspr	r4, SPRN_PMC2
+	mfspr	r5, SPRN_PMC3
+	mfspr	r6, SPRN_PMC4
+	mfspr	r7, SPRN_PMC5
+	mfspr	r8, SPRN_PMC6
+	stw	r3, VCPU_PMC(r9)
+	stw	r4, VCPU_PMC + 4(r9)
+	stw	r5, VCPU_PMC + 8(r9)
+	stw	r6, VCPU_PMC + 12(r9)
+	stw	r7, VCPU_PMC + 16(r9)
+	stw	r8, VCPU_PMC + 20(r9)
+BEGIN_FTR_SECTION
+	mfspr	r5, SPRN_SIER
+	std	r5, VCPU_SIER(r9)
+BEGIN_FTR_SECTION_NESTED(96)
+	mfspr	r6, SPRN_SPMC1
+	mfspr	r7, SPRN_SPMC2
+	mfspr	r8, SPRN_MMCRS
+	stw	r6, VCPU_PMC + 24(r9)
+	stw	r7, VCPU_PMC + 28(r9)
+	std	r8, VCPU_MMCR + 32(r9)
+	lis	r4, 0x8000
+	mtspr	SPRN_MMCRS, r4
+END_FTR_SECTION_NESTED(CPU_FTR_ARCH_300, 0, 96)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+22:	blr
+
 /*
 /*
  * This works around a hardware bug on POWER8E processors, where
  * This works around a hardware bug on POWER8E processors, where
  * writing a 1 to the MMCR0[PMAO] bit doesn't generate a
  * writing a 1 to the MMCR0[PMAO] bit doesn't generate a

+ 3 - 3
arch/powerpc/kvm/book3s_hv_tm.c

@@ -130,7 +130,7 @@ int kvmhv_p9_tm_emulation(struct kvm_vcpu *vcpu)
 			return RESUME_GUEST;
 			return RESUME_GUEST;
 		}
 		}
 		/* Set CR0 to indicate previous transactional state */
 		/* Set CR0 to indicate previous transactional state */
-		vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) |
+		vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
 			(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
 			(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
 		/* L=1 => tresume, L=0 => tsuspend */
 		/* L=1 => tresume, L=0 => tsuspend */
 		if (instr & (1 << 21)) {
 		if (instr & (1 << 21)) {
@@ -174,7 +174,7 @@ int kvmhv_p9_tm_emulation(struct kvm_vcpu *vcpu)
 		copy_from_checkpoint(vcpu);
 		copy_from_checkpoint(vcpu);
 
 
 		/* Set CR0 to indicate previous transactional state */
 		/* Set CR0 to indicate previous transactional state */
-		vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) |
+		vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
 			(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
 			(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
 		vcpu->arch.shregs.msr &= ~MSR_TS_MASK;
 		vcpu->arch.shregs.msr &= ~MSR_TS_MASK;
 		return RESUME_GUEST;
 		return RESUME_GUEST;
@@ -204,7 +204,7 @@ int kvmhv_p9_tm_emulation(struct kvm_vcpu *vcpu)
 		copy_to_checkpoint(vcpu);
 		copy_to_checkpoint(vcpu);
 
 
 		/* Set CR0 to indicate previous transactional state */
 		/* Set CR0 to indicate previous transactional state */
-		vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) |
+		vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
 			(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
 			(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
 		vcpu->arch.shregs.msr = msr | MSR_TS_S;
 		vcpu->arch.shregs.msr = msr | MSR_TS_S;
 		return RESUME_GUEST;
 		return RESUME_GUEST;

+ 3 - 2
arch/powerpc/kvm/book3s_hv_tm_builtin.c

@@ -89,7 +89,8 @@ int kvmhv_p9_tm_emulation_early(struct kvm_vcpu *vcpu)
 		if (instr & (1 << 21))
 		if (instr & (1 << 21))
 			vcpu->arch.shregs.msr = (msr & ~MSR_TS_MASK) | MSR_TS_T;
 			vcpu->arch.shregs.msr = (msr & ~MSR_TS_MASK) | MSR_TS_T;
 		/* Set CR0 to 0b0010 */
 		/* Set CR0 to 0b0010 */
-		vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) | 0x20000000;
+		vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
+			0x20000000;
 		return 1;
 		return 1;
 	}
 	}
 
 
@@ -105,5 +106,5 @@ void kvmhv_emulate_tm_rollback(struct kvm_vcpu *vcpu)
 	vcpu->arch.shregs.msr &= ~MSR_TS_MASK;	/* go to N state */
 	vcpu->arch.shregs.msr &= ~MSR_TS_MASK;	/* go to N state */
 	vcpu->arch.regs.nip = vcpu->arch.tfhar;
 	vcpu->arch.regs.nip = vcpu->arch.tfhar;
 	copy_from_checkpoint(vcpu);
 	copy_from_checkpoint(vcpu);
-	vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) | 0xa0000000;
+	vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) | 0xa0000000;
 }
 }

+ 2 - 3
arch/powerpc/kvm/book3s_pr.c

@@ -167,7 +167,7 @@ void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
 	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
 	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
 	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
 	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
 	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
 	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
-	svcpu->cr  = vcpu->arch.cr;
+	svcpu->cr  = vcpu->arch.regs.ccr;
 	svcpu->xer = vcpu->arch.regs.xer;
 	svcpu->xer = vcpu->arch.regs.xer;
 	svcpu->ctr = vcpu->arch.regs.ctr;
 	svcpu->ctr = vcpu->arch.regs.ctr;
 	svcpu->lr  = vcpu->arch.regs.link;
 	svcpu->lr  = vcpu->arch.regs.link;
@@ -249,7 +249,7 @@ void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
 	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
 	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
 	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
 	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
 	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
 	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
-	vcpu->arch.cr  = svcpu->cr;
+	vcpu->arch.regs.ccr  = svcpu->cr;
 	vcpu->arch.regs.xer = svcpu->xer;
 	vcpu->arch.regs.xer = svcpu->xer;
 	vcpu->arch.regs.ctr = svcpu->ctr;
 	vcpu->arch.regs.ctr = svcpu->ctr;
 	vcpu->arch.regs.link  = svcpu->lr;
 	vcpu->arch.regs.link  = svcpu->lr;
@@ -1246,7 +1246,6 @@ int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
 		r = RESUME_GUEST;
 		r = RESUME_GUEST;
 		break;
 		break;
 	case BOOK3S_INTERRUPT_EXTERNAL:
 	case BOOK3S_INTERRUPT_EXTERNAL:
-	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
 	case BOOK3S_INTERRUPT_H_VIRT:
 	case BOOK3S_INTERRUPT_H_VIRT:
 		vcpu->stat.ext_intr_exits++;
 		vcpu->stat.ext_intr_exits++;

+ 6 - 8
arch/powerpc/kvm/book3s_xics.c

@@ -310,7 +310,7 @@ static inline bool icp_try_update(struct kvmppc_icp *icp,
 	 */
 	 */
 	if (new.out_ee) {
 	if (new.out_ee) {
 		kvmppc_book3s_queue_irqprio(icp->vcpu,
 		kvmppc_book3s_queue_irqprio(icp->vcpu,
-					    BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
+					    BOOK3S_INTERRUPT_EXTERNAL);
 		if (!change_self)
 		if (!change_self)
 			kvmppc_fast_vcpu_kick(icp->vcpu);
 			kvmppc_fast_vcpu_kick(icp->vcpu);
 	}
 	}
@@ -593,8 +593,7 @@ static noinline unsigned long kvmppc_h_xirr(struct kvm_vcpu *vcpu)
 	u32 xirr;
 	u32 xirr;
 
 
 	/* First, remove EE from the processor */
 	/* First, remove EE from the processor */
-	kvmppc_book3s_dequeue_irqprio(icp->vcpu,
-				      BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
+	kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
 
 
 	/*
 	/*
 	 * ICP State: Accept_Interrupt
 	 * ICP State: Accept_Interrupt
@@ -754,8 +753,7 @@ static noinline void kvmppc_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
 	 * We can remove EE from the current processor, the update
 	 * We can remove EE from the current processor, the update
 	 * transaction will set it again if needed
 	 * transaction will set it again if needed
 	 */
 	 */
-	kvmppc_book3s_dequeue_irqprio(icp->vcpu,
-				      BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
+	kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
 
 
 	do {
 	do {
 		old_state = new_state = READ_ONCE(icp->state);
 		old_state = new_state = READ_ONCE(icp->state);
@@ -1167,8 +1165,7 @@ int kvmppc_xics_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
 	 * Deassert the CPU interrupt request.
 	 * Deassert the CPU interrupt request.
 	 * icp_try_update will reassert it if necessary.
 	 * icp_try_update will reassert it if necessary.
 	 */
 	 */
-	kvmppc_book3s_dequeue_irqprio(icp->vcpu,
-				      BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
+	kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
 
 
 	/*
 	/*
 	 * Note that if we displace an interrupt from old_state.xisr,
 	 * Note that if we displace an interrupt from old_state.xisr,
@@ -1393,7 +1390,8 @@ static int kvmppc_xics_create(struct kvm_device *dev, u32 type)
 	}
 	}
 
 
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
-	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
+	if (cpu_has_feature(CPU_FTR_ARCH_206) &&
+	    cpu_has_feature(CPU_FTR_HVMODE)) {
 		/* Enable real mode support */
 		/* Enable real mode support */
 		xics->real_mode = ENABLE_REALMODE;
 		xics->real_mode = ENABLE_REALMODE;
 		xics->real_mode_dbg = DEBUG_REALMODE;
 		xics->real_mode_dbg = DEBUG_REALMODE;

+ 63 - 0
arch/powerpc/kvm/book3s_xive.c

@@ -61,6 +61,69 @@
  */
  */
 #define XIVE_Q_GAP	2
 #define XIVE_Q_GAP	2
 
 
+/*
+ * Push a vcpu's context to the XIVE on guest entry.
+ * This assumes we are in virtual mode (MMU on)
+ */
+void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
+{
+	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
+	u64 pq;
+
+	if (!tima)
+		return;
+	eieio();
+	__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
+	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
+	vcpu->arch.xive_pushed = 1;
+	eieio();
+
+	/*
+	 * We clear the irq_pending flag. There is a small chance of a
+	 * race vs. the escalation interrupt happening on another
+	 * processor setting it again, but the only consequence is to
+	 * cause a spurious wakeup on the next H_CEDE, which is not an
+	 * issue.
+	 */
+	vcpu->arch.irq_pending = 0;
+
+	/*
+	 * In single escalation mode, if the escalation interrupt is
+	 * on, we mask it.
+	 */
+	if (vcpu->arch.xive_esc_on) {
+		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
+						  XIVE_ESB_SET_PQ_01));
+		mb();
+
+		/*
+		 * We have a possible subtle race here: The escalation
+		 * interrupt might have fired and be on its way to the
+		 * host queue while we mask it, and if we unmask it
+		 * early enough (re-cede right away), there is a
+		 * theorical possibility that it fires again, thus
+		 * landing in the target queue more than once which is
+		 * a big no-no.
+		 *
+		 * Fortunately, solving this is rather easy. If the
+		 * above load setting PQ to 01 returns a previous
+		 * value where P is set, then we know the escalation
+		 * interrupt is somewhere on its way to the host. In
+		 * that case we simply don't clear the xive_esc_on
+		 * flag below. It will be eventually cleared by the
+		 * handler for the escalation interrupt.
+		 *
+		 * Then, when doing a cede, we check that flag again
+		 * before re-enabling the escalation interrupt, and if
+		 * set, we abort the cede.
+		 */
+		if (!(pq & XIVE_ESB_VAL_P))
+			/* Now P is 0, we can clear the flag */
+			vcpu->arch.xive_esc_on = 0;
+	}
+}
+EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
+
 /*
 /*
  * This is a simple trigger for a generic XIVE IRQ. This must
  * This is a simple trigger for a generic XIVE IRQ. This must
  * only be called for interrupts that support a trigger page
  * only be called for interrupts that support a trigger page

+ 0 - 8
arch/powerpc/kvm/book3s_xive_template.c

@@ -280,14 +280,6 @@ X_STATIC unsigned long GLUE(X_PFX,h_xirr)(struct kvm_vcpu *vcpu)
 	/* First collect pending bits from HW */
 	/* First collect pending bits from HW */
 	GLUE(X_PFX,ack_pending)(xc);
 	GLUE(X_PFX,ack_pending)(xc);
 
 
-	/*
-	 * Cleanup the old-style bits if needed (they may have been
-	 * set by pull or an escalation interrupts).
-	 */
-	if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions))
-		clear_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL,
-			  &vcpu->arch.pending_exceptions);
-
 	pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
 	pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
 		 xc->pending, xc->hw_cppr, xc->cppr);
 		 xc->pending, xc->hw_cppr, xc->cppr);
 
 

+ 4 - 4
arch/powerpc/kvm/bookehv_interrupts.S

@@ -182,7 +182,7 @@
 	 */
 	 */
 	PPC_LL	r4, PACACURRENT(r13)
 	PPC_LL	r4, PACACURRENT(r13)
 	PPC_LL	r4, (THREAD + THREAD_KVM_VCPU)(r4)
 	PPC_LL	r4, (THREAD + THREAD_KVM_VCPU)(r4)
-	stw	r10, VCPU_CR(r4)
+	PPC_STL	r10, VCPU_CR(r4)
 	PPC_STL r11, VCPU_GPR(R4)(r4)
 	PPC_STL r11, VCPU_GPR(R4)(r4)
 	PPC_STL	r5, VCPU_GPR(R5)(r4)
 	PPC_STL	r5, VCPU_GPR(R5)(r4)
 	PPC_STL	r6, VCPU_GPR(R6)(r4)
 	PPC_STL	r6, VCPU_GPR(R6)(r4)
@@ -292,7 +292,7 @@ _GLOBAL(kvmppc_handler_\intno\()_\srr1)
 	PPC_STL	r4, VCPU_GPR(R4)(r11)
 	PPC_STL	r4, VCPU_GPR(R4)(r11)
 	PPC_LL	r4, THREAD_NORMSAVE(0)(r10)
 	PPC_LL	r4, THREAD_NORMSAVE(0)(r10)
 	PPC_STL	r5, VCPU_GPR(R5)(r11)
 	PPC_STL	r5, VCPU_GPR(R5)(r11)
-	stw	r13, VCPU_CR(r11)
+	PPC_STL	r13, VCPU_CR(r11)
 	mfspr	r5, \srr0
 	mfspr	r5, \srr0
 	PPC_STL	r3, VCPU_GPR(R10)(r11)
 	PPC_STL	r3, VCPU_GPR(R10)(r11)
 	PPC_LL	r3, THREAD_NORMSAVE(2)(r10)
 	PPC_LL	r3, THREAD_NORMSAVE(2)(r10)
@@ -319,7 +319,7 @@ _GLOBAL(kvmppc_handler_\intno\()_\srr1)
 	PPC_STL	r4, VCPU_GPR(R4)(r11)
 	PPC_STL	r4, VCPU_GPR(R4)(r11)
 	PPC_LL	r4, GPR9(r8)
 	PPC_LL	r4, GPR9(r8)
 	PPC_STL	r5, VCPU_GPR(R5)(r11)
 	PPC_STL	r5, VCPU_GPR(R5)(r11)
-	stw	r9, VCPU_CR(r11)
+	PPC_STL	r9, VCPU_CR(r11)
 	mfspr	r5, \srr0
 	mfspr	r5, \srr0
 	PPC_STL	r3, VCPU_GPR(R8)(r11)
 	PPC_STL	r3, VCPU_GPR(R8)(r11)
 	PPC_LL	r3, GPR10(r8)
 	PPC_LL	r3, GPR10(r8)
@@ -643,7 +643,7 @@ lightweight_exit:
 	PPC_LL	r3, VCPU_LR(r4)
 	PPC_LL	r3, VCPU_LR(r4)
 	PPC_LL	r5, VCPU_XER(r4)
 	PPC_LL	r5, VCPU_XER(r4)
 	PPC_LL	r6, VCPU_CTR(r4)
 	PPC_LL	r6, VCPU_CTR(r4)
-	lwz	r7, VCPU_CR(r4)
+	PPC_LL	r7, VCPU_CR(r4)
 	PPC_LL	r8, VCPU_PC(r4)
 	PPC_LL	r8, VCPU_PC(r4)
 	PPC_LD(r9, VCPU_SHARED_MSR, r11)
 	PPC_LD(r9, VCPU_SHARED_MSR, r11)
 	PPC_LL	r0, VCPU_GPR(R0)(r4)
 	PPC_LL	r0, VCPU_GPR(R0)(r4)

+ 0 - 1
arch/powerpc/kvm/emulate_loadstore.c

@@ -117,7 +117,6 @@ int kvmppc_emulate_loadstore(struct kvm_vcpu *vcpu)
 
 
 	emulated = EMULATE_FAIL;
 	emulated = EMULATE_FAIL;
 	vcpu->arch.regs.msr = vcpu->arch.shared->msr;
 	vcpu->arch.regs.msr = vcpu->arch.shared->msr;
-	vcpu->arch.regs.ccr = vcpu->arch.cr;
 	if (analyse_instr(&op, &vcpu->arch.regs, inst) == 0) {
 	if (analyse_instr(&op, &vcpu->arch.regs, inst) == 0) {
 		int type = op.type & INSTR_TYPE_MASK;
 		int type = op.type & INSTR_TYPE_MASK;
 		int size = GETSIZE(op.type);
 		int size = GETSIZE(op.type);

+ 14 - 1
arch/powerpc/kvm/powerpc.c

@@ -594,7 +594,12 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 		r = !!(hv_enabled && radix_enabled());
 		r = !!(hv_enabled && radix_enabled());
 		break;
 		break;
 	case KVM_CAP_PPC_MMU_HASH_V3:
 	case KVM_CAP_PPC_MMU_HASH_V3:
-		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
+		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
+		       cpu_has_feature(CPU_FTR_HVMODE));
+		break;
+	case KVM_CAP_PPC_NESTED_HV:
+		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
+		       !kvmppc_hv_ops->enable_nested(NULL));
 		break;
 		break;
 #endif
 #endif
 	case KVM_CAP_SYNC_MMU:
 	case KVM_CAP_SYNC_MMU:
@@ -2114,6 +2119,14 @@ static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
 		break;
 		break;
 	}
 	}
+
+	case KVM_CAP_PPC_NESTED_HV:
+		r = -EINVAL;
+		if (!is_kvmppc_hv_enabled(kvm) ||
+		    !kvm->arch.kvm_ops->enable_nested)
+			break;
+		r = kvm->arch.kvm_ops->enable_nested(kvm);
+		break;
 #endif
 #endif
 	default:
 	default:
 		r = -EINVAL;
 		r = -EINVAL;

+ 136 - 114
arch/powerpc/kvm/tm.S

@@ -28,17 +28,25 @@
  * Save transactional state and TM-related registers.
  * Save transactional state and TM-related registers.
  * Called with:
  * Called with:
  * - r3 pointing to the vcpu struct
  * - r3 pointing to the vcpu struct
- * - r4 points to the MSR with current TS bits:
+ * - r4 containing the MSR with current TS bits:
  * 	(For HV KVM, it is VCPU_MSR ; For PR KVM, it is host MSR).
  * 	(For HV KVM, it is VCPU_MSR ; For PR KVM, it is host MSR).
- * This can modify all checkpointed registers, but
- * restores r1, r2 before exit.
+ * - r5 containing a flag indicating that non-volatile registers
+ *	must be preserved.
+ * If r5 == 0, this can modify all checkpointed registers, but
+ * restores r1, r2 before exit.  If r5 != 0, this restores the
+ * MSR TM/FP/VEC/VSX bits to their state on entry.
  */
  */
 _GLOBAL(__kvmppc_save_tm)
 _GLOBAL(__kvmppc_save_tm)
 	mflr	r0
 	mflr	r0
 	std	r0, PPC_LR_STKOFF(r1)
 	std	r0, PPC_LR_STKOFF(r1)
+	stdu    r1, -SWITCH_FRAME_SIZE(r1)
+
+	mr	r9, r3
+	cmpdi	cr7, r5, 0
 
 
 	/* Turn on TM. */
 	/* Turn on TM. */
 	mfmsr	r8
 	mfmsr	r8
+	mr	r10, r8
 	li	r0, 1
 	li	r0, 1
 	rldimi	r8, r0, MSR_TM_LG, 63-MSR_TM_LG
 	rldimi	r8, r0, MSR_TM_LG, 63-MSR_TM_LG
 	ori     r8, r8, MSR_FP
 	ori     r8, r8, MSR_FP
@@ -51,6 +59,27 @@ _GLOBAL(__kvmppc_save_tm)
 	std	r1, HSTATE_SCRATCH2(r13)
 	std	r1, HSTATE_SCRATCH2(r13)
 	std	r3, HSTATE_SCRATCH1(r13)
 	std	r3, HSTATE_SCRATCH1(r13)
 
 
+	/* Save CR on the stack - even if r5 == 0 we need to get cr7 back. */
+	mfcr	r6
+	SAVE_GPR(6, r1)
+
+	/* Save DSCR so we can restore it to avoid running with user value */
+	mfspr	r7, SPRN_DSCR
+	SAVE_GPR(7, r1)
+
+	/*
+	 * We are going to do treclaim., which will modify all checkpointed
+	 * registers.  Save the non-volatile registers on the stack if
+	 * preservation of non-volatile state has been requested.
+	 */
+	beq	cr7, 3f
+	SAVE_NVGPRS(r1)
+
+	/* MSR[TS] will be 0 (non-transactional) once we do treclaim. */
+	li	r0, 0
+	rldimi	r10, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
+	SAVE_GPR(10, r1)	/* final MSR value */
+3:
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 BEGIN_FTR_SECTION
 BEGIN_FTR_SECTION
 	/* Emulation of the treclaim instruction needs TEXASR before treclaim */
 	/* Emulation of the treclaim instruction needs TEXASR before treclaim */
@@ -74,22 +103,25 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
 	std	r9, PACATMSCRATCH(r13)
 	std	r9, PACATMSCRATCH(r13)
 	ld	r9, HSTATE_SCRATCH1(r13)
 	ld	r9, HSTATE_SCRATCH1(r13)
 
 
-	/* Get a few more GPRs free. */
-	std	r29, VCPU_GPRS_TM(29)(r9)
-	std	r30, VCPU_GPRS_TM(30)(r9)
-	std	r31, VCPU_GPRS_TM(31)(r9)
-
-	/* Save away PPR and DSCR soon so don't run with user values. */
-	mfspr	r31, SPRN_PPR
+	/* Save away PPR soon so we don't run with user value. */
+	std	r0, VCPU_GPRS_TM(0)(r9)
+	mfspr	r0, SPRN_PPR
 	HMT_MEDIUM
 	HMT_MEDIUM
-	mfspr	r30, SPRN_DSCR
-#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
-	ld	r29, HSTATE_DSCR(r13)
-	mtspr	SPRN_DSCR, r29
-#endif
 
 
-	/* Save all but r9, r13 & r29-r31 */
-	reg = 0
+	/* Reload stack pointer. */
+	std	r1, VCPU_GPRS_TM(1)(r9)
+	ld	r1, HSTATE_SCRATCH2(r13)
+
+	/* Set MSR RI now we have r1 and r13 back. */
+	std	r2, VCPU_GPRS_TM(2)(r9)
+	li	r2, MSR_RI
+	mtmsrd	r2, 1
+
+	/* Reload TOC pointer. */
+	ld	r2, PACATOC(r13)
+
+	/* Save all but r0-r2, r9 & r13 */
+	reg = 3
 	.rept	29
 	.rept	29
 	.if (reg != 9) && (reg != 13)
 	.if (reg != 9) && (reg != 13)
 	std	reg, VCPU_GPRS_TM(reg)(r9)
 	std	reg, VCPU_GPRS_TM(reg)(r9)
@@ -103,33 +135,29 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
 	ld	r4, PACATMSCRATCH(r13)
 	ld	r4, PACATMSCRATCH(r13)
 	std	r4, VCPU_GPRS_TM(9)(r9)
 	std	r4, VCPU_GPRS_TM(9)(r9)
 
 
-	/* Reload stack pointer and TOC. */
-	ld	r1, HSTATE_SCRATCH2(r13)
-	ld	r2, PACATOC(r13)
-
-	/* Set MSR RI now we have r1 and r13 back. */
-	li	r5, MSR_RI
-	mtmsrd	r5, 1
+	/* Restore host DSCR and CR values, after saving guest values */
+	mfcr	r6
+	mfspr	r7, SPRN_DSCR
+	stw	r6, VCPU_CR_TM(r9)
+	std	r7, VCPU_DSCR_TM(r9)
+	REST_GPR(6, r1)
+	REST_GPR(7, r1)
+	mtcr	r6
+	mtspr	SPRN_DSCR, r7
 
 
-	/* Save away checkpinted SPRs. */
-	std	r31, VCPU_PPR_TM(r9)
-	std	r30, VCPU_DSCR_TM(r9)
+	/* Save away checkpointed SPRs. */
+	std	r0, VCPU_PPR_TM(r9)
 	mflr	r5
 	mflr	r5
-	mfcr	r6
 	mfctr	r7
 	mfctr	r7
 	mfspr	r8, SPRN_AMR
 	mfspr	r8, SPRN_AMR
 	mfspr	r10, SPRN_TAR
 	mfspr	r10, SPRN_TAR
 	mfxer	r11
 	mfxer	r11
 	std	r5, VCPU_LR_TM(r9)
 	std	r5, VCPU_LR_TM(r9)
-	stw	r6, VCPU_CR_TM(r9)
 	std	r7, VCPU_CTR_TM(r9)
 	std	r7, VCPU_CTR_TM(r9)
 	std	r8, VCPU_AMR_TM(r9)
 	std	r8, VCPU_AMR_TM(r9)
 	std	r10, VCPU_TAR_TM(r9)
 	std	r10, VCPU_TAR_TM(r9)
 	std	r11, VCPU_XER_TM(r9)
 	std	r11, VCPU_XER_TM(r9)
 
 
-	/* Restore r12 as trap number. */
-	lwz	r12, VCPU_TRAP(r9)
-
 	/* Save FP/VSX. */
 	/* Save FP/VSX. */
 	addi	r3, r9, VCPU_FPRS_TM
 	addi	r3, r9, VCPU_FPRS_TM
 	bl	store_fp_state
 	bl	store_fp_state
@@ -137,6 +165,11 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
 	bl	store_vr_state
 	bl	store_vr_state
 	mfspr	r6, SPRN_VRSAVE
 	mfspr	r6, SPRN_VRSAVE
 	stw	r6, VCPU_VRSAVE_TM(r9)
 	stw	r6, VCPU_VRSAVE_TM(r9)
+
+	/* Restore non-volatile registers if requested to */
+	beq	cr7, 1f
+	REST_NVGPRS(r1)
+	REST_GPR(10, r1)
 1:
 1:
 	/*
 	/*
 	 * We need to save these SPRs after the treclaim so that the software
 	 * We need to save these SPRs after the treclaim so that the software
@@ -146,12 +179,16 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
 	 */
 	 */
 	mfspr	r7, SPRN_TEXASR
 	mfspr	r7, SPRN_TEXASR
 	std	r7, VCPU_TEXASR(r9)
 	std	r7, VCPU_TEXASR(r9)
-11:
 	mfspr	r5, SPRN_TFHAR
 	mfspr	r5, SPRN_TFHAR
 	mfspr	r6, SPRN_TFIAR
 	mfspr	r6, SPRN_TFIAR
 	std	r5, VCPU_TFHAR(r9)
 	std	r5, VCPU_TFHAR(r9)
 	std	r6, VCPU_TFIAR(r9)
 	std	r6, VCPU_TFIAR(r9)
 
 
+	/* Restore MSR state if requested */
+	beq	cr7, 2f
+	mtmsrd	r10, 0
+2:
+	addi	r1, r1, SWITCH_FRAME_SIZE
 	ld	r0, PPC_LR_STKOFF(r1)
 	ld	r0, PPC_LR_STKOFF(r1)
 	mtlr	r0
 	mtlr	r0
 	blr
 	blr
@@ -161,49 +198,22 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
  * be invoked from C function by PR KVM only.
  * be invoked from C function by PR KVM only.
  */
  */
 _GLOBAL(_kvmppc_save_tm_pr)
 _GLOBAL(_kvmppc_save_tm_pr)
-	mflr	r5
-	std	r5, PPC_LR_STKOFF(r1)
-	stdu    r1, -SWITCH_FRAME_SIZE(r1)
-	SAVE_NVGPRS(r1)
-
-	/* save MSR since TM/math bits might be impacted
-	 * by __kvmppc_save_tm().
-	 */
-	mfmsr	r5
-	SAVE_GPR(5, r1)
-
-	/* also save DSCR/CR/TAR so that it can be recovered later */
-	mfspr   r6, SPRN_DSCR
-	SAVE_GPR(6, r1)
-
-	mfcr    r7
-	stw     r7, _CCR(r1)
+	mflr	r0
+	std	r0, PPC_LR_STKOFF(r1)
+	stdu    r1, -PPC_MIN_STKFRM(r1)
 
 
 	mfspr   r8, SPRN_TAR
 	mfspr   r8, SPRN_TAR
-	SAVE_GPR(8, r1)
+	std	r8, PPC_MIN_STKFRM-8(r1)
 
 
+	li	r5, 1		/* preserve non-volatile registers */
 	bl	__kvmppc_save_tm
 	bl	__kvmppc_save_tm
 
 
-	REST_GPR(8, r1)
+	ld	r8, PPC_MIN_STKFRM-8(r1)
 	mtspr   SPRN_TAR, r8
 	mtspr   SPRN_TAR, r8
 
 
-	ld      r7, _CCR(r1)
-	mtcr	r7
-
-	REST_GPR(6, r1)
-	mtspr   SPRN_DSCR, r6
-
-	/* need preserve current MSR's MSR_TS bits */
-	REST_GPR(5, r1)
-	mfmsr   r6
-	rldicl  r6, r6, 64 - MSR_TS_S_LG, 62
-	rldimi  r5, r6, MSR_TS_S_LG, 63 - MSR_TS_T_LG
-	mtmsrd  r5
-
-	REST_NVGPRS(r1)
-	addi    r1, r1, SWITCH_FRAME_SIZE
-	ld	r5, PPC_LR_STKOFF(r1)
-	mtlr	r5
+	addi    r1, r1, PPC_MIN_STKFRM
+	ld	r0, PPC_LR_STKOFF(r1)
+	mtlr	r0
 	blr
 	blr
 
 
 EXPORT_SYMBOL_GPL(_kvmppc_save_tm_pr);
 EXPORT_SYMBOL_GPL(_kvmppc_save_tm_pr);
@@ -215,15 +225,21 @@ EXPORT_SYMBOL_GPL(_kvmppc_save_tm_pr);
  *  - r4 is the guest MSR with desired TS bits:
  *  - r4 is the guest MSR with desired TS bits:
  * 	For HV KVM, it is VCPU_MSR
  * 	For HV KVM, it is VCPU_MSR
  * 	For PR KVM, it is provided by caller
  * 	For PR KVM, it is provided by caller
- * This potentially modifies all checkpointed registers.
- * It restores r1, r2 from the PACA.
+ * - r5 containing a flag indicating that non-volatile registers
+ *	must be preserved.
+ * If r5 == 0, this potentially modifies all checkpointed registers, but
+ * restores r1, r2 from the PACA before exit.
+ * If r5 != 0, this restores the MSR TM/FP/VEC/VSX bits to their state on entry.
  */
  */
 _GLOBAL(__kvmppc_restore_tm)
 _GLOBAL(__kvmppc_restore_tm)
 	mflr	r0
 	mflr	r0
 	std	r0, PPC_LR_STKOFF(r1)
 	std	r0, PPC_LR_STKOFF(r1)
 
 
+	cmpdi	cr7, r5, 0
+
 	/* Turn on TM/FP/VSX/VMX so we can restore them. */
 	/* Turn on TM/FP/VSX/VMX so we can restore them. */
 	mfmsr	r5
 	mfmsr	r5
+	mr	r10, r5
 	li	r6, MSR_TM >> 32
 	li	r6, MSR_TM >> 32
 	sldi	r6, r6, 32
 	sldi	r6, r6, 32
 	or	r5, r5, r6
 	or	r5, r5, r6
@@ -244,8 +260,7 @@ _GLOBAL(__kvmppc_restore_tm)
 
 
 	mr	r5, r4
 	mr	r5, r4
 	rldicl. r5, r5, 64 - MSR_TS_S_LG, 62
 	rldicl. r5, r5, 64 - MSR_TS_S_LG, 62
-	beqlr		/* TM not active in guest */
-	std	r1, HSTATE_SCRATCH2(r13)
+	beq	9f		/* TM not active in guest */
 
 
 	/* Make sure the failure summary is set, otherwise we'll program check
 	/* Make sure the failure summary is set, otherwise we'll program check
 	 * when we trechkpt.  It's possible that this might have been not set
 	 * when we trechkpt.  It's possible that this might have been not set
@@ -255,6 +270,26 @@ _GLOBAL(__kvmppc_restore_tm)
 	oris	r7, r7, (TEXASR_FS)@h
 	oris	r7, r7, (TEXASR_FS)@h
 	mtspr	SPRN_TEXASR, r7
 	mtspr	SPRN_TEXASR, r7
 
 
+	/*
+	 * Make a stack frame and save non-volatile registers if requested.
+	 */
+	stdu	r1, -SWITCH_FRAME_SIZE(r1)
+	std	r1, HSTATE_SCRATCH2(r13)
+
+	mfcr	r6
+	mfspr	r7, SPRN_DSCR
+	SAVE_GPR(2, r1)
+	SAVE_GPR(6, r1)
+	SAVE_GPR(7, r1)
+
+	beq	cr7, 4f
+	SAVE_NVGPRS(r1)
+
+	/* MSR[TS] will be 1 (suspended) once we do trechkpt */
+	li	r0, 1
+	rldimi	r10, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
+	SAVE_GPR(10, r1)	/* final MSR value */
+4:
 	/*
 	/*
 	 * We need to load up the checkpointed state for the guest.
 	 * We need to load up the checkpointed state for the guest.
 	 * We need to do this early as it will blow away any GPRs, VSRs and
 	 * We need to do this early as it will blow away any GPRs, VSRs and
@@ -291,8 +326,6 @@ _GLOBAL(__kvmppc_restore_tm)
 	ld	r29, VCPU_DSCR_TM(r3)
 	ld	r29, VCPU_DSCR_TM(r3)
 	ld	r30, VCPU_PPR_TM(r3)
 	ld	r30, VCPU_PPR_TM(r3)
 
 
-	std	r2, PACATMSCRATCH(r13) /* Save TOC */
-
 	/* Clear the MSR RI since r1, r13 are all going to be foobar. */
 	/* Clear the MSR RI since r1, r13 are all going to be foobar. */
 	li	r5, 0
 	li	r5, 0
 	mtmsrd	r5, 1
 	mtmsrd	r5, 1
@@ -318,18 +351,31 @@ _GLOBAL(__kvmppc_restore_tm)
 	/* Now let's get back the state we need. */
 	/* Now let's get back the state we need. */
 	HMT_MEDIUM
 	HMT_MEDIUM
 	GET_PACA(r13)
 	GET_PACA(r13)
-#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
-	ld	r29, HSTATE_DSCR(r13)
-	mtspr	SPRN_DSCR, r29
-#endif
 	ld	r1, HSTATE_SCRATCH2(r13)
 	ld	r1, HSTATE_SCRATCH2(r13)
-	ld	r2, PACATMSCRATCH(r13)
+	REST_GPR(7, r1)
+	mtspr	SPRN_DSCR, r7
 
 
 	/* Set the MSR RI since we have our registers back. */
 	/* Set the MSR RI since we have our registers back. */
 	li	r5, MSR_RI
 	li	r5, MSR_RI
 	mtmsrd	r5, 1
 	mtmsrd	r5, 1
+
+	/* Restore TOC pointer and CR */
+	REST_GPR(2, r1)
+	REST_GPR(6, r1)
+	mtcr	r6
+
+	/* Restore non-volatile registers if requested to. */
+	beq	cr7, 5f
+	REST_GPR(10, r1)
+	REST_NVGPRS(r1)
+
+5:	addi	r1, r1, SWITCH_FRAME_SIZE
 	ld	r0, PPC_LR_STKOFF(r1)
 	ld	r0, PPC_LR_STKOFF(r1)
 	mtlr	r0
 	mtlr	r0
+
+9:	/* Restore MSR bits if requested */
+	beqlr	cr7
+	mtmsrd	r10, 0
 	blr
 	blr
 
 
 /*
 /*
@@ -337,47 +383,23 @@ _GLOBAL(__kvmppc_restore_tm)
  * can be invoked from C function by PR KVM only.
  * can be invoked from C function by PR KVM only.
  */
  */
 _GLOBAL(_kvmppc_restore_tm_pr)
 _GLOBAL(_kvmppc_restore_tm_pr)
-	mflr	r5
-	std	r5, PPC_LR_STKOFF(r1)
-	stdu    r1, -SWITCH_FRAME_SIZE(r1)
-	SAVE_NVGPRS(r1)
-
-	/* save MSR to avoid TM/math bits change */
-	mfmsr	r5
-	SAVE_GPR(5, r1)
-
-	/* also save DSCR/CR/TAR so that it can be recovered later */
-	mfspr   r6, SPRN_DSCR
-	SAVE_GPR(6, r1)
-
-	mfcr    r7
-	stw     r7, _CCR(r1)
+	mflr	r0
+	std	r0, PPC_LR_STKOFF(r1)
+	stdu    r1, -PPC_MIN_STKFRM(r1)
 
 
+	/* save TAR so that it can be recovered later */
 	mfspr   r8, SPRN_TAR
 	mfspr   r8, SPRN_TAR
-	SAVE_GPR(8, r1)
+	std	r8, PPC_MIN_STKFRM-8(r1)
 
 
+	li	r5, 1
 	bl	__kvmppc_restore_tm
 	bl	__kvmppc_restore_tm
 
 
-	REST_GPR(8, r1)
+	ld	r8, PPC_MIN_STKFRM-8(r1)
 	mtspr   SPRN_TAR, r8
 	mtspr   SPRN_TAR, r8
 
 
-	ld      r7, _CCR(r1)
-	mtcr	r7
-
-	REST_GPR(6, r1)
-	mtspr   SPRN_DSCR, r6
-
-	/* need preserve current MSR's MSR_TS bits */
-	REST_GPR(5, r1)
-	mfmsr   r6
-	rldicl  r6, r6, 64 - MSR_TS_S_LG, 62
-	rldimi  r5, r6, MSR_TS_S_LG, 63 - MSR_TS_T_LG
-	mtmsrd  r5
-
-	REST_NVGPRS(r1)
-	addi    r1, r1, SWITCH_FRAME_SIZE
-	ld	r5, PPC_LR_STKOFF(r1)
-	mtlr	r5
+	addi    r1, r1, PPC_MIN_STKFRM
+	ld	r0, PPC_LR_STKOFF(r1)
+	mtlr	r0
 	blr
 	blr
 
 
 EXPORT_SYMBOL_GPL(_kvmppc_restore_tm_pr);
 EXPORT_SYMBOL_GPL(_kvmppc_restore_tm_pr);

+ 0 - 1
arch/powerpc/kvm/trace_book3s.h

@@ -14,7 +14,6 @@
 	{0x400, "INST_STORAGE"}, \
 	{0x400, "INST_STORAGE"}, \
 	{0x480, "INST_SEGMENT"}, \
 	{0x480, "INST_SEGMENT"}, \
 	{0x500, "EXTERNAL"}, \
 	{0x500, "EXTERNAL"}, \
-	{0x501, "EXTERNAL_LEVEL"}, \
 	{0x502, "EXTERNAL_HV"}, \
 	{0x502, "EXTERNAL_HV"}, \
 	{0x600, "ALIGNMENT"}, \
 	{0x600, "ALIGNMENT"}, \
 	{0x700, "PROGRAM"}, \
 	{0x700, "PROGRAM"}, \

+ 9 - 0
arch/powerpc/mm/tlb-radix.c

@@ -830,6 +830,15 @@ void radix__flush_pwc_lpid(unsigned int lpid)
 }
 }
 EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
 EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
 
 
+/*
+ * Flush partition scoped translations from LPID (=LPIDR)
+ */
+void radix__flush_tlb_lpid(unsigned int lpid)
+{
+	_tlbie_lpid(lpid, RIC_FLUSH_ALL);
+}
+EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid);
+
 /*
 /*
  * Flush partition scoped translations from LPID (=LPIDR)
  * Flush partition scoped translations from LPID (=LPIDR)
  */
  */

+ 11 - 0
arch/s390/Kconfig

@@ -783,6 +783,17 @@ config VFIO_CCW
 	  To compile this driver as a module, choose M here: the
 	  To compile this driver as a module, choose M here: the
 	  module will be called vfio_ccw.
 	  module will be called vfio_ccw.
 
 
+config VFIO_AP
+	def_tristate n
+	prompt "VFIO support for AP devices"
+	depends on S390_AP_IOMMU && VFIO_MDEV_DEVICE && KVM
+	help
+		This driver grants access to Adjunct Processor (AP) devices
+		via the VFIO mediated device interface.
+
+		To compile this driver as a module, choose M here: the module
+		will be called vfio_ap.
+
 endmenu
 endmenu
 
 
 menu "Dump support"
 menu "Dump support"

+ 14 - 1
arch/s390/include/asm/kvm_host.h

@@ -44,6 +44,7 @@
 #define KVM_REQ_ICPT_OPEREXC	KVM_ARCH_REQ(2)
 #define KVM_REQ_ICPT_OPEREXC	KVM_ARCH_REQ(2)
 #define KVM_REQ_START_MIGRATION KVM_ARCH_REQ(3)
 #define KVM_REQ_START_MIGRATION KVM_ARCH_REQ(3)
 #define KVM_REQ_STOP_MIGRATION  KVM_ARCH_REQ(4)
 #define KVM_REQ_STOP_MIGRATION  KVM_ARCH_REQ(4)
+#define KVM_REQ_VSIE_RESTART	KVM_ARCH_REQ(5)
 
 
 #define SIGP_CTRL_C		0x80
 #define SIGP_CTRL_C		0x80
 #define SIGP_CTRL_SCN_MASK	0x3f
 #define SIGP_CTRL_SCN_MASK	0x3f
@@ -186,6 +187,7 @@ struct kvm_s390_sie_block {
 #define ECA_AIV		0x00200000
 #define ECA_AIV		0x00200000
 #define ECA_VX		0x00020000
 #define ECA_VX		0x00020000
 #define ECA_PROTEXCI	0x00002000
 #define ECA_PROTEXCI	0x00002000
+#define ECA_APIE	0x00000008
 #define ECA_SII		0x00000001
 #define ECA_SII		0x00000001
 	__u32	eca;			/* 0x004c */
 	__u32	eca;			/* 0x004c */
 #define ICPT_INST	0x04
 #define ICPT_INST	0x04
@@ -237,7 +239,11 @@ struct kvm_s390_sie_block {
 	psw_t	gpsw;			/* 0x0090 */
 	psw_t	gpsw;			/* 0x0090 */
 	__u64	gg14;			/* 0x00a0 */
 	__u64	gg14;			/* 0x00a0 */
 	__u64	gg15;			/* 0x00a8 */
 	__u64	gg15;			/* 0x00a8 */
-	__u8	reservedb0[20];		/* 0x00b0 */
+	__u8	reservedb0[8];		/* 0x00b0 */
+#define HPID_KVM	0x4
+#define HPID_VSIE	0x5
+	__u8	hpid;			/* 0x00b8 */
+	__u8	reservedb9[11];		/* 0x00b9 */
 	__u16	extcpuaddr;		/* 0x00c4 */
 	__u16	extcpuaddr;		/* 0x00c4 */
 	__u16	eic;			/* 0x00c6 */
 	__u16	eic;			/* 0x00c6 */
 	__u32	reservedc8;		/* 0x00c8 */
 	__u32	reservedc8;		/* 0x00c8 */
@@ -255,6 +261,8 @@ struct kvm_s390_sie_block {
 	__u8	reservede4[4];		/* 0x00e4 */
 	__u8	reservede4[4];		/* 0x00e4 */
 	__u64	tecmc;			/* 0x00e8 */
 	__u64	tecmc;			/* 0x00e8 */
 	__u8	reservedf0[12];		/* 0x00f0 */
 	__u8	reservedf0[12];		/* 0x00f0 */
+#define CRYCB_FORMAT_MASK 0x00000003
+#define CRYCB_FORMAT0 0x00000000
 #define CRYCB_FORMAT1 0x00000001
 #define CRYCB_FORMAT1 0x00000001
 #define CRYCB_FORMAT2 0x00000003
 #define CRYCB_FORMAT2 0x00000003
 	__u32	crycbd;			/* 0x00fc */
 	__u32	crycbd;			/* 0x00fc */
@@ -715,6 +723,7 @@ struct kvm_s390_crypto {
 	__u32 crycbd;
 	__u32 crycbd;
 	__u8 aes_kw;
 	__u8 aes_kw;
 	__u8 dea_kw;
 	__u8 dea_kw;
+	__u8 apie;
 };
 };
 
 
 #define APCB0_MASK_SIZE 1
 #define APCB0_MASK_SIZE 1
@@ -855,6 +864,10 @@ void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
 				 struct kvm_async_pf *work);
 				 struct kvm_async_pf *work);
 
 
+void kvm_arch_crypto_clear_masks(struct kvm *kvm);
+void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
+			       unsigned long *aqm, unsigned long *adm);
+
 extern int sie64a(struct kvm_s390_sie_block *, u64 *);
 extern int sie64a(struct kvm_s390_sie_block *, u64 *);
 extern char sie_exit;
 extern char sie_exit;
 
 

+ 2 - 0
arch/s390/include/uapi/asm/kvm.h

@@ -160,6 +160,8 @@ struct kvm_s390_vm_cpu_subfunc {
 #define KVM_S390_VM_CRYPTO_ENABLE_DEA_KW	1
 #define KVM_S390_VM_CRYPTO_ENABLE_DEA_KW	1
 #define KVM_S390_VM_CRYPTO_DISABLE_AES_KW	2
 #define KVM_S390_VM_CRYPTO_DISABLE_AES_KW	2
 #define KVM_S390_VM_CRYPTO_DISABLE_DEA_KW	3
 #define KVM_S390_VM_CRYPTO_DISABLE_DEA_KW	3
+#define KVM_S390_VM_CRYPTO_ENABLE_APIE		4
+#define KVM_S390_VM_CRYPTO_DISABLE_APIE		5
 
 
 /* kvm attributes for migration mode */
 /* kvm attributes for migration mode */
 #define KVM_S390_VM_MIGRATION_STOP	0
 #define KVM_S390_VM_MIGRATION_STOP	0

+ 142 - 42
arch/s390/kvm/kvm-s390.c

@@ -40,6 +40,7 @@
 #include <asm/sclp.h>
 #include <asm/sclp.h>
 #include <asm/cpacf.h>
 #include <asm/cpacf.h>
 #include <asm/timex.h>
 #include <asm/timex.h>
+#include <asm/ap.h>
 #include "kvm-s390.h"
 #include "kvm-s390.h"
 #include "gaccess.h"
 #include "gaccess.h"
 
 
@@ -844,20 +845,24 @@ void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
 
 
 	kvm_s390_vcpu_block_all(kvm);
 	kvm_s390_vcpu_block_all(kvm);
 
 
-	kvm_for_each_vcpu(i, vcpu, kvm)
+	kvm_for_each_vcpu(i, vcpu, kvm) {
 		kvm_s390_vcpu_crypto_setup(vcpu);
 		kvm_s390_vcpu_crypto_setup(vcpu);
+		/* recreate the shadow crycb by leaving the VSIE handler */
+		kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
+	}
 
 
 	kvm_s390_vcpu_unblock_all(kvm);
 	kvm_s390_vcpu_unblock_all(kvm);
 }
 }
 
 
 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
 {
 {
-	if (!test_kvm_facility(kvm, 76))
-		return -EINVAL;
-
 	mutex_lock(&kvm->lock);
 	mutex_lock(&kvm->lock);
 	switch (attr->attr) {
 	switch (attr->attr) {
 	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
 	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
+		if (!test_kvm_facility(kvm, 76)) {
+			mutex_unlock(&kvm->lock);
+			return -EINVAL;
+		}
 		get_random_bytes(
 		get_random_bytes(
 			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
 			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
@@ -865,6 +870,10 @@ static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
 		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
 		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
 		break;
 		break;
 	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
 	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
+		if (!test_kvm_facility(kvm, 76)) {
+			mutex_unlock(&kvm->lock);
+			return -EINVAL;
+		}
 		get_random_bytes(
 		get_random_bytes(
 			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
 			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
@@ -872,17 +881,39 @@ static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
 		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
 		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
 		break;
 		break;
 	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
 	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
+		if (!test_kvm_facility(kvm, 76)) {
+			mutex_unlock(&kvm->lock);
+			return -EINVAL;
+		}
 		kvm->arch.crypto.aes_kw = 0;
 		kvm->arch.crypto.aes_kw = 0;
 		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
 		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
 		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
 		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
 		break;
 		break;
 	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
 	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
+		if (!test_kvm_facility(kvm, 76)) {
+			mutex_unlock(&kvm->lock);
+			return -EINVAL;
+		}
 		kvm->arch.crypto.dea_kw = 0;
 		kvm->arch.crypto.dea_kw = 0;
 		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
 		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
 		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
 		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
 		break;
 		break;
+	case KVM_S390_VM_CRYPTO_ENABLE_APIE:
+		if (!ap_instructions_available()) {
+			mutex_unlock(&kvm->lock);
+			return -EOPNOTSUPP;
+		}
+		kvm->arch.crypto.apie = 1;
+		break;
+	case KVM_S390_VM_CRYPTO_DISABLE_APIE:
+		if (!ap_instructions_available()) {
+			mutex_unlock(&kvm->lock);
+			return -EOPNOTSUPP;
+		}
+		kvm->arch.crypto.apie = 0;
+		break;
 	default:
 	default:
 		mutex_unlock(&kvm->lock);
 		mutex_unlock(&kvm->lock);
 		return -ENXIO;
 		return -ENXIO;
@@ -1491,6 +1522,10 @@ static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
 		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
 		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
 			ret = 0;
 			ret = 0;
 			break;
 			break;
+		case KVM_S390_VM_CRYPTO_ENABLE_APIE:
+		case KVM_S390_VM_CRYPTO_DISABLE_APIE:
+			ret = ap_instructions_available() ? 0 : -ENXIO;
+			break;
 		default:
 		default:
 			ret = -ENXIO;
 			ret = -ENXIO;
 			break;
 			break;
@@ -1992,55 +2027,101 @@ long kvm_arch_vm_ioctl(struct file *filp,
 	return r;
 	return r;
 }
 }
 
 
-static int kvm_s390_query_ap_config(u8 *config)
-{
-	u32 fcn_code = 0x04000000UL;
-	u32 cc = 0;
-
-	memset(config, 0, 128);
-	asm volatile(
-		"lgr 0,%1\n"
-		"lgr 2,%2\n"
-		".long 0xb2af0000\n"		/* PQAP(QCI) */
-		"0: ipm %0\n"
-		"srl %0,28\n"
-		"1:\n"
-		EX_TABLE(0b, 1b)
-		: "+r" (cc)
-		: "r" (fcn_code), "r" (config)
-		: "cc", "0", "2", "memory"
-	);
-
-	return cc;
-}
-
 static int kvm_s390_apxa_installed(void)
 static int kvm_s390_apxa_installed(void)
 {
 {
-	u8 config[128];
-	int cc;
+	struct ap_config_info info;
 
 
-	if (test_facility(12)) {
-		cc = kvm_s390_query_ap_config(config);
-
-		if (cc)
-			pr_err("PQAP(QCI) failed with cc=%d", cc);
-		else
-			return config[0] & 0x40;
+	if (ap_instructions_available()) {
+		if (ap_qci(&info) == 0)
+			return info.apxa;
 	}
 	}
 
 
 	return 0;
 	return 0;
 }
 }
 
 
+/*
+ * The format of the crypto control block (CRYCB) is specified in the 3 low
+ * order bits of the CRYCB designation (CRYCBD) field as follows:
+ * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
+ *	     AP extended addressing (APXA) facility are installed.
+ * Format 1: The APXA facility is not installed but the MSAX3 facility is.
+ * Format 2: Both the APXA and MSAX3 facilities are installed
+ */
 static void kvm_s390_set_crycb_format(struct kvm *kvm)
 static void kvm_s390_set_crycb_format(struct kvm *kvm)
 {
 {
 	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
 	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
 
 
+	/* Clear the CRYCB format bits - i.e., set format 0 by default */
+	kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
+
+	/* Check whether MSAX3 is installed */
+	if (!test_kvm_facility(kvm, 76))
+		return;
+
 	if (kvm_s390_apxa_installed())
 	if (kvm_s390_apxa_installed())
 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
 	else
 	else
 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
 }
 }
 
 
+void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
+			       unsigned long *aqm, unsigned long *adm)
+{
+	struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
+
+	mutex_lock(&kvm->lock);
+	kvm_s390_vcpu_block_all(kvm);
+
+	switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
+	case CRYCB_FORMAT2: /* APCB1 use 256 bits */
+		memcpy(crycb->apcb1.apm, apm, 32);
+		VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
+			 apm[0], apm[1], apm[2], apm[3]);
+		memcpy(crycb->apcb1.aqm, aqm, 32);
+		VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
+			 aqm[0], aqm[1], aqm[2], aqm[3]);
+		memcpy(crycb->apcb1.adm, adm, 32);
+		VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
+			 adm[0], adm[1], adm[2], adm[3]);
+		break;
+	case CRYCB_FORMAT1:
+	case CRYCB_FORMAT0: /* Fall through both use APCB0 */
+		memcpy(crycb->apcb0.apm, apm, 8);
+		memcpy(crycb->apcb0.aqm, aqm, 2);
+		memcpy(crycb->apcb0.adm, adm, 2);
+		VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
+			 apm[0], *((unsigned short *)aqm),
+			 *((unsigned short *)adm));
+		break;
+	default:	/* Can not happen */
+		break;
+	}
+
+	/* recreate the shadow crycb for each vcpu */
+	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
+	kvm_s390_vcpu_unblock_all(kvm);
+	mutex_unlock(&kvm->lock);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
+
+void kvm_arch_crypto_clear_masks(struct kvm *kvm)
+{
+	mutex_lock(&kvm->lock);
+	kvm_s390_vcpu_block_all(kvm);
+
+	memset(&kvm->arch.crypto.crycb->apcb0, 0,
+	       sizeof(kvm->arch.crypto.crycb->apcb0));
+	memset(&kvm->arch.crypto.crycb->apcb1, 0,
+	       sizeof(kvm->arch.crypto.crycb->apcb1));
+
+	VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
+	/* recreate the shadow crycb for each vcpu */
+	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
+	kvm_s390_vcpu_unblock_all(kvm);
+	mutex_unlock(&kvm->lock);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
+
 static u64 kvm_s390_get_initial_cpuid(void)
 static u64 kvm_s390_get_initial_cpuid(void)
 {
 {
 	struct cpuid cpuid;
 	struct cpuid cpuid;
@@ -2052,12 +2133,12 @@ static u64 kvm_s390_get_initial_cpuid(void)
 
 
 static void kvm_s390_crypto_init(struct kvm *kvm)
 static void kvm_s390_crypto_init(struct kvm *kvm)
 {
 {
-	if (!test_kvm_facility(kvm, 76))
-		return;
-
 	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
 	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
 	kvm_s390_set_crycb_format(kvm);
 	kvm_s390_set_crycb_format(kvm);
 
 
+	if (!test_kvm_facility(kvm, 76))
+		return;
+
 	/* Enable AES/DEA protected key functions by default */
 	/* Enable AES/DEA protected key functions by default */
 	kvm->arch.crypto.aes_kw = 1;
 	kvm->arch.crypto.aes_kw = 1;
 	kvm->arch.crypto.dea_kw = 1;
 	kvm->arch.crypto.dea_kw = 1;
@@ -2583,17 +2664,25 @@ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 
 
 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
 {
 {
-	if (!test_kvm_facility(vcpu->kvm, 76))
+	/*
+	 * If the AP instructions are not being interpreted and the MSAX3
+	 * facility is not configured for the guest, there is nothing to set up.
+	 */
+	if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
 		return;
 		return;
 
 
+	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
 	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
 	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
+	vcpu->arch.sie_block->eca &= ~ECA_APIE;
+
+	if (vcpu->kvm->arch.crypto.apie)
+		vcpu->arch.sie_block->eca |= ECA_APIE;
 
 
+	/* Set up protected key support */
 	if (vcpu->kvm->arch.crypto.aes_kw)
 	if (vcpu->kvm->arch.crypto.aes_kw)
 		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
 		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
 	if (vcpu->kvm->arch.crypto.dea_kw)
 	if (vcpu->kvm->arch.crypto.dea_kw)
 		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
 		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
-
-	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
 }
 }
 
 
 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
@@ -2685,6 +2774,8 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
 	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
 
 
+	vcpu->arch.sie_block->hpid = HPID_KVM;
+
 	kvm_s390_vcpu_crypto_setup(vcpu);
 	kvm_s390_vcpu_crypto_setup(vcpu);
 
 
 	return rc;
 	return rc;
@@ -2768,18 +2859,25 @@ static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
 	exit_sie(vcpu);
 	exit_sie(vcpu);
 }
 }
 
 
+bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
+{
+	return atomic_read(&vcpu->arch.sie_block->prog20) &
+	       (PROG_BLOCK_SIE | PROG_REQUEST);
+}
+
 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
 {
 {
 	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
 	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
 }
 }
 
 
 /*
 /*
- * Kick a guest cpu out of SIE and wait until SIE is not running.
+ * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
  * If the CPU is not running (e.g. waiting as idle) the function will
  * If the CPU is not running (e.g. waiting as idle) the function will
  * return immediately. */
  * return immediately. */
 void exit_sie(struct kvm_vcpu *vcpu)
 void exit_sie(struct kvm_vcpu *vcpu)
 {
 {
 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
+	kvm_s390_vsie_kick(vcpu);
 	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
 	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
 		cpu_relax();
 		cpu_relax();
 }
 }
@@ -3196,6 +3294,8 @@ retry:
 
 
 	/* nothing to do, just clear the request */
 	/* nothing to do, just clear the request */
 	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
+	/* we left the vsie handler, nothing to do, just clear the request */
+	kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
 
 
 	return 0;
 	return 0;
 }
 }

+ 1 - 0
arch/s390/kvm/kvm-s390.h

@@ -290,6 +290,7 @@ void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu);
 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu);
 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu);
 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu);
 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu);
 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu);
 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu);
+bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu);
 void exit_sie(struct kvm_vcpu *vcpu);
 void exit_sie(struct kvm_vcpu *vcpu);
 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu);
 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu);
 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu);
 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu);

+ 192 - 18
arch/s390/kvm/vsie.c

@@ -135,14 +135,148 @@ static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
 	atomic_set(&scb_s->cpuflags, newflags);
 	atomic_set(&scb_s->cpuflags, newflags);
 	return 0;
 	return 0;
 }
 }
+/* Copy to APCB FORMAT1 from APCB FORMAT0 */
+static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
+			unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
+{
+	struct kvm_s390_apcb0 tmp;
 
 
-/*
+	if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
+		return -EFAULT;
+
+	apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
+	apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
+	apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
+
+	return 0;
+
+}
+
+/**
+ * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
+ * @vcpu: pointer to the virtual CPU
+ * @apcb_s: pointer to start of apcb in the shadow crycb
+ * @apcb_o: pointer to start of original apcb in the guest2
+ * @apcb_h: pointer to start of apcb in the guest1
+ *
+ * Returns 0 and -EFAULT on error reading guest apcb
+ */
+static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
+			unsigned long apcb_o, unsigned long *apcb_h)
+{
+	if (read_guest_real(vcpu, apcb_o, apcb_s,
+			    sizeof(struct kvm_s390_apcb0)))
+		return -EFAULT;
+
+	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb0));
+
+	return 0;
+}
+
+/**
+ * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
+ * @vcpu: pointer to the virtual CPU
+ * @apcb_s: pointer to start of apcb in the shadow crycb
+ * @apcb_o: pointer to start of original guest apcb
+ * @apcb_h: pointer to start of apcb in the host
+ *
+ * Returns 0 and -EFAULT on error reading guest apcb
+ */
+static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
+			unsigned long apcb_o,
+			unsigned long *apcb_h)
+{
+	if (read_guest_real(vcpu, apcb_o, apcb_s,
+			    sizeof(struct kvm_s390_apcb1)))
+		return -EFAULT;
+
+	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb1));
+
+	return 0;
+}
+
+/**
+ * setup_apcb - Create a shadow copy of the apcb.
+ * @vcpu: pointer to the virtual CPU
+ * @crycb_s: pointer to shadow crycb
+ * @crycb_o: pointer to original guest crycb
+ * @crycb_h: pointer to the host crycb
+ * @fmt_o: format of the original guest crycb.
+ * @fmt_h: format of the host crycb.
+ *
+ * Checks the compatibility between the guest and host crycb and calls the
+ * appropriate copy function.
+ *
+ * Return 0 or an error number if the guest and host crycb are incompatible.
+ */
+static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
+	       const u32 crycb_o,
+	       struct kvm_s390_crypto_cb *crycb_h,
+	       int fmt_o, int fmt_h)
+{
+	struct kvm_s390_crypto_cb *crycb;
+
+	crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
+
+	switch (fmt_o) {
+	case CRYCB_FORMAT2:
+		if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
+			return -EACCES;
+		if (fmt_h != CRYCB_FORMAT2)
+			return -EINVAL;
+		return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
+				    (unsigned long) &crycb->apcb1,
+				    (unsigned long *)&crycb_h->apcb1);
+	case CRYCB_FORMAT1:
+		switch (fmt_h) {
+		case CRYCB_FORMAT2:
+			return setup_apcb10(vcpu, &crycb_s->apcb1,
+					    (unsigned long) &crycb->apcb0,
+					    &crycb_h->apcb1);
+		case CRYCB_FORMAT1:
+			return setup_apcb00(vcpu,
+					    (unsigned long *) &crycb_s->apcb0,
+					    (unsigned long) &crycb->apcb0,
+					    (unsigned long *) &crycb_h->apcb0);
+		}
+		break;
+	case CRYCB_FORMAT0:
+		if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
+			return -EACCES;
+
+		switch (fmt_h) {
+		case CRYCB_FORMAT2:
+			return setup_apcb10(vcpu, &crycb_s->apcb1,
+					    (unsigned long) &crycb->apcb0,
+					    &crycb_h->apcb1);
+		case CRYCB_FORMAT1:
+		case CRYCB_FORMAT0:
+			return setup_apcb00(vcpu,
+					    (unsigned long *) &crycb_s->apcb0,
+					    (unsigned long) &crycb->apcb0,
+					    (unsigned long *) &crycb_h->apcb0);
+		}
+	}
+	return -EINVAL;
+}
+
+/**
+ * shadow_crycb - Create a shadow copy of the crycb block
+ * @vcpu: a pointer to the virtual CPU
+ * @vsie_page: a pointer to internal date used for the vSIE
+ *
  * Create a shadow copy of the crycb block and setup key wrapping, if
  * Create a shadow copy of the crycb block and setup key wrapping, if
  * requested for guest 3 and enabled for guest 2.
  * requested for guest 3 and enabled for guest 2.
  *
  *
- * We only accept format-1 (no AP in g2), but convert it into format-2
+ * We accept format-1 or format-2, but we convert format-1 into format-2
+ * in the shadow CRYCB.
+ * Using format-2 enables the firmware to choose the right format when
+ * scheduling the SIE.
  * There is nothing to do for format-0.
  * There is nothing to do for format-0.
  *
  *
+ * This function centralize the issuing of set_validity_icpt() for all
+ * the subfunctions working on the crycb.
+ *
  * Returns: - 0 if shadowed or nothing to do
  * Returns: - 0 if shadowed or nothing to do
  *          - > 0 if control has to be given to guest 2
  *          - > 0 if control has to be given to guest 2
  */
  */
@@ -154,23 +288,40 @@ static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
 	const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
 	const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
 	unsigned long *b1, *b2;
 	unsigned long *b1, *b2;
 	u8 ecb3_flags;
 	u8 ecb3_flags;
+	int apie_h;
+	int key_msk = test_kvm_facility(vcpu->kvm, 76);
+	int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
+	int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
+	int ret = 0;
 
 
 	scb_s->crycbd = 0;
 	scb_s->crycbd = 0;
-	if (!(crycbd_o & vcpu->arch.sie_block->crycbd & CRYCB_FORMAT1))
-		return 0;
-	/* format-1 is supported with message-security-assist extension 3 */
-	if (!test_kvm_facility(vcpu->kvm, 76))
+
+	apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
+	if (!apie_h && !key_msk)
 		return 0;
 		return 0;
+
+	if (!crycb_addr)
+		return set_validity_icpt(scb_s, 0x0039U);
+
+	if (fmt_o == CRYCB_FORMAT1)
+		if ((crycb_addr & PAGE_MASK) !=
+		    ((crycb_addr + 128) & PAGE_MASK))
+			return set_validity_icpt(scb_s, 0x003CU);
+
+	if (apie_h && (scb_o->eca & ECA_APIE)) {
+		ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
+				 vcpu->kvm->arch.crypto.crycb,
+				 fmt_o, fmt_h);
+		if (ret)
+			goto end;
+		scb_s->eca |= scb_o->eca & ECA_APIE;
+	}
+
 	/* we may only allow it if enabled for guest 2 */
 	/* we may only allow it if enabled for guest 2 */
 	ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
 	ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
 		     (ECB3_AES | ECB3_DEA);
 		     (ECB3_AES | ECB3_DEA);
 	if (!ecb3_flags)
 	if (!ecb3_flags)
-		return 0;
-
-	if ((crycb_addr & PAGE_MASK) != ((crycb_addr + 128) & PAGE_MASK))
-		return set_validity_icpt(scb_s, 0x003CU);
-	else if (!crycb_addr)
-		return set_validity_icpt(scb_s, 0x0039U);
+		goto end;
 
 
 	/* copy only the wrapping keys */
 	/* copy only the wrapping keys */
 	if (read_guest_real(vcpu, crycb_addr + 72,
 	if (read_guest_real(vcpu, crycb_addr + 72,
@@ -178,8 +329,6 @@ static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
 		return set_validity_icpt(scb_s, 0x0035U);
 		return set_validity_icpt(scb_s, 0x0035U);
 
 
 	scb_s->ecb3 |= ecb3_flags;
 	scb_s->ecb3 |= ecb3_flags;
-	scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT1 |
-			CRYCB_FORMAT2;
 
 
 	/* xor both blocks in one run */
 	/* xor both blocks in one run */
 	b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
 	b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
@@ -187,6 +336,16 @@ static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
 			    vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
 			    vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
 	/* as 56%8 == 0, bitmap_xor won't overwrite any data */
 	/* as 56%8 == 0, bitmap_xor won't overwrite any data */
 	bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
 	bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
+end:
+	switch (ret) {
+	case -EINVAL:
+		return set_validity_icpt(scb_s, 0x0020U);
+	case -EFAULT:
+		return set_validity_icpt(scb_s, 0x0035U);
+	case -EACCES:
+		return set_validity_icpt(scb_s, 0x003CU);
+	}
+	scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
 	return 0;
 	return 0;
 }
 }
 
 
@@ -383,6 +542,8 @@ static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
 	if (test_kvm_facility(vcpu->kvm, 156))
 	if (test_kvm_facility(vcpu->kvm, 156))
 		scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
 		scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
 
 
+	scb_s->hpid = HPID_VSIE;
+
 	prepare_ibc(vcpu, vsie_page);
 	prepare_ibc(vcpu, vsie_page);
 	rc = shadow_crycb(vcpu, vsie_page);
 	rc = shadow_crycb(vcpu, vsie_page);
 out:
 out:
@@ -830,7 +991,7 @@ static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
 	int guest_bp_isolation;
 	int guest_bp_isolation;
-	int rc;
+	int rc = 0;
 
 
 	handle_last_fault(vcpu, vsie_page);
 	handle_last_fault(vcpu, vsie_page);
 
 
@@ -858,7 +1019,18 @@ static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
 	guest_enter_irqoff();
 	guest_enter_irqoff();
 	local_irq_enable();
 	local_irq_enable();
 
 
-	rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
+	/*
+	 * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
+	 * and VCPU requests also hinder the vSIE from running and lead
+	 * to an immediate exit. kvm_s390_vsie_kick() has to be used to
+	 * also kick the vSIE.
+	 */
+	vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
+	barrier();
+	if (!kvm_s390_vcpu_sie_inhibited(vcpu))
+		rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
+	barrier();
+	vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
 
 
 	local_irq_disable();
 	local_irq_disable();
 	guest_exit_irqoff();
 	guest_exit_irqoff();
@@ -1005,7 +1177,8 @@ static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
 		if (rc == -EAGAIN)
 		if (rc == -EAGAIN)
 			rc = 0;
 			rc = 0;
 		if (rc || scb_s->icptcode || signal_pending(current) ||
 		if (rc || scb_s->icptcode || signal_pending(current) ||
-		    kvm_s390_vcpu_has_irq(vcpu, 0))
+		    kvm_s390_vcpu_has_irq(vcpu, 0) ||
+		    kvm_s390_vcpu_sie_inhibited(vcpu))
 			break;
 			break;
 	}
 	}
 
 
@@ -1122,7 +1295,8 @@ int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
 	if (unlikely(scb_addr & 0x1ffUL))
 	if (unlikely(scb_addr & 0x1ffUL))
 		return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
 		return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
 
 
-	if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0))
+	if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
+	    kvm_s390_vcpu_sie_inhibited(vcpu))
 		return 0;
 		return 0;
 
 
 	vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
 	vsie_page = get_vsie_page(vcpu->kvm, scb_addr);

+ 8 - 2
arch/s390/mm/gmap.c

@@ -907,10 +907,16 @@ static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
 	pmd_t *pmdp;
 	pmd_t *pmdp;
 
 
 	BUG_ON(gmap_is_shadow(gmap));
 	BUG_ON(gmap_is_shadow(gmap));
-	spin_lock(&gmap->guest_table_lock);
 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
+	if (!pmdp)
+		return NULL;
 
 
-	if (!pmdp || pmd_none(*pmdp)) {
+	/* without huge pages, there is no need to take the table lock */
+	if (!gmap->mm->context.allow_gmap_hpage_1m)
+		return pmd_none(*pmdp) ? NULL : pmdp;
+
+	spin_lock(&gmap->guest_table_lock);
+	if (pmd_none(*pmdp)) {
 		spin_unlock(&gmap->guest_table_lock);
 		spin_unlock(&gmap->guest_table_lock);
 		return NULL;
 		return NULL;
 	}
 	}

+ 2 - 0
arch/s390/tools/gen_facilities.c

@@ -106,6 +106,8 @@ static struct facility_def facility_defs[] = {
 
 
 		.name = "FACILITIES_KVM_CPUMODEL",
 		.name = "FACILITIES_KVM_CPUMODEL",
 		.bits = (int[]){
 		.bits = (int[]){
+			12, /* AP Query Configuration Information */
+			15, /* AP Facilities Test */
 			156, /* etoken facility */
 			156, /* etoken facility */
 			-1  /* END */
 			-1  /* END */
 		}
 		}

+ 61 - 9
arch/x86/include/asm/kvm_host.h

@@ -102,7 +102,15 @@
 #define UNMAPPED_GVA (~(gpa_t)0)
 #define UNMAPPED_GVA (~(gpa_t)0)
 
 
 /* KVM Hugepage definitions for x86 */
 /* KVM Hugepage definitions for x86 */
-#define KVM_NR_PAGE_SIZES	3
+enum {
+	PT_PAGE_TABLE_LEVEL   = 1,
+	PT_DIRECTORY_LEVEL    = 2,
+	PT_PDPE_LEVEL         = 3,
+	/* set max level to the biggest one */
+	PT_MAX_HUGEPAGE_LEVEL = PT_PDPE_LEVEL,
+};
+#define KVM_NR_PAGE_SIZES	(PT_MAX_HUGEPAGE_LEVEL - \
+				 PT_PAGE_TABLE_LEVEL + 1)
 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
@@ -177,6 +185,7 @@ enum {
 
 
 #define DR6_BD		(1 << 13)
 #define DR6_BD		(1 << 13)
 #define DR6_BS		(1 << 14)
 #define DR6_BS		(1 << 14)
+#define DR6_BT		(1 << 15)
 #define DR6_RTM		(1 << 16)
 #define DR6_RTM		(1 << 16)
 #define DR6_FIXED_1	0xfffe0ff0
 #define DR6_FIXED_1	0xfffe0ff0
 #define DR6_INIT	0xffff0ff0
 #define DR6_INIT	0xffff0ff0
@@ -247,7 +256,7 @@ struct kvm_mmu_memory_cache {
  * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
  * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
  */
  */
 union kvm_mmu_page_role {
 union kvm_mmu_page_role {
-	unsigned word;
+	u32 word;
 	struct {
 	struct {
 		unsigned level:4;
 		unsigned level:4;
 		unsigned cr4_pae:1;
 		unsigned cr4_pae:1;
@@ -273,6 +282,34 @@ union kvm_mmu_page_role {
 	};
 	};
 };
 };
 
 
+union kvm_mmu_extended_role {
+/*
+ * This structure complements kvm_mmu_page_role caching everything needed for
+ * MMU configuration. If nothing in both these structures changed, MMU
+ * re-configuration can be skipped. @valid bit is set on first usage so we don't
+ * treat all-zero structure as valid data.
+ */
+	u32 word;
+	struct {
+		unsigned int valid:1;
+		unsigned int execonly:1;
+		unsigned int cr0_pg:1;
+		unsigned int cr4_pse:1;
+		unsigned int cr4_pke:1;
+		unsigned int cr4_smap:1;
+		unsigned int cr4_smep:1;
+		unsigned int cr4_la57:1;
+	};
+};
+
+union kvm_mmu_role {
+	u64 as_u64;
+	struct {
+		union kvm_mmu_page_role base;
+		union kvm_mmu_extended_role ext;
+	};
+};
+
 struct kvm_rmap_head {
 struct kvm_rmap_head {
 	unsigned long val;
 	unsigned long val;
 };
 };
@@ -280,18 +317,18 @@ struct kvm_rmap_head {
 struct kvm_mmu_page {
 struct kvm_mmu_page {
 	struct list_head link;
 	struct list_head link;
 	struct hlist_node hash_link;
 	struct hlist_node hash_link;
+	bool unsync;
 
 
 	/*
 	/*
 	 * The following two entries are used to key the shadow page in the
 	 * The following two entries are used to key the shadow page in the
 	 * hash table.
 	 * hash table.
 	 */
 	 */
-	gfn_t gfn;
 	union kvm_mmu_page_role role;
 	union kvm_mmu_page_role role;
+	gfn_t gfn;
 
 
 	u64 *spt;
 	u64 *spt;
 	/* hold the gfn of each spte inside spt */
 	/* hold the gfn of each spte inside spt */
 	gfn_t *gfns;
 	gfn_t *gfns;
-	bool unsync;
 	int root_count;          /* Currently serving as active root */
 	int root_count;          /* Currently serving as active root */
 	unsigned int unsync_children;
 	unsigned int unsync_children;
 	struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
 	struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
@@ -360,7 +397,7 @@ struct kvm_mmu {
 	void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 	void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 			   u64 *spte, const void *pte);
 			   u64 *spte, const void *pte);
 	hpa_t root_hpa;
 	hpa_t root_hpa;
-	union kvm_mmu_page_role base_role;
+	union kvm_mmu_role mmu_role;
 	u8 root_level;
 	u8 root_level;
 	u8 shadow_root_level;
 	u8 shadow_root_level;
 	u8 ept_ad;
 	u8 ept_ad;
@@ -490,7 +527,7 @@ struct kvm_vcpu_hv {
 	struct kvm_hyperv_exit exit;
 	struct kvm_hyperv_exit exit;
 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
-	cpumask_t tlb_lush;
+	cpumask_t tlb_flush;
 };
 };
 
 
 struct kvm_vcpu_arch {
 struct kvm_vcpu_arch {
@@ -534,7 +571,13 @@ struct kvm_vcpu_arch {
 	 * the paging mode of the l1 guest. This context is always used to
 	 * the paging mode of the l1 guest. This context is always used to
 	 * handle faults.
 	 * handle faults.
 	 */
 	 */
-	struct kvm_mmu mmu;
+	struct kvm_mmu *mmu;
+
+	/* Non-nested MMU for L1 */
+	struct kvm_mmu root_mmu;
+
+	/* L1 MMU when running nested */
+	struct kvm_mmu guest_mmu;
 
 
 	/*
 	/*
 	 * Paging state of an L2 guest (used for nested npt)
 	 * Paging state of an L2 guest (used for nested npt)
@@ -585,6 +628,8 @@ struct kvm_vcpu_arch {
 		bool has_error_code;
 		bool has_error_code;
 		u8 nr;
 		u8 nr;
 		u32 error_code;
 		u32 error_code;
+		unsigned long payload;
+		bool has_payload;
 		u8 nested_apf;
 		u8 nested_apf;
 	} exception;
 	} exception;
 
 
@@ -781,6 +826,9 @@ struct kvm_hv {
 	u64 hv_reenlightenment_control;
 	u64 hv_reenlightenment_control;
 	u64 hv_tsc_emulation_control;
 	u64 hv_tsc_emulation_control;
 	u64 hv_tsc_emulation_status;
 	u64 hv_tsc_emulation_status;
+
+	/* How many vCPUs have VP index != vCPU index */
+	atomic_t num_mismatched_vp_indexes;
 };
 };
 
 
 enum kvm_irqchip_mode {
 enum kvm_irqchip_mode {
@@ -871,6 +919,7 @@ struct kvm_arch {
 	bool x2apic_broadcast_quirk_disabled;
 	bool x2apic_broadcast_quirk_disabled;
 
 
 	bool guest_can_read_msr_platform_info;
 	bool guest_can_read_msr_platform_info;
+	bool exception_payload_enabled;
 };
 };
 
 
 struct kvm_vm_stat {
 struct kvm_vm_stat {
@@ -1133,6 +1182,9 @@ struct kvm_x86_ops {
 	int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
 	int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
 
 
 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
+
+	int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu,
+				   uint16_t *vmcs_version);
 };
 };
 
 
 struct kvm_arch_async_pf {
 struct kvm_arch_async_pf {
@@ -1170,7 +1222,6 @@ void kvm_mmu_module_exit(void);
 
 
 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
 int kvm_mmu_create(struct kvm_vcpu *vcpu);
 int kvm_mmu_create(struct kvm_vcpu *vcpu);
-void kvm_mmu_setup(struct kvm_vcpu *vcpu);
 void kvm_mmu_init_vm(struct kvm *kvm);
 void kvm_mmu_init_vm(struct kvm *kvm);
 void kvm_mmu_uninit_vm(struct kvm *kvm);
 void kvm_mmu_uninit_vm(struct kvm *kvm);
 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
@@ -1324,7 +1375,8 @@ void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
 int kvm_mmu_load(struct kvm_vcpu *vcpu);
 int kvm_mmu_load(struct kvm_vcpu *vcpu);
 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
-void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free);
+void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+			ulong roots_to_free);
 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
 			   struct x86_exception *exception);
 			   struct x86_exception *exception);
 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,

+ 1 - 1
arch/x86/include/asm/virtext.h

@@ -40,7 +40,7 @@ static inline int cpu_has_vmx(void)
  */
  */
 static inline void cpu_vmxoff(void)
 static inline void cpu_vmxoff(void)
 {
 {
-	asm volatile (ASM_VMX_VMXOFF : : : "cc");
+	asm volatile ("vmxoff");
 	cr4_clear_bits(X86_CR4_VMXE);
 	cr4_clear_bits(X86_CR4_VMXE);
 }
 }
 
 

+ 0 - 13
arch/x86/include/asm/vmx.h

@@ -503,19 +503,6 @@ enum vmcs_field {
 
 
 #define VMX_EPT_IDENTITY_PAGETABLE_ADDR		0xfffbc000ul
 #define VMX_EPT_IDENTITY_PAGETABLE_ADDR		0xfffbc000ul
 
 
-
-#define ASM_VMX_VMCLEAR_RAX       ".byte 0x66, 0x0f, 0xc7, 0x30"
-#define ASM_VMX_VMLAUNCH          ".byte 0x0f, 0x01, 0xc2"
-#define ASM_VMX_VMRESUME          ".byte 0x0f, 0x01, 0xc3"
-#define ASM_VMX_VMPTRLD_RAX       ".byte 0x0f, 0xc7, 0x30"
-#define ASM_VMX_VMREAD_RDX_RAX    ".byte 0x0f, 0x78, 0xd0"
-#define ASM_VMX_VMWRITE_RAX_RDX   ".byte 0x0f, 0x79, 0xd0"
-#define ASM_VMX_VMWRITE_RSP_RDX   ".byte 0x0f, 0x79, 0xd4"
-#define ASM_VMX_VMXOFF            ".byte 0x0f, 0x01, 0xc4"
-#define ASM_VMX_VMXON_RAX         ".byte 0xf3, 0x0f, 0xc7, 0x30"
-#define ASM_VMX_INVEPT		  ".byte 0x66, 0x0f, 0x38, 0x80, 0x08"
-#define ASM_VMX_INVVPID		  ".byte 0x66, 0x0f, 0x38, 0x81, 0x08"
-
 struct vmx_msr_entry {
 struct vmx_msr_entry {
 	u32 index;
 	u32 index;
 	u32 reserved;
 	u32 reserved;

+ 6 - 2
arch/x86/include/uapi/asm/kvm.h

@@ -288,6 +288,7 @@ struct kvm_reinject_control {
 #define KVM_VCPUEVENT_VALID_SIPI_VECTOR	0x00000002
 #define KVM_VCPUEVENT_VALID_SIPI_VECTOR	0x00000002
 #define KVM_VCPUEVENT_VALID_SHADOW	0x00000004
 #define KVM_VCPUEVENT_VALID_SHADOW	0x00000004
 #define KVM_VCPUEVENT_VALID_SMM		0x00000008
 #define KVM_VCPUEVENT_VALID_SMM		0x00000008
+#define KVM_VCPUEVENT_VALID_PAYLOAD	0x00000010
 
 
 /* Interrupt shadow states */
 /* Interrupt shadow states */
 #define KVM_X86_SHADOW_INT_MOV_SS	0x01
 #define KVM_X86_SHADOW_INT_MOV_SS	0x01
@@ -299,7 +300,7 @@ struct kvm_vcpu_events {
 		__u8 injected;
 		__u8 injected;
 		__u8 nr;
 		__u8 nr;
 		__u8 has_error_code;
 		__u8 has_error_code;
-		__u8 pad;
+		__u8 pending;
 		__u32 error_code;
 		__u32 error_code;
 	} exception;
 	} exception;
 	struct {
 	struct {
@@ -322,7 +323,9 @@ struct kvm_vcpu_events {
 		__u8 smm_inside_nmi;
 		__u8 smm_inside_nmi;
 		__u8 latched_init;
 		__u8 latched_init;
 	} smi;
 	} smi;
-	__u32 reserved[9];
+	__u8 reserved[27];
+	__u8 exception_has_payload;
+	__u64 exception_payload;
 };
 };
 
 
 /* for KVM_GET/SET_DEBUGREGS */
 /* for KVM_GET/SET_DEBUGREGS */
@@ -381,6 +384,7 @@ struct kvm_sync_regs {
 
 
 #define KVM_STATE_NESTED_GUEST_MODE	0x00000001
 #define KVM_STATE_NESTED_GUEST_MODE	0x00000001
 #define KVM_STATE_NESTED_RUN_PENDING	0x00000002
 #define KVM_STATE_NESTED_RUN_PENDING	0x00000002
+#define KVM_STATE_NESTED_EVMCS		0x00000004
 
 
 #define KVM_STATE_NESTED_SMM_GUEST_MODE	0x00000001
 #define KVM_STATE_NESTED_SMM_GUEST_MODE	0x00000001
 #define KVM_STATE_NESTED_SMM_VMXON	0x00000002
 #define KVM_STATE_NESTED_SMM_VMXON	0x00000002

+ 212 - 68
arch/x86/kvm/hyperv.c

@@ -36,6 +36,8 @@
 
 
 #include "trace.h"
 #include "trace.h"
 
 
+#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
+
 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
 {
 {
 	return atomic64_read(&synic->sint[sint]);
 	return atomic64_read(&synic->sint[sint]);
@@ -132,8 +134,10 @@ static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
 	struct kvm_vcpu *vcpu = NULL;
 	struct kvm_vcpu *vcpu = NULL;
 	int i;
 	int i;
 
 
-	if (vpidx < KVM_MAX_VCPUS)
-		vcpu = kvm_get_vcpu(kvm, vpidx);
+	if (vpidx >= KVM_MAX_VCPUS)
+		return NULL;
+
+	vcpu = kvm_get_vcpu(kvm, vpidx);
 	if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
 	if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
 		return vcpu;
 		return vcpu;
 	kvm_for_each_vcpu(i, vcpu, kvm)
 	kvm_for_each_vcpu(i, vcpu, kvm)
@@ -689,6 +693,24 @@ void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
 		stimer_cleanup(&hv_vcpu->stimer[i]);
 		stimer_cleanup(&hv_vcpu->stimer[i]);
 }
 }
 
 
+bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
+{
+	if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
+		return false;
+	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
+}
+EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
+
+bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
+			    struct hv_vp_assist_page *assist_page)
+{
+	if (!kvm_hv_assist_page_enabled(vcpu))
+		return false;
+	return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
+				      assist_page, sizeof(*assist_page));
+}
+EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
+
 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
 {
 {
 	struct hv_message *msg = &stimer->msg;
 	struct hv_message *msg = &stimer->msg;
@@ -1040,21 +1062,41 @@ static u64 current_task_runtime_100ns(void)
 
 
 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
 {
 {
-	struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
+	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
 
 
 	switch (msr) {
 	switch (msr) {
-	case HV_X64_MSR_VP_INDEX:
-		if (!host)
+	case HV_X64_MSR_VP_INDEX: {
+		struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
+		int vcpu_idx = kvm_vcpu_get_idx(vcpu);
+		u32 new_vp_index = (u32)data;
+
+		if (!host || new_vp_index >= KVM_MAX_VCPUS)
 			return 1;
 			return 1;
-		hv->vp_index = (u32)data;
+
+		if (new_vp_index == hv_vcpu->vp_index)
+			return 0;
+
+		/*
+		 * The VP index is initialized to vcpu_index by
+		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
+		 * VP index is changing, adjust num_mismatched_vp_indexes if
+		 * it now matches or no longer matches vcpu_idx.
+		 */
+		if (hv_vcpu->vp_index == vcpu_idx)
+			atomic_inc(&hv->num_mismatched_vp_indexes);
+		else if (new_vp_index == vcpu_idx)
+			atomic_dec(&hv->num_mismatched_vp_indexes);
+
+		hv_vcpu->vp_index = new_vp_index;
 		break;
 		break;
+	}
 	case HV_X64_MSR_VP_ASSIST_PAGE: {
 	case HV_X64_MSR_VP_ASSIST_PAGE: {
 		u64 gfn;
 		u64 gfn;
 		unsigned long addr;
 		unsigned long addr;
 
 
 		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
 		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
-			hv->hv_vapic = data;
-			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
+			hv_vcpu->hv_vapic = data;
+			if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
 				return 1;
 				return 1;
 			break;
 			break;
 		}
 		}
@@ -1062,12 +1104,19 @@ static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
 		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
 		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
 		if (kvm_is_error_hva(addr))
 		if (kvm_is_error_hva(addr))
 			return 1;
 			return 1;
-		if (__clear_user((void __user *)addr, PAGE_SIZE))
+
+		/*
+		 * Clear apic_assist portion of f(struct hv_vp_assist_page
+		 * only, there can be valuable data in the rest which needs
+		 * to be preserved e.g. on migration.
+		 */
+		if (__clear_user((void __user *)addr, sizeof(u32)))
 			return 1;
 			return 1;
-		hv->hv_vapic = data;
+		hv_vcpu->hv_vapic = data;
 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
 		if (kvm_lapic_enable_pv_eoi(vcpu,
 		if (kvm_lapic_enable_pv_eoi(vcpu,
-					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
+					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
+					    sizeof(struct hv_vp_assist_page)))
 			return 1;
 			return 1;
 		break;
 		break;
 	}
 	}
@@ -1080,7 +1129,7 @@ static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
 	case HV_X64_MSR_VP_RUNTIME:
 	case HV_X64_MSR_VP_RUNTIME:
 		if (!host)
 		if (!host)
 			return 1;
 			return 1;
-		hv->runtime_offset = data - current_task_runtime_100ns();
+		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
 		break;
 		break;
 	case HV_X64_MSR_SCONTROL:
 	case HV_X64_MSR_SCONTROL:
 	case HV_X64_MSR_SVERSION:
 	case HV_X64_MSR_SVERSION:
@@ -1172,11 +1221,11 @@ static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
 			  bool host)
 			  bool host)
 {
 {
 	u64 data = 0;
 	u64 data = 0;
-	struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
+	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
 
 
 	switch (msr) {
 	switch (msr) {
 	case HV_X64_MSR_VP_INDEX:
 	case HV_X64_MSR_VP_INDEX:
-		data = hv->vp_index;
+		data = hv_vcpu->vp_index;
 		break;
 		break;
 	case HV_X64_MSR_EOI:
 	case HV_X64_MSR_EOI:
 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
@@ -1185,10 +1234,10 @@ static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
 	case HV_X64_MSR_TPR:
 	case HV_X64_MSR_TPR:
 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
 	case HV_X64_MSR_VP_ASSIST_PAGE:
 	case HV_X64_MSR_VP_ASSIST_PAGE:
-		data = hv->hv_vapic;
+		data = hv_vcpu->hv_vapic;
 		break;
 		break;
 	case HV_X64_MSR_VP_RUNTIME:
 	case HV_X64_MSR_VP_RUNTIME:
-		data = current_task_runtime_100ns() + hv->runtime_offset;
+		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
 		break;
 		break;
 	case HV_X64_MSR_SCONTROL:
 	case HV_X64_MSR_SCONTROL:
 	case HV_X64_MSR_SVERSION:
 	case HV_X64_MSR_SVERSION:
@@ -1255,32 +1304,47 @@ int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
 		return kvm_hv_get_msr(vcpu, msr, pdata, host);
 		return kvm_hv_get_msr(vcpu, msr, pdata, host);
 }
 }
 
 
-static __always_inline int get_sparse_bank_no(u64 valid_bank_mask, int bank_no)
+static __always_inline unsigned long *sparse_set_to_vcpu_mask(
+	struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
+	u64 *vp_bitmap, unsigned long *vcpu_bitmap)
 {
 {
-	int i = 0, j;
+	struct kvm_hv *hv = &kvm->arch.hyperv;
+	struct kvm_vcpu *vcpu;
+	int i, bank, sbank = 0;
 
 
-	if (!(valid_bank_mask & BIT_ULL(bank_no)))
-		return -1;
+	memset(vp_bitmap, 0,
+	       KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
+	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
+			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
+		vp_bitmap[bank] = sparse_banks[sbank++];
 
 
-	for (j = 0; j < bank_no; j++)
-		if (valid_bank_mask & BIT_ULL(j))
-			i++;
+	if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
+		/* for all vcpus vp_index == vcpu_idx */
+		return (unsigned long *)vp_bitmap;
+	}
 
 
-	return i;
+	bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
+	kvm_for_each_vcpu(i, vcpu, kvm) {
+		if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
+			     (unsigned long *)vp_bitmap))
+			__set_bit(i, vcpu_bitmap);
+	}
+	return vcpu_bitmap;
 }
 }
 
 
 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
 			    u16 rep_cnt, bool ex)
 			    u16 rep_cnt, bool ex)
 {
 {
 	struct kvm *kvm = current_vcpu->kvm;
 	struct kvm *kvm = current_vcpu->kvm;
-	struct kvm_vcpu_hv *hv_current = &current_vcpu->arch.hyperv;
+	struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
 	struct hv_tlb_flush_ex flush_ex;
 	struct hv_tlb_flush_ex flush_ex;
 	struct hv_tlb_flush flush;
 	struct hv_tlb_flush flush;
-	struct kvm_vcpu *vcpu;
-	unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)] = {0};
-	unsigned long valid_bank_mask = 0;
+	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
+	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
+	unsigned long *vcpu_mask;
+	u64 valid_bank_mask;
 	u64 sparse_banks[64];
 	u64 sparse_banks[64];
-	int sparse_banks_len, i;
+	int sparse_banks_len;
 	bool all_cpus;
 	bool all_cpus;
 
 
 	if (!ex) {
 	if (!ex) {
@@ -1290,6 +1354,7 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
 		trace_kvm_hv_flush_tlb(flush.processor_mask,
 		trace_kvm_hv_flush_tlb(flush.processor_mask,
 				       flush.address_space, flush.flags);
 				       flush.address_space, flush.flags);
 
 
+		valid_bank_mask = BIT_ULL(0);
 		sparse_banks[0] = flush.processor_mask;
 		sparse_banks[0] = flush.processor_mask;
 		all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
 		all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
 	} else {
 	} else {
@@ -1306,7 +1371,8 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
 		all_cpus = flush_ex.hv_vp_set.format !=
 		all_cpus = flush_ex.hv_vp_set.format !=
 			HV_GENERIC_SET_SPARSE_4K;
 			HV_GENERIC_SET_SPARSE_4K;
 
 
-		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
+		sparse_banks_len =
+			bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
 			sizeof(sparse_banks[0]);
 			sizeof(sparse_banks[0]);
 
 
 		if (!sparse_banks_len && !all_cpus)
 		if (!sparse_banks_len && !all_cpus)
@@ -1321,48 +1387,19 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
 	}
 	}
 
 
-	cpumask_clear(&hv_current->tlb_lush);
-
-	kvm_for_each_vcpu(i, vcpu, kvm) {
-		struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
-		int bank = hv->vp_index / 64, sbank = 0;
-
-		if (!all_cpus) {
-			/* Banks >64 can't be represented */
-			if (bank >= 64)
-				continue;
-
-			/* Non-ex hypercalls can only address first 64 vCPUs */
-			if (!ex && bank)
-				continue;
-
-			if (ex) {
-				/*
-				 * Check is the bank of this vCPU is in sparse
-				 * set and get the sparse bank number.
-				 */
-				sbank = get_sparse_bank_no(valid_bank_mask,
-							   bank);
-
-				if (sbank < 0)
-					continue;
-			}
-
-			if (!(sparse_banks[sbank] & BIT_ULL(hv->vp_index % 64)))
-				continue;
-		}
+	cpumask_clear(&hv_vcpu->tlb_flush);
 
 
-		/*
-		 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we
-		 * can't analyze it here, flush TLB regardless of the specified
-		 * address space.
-		 */
-		__set_bit(i, vcpu_bitmap);
-	}
+	vcpu_mask = all_cpus ? NULL :
+		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
+					vp_bitmap, vcpu_bitmap);
 
 
+	/*
+	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
+	 * analyze it here, flush TLB regardless of the specified address space.
+	 */
 	kvm_make_vcpus_request_mask(kvm,
 	kvm_make_vcpus_request_mask(kvm,
 				    KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
 				    KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
-				    vcpu_bitmap, &hv_current->tlb_lush);
+				    vcpu_mask, &hv_vcpu->tlb_flush);
 
 
 ret_success:
 ret_success:
 	/* We always do full TLB flush, set rep_done = rep_cnt. */
 	/* We always do full TLB flush, set rep_done = rep_cnt. */
@@ -1370,6 +1407,99 @@ ret_success:
 		((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
 		((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
 }
 }
 
 
+static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
+				 unsigned long *vcpu_bitmap)
+{
+	struct kvm_lapic_irq irq = {
+		.delivery_mode = APIC_DM_FIXED,
+		.vector = vector
+	};
+	struct kvm_vcpu *vcpu;
+	int i;
+
+	kvm_for_each_vcpu(i, vcpu, kvm) {
+		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
+			continue;
+
+		/* We fail only when APIC is disabled */
+		kvm_apic_set_irq(vcpu, &irq, NULL);
+	}
+}
+
+static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
+			   bool ex, bool fast)
+{
+	struct kvm *kvm = current_vcpu->kvm;
+	struct hv_send_ipi_ex send_ipi_ex;
+	struct hv_send_ipi send_ipi;
+	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
+	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
+	unsigned long *vcpu_mask;
+	unsigned long valid_bank_mask;
+	u64 sparse_banks[64];
+	int sparse_banks_len;
+	u32 vector;
+	bool all_cpus;
+
+	if (!ex) {
+		if (!fast) {
+			if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
+						    sizeof(send_ipi))))
+				return HV_STATUS_INVALID_HYPERCALL_INPUT;
+			sparse_banks[0] = send_ipi.cpu_mask;
+			vector = send_ipi.vector;
+		} else {
+			/* 'reserved' part of hv_send_ipi should be 0 */
+			if (unlikely(ingpa >> 32 != 0))
+				return HV_STATUS_INVALID_HYPERCALL_INPUT;
+			sparse_banks[0] = outgpa;
+			vector = (u32)ingpa;
+		}
+		all_cpus = false;
+		valid_bank_mask = BIT_ULL(0);
+
+		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
+	} else {
+		if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
+					    sizeof(send_ipi_ex))))
+			return HV_STATUS_INVALID_HYPERCALL_INPUT;
+
+		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
+					 send_ipi_ex.vp_set.format,
+					 send_ipi_ex.vp_set.valid_bank_mask);
+
+		vector = send_ipi_ex.vector;
+		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
+		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
+			sizeof(sparse_banks[0]);
+
+		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
+
+		if (!sparse_banks_len)
+			goto ret_success;
+
+		if (!all_cpus &&
+		    kvm_read_guest(kvm,
+				   ingpa + offsetof(struct hv_send_ipi_ex,
+						    vp_set.bank_contents),
+				   sparse_banks,
+				   sparse_banks_len))
+			return HV_STATUS_INVALID_HYPERCALL_INPUT;
+	}
+
+	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
+		return HV_STATUS_INVALID_HYPERCALL_INPUT;
+
+	vcpu_mask = all_cpus ? NULL :
+		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
+					vp_bitmap, vcpu_bitmap);
+
+	kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
+
+ret_success:
+	return HV_STATUS_SUCCESS;
+}
+
 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
 {
 {
 	return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
 	return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
@@ -1539,6 +1669,20 @@ int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
 		}
 		}
 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
 		break;
 		break;
+	case HVCALL_SEND_IPI:
+		if (unlikely(rep)) {
+			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
+			break;
+		}
+		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
+		break;
+	case HVCALL_SEND_IPI_EX:
+		if (unlikely(fast || rep)) {
+			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
+			break;
+		}
+		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
+		break;
 	default:
 	default:
 		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
 		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
 		break;
 		break;

+ 4 - 0
arch/x86/kvm/hyperv.h

@@ -62,6 +62,10 @@ void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu);
 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu);
 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu);
 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu);
 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu);
 
 
+bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu);
+bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
+			    struct hv_vp_assist_page *assist_page);
+
 static inline struct kvm_vcpu_hv_stimer *vcpu_to_stimer(struct kvm_vcpu *vcpu,
 static inline struct kvm_vcpu_hv_stimer *vcpu_to_stimer(struct kvm_vcpu *vcpu,
 							int timer_index)
 							int timer_index)
 {
 {

+ 38 - 7
arch/x86/kvm/lapic.c

@@ -70,6 +70,11 @@
 #define APIC_BROADCAST			0xFF
 #define APIC_BROADCAST			0xFF
 #define X2APIC_BROADCAST		0xFFFFFFFFul
 #define X2APIC_BROADCAST		0xFFFFFFFFul
 
 
+static bool lapic_timer_advance_adjust_done = false;
+#define LAPIC_TIMER_ADVANCE_ADJUST_DONE 100
+/* step-by-step approximation to mitigate fluctuation */
+#define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
+
 static inline int apic_test_vector(int vec, void *bitmap)
 static inline int apic_test_vector(int vec, void *bitmap)
 {
 {
 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
@@ -955,14 +960,14 @@ bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
 	map = rcu_dereference(kvm->arch.apic_map);
 	map = rcu_dereference(kvm->arch.apic_map);
 
 
 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
-	if (ret)
+	if (ret) {
+		*r = 0;
 		for_each_set_bit(i, &bitmap, 16) {
 		for_each_set_bit(i, &bitmap, 16) {
 			if (!dst[i])
 			if (!dst[i])
 				continue;
 				continue;
-			if (*r < 0)
-				*r = 0;
 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
 		}
 		}
+	}
 
 
 	rcu_read_unlock();
 	rcu_read_unlock();
 	return ret;
 	return ret;
@@ -1472,7 +1477,7 @@ static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
 void wait_lapic_expire(struct kvm_vcpu *vcpu)
 void wait_lapic_expire(struct kvm_vcpu *vcpu)
 {
 {
 	struct kvm_lapic *apic = vcpu->arch.apic;
 	struct kvm_lapic *apic = vcpu->arch.apic;
-	u64 guest_tsc, tsc_deadline;
+	u64 guest_tsc, tsc_deadline, ns;
 
 
 	if (!lapic_in_kernel(vcpu))
 	if (!lapic_in_kernel(vcpu))
 		return;
 		return;
@@ -1492,6 +1497,24 @@ void wait_lapic_expire(struct kvm_vcpu *vcpu)
 	if (guest_tsc < tsc_deadline)
 	if (guest_tsc < tsc_deadline)
 		__delay(min(tsc_deadline - guest_tsc,
 		__delay(min(tsc_deadline - guest_tsc,
 			nsec_to_cycles(vcpu, lapic_timer_advance_ns)));
 			nsec_to_cycles(vcpu, lapic_timer_advance_ns)));
+
+	if (!lapic_timer_advance_adjust_done) {
+		/* too early */
+		if (guest_tsc < tsc_deadline) {
+			ns = (tsc_deadline - guest_tsc) * 1000000ULL;
+			do_div(ns, vcpu->arch.virtual_tsc_khz);
+			lapic_timer_advance_ns -= min((unsigned int)ns,
+				lapic_timer_advance_ns / LAPIC_TIMER_ADVANCE_ADJUST_STEP);
+		} else {
+		/* too late */
+			ns = (guest_tsc - tsc_deadline) * 1000000ULL;
+			do_div(ns, vcpu->arch.virtual_tsc_khz);
+			lapic_timer_advance_ns += min((unsigned int)ns,
+				lapic_timer_advance_ns / LAPIC_TIMER_ADVANCE_ADJUST_STEP);
+		}
+		if (abs(guest_tsc - tsc_deadline) < LAPIC_TIMER_ADVANCE_ADJUST_DONE)
+			lapic_timer_advance_adjust_done = true;
+	}
 }
 }
 
 
 static void start_sw_tscdeadline(struct kvm_lapic *apic)
 static void start_sw_tscdeadline(struct kvm_lapic *apic)
@@ -2621,17 +2644,25 @@ int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
 	return 0;
 	return 0;
 }
 }
 
 
-int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data)
+int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
 {
 {
 	u64 addr = data & ~KVM_MSR_ENABLED;
 	u64 addr = data & ~KVM_MSR_ENABLED;
+	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
+	unsigned long new_len;
+
 	if (!IS_ALIGNED(addr, 4))
 	if (!IS_ALIGNED(addr, 4))
 		return 1;
 		return 1;
 
 
 	vcpu->arch.pv_eoi.msr_val = data;
 	vcpu->arch.pv_eoi.msr_val = data;
 	if (!pv_eoi_enabled(vcpu))
 	if (!pv_eoi_enabled(vcpu))
 		return 0;
 		return 0;
-	return kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_eoi.data,
-					 addr, sizeof(u8));
+
+	if (addr == ghc->gpa && len <= ghc->len)
+		new_len = ghc->len;
+	else
+		new_len = len;
+
+	return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
 }
 }
 
 
 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)

+ 1 - 1
arch/x86/kvm/lapic.h

@@ -120,7 +120,7 @@ static inline bool kvm_hv_vapic_assist_page_enabled(struct kvm_vcpu *vcpu)
 	return vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
 	return vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
 }
 }
 
 
-int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data);
+int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len);
 void kvm_lapic_init(void);
 void kvm_lapic_init(void);
 void kvm_lapic_exit(void);
 void kvm_lapic_exit(void);
 
 

+ 235 - 158
arch/x86/kvm/mmu.c

@@ -932,7 +932,7 @@ static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 		if (!obj)
 		if (!obj)
-			return -ENOMEM;
+			return cache->nobjs >= min ? 0 : -ENOMEM;
 		cache->objects[cache->nobjs++] = obj;
 		cache->objects[cache->nobjs++] = obj;
 	}
 	}
 	return 0;
 	return 0;
@@ -960,7 +960,7 @@ static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
 		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
 		if (!page)
 		if (!page)
-			return -ENOMEM;
+			return cache->nobjs >= min ? 0 : -ENOMEM;
 		cache->objects[cache->nobjs++] = page;
 		cache->objects[cache->nobjs++] = page;
 	}
 	}
 	return 0;
 	return 0;
@@ -1265,24 +1265,24 @@ pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
 	mmu_free_pte_list_desc(desc);
 	mmu_free_pte_list_desc(desc);
 }
 }
 
 
-static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
+static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
 {
 {
 	struct pte_list_desc *desc;
 	struct pte_list_desc *desc;
 	struct pte_list_desc *prev_desc;
 	struct pte_list_desc *prev_desc;
 	int i;
 	int i;
 
 
 	if (!rmap_head->val) {
 	if (!rmap_head->val) {
-		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
+		pr_err("%s: %p 0->BUG\n", __func__, spte);
 		BUG();
 		BUG();
 	} else if (!(rmap_head->val & 1)) {
 	} else if (!(rmap_head->val & 1)) {
-		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
+		rmap_printk("%s:  %p 1->0\n", __func__, spte);
 		if ((u64 *)rmap_head->val != spte) {
 		if ((u64 *)rmap_head->val != spte) {
-			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
+			pr_err("%s:  %p 1->BUG\n", __func__, spte);
 			BUG();
 			BUG();
 		}
 		}
 		rmap_head->val = 0;
 		rmap_head->val = 0;
 	} else {
 	} else {
-		rmap_printk("pte_list_remove:  %p many->many\n", spte);
+		rmap_printk("%s:  %p many->many\n", __func__, spte);
 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 		prev_desc = NULL;
 		prev_desc = NULL;
 		while (desc) {
 		while (desc) {
@@ -1296,11 +1296,17 @@ static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
 			prev_desc = desc;
 			prev_desc = desc;
 			desc = desc->more;
 			desc = desc->more;
 		}
 		}
-		pr_err("pte_list_remove: %p many->many\n", spte);
+		pr_err("%s: %p many->many\n", __func__, spte);
 		BUG();
 		BUG();
 	}
 	}
 }
 }
 
 
+static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
+{
+	mmu_spte_clear_track_bits(sptep);
+	__pte_list_remove(sptep, rmap_head);
+}
+
 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
 					   struct kvm_memory_slot *slot)
 					   struct kvm_memory_slot *slot)
 {
 {
@@ -1349,7 +1355,7 @@ static void rmap_remove(struct kvm *kvm, u64 *spte)
 	sp = page_header(__pa(spte));
 	sp = page_header(__pa(spte));
 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
-	pte_list_remove(spte, rmap_head);
+	__pte_list_remove(spte, rmap_head);
 }
 }
 
 
 /*
 /*
@@ -1685,7 +1691,7 @@ static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
 
 
-		drop_spte(kvm, sptep);
+		pte_list_remove(rmap_head, sptep);
 		flush = true;
 		flush = true;
 	}
 	}
 
 
@@ -1721,7 +1727,7 @@ restart:
 		need_flush = 1;
 		need_flush = 1;
 
 
 		if (pte_write(*ptep)) {
 		if (pte_write(*ptep)) {
-			drop_spte(kvm, sptep);
+			pte_list_remove(rmap_head, sptep);
 			goto restart;
 			goto restart;
 		} else {
 		} else {
 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
@@ -1988,7 +1994,7 @@ static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
 				       u64 *parent_pte)
 				       u64 *parent_pte)
 {
 {
-	pte_list_remove(parent_pte, &sp->parent_ptes);
+	__pte_list_remove(parent_pte, &sp->parent_ptes);
 }
 }
 
 
 static void drop_parent_pte(struct kvm_mmu_page *sp,
 static void drop_parent_pte(struct kvm_mmu_page *sp,
@@ -2181,7 +2187,7 @@ static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 			    struct list_head *invalid_list)
 			    struct list_head *invalid_list)
 {
 {
 	if (sp->role.cr4_pae != !!is_pae(vcpu)
 	if (sp->role.cr4_pae != !!is_pae(vcpu)
-	    || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
+	    || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
 		return false;
 		return false;
 	}
 	}
@@ -2375,14 +2381,14 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
 	int collisions = 0;
 	int collisions = 0;
 	LIST_HEAD(invalid_list);
 	LIST_HEAD(invalid_list);
 
 
-	role = vcpu->arch.mmu.base_role;
+	role = vcpu->arch.mmu->mmu_role.base;
 	role.level = level;
 	role.level = level;
 	role.direct = direct;
 	role.direct = direct;
 	if (role.direct)
 	if (role.direct)
 		role.cr4_pae = 0;
 		role.cr4_pae = 0;
 	role.access = access;
 	role.access = access;
-	if (!vcpu->arch.mmu.direct_map
-	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
+	if (!vcpu->arch.mmu->direct_map
+	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
 		role.quadrant = quadrant;
 		role.quadrant = quadrant;
@@ -2457,11 +2463,11 @@ static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterato
 {
 {
 	iterator->addr = addr;
 	iterator->addr = addr;
 	iterator->shadow_addr = root;
 	iterator->shadow_addr = root;
-	iterator->level = vcpu->arch.mmu.shadow_root_level;
+	iterator->level = vcpu->arch.mmu->shadow_root_level;
 
 
 	if (iterator->level == PT64_ROOT_4LEVEL &&
 	if (iterator->level == PT64_ROOT_4LEVEL &&
-	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
-	    !vcpu->arch.mmu.direct_map)
+	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
+	    !vcpu->arch.mmu->direct_map)
 		--iterator->level;
 		--iterator->level;
 
 
 	if (iterator->level == PT32E_ROOT_LEVEL) {
 	if (iterator->level == PT32E_ROOT_LEVEL) {
@@ -2469,10 +2475,10 @@ static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterato
 		 * prev_root is currently only used for 64-bit hosts. So only
 		 * prev_root is currently only used for 64-bit hosts. So only
 		 * the active root_hpa is valid here.
 		 * the active root_hpa is valid here.
 		 */
 		 */
-		BUG_ON(root != vcpu->arch.mmu.root_hpa);
+		BUG_ON(root != vcpu->arch.mmu->root_hpa);
 
 
 		iterator->shadow_addr
 		iterator->shadow_addr
-			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
+			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
 		--iterator->level;
 		--iterator->level;
 		if (!iterator->shadow_addr)
 		if (!iterator->shadow_addr)
@@ -2483,7 +2489,7 @@ static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterato
 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
 			     struct kvm_vcpu *vcpu, u64 addr)
 			     struct kvm_vcpu *vcpu, u64 addr)
 {
 {
-	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
+	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
 				    addr);
 				    addr);
 }
 }
 
 
@@ -3095,7 +3101,7 @@ static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
 	int emulate = 0;
 	int emulate = 0;
 	gfn_t pseudo_gfn;
 	gfn_t pseudo_gfn;
 
 
-	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 		return 0;
 		return 0;
 
 
 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
@@ -3301,7 +3307,7 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
 	u64 spte = 0ull;
 	u64 spte = 0ull;
 	uint retry_count = 0;
 	uint retry_count = 0;
 
 
-	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 		return false;
 		return false;
 
 
 	if (!page_fault_can_be_fast(error_code))
 	if (!page_fault_can_be_fast(error_code))
@@ -3471,11 +3477,11 @@ static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
 }
 }
 
 
 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
-void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
+void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+			ulong roots_to_free)
 {
 {
 	int i;
 	int i;
 	LIST_HEAD(invalid_list);
 	LIST_HEAD(invalid_list);
-	struct kvm_mmu *mmu = &vcpu->arch.mmu;
 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
 
 
 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
@@ -3535,20 +3541,20 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
 	struct kvm_mmu_page *sp;
 	struct kvm_mmu_page *sp;
 	unsigned i;
 	unsigned i;
 
 
-	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
+	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
 		spin_lock(&vcpu->kvm->mmu_lock);
 		spin_lock(&vcpu->kvm->mmu_lock);
 		if(make_mmu_pages_available(vcpu) < 0) {
 		if(make_mmu_pages_available(vcpu) < 0) {
 			spin_unlock(&vcpu->kvm->mmu_lock);
 			spin_unlock(&vcpu->kvm->mmu_lock);
 			return -ENOSPC;
 			return -ENOSPC;
 		}
 		}
 		sp = kvm_mmu_get_page(vcpu, 0, 0,
 		sp = kvm_mmu_get_page(vcpu, 0, 0,
-				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
+				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
 		++sp->root_count;
 		++sp->root_count;
 		spin_unlock(&vcpu->kvm->mmu_lock);
 		spin_unlock(&vcpu->kvm->mmu_lock);
-		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
-	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
+		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
+	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
 		for (i = 0; i < 4; ++i) {
 		for (i = 0; i < 4; ++i) {
-			hpa_t root = vcpu->arch.mmu.pae_root[i];
+			hpa_t root = vcpu->arch.mmu->pae_root[i];
 
 
 			MMU_WARN_ON(VALID_PAGE(root));
 			MMU_WARN_ON(VALID_PAGE(root));
 			spin_lock(&vcpu->kvm->mmu_lock);
 			spin_lock(&vcpu->kvm->mmu_lock);
@@ -3561,9 +3567,9 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
 			root = __pa(sp->spt);
 			root = __pa(sp->spt);
 			++sp->root_count;
 			++sp->root_count;
 			spin_unlock(&vcpu->kvm->mmu_lock);
 			spin_unlock(&vcpu->kvm->mmu_lock);
-			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
+			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
 		}
 		}
-		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
 	} else
 	} else
 		BUG();
 		BUG();
 
 
@@ -3577,7 +3583,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 	gfn_t root_gfn;
 	gfn_t root_gfn;
 	int i;
 	int i;
 
 
-	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
+	root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
 
 
 	if (mmu_check_root(vcpu, root_gfn))
 	if (mmu_check_root(vcpu, root_gfn))
 		return 1;
 		return 1;
@@ -3586,8 +3592,8 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 	 * Do we shadow a long mode page table? If so we need to
 	 * Do we shadow a long mode page table? If so we need to
 	 * write-protect the guests page table root.
 	 * write-protect the guests page table root.
 	 */
 	 */
-	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
-		hpa_t root = vcpu->arch.mmu.root_hpa;
+	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
+		hpa_t root = vcpu->arch.mmu->root_hpa;
 
 
 		MMU_WARN_ON(VALID_PAGE(root));
 		MMU_WARN_ON(VALID_PAGE(root));
 
 
@@ -3597,11 +3603,11 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 			return -ENOSPC;
 			return -ENOSPC;
 		}
 		}
 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
-				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
+				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
 		root = __pa(sp->spt);
 		root = __pa(sp->spt);
 		++sp->root_count;
 		++sp->root_count;
 		spin_unlock(&vcpu->kvm->mmu_lock);
 		spin_unlock(&vcpu->kvm->mmu_lock);
-		vcpu->arch.mmu.root_hpa = root;
+		vcpu->arch.mmu->root_hpa = root;
 		return 0;
 		return 0;
 	}
 	}
 
 
@@ -3611,17 +3617,17 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 	 * the shadow page table may be a PAE or a long mode page table.
 	 * the shadow page table may be a PAE or a long mode page table.
 	 */
 	 */
 	pm_mask = PT_PRESENT_MASK;
 	pm_mask = PT_PRESENT_MASK;
-	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
+	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
 
 
 	for (i = 0; i < 4; ++i) {
 	for (i = 0; i < 4; ++i) {
-		hpa_t root = vcpu->arch.mmu.pae_root[i];
+		hpa_t root = vcpu->arch.mmu->pae_root[i];
 
 
 		MMU_WARN_ON(VALID_PAGE(root));
 		MMU_WARN_ON(VALID_PAGE(root));
-		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
-			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
+		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
+			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
 			if (!(pdptr & PT_PRESENT_MASK)) {
 			if (!(pdptr & PT_PRESENT_MASK)) {
-				vcpu->arch.mmu.pae_root[i] = 0;
+				vcpu->arch.mmu->pae_root[i] = 0;
 				continue;
 				continue;
 			}
 			}
 			root_gfn = pdptr >> PAGE_SHIFT;
 			root_gfn = pdptr >> PAGE_SHIFT;
@@ -3639,16 +3645,16 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 		++sp->root_count;
 		++sp->root_count;
 		spin_unlock(&vcpu->kvm->mmu_lock);
 		spin_unlock(&vcpu->kvm->mmu_lock);
 
 
-		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
+		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
 	}
 	}
-	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
 
 
 	/*
 	/*
 	 * If we shadow a 32 bit page table with a long mode page
 	 * If we shadow a 32 bit page table with a long mode page
 	 * table we enter this path.
 	 * table we enter this path.
 	 */
 	 */
-	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
-		if (vcpu->arch.mmu.lm_root == NULL) {
+	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
+		if (vcpu->arch.mmu->lm_root == NULL) {
 			/*
 			/*
 			 * The additional page necessary for this is only
 			 * The additional page necessary for this is only
 			 * allocated on demand.
 			 * allocated on demand.
@@ -3660,12 +3666,12 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 			if (lm_root == NULL)
 			if (lm_root == NULL)
 				return 1;
 				return 1;
 
 
-			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
+			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
 
 
-			vcpu->arch.mmu.lm_root = lm_root;
+			vcpu->arch.mmu->lm_root = lm_root;
 		}
 		}
 
 
-		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
+		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
 	}
 	}
 
 
 	return 0;
 	return 0;
@@ -3673,7 +3679,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 
 
 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
 {
 {
-	if (vcpu->arch.mmu.direct_map)
+	if (vcpu->arch.mmu->direct_map)
 		return mmu_alloc_direct_roots(vcpu);
 		return mmu_alloc_direct_roots(vcpu);
 	else
 	else
 		return mmu_alloc_shadow_roots(vcpu);
 		return mmu_alloc_shadow_roots(vcpu);
@@ -3684,17 +3690,16 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
 	int i;
 	int i;
 	struct kvm_mmu_page *sp;
 	struct kvm_mmu_page *sp;
 
 
-	if (vcpu->arch.mmu.direct_map)
+	if (vcpu->arch.mmu->direct_map)
 		return;
 		return;
 
 
-	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 		return;
 		return;
 
 
 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
 
 
-	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
-		hpa_t root = vcpu->arch.mmu.root_hpa;
-
+	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
+		hpa_t root = vcpu->arch.mmu->root_hpa;
 		sp = page_header(root);
 		sp = page_header(root);
 
 
 		/*
 		/*
@@ -3725,7 +3730,7 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
 
 
 	for (i = 0; i < 4; ++i) {
 	for (i = 0; i < 4; ++i) {
-		hpa_t root = vcpu->arch.mmu.pae_root[i];
+		hpa_t root = vcpu->arch.mmu->pae_root[i];
 
 
 		if (root && VALID_PAGE(root)) {
 		if (root && VALID_PAGE(root)) {
 			root &= PT64_BASE_ADDR_MASK;
 			root &= PT64_BASE_ADDR_MASK;
@@ -3799,7 +3804,7 @@ walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
 	int root, leaf;
 	int root, leaf;
 	bool reserved = false;
 	bool reserved = false;
 
 
-	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 		goto exit;
 		goto exit;
 
 
 	walk_shadow_page_lockless_begin(vcpu);
 	walk_shadow_page_lockless_begin(vcpu);
@@ -3816,7 +3821,7 @@ walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
 		if (!is_shadow_present_pte(spte))
 		if (!is_shadow_present_pte(spte))
 			break;
 			break;
 
 
-		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
+		reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
 						    iterator.level);
 						    iterator.level);
 	}
 	}
 
 
@@ -3895,7 +3900,7 @@ static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
 	struct kvm_shadow_walk_iterator iterator;
 	struct kvm_shadow_walk_iterator iterator;
 	u64 spte;
 	u64 spte;
 
 
-	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 		return;
 		return;
 
 
 	walk_shadow_page_lockless_begin(vcpu);
 	walk_shadow_page_lockless_begin(vcpu);
@@ -3922,7 +3927,7 @@ static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
 	if (r)
 	if (r)
 		return r;
 		return r;
 
 
-	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
 
 
 
 
 	return nonpaging_map(vcpu, gva & PAGE_MASK,
 	return nonpaging_map(vcpu, gva & PAGE_MASK,
@@ -3935,8 +3940,8 @@ static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
 
 
 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
 	arch.gfn = gfn;
 	arch.gfn = gfn;
-	arch.direct_map = vcpu->arch.mmu.direct_map;
-	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
+	arch.direct_map = vcpu->arch.mmu->direct_map;
+	arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
 
 
 	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
 	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
 }
 }
@@ -4042,7 +4047,7 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
 	int write = error_code & PFERR_WRITE_MASK;
 	int write = error_code & PFERR_WRITE_MASK;
 	bool map_writable;
 	bool map_writable;
 
 
-	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
 
 
 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
 		return RET_PF_EMULATE;
 		return RET_PF_EMULATE;
@@ -4118,7 +4123,7 @@ static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
 {
 {
 	uint i;
 	uint i;
 	struct kvm_mmu_root_info root;
 	struct kvm_mmu_root_info root;
-	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+	struct kvm_mmu *mmu = vcpu->arch.mmu;
 
 
 	root.cr3 = mmu->get_cr3(vcpu);
 	root.cr3 = mmu->get_cr3(vcpu);
 	root.hpa = mmu->root_hpa;
 	root.hpa = mmu->root_hpa;
@@ -4141,7 +4146,7 @@ static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
 			    union kvm_mmu_page_role new_role,
 			    union kvm_mmu_page_role new_role,
 			    bool skip_tlb_flush)
 			    bool skip_tlb_flush)
 {
 {
-	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+	struct kvm_mmu *mmu = vcpu->arch.mmu;
 
 
 	/*
 	/*
 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
@@ -4192,7 +4197,8 @@ static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
 			      bool skip_tlb_flush)
 			      bool skip_tlb_flush)
 {
 {
 	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
 	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
-		kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
+		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
+				   KVM_MMU_ROOT_CURRENT);
 }
 }
 
 
 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
@@ -4210,7 +4216,7 @@ static unsigned long get_cr3(struct kvm_vcpu *vcpu)
 static void inject_page_fault(struct kvm_vcpu *vcpu,
 static void inject_page_fault(struct kvm_vcpu *vcpu,
 			      struct x86_exception *fault)
 			      struct x86_exception *fault)
 {
 {
-	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
+	vcpu->arch.mmu->inject_page_fault(vcpu, fault);
 }
 }
 
 
 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
@@ -4414,7 +4420,8 @@ static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
 void
 void
 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
 {
 {
-	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
+	bool uses_nx = context->nx ||
+		context->mmu_role.base.smep_andnot_wp;
 	struct rsvd_bits_validate *shadow_zero_check;
 	struct rsvd_bits_validate *shadow_zero_check;
 	int i;
 	int i;
 
 
@@ -4553,7 +4560,7 @@ static void update_permission_bitmask(struct kvm_vcpu *vcpu,
 			 * SMAP:kernel-mode data accesses from user-mode
 			 * SMAP:kernel-mode data accesses from user-mode
 			 * mappings should fault. A fault is considered
 			 * mappings should fault. A fault is considered
 			 * as a SMAP violation if all of the following
 			 * as a SMAP violation if all of the following
-			 * conditions are ture:
+			 * conditions are true:
 			 *   - X86_CR4_SMAP is set in CR4
 			 *   - X86_CR4_SMAP is set in CR4
 			 *   - A user page is accessed
 			 *   - A user page is accessed
 			 *   - The access is not a fetch
 			 *   - The access is not a fetch
@@ -4714,27 +4721,65 @@ static void paging32E_init_context(struct kvm_vcpu *vcpu,
 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
 }
 }
 
 
-static union kvm_mmu_page_role
-kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
+static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
+{
+	union kvm_mmu_extended_role ext = {0};
+
+	ext.cr0_pg = !!is_paging(vcpu);
+	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
+	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
+	ext.cr4_pse = !!is_pse(vcpu);
+	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
+	ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
+
+	ext.valid = 1;
+
+	return ext;
+}
+
+static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
+						   bool base_only)
+{
+	union kvm_mmu_role role = {0};
+
+	role.base.access = ACC_ALL;
+	role.base.nxe = !!is_nx(vcpu);
+	role.base.cr4_pae = !!is_pae(vcpu);
+	role.base.cr0_wp = is_write_protection(vcpu);
+	role.base.smm = is_smm(vcpu);
+	role.base.guest_mode = is_guest_mode(vcpu);
+
+	if (base_only)
+		return role;
+
+	role.ext = kvm_calc_mmu_role_ext(vcpu);
+
+	return role;
+}
+
+static union kvm_mmu_role
+kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
 {
 {
-	union kvm_mmu_page_role role = {0};
+	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
 
 
-	role.guest_mode = is_guest_mode(vcpu);
-	role.smm = is_smm(vcpu);
-	role.ad_disabled = (shadow_accessed_mask == 0);
-	role.level = kvm_x86_ops->get_tdp_level(vcpu);
-	role.direct = true;
-	role.access = ACC_ALL;
+	role.base.ad_disabled = (shadow_accessed_mask == 0);
+	role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
+	role.base.direct = true;
 
 
 	return role;
 	return role;
 }
 }
 
 
 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
 {
 {
-	struct kvm_mmu *context = &vcpu->arch.mmu;
+	struct kvm_mmu *context = vcpu->arch.mmu;
+	union kvm_mmu_role new_role =
+		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
 
 
-	context->base_role.word = mmu_base_role_mask.word &
-				  kvm_calc_tdp_mmu_root_page_role(vcpu).word;
+	new_role.base.word &= mmu_base_role_mask.word;
+	if (new_role.as_u64 == context->mmu_role.as_u64)
+		return;
+
+	context->mmu_role.as_u64 = new_role.as_u64;
 	context->page_fault = tdp_page_fault;
 	context->page_fault = tdp_page_fault;
 	context->sync_page = nonpaging_sync_page;
 	context->sync_page = nonpaging_sync_page;
 	context->invlpg = nonpaging_invlpg;
 	context->invlpg = nonpaging_invlpg;
@@ -4774,36 +4819,36 @@ static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
 }
 }
 
 
-static union kvm_mmu_page_role
-kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
-{
-	union kvm_mmu_page_role role = {0};
-	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
-	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
-
-	role.nxe = is_nx(vcpu);
-	role.cr4_pae = !!is_pae(vcpu);
-	role.cr0_wp  = is_write_protection(vcpu);
-	role.smep_andnot_wp = smep && !is_write_protection(vcpu);
-	role.smap_andnot_wp = smap && !is_write_protection(vcpu);
-	role.guest_mode = is_guest_mode(vcpu);
-	role.smm = is_smm(vcpu);
-	role.direct = !is_paging(vcpu);
-	role.access = ACC_ALL;
+static union kvm_mmu_role
+kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
+{
+	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
+
+	role.base.smep_andnot_wp = role.ext.cr4_smep &&
+		!is_write_protection(vcpu);
+	role.base.smap_andnot_wp = role.ext.cr4_smap &&
+		!is_write_protection(vcpu);
+	role.base.direct = !is_paging(vcpu);
 
 
 	if (!is_long_mode(vcpu))
 	if (!is_long_mode(vcpu))
-		role.level = PT32E_ROOT_LEVEL;
+		role.base.level = PT32E_ROOT_LEVEL;
 	else if (is_la57_mode(vcpu))
 	else if (is_la57_mode(vcpu))
-		role.level = PT64_ROOT_5LEVEL;
+		role.base.level = PT64_ROOT_5LEVEL;
 	else
 	else
-		role.level = PT64_ROOT_4LEVEL;
+		role.base.level = PT64_ROOT_4LEVEL;
 
 
 	return role;
 	return role;
 }
 }
 
 
 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
 {
 {
-	struct kvm_mmu *context = &vcpu->arch.mmu;
+	struct kvm_mmu *context = vcpu->arch.mmu;
+	union kvm_mmu_role new_role =
+		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
+
+	new_role.base.word &= mmu_base_role_mask.word;
+	if (new_role.as_u64 == context->mmu_role.as_u64)
+		return;
 
 
 	if (!is_paging(vcpu))
 	if (!is_paging(vcpu))
 		nonpaging_init_context(vcpu, context);
 		nonpaging_init_context(vcpu, context);
@@ -4814,22 +4859,28 @@ void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
 	else
 	else
 		paging32_init_context(vcpu, context);
 		paging32_init_context(vcpu, context);
 
 
-	context->base_role.word = mmu_base_role_mask.word &
-				  kvm_calc_shadow_mmu_root_page_role(vcpu).word;
+	context->mmu_role.as_u64 = new_role.as_u64;
 	reset_shadow_zero_bits_mask(vcpu, context);
 	reset_shadow_zero_bits_mask(vcpu, context);
 }
 }
 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
 
 
-static union kvm_mmu_page_role
-kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
+static union kvm_mmu_role
+kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
+				   bool execonly)
 {
 {
-	union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;
+	union kvm_mmu_role role;
+
+	/* Base role is inherited from root_mmu */
+	role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
+	role.ext = kvm_calc_mmu_role_ext(vcpu);
+
+	role.base.level = PT64_ROOT_4LEVEL;
+	role.base.direct = false;
+	role.base.ad_disabled = !accessed_dirty;
+	role.base.guest_mode = true;
+	role.base.access = ACC_ALL;
 
 
-	role.level = PT64_ROOT_4LEVEL;
-	role.direct = false;
-	role.ad_disabled = !accessed_dirty;
-	role.guest_mode = true;
-	role.access = ACC_ALL;
+	role.ext.execonly = execonly;
 
 
 	return role;
 	return role;
 }
 }
@@ -4837,11 +4888,17 @@ kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 			     bool accessed_dirty, gpa_t new_eptp)
 			     bool accessed_dirty, gpa_t new_eptp)
 {
 {
-	struct kvm_mmu *context = &vcpu->arch.mmu;
-	union kvm_mmu_page_role root_page_role =
-		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
+	struct kvm_mmu *context = vcpu->arch.mmu;
+	union kvm_mmu_role new_role =
+		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
+						   execonly);
+
+	__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
+
+	new_role.base.word &= mmu_base_role_mask.word;
+	if (new_role.as_u64 == context->mmu_role.as_u64)
+		return;
 
 
-	__kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
 	context->shadow_root_level = PT64_ROOT_4LEVEL;
 	context->shadow_root_level = PT64_ROOT_4LEVEL;
 
 
 	context->nx = true;
 	context->nx = true;
@@ -4853,7 +4910,8 @@ void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 	context->update_pte = ept_update_pte;
 	context->update_pte = ept_update_pte;
 	context->root_level = PT64_ROOT_4LEVEL;
 	context->root_level = PT64_ROOT_4LEVEL;
 	context->direct_map = false;
 	context->direct_map = false;
-	context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
+	context->mmu_role.as_u64 = new_role.as_u64;
+
 	update_permission_bitmask(vcpu, context, true);
 	update_permission_bitmask(vcpu, context, true);
 	update_pkru_bitmask(vcpu, context, true);
 	update_pkru_bitmask(vcpu, context, true);
 	update_last_nonleaf_level(vcpu, context);
 	update_last_nonleaf_level(vcpu, context);
@@ -4864,7 +4922,7 @@ EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
 
 
 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
 {
 {
-	struct kvm_mmu *context = &vcpu->arch.mmu;
+	struct kvm_mmu *context = vcpu->arch.mmu;
 
 
 	kvm_init_shadow_mmu(vcpu);
 	kvm_init_shadow_mmu(vcpu);
 	context->set_cr3           = kvm_x86_ops->set_cr3;
 	context->set_cr3           = kvm_x86_ops->set_cr3;
@@ -4875,14 +4933,20 @@ static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
 
 
 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
 {
 {
+	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
 
 
+	new_role.base.word &= mmu_base_role_mask.word;
+	if (new_role.as_u64 == g_context->mmu_role.as_u64)
+		return;
+
+	g_context->mmu_role.as_u64 = new_role.as_u64;
 	g_context->get_cr3           = get_cr3;
 	g_context->get_cr3           = get_cr3;
 	g_context->get_pdptr         = kvm_pdptr_read;
 	g_context->get_pdptr         = kvm_pdptr_read;
 	g_context->inject_page_fault = kvm_inject_page_fault;
 	g_context->inject_page_fault = kvm_inject_page_fault;
 
 
 	/*
 	/*
-	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
+	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
 	 * L1's nested page tables (e.g. EPT12). The nested translation
 	 * L1's nested page tables (e.g. EPT12). The nested translation
 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
 	 * L2's page tables as the first level of translation and L1's
 	 * L2's page tables as the first level of translation and L1's
@@ -4921,10 +4985,10 @@ void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
 	if (reset_roots) {
 	if (reset_roots) {
 		uint i;
 		uint i;
 
 
-		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
 
 
 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
-			vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
+			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
 	}
 	}
 
 
 	if (mmu_is_nested(vcpu))
 	if (mmu_is_nested(vcpu))
@@ -4939,10 +5003,14 @@ EXPORT_SYMBOL_GPL(kvm_init_mmu);
 static union kvm_mmu_page_role
 static union kvm_mmu_page_role
 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
 {
 {
+	union kvm_mmu_role role;
+
 	if (tdp_enabled)
 	if (tdp_enabled)
-		return kvm_calc_tdp_mmu_root_page_role(vcpu);
+		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
 	else
 	else
-		return kvm_calc_shadow_mmu_root_page_role(vcpu);
+		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
+
+	return role.base;
 }
 }
 
 
 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
@@ -4972,8 +5040,10 @@ EXPORT_SYMBOL_GPL(kvm_mmu_load);
 
 
 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 {
 {
-	kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
-	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
+	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
+	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
 }
 }
 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
 
 
@@ -4987,7 +5057,7 @@ static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
         }
         }
 
 
 	++vcpu->kvm->stat.mmu_pte_updated;
 	++vcpu->kvm->stat.mmu_pte_updated;
-	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
+	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
 }
 }
 
 
 static bool need_remote_flush(u64 old, u64 new)
 static bool need_remote_flush(u64 old, u64 new)
@@ -5164,10 +5234,12 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 
 
 		local_flush = true;
 		local_flush = true;
 		while (npte--) {
 		while (npte--) {
+			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
+
 			entry = *spte;
 			entry = *spte;
 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
 			if (gentry &&
 			if (gentry &&
-			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
+			      !((sp->role.word ^ base_role)
 			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
 			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
 			if (need_remote_flush(entry, *spte))
 			if (need_remote_flush(entry, *spte))
@@ -5185,7 +5257,7 @@ int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
 	gpa_t gpa;
 	gpa_t gpa;
 	int r;
 	int r;
 
 
-	if (vcpu->arch.mmu.direct_map)
+	if (vcpu->arch.mmu->direct_map)
 		return 0;
 		return 0;
 
 
 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
@@ -5221,10 +5293,10 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
 {
 {
 	int r, emulation_type = 0;
 	int r, emulation_type = 0;
 	enum emulation_result er;
 	enum emulation_result er;
-	bool direct = vcpu->arch.mmu.direct_map;
+	bool direct = vcpu->arch.mmu->direct_map;
 
 
 	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
 	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
-	if (vcpu->arch.mmu.direct_map) {
+	if (vcpu->arch.mmu->direct_map) {
 		vcpu->arch.gpa_available = true;
 		vcpu->arch.gpa_available = true;
 		vcpu->arch.gpa_val = cr2;
 		vcpu->arch.gpa_val = cr2;
 	}
 	}
@@ -5237,8 +5309,9 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
 	}
 	}
 
 
 	if (r == RET_PF_INVALID) {
 	if (r == RET_PF_INVALID) {
-		r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
-					      false);
+		r = vcpu->arch.mmu->page_fault(vcpu, cr2,
+					       lower_32_bits(error_code),
+					       false);
 		WARN_ON(r == RET_PF_INVALID);
 		WARN_ON(r == RET_PF_INVALID);
 	}
 	}
 
 
@@ -5254,7 +5327,7 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
 	 * paging in both guests. If true, we simply unprotect the page
 	 * paging in both guests. If true, we simply unprotect the page
 	 * and resume the guest.
 	 * and resume the guest.
 	 */
 	 */
-	if (vcpu->arch.mmu.direct_map &&
+	if (vcpu->arch.mmu->direct_map &&
 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
 		return 1;
 		return 1;
@@ -5302,7 +5375,7 @@ EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
 
 
 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
 {
 {
-	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+	struct kvm_mmu *mmu = vcpu->arch.mmu;
 	int i;
 	int i;
 
 
 	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
 	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
@@ -5333,7 +5406,7 @@ EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
 
 
 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
 {
 {
-	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+	struct kvm_mmu *mmu = vcpu->arch.mmu;
 	bool tlb_flush = false;
 	bool tlb_flush = false;
 	uint i;
 	uint i;
 
 
@@ -5377,8 +5450,8 @@ EXPORT_SYMBOL_GPL(kvm_disable_tdp);
 
 
 static void free_mmu_pages(struct kvm_vcpu *vcpu)
 static void free_mmu_pages(struct kvm_vcpu *vcpu)
 {
 {
-	free_page((unsigned long)vcpu->arch.mmu.pae_root);
-	free_page((unsigned long)vcpu->arch.mmu.lm_root);
+	free_page((unsigned long)vcpu->arch.mmu->pae_root);
+	free_page((unsigned long)vcpu->arch.mmu->lm_root);
 }
 }
 
 
 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
@@ -5398,9 +5471,9 @@ static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
 	if (!page)
 	if (!page)
 		return -ENOMEM;
 		return -ENOMEM;
 
 
-	vcpu->arch.mmu.pae_root = page_address(page);
+	vcpu->arch.mmu->pae_root = page_address(page);
 	for (i = 0; i < 4; ++i)
 	for (i = 0; i < 4; ++i)
-		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
+		vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
 
 
 	return 0;
 	return 0;
 }
 }
@@ -5409,27 +5482,21 @@ int kvm_mmu_create(struct kvm_vcpu *vcpu)
 {
 {
 	uint i;
 	uint i;
 
 
-	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
-	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
-	vcpu->arch.mmu.translate_gpa = translate_gpa;
-	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
+	vcpu->arch.mmu = &vcpu->arch.root_mmu;
+	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 
 
+	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
+	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
-		vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
-
-	return alloc_mmu_pages(vcpu);
-}
+		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
 
 
-void kvm_mmu_setup(struct kvm_vcpu *vcpu)
-{
-	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
+	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
+	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
 
 
-	/*
-	 * kvm_mmu_setup() is called only on vCPU initialization.  
-	 * Therefore, no need to reset mmu roots as they are not yet
-	 * initialized.
-	 */
-	kvm_init_mmu(vcpu, false);
+	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
+	return alloc_mmu_pages(vcpu);
 }
 }
 
 
 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
@@ -5612,7 +5679,7 @@ restart:
 		if (sp->role.direct &&
 		if (sp->role.direct &&
 			!kvm_is_reserved_pfn(pfn) &&
 			!kvm_is_reserved_pfn(pfn) &&
 			PageTransCompoundMap(pfn_to_page(pfn))) {
 			PageTransCompoundMap(pfn_to_page(pfn))) {
-			drop_spte(kvm, sptep);
+			pte_list_remove(rmap_head, sptep);
 			need_tlb_flush = 1;
 			need_tlb_flush = 1;
 			goto restart;
 			goto restart;
 		}
 		}
@@ -5869,6 +5936,16 @@ int kvm_mmu_module_init(void)
 {
 {
 	int ret = -ENOMEM;
 	int ret = -ENOMEM;
 
 
+	/*
+	 * MMU roles use union aliasing which is, generally speaking, an
+	 * undefined behavior. However, we supposedly know how compilers behave
+	 * and the current status quo is unlikely to change. Guardians below are
+	 * supposed to let us know if the assumption becomes false.
+	 */
+	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
+	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
+	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
+
 	kvm_mmu_reset_all_pte_masks();
 	kvm_mmu_reset_all_pte_masks();
 
 
 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
@@ -5898,7 +5975,7 @@ out:
 }
 }
 
 
 /*
 /*
- * Caculate mmu pages needed for kvm.
+ * Calculate mmu pages needed for kvm.
  */
  */
 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
 {
 {

+ 4 - 9
arch/x86/kvm/mmu.h

@@ -43,11 +43,6 @@
 #define PT32_ROOT_LEVEL 2
 #define PT32_ROOT_LEVEL 2
 #define PT32E_ROOT_LEVEL 3
 #define PT32E_ROOT_LEVEL 3
 
 
-#define PT_PDPE_LEVEL 3
-#define PT_DIRECTORY_LEVEL 2
-#define PT_PAGE_TABLE_LEVEL 1
-#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
-
 static inline u64 rsvd_bits(int s, int e)
 static inline u64 rsvd_bits(int s, int e)
 {
 {
 	if (e < s)
 	if (e < s)
@@ -80,7 +75,7 @@ static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
 
 
 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 {
 {
-	if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
+	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
 		return 0;
 		return 0;
 
 
 	return kvm_mmu_load(vcpu);
 	return kvm_mmu_load(vcpu);
@@ -102,9 +97,9 @@ static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
 
 
 static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
 static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
 {
 {
-	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
-		vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa |
-					     kvm_get_active_pcid(vcpu));
+	if (VALID_PAGE(vcpu->arch.mmu->root_hpa))
+		vcpu->arch.mmu->set_cr3(vcpu, vcpu->arch.mmu->root_hpa |
+					      kvm_get_active_pcid(vcpu));
 }
 }
 
 
 /*
 /*

+ 6 - 6
arch/x86/kvm/mmu_audit.c

@@ -59,19 +59,19 @@ static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
 	int i;
 	int i;
 	struct kvm_mmu_page *sp;
 	struct kvm_mmu_page *sp;
 
 
-	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 		return;
 		return;
 
 
-	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
-		hpa_t root = vcpu->arch.mmu.root_hpa;
+	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
+		hpa_t root = vcpu->arch.mmu->root_hpa;
 
 
 		sp = page_header(root);
 		sp = page_header(root);
-		__mmu_spte_walk(vcpu, sp, fn, vcpu->arch.mmu.root_level);
+		__mmu_spte_walk(vcpu, sp, fn, vcpu->arch.mmu->root_level);
 		return;
 		return;
 	}
 	}
 
 
 	for (i = 0; i < 4; ++i) {
 	for (i = 0; i < 4; ++i) {
-		hpa_t root = vcpu->arch.mmu.pae_root[i];
+		hpa_t root = vcpu->arch.mmu->pae_root[i];
 
 
 		if (root && VALID_PAGE(root)) {
 		if (root && VALID_PAGE(root)) {
 			root &= PT64_BASE_ADDR_MASK;
 			root &= PT64_BASE_ADDR_MASK;
@@ -122,7 +122,7 @@ static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
 	hpa =  pfn << PAGE_SHIFT;
 	hpa =  pfn << PAGE_SHIFT;
 	if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
 	if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
 		audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx "
 		audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx "
-			     "ent %llxn", vcpu->arch.mmu.root_level, pfn,
+			     "ent %llxn", vcpu->arch.mmu->root_level, pfn,
 			     hpa, *sptep);
 			     hpa, *sptep);
 }
 }
 
 

+ 8 - 7
arch/x86/kvm/paging_tmpl.h

@@ -158,14 +158,15 @@ static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
 				  struct kvm_mmu_page *sp, u64 *spte,
 				  struct kvm_mmu_page *sp, u64 *spte,
 				  u64 gpte)
 				  u64 gpte)
 {
 {
-	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
+	if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
 		goto no_present;
 		goto no_present;
 
 
 	if (!FNAME(is_present_gpte)(gpte))
 	if (!FNAME(is_present_gpte)(gpte))
 		goto no_present;
 		goto no_present;
 
 
 	/* if accessed bit is not supported prefetch non accessed gpte */
 	/* if accessed bit is not supported prefetch non accessed gpte */
-	if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK))
+	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
+	    !(gpte & PT_GUEST_ACCESSED_MASK))
 		goto no_present;
 		goto no_present;
 
 
 	return false;
 	return false;
@@ -480,7 +481,7 @@ error:
 static int FNAME(walk_addr)(struct guest_walker *walker,
 static int FNAME(walk_addr)(struct guest_walker *walker,
 			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
 			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
 {
 {
-	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
+	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
 					access);
 					access);
 }
 }
 
 
@@ -509,7 +510,7 @@ FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 
 
 	gfn = gpte_to_gfn(gpte);
 	gfn = gpte_to_gfn(gpte);
 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
-	FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
+	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
 	if (is_error_pfn(pfn))
 	if (is_error_pfn(pfn))
@@ -604,7 +605,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
 
 
 	direct_access = gw->pte_access;
 	direct_access = gw->pte_access;
 
 
-	top_level = vcpu->arch.mmu.root_level;
+	top_level = vcpu->arch.mmu->root_level;
 	if (top_level == PT32E_ROOT_LEVEL)
 	if (top_level == PT32E_ROOT_LEVEL)
 		top_level = PT32_ROOT_LEVEL;
 		top_level = PT32_ROOT_LEVEL;
 	/*
 	/*
@@ -616,7 +617,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
 		goto out_gpte_changed;
 		goto out_gpte_changed;
 
 
-	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 		goto out_gpte_changed;
 		goto out_gpte_changed;
 
 
 	for (shadow_walk_init(&it, vcpu, addr);
 	for (shadow_walk_init(&it, vcpu, addr);
@@ -1004,7 +1005,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 		gfn = gpte_to_gfn(gpte);
 		gfn = gpte_to_gfn(gpte);
 		pte_access = sp->role.access;
 		pte_access = sp->role.access;
 		pte_access &= FNAME(gpte_access)(gpte);
 		pte_access &= FNAME(gpte_access)(gpte);
-		FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
+		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
 
 
 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
 		      &nr_present))
 		      &nr_present))

+ 35 - 29
arch/x86/kvm/svm.c

@@ -809,6 +809,8 @@ static void svm_queue_exception(struct kvm_vcpu *vcpu)
 	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
 	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
 		return;
 		return;
 
 
+	kvm_deliver_exception_payload(&svm->vcpu);
+
 	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 
 
@@ -2922,18 +2924,18 @@ static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
 {
 {
 	WARN_ON(mmu_is_nested(vcpu));
 	WARN_ON(mmu_is_nested(vcpu));
 	kvm_init_shadow_mmu(vcpu);
 	kvm_init_shadow_mmu(vcpu);
-	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
-	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
-	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
-	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
-	vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
-	reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
+	vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
+	vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
+	vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
+	vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
+	vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
+	reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 }
 }
 
 
 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
 {
 {
-	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 }
 }
 
 
 static int nested_svm_check_permissions(struct vcpu_svm *svm)
 static int nested_svm_check_permissions(struct vcpu_svm *svm)
@@ -2969,16 +2971,13 @@ static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 	svm->vmcb->control.exit_info_1 = error_code;
 	svm->vmcb->control.exit_info_1 = error_code;
 
 
 	/*
 	/*
-	 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
-	 * The fix is to add the ancillary datum (CR2 or DR6) to structs
-	 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
-	 * written only when inject_pending_event runs (DR6 would written here
-	 * too).  This should be conditional on a new capability---if the
-	 * capability is disabled, kvm_multiple_exception would write the
-	 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
+	 * EXITINFO2 is undefined for all exception intercepts other
+	 * than #PF.
 	 */
 	 */
 	if (svm->vcpu.arch.exception.nested_apf)
 	if (svm->vcpu.arch.exception.nested_apf)
 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
+	else if (svm->vcpu.arch.exception.has_payload)
+		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
 	else
 	else
 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
 
 
@@ -5642,26 +5641,24 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
 		"mov %%r13, %c[r13](%[svm]) \n\t"
 		"mov %%r13, %c[r13](%[svm]) \n\t"
 		"mov %%r14, %c[r14](%[svm]) \n\t"
 		"mov %%r14, %c[r14](%[svm]) \n\t"
 		"mov %%r15, %c[r15](%[svm]) \n\t"
 		"mov %%r15, %c[r15](%[svm]) \n\t"
-#endif
 		/*
 		/*
 		* Clear host registers marked as clobbered to prevent
 		* Clear host registers marked as clobbered to prevent
 		* speculative use.
 		* speculative use.
 		*/
 		*/
-		"xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
-		"xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
-		"xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
-		"xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
-		"xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
-#ifdef CONFIG_X86_64
-		"xor %%r8, %%r8 \n\t"
-		"xor %%r9, %%r9 \n\t"
-		"xor %%r10, %%r10 \n\t"
-		"xor %%r11, %%r11 \n\t"
-		"xor %%r12, %%r12 \n\t"
-		"xor %%r13, %%r13 \n\t"
-		"xor %%r14, %%r14 \n\t"
-		"xor %%r15, %%r15 \n\t"
+		"xor %%r8d, %%r8d \n\t"
+		"xor %%r9d, %%r9d \n\t"
+		"xor %%r10d, %%r10d \n\t"
+		"xor %%r11d, %%r11d \n\t"
+		"xor %%r12d, %%r12d \n\t"
+		"xor %%r13d, %%r13d \n\t"
+		"xor %%r14d, %%r14d \n\t"
+		"xor %%r15d, %%r15d \n\t"
 #endif
 #endif
+		"xor %%ebx, %%ebx \n\t"
+		"xor %%ecx, %%ecx \n\t"
+		"xor %%edx, %%edx \n\t"
+		"xor %%esi, %%esi \n\t"
+		"xor %%edi, %%edi \n\t"
 		"pop %%" _ASM_BP
 		"pop %%" _ASM_BP
 		:
 		:
 		: [svm]"a"(svm),
 		: [svm]"a"(svm),
@@ -7040,6 +7037,13 @@ failed:
 	return ret;
 	return ret;
 }
 }
 
 
+static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
+				   uint16_t *vmcs_version)
+{
+	/* Intel-only feature */
+	return -ENODEV;
+}
+
 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
 	.cpu_has_kvm_support = has_svm,
 	.cpu_has_kvm_support = has_svm,
 	.disabled_by_bios = is_disabled,
 	.disabled_by_bios = is_disabled,
@@ -7169,6 +7173,8 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
 	.mem_enc_op = svm_mem_enc_op,
 	.mem_enc_op = svm_mem_enc_op,
 	.mem_enc_reg_region = svm_register_enc_region,
 	.mem_enc_reg_region = svm_register_enc_region,
 	.mem_enc_unreg_region = svm_unregister_enc_region,
 	.mem_enc_unreg_region = svm_unregister_enc_region,
+
+	.nested_enable_evmcs = nested_enable_evmcs,
 };
 };
 
 
 static int __init svm_init(void)
 static int __init svm_init(void)

+ 42 - 0
arch/x86/kvm/trace.h

@@ -1418,6 +1418,48 @@ TRACE_EVENT(kvm_hv_flush_tlb_ex,
 		  __entry->valid_bank_mask, __entry->format,
 		  __entry->valid_bank_mask, __entry->format,
 		  __entry->address_space, __entry->flags)
 		  __entry->address_space, __entry->flags)
 );
 );
+
+/*
+ * Tracepoints for kvm_hv_send_ipi.
+ */
+TRACE_EVENT(kvm_hv_send_ipi,
+	TP_PROTO(u32 vector, u64 processor_mask),
+	TP_ARGS(vector, processor_mask),
+
+	TP_STRUCT__entry(
+		__field(u32, vector)
+		__field(u64, processor_mask)
+	),
+
+	TP_fast_assign(
+		__entry->vector = vector;
+		__entry->processor_mask = processor_mask;
+	),
+
+	TP_printk("vector %x processor_mask 0x%llx",
+		  __entry->vector, __entry->processor_mask)
+);
+
+TRACE_EVENT(kvm_hv_send_ipi_ex,
+	TP_PROTO(u32 vector, u64 format, u64 valid_bank_mask),
+	TP_ARGS(vector, format, valid_bank_mask),
+
+	TP_STRUCT__entry(
+		__field(u32, vector)
+		__field(u64, format)
+		__field(u64, valid_bank_mask)
+	),
+
+	TP_fast_assign(
+		__entry->vector = vector;
+		__entry->format = format;
+		__entry->valid_bank_mask = valid_bank_mask;
+	),
+
+	TP_printk("vector %x format %llx valid_bank_mask 0x%llx",
+		  __entry->vector, __entry->format,
+		  __entry->valid_bank_mask)
+);
 #endif /* _TRACE_KVM_H */
 #endif /* _TRACE_KVM_H */
 
 
 #undef TRACE_INCLUDE_PATH
 #undef TRACE_INCLUDE_PATH

+ 1614 - 749
arch/x86/kvm/vmx.c

@@ -20,6 +20,7 @@
 #include "mmu.h"
 #include "mmu.h"
 #include "cpuid.h"
 #include "cpuid.h"
 #include "lapic.h"
 #include "lapic.h"
+#include "hyperv.h"
 
 
 #include <linux/kvm_host.h>
 #include <linux/kvm_host.h>
 #include <linux/module.h>
 #include <linux/module.h>
@@ -61,7 +62,7 @@
 
 
 #define __ex(x) __kvm_handle_fault_on_reboot(x)
 #define __ex(x) __kvm_handle_fault_on_reboot(x)
 #define __ex_clear(x, reg) \
 #define __ex_clear(x, reg) \
-	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
+	____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg)
 
 
 MODULE_AUTHOR("Qumranet");
 MODULE_AUTHOR("Qumranet");
 MODULE_LICENSE("GPL");
 MODULE_LICENSE("GPL");
@@ -107,9 +108,12 @@ module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  * use VMX instructions.
  * use VMX instructions.
  */
  */
-static bool __read_mostly nested = 0;
+static bool __read_mostly nested = 1;
 module_param(nested, bool, S_IRUGO);
 module_param(nested, bool, S_IRUGO);
 
 
+static bool __read_mostly nested_early_check = 0;
+module_param(nested_early_check, bool, S_IRUGO);
+
 static u64 __read_mostly host_xss;
 static u64 __read_mostly host_xss;
 
 
 static bool __read_mostly enable_pml = 1;
 static bool __read_mostly enable_pml = 1;
@@ -131,7 +135,7 @@ static bool __read_mostly enable_preemption_timer = 1;
 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 #endif
 #endif
 
 
-#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
+#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
 #define KVM_VM_CR0_ALWAYS_ON				\
 #define KVM_VM_CR0_ALWAYS_ON				\
 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
@@ -187,6 +191,7 @@ static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 module_param(ple_window_max, uint, 0444);
 module_param(ple_window_max, uint, 0444);
 
 
 extern const ulong vmx_return;
 extern const ulong vmx_return;
+extern const ulong vmx_early_consistency_check_return;
 
 
 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
@@ -827,14 +832,28 @@ struct nested_vmx {
 	 */
 	 */
 	struct vmcs12 *cached_shadow_vmcs12;
 	struct vmcs12 *cached_shadow_vmcs12;
 	/*
 	/*
-	 * Indicates if the shadow vmcs must be updated with the
-	 * data hold by vmcs12
+	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
+	 * with the data held by struct vmcs12.
 	 */
 	 */
-	bool sync_shadow_vmcs;
+	bool need_vmcs12_sync;
 	bool dirty_vmcs12;
 	bool dirty_vmcs12;
 
 
+	/*
+	 * vmcs02 has been initialized, i.e. state that is constant for
+	 * vmcs02 has been written to the backing VMCS.  Initialization
+	 * is delayed until L1 actually attempts to run a nested VM.
+	 */
+	bool vmcs02_initialized;
+
 	bool change_vmcs01_virtual_apic_mode;
 	bool change_vmcs01_virtual_apic_mode;
 
 
+	/*
+	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
+	 * use it. However, VMX features available to L1 will be limited based
+	 * on what the enlightened VMCS supports.
+	 */
+	bool enlightened_vmcs_enabled;
+
 	/* L2 must run next, and mustn't decide to exit to L1. */
 	/* L2 must run next, and mustn't decide to exit to L1. */
 	bool nested_run_pending;
 	bool nested_run_pending;
 
 
@@ -870,6 +889,10 @@ struct nested_vmx {
 		/* in guest mode on SMM entry? */
 		/* in guest mode on SMM entry? */
 		bool guest_mode;
 		bool guest_mode;
 	} smm;
 	} smm;
+
+	gpa_t hv_evmcs_vmptr;
+	struct page *hv_evmcs_page;
+	struct hv_enlightened_vmcs *hv_evmcs;
 };
 };
 
 
 #define POSTED_INTR_ON  0
 #define POSTED_INTR_ON  0
@@ -1381,6 +1404,49 @@ DEFINE_STATIC_KEY_FALSE(enable_evmcs);
 
 
 #define KVM_EVMCS_VERSION 1
 #define KVM_EVMCS_VERSION 1
 
 
+/*
+ * Enlightened VMCSv1 doesn't support these:
+ *
+ *	POSTED_INTR_NV                  = 0x00000002,
+ *	GUEST_INTR_STATUS               = 0x00000810,
+ *	APIC_ACCESS_ADDR		= 0x00002014,
+ *	POSTED_INTR_DESC_ADDR           = 0x00002016,
+ *	EOI_EXIT_BITMAP0                = 0x0000201c,
+ *	EOI_EXIT_BITMAP1                = 0x0000201e,
+ *	EOI_EXIT_BITMAP2                = 0x00002020,
+ *	EOI_EXIT_BITMAP3                = 0x00002022,
+ *	GUEST_PML_INDEX			= 0x00000812,
+ *	PML_ADDRESS			= 0x0000200e,
+ *	VM_FUNCTION_CONTROL             = 0x00002018,
+ *	EPTP_LIST_ADDRESS               = 0x00002024,
+ *	VMREAD_BITMAP                   = 0x00002026,
+ *	VMWRITE_BITMAP                  = 0x00002028,
+ *
+ *	TSC_MULTIPLIER                  = 0x00002032,
+ *	PLE_GAP                         = 0x00004020,
+ *	PLE_WINDOW                      = 0x00004022,
+ *	VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
+ *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
+ *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
+ *
+ * Currently unsupported in KVM:
+ *	GUEST_IA32_RTIT_CTL		= 0x00002814,
+ */
+#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \
+				    PIN_BASED_VMX_PREEMPTION_TIMER)
+#define EVMCS1_UNSUPPORTED_2NDEXEC					\
+	(SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
+	 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
+	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
+	 SECONDARY_EXEC_ENABLE_PML |					\
+	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
+	 SECONDARY_EXEC_SHADOW_VMCS |					\
+	 SECONDARY_EXEC_TSC_SCALING |					\
+	 SECONDARY_EXEC_PAUSE_LOOP_EXITING)
+#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING)
+
 #if IS_ENABLED(CONFIG_HYPERV)
 #if IS_ENABLED(CONFIG_HYPERV)
 static bool __read_mostly enlightened_vmcs = true;
 static bool __read_mostly enlightened_vmcs = true;
 module_param(enlightened_vmcs, bool, 0444);
 module_param(enlightened_vmcs, bool, 0444);
@@ -1473,69 +1539,12 @@ static void evmcs_load(u64 phys_addr)
 
 
 static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
 static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
 {
 {
-	/*
-	 * Enlightened VMCSv1 doesn't support these:
-	 *
-	 *	POSTED_INTR_NV                  = 0x00000002,
-	 *	GUEST_INTR_STATUS               = 0x00000810,
-	 *	APIC_ACCESS_ADDR		= 0x00002014,
-	 *	POSTED_INTR_DESC_ADDR           = 0x00002016,
-	 *	EOI_EXIT_BITMAP0                = 0x0000201c,
-	 *	EOI_EXIT_BITMAP1                = 0x0000201e,
-	 *	EOI_EXIT_BITMAP2                = 0x00002020,
-	 *	EOI_EXIT_BITMAP3                = 0x00002022,
-	 */
-	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
-	vmcs_conf->cpu_based_2nd_exec_ctrl &=
-		~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
-	vmcs_conf->cpu_based_2nd_exec_ctrl &=
-		~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
-	vmcs_conf->cpu_based_2nd_exec_ctrl &=
-		~SECONDARY_EXEC_APIC_REGISTER_VIRT;
-
-	/*
-	 *	GUEST_PML_INDEX			= 0x00000812,
-	 *	PML_ADDRESS			= 0x0000200e,
-	 */
-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
-
-	/*	VM_FUNCTION_CONTROL             = 0x00002018, */
-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
-
-	/*
-	 *	EPTP_LIST_ADDRESS               = 0x00002024,
-	 *	VMREAD_BITMAP                   = 0x00002026,
-	 *	VMWRITE_BITMAP                  = 0x00002028,
-	 */
-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
-
-	/*
-	 *	TSC_MULTIPLIER                  = 0x00002032,
-	 */
-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
-
-	/*
-	 *	PLE_GAP                         = 0x00004020,
-	 *	PLE_WINDOW                      = 0x00004022,
-	 */
-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
-
-	/*
-	 *	VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
-	 */
-	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+	vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL;
+	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
 
 
-	/*
-	 *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
-	 *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
-	 */
-	vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
-	vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
+	vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
+	vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
 
 
-	/*
-	 * Currently unsupported in KVM:
-	 *	GUEST_IA32_RTIT_CTL		= 0x00002814,
-	 */
 }
 }
 
 
 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
@@ -1560,26 +1569,27 @@ static void check_ept_pointer_match(struct kvm *kvm)
 
 
 static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
 static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
 {
 {
-	int ret;
+	struct kvm_vcpu *vcpu;
+	int ret = -ENOTSUPP, i;
 
 
 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 
 
 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
 		check_ept_pointer_match(kvm);
 		check_ept_pointer_match(kvm);
 
 
-	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
-		ret = -ENOTSUPP;
-		goto out;
-	}
-
 	/*
 	/*
 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
 	 * base of EPT PML4 table, strip off EPT configuration information.
 	 * base of EPT PML4 table, strip off EPT configuration information.
 	 */
 	 */
-	ret = hyperv_flush_guest_mapping(
-			to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
+	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
+		kvm_for_each_vcpu(i, vcpu, kvm)
+			ret |= hyperv_flush_guest_mapping(
+				to_vmx(kvm_get_vcpu(kvm, i))->ept_pointer & PAGE_MASK);
+	} else {
+		ret = hyperv_flush_guest_mapping(
+				to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
+	}
 
 
-out:
 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 	return ret;
 	return ret;
 }
 }
@@ -1595,6 +1605,35 @@ static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
 static inline void evmcs_touch_msr_bitmap(void) {}
 static inline void evmcs_touch_msr_bitmap(void) {}
 #endif /* IS_ENABLED(CONFIG_HYPERV) */
 #endif /* IS_ENABLED(CONFIG_HYPERV) */
 
 
+static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
+			       uint16_t *vmcs_version)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/* We don't support disabling the feature for simplicity. */
+	if (vmx->nested.enlightened_vmcs_enabled)
+		return 0;
+
+	vmx->nested.enlightened_vmcs_enabled = true;
+
+	/*
+	 * vmcs_version represents the range of supported Enlightened VMCS
+	 * versions: lower 8 bits is the minimal version, higher 8 bits is the
+	 * maximum supported version. KVM supports versions from 1 to
+	 * KVM_EVMCS_VERSION.
+	 */
+	if (vmcs_version)
+		*vmcs_version = (KVM_EVMCS_VERSION << 8) | 1;
+
+	vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL;
+	vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
+	vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
+	vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
+	vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC;
+
+	return 0;
+}
+
 static inline bool is_exception_n(u32 intr_info, u8 vector)
 static inline bool is_exception_n(u32 intr_info, u8 vector)
 {
 {
 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
@@ -1617,11 +1656,6 @@ static inline bool is_page_fault(u32 intr_info)
 	return is_exception_n(intr_info, PF_VECTOR);
 	return is_exception_n(intr_info, PF_VECTOR);
 }
 }
 
 
-static inline bool is_no_device(u32 intr_info)
-{
-	return is_exception_n(intr_info, NM_VECTOR);
-}
-
 static inline bool is_invalid_opcode(u32 intr_info)
 static inline bool is_invalid_opcode(u32 intr_info)
 {
 {
 	return is_exception_n(intr_info, UD_VECTOR);
 	return is_exception_n(intr_info, UD_VECTOR);
@@ -1632,12 +1666,6 @@ static inline bool is_gp_fault(u32 intr_info)
 	return is_exception_n(intr_info, GP_VECTOR);
 	return is_exception_n(intr_info, GP_VECTOR);
 }
 }
 
 
-static inline bool is_external_interrupt(u32 intr_info)
-{
-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
-		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
-}
-
 static inline bool is_machine_check(u32 intr_info)
 static inline bool is_machine_check(u32 intr_info)
 {
 {
 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
@@ -2063,9 +2091,6 @@ static inline bool is_nmi(u32 intr_info)
 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
 			      u32 exit_intr_info,
 			      u32 exit_intr_info,
 			      unsigned long exit_qualification);
 			      unsigned long exit_qualification);
-static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
-			struct vmcs12 *vmcs12,
-			u32 reason, unsigned long qualification);
 
 
 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 {
 {
@@ -2077,7 +2102,7 @@ static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 	return -1;
 	return -1;
 }
 }
 
 
-static inline void __invvpid(int ext, u16 vpid, gva_t gva)
+static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
 {
 {
     struct {
     struct {
 	u64 vpid : 16;
 	u64 vpid : 16;
@@ -2086,22 +2111,20 @@ static inline void __invvpid(int ext, u16 vpid, gva_t gva)
     } operand = { vpid, 0, gva };
     } operand = { vpid, 0, gva };
     bool error;
     bool error;
 
 
-    asm volatile (__ex(ASM_VMX_INVVPID) CC_SET(na)
-		  : CC_OUT(na) (error) : "a"(&operand), "c"(ext)
-		  : "memory");
+    asm volatile (__ex("invvpid %2, %1") CC_SET(na)
+		  : CC_OUT(na) (error) : "r"(ext), "m"(operand));
     BUG_ON(error);
     BUG_ON(error);
 }
 }
 
 
-static inline void __invept(int ext, u64 eptp, gpa_t gpa)
+static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
 {
 {
 	struct {
 	struct {
 		u64 eptp, gpa;
 		u64 eptp, gpa;
 	} operand = {eptp, gpa};
 	} operand = {eptp, gpa};
 	bool error;
 	bool error;
 
 
-	asm volatile (__ex(ASM_VMX_INVEPT) CC_SET(na)
-		      : CC_OUT(na) (error) : "a" (&operand), "c" (ext)
-		      : "memory");
+	asm volatile (__ex("invept %2, %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "r"(ext), "m"(operand));
 	BUG_ON(error);
 	BUG_ON(error);
 }
 }
 
 
@@ -2120,9 +2143,8 @@ static void vmcs_clear(struct vmcs *vmcs)
 	u64 phys_addr = __pa(vmcs);
 	u64 phys_addr = __pa(vmcs);
 	bool error;
 	bool error;
 
 
-	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) CC_SET(na)
-		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
-		      : "memory");
+	asm volatile (__ex("vmclear %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "m"(phys_addr));
 	if (unlikely(error))
 	if (unlikely(error))
 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
 		       vmcs, phys_addr);
 		       vmcs, phys_addr);
@@ -2145,9 +2167,8 @@ static void vmcs_load(struct vmcs *vmcs)
 	if (static_branch_unlikely(&enable_evmcs))
 	if (static_branch_unlikely(&enable_evmcs))
 		return evmcs_load(phys_addr);
 		return evmcs_load(phys_addr);
 
 
-	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) CC_SET(na)
-		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
-		      : "memory");
+	asm volatile (__ex("vmptrld %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "m"(phys_addr));
 	if (unlikely(error))
 	if (unlikely(error))
 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
 		       vmcs, phys_addr);
 		       vmcs, phys_addr);
@@ -2323,8 +2344,8 @@ static __always_inline unsigned long __vmcs_readl(unsigned long field)
 {
 {
 	unsigned long value;
 	unsigned long value;
 
 
-	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
-		      : "=a"(value) : "d"(field) : "cc");
+	asm volatile (__ex_clear("vmread %1, %0", "%k0")
+		      : "=r"(value) : "r"(field));
 	return value;
 	return value;
 }
 }
 
 
@@ -2375,8 +2396,8 @@ static __always_inline void __vmcs_writel(unsigned long field, unsigned long val
 {
 {
 	bool error;
 	bool error;
 
 
-	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) CC_SET(na)
-		      : CC_OUT(na) (error) : "a"(value), "d"(field));
+	asm volatile (__ex("vmwrite %2, %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "r"(field), "rm"(value));
 	if (unlikely(error))
 	if (unlikely(error))
 		vmwrite_error(field, value);
 		vmwrite_error(field, value);
 }
 }
@@ -2707,7 +2728,8 @@ static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 		u64 guest_val, u64 host_val)
 		u64 guest_val, u64 host_val)
 {
 {
 	vmcs_write64(guest_val_vmcs, guest_val);
 	vmcs_write64(guest_val_vmcs, guest_val);
-	vmcs_write64(host_val_vmcs, host_val);
+	if (host_val_vmcs != HOST_IA32_EFER)
+		vmcs_write64(host_val_vmcs, host_val);
 	vm_entry_controls_setbit(vmx, entry);
 	vm_entry_controls_setbit(vmx, entry);
 	vm_exit_controls_setbit(vmx, exit);
 	vm_exit_controls_setbit(vmx, exit);
 }
 }
@@ -2805,8 +2827,6 @@ static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
 		ignore_bits &= ~(u64)EFER_SCE;
 		ignore_bits &= ~(u64)EFER_SCE;
 #endif
 #endif
 
 
-	clear_atomic_switch_msr(vmx, MSR_EFER);
-
 	/*
 	/*
 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
 	 * On CPUs that support "load IA32_EFER", always switch EFER
 	 * On CPUs that support "load IA32_EFER", always switch EFER
@@ -2819,8 +2839,12 @@ static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
 		if (guest_efer != host_efer)
 		if (guest_efer != host_efer)
 			add_atomic_switch_msr(vmx, MSR_EFER,
 			add_atomic_switch_msr(vmx, MSR_EFER,
 					      guest_efer, host_efer, false);
 					      guest_efer, host_efer, false);
+		else
+			clear_atomic_switch_msr(vmx, MSR_EFER);
 		return false;
 		return false;
 	} else {
 	} else {
+		clear_atomic_switch_msr(vmx, MSR_EFER);
+
 		guest_efer &= ~ignore_bits;
 		guest_efer &= ~ignore_bits;
 		guest_efer |= host_efer & ignore_bits;
 		guest_efer |= host_efer & ignore_bits;
 
 
@@ -3272,34 +3296,30 @@ static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit
 {
 {
 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 	unsigned int nr = vcpu->arch.exception.nr;
 	unsigned int nr = vcpu->arch.exception.nr;
+	bool has_payload = vcpu->arch.exception.has_payload;
+	unsigned long payload = vcpu->arch.exception.payload;
 
 
 	if (nr == PF_VECTOR) {
 	if (nr == PF_VECTOR) {
 		if (vcpu->arch.exception.nested_apf) {
 		if (vcpu->arch.exception.nested_apf) {
 			*exit_qual = vcpu->arch.apf.nested_apf_token;
 			*exit_qual = vcpu->arch.apf.nested_apf_token;
 			return 1;
 			return 1;
 		}
 		}
-		/*
-		 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
-		 * The fix is to add the ancillary datum (CR2 or DR6) to structs
-		 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
-		 * can be written only when inject_pending_event runs.  This should be
-		 * conditional on a new capability---if the capability is disabled,
-		 * kvm_multiple_exception would write the ancillary information to
-		 * CR2 or DR6, for backwards ABI-compatibility.
-		 */
 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
 						    vcpu->arch.exception.error_code)) {
 						    vcpu->arch.exception.error_code)) {
-			*exit_qual = vcpu->arch.cr2;
-			return 1;
-		}
-	} else {
-		if (vmcs12->exception_bitmap & (1u << nr)) {
-			if (nr == DB_VECTOR)
-				*exit_qual = vcpu->arch.dr6;
-			else
-				*exit_qual = 0;
+			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
 			return 1;
 			return 1;
 		}
 		}
+	} else if (vmcs12->exception_bitmap & (1u << nr)) {
+		if (nr == DB_VECTOR) {
+			if (!has_payload) {
+				payload = vcpu->arch.dr6;
+				payload &= ~(DR6_FIXED_1 | DR6_BT);
+				payload ^= DR6_RTM;
+			}
+			*exit_qual = payload;
+		} else
+			*exit_qual = 0;
+		return 1;
 	}
 	}
 
 
 	return 0;
 	return 0;
@@ -3326,6 +3346,8 @@ static void vmx_queue_exception(struct kvm_vcpu *vcpu)
 	u32 error_code = vcpu->arch.exception.error_code;
 	u32 error_code = vcpu->arch.exception.error_code;
 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
 
 
+	kvm_deliver_exception_payload(vcpu);
+
 	if (has_error_code) {
 	if (has_error_code) {
 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
@@ -4397,9 +4419,7 @@ static void kvm_cpu_vmxon(u64 addr)
 	cr4_set_bits(X86_CR4_VMXE);
 	cr4_set_bits(X86_CR4_VMXE);
 	intel_pt_handle_vmx(1);
 	intel_pt_handle_vmx(1);
 
 
-	asm volatile (ASM_VMX_VMXON_RAX
-			: : "a"(&addr), "m"(addr)
-			: "memory", "cc");
+	asm volatile ("vmxon %0" : : "m"(addr));
 }
 }
 
 
 static int hardware_enable(void)
 static int hardware_enable(void)
@@ -4468,7 +4488,7 @@ static void vmclear_local_loaded_vmcss(void)
  */
  */
 static void kvm_cpu_vmxoff(void)
 static void kvm_cpu_vmxoff(void)
 {
 {
-	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
+	asm volatile (__ex("vmxoff"));
 
 
 	intel_pt_handle_vmx(0);
 	intel_pt_handle_vmx(0);
 	cr4_clear_bits(X86_CR4_VMXE);
 	cr4_clear_bits(X86_CR4_VMXE);
@@ -5112,9 +5132,10 @@ static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
 				bool invalidate_gpa)
 				bool invalidate_gpa)
 {
 {
 	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
 	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
-		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+		if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 			return;
 			return;
-		ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
+		ept_sync_context(construct_eptp(vcpu,
+						vcpu->arch.mmu->root_hpa));
 	} else {
 	} else {
 		vpid_sync_context(vpid);
 		vpid_sync_context(vpid);
 	}
 	}
@@ -5264,7 +5285,7 @@ static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	unsigned long hw_cr0;
 	unsigned long hw_cr0;
 
 
-	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
+	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
 	if (enable_unrestricted_guest)
 	if (enable_unrestricted_guest)
 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
 	else {
 	else {
@@ -6339,6 +6360,9 @@ static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
 	}
 	}
+
+	if (cpu_has_load_ia32_efer)
+		vmcs_write64(HOST_IA32_EFER, host_efer);
 }
 }
 
 
 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
@@ -6666,7 +6690,6 @@ static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
 
 
 	if (enable_pml) {
 	if (enable_pml) {
-		ASSERT(vmx->pml_pg);
 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
 	}
 	}
@@ -8067,35 +8090,39 @@ static int handle_monitor(struct kvm_vcpu *vcpu)
 
 
 /*
 /*
  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
- * set the success or error code of an emulated VMX instruction, as specified
- * by Vol 2B, VMX Instruction Reference, "Conventions".
+ * set the success or error code of an emulated VMX instruction (as specified
+ * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
+ * instruction.
  */
  */
-static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
+static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
 {
 {
 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+	return kvm_skip_emulated_instruction(vcpu);
 }
 }
 
 
-static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
 {
 {
 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
 			| X86_EFLAGS_CF);
 			| X86_EFLAGS_CF);
+	return kvm_skip_emulated_instruction(vcpu);
 }
 }
 
 
-static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
-					u32 vm_instruction_error)
+static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
+				u32 vm_instruction_error)
 {
 {
-	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
-		/*
-		 * failValid writes the error number to the current VMCS, which
-		 * can't be done there isn't a current VMCS.
-		 */
-		nested_vmx_failInvalid(vcpu);
-		return;
-	}
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * failValid writes the error number to the current VMCS, which
+	 * can't be done if there isn't a current VMCS.
+	 */
+	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
+		return nested_vmx_failInvalid(vcpu);
+
 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
@@ -8105,6 +8132,7 @@ static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
 	 * We don't need to force a shadow sync because
 	 * We don't need to force a shadow sync because
 	 * VM_INSTRUCTION_ERROR is not shadowed
 	 * VM_INSTRUCTION_ERROR is not shadowed
 	 */
 	 */
+	return kvm_skip_emulated_instruction(vcpu);
 }
 }
 
 
 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
@@ -8292,6 +8320,7 @@ static int enter_vmx_operation(struct kvm_vcpu *vcpu)
 
 
 	vmx->nested.vpid02 = allocate_vpid();
 	vmx->nested.vpid02 = allocate_vpid();
 
 
+	vmx->nested.vmcs02_initialized = false;
 	vmx->nested.vmxon = true;
 	vmx->nested.vmxon = true;
 	return 0;
 	return 0;
 
 
@@ -8345,10 +8374,9 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
 		return 1;
 		return 1;
 	}
 	}
 
 
-	if (vmx->nested.vmxon) {
-		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (vmx->nested.vmxon)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
 
 
 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
 			!= VMXON_NEEDED_FEATURES) {
 			!= VMXON_NEEDED_FEATURES) {
@@ -8367,21 +8395,17 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
 	 * which replaces physical address width with 32
 	 * which replaces physical address width with 32
 	 */
 	 */
-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
-		nested_vmx_failInvalid(vcpu);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+		return nested_vmx_failInvalid(vcpu);
 
 
 	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
 	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
-	if (is_error_page(page)) {
-		nested_vmx_failInvalid(vcpu);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (is_error_page(page))
+		return nested_vmx_failInvalid(vcpu);
+
 	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
 	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
 		kunmap(page);
 		kunmap(page);
 		kvm_release_page_clean(page);
 		kvm_release_page_clean(page);
-		nested_vmx_failInvalid(vcpu);
-		return kvm_skip_emulated_instruction(vcpu);
+		return nested_vmx_failInvalid(vcpu);
 	}
 	}
 	kunmap(page);
 	kunmap(page);
 	kvm_release_page_clean(page);
 	kvm_release_page_clean(page);
@@ -8391,8 +8415,7 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
 	if (ret)
 	if (ret)
 		return ret;
 		return ret;
 
 
-	nested_vmx_succeed(vcpu);
-	return kvm_skip_emulated_instruction(vcpu);
+	return nested_vmx_succeed(vcpu);
 }
 }
 
 
 /*
 /*
@@ -8423,8 +8446,24 @@ static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
 }
 }
 
 
-static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
+static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!vmx->nested.hv_evmcs)
+		return;
+
+	kunmap(vmx->nested.hv_evmcs_page);
+	kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
+	vmx->nested.hv_evmcs_vmptr = -1ull;
+	vmx->nested.hv_evmcs_page = NULL;
+	vmx->nested.hv_evmcs = NULL;
+}
+
+static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
 {
 {
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
 	if (vmx->nested.current_vmptr == -1ull)
 	if (vmx->nested.current_vmptr == -1ull)
 		return;
 		return;
 
 
@@ -8432,16 +8471,18 @@ static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
 		/* copy to memory all shadowed fields in case
 		/* copy to memory all shadowed fields in case
 		   they were modified */
 		   they were modified */
 		copy_shadow_to_vmcs12(vmx);
 		copy_shadow_to_vmcs12(vmx);
-		vmx->nested.sync_shadow_vmcs = false;
+		vmx->nested.need_vmcs12_sync = false;
 		vmx_disable_shadow_vmcs(vmx);
 		vmx_disable_shadow_vmcs(vmx);
 	}
 	}
 	vmx->nested.posted_intr_nv = -1;
 	vmx->nested.posted_intr_nv = -1;
 
 
 	/* Flush VMCS12 to guest memory */
 	/* Flush VMCS12 to guest memory */
-	kvm_vcpu_write_guest_page(&vmx->vcpu,
+	kvm_vcpu_write_guest_page(vcpu,
 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
 
 
+	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+
 	vmx->nested.current_vmptr = -1ull;
 	vmx->nested.current_vmptr = -1ull;
 }
 }
 
 
@@ -8449,8 +8490,10 @@ static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  * just stops using VMX.
  * just stops using VMX.
  */
  */
-static void free_nested(struct vcpu_vmx *vmx)
+static void free_nested(struct kvm_vcpu *vcpu)
 {
 {
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
 		return;
 		return;
 
 
@@ -8483,6 +8526,10 @@ static void free_nested(struct vcpu_vmx *vmx)
 		vmx->nested.pi_desc = NULL;
 		vmx->nested.pi_desc = NULL;
 	}
 	}
 
 
+	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+
+	nested_release_evmcs(vcpu);
+
 	free_loaded_vmcs(&vmx->nested.vmcs02);
 	free_loaded_vmcs(&vmx->nested.vmcs02);
 }
 }
 
 
@@ -8491,9 +8538,8 @@ static int handle_vmoff(struct kvm_vcpu *vcpu)
 {
 {
 	if (!nested_vmx_check_permission(vcpu))
 	if (!nested_vmx_check_permission(vcpu))
 		return 1;
 		return 1;
-	free_nested(to_vmx(vcpu));
-	nested_vmx_succeed(vcpu);
-	return kvm_skip_emulated_instruction(vcpu);
+	free_nested(vcpu);
+	return nested_vmx_succeed(vcpu);
 }
 }
 
 
 /* Emulate the VMCLEAR instruction */
 /* Emulate the VMCLEAR instruction */
@@ -8509,25 +8555,28 @@ static int handle_vmclear(struct kvm_vcpu *vcpu)
 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
 		return 1;
 		return 1;
 
 
-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
-		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMCLEAR_INVALID_ADDRESS);
 
 
-	if (vmptr == vmx->nested.vmxon_ptr) {
-		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (vmptr == vmx->nested.vmxon_ptr)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMCLEAR_VMXON_POINTER);
 
 
-	if (vmptr == vmx->nested.current_vmptr)
-		nested_release_vmcs12(vmx);
+	if (vmx->nested.hv_evmcs_page) {
+		if (vmptr == vmx->nested.hv_evmcs_vmptr)
+			nested_release_evmcs(vcpu);
+	} else {
+		if (vmptr == vmx->nested.current_vmptr)
+			nested_release_vmcs12(vcpu);
 
 
-	kvm_vcpu_write_guest(vcpu,
-			vmptr + offsetof(struct vmcs12, launch_state),
-			&zero, sizeof(zero));
+		kvm_vcpu_write_guest(vcpu,
+				     vmptr + offsetof(struct vmcs12,
+						      launch_state),
+				     &zero, sizeof(zero));
+	}
 
 
-	nested_vmx_succeed(vcpu);
-	return kvm_skip_emulated_instruction(vcpu);
+	return nested_vmx_succeed(vcpu);
 }
 }
 
 
 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
@@ -8610,6 +8659,395 @@ static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
 
 
 }
 }
 
 
+static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
+{
+	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+
+	vmcs12->hdr.revision_id = evmcs->revision_id;
+
+	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
+	vmcs12->tpr_threshold = evmcs->tpr_threshold;
+	vmcs12->guest_rip = evmcs->guest_rip;
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
+		vmcs12->guest_rsp = evmcs->guest_rsp;
+		vmcs12->guest_rflags = evmcs->guest_rflags;
+		vmcs12->guest_interruptibility_info =
+			evmcs->guest_interruptibility_info;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+		vmcs12->cpu_based_vm_exec_control =
+			evmcs->cpu_based_vm_exec_control;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+		vmcs12->exception_bitmap = evmcs->exception_bitmap;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
+		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
+		vmcs12->vm_entry_intr_info_field =
+			evmcs->vm_entry_intr_info_field;
+		vmcs12->vm_entry_exception_error_code =
+			evmcs->vm_entry_exception_error_code;
+		vmcs12->vm_entry_instruction_len =
+			evmcs->vm_entry_instruction_len;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
+		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
+		vmcs12->host_cr0 = evmcs->host_cr0;
+		vmcs12->host_cr3 = evmcs->host_cr3;
+		vmcs12->host_cr4 = evmcs->host_cr4;
+		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
+		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
+		vmcs12->host_rip = evmcs->host_rip;
+		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
+		vmcs12->host_es_selector = evmcs->host_es_selector;
+		vmcs12->host_cs_selector = evmcs->host_cs_selector;
+		vmcs12->host_ss_selector = evmcs->host_ss_selector;
+		vmcs12->host_ds_selector = evmcs->host_ds_selector;
+		vmcs12->host_fs_selector = evmcs->host_fs_selector;
+		vmcs12->host_gs_selector = evmcs->host_gs_selector;
+		vmcs12->host_tr_selector = evmcs->host_tr_selector;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+		vmcs12->pin_based_vm_exec_control =
+			evmcs->pin_based_vm_exec_control;
+		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
+		vmcs12->secondary_vm_exec_control =
+			evmcs->secondary_vm_exec_control;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
+		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
+		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
+		vmcs12->msr_bitmap = evmcs->msr_bitmap;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
+		vmcs12->guest_es_base = evmcs->guest_es_base;
+		vmcs12->guest_cs_base = evmcs->guest_cs_base;
+		vmcs12->guest_ss_base = evmcs->guest_ss_base;
+		vmcs12->guest_ds_base = evmcs->guest_ds_base;
+		vmcs12->guest_fs_base = evmcs->guest_fs_base;
+		vmcs12->guest_gs_base = evmcs->guest_gs_base;
+		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
+		vmcs12->guest_tr_base = evmcs->guest_tr_base;
+		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
+		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
+		vmcs12->guest_es_limit = evmcs->guest_es_limit;
+		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
+		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
+		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
+		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
+		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
+		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
+		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
+		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
+		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
+		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
+		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
+		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
+		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
+		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
+		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
+		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
+		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
+		vmcs12->guest_es_selector = evmcs->guest_es_selector;
+		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
+		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
+		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
+		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
+		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
+		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
+		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
+		vmcs12->tsc_offset = evmcs->tsc_offset;
+		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
+		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
+		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
+		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
+		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
+		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
+		vmcs12->guest_cr0 = evmcs->guest_cr0;
+		vmcs12->guest_cr3 = evmcs->guest_cr3;
+		vmcs12->guest_cr4 = evmcs->guest_cr4;
+		vmcs12->guest_dr7 = evmcs->guest_dr7;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
+		vmcs12->host_fs_base = evmcs->host_fs_base;
+		vmcs12->host_gs_base = evmcs->host_gs_base;
+		vmcs12->host_tr_base = evmcs->host_tr_base;
+		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
+		vmcs12->host_idtr_base = evmcs->host_idtr_base;
+		vmcs12->host_rsp = evmcs->host_rsp;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
+		vmcs12->ept_pointer = evmcs->ept_pointer;
+		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
+		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
+		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
+		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
+		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
+		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
+		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
+		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
+		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
+		vmcs12->guest_pending_dbg_exceptions =
+			evmcs->guest_pending_dbg_exceptions;
+		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
+		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
+		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
+		vmcs12->guest_activity_state = evmcs->guest_activity_state;
+		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
+	}
+
+	/*
+	 * Not used?
+	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
+	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
+	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
+	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
+	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
+	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
+	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
+	 * vmcs12->page_fault_error_code_mask =
+	 *		evmcs->page_fault_error_code_mask;
+	 * vmcs12->page_fault_error_code_match =
+	 *		evmcs->page_fault_error_code_match;
+	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
+	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
+	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
+	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
+	 */
+
+	/*
+	 * Read only fields:
+	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
+	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
+	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
+	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
+	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
+	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
+	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
+	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
+	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
+	 * vmcs12->exit_qualification = evmcs->exit_qualification;
+	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
+	 *
+	 * Not present in struct vmcs12:
+	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
+	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
+	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
+	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
+	 */
+
+	return 0;
+}
+
+static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
+{
+	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+
+	/*
+	 * Should not be changed by KVM:
+	 *
+	 * evmcs->host_es_selector = vmcs12->host_es_selector;
+	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
+	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
+	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
+	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
+	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
+	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
+	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
+	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
+	 * evmcs->host_cr0 = vmcs12->host_cr0;
+	 * evmcs->host_cr3 = vmcs12->host_cr3;
+	 * evmcs->host_cr4 = vmcs12->host_cr4;
+	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
+	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
+	 * evmcs->host_rip = vmcs12->host_rip;
+	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
+	 * evmcs->host_fs_base = vmcs12->host_fs_base;
+	 * evmcs->host_gs_base = vmcs12->host_gs_base;
+	 * evmcs->host_tr_base = vmcs12->host_tr_base;
+	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
+	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
+	 * evmcs->host_rsp = vmcs12->host_rsp;
+	 * sync_vmcs12() doesn't read these:
+	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
+	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
+	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
+	 * evmcs->ept_pointer = vmcs12->ept_pointer;
+	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
+	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
+	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
+	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
+	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
+	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
+	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
+	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
+	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
+	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
+	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
+	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
+	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
+	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
+	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
+	 * evmcs->page_fault_error_code_mask =
+	 *		vmcs12->page_fault_error_code_mask;
+	 * evmcs->page_fault_error_code_match =
+	 *		vmcs12->page_fault_error_code_match;
+	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
+	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
+	 * evmcs->tsc_offset = vmcs12->tsc_offset;
+	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
+	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
+	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
+	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
+	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
+	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
+	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
+	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
+	 *
+	 * Not present in struct vmcs12:
+	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
+	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
+	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
+	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
+	 */
+
+	evmcs->guest_es_selector = vmcs12->guest_es_selector;
+	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
+	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
+	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
+	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
+	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
+	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
+	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
+
+	evmcs->guest_es_limit = vmcs12->guest_es_limit;
+	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
+	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
+	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
+	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
+	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
+	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
+	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
+	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
+	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
+
+	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
+	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
+	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
+	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
+	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
+	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
+	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
+	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
+
+	evmcs->guest_es_base = vmcs12->guest_es_base;
+	evmcs->guest_cs_base = vmcs12->guest_cs_base;
+	evmcs->guest_ss_base = vmcs12->guest_ss_base;
+	evmcs->guest_ds_base = vmcs12->guest_ds_base;
+	evmcs->guest_fs_base = vmcs12->guest_fs_base;
+	evmcs->guest_gs_base = vmcs12->guest_gs_base;
+	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
+	evmcs->guest_tr_base = vmcs12->guest_tr_base;
+	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
+	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
+
+	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
+	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
+
+	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
+	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
+	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
+	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
+
+	evmcs->guest_pending_dbg_exceptions =
+		vmcs12->guest_pending_dbg_exceptions;
+	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
+	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
+
+	evmcs->guest_activity_state = vmcs12->guest_activity_state;
+	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
+
+	evmcs->guest_cr0 = vmcs12->guest_cr0;
+	evmcs->guest_cr3 = vmcs12->guest_cr3;
+	evmcs->guest_cr4 = vmcs12->guest_cr4;
+	evmcs->guest_dr7 = vmcs12->guest_dr7;
+
+	evmcs->guest_physical_address = vmcs12->guest_physical_address;
+
+	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
+	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
+	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
+	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
+	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
+	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
+	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
+	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
+
+	evmcs->exit_qualification = vmcs12->exit_qualification;
+
+	evmcs->guest_linear_address = vmcs12->guest_linear_address;
+	evmcs->guest_rsp = vmcs12->guest_rsp;
+	evmcs->guest_rflags = vmcs12->guest_rflags;
+
+	evmcs->guest_interruptibility_info =
+		vmcs12->guest_interruptibility_info;
+	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
+	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
+	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
+	evmcs->vm_entry_exception_error_code =
+		vmcs12->vm_entry_exception_error_code;
+	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
+
+	evmcs->guest_rip = vmcs12->guest_rip;
+
+	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
+
+	return 0;
+}
+
 /*
 /*
  * Copy the writable VMCS shadow fields back to the VMCS12, in case
  * Copy the writable VMCS shadow fields back to the VMCS12, in case
  * they have been modified by the L1 guest. Note that the "read-only"
  * they have been modified by the L1 guest. Note that the "read-only"
@@ -8683,20 +9121,6 @@ static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
 	vmcs_load(vmx->loaded_vmcs->vmcs);
 	vmcs_load(vmx->loaded_vmcs->vmcs);
 }
 }
 
 
-/*
- * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
- * used before) all generate the same failure when it is missing.
- */
-static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	if (vmx->nested.current_vmptr == -1ull) {
-		nested_vmx_failInvalid(vcpu);
-		return 0;
-	}
-	return 1;
-}
-
 static int handle_vmread(struct kvm_vcpu *vcpu)
 static int handle_vmread(struct kvm_vcpu *vcpu)
 {
 {
 	unsigned long field;
 	unsigned long field;
@@ -8709,8 +9133,8 @@ static int handle_vmread(struct kvm_vcpu *vcpu)
 	if (!nested_vmx_check_permission(vcpu))
 	if (!nested_vmx_check_permission(vcpu))
 		return 1;
 		return 1;
 
 
-	if (!nested_vmx_check_vmcs12(vcpu))
-		return kvm_skip_emulated_instruction(vcpu);
+	if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
+		return nested_vmx_failInvalid(vcpu);
 
 
 	if (!is_guest_mode(vcpu))
 	if (!is_guest_mode(vcpu))
 		vmcs12 = get_vmcs12(vcpu);
 		vmcs12 = get_vmcs12(vcpu);
@@ -8719,20 +9143,18 @@ static int handle_vmread(struct kvm_vcpu *vcpu)
 		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
 		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
 		 */
 		 */
-		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
-			nested_vmx_failInvalid(vcpu);
-			return kvm_skip_emulated_instruction(vcpu);
-		}
+		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+			return nested_vmx_failInvalid(vcpu);
 		vmcs12 = get_shadow_vmcs12(vcpu);
 		vmcs12 = get_shadow_vmcs12(vcpu);
 	}
 	}
 
 
 	/* Decode instruction info and find the field to read */
 	/* Decode instruction info and find the field to read */
 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
 	/* Read the field, zero-extended to a u64 field_value */
 	/* Read the field, zero-extended to a u64 field_value */
-	if (vmcs12_read_any(vmcs12, field, &field_value) < 0) {
-		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
 	/*
 	/*
 	 * Now copy part of this value to register or memory, as requested.
 	 * Now copy part of this value to register or memory, as requested.
 	 * Note that the number of bits actually copied is 32 or 64 depending
 	 * Note that the number of bits actually copied is 32 or 64 depending
@@ -8750,8 +9172,7 @@ static int handle_vmread(struct kvm_vcpu *vcpu)
 					    (is_long_mode(vcpu) ? 8 : 4), NULL);
 					    (is_long_mode(vcpu) ? 8 : 4), NULL);
 	}
 	}
 
 
-	nested_vmx_succeed(vcpu);
-	return kvm_skip_emulated_instruction(vcpu);
+	return nested_vmx_succeed(vcpu);
 }
 }
 
 
 
 
@@ -8776,8 +9197,8 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu)
 	if (!nested_vmx_check_permission(vcpu))
 	if (!nested_vmx_check_permission(vcpu))
 		return 1;
 		return 1;
 
 
-	if (!nested_vmx_check_vmcs12(vcpu))
-		return kvm_skip_emulated_instruction(vcpu);
+	if (vmx->nested.current_vmptr == -1ull)
+		return nested_vmx_failInvalid(vcpu);
 
 
 	if (vmx_instruction_info & (1u << 10))
 	if (vmx_instruction_info & (1u << 10))
 		field_value = kvm_register_readl(vcpu,
 		field_value = kvm_register_readl(vcpu,
@@ -8800,11 +9221,9 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu)
 	 * VMCS," then the "read-only" fields are actually read/write.
 	 * VMCS," then the "read-only" fields are actually read/write.
 	 */
 	 */
 	if (vmcs_field_readonly(field) &&
 	if (vmcs_field_readonly(field) &&
-	    !nested_cpu_has_vmwrite_any_field(vcpu)) {
-		nested_vmx_failValid(vcpu,
+	    !nested_cpu_has_vmwrite_any_field(vcpu))
+		return nested_vmx_failValid(vcpu,
 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
 
 
 	if (!is_guest_mode(vcpu))
 	if (!is_guest_mode(vcpu))
 		vmcs12 = get_vmcs12(vcpu);
 		vmcs12 = get_vmcs12(vcpu);
@@ -8813,18 +9232,14 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu)
 		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
 		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
 		 */
 		 */
-		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
-			nested_vmx_failInvalid(vcpu);
-			return kvm_skip_emulated_instruction(vcpu);
-		}
+		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+			return nested_vmx_failInvalid(vcpu);
 		vmcs12 = get_shadow_vmcs12(vcpu);
 		vmcs12 = get_shadow_vmcs12(vcpu);
-
 	}
 	}
 
 
-	if (vmcs12_write_any(vmcs12, field, field_value) < 0) {
-		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (vmcs12_write_any(vmcs12, field, field_value) < 0)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
 
 
 	/*
 	/*
 	 * Do not track vmcs12 dirty-state if in guest-mode
 	 * Do not track vmcs12 dirty-state if in guest-mode
@@ -8846,8 +9261,7 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu)
 		}
 		}
 	}
 	}
 
 
-	nested_vmx_succeed(vcpu);
-	return kvm_skip_emulated_instruction(vcpu);
+	return nested_vmx_succeed(vcpu);
 }
 }
 
 
 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
@@ -8858,7 +9272,7 @@ static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
 			      SECONDARY_EXEC_SHADOW_VMCS);
 			      SECONDARY_EXEC_SHADOW_VMCS);
 		vmcs_write64(VMCS_LINK_POINTER,
 		vmcs_write64(VMCS_LINK_POINTER,
 			     __pa(vmx->vmcs01.shadow_vmcs));
 			     __pa(vmx->vmcs01.shadow_vmcs));
-		vmx->nested.sync_shadow_vmcs = true;
+		vmx->nested.need_vmcs12_sync = true;
 	}
 	}
 	vmx->nested.dirty_vmcs12 = true;
 	vmx->nested.dirty_vmcs12 = true;
 }
 }
@@ -8875,36 +9289,37 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu)
 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
 		return 1;
 		return 1;
 
 
-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
-		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMPTRLD_INVALID_ADDRESS);
 
 
-	if (vmptr == vmx->nested.vmxon_ptr) {
-		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
+	if (vmptr == vmx->nested.vmxon_ptr)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMPTRLD_VMXON_POINTER);
+
+	/* Forbid normal VMPTRLD if Enlightened version was used */
+	if (vmx->nested.hv_evmcs)
+		return 1;
 
 
 	if (vmx->nested.current_vmptr != vmptr) {
 	if (vmx->nested.current_vmptr != vmptr) {
 		struct vmcs12 *new_vmcs12;
 		struct vmcs12 *new_vmcs12;
 		struct page *page;
 		struct page *page;
 		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
 		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
-		if (is_error_page(page)) {
-			nested_vmx_failInvalid(vcpu);
-			return kvm_skip_emulated_instruction(vcpu);
-		}
+		if (is_error_page(page))
+			return nested_vmx_failInvalid(vcpu);
+
 		new_vmcs12 = kmap(page);
 		new_vmcs12 = kmap(page);
 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
 		    (new_vmcs12->hdr.shadow_vmcs &&
 		    (new_vmcs12->hdr.shadow_vmcs &&
 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
 			kunmap(page);
 			kunmap(page);
 			kvm_release_page_clean(page);
 			kvm_release_page_clean(page);
-			nested_vmx_failValid(vcpu,
+			return nested_vmx_failValid(vcpu,
 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
-			return kvm_skip_emulated_instruction(vcpu);
 		}
 		}
 
 
-		nested_release_vmcs12(vmx);
+		nested_release_vmcs12(vcpu);
+
 		/*
 		/*
 		 * Load VMCS12 from guest memory since it is not already
 		 * Load VMCS12 from guest memory since it is not already
 		 * cached.
 		 * cached.
@@ -8916,8 +9331,71 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu)
 		set_current_vmptr(vmx, vmptr);
 		set_current_vmptr(vmx, vmptr);
 	}
 	}
 
 
-	nested_vmx_succeed(vcpu);
-	return kvm_skip_emulated_instruction(vcpu);
+	return nested_vmx_succeed(vcpu);
+}
+
+/*
+ * This is an equivalent of the nested hypervisor executing the vmptrld
+ * instruction.
+ */
+static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
+						 bool from_launch)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct hv_vp_assist_page assist_page;
+
+	if (likely(!vmx->nested.enlightened_vmcs_enabled))
+		return 1;
+
+	if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
+		return 1;
+
+	if (unlikely(!assist_page.enlighten_vmentry))
+		return 1;
+
+	if (unlikely(assist_page.current_nested_vmcs !=
+		     vmx->nested.hv_evmcs_vmptr)) {
+
+		if (!vmx->nested.hv_evmcs)
+			vmx->nested.current_vmptr = -1ull;
+
+		nested_release_evmcs(vcpu);
+
+		vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
+			vcpu, assist_page.current_nested_vmcs);
+
+		if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
+			return 0;
+
+		vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
+
+		if (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION) {
+			nested_release_evmcs(vcpu);
+			return 0;
+		}
+
+		vmx->nested.dirty_vmcs12 = true;
+		/*
+		 * As we keep L2 state for one guest only 'hv_clean_fields' mask
+		 * can't be used when we switch between them. Reset it here for
+		 * simplicity.
+		 */
+		vmx->nested.hv_evmcs->hv_clean_fields &=
+			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+		vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
+
+		/*
+		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
+		 * reloaded from guest's memory (read only fields, fields not
+		 * present in struct hv_enlightened_vmcs, ...). Make sure there
+		 * are no leftovers.
+		 */
+		if (from_launch)
+			memset(vmx->nested.cached_vmcs12, 0,
+			       sizeof(*vmx->nested.cached_vmcs12));
+
+	}
+	return 1;
 }
 }
 
 
 /* Emulate the VMPTRST instruction */
 /* Emulate the VMPTRST instruction */
@@ -8932,6 +9410,9 @@ static int handle_vmptrst(struct kvm_vcpu *vcpu)
 	if (!nested_vmx_check_permission(vcpu))
 	if (!nested_vmx_check_permission(vcpu))
 		return 1;
 		return 1;
 
 
+	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
+		return 1;
+
 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
 		return 1;
 		return 1;
 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
@@ -8940,8 +9421,7 @@ static int handle_vmptrst(struct kvm_vcpu *vcpu)
 		kvm_inject_page_fault(vcpu, &e);
 		kvm_inject_page_fault(vcpu, &e);
 		return 1;
 		return 1;
 	}
 	}
-	nested_vmx_succeed(vcpu);
-	return kvm_skip_emulated_instruction(vcpu);
+	return nested_vmx_succeed(vcpu);
 }
 }
 
 
 /* Emulate the INVEPT instruction */
 /* Emulate the INVEPT instruction */
@@ -8971,11 +9451,9 @@ static int handle_invept(struct kvm_vcpu *vcpu)
 
 
 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
 
 
-	if (type >= 32 || !(types & (1 << type))) {
-		nested_vmx_failValid(vcpu,
+	if (type >= 32 || !(types & (1 << type)))
+		return nested_vmx_failValid(vcpu,
 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
 
 
 	/* According to the Intel VMX instruction reference, the memory
 	/* According to the Intel VMX instruction reference, the memory
 	 * operand is read even if it isn't needed (e.g., for type==global)
 	 * operand is read even if it isn't needed (e.g., for type==global)
@@ -8997,14 +9475,20 @@ static int handle_invept(struct kvm_vcpu *vcpu)
 	case VMX_EPT_EXTENT_CONTEXT:
 	case VMX_EPT_EXTENT_CONTEXT:
 		kvm_mmu_sync_roots(vcpu);
 		kvm_mmu_sync_roots(vcpu);
 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-		nested_vmx_succeed(vcpu);
 		break;
 		break;
 	default:
 	default:
 		BUG_ON(1);
 		BUG_ON(1);
 		break;
 		break;
 	}
 	}
 
 
-	return kvm_skip_emulated_instruction(vcpu);
+	return nested_vmx_succeed(vcpu);
+}
+
+static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
 }
 }
 
 
 static int handle_invvpid(struct kvm_vcpu *vcpu)
 static int handle_invvpid(struct kvm_vcpu *vcpu)
@@ -9018,6 +9502,7 @@ static int handle_invvpid(struct kvm_vcpu *vcpu)
 		u64 vpid;
 		u64 vpid;
 		u64 gla;
 		u64 gla;
 	} operand;
 	} operand;
+	u16 vpid02;
 
 
 	if (!(vmx->nested.msrs.secondary_ctls_high &
 	if (!(vmx->nested.msrs.secondary_ctls_high &
 	      SECONDARY_EXEC_ENABLE_VPID) ||
 	      SECONDARY_EXEC_ENABLE_VPID) ||
@@ -9035,11 +9520,9 @@ static int handle_invvpid(struct kvm_vcpu *vcpu)
 	types = (vmx->nested.msrs.vpid_caps &
 	types = (vmx->nested.msrs.vpid_caps &
 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
 
 
-	if (type >= 32 || !(types & (1 << type))) {
-		nested_vmx_failValid(vcpu,
+	if (type >= 32 || !(types & (1 << type)))
+		return nested_vmx_failValid(vcpu,
 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
 
 
 	/* according to the intel vmx instruction reference, the memory
 	/* according to the intel vmx instruction reference, the memory
 	 * operand is read even if it isn't needed (e.g., for type==global)
 	 * operand is read even if it isn't needed (e.g., for type==global)
@@ -9051,47 +9534,39 @@ static int handle_invvpid(struct kvm_vcpu *vcpu)
 		kvm_inject_page_fault(vcpu, &e);
 		kvm_inject_page_fault(vcpu, &e);
 		return 1;
 		return 1;
 	}
 	}
-	if (operand.vpid >> 16) {
-		nested_vmx_failValid(vcpu,
+	if (operand.vpid >> 16)
+		return nested_vmx_failValid(vcpu,
 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
 
 
+	vpid02 = nested_get_vpid02(vcpu);
 	switch (type) {
 	switch (type) {
 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
 		if (!operand.vpid ||
 		if (!operand.vpid ||
-		    is_noncanonical_address(operand.gla, vcpu)) {
-			nested_vmx_failValid(vcpu,
+		    is_noncanonical_address(operand.gla, vcpu))
+			return nested_vmx_failValid(vcpu,
 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-			return kvm_skip_emulated_instruction(vcpu);
-		}
-		if (cpu_has_vmx_invvpid_individual_addr() &&
-		    vmx->nested.vpid02) {
+		if (cpu_has_vmx_invvpid_individual_addr()) {
 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
-				vmx->nested.vpid02, operand.gla);
+				vpid02, operand.gla);
 		} else
 		} else
-			__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
+			__vmx_flush_tlb(vcpu, vpid02, false);
 		break;
 		break;
 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
-		if (!operand.vpid) {
-			nested_vmx_failValid(vcpu,
+		if (!operand.vpid)
+			return nested_vmx_failValid(vcpu,
 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-			return kvm_skip_emulated_instruction(vcpu);
-		}
-		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
+		__vmx_flush_tlb(vcpu, vpid02, false);
 		break;
 		break;
 	case VMX_VPID_EXTENT_ALL_CONTEXT:
 	case VMX_VPID_EXTENT_ALL_CONTEXT:
-		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
+		__vmx_flush_tlb(vcpu, vpid02, false);
 		break;
 		break;
 	default:
 	default:
 		WARN_ON_ONCE(1);
 		WARN_ON_ONCE(1);
 		return kvm_skip_emulated_instruction(vcpu);
 		return kvm_skip_emulated_instruction(vcpu);
 	}
 	}
 
 
-	nested_vmx_succeed(vcpu);
-
-	return kvm_skip_emulated_instruction(vcpu);
+	return nested_vmx_succeed(vcpu);
 }
 }
 
 
 static int handle_invpcid(struct kvm_vcpu *vcpu)
 static int handle_invpcid(struct kvm_vcpu *vcpu)
@@ -9162,11 +9637,11 @@ static int handle_invpcid(struct kvm_vcpu *vcpu)
 		}
 		}
 
 
 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
-			if (kvm_get_pcid(vcpu, vcpu->arch.mmu.prev_roots[i].cr3)
+			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
 			    == operand.pcid)
 			    == operand.pcid)
 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
 
 
-		kvm_mmu_free_roots(vcpu, roots_to_free);
+		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
 		/*
 		/*
 		 * If neither the current cr3 nor any of the prev_roots use the
 		 * If neither the current cr3 nor any of the prev_roots use the
 		 * given PCID, then nothing needs to be done here because a
 		 * given PCID, then nothing needs to be done here because a
@@ -9293,7 +9768,7 @@ static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
 
 
 		kvm_mmu_unload(vcpu);
 		kvm_mmu_unload(vcpu);
 		mmu->ept_ad = accessed_dirty;
 		mmu->ept_ad = accessed_dirty;
-		mmu->base_role.ad_disabled = !accessed_dirty;
+		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
 		vmcs12->ept_pointer = address;
 		vmcs12->ept_pointer = address;
 		/*
 		/*
 		 * TODO: Check what's the correct approach in case
 		 * TODO: Check what's the correct approach in case
@@ -9652,9 +10127,6 @@ static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
 			return false;
 			return false;
 		else if (is_page_fault(intr_info))
 		else if (is_page_fault(intr_info))
 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
-		else if (is_no_device(intr_info) &&
-			 !(vmcs12->guest_cr0 & X86_CR0_TS))
-			return false;
 		else if (is_debug(intr_info) &&
 		else if (is_debug(intr_info) &&
 			 vcpu->guest_debug &
 			 vcpu->guest_debug &
 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
@@ -10676,9 +11148,25 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
 	}
 	}
 
 
-	if (vmx->nested.sync_shadow_vmcs) {
-		copy_vmcs12_to_shadow(vmx);
-		vmx->nested.sync_shadow_vmcs = false;
+	if (vmx->nested.need_vmcs12_sync) {
+		/*
+		 * hv_evmcs may end up being not mapped after migration (when
+		 * L2 was running), map it here to make sure vmcs12 changes are
+		 * properly reflected.
+		 */
+		if (vmx->nested.enlightened_vmcs_enabled &&
+		    !vmx->nested.hv_evmcs)
+			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
+
+		if (vmx->nested.hv_evmcs) {
+			copy_vmcs12_to_enlightened(vmx);
+			/* All fields are clean */
+			vmx->nested.hv_evmcs->hv_clean_fields |=
+				HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+		} else {
+			copy_vmcs12_to_shadow(vmx);
+		}
+		vmx->nested.need_vmcs12_sync = false;
 	}
 	}
 
 
 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
@@ -10745,7 +11233,7 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
 		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
 		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
 		"jmp 1f \n\t"
 		"jmp 1f \n\t"
 		"2: \n\t"
 		"2: \n\t"
-		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
+		__ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
 		"1: \n\t"
 		"1: \n\t"
 		/* Reload cr2 if changed */
 		/* Reload cr2 if changed */
 		"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
 		"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
@@ -10777,9 +11265,9 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
 
 
 		/* Enter guest mode */
 		/* Enter guest mode */
 		"jne 1f \n\t"
 		"jne 1f \n\t"
-		__ex(ASM_VMX_VMLAUNCH) "\n\t"
+		__ex("vmlaunch") "\n\t"
 		"jmp 2f \n\t"
 		"jmp 2f \n\t"
-		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
+		"1: " __ex("vmresume") "\n\t"
 		"2: "
 		"2: "
 		/* Save guest registers, load host registers, keep flags */
 		/* Save guest registers, load host registers, keep flags */
 		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
 		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
@@ -10801,6 +11289,10 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
 		"mov %%r13, %c[r13](%0) \n\t"
 		"mov %%r13, %c[r13](%0) \n\t"
 		"mov %%r14, %c[r14](%0) \n\t"
 		"mov %%r14, %c[r14](%0) \n\t"
 		"mov %%r15, %c[r15](%0) \n\t"
 		"mov %%r15, %c[r15](%0) \n\t"
+		/*
+		* Clear host registers marked as clobbered to prevent
+		* speculative use.
+		*/
 		"xor %%r8d,  %%r8d \n\t"
 		"xor %%r8d,  %%r8d \n\t"
 		"xor %%r9d,  %%r9d \n\t"
 		"xor %%r9d,  %%r9d \n\t"
 		"xor %%r10d, %%r10d \n\t"
 		"xor %%r10d, %%r10d \n\t"
@@ -10958,6 +11450,10 @@ static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
 	vmx->loaded_vmcs = vmcs;
 	vmx->loaded_vmcs = vmcs;
 	vmx_vcpu_load(vcpu, cpu);
 	vmx_vcpu_load(vcpu, cpu);
 	put_cpu();
 	put_cpu();
+
+	vm_entry_controls_reset_shadow(vmx);
+	vm_exit_controls_reset_shadow(vmx);
+	vmx_segment_cache_clear(vmx);
 }
 }
 
 
 /*
 /*
@@ -10966,12 +11462,10 @@ static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
  */
  */
 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
 {
 {
-       struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-       vcpu_load(vcpu);
-       vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-       free_nested(vmx);
-       vcpu_put(vcpu);
+	vcpu_load(vcpu);
+	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
+	free_nested(vcpu);
+	vcpu_put(vcpu);
 }
 }
 
 
 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
@@ -11334,28 +11828,28 @@ static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
 	return get_vmcs12(vcpu)->ept_pointer;
 	return get_vmcs12(vcpu)->ept_pointer;
 }
 }
 
 
-static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
 {
 {
 	WARN_ON(mmu_is_nested(vcpu));
 	WARN_ON(mmu_is_nested(vcpu));
-	if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
-		return 1;
 
 
+	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
 	kvm_init_shadow_ept_mmu(vcpu,
 	kvm_init_shadow_ept_mmu(vcpu,
 			to_vmx(vcpu)->nested.msrs.ept_caps &
 			to_vmx(vcpu)->nested.msrs.ept_caps &
 			VMX_EPT_EXECUTE_ONLY_BIT,
 			VMX_EPT_EXECUTE_ONLY_BIT,
 			nested_ept_ad_enabled(vcpu),
 			nested_ept_ad_enabled(vcpu),
 			nested_ept_get_cr3(vcpu));
 			nested_ept_get_cr3(vcpu));
-	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
-	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
-	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
+	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
+	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
+	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
+	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
 
 
 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
-	return 0;
 }
 }
 
 
 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
 {
 {
-	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+	vcpu->arch.mmu = &vcpu->arch.root_mmu;
+	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 }
 }
 
 
 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
@@ -11716,7 +12210,7 @@ static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
 	    !nested_exit_intr_ack_set(vcpu) ||
 	    !nested_exit_intr_ack_set(vcpu) ||
 	    (vmcs12->posted_intr_nv & 0xff00) ||
 	    (vmcs12->posted_intr_nv & 0xff00) ||
 	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
 	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
-	    (!page_address_valid(vcpu, vmcs12->posted_intr_desc_addr))))
+	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
 		return -EINVAL;
 		return -EINVAL;
 
 
 	/* tpr shadow is needed by all apicv features. */
 	/* tpr shadow is needed by all apicv features. */
@@ -11772,15 +12266,12 @@ static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
 					 struct vmcs12 *vmcs12)
 					 struct vmcs12 *vmcs12)
 {
 {
-	u64 address = vmcs12->pml_address;
-	int maxphyaddr = cpuid_maxphyaddr(vcpu);
+	if (!nested_cpu_has_pml(vmcs12))
+		return 0;
 
 
-	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
-		if (!nested_cpu_has_ept(vmcs12) ||
-		    !IS_ALIGNED(address, 4096)  ||
-		    address >> maxphyaddr)
-			return -EINVAL;
-	}
+	if (!nested_cpu_has_ept(vmcs12) ||
+	    !page_address_valid(vcpu, vmcs12->pml_address))
+		return -EINVAL;
 
 
 	return 0;
 	return 0;
 }
 }
@@ -11960,112 +12451,87 @@ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool ne
 	return 0;
 	return 0;
 }
 }
 
 
-static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
+/*
+ * Returns if KVM is able to config CPU to tag TLB entries
+ * populated by L2 differently than TLB entries populated
+ * by L1.
+ *
+ * If L1 uses EPT, then TLB entries are tagged with different EPTP.
+ *
+ * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
+ * with different VPID (L1 entries are tagged with vmx->vpid
+ * while L2 entries are tagged with vmx->nested.vpid02).
+ */
+static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
 
-	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
-	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
-	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
-	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
-	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
-	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
-	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
-	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
-	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
-	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
-	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
-	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
-	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
-	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
-	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
-	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
-	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
-	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
-	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
-	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
-	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
-	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
-	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
-	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
-	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
-	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
-	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
-	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
-	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
-	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
-	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
-
-	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
-	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
-		vmcs12->guest_pending_dbg_exceptions);
-	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
-	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+	return nested_cpu_has_ept(vmcs12) ||
+	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
+}
 
 
-	if (nested_cpu_has_xsaves(vmcs12))
-		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
-	vmcs_write64(VMCS_LINK_POINTER, -1ull);
+static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+	if (vmx->nested.nested_run_pending &&
+	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
+		return vmcs12->guest_ia32_efer;
+	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
+	else
+		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
+}
 
 
-	if (cpu_has_vmx_posted_intr())
-		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
+static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
+{
+	/*
+	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
+	 * according to L0's settings (vmcs12 is irrelevant here).  Host
+	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
+	 * will be set as needed prior to VMLAUNCH/VMRESUME.
+	 */
+	if (vmx->nested.vmcs02_initialized)
+		return;
+	vmx->nested.vmcs02_initialized = true;
 
 
 	/*
 	/*
-	 * Whether page-faults are trapped is determined by a combination of
-	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
-	 * If enable_ept, L0 doesn't care about page faults and we should
-	 * set all of these to L1's desires. However, if !enable_ept, L0 does
-	 * care about (at least some) page faults, and because it is not easy
-	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
-	 * to exit on each and every L2 page fault. This is done by setting
-	 * MASK=MATCH=0 and (see below) EB.PF=1.
-	 * Note that below we don't need special code to set EB.PF beyond the
-	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
-	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
-	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+	 * We don't care what the EPTP value is we just need to guarantee
+	 * it's valid so we don't get a false positive when doing early
+	 * consistency checks.
 	 */
 	 */
-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
-		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
-		enable_ept ? vmcs12->page_fault_error_code_match : 0);
+	if (enable_ept && nested_early_check)
+		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
 
 
 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
 	if (cpu_has_vmx_vmfunc())
 	if (cpu_has_vmx_vmfunc())
 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
 
 
-	if (cpu_has_vmx_apicv()) {
-		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
-		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
-		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
-		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
-	}
+	if (cpu_has_vmx_posted_intr())
+		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
 
 
-	/*
-	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
-	 * Some constant fields are set here by vmx_set_constant_host_state().
-	 * Other fields are different per CPU, and will be set later when
-	 * vmx_vcpu_load() is called, and when vmx_prepare_switch_to_guest()
-	 * is called.
-	 */
-	vmx_set_constant_host_state(vmx);
+	if (cpu_has_vmx_msr_bitmap())
+		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
+
+	if (enable_pml)
+		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
 
 
 	/*
 	/*
-	 * Set the MSR load/store lists to match L0's settings.
+	 * Set the MSR load/store lists to match L0's settings.  Only the
+	 * addresses are constant (for vmcs02), the counts can change based
+	 * on L2's behavior, e.g. switching to/from long mode.
 	 */
 	 */
 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
 
 
-	set_cr4_guest_host_mask(vmx);
+	vmx_set_constant_host_state(vmx);
+}
 
 
-	if (kvm_mpx_supported()) {
-		if (vmx->nested.nested_run_pending &&
-			(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
-			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
-		else
-			vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
-	}
+static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
+				      struct vmcs12 *vmcs12)
+{
+	prepare_vmcs02_constant_state(vmx);
+
+	vmcs_write64(VMCS_LINK_POINTER, -1ull);
 
 
 	if (enable_vpid) {
 	if (enable_vpid) {
 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
@@ -12073,78 +12539,30 @@ static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 		else
 		else
 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
 	}
 	}
-
-	/*
-	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
-	 */
-	if (enable_ept) {
-		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
-		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
-		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
-		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
-	}
-
-	if (cpu_has_vmx_msr_bitmap())
-		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
 }
 }
 
 
-/*
- * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
- * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
- * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
- * guest in a way that will both be appropriate to L1's requests, and our
- * needs. In addition to modifying the active vmcs (which is vmcs02), this
- * function also has additional necessary side-effects, like setting various
- * vcpu->arch fields.
- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
- * is assigned to entry_failure_code on failure.
- */
-static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
-			  u32 *entry_failure_code)
+static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
 {
 {
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	u32 exec_control, vmcs12_exec_ctrl;
 	u32 exec_control, vmcs12_exec_ctrl;
+	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
 
 
-	if (vmx->nested.dirty_vmcs12) {
-		prepare_vmcs02_full(vcpu, vmcs12);
-		vmx->nested.dirty_vmcs12 = false;
-	}
+	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
+		prepare_vmcs02_early_full(vmx, vmcs12);
 
 
 	/*
 	/*
-	 * First, the fields that are shadowed.  This must be kept in sync
-	 * with vmx_shadow_fields.h.
+	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+	 * entry, but only if the current (host) sp changed from the value
+	 * we wrote last (vmx->host_rsp).  This cache is no longer relevant
+	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
+	 * here we just force the write to happen on entry.  host_rsp will
+	 * also be written unconditionally by nested_vmx_check_vmentry_hw()
+	 * if we are doing early consistency checks via hardware.
 	 */
 	 */
+	vmx->host_rsp = 0;
 
 
-	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
-	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
-	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
-	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
-	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
-
-	if (vmx->nested.nested_run_pending &&
-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
-		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
-		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
-	} else {
-		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
-		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
-	}
-	if (vmx->nested.nested_run_pending) {
-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
-			     vmcs12->vm_entry_intr_info_field);
-		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
-			     vmcs12->vm_entry_exception_error_code);
-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
-			     vmcs12->vm_entry_instruction_len);
-		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
-			     vmcs12->guest_interruptibility_info);
-		vmx->loaded_vmcs->nmi_known_unmasked =
-			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
-	} else {
-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
-	}
-	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
-
+	/*
+	 * PIN CONTROLS
+	 */
 	exec_control = vmcs12->pin_based_vm_exec_control;
 	exec_control = vmcs12->pin_based_vm_exec_control;
 
 
 	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
 	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
@@ -12159,13 +12577,43 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 	} else {
 	} else {
 		exec_control &= ~PIN_BASED_POSTED_INTR;
 		exec_control &= ~PIN_BASED_POSTED_INTR;
 	}
 	}
-
 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
 
 
-	vmx->nested.preemption_timer_expired = false;
-	if (nested_cpu_has_preemption_timer(vmcs12))
-		vmx_start_preemption_timer(vcpu);
+	/*
+	 * EXEC CONTROLS
+	 */
+	exec_control = vmx_exec_control(vmx); /* L0's desires */
+	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+	exec_control &= ~CPU_BASED_TPR_SHADOW;
+	exec_control |= vmcs12->cpu_based_vm_exec_control;
+
+	/*
+	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
+	 * nested_get_vmcs12_pages can't fix it up, the illegal value
+	 * will result in a VM entry failure.
+	 */
+	if (exec_control & CPU_BASED_TPR_SHADOW) {
+		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
+		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+	} else {
+#ifdef CONFIG_X86_64
+		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
+				CPU_BASED_CR8_STORE_EXITING;
+#endif
+	}
+
+	/*
+	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
+	 * for I/O port accesses.
+	 */
+	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
 
 
+	/*
+	 * SECONDARY EXEC CONTROLS
+	 */
 	if (cpu_has_secondary_exec_ctrls()) {
 	if (cpu_has_secondary_exec_ctrls()) {
 		exec_control = vmx->secondary_exec_control;
 		exec_control = vmx->secondary_exec_control;
 
 
@@ -12206,43 +12654,214 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 	}
 	}
 
 
 	/*
 	/*
-	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
-	 * entry, but only if the current (host) sp changed from the value
-	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
-	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
-	 * here we just force the write to happen on entry.
+	 * ENTRY CONTROLS
+	 *
+	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
+	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
+	 * on the related bits (if supported by the CPU) in the hope that
+	 * we can avoid VMWrites during vmx_set_efer().
+	 */
+	exec_control = (vmcs12->vm_entry_controls | vmcs_config.vmentry_ctrl) &
+			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
+	if (cpu_has_load_ia32_efer) {
+		if (guest_efer & EFER_LMA)
+			exec_control |= VM_ENTRY_IA32E_MODE;
+		if (guest_efer != host_efer)
+			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
+	}
+	vm_entry_controls_init(vmx, exec_control);
+
+	/*
+	 * EXIT CONTROLS
+	 *
+	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
+	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
 	 */
 	 */
-	vmx->host_rsp = 0;
+	exec_control = vmcs_config.vmexit_ctrl;
+	if (cpu_has_load_ia32_efer && guest_efer != host_efer)
+		exec_control |= VM_EXIT_LOAD_IA32_EFER;
+	vm_exit_controls_init(vmx, exec_control);
 
 
-	exec_control = vmx_exec_control(vmx); /* L0's desires */
-	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
-	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
-	exec_control &= ~CPU_BASED_TPR_SHADOW;
-	exec_control |= vmcs12->cpu_based_vm_exec_control;
+	/*
+	 * Conceptually we want to copy the PML address and index from
+	 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
+	 * since we always flush the log on each vmexit and never change
+	 * the PML address (once set), this happens to be equivalent to
+	 * simply resetting the index in vmcs02.
+	 */
+	if (enable_pml)
+		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
 
 
 	/*
 	/*
-	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
-	 * nested_get_vmcs12_pages can't fix it up, the illegal value
-	 * will result in a VM entry failure.
+	 * Interrupt/Exception Fields
 	 */
 	 */
-	if (exec_control & CPU_BASED_TPR_SHADOW) {
-		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
-		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+	if (vmx->nested.nested_run_pending) {
+		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+			     vmcs12->vm_entry_intr_info_field);
+		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+			     vmcs12->vm_entry_exception_error_code);
+		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+			     vmcs12->vm_entry_instruction_len);
+		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+			     vmcs12->guest_interruptibility_info);
+		vmx->loaded_vmcs->nmi_known_unmasked =
+			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
 	} else {
 	} else {
-#ifdef CONFIG_X86_64
-		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
-				CPU_BASED_CR8_STORE_EXITING;
-#endif
+		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+	}
+}
+
+static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+
+	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+	}
+
+	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
+		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+			    vmcs12->guest_pending_dbg_exceptions);
+		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+
+		/*
+		 * L1 may access the L2's PDPTR, so save them to construct
+		 * vmcs12
+		 */
+		if (enable_ept) {
+			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+		}
+	}
+
+	if (nested_cpu_has_xsaves(vmcs12))
+		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
+
+	/*
+	 * Whether page-faults are trapped is determined by a combination of
+	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+	 * If enable_ept, L0 doesn't care about page faults and we should
+	 * set all of these to L1's desires. However, if !enable_ept, L0 does
+	 * care about (at least some) page faults, and because it is not easy
+	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
+	 * to exit on each and every L2 page fault. This is done by setting
+	 * MASK=MATCH=0 and (see below) EB.PF=1.
+	 * Note that below we don't need special code to set EB.PF beyond the
+	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+	 */
+	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+		enable_ept ? vmcs12->page_fault_error_code_match : 0);
+
+	if (cpu_has_vmx_apicv()) {
+		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
+		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
+		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
+		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
+	}
+
+	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+
+	set_cr4_guest_host_mask(vmx);
+
+	if (kvm_mpx_supported()) {
+		if (vmx->nested.nested_run_pending &&
+			(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
+		else
+			vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
+	}
+}
+
+/*
+ * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+ * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+ * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
+ * guest in a way that will both be appropriate to L1's requests, and our
+ * needs. In addition to modifying the active vmcs (which is vmcs02), this
+ * function also has additional necessary side-effects, like setting various
+ * vcpu->arch fields.
+ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+ * is assigned to entry_failure_code on failure.
+ */
+static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+			  u32 *entry_failure_code)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+
+	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
+		prepare_vmcs02_full(vmx, vmcs12);
+		vmx->nested.dirty_vmcs12 = false;
 	}
 	}
 
 
 	/*
 	/*
-	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
-	 * for I/O port accesses.
+	 * First, the fields that are shadowed.  This must be kept in sync
+	 * with vmx_shadow_fields.h.
 	 */
 	 */
-	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
-	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+	}
 
 
-	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+	if (vmx->nested.nested_run_pending &&
+	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
+		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
+		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+	} else {
+		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
+		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+	}
+	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
+
+	vmx->nested.preemption_timer_expired = false;
+	if (nested_cpu_has_preemption_timer(vmcs12))
+		vmx_start_preemption_timer(vcpu);
 
 
 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
@@ -12252,20 +12871,6 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
 
 
-	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
-	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
-	 * bits are further modified by vmx_set_efer() below.
-	 */
-	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
-
-	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
-	 * emulated by vmx_set_efer(), below.
-	 */
-	vm_entry_controls_init(vmx, 
-		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
-			~VM_ENTRY_IA32E_MODE) |
-		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
-
 	if (vmx->nested.nested_run_pending &&
 	if (vmx->nested.nested_run_pending &&
 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
@@ -12288,37 +12893,29 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 		 * influence global bitmap(for vpid01 and vpid02 allocation)
 		 * influence global bitmap(for vpid01 and vpid02 allocation)
 		 * even if spawn a lot of nested vCPUs.
 		 * even if spawn a lot of nested vCPUs.
 		 */
 		 */
-		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
+		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
-				__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
+				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
 			}
 			}
 		} else {
 		} else {
-			vmx_flush_tlb(vcpu, true);
+			/*
+			 * If L1 use EPT, then L0 needs to execute INVEPT on
+			 * EPTP02 instead of EPTP01. Therefore, delay TLB
+			 * flush until vmcs02->eptp is fully updated by
+			 * KVM_REQ_LOAD_CR3. Note that this assumes
+			 * KVM_REQ_TLB_FLUSH is evaluated after
+			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
+			 */
+			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 		}
 		}
 	}
 	}
 
 
-	if (enable_pml) {
-		/*
-		 * Conceptually we want to copy the PML address and index from
-		 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
-		 * since we always flush the log on each vmexit, this happens
-		 * to be equivalent to simply resetting the fields in vmcs02.
-		 */
-		ASSERT(vmx->pml_pg);
-		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
-		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
-	}
-
-	if (nested_cpu_has_ept(vmcs12)) {
-		if (nested_ept_init_mmu_context(vcpu)) {
-			*entry_failure_code = ENTRY_FAIL_DEFAULT;
-			return 1;
-		}
-	} else if (nested_cpu_has2(vmcs12,
-				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+	if (nested_cpu_has_ept(vmcs12))
+		nested_ept_init_mmu_context(vcpu);
+	else if (nested_cpu_has2(vmcs12,
+				 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
 		vmx_flush_tlb(vcpu, true);
 		vmx_flush_tlb(vcpu, true);
-	}
 
 
 	/*
 	/*
 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
@@ -12334,14 +12931,8 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
 
 
-	if (vmx->nested.nested_run_pending &&
-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
-		vcpu->arch.efer = vmcs12->guest_ia32_efer;
-	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
-		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
-	else
-		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
-	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
+	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
 	vmx_set_efer(vcpu, vcpu->arch.efer);
 	vmx_set_efer(vcpu, vcpu->arch.efer);
 
 
 	/*
 	/*
@@ -12383,6 +12974,7 @@ static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 {
 {
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	bool ia32e;
 
 
 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
 	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
 	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
@@ -12456,6 +13048,21 @@ static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
 	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
 		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
 		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
 
 
+	/*
+	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
+	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
+	 * the values of the LMA and LME bits in the field must each be that of
+	 * the host address-space size VM-exit control.
+	 */
+	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
+		ia32e = (vmcs12->vm_exit_controls &
+			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
+		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
+		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
+		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
+			return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
+	}
+
 	/*
 	/*
 	 * From the Intel SDM, volume 3:
 	 * From the Intel SDM, volume 3:
 	 * Fields relevant to VM-entry event injection must be set properly.
 	 * Fields relevant to VM-entry event injection must be set properly.
@@ -12512,6 +13119,10 @@ static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 		}
 		}
 	}
 	}
 
 
+	if (nested_cpu_has_ept(vmcs12) &&
+	    !valid_ept_address(vcpu, vmcs12->ept_pointer))
+		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
 	return 0;
 	return 0;
 }
 }
 
 
@@ -12532,94 +13143,192 @@ static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
 	if (is_error_page(page))
 	if (is_error_page(page))
 		return -EINVAL;
 		return -EINVAL;
 
 
-	r = 0;
-	shadow = kmap(page);
-	if (shadow->hdr.revision_id != VMCS12_REVISION ||
-	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
-		r = -EINVAL;
-	kunmap(page);
-	kvm_release_page_clean(page);
-	return r;
-}
+	r = 0;
+	shadow = kmap(page);
+	if (shadow->hdr.revision_id != VMCS12_REVISION ||
+	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
+		r = -EINVAL;
+	kunmap(page);
+	kvm_release_page_clean(page);
+	return r;
+}
+
+static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+				  u32 *exit_qual)
+{
+	bool ia32e;
+
+	*exit_qual = ENTRY_FAIL_DEFAULT;
+
+	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
+	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
+		return 1;
+
+	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
+		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
+		return 1;
+	}
+
+	/*
+	 * If the load IA32_EFER VM-entry control is 1, the following checks
+	 * are performed on the field for the IA32_EFER MSR:
+	 * - Bits reserved in the IA32_EFER MSR must be 0.
+	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
+	 *   the IA-32e mode guest VM-exit control. It must also be identical
+	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
+	 *   CR0.PG) is 1.
+	 */
+	if (to_vmx(vcpu)->nested.nested_run_pending &&
+	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
+		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
+		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
+		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
+		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
+		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
+			return 1;
+	}
+
+	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
+		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
+		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
+			return 1;
+
+	return 0;
+}
+
+static int __noclone nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long cr3, cr4;
+
+	if (!nested_early_check)
+		return 0;
+
+	if (vmx->msr_autoload.host.nr)
+		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+	if (vmx->msr_autoload.guest.nr)
+		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+
+	preempt_disable();
+
+	vmx_prepare_switch_to_guest(vcpu);
+
+	/*
+	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
+	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
+	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
+	 * there is no need to preserve other bits or save/restore the field.
+	 */
+	vmcs_writel(GUEST_RFLAGS, 0);
+
+	vmcs_writel(HOST_RIP, vmx_early_consistency_check_return);
+
+	cr3 = __get_current_cr3_fast();
+	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+		vmcs_writel(HOST_CR3, cr3);
+		vmx->loaded_vmcs->host_state.cr3 = cr3;
+	}
+
+	cr4 = cr4_read_shadow();
+	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+		vmcs_writel(HOST_CR4, cr4);
+		vmx->loaded_vmcs->host_state.cr4 = cr4;
+	}
+
+	vmx->__launched = vmx->loaded_vmcs->launched;
+
+	asm(
+		/* Set HOST_RSP */
+		__ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
+		"mov %%" _ASM_SP ", %c[host_rsp](%0)\n\t"
+
+		/* Check if vmlaunch of vmresume is needed */
+		"cmpl $0, %c[launched](%0)\n\t"
+		"je 1f\n\t"
+		__ex("vmresume") "\n\t"
+		"jmp 2f\n\t"
+		"1: " __ex("vmlaunch") "\n\t"
+		"jmp 2f\n\t"
+		"2: "
+
+		/* Set vmx->fail accordingly */
+		"setbe %c[fail](%0)\n\t"
+
+		".pushsection .rodata\n\t"
+		".global vmx_early_consistency_check_return\n\t"
+		"vmx_early_consistency_check_return: " _ASM_PTR " 2b\n\t"
+		".popsection"
+	      :
+	      : "c"(vmx), "d"((unsigned long)HOST_RSP),
+		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
+		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp))
+	      : "rax", "cc", "memory"
+	);
 
 
-static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
-				  u32 *exit_qual)
-{
-	bool ia32e;
+	vmcs_writel(HOST_RIP, vmx_return);
 
 
-	*exit_qual = ENTRY_FAIL_DEFAULT;
+	preempt_enable();
 
 
-	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
-	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
-		return 1;
+	if (vmx->msr_autoload.host.nr)
+		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+	if (vmx->msr_autoload.guest.nr)
+		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
 
 
-	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
-		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
+	if (vmx->fail) {
+		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+		vmx->fail = 0;
 		return 1;
 		return 1;
 	}
 	}
 
 
 	/*
 	/*
-	 * If the load IA32_EFER VM-entry control is 1, the following checks
-	 * are performed on the field for the IA32_EFER MSR:
-	 * - Bits reserved in the IA32_EFER MSR must be 0.
-	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
-	 *   the IA-32e mode guest VM-exit control. It must also be identical
-	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
-	 *   CR0.PG) is 1.
+	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
 	 */
 	 */
-	if (to_vmx(vcpu)->nested.nested_run_pending &&
-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
-		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
-		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
-		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
-		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
-		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
-			return 1;
-	}
+	local_irq_enable();
+	if (hw_breakpoint_active())
+		set_debugreg(__this_cpu_read(cpu_dr7), 7);
 
 
 	/*
 	/*
-	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
-	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
-	 * the values of the LMA and LME bits in the field must each be that of
-	 * the host address-space size VM-exit control.
+	 * A non-failing VMEntry means we somehow entered guest mode with
+	 * an illegal RIP, and that's just the tip of the iceberg.  There
+	 * is no telling what memory has been modified or what state has
+	 * been exposed to unknown code.  Hitting this all but guarantees
+	 * a (very critical) hardware issue.
 	 */
 	 */
-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
-		ia32e = (vmcs12->vm_exit_controls &
-			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
-		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
-		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
-		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
-			return 1;
-	}
-
-	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
-		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
-		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
-			return 1;
+	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
+		VMX_EXIT_REASONS_FAILED_VMENTRY));
 
 
 	return 0;
 	return 0;
 }
 }
+STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
+
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+				   struct vmcs12 *vmcs12);
 
 
 /*
 /*
- * If exit_qual is NULL, this is being called from state restore (either RSM
+ * If from_vmentry is false, this is being called from state restore (either RSM
  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
++ *
++ * Returns:
++ *   0 - success, i.e. proceed with actual VMEnter
++ *   1 - consistency check VMExit
++ *  -1 - consistency check VMFail
  */
  */
-static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual)
+static int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
+					  bool from_vmentry)
 {
 {
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	bool from_vmentry = !!exit_qual;
-	u32 dummy_exit_qual;
 	bool evaluate_pending_interrupts;
 	bool evaluate_pending_interrupts;
-	int r = 0;
+	u32 exit_reason = EXIT_REASON_INVALID_STATE;
+	u32 exit_qual;
 
 
 	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
 	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
 		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
 		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
 
 
-	enter_guest_mode(vcpu);
-
 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
 	if (kvm_mpx_supported() &&
 	if (kvm_mpx_supported() &&
@@ -12627,24 +13336,35 @@ static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual)
 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
 
 
 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
-	vmx_segment_cache_clear(vmx);
 
 
+	prepare_vmcs02_early(vmx, vmcs12);
+
+	if (from_vmentry) {
+		nested_get_vmcs12_pages(vcpu);
+
+		if (nested_vmx_check_vmentry_hw(vcpu)) {
+			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+			return -1;
+		}
+
+		if (check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+			goto vmentry_fail_vmexit;
+	}
+
+	enter_guest_mode(vcpu);
 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
 
 
-	r = EXIT_REASON_INVALID_STATE;
-	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry ? exit_qual : &dummy_exit_qual))
-		goto fail;
+	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
+		goto vmentry_fail_vmexit_guest_mode;
 
 
 	if (from_vmentry) {
 	if (from_vmentry) {
-		nested_get_vmcs12_pages(vcpu);
-
-		r = EXIT_REASON_MSR_LOAD_FAIL;
-		*exit_qual = nested_vmx_load_msr(vcpu,
-	     					 vmcs12->vm_entry_msr_load_addr,
-					      	 vmcs12->vm_entry_msr_load_count);
-		if (*exit_qual)
-			goto fail;
+		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
+		exit_qual = nested_vmx_load_msr(vcpu,
+						vmcs12->vm_entry_msr_load_addr,
+						vmcs12->vm_entry_msr_load_count);
+		if (exit_qual)
+			goto vmentry_fail_vmexit_guest_mode;
 	} else {
 	} else {
 		/*
 		/*
 		 * The MMU is not initialized to point at the right entities yet and
 		 * The MMU is not initialized to point at the right entities yet and
@@ -12681,12 +13401,28 @@ static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual)
 	 */
 	 */
 	return 0;
 	return 0;
 
 
-fail:
+	/*
+	 * A failed consistency check that leads to a VMExit during L1's
+	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
+	 * 26.7 "VM-entry failures during or after loading guest state".
+	 */
+vmentry_fail_vmexit_guest_mode:
 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
 	leave_guest_mode(vcpu);
 	leave_guest_mode(vcpu);
+
+vmentry_fail_vmexit:
 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-	return r;
+
+	if (!from_vmentry)
+		return 1;
+
+	load_vmcs12_host_state(vcpu, vmcs12);
+	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+	vmcs12->exit_qualification = exit_qual;
+	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
+		vmx->nested.need_vmcs12_sync = true;
+	return 1;
 }
 }
 
 
 /*
 /*
@@ -12698,14 +13434,16 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
 	struct vmcs12 *vmcs12;
 	struct vmcs12 *vmcs12;
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
-	u32 exit_qual;
 	int ret;
 	int ret;
 
 
 	if (!nested_vmx_check_permission(vcpu))
 	if (!nested_vmx_check_permission(vcpu))
 		return 1;
 		return 1;
 
 
-	if (!nested_vmx_check_vmcs12(vcpu))
-		goto out;
+	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
+		return 1;
+
+	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
+		return nested_vmx_failInvalid(vcpu);
 
 
 	vmcs12 = get_vmcs12(vcpu);
 	vmcs12 = get_vmcs12(vcpu);
 
 
@@ -12715,13 +13453,16 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
 	 * rather than RFLAGS.ZF, and no error number is stored to the
 	 * rather than RFLAGS.ZF, and no error number is stored to the
 	 * VM-instruction error field.
 	 * VM-instruction error field.
 	 */
 	 */
-	if (vmcs12->hdr.shadow_vmcs) {
-		nested_vmx_failInvalid(vcpu);
-		goto out;
-	}
+	if (vmcs12->hdr.shadow_vmcs)
+		return nested_vmx_failInvalid(vcpu);
 
 
-	if (enable_shadow_vmcs)
+	if (vmx->nested.hv_evmcs) {
+		copy_enlightened_to_vmcs12(vmx);
+		/* Enlightened VMCS doesn't have launch state */
+		vmcs12->launch_state = !launch;
+	} else if (enable_shadow_vmcs) {
 		copy_shadow_to_vmcs12(vmx);
 		copy_shadow_to_vmcs12(vmx);
+	}
 
 
 	/*
 	/*
 	 * The nested entry process starts with enforcing various prerequisites
 	 * The nested entry process starts with enforcing various prerequisites
@@ -12733,59 +13474,37 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
 	 * for misconfigurations which will anyway be caught by the processor
 	 * for misconfigurations which will anyway be caught by the processor
 	 * when using the merged vmcs02.
 	 * when using the merged vmcs02.
 	 */
 	 */
-	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
-		nested_vmx_failValid(vcpu,
-				     VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
-		goto out;
-	}
+	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
 
 
-	if (vmcs12->launch_state == launch) {
-		nested_vmx_failValid(vcpu,
+	if (vmcs12->launch_state == launch)
+		return nested_vmx_failValid(vcpu,
 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
-		goto out;
-	}
 
 
 	ret = check_vmentry_prereqs(vcpu, vmcs12);
 	ret = check_vmentry_prereqs(vcpu, vmcs12);
-	if (ret) {
-		nested_vmx_failValid(vcpu, ret);
-		goto out;
-	}
-
-	/*
-	 * After this point, the trap flag no longer triggers a singlestep trap
-	 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
-	 * This is not 100% correct; for performance reasons, we delegate most
-	 * of the checks on host state to the processor.  If those fail,
-	 * the singlestep trap is missed.
-	 */
-	skip_emulated_instruction(vcpu);
-
-	ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
-	if (ret) {
-		nested_vmx_entry_failure(vcpu, vmcs12,
-					 EXIT_REASON_INVALID_STATE, exit_qual);
-		return 1;
-	}
+	if (ret)
+		return nested_vmx_failValid(vcpu, ret);
 
 
 	/*
 	/*
 	 * We're finally done with prerequisite checking, and can start with
 	 * We're finally done with prerequisite checking, and can start with
 	 * the nested entry.
 	 * the nested entry.
 	 */
 	 */
-
 	vmx->nested.nested_run_pending = 1;
 	vmx->nested.nested_run_pending = 1;
-	ret = enter_vmx_non_root_mode(vcpu, &exit_qual);
-	if (ret) {
-		nested_vmx_entry_failure(vcpu, vmcs12, ret, exit_qual);
-		vmx->nested.nested_run_pending = 0;
+	ret = nested_vmx_enter_non_root_mode(vcpu, true);
+	vmx->nested.nested_run_pending = !ret;
+	if (ret > 0)
 		return 1;
 		return 1;
-	}
+	else if (ret)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_ENTRY_INVALID_CONTROL_FIELD);
 
 
 	/* Hide L1D cache contents from the nested guest.  */
 	/* Hide L1D cache contents from the nested guest.  */
 	vmx->vcpu.arch.l1tf_flush_l1d = true;
 	vmx->vcpu.arch.l1tf_flush_l1d = true;
 
 
 	/*
 	/*
-	 * Must happen outside of enter_vmx_non_root_mode() as it will
+	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
 	 * also be used as part of restoring nVMX state for
 	 * also be used as part of restoring nVMX state for
 	 * snapshot restore (migration).
 	 * snapshot restore (migration).
 	 *
 	 *
@@ -12806,9 +13525,6 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
 		return kvm_vcpu_halt(vcpu);
 		return kvm_vcpu_halt(vcpu);
 	}
 	}
 	return 1;
 	return 1;
-
-out:
-	return kvm_skip_emulated_instruction(vcpu);
 }
 }
 
 
 /*
 /*
@@ -13122,24 +13838,6 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 	kvm_clear_interrupt_queue(vcpu);
 	kvm_clear_interrupt_queue(vcpu);
 }
 }
 
 
-static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
-			struct vmcs12 *vmcs12)
-{
-	u32 entry_failure_code;
-
-	nested_ept_uninit_mmu_context(vcpu);
-
-	/*
-	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
-	 * couldn't have changed.
-	 */
-	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
-		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
-
-	if (!enable_ept)
-		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
-}
-
 /*
 /*
  * A part of what we need to when the nested L2 guest exits and we want to
  * A part of what we need to when the nested L2 guest exits and we want to
  * run its L1 parent, is to reset L1's guest state to the host state specified
  * run its L1 parent, is to reset L1's guest state to the host state specified
@@ -13153,6 +13851,7 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
 				   struct vmcs12 *vmcs12)
 				   struct vmcs12 *vmcs12)
 {
 {
 	struct kvm_segment seg;
 	struct kvm_segment seg;
+	u32 entry_failure_code;
 
 
 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
 		vcpu->arch.efer = vmcs12->host_ia32_efer;
 		vcpu->arch.efer = vmcs12->host_ia32_efer;
@@ -13165,6 +13864,8 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
+	vmx_set_interrupt_shadow(vcpu, 0);
+
 	/*
 	/*
 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
 	 * actually changed, because vmx_set_cr0 refers to efer set above.
 	 * actually changed, because vmx_set_cr0 refers to efer set above.
@@ -13179,23 +13880,35 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
 
 
-	load_vmcs12_mmu_host_state(vcpu, vmcs12);
+	nested_ept_uninit_mmu_context(vcpu);
+
+	/*
+	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
+	 * couldn't have changed.
+	 */
+	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
+		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
+
+	if (!enable_ept)
+		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
 
 
 	/*
 	/*
-	 * If vmcs01 don't use VPID, CPU flushes TLB on every
+	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
 	 * VMEntry/VMExit. Thus, no need to flush TLB.
 	 * VMEntry/VMExit. Thus, no need to flush TLB.
 	 *
 	 *
-	 * If vmcs12 uses VPID, TLB entries populated by L2 are
-	 * tagged with vmx->nested.vpid02 while L1 entries are tagged
-	 * with vmx->vpid. Thus, no need to flush TLB.
+	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
+	 * flushed on every VMEntry/VMExit.
 	 *
 	 *
-	 * Therefore, flush TLB only in case vmcs01 uses VPID and
-	 * vmcs12 don't use VPID as in this case L1 & L2 TLB entries
-	 * are both tagged with vmx->vpid.
+	 * Otherwise, we can preserve TLB entries as long as we are
+	 * able to tag L1 TLB entries differently than L2 TLB entries.
+	 *
+	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
+	 * and therefore we request the TLB flush to happen only after VMCS EPTP
+	 * has been set by KVM_REQ_LOAD_CR3.
 	 */
 	 */
 	if (enable_vpid &&
 	if (enable_vpid &&
-	    !(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02)) {
-		vmx_flush_tlb(vcpu, true);
+	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
+		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 	}
 	}
 
 
 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
@@ -13275,6 +13988,140 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
 }
 }
 
 
+static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
+{
+	struct shared_msr_entry *efer_msr;
+	unsigned int i;
+
+	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
+		return vmcs_read64(GUEST_IA32_EFER);
+
+	if (cpu_has_load_ia32_efer)
+		return host_efer;
+
+	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
+		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
+			return vmx->msr_autoload.guest.val[i].value;
+	}
+
+	efer_msr = find_msr_entry(vmx, MSR_EFER);
+	if (efer_msr)
+		return efer_msr->data;
+
+	return host_efer;
+}
+
+static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmx_msr_entry g, h;
+	struct msr_data msr;
+	gpa_t gpa;
+	u32 i, j;
+
+	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
+
+	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+		/*
+		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
+		 * as vmcs01.GUEST_DR7 contains a userspace defined value
+		 * and vcpu->arch.dr7 is not squirreled away before the
+		 * nested VMENTER (not worth adding a variable in nested_vmx).
+		 */
+		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
+		else
+			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
+	}
+
+	/*
+	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
+	 * handle a variety of side effects to KVM's software model.
+	 */
+	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
+
+	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
+
+	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
+
+	nested_ept_uninit_mmu_context(vcpu);
+	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+	/*
+	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
+	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
+	 * VMFail, like everything else we just need to ensure our
+	 * software model is up-to-date.
+	 */
+	ept_save_pdptrs(vcpu);
+
+	kvm_mmu_reset_context(vcpu);
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmx_update_msr_bitmap(vcpu);
+
+	/*
+	 * This nasty bit of open coding is a compromise between blindly
+	 * loading L1's MSRs using the exit load lists (incorrect emulation
+	 * of VMFail), leaving the nested VM's MSRs in the software model
+	 * (incorrect behavior) and snapshotting the modified MSRs (too
+	 * expensive since the lists are unbound by hardware).  For each
+	 * MSR that was (prematurely) loaded from the nested VMEntry load
+	 * list, reload it from the exit load list if it exists and differs
+	 * from the guest value.  The intent is to stuff host state as
+	 * silently as possible, not to fully process the exit load list.
+	 */
+	msr.host_initiated = false;
+	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
+		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
+		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
+			pr_debug_ratelimited(
+				"%s read MSR index failed (%u, 0x%08llx)\n",
+				__func__, i, gpa);
+			goto vmabort;
+		}
+
+		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
+			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
+			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
+				pr_debug_ratelimited(
+					"%s read MSR failed (%u, 0x%08llx)\n",
+					__func__, j, gpa);
+				goto vmabort;
+			}
+			if (h.index != g.index)
+				continue;
+			if (h.value == g.value)
+				break;
+
+			if (nested_vmx_load_msr_check(vcpu, &h)) {
+				pr_debug_ratelimited(
+					"%s check failed (%u, 0x%x, 0x%x)\n",
+					__func__, j, h.index, h.reserved);
+				goto vmabort;
+			}
+
+			msr.index = h.index;
+			msr.data = h.value;
+			if (kvm_set_msr(vcpu, &msr)) {
+				pr_debug_ratelimited(
+					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
+					__func__, j, h.index, h.value);
+				goto vmabort;
+			}
+		}
+	}
+
+	return;
+
+vmabort:
+	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
 /*
 /*
  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  * and modify vmcs12 to make it see what it would expect to see there if
  * and modify vmcs12 to make it see what it would expect to see there if
@@ -13290,14 +14137,6 @@ static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
 	/* trying to cancel vmlaunch/vmresume is a bug */
 	/* trying to cancel vmlaunch/vmresume is a bug */
 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
 
 
-	/*
-	 * The only expected VM-instruction error is "VM entry with
-	 * invalid control field(s)." Anything else indicates a
-	 * problem with L0.
-	 */
-	WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
-				   VMXERR_ENTRY_INVALID_CONTROL_FIELD));
-
 	leave_guest_mode(vcpu);
 	leave_guest_mode(vcpu);
 
 
 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
@@ -13324,12 +14163,19 @@ static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
 		if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
 		if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
 					 vmcs12->vm_exit_msr_store_count))
 					 vmcs12->vm_exit_msr_store_count))
 			nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
 			nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
+	} else {
+		/*
+		 * The only expected VM-instruction error is "VM entry with
+		 * invalid control field(s)." Anything else indicates a
+		 * problem with L0.  And we should never get here with a
+		 * VMFail of any type if early consistency checks are enabled.
+		 */
+		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+		WARN_ON_ONCE(nested_early_check);
 	}
 	}
 
 
 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-	vm_entry_controls_reset_shadow(vmx);
-	vm_exit_controls_reset_shadow(vmx);
-	vmx_segment_cache_clear(vmx);
 
 
 	/* Update any VMCS fields that might have changed while L2 ran */
 	/* Update any VMCS fields that might have changed while L2 ran */
 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
@@ -13373,8 +14219,8 @@ static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
 	 */
 	 */
 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
 
 
-	if (enable_shadow_vmcs && exit_reason != -1)
-		vmx->nested.sync_shadow_vmcs = true;
+	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
+		vmx->nested.need_vmcs12_sync = true;
 
 
 	/* in case we halted in L2 */
 	/* in case we halted in L2 */
 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
@@ -13409,24 +14255,24 @@ static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
 
 
 		return;
 		return;
 	}
 	}
-	
+
 	/*
 	/*
 	 * After an early L2 VM-entry failure, we're now back
 	 * After an early L2 VM-entry failure, we're now back
 	 * in L1 which thinks it just finished a VMLAUNCH or
 	 * in L1 which thinks it just finished a VMLAUNCH or
 	 * VMRESUME instruction, so we need to set the failure
 	 * VMRESUME instruction, so we need to set the failure
 	 * flag and the VM-instruction error field of the VMCS
 	 * flag and the VM-instruction error field of the VMCS
-	 * accordingly.
+	 * accordingly, and skip the emulated instruction.
 	 */
 	 */
-	nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-
-	load_vmcs12_mmu_host_state(vcpu, vmcs12);
+	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
 
 
 	/*
 	/*
-	 * The emulated instruction was already skipped in
-	 * nested_vmx_run, but the updated RIP was never
-	 * written back to the vmcs01.
+	 * Restore L1's host state to KVM's software model.  We're here
+	 * because a consistency check was caught by hardware, which
+	 * means some amount of guest state has been propagated to KVM's
+	 * model and needs to be unwound to the host's state.
 	 */
 	 */
-	skip_emulated_instruction(vcpu);
+	nested_vmx_restore_host_state(vcpu);
+
 	vmx->fail = 0;
 	vmx->fail = 0;
 }
 }
 
 
@@ -13439,26 +14285,7 @@ static void vmx_leave_nested(struct kvm_vcpu *vcpu)
 		to_vmx(vcpu)->nested.nested_run_pending = 0;
 		to_vmx(vcpu)->nested.nested_run_pending = 0;
 		nested_vmx_vmexit(vcpu, -1, 0, 0);
 		nested_vmx_vmexit(vcpu, -1, 0, 0);
 	}
 	}
-	free_nested(to_vmx(vcpu));
-}
-
-/*
- * L1's failure to enter L2 is a subset of a normal exit, as explained in
- * 23.7 "VM-entry failures during or after loading guest state" (this also
- * lists the acceptable exit-reason and exit-qualification parameters).
- * It should only be called before L2 actually succeeded to run, and when
- * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
- */
-static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
-			struct vmcs12 *vmcs12,
-			u32 reason, unsigned long qualification)
-{
-	load_vmcs12_host_state(vcpu, vmcs12);
-	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
-	vmcs12->exit_qualification = qualification;
-	nested_vmx_succeed(vcpu);
-	if (enable_shadow_vmcs)
-		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
+	free_nested(vcpu);
 }
 }
 
 
 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
@@ -13884,7 +14711,7 @@ static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
 
 
 	if (vmx->nested.smm.guest_mode) {
 	if (vmx->nested.smm.guest_mode) {
 		vcpu->arch.hflags &= ~HF_SMM_MASK;
 		vcpu->arch.hflags &= ~HF_SMM_MASK;
-		ret = enter_vmx_non_root_mode(vcpu, NULL);
+		ret = nested_vmx_enter_non_root_mode(vcpu, false);
 		vcpu->arch.hflags |= HF_SMM_MASK;
 		vcpu->arch.hflags |= HF_SMM_MASK;
 		if (ret)
 		if (ret)
 			return ret;
 			return ret;
@@ -13899,6 +14726,20 @@ static int enable_smi_window(struct kvm_vcpu *vcpu)
 	return 0;
 	return 0;
 }
 }
 
 
+static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * In case we do two consecutive get/set_nested_state()s while L2 was
+	 * running hv_evmcs may end up not being mapped (we map it from
+	 * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always
+	 * have vmcs12 if it is true.
+	 */
+	return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull ||
+		vmx->nested.hv_evmcs;
+}
+
 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
 				struct kvm_nested_state __user *user_kvm_nested_state,
 				struct kvm_nested_state __user *user_kvm_nested_state,
 				u32 user_data_size)
 				u32 user_data_size)
@@ -13918,12 +14759,16 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
 
 
 	vmx = to_vmx(vcpu);
 	vmx = to_vmx(vcpu);
 	vmcs12 = get_vmcs12(vcpu);
 	vmcs12 = get_vmcs12(vcpu);
+
+	if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
+		kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
+
 	if (nested_vmx_allowed(vcpu) &&
 	if (nested_vmx_allowed(vcpu) &&
 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
 		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
 		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
 		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
 		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
 
 
-		if (vmx->nested.current_vmptr != -1ull) {
+		if (vmx_has_valid_vmcs12(vcpu)) {
 			kvm_state.size += VMCS12_SIZE;
 			kvm_state.size += VMCS12_SIZE;
 
 
 			if (is_guest_mode(vcpu) &&
 			if (is_guest_mode(vcpu) &&
@@ -13952,20 +14797,24 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
 		return -EFAULT;
 		return -EFAULT;
 
 
-	if (vmx->nested.current_vmptr == -1ull)
+	if (!vmx_has_valid_vmcs12(vcpu))
 		goto out;
 		goto out;
 
 
 	/*
 	/*
 	 * When running L2, the authoritative vmcs12 state is in the
 	 * When running L2, the authoritative vmcs12 state is in the
 	 * vmcs02. When running L1, the authoritative vmcs12 state is
 	 * vmcs02. When running L1, the authoritative vmcs12 state is
-	 * in the shadow vmcs linked to vmcs01, unless
-	 * sync_shadow_vmcs is set, in which case, the authoritative
+	 * in the shadow or enlightened vmcs linked to vmcs01, unless
+	 * need_vmcs12_sync is set, in which case, the authoritative
 	 * vmcs12 state is in the vmcs12 already.
 	 * vmcs12 state is in the vmcs12 already.
 	 */
 	 */
-	if (is_guest_mode(vcpu))
+	if (is_guest_mode(vcpu)) {
 		sync_vmcs12(vcpu, vmcs12);
 		sync_vmcs12(vcpu, vmcs12);
-	else if (enable_shadow_vmcs && !vmx->nested.sync_shadow_vmcs)
-		copy_shadow_to_vmcs12(vmx);
+	} else if (!vmx->nested.need_vmcs12_sync) {
+		if (vmx->nested.hv_evmcs)
+			copy_enlightened_to_vmcs12(vmx);
+		else if (enable_shadow_vmcs)
+			copy_shadow_to_vmcs12(vmx);
+	}
 
 
 	if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
 	if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
 		return -EFAULT;
 		return -EFAULT;
@@ -13993,6 +14842,9 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
 	if (kvm_state->format != 0)
 	if (kvm_state->format != 0)
 		return -EINVAL;
 		return -EINVAL;
 
 
+	if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
+		nested_enable_evmcs(vcpu, NULL);
+
 	if (!nested_vmx_allowed(vcpu))
 	if (!nested_vmx_allowed(vcpu))
 		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
 		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
 
 
@@ -14010,13 +14862,6 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
 	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
 	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
 		return -EINVAL;
 		return -EINVAL;
 
 
-	if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
-		return -EINVAL;
-
-	if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
-	    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
-		return -EINVAL;
-
 	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
 	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
 		return -EINVAL;
 		return -EINVAL;
@@ -14046,7 +14891,25 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
 	if (ret)
 	if (ret)
 		return ret;
 		return ret;
 
 
-	set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
+	/* Empty 'VMXON' state is permitted */
+	if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
+		return 0;
+
+	if (kvm_state->vmx.vmcs_pa != -1ull) {
+		if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
+		    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
+			return -EINVAL;
+
+		set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
+	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
+		/*
+		 * Sync eVMCS upon entry as we may not have
+		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
+		 */
+		vmx->nested.need_vmcs12_sync = true;
+	} else {
+		return -EINVAL;
+	}
 
 
 	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
 	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
 		vmx->nested.smm.vmxon = true;
 		vmx->nested.smm.vmxon = true;
@@ -14090,7 +14953,7 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
 		return -EINVAL;
 		return -EINVAL;
 
 
 	vmx->nested.dirty_vmcs12 = true;
 	vmx->nested.dirty_vmcs12 = true;
-	ret = enter_vmx_non_root_mode(vcpu, NULL);
+	ret = nested_vmx_enter_non_root_mode(vcpu, false);
 	if (ret)
 	if (ret)
 		return -EINVAL;
 		return -EINVAL;
 
 
@@ -14242,6 +15105,8 @@ static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
 	.pre_enter_smm = vmx_pre_enter_smm,
 	.pre_enter_smm = vmx_pre_enter_smm,
 	.pre_leave_smm = vmx_pre_leave_smm,
 	.pre_leave_smm = vmx_pre_leave_smm,
 	.enable_smi_window = enable_smi_window,
 	.enable_smi_window = enable_smi_window,
+
+	.nested_enable_evmcs = nested_enable_evmcs,
 };
 };
 
 
 static void vmx_cleanup_l1d_flush(void)
 static void vmx_cleanup_l1d_flush(void)

+ 1 - 4
arch/x86/kvm/vmx_shadow_fields.h

@@ -28,7 +28,6 @@
  */
  */
 
 
 /* 16-bits */
 /* 16-bits */
-SHADOW_FIELD_RW(GUEST_CS_SELECTOR)
 SHADOW_FIELD_RW(GUEST_INTR_STATUS)
 SHADOW_FIELD_RW(GUEST_INTR_STATUS)
 SHADOW_FIELD_RW(GUEST_PML_INDEX)
 SHADOW_FIELD_RW(GUEST_PML_INDEX)
 SHADOW_FIELD_RW(HOST_FS_SELECTOR)
 SHADOW_FIELD_RW(HOST_FS_SELECTOR)
@@ -47,8 +46,8 @@ SHADOW_FIELD_RW(VM_ENTRY_EXCEPTION_ERROR_CODE)
 SHADOW_FIELD_RW(VM_ENTRY_INTR_INFO_FIELD)
 SHADOW_FIELD_RW(VM_ENTRY_INTR_INFO_FIELD)
 SHADOW_FIELD_RW(VM_ENTRY_INSTRUCTION_LEN)
 SHADOW_FIELD_RW(VM_ENTRY_INSTRUCTION_LEN)
 SHADOW_FIELD_RW(TPR_THRESHOLD)
 SHADOW_FIELD_RW(TPR_THRESHOLD)
-SHADOW_FIELD_RW(GUEST_CS_LIMIT)
 SHADOW_FIELD_RW(GUEST_CS_AR_BYTES)
 SHADOW_FIELD_RW(GUEST_CS_AR_BYTES)
+SHADOW_FIELD_RW(GUEST_SS_AR_BYTES)
 SHADOW_FIELD_RW(GUEST_INTERRUPTIBILITY_INFO)
 SHADOW_FIELD_RW(GUEST_INTERRUPTIBILITY_INFO)
 SHADOW_FIELD_RW(VMX_PREEMPTION_TIMER_VALUE)
 SHADOW_FIELD_RW(VMX_PREEMPTION_TIMER_VALUE)
 
 
@@ -61,8 +60,6 @@ SHADOW_FIELD_RW(GUEST_CR0)
 SHADOW_FIELD_RW(GUEST_CR3)
 SHADOW_FIELD_RW(GUEST_CR3)
 SHADOW_FIELD_RW(GUEST_CR4)
 SHADOW_FIELD_RW(GUEST_CR4)
 SHADOW_FIELD_RW(GUEST_RFLAGS)
 SHADOW_FIELD_RW(GUEST_RFLAGS)
-SHADOW_FIELD_RW(GUEST_CS_BASE)
-SHADOW_FIELD_RW(GUEST_ES_BASE)
 SHADOW_FIELD_RW(CR0_GUEST_HOST_MASK)
 SHADOW_FIELD_RW(CR0_GUEST_HOST_MASK)
 SHADOW_FIELD_RW(CR0_READ_SHADOW)
 SHADOW_FIELD_RW(CR0_READ_SHADOW)
 SHADOW_FIELD_RW(CR4_READ_SHADOW)
 SHADOW_FIELD_RW(CR4_READ_SHADOW)

+ 194 - 50
arch/x86/kvm/x86.c

@@ -136,7 +136,7 @@ static u32 __read_mostly tsc_tolerance_ppm = 250;
 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 
 
 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
-unsigned int __read_mostly lapic_timer_advance_ns = 0;
+unsigned int __read_mostly lapic_timer_advance_ns = 1000;
 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
 
 
@@ -400,9 +400,51 @@ static int exception_type(int vector)
 	return EXCPT_FAULT;
 	return EXCPT_FAULT;
 }
 }
 
 
+void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
+{
+	unsigned nr = vcpu->arch.exception.nr;
+	bool has_payload = vcpu->arch.exception.has_payload;
+	unsigned long payload = vcpu->arch.exception.payload;
+
+	if (!has_payload)
+		return;
+
+	switch (nr) {
+	case DB_VECTOR:
+		/*
+		 * "Certain debug exceptions may clear bit 0-3.  The
+		 * remaining contents of the DR6 register are never
+		 * cleared by the processor".
+		 */
+		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
+		/*
+		 * DR6.RTM is set by all #DB exceptions that don't clear it.
+		 */
+		vcpu->arch.dr6 |= DR6_RTM;
+		vcpu->arch.dr6 |= payload;
+		/*
+		 * Bit 16 should be set in the payload whenever the #DB
+		 * exception should clear DR6.RTM. This makes the payload
+		 * compatible with the pending debug exceptions under VMX.
+		 * Though not currently documented in the SDM, this also
+		 * makes the payload compatible with the exit qualification
+		 * for #DB exceptions under VMX.
+		 */
+		vcpu->arch.dr6 ^= payload & DR6_RTM;
+		break;
+	case PF_VECTOR:
+		vcpu->arch.cr2 = payload;
+		break;
+	}
+
+	vcpu->arch.exception.has_payload = false;
+	vcpu->arch.exception.payload = 0;
+}
+EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
+
 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 		unsigned nr, bool has_error, u32 error_code,
 		unsigned nr, bool has_error, u32 error_code,
-		bool reinject)
+	        bool has_payload, unsigned long payload, bool reinject)
 {
 {
 	u32 prev_nr;
 	u32 prev_nr;
 	int class1, class2;
 	int class1, class2;
@@ -424,6 +466,14 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 			 */
 			 */
 			WARN_ON_ONCE(vcpu->arch.exception.pending);
 			WARN_ON_ONCE(vcpu->arch.exception.pending);
 			vcpu->arch.exception.injected = true;
 			vcpu->arch.exception.injected = true;
+			if (WARN_ON_ONCE(has_payload)) {
+				/*
+				 * A reinjected event has already
+				 * delivered its payload.
+				 */
+				has_payload = false;
+				payload = 0;
+			}
 		} else {
 		} else {
 			vcpu->arch.exception.pending = true;
 			vcpu->arch.exception.pending = true;
 			vcpu->arch.exception.injected = false;
 			vcpu->arch.exception.injected = false;
@@ -431,6 +481,22 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 		vcpu->arch.exception.has_error_code = has_error;
 		vcpu->arch.exception.has_error_code = has_error;
 		vcpu->arch.exception.nr = nr;
 		vcpu->arch.exception.nr = nr;
 		vcpu->arch.exception.error_code = error_code;
 		vcpu->arch.exception.error_code = error_code;
+		vcpu->arch.exception.has_payload = has_payload;
+		vcpu->arch.exception.payload = payload;
+		/*
+		 * In guest mode, payload delivery should be deferred,
+		 * so that the L1 hypervisor can intercept #PF before
+		 * CR2 is modified (or intercept #DB before DR6 is
+		 * modified under nVMX).  However, for ABI
+		 * compatibility with KVM_GET_VCPU_EVENTS and
+		 * KVM_SET_VCPU_EVENTS, we can't delay payload
+		 * delivery unless userspace has enabled this
+		 * functionality via the per-VM capability,
+		 * KVM_CAP_EXCEPTION_PAYLOAD.
+		 */
+		if (!vcpu->kvm->arch.exception_payload_enabled ||
+		    !is_guest_mode(vcpu))
+			kvm_deliver_exception_payload(vcpu);
 		return;
 		return;
 	}
 	}
 
 
@@ -455,6 +521,8 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 		vcpu->arch.exception.has_error_code = true;
 		vcpu->arch.exception.has_error_code = true;
 		vcpu->arch.exception.nr = DF_VECTOR;
 		vcpu->arch.exception.nr = DF_VECTOR;
 		vcpu->arch.exception.error_code = 0;
 		vcpu->arch.exception.error_code = 0;
+		vcpu->arch.exception.has_payload = false;
+		vcpu->arch.exception.payload = 0;
 	} else
 	} else
 		/* replace previous exception with a new one in a hope
 		/* replace previous exception with a new one in a hope
 		   that instruction re-execution will regenerate lost
 		   that instruction re-execution will regenerate lost
@@ -464,16 +532,29 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 
 
 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 {
 {
-	kvm_multiple_exception(vcpu, nr, false, 0, false);
+	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
 }
 }
 EXPORT_SYMBOL_GPL(kvm_queue_exception);
 EXPORT_SYMBOL_GPL(kvm_queue_exception);
 
 
 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 {
 {
-	kvm_multiple_exception(vcpu, nr, false, 0, true);
+	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
 }
 }
 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 
 
+static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
+				  unsigned long payload)
+{
+	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
+}
+
+static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
+				    u32 error_code, unsigned long payload)
+{
+	kvm_multiple_exception(vcpu, nr, true, error_code,
+			       true, payload, false);
+}
+
 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 {
 {
 	if (err)
 	if (err)
@@ -490,11 +571,13 @@ void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 	++vcpu->stat.pf_guest;
 	++vcpu->stat.pf_guest;
 	vcpu->arch.exception.nested_apf =
 	vcpu->arch.exception.nested_apf =
 		is_guest_mode(vcpu) && fault->async_page_fault;
 		is_guest_mode(vcpu) && fault->async_page_fault;
-	if (vcpu->arch.exception.nested_apf)
+	if (vcpu->arch.exception.nested_apf) {
 		vcpu->arch.apf.nested_apf_token = fault->address;
 		vcpu->arch.apf.nested_apf_token = fault->address;
-	else
-		vcpu->arch.cr2 = fault->address;
-	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
+		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
+	} else {
+		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
+					fault->address);
+	}
 }
 }
 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 
 
@@ -503,7 +586,7 @@ static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fau
 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 	else
 	else
-		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
+		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
 
 
 	return fault->nested_page_fault;
 	return fault->nested_page_fault;
 }
 }
@@ -517,13 +600,13 @@ EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 
 
 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 {
 {
-	kvm_multiple_exception(vcpu, nr, true, error_code, false);
+	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
 }
 }
 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 
 
 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 {
 {
-	kvm_multiple_exception(vcpu, nr, true, error_code, true);
+	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
 }
 }
 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 
 
@@ -602,7 +685,7 @@ int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 		if ((pdpte[i] & PT_PRESENT_MASK) &&
 		if ((pdpte[i] & PT_PRESENT_MASK) &&
 		    (pdpte[i] &
 		    (pdpte[i] &
-		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
+		     vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
 			ret = 0;
 			ret = 0;
 			goto out;
 			goto out;
 		}
 		}
@@ -2477,7 +2560,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 
 
 		break;
 		break;
 	case MSR_KVM_PV_EOI_EN:
 	case MSR_KVM_PV_EOI_EN:
-		if (kvm_lapic_enable_pv_eoi(vcpu, data))
+		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
 			return 1;
 			return 1;
 		break;
 		break;
 
 
@@ -2912,6 +2995,8 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 	case KVM_CAP_HYPERV_VP_INDEX:
 	case KVM_CAP_HYPERV_VP_INDEX:
 	case KVM_CAP_HYPERV_EVENTFD:
 	case KVM_CAP_HYPERV_EVENTFD:
 	case KVM_CAP_HYPERV_TLBFLUSH:
 	case KVM_CAP_HYPERV_TLBFLUSH:
+	case KVM_CAP_HYPERV_SEND_IPI:
+	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
 	case KVM_CAP_PCI_SEGMENT:
 	case KVM_CAP_PCI_SEGMENT:
 	case KVM_CAP_DEBUGREGS:
 	case KVM_CAP_DEBUGREGS:
 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
@@ -2930,6 +3015,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 	case KVM_CAP_IMMEDIATE_EXIT:
 	case KVM_CAP_IMMEDIATE_EXIT:
 	case KVM_CAP_GET_MSR_FEATURES:
 	case KVM_CAP_GET_MSR_FEATURES:
 	case KVM_CAP_MSR_PLATFORM_INFO:
 	case KVM_CAP_MSR_PLATFORM_INFO:
+	case KVM_CAP_EXCEPTION_PAYLOAD:
 		r = 1;
 		r = 1;
 		break;
 		break;
 	case KVM_CAP_SYNC_REGS:
 	case KVM_CAP_SYNC_REGS:
@@ -3362,19 +3448,33 @@ static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
 					       struct kvm_vcpu_events *events)
 					       struct kvm_vcpu_events *events)
 {
 {
 	process_nmi(vcpu);
 	process_nmi(vcpu);
+
 	/*
 	/*
-	 * FIXME: pass injected and pending separately.  This is only
-	 * needed for nested virtualization, whose state cannot be
-	 * migrated yet.  For now we can combine them.
+	 * The API doesn't provide the instruction length for software
+	 * exceptions, so don't report them. As long as the guest RIP
+	 * isn't advanced, we should expect to encounter the exception
+	 * again.
 	 */
 	 */
-	events->exception.injected =
-		(vcpu->arch.exception.pending ||
-		 vcpu->arch.exception.injected) &&
-		!kvm_exception_is_soft(vcpu->arch.exception.nr);
+	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
+		events->exception.injected = 0;
+		events->exception.pending = 0;
+	} else {
+		events->exception.injected = vcpu->arch.exception.injected;
+		events->exception.pending = vcpu->arch.exception.pending;
+		/*
+		 * For ABI compatibility, deliberately conflate
+		 * pending and injected exceptions when
+		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
+		 */
+		if (!vcpu->kvm->arch.exception_payload_enabled)
+			events->exception.injected |=
+				vcpu->arch.exception.pending;
+	}
 	events->exception.nr = vcpu->arch.exception.nr;
 	events->exception.nr = vcpu->arch.exception.nr;
 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
-	events->exception.pad = 0;
 	events->exception.error_code = vcpu->arch.exception.error_code;
 	events->exception.error_code = vcpu->arch.exception.error_code;
+	events->exception_has_payload = vcpu->arch.exception.has_payload;
+	events->exception_payload = vcpu->arch.exception.payload;
 
 
 	events->interrupt.injected =
 	events->interrupt.injected =
 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
@@ -3398,6 +3498,9 @@ static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
 			 | KVM_VCPUEVENT_VALID_SHADOW
 			 | KVM_VCPUEVENT_VALID_SHADOW
 			 | KVM_VCPUEVENT_VALID_SMM);
 			 | KVM_VCPUEVENT_VALID_SMM);
+	if (vcpu->kvm->arch.exception_payload_enabled)
+		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
+
 	memset(&events->reserved, 0, sizeof(events->reserved));
 	memset(&events->reserved, 0, sizeof(events->reserved));
 }
 }
 
 
@@ -3409,12 +3512,24 @@ static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
 			      | KVM_VCPUEVENT_VALID_SHADOW
 			      | KVM_VCPUEVENT_VALID_SHADOW
-			      | KVM_VCPUEVENT_VALID_SMM))
+			      | KVM_VCPUEVENT_VALID_SMM
+			      | KVM_VCPUEVENT_VALID_PAYLOAD))
 		return -EINVAL;
 		return -EINVAL;
 
 
-	if (events->exception.injected &&
-	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
-	     is_guest_mode(vcpu)))
+	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
+		if (!vcpu->kvm->arch.exception_payload_enabled)
+			return -EINVAL;
+		if (events->exception.pending)
+			events->exception.injected = 0;
+		else
+			events->exception_has_payload = 0;
+	} else {
+		events->exception.pending = 0;
+		events->exception_has_payload = 0;
+	}
+
+	if ((events->exception.injected || events->exception.pending) &&
+	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
 		return -EINVAL;
 		return -EINVAL;
 
 
 	/* INITs are latched while in SMM */
 	/* INITs are latched while in SMM */
@@ -3424,11 +3539,13 @@ static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
 		return -EINVAL;
 		return -EINVAL;
 
 
 	process_nmi(vcpu);
 	process_nmi(vcpu);
-	vcpu->arch.exception.injected = false;
-	vcpu->arch.exception.pending = events->exception.injected;
+	vcpu->arch.exception.injected = events->exception.injected;
+	vcpu->arch.exception.pending = events->exception.pending;
 	vcpu->arch.exception.nr = events->exception.nr;
 	vcpu->arch.exception.nr = events->exception.nr;
 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
 	vcpu->arch.exception.error_code = events->exception.error_code;
 	vcpu->arch.exception.error_code = events->exception.error_code;
+	vcpu->arch.exception.has_payload = events->exception_has_payload;
+	vcpu->arch.exception.payload = events->exception_payload;
 
 
 	vcpu->arch.interrupt.injected = events->interrupt.injected;
 	vcpu->arch.interrupt.injected = events->interrupt.injected;
 	vcpu->arch.interrupt.nr = events->interrupt.nr;
 	vcpu->arch.interrupt.nr = events->interrupt.nr;
@@ -3694,6 +3811,10 @@ static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 				     struct kvm_enable_cap *cap)
 				     struct kvm_enable_cap *cap)
 {
 {
+	int r;
+	uint16_t vmcs_version;
+	void __user *user_ptr;
+
 	if (cap->flags)
 	if (cap->flags)
 		return -EINVAL;
 		return -EINVAL;
 
 
@@ -3706,6 +3827,16 @@ static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 			return -EINVAL;
 			return -EINVAL;
 		return kvm_hv_activate_synic(vcpu, cap->cap ==
 		return kvm_hv_activate_synic(vcpu, cap->cap ==
 					     KVM_CAP_HYPERV_SYNIC2);
 					     KVM_CAP_HYPERV_SYNIC2);
+	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
+		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
+		if (!r) {
+			user_ptr = (void __user *)(uintptr_t)cap->args[0];
+			if (copy_to_user(user_ptr, &vmcs_version,
+					 sizeof(vmcs_version)))
+				r = -EFAULT;
+		}
+		return r;
+
 	default:
 	default:
 		return -EINVAL;
 		return -EINVAL;
 	}
 	}
@@ -4047,11 +4178,13 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
 			break;
 			break;
 
 
 		if (kvm_state.flags &
 		if (kvm_state.flags &
-		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
+		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
+		      | KVM_STATE_NESTED_EVMCS))
 			break;
 			break;
 
 
 		/* nested_run_pending implies guest_mode.  */
 		/* nested_run_pending implies guest_mode.  */
-		if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
+		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
+		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
 			break;
 			break;
 
 
 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
@@ -4363,6 +4496,10 @@ split_irqchip_unlock:
 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
 		r = 0;
 		r = 0;
 		break;
 		break;
+	case KVM_CAP_EXCEPTION_PAYLOAD:
+		kvm->arch.exception_payload_enabled = cap->args[0];
+		r = 0;
+		break;
 	default:
 	default:
 		r = -EINVAL;
 		r = -EINVAL;
 		break;
 		break;
@@ -4803,7 +4940,7 @@ gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
 
 
 	/* NPT walks are always user-walks */
 	/* NPT walks are always user-walks */
 	access |= PFERR_USER_MASK;
 	access |= PFERR_USER_MASK;
-	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
+	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
 
 
 	return t_gpa;
 	return t_gpa;
 }
 }
@@ -5889,7 +6026,7 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
 		return false;
 		return false;
 
 
-	if (!vcpu->arch.mmu.direct_map) {
+	if (!vcpu->arch.mmu->direct_map) {
 		/*
 		/*
 		 * Write permission should be allowed since only
 		 * Write permission should be allowed since only
 		 * write access need to be emulated.
 		 * write access need to be emulated.
@@ -5922,7 +6059,7 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
 	kvm_release_pfn_clean(pfn);
 	kvm_release_pfn_clean(pfn);
 
 
 	/* The instructions are well-emulated on direct mmu. */
 	/* The instructions are well-emulated on direct mmu. */
-	if (vcpu->arch.mmu.direct_map) {
+	if (vcpu->arch.mmu->direct_map) {
 		unsigned int indirect_shadow_pages;
 		unsigned int indirect_shadow_pages;
 
 
 		spin_lock(&vcpu->kvm->mmu_lock);
 		spin_lock(&vcpu->kvm->mmu_lock);
@@ -5989,7 +6126,7 @@ static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
 	vcpu->arch.last_retry_eip = ctxt->eip;
 	vcpu->arch.last_retry_eip = ctxt->eip;
 	vcpu->arch.last_retry_addr = cr2;
 	vcpu->arch.last_retry_addr = cr2;
 
 
-	if (!vcpu->arch.mmu.direct_map)
+	if (!vcpu->arch.mmu->direct_map)
 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
 
 
 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
@@ -6049,14 +6186,7 @@ static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
 		*r = EMULATE_USER_EXIT;
 		*r = EMULATE_USER_EXIT;
 	} else {
 	} else {
-		/*
-		 * "Certain debug exceptions may clear bit 0-3.  The
-		 * remaining contents of the DR6 register are never
-		 * cleared by the processor".
-		 */
-		vcpu->arch.dr6 &= ~15;
-		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
-		kvm_queue_exception(vcpu, DB_VECTOR);
+		kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
 	}
 	}
 }
 }
 
 
@@ -6995,10 +7125,22 @@ static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
 					     X86_EFLAGS_RF);
 					     X86_EFLAGS_RF);
 
 
-		if (vcpu->arch.exception.nr == DB_VECTOR &&
-		    (vcpu->arch.dr7 & DR7_GD)) {
-			vcpu->arch.dr7 &= ~DR7_GD;
-			kvm_update_dr7(vcpu);
+		if (vcpu->arch.exception.nr == DB_VECTOR) {
+			/*
+			 * This code assumes that nSVM doesn't use
+			 * check_nested_events(). If it does, the
+			 * DR6/DR7 changes should happen before L1
+			 * gets a #VMEXIT for an intercepted #DB in
+			 * L2.  (Under VMX, on the other hand, the
+			 * DR6/DR7 changes should not happen in the
+			 * event of a VM-exit to L1 for an intercepted
+			 * #DB in L2.)
+			 */
+			kvm_deliver_exception_payload(vcpu);
+			if (vcpu->arch.dr7 & DR7_GD) {
+				vcpu->arch.dr7 &= ~DR7_GD;
+				kvm_update_dr7(vcpu);
+			}
 		}
 		}
 
 
 		kvm_x86_ops->queue_exception(vcpu);
 		kvm_x86_ops->queue_exception(vcpu);
@@ -8478,7 +8620,7 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 	kvm_vcpu_mtrr_init(vcpu);
 	kvm_vcpu_mtrr_init(vcpu);
 	vcpu_load(vcpu);
 	vcpu_load(vcpu);
 	kvm_vcpu_reset(vcpu, false);
 	kvm_vcpu_reset(vcpu, false);
-	kvm_mmu_setup(vcpu);
+	kvm_init_mmu(vcpu, false);
 	vcpu_put(vcpu);
 	vcpu_put(vcpu);
 	return 0;
 	return 0;
 }
 }
@@ -9327,7 +9469,7 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
 {
 {
 	int r;
 	int r;
 
 
-	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
+	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
 	      work->wakeup_all)
 	      work->wakeup_all)
 		return;
 		return;
 
 
@@ -9335,11 +9477,11 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
 	if (unlikely(r))
 	if (unlikely(r))
 		return;
 		return;
 
 
-	if (!vcpu->arch.mmu.direct_map &&
-	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
+	if (!vcpu->arch.mmu->direct_map &&
+	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
 		return;
 		return;
 
 
-	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
+	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
 }
 }
 
 
 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
@@ -9463,6 +9605,8 @@ void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
 			vcpu->arch.exception.nr = 0;
 			vcpu->arch.exception.nr = 0;
 			vcpu->arch.exception.has_error_code = false;
 			vcpu->arch.exception.has_error_code = false;
 			vcpu->arch.exception.error_code = 0;
 			vcpu->arch.exception.error_code = 0;
+			vcpu->arch.exception.has_payload = false;
+			vcpu->arch.exception.payload = 0;
 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
 			fault.vector = PF_VECTOR;
 			fault.vector = PF_VECTOR;
 			fault.error_code_valid = true;
 			fault.error_code_valid = true;

+ 2 - 0
arch/x86/kvm/x86.h

@@ -266,6 +266,8 @@ int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
 
 
 int handle_ud(struct kvm_vcpu *vcpu);
 int handle_ud(struct kvm_vcpu *vcpu);
 
 
+void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu);
+
 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);

+ 8 - 0
drivers/iommu/Kconfig

@@ -372,6 +372,14 @@ config S390_CCW_IOMMU
 	  Enables bits of IOMMU API required by VFIO. The iommu_ops
 	  Enables bits of IOMMU API required by VFIO. The iommu_ops
 	  is not implemented as it is not necessary for VFIO.
 	  is not implemented as it is not necessary for VFIO.
 
 
+config S390_AP_IOMMU
+	bool "S390 AP IOMMU Support"
+	depends on S390 && ZCRYPT
+	select IOMMU_API
+	help
+	  Enables bits of IOMMU API required by VFIO. The iommu_ops
+	  is not implemented as it is not necessary for VFIO.
+
 config MTK_IOMMU
 config MTK_IOMMU
 	bool "MTK IOMMU Support"
 	bool "MTK IOMMU Support"
 	depends on ARM || ARM64
 	depends on ARM || ARM64

+ 4 - 0
drivers/s390/crypto/Makefile

@@ -15,3 +15,7 @@ obj-$(CONFIG_ZCRYPT) += zcrypt_cex2c.o zcrypt_cex2a.o zcrypt_cex4.o
 # pkey kernel module
 # pkey kernel module
 pkey-objs := pkey_api.o
 pkey-objs := pkey_api.o
 obj-$(CONFIG_PKEY) += pkey.o
 obj-$(CONFIG_PKEY) += pkey.o
+
+# adjunct processor matrix
+vfio_ap-objs := vfio_ap_drv.o vfio_ap_ops.o
+obj-$(CONFIG_VFIO_AP) += vfio_ap.o

+ 157 - 0
drivers/s390/crypto/vfio_ap_drv.c

@@ -0,0 +1,157 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * VFIO based AP device driver
+ *
+ * Copyright IBM Corp. 2018
+ *
+ * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
+ */
+
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include "vfio_ap_private.h"
+
+#define VFIO_AP_ROOT_NAME "vfio_ap"
+#define VFIO_AP_DEV_TYPE_NAME "ap_matrix"
+#define VFIO_AP_DEV_NAME "matrix"
+
+MODULE_AUTHOR("IBM Corporation");
+MODULE_DESCRIPTION("VFIO AP device driver, Copyright IBM Corp. 2018");
+MODULE_LICENSE("GPL v2");
+
+static struct ap_driver vfio_ap_drv;
+
+static struct device_type vfio_ap_dev_type = {
+	.name = VFIO_AP_DEV_TYPE_NAME,
+};
+
+struct ap_matrix_dev *matrix_dev;
+
+/* Only type 10 adapters (CEX4 and later) are supported
+ * by the AP matrix device driver
+ */
+static struct ap_device_id ap_queue_ids[] = {
+	{ .dev_type = AP_DEVICE_TYPE_CEX4,
+	  .match_flags = AP_DEVICE_ID_MATCH_QUEUE_TYPE },
+	{ .dev_type = AP_DEVICE_TYPE_CEX5,
+	  .match_flags = AP_DEVICE_ID_MATCH_QUEUE_TYPE },
+	{ .dev_type = AP_DEVICE_TYPE_CEX6,
+	  .match_flags = AP_DEVICE_ID_MATCH_QUEUE_TYPE },
+	{ /* end of sibling */ },
+};
+
+MODULE_DEVICE_TABLE(vfio_ap, ap_queue_ids);
+
+static int vfio_ap_queue_dev_probe(struct ap_device *apdev)
+{
+	return 0;
+}
+
+static void vfio_ap_queue_dev_remove(struct ap_device *apdev)
+{
+	/* Nothing to do yet */
+}
+
+static void vfio_ap_matrix_dev_release(struct device *dev)
+{
+	struct ap_matrix_dev *matrix_dev = dev_get_drvdata(dev);
+
+	kfree(matrix_dev);
+}
+
+static int vfio_ap_matrix_dev_create(void)
+{
+	int ret;
+	struct device *root_device;
+
+	root_device = root_device_register(VFIO_AP_ROOT_NAME);
+	if (IS_ERR(root_device))
+		return PTR_ERR(root_device);
+
+	matrix_dev = kzalloc(sizeof(*matrix_dev), GFP_KERNEL);
+	if (!matrix_dev) {
+		ret = -ENOMEM;
+		goto matrix_alloc_err;
+	}
+
+	/* Fill in config info via PQAP(QCI), if available */
+	if (test_facility(12)) {
+		ret = ap_qci(&matrix_dev->info);
+		if (ret)
+			goto matrix_alloc_err;
+	}
+
+	mutex_init(&matrix_dev->lock);
+	INIT_LIST_HEAD(&matrix_dev->mdev_list);
+
+	matrix_dev->device.type = &vfio_ap_dev_type;
+	dev_set_name(&matrix_dev->device, "%s", VFIO_AP_DEV_NAME);
+	matrix_dev->device.parent = root_device;
+	matrix_dev->device.release = vfio_ap_matrix_dev_release;
+	matrix_dev->device.driver = &vfio_ap_drv.driver;
+
+	ret = device_register(&matrix_dev->device);
+	if (ret)
+		goto matrix_reg_err;
+
+	return 0;
+
+matrix_reg_err:
+	put_device(&matrix_dev->device);
+matrix_alloc_err:
+	root_device_unregister(root_device);
+
+	return ret;
+}
+
+static void vfio_ap_matrix_dev_destroy(void)
+{
+	device_unregister(&matrix_dev->device);
+	root_device_unregister(matrix_dev->device.parent);
+}
+
+static int __init vfio_ap_init(void)
+{
+	int ret;
+
+	/* If there are no AP instructions, there is nothing to pass through. */
+	if (!ap_instructions_available())
+		return -ENODEV;
+
+	ret = vfio_ap_matrix_dev_create();
+	if (ret)
+		return ret;
+
+	memset(&vfio_ap_drv, 0, sizeof(vfio_ap_drv));
+	vfio_ap_drv.probe = vfio_ap_queue_dev_probe;
+	vfio_ap_drv.remove = vfio_ap_queue_dev_remove;
+	vfio_ap_drv.ids = ap_queue_ids;
+
+	ret = ap_driver_register(&vfio_ap_drv, THIS_MODULE, VFIO_AP_DRV_NAME);
+	if (ret) {
+		vfio_ap_matrix_dev_destroy();
+		return ret;
+	}
+
+	ret = vfio_ap_mdev_register();
+	if (ret) {
+		ap_driver_unregister(&vfio_ap_drv);
+		vfio_ap_matrix_dev_destroy();
+
+		return ret;
+	}
+
+	return 0;
+}
+
+static void __exit vfio_ap_exit(void)
+{
+	vfio_ap_mdev_unregister();
+	ap_driver_unregister(&vfio_ap_drv);
+	vfio_ap_matrix_dev_destroy();
+}
+
+module_init(vfio_ap_init);
+module_exit(vfio_ap_exit);

+ 939 - 0
drivers/s390/crypto/vfio_ap_ops.c

@@ -0,0 +1,939 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Adjunct processor matrix VFIO device driver callbacks.
+ *
+ * Copyright IBM Corp. 2018
+ *
+ * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
+ *	      Halil Pasic <pasic@linux.ibm.com>
+ *	      Pierre Morel <pmorel@linux.ibm.com>
+ */
+#include <linux/string.h>
+#include <linux/vfio.h>
+#include <linux/device.h>
+#include <linux/list.h>
+#include <linux/ctype.h>
+#include <linux/bitops.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <asm/kvm.h>
+#include <asm/zcrypt.h>
+
+#include "vfio_ap_private.h"
+
+#define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
+#define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
+
+static void vfio_ap_matrix_init(struct ap_config_info *info,
+				struct ap_matrix *matrix)
+{
+	matrix->apm_max = info->apxa ? info->Na : 63;
+	matrix->aqm_max = info->apxa ? info->Nd : 15;
+	matrix->adm_max = info->apxa ? info->Nd : 15;
+}
+
+static int vfio_ap_mdev_create(struct kobject *kobj, struct mdev_device *mdev)
+{
+	struct ap_matrix_mdev *matrix_mdev;
+
+	if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
+		return -EPERM;
+
+	matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
+	if (!matrix_mdev) {
+		atomic_inc(&matrix_dev->available_instances);
+		return -ENOMEM;
+	}
+
+	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
+	mdev_set_drvdata(mdev, matrix_mdev);
+	mutex_lock(&matrix_dev->lock);
+	list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
+	mutex_unlock(&matrix_dev->lock);
+
+	return 0;
+}
+
+static int vfio_ap_mdev_remove(struct mdev_device *mdev)
+{
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+
+	if (matrix_mdev->kvm)
+		return -EBUSY;
+
+	mutex_lock(&matrix_dev->lock);
+	list_del(&matrix_mdev->node);
+	mutex_unlock(&matrix_dev->lock);
+
+	kfree(matrix_mdev);
+	mdev_set_drvdata(mdev, NULL);
+	atomic_inc(&matrix_dev->available_instances);
+
+	return 0;
+}
+
+static ssize_t name_show(struct kobject *kobj, struct device *dev, char *buf)
+{
+	return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
+}
+
+static MDEV_TYPE_ATTR_RO(name);
+
+static ssize_t available_instances_show(struct kobject *kobj,
+					struct device *dev, char *buf)
+{
+	return sprintf(buf, "%d\n",
+		       atomic_read(&matrix_dev->available_instances));
+}
+
+static MDEV_TYPE_ATTR_RO(available_instances);
+
+static ssize_t device_api_show(struct kobject *kobj, struct device *dev,
+			       char *buf)
+{
+	return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
+}
+
+static MDEV_TYPE_ATTR_RO(device_api);
+
+static struct attribute *vfio_ap_mdev_type_attrs[] = {
+	&mdev_type_attr_name.attr,
+	&mdev_type_attr_device_api.attr,
+	&mdev_type_attr_available_instances.attr,
+	NULL,
+};
+
+static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
+	.name = VFIO_AP_MDEV_TYPE_HWVIRT,
+	.attrs = vfio_ap_mdev_type_attrs,
+};
+
+static struct attribute_group *vfio_ap_mdev_type_groups[] = {
+	&vfio_ap_mdev_hwvirt_type_group,
+	NULL,
+};
+
+struct vfio_ap_queue_reserved {
+	unsigned long *apid;
+	unsigned long *apqi;
+	bool reserved;
+};
+
+/**
+ * vfio_ap_has_queue
+ *
+ * @dev: an AP queue device
+ * @data: a struct vfio_ap_queue_reserved reference
+ *
+ * Flags whether the AP queue device (@dev) has a queue ID containing the APQN,
+ * apid or apqi specified in @data:
+ *
+ * - If @data contains both an apid and apqi value, then @data will be flagged
+ *   as reserved if the APID and APQI fields for the AP queue device matches
+ *
+ * - If @data contains only an apid value, @data will be flagged as
+ *   reserved if the APID field in the AP queue device matches
+ *
+ * - If @data contains only an apqi value, @data will be flagged as
+ *   reserved if the APQI field in the AP queue device matches
+ *
+ * Returns 0 to indicate the input to function succeeded. Returns -EINVAL if
+ * @data does not contain either an apid or apqi.
+ */
+static int vfio_ap_has_queue(struct device *dev, void *data)
+{
+	struct vfio_ap_queue_reserved *qres = data;
+	struct ap_queue *ap_queue = to_ap_queue(dev);
+	ap_qid_t qid;
+	unsigned long id;
+
+	if (qres->apid && qres->apqi) {
+		qid = AP_MKQID(*qres->apid, *qres->apqi);
+		if (qid == ap_queue->qid)
+			qres->reserved = true;
+	} else if (qres->apid && !qres->apqi) {
+		id = AP_QID_CARD(ap_queue->qid);
+		if (id == *qres->apid)
+			qres->reserved = true;
+	} else if (!qres->apid && qres->apqi) {
+		id = AP_QID_QUEUE(ap_queue->qid);
+		if (id == *qres->apqi)
+			qres->reserved = true;
+	} else {
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/**
+ * vfio_ap_verify_queue_reserved
+ *
+ * @matrix_dev: a mediated matrix device
+ * @apid: an AP adapter ID
+ * @apqi: an AP queue index
+ *
+ * Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device
+ * driver according to the following rules:
+ *
+ * - If both @apid and @apqi are not NULL, then there must be an AP queue
+ *   device bound to the vfio_ap driver with the APQN identified by @apid and
+ *   @apqi
+ *
+ * - If only @apid is not NULL, then there must be an AP queue device bound
+ *   to the vfio_ap driver with an APQN containing @apid
+ *
+ * - If only @apqi is not NULL, then there must be an AP queue device bound
+ *   to the vfio_ap driver with an APQN containing @apqi
+ *
+ * Returns 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL.
+ */
+static int vfio_ap_verify_queue_reserved(unsigned long *apid,
+					 unsigned long *apqi)
+{
+	int ret;
+	struct vfio_ap_queue_reserved qres;
+
+	qres.apid = apid;
+	qres.apqi = apqi;
+	qres.reserved = false;
+
+	ret = driver_for_each_device(matrix_dev->device.driver, NULL, &qres,
+				     vfio_ap_has_queue);
+	if (ret)
+		return ret;
+
+	if (qres.reserved)
+		return 0;
+
+	return -EADDRNOTAVAIL;
+}
+
+static int
+vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev,
+					     unsigned long apid)
+{
+	int ret;
+	unsigned long apqi;
+	unsigned long nbits = matrix_mdev->matrix.aqm_max + 1;
+
+	if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits)
+		return vfio_ap_verify_queue_reserved(&apid, NULL);
+
+	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) {
+		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+/**
+ * vfio_ap_mdev_verify_no_sharing
+ *
+ * Verifies that the APQNs derived from the cross product of the AP adapter IDs
+ * and AP queue indexes comprising the AP matrix are not configured for another
+ * mediated device. AP queue sharing is not allowed.
+ *
+ * @matrix_mdev: the mediated matrix device
+ *
+ * Returns 0 if the APQNs are not shared, otherwise; returns -EADDRINUSE.
+ */
+static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev)
+{
+	struct ap_matrix_mdev *lstdev;
+	DECLARE_BITMAP(apm, AP_DEVICES);
+	DECLARE_BITMAP(aqm, AP_DOMAINS);
+
+	list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) {
+		if (matrix_mdev == lstdev)
+			continue;
+
+		memset(apm, 0, sizeof(apm));
+		memset(aqm, 0, sizeof(aqm));
+
+		/*
+		 * We work on full longs, as we can only exclude the leftover
+		 * bits in non-inverse order. The leftover is all zeros.
+		 */
+		if (!bitmap_and(apm, matrix_mdev->matrix.apm,
+				lstdev->matrix.apm, AP_DEVICES))
+			continue;
+
+		if (!bitmap_and(aqm, matrix_mdev->matrix.aqm,
+				lstdev->matrix.aqm, AP_DOMAINS))
+			continue;
+
+		return -EADDRINUSE;
+	}
+
+	return 0;
+}
+
+/**
+ * assign_adapter_store
+ *
+ * @dev:	the matrix device
+ * @attr:	the mediated matrix device's assign_adapter attribute
+ * @buf:	a buffer containing the AP adapter number (APID) to
+ *		be assigned
+ * @count:	the number of bytes in @buf
+ *
+ * Parses the APID from @buf and sets the corresponding bit in the mediated
+ * matrix device's APM.
+ *
+ * Returns the number of bytes processed if the APID is valid; otherwise,
+ * returns one of the following errors:
+ *
+ *	1. -EINVAL
+ *	   The APID is not a valid number
+ *
+ *	2. -ENODEV
+ *	   The APID exceeds the maximum value configured for the system
+ *
+ *	3. -EADDRNOTAVAIL
+ *	   An APQN derived from the cross product of the APID being assigned
+ *	   and the APQIs previously assigned is not bound to the vfio_ap device
+ *	   driver; or, if no APQIs have yet been assigned, the APID is not
+ *	   contained in an APQN bound to the vfio_ap device driver.
+ *
+ *	4. -EADDRINUSE
+ *	   An APQN derived from the cross product of the APID being assigned
+ *	   and the APQIs previously assigned is being used by another mediated
+ *	   matrix device
+ */
+static ssize_t assign_adapter_store(struct device *dev,
+				    struct device_attribute *attr,
+				    const char *buf, size_t count)
+{
+	int ret;
+	unsigned long apid;
+	struct mdev_device *mdev = mdev_from_dev(dev);
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+
+	/* If the guest is running, disallow assignment of adapter */
+	if (matrix_mdev->kvm)
+		return -EBUSY;
+
+	ret = kstrtoul(buf, 0, &apid);
+	if (ret)
+		return ret;
+
+	if (apid > matrix_mdev->matrix.apm_max)
+		return -ENODEV;
+
+	/*
+	 * Set the bit in the AP mask (APM) corresponding to the AP adapter
+	 * number (APID). The bits in the mask, from most significant to least
+	 * significant bit, correspond to APIDs 0-255.
+	 */
+	mutex_lock(&matrix_dev->lock);
+
+	ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid);
+	if (ret)
+		goto done;
+
+	set_bit_inv(apid, matrix_mdev->matrix.apm);
+
+	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
+	if (ret)
+		goto share_err;
+
+	ret = count;
+	goto done;
+
+share_err:
+	clear_bit_inv(apid, matrix_mdev->matrix.apm);
+done:
+	mutex_unlock(&matrix_dev->lock);
+
+	return ret;
+}
+static DEVICE_ATTR_WO(assign_adapter);
+
+/**
+ * unassign_adapter_store
+ *
+ * @dev:	the matrix device
+ * @attr:	the mediated matrix device's unassign_adapter attribute
+ * @buf:	a buffer containing the adapter number (APID) to be unassigned
+ * @count:	the number of bytes in @buf
+ *
+ * Parses the APID from @buf and clears the corresponding bit in the mediated
+ * matrix device's APM.
+ *
+ * Returns the number of bytes processed if the APID is valid; otherwise,
+ * returns one of the following errors:
+ *	-EINVAL if the APID is not a number
+ *	-ENODEV if the APID it exceeds the maximum value configured for the
+ *		system
+ */
+static ssize_t unassign_adapter_store(struct device *dev,
+				      struct device_attribute *attr,
+				      const char *buf, size_t count)
+{
+	int ret;
+	unsigned long apid;
+	struct mdev_device *mdev = mdev_from_dev(dev);
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+
+	/* If the guest is running, disallow un-assignment of adapter */
+	if (matrix_mdev->kvm)
+		return -EBUSY;
+
+	ret = kstrtoul(buf, 0, &apid);
+	if (ret)
+		return ret;
+
+	if (apid > matrix_mdev->matrix.apm_max)
+		return -ENODEV;
+
+	mutex_lock(&matrix_dev->lock);
+	clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
+	mutex_unlock(&matrix_dev->lock);
+
+	return count;
+}
+static DEVICE_ATTR_WO(unassign_adapter);
+
+static int
+vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev,
+					     unsigned long apqi)
+{
+	int ret;
+	unsigned long apid;
+	unsigned long nbits = matrix_mdev->matrix.apm_max + 1;
+
+	if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits)
+		return vfio_ap_verify_queue_reserved(NULL, &apqi);
+
+	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) {
+		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+/**
+ * assign_domain_store
+ *
+ * @dev:	the matrix device
+ * @attr:	the mediated matrix device's assign_domain attribute
+ * @buf:	a buffer containing the AP queue index (APQI) of the domain to
+ *		be assigned
+ * @count:	the number of bytes in @buf
+ *
+ * Parses the APQI from @buf and sets the corresponding bit in the mediated
+ * matrix device's AQM.
+ *
+ * Returns the number of bytes processed if the APQI is valid; otherwise returns
+ * one of the following errors:
+ *
+ *	1. -EINVAL
+ *	   The APQI is not a valid number
+ *
+ *	2. -ENODEV
+ *	   The APQI exceeds the maximum value configured for the system
+ *
+ *	3. -EADDRNOTAVAIL
+ *	   An APQN derived from the cross product of the APQI being assigned
+ *	   and the APIDs previously assigned is not bound to the vfio_ap device
+ *	   driver; or, if no APIDs have yet been assigned, the APQI is not
+ *	   contained in an APQN bound to the vfio_ap device driver.
+ *
+ *	4. -EADDRINUSE
+ *	   An APQN derived from the cross product of the APQI being assigned
+ *	   and the APIDs previously assigned is being used by another mediated
+ *	   matrix device
+ */
+static ssize_t assign_domain_store(struct device *dev,
+				   struct device_attribute *attr,
+				   const char *buf, size_t count)
+{
+	int ret;
+	unsigned long apqi;
+	struct mdev_device *mdev = mdev_from_dev(dev);
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+	unsigned long max_apqi = matrix_mdev->matrix.aqm_max;
+
+	/* If the guest is running, disallow assignment of domain */
+	if (matrix_mdev->kvm)
+		return -EBUSY;
+
+	ret = kstrtoul(buf, 0, &apqi);
+	if (ret)
+		return ret;
+	if (apqi > max_apqi)
+		return -ENODEV;
+
+	mutex_lock(&matrix_dev->lock);
+
+	ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi);
+	if (ret)
+		goto done;
+
+	set_bit_inv(apqi, matrix_mdev->matrix.aqm);
+
+	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
+	if (ret)
+		goto share_err;
+
+	ret = count;
+	goto done;
+
+share_err:
+	clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
+done:
+	mutex_unlock(&matrix_dev->lock);
+
+	return ret;
+}
+static DEVICE_ATTR_WO(assign_domain);
+
+
+/**
+ * unassign_domain_store
+ *
+ * @dev:	the matrix device
+ * @attr:	the mediated matrix device's unassign_domain attribute
+ * @buf:	a buffer containing the AP queue index (APQI) of the domain to
+ *		be unassigned
+ * @count:	the number of bytes in @buf
+ *
+ * Parses the APQI from @buf and clears the corresponding bit in the
+ * mediated matrix device's AQM.
+ *
+ * Returns the number of bytes processed if the APQI is valid; otherwise,
+ * returns one of the following errors:
+ *	-EINVAL if the APQI is not a number
+ *	-ENODEV if the APQI exceeds the maximum value configured for the system
+ */
+static ssize_t unassign_domain_store(struct device *dev,
+				     struct device_attribute *attr,
+				     const char *buf, size_t count)
+{
+	int ret;
+	unsigned long apqi;
+	struct mdev_device *mdev = mdev_from_dev(dev);
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+
+	/* If the guest is running, disallow un-assignment of domain */
+	if (matrix_mdev->kvm)
+		return -EBUSY;
+
+	ret = kstrtoul(buf, 0, &apqi);
+	if (ret)
+		return ret;
+
+	if (apqi > matrix_mdev->matrix.aqm_max)
+		return -ENODEV;
+
+	mutex_lock(&matrix_dev->lock);
+	clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
+	mutex_unlock(&matrix_dev->lock);
+
+	return count;
+}
+static DEVICE_ATTR_WO(unassign_domain);
+
+/**
+ * assign_control_domain_store
+ *
+ * @dev:	the matrix device
+ * @attr:	the mediated matrix device's assign_control_domain attribute
+ * @buf:	a buffer containing the domain ID to be assigned
+ * @count:	the number of bytes in @buf
+ *
+ * Parses the domain ID from @buf and sets the corresponding bit in the mediated
+ * matrix device's ADM.
+ *
+ * Returns the number of bytes processed if the domain ID is valid; otherwise,
+ * returns one of the following errors:
+ *	-EINVAL if the ID is not a number
+ *	-ENODEV if the ID exceeds the maximum value configured for the system
+ */
+static ssize_t assign_control_domain_store(struct device *dev,
+					   struct device_attribute *attr,
+					   const char *buf, size_t count)
+{
+	int ret;
+	unsigned long id;
+	struct mdev_device *mdev = mdev_from_dev(dev);
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+
+	/* If the guest is running, disallow assignment of control domain */
+	if (matrix_mdev->kvm)
+		return -EBUSY;
+
+	ret = kstrtoul(buf, 0, &id);
+	if (ret)
+		return ret;
+
+	if (id > matrix_mdev->matrix.adm_max)
+		return -ENODEV;
+
+	/* Set the bit in the ADM (bitmask) corresponding to the AP control
+	 * domain number (id). The bits in the mask, from most significant to
+	 * least significant, correspond to IDs 0 up to the one less than the
+	 * number of control domains that can be assigned.
+	 */
+	mutex_lock(&matrix_dev->lock);
+	set_bit_inv(id, matrix_mdev->matrix.adm);
+	mutex_unlock(&matrix_dev->lock);
+
+	return count;
+}
+static DEVICE_ATTR_WO(assign_control_domain);
+
+/**
+ * unassign_control_domain_store
+ *
+ * @dev:	the matrix device
+ * @attr:	the mediated matrix device's unassign_control_domain attribute
+ * @buf:	a buffer containing the domain ID to be unassigned
+ * @count:	the number of bytes in @buf
+ *
+ * Parses the domain ID from @buf and clears the corresponding bit in the
+ * mediated matrix device's ADM.
+ *
+ * Returns the number of bytes processed if the domain ID is valid; otherwise,
+ * returns one of the following errors:
+ *	-EINVAL if the ID is not a number
+ *	-ENODEV if the ID exceeds the maximum value configured for the system
+ */
+static ssize_t unassign_control_domain_store(struct device *dev,
+					     struct device_attribute *attr,
+					     const char *buf, size_t count)
+{
+	int ret;
+	unsigned long domid;
+	struct mdev_device *mdev = mdev_from_dev(dev);
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+	unsigned long max_domid =  matrix_mdev->matrix.adm_max;
+
+	/* If the guest is running, disallow un-assignment of control domain */
+	if (matrix_mdev->kvm)
+		return -EBUSY;
+
+	ret = kstrtoul(buf, 0, &domid);
+	if (ret)
+		return ret;
+	if (domid > max_domid)
+		return -ENODEV;
+
+	mutex_lock(&matrix_dev->lock);
+	clear_bit_inv(domid, matrix_mdev->matrix.adm);
+	mutex_unlock(&matrix_dev->lock);
+
+	return count;
+}
+static DEVICE_ATTR_WO(unassign_control_domain);
+
+static ssize_t control_domains_show(struct device *dev,
+				    struct device_attribute *dev_attr,
+				    char *buf)
+{
+	unsigned long id;
+	int nchars = 0;
+	int n;
+	char *bufpos = buf;
+	struct mdev_device *mdev = mdev_from_dev(dev);
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+	unsigned long max_domid = matrix_mdev->matrix.adm_max;
+
+	mutex_lock(&matrix_dev->lock);
+	for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
+		n = sprintf(bufpos, "%04lx\n", id);
+		bufpos += n;
+		nchars += n;
+	}
+	mutex_unlock(&matrix_dev->lock);
+
+	return nchars;
+}
+static DEVICE_ATTR_RO(control_domains);
+
+static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
+			   char *buf)
+{
+	struct mdev_device *mdev = mdev_from_dev(dev);
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+	char *bufpos = buf;
+	unsigned long apid;
+	unsigned long apqi;
+	unsigned long apid1;
+	unsigned long apqi1;
+	unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
+	unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
+	int nchars = 0;
+	int n;
+
+	apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
+	apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);
+
+	mutex_lock(&matrix_dev->lock);
+
+	if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
+		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
+			for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
+					     naqm_bits) {
+				n = sprintf(bufpos, "%02lx.%04lx\n", apid,
+					    apqi);
+				bufpos += n;
+				nchars += n;
+			}
+		}
+	} else if (apid1 < napm_bits) {
+		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
+			n = sprintf(bufpos, "%02lx.\n", apid);
+			bufpos += n;
+			nchars += n;
+		}
+	} else if (apqi1 < naqm_bits) {
+		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
+			n = sprintf(bufpos, ".%04lx\n", apqi);
+			bufpos += n;
+			nchars += n;
+		}
+	}
+
+	mutex_unlock(&matrix_dev->lock);
+
+	return nchars;
+}
+static DEVICE_ATTR_RO(matrix);
+
+static struct attribute *vfio_ap_mdev_attrs[] = {
+	&dev_attr_assign_adapter.attr,
+	&dev_attr_unassign_adapter.attr,
+	&dev_attr_assign_domain.attr,
+	&dev_attr_unassign_domain.attr,
+	&dev_attr_assign_control_domain.attr,
+	&dev_attr_unassign_control_domain.attr,
+	&dev_attr_control_domains.attr,
+	&dev_attr_matrix.attr,
+	NULL,
+};
+
+static struct attribute_group vfio_ap_mdev_attr_group = {
+	.attrs = vfio_ap_mdev_attrs
+};
+
+static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
+	&vfio_ap_mdev_attr_group,
+	NULL
+};
+
+/**
+ * vfio_ap_mdev_set_kvm
+ *
+ * @matrix_mdev: a mediated matrix device
+ * @kvm: reference to KVM instance
+ *
+ * Verifies no other mediated matrix device has @kvm and sets a reference to
+ * it in @matrix_mdev->kvm.
+ *
+ * Return 0 if no other mediated matrix device has a reference to @kvm;
+ * otherwise, returns an -EPERM.
+ */
+static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
+				struct kvm *kvm)
+{
+	struct ap_matrix_mdev *m;
+
+	mutex_lock(&matrix_dev->lock);
+
+	list_for_each_entry(m, &matrix_dev->mdev_list, node) {
+		if ((m != matrix_mdev) && (m->kvm == kvm)) {
+			mutex_unlock(&matrix_dev->lock);
+			return -EPERM;
+		}
+	}
+
+	matrix_mdev->kvm = kvm;
+	mutex_unlock(&matrix_dev->lock);
+
+	return 0;
+}
+
+static int vfio_ap_mdev_group_notifier(struct notifier_block *nb,
+				       unsigned long action, void *data)
+{
+	int ret;
+	struct ap_matrix_mdev *matrix_mdev;
+
+	if (action != VFIO_GROUP_NOTIFY_SET_KVM)
+		return NOTIFY_OK;
+
+	matrix_mdev = container_of(nb, struct ap_matrix_mdev, group_notifier);
+
+	if (!data) {
+		matrix_mdev->kvm = NULL;
+		return NOTIFY_OK;
+	}
+
+	ret = vfio_ap_mdev_set_kvm(matrix_mdev, data);
+	if (ret)
+		return NOTIFY_DONE;
+
+	/* If there is no CRYCB pointer, then we can't copy the masks */
+	if (!matrix_mdev->kvm->arch.crypto.crycbd)
+		return NOTIFY_DONE;
+
+	kvm_arch_crypto_set_masks(matrix_mdev->kvm, matrix_mdev->matrix.apm,
+				  matrix_mdev->matrix.aqm,
+				  matrix_mdev->matrix.adm);
+
+	return NOTIFY_OK;
+}
+
+static int vfio_ap_mdev_reset_queue(unsigned int apid, unsigned int apqi,
+				    unsigned int retry)
+{
+	struct ap_queue_status status;
+
+	do {
+		status = ap_zapq(AP_MKQID(apid, apqi));
+		switch (status.response_code) {
+		case AP_RESPONSE_NORMAL:
+			return 0;
+		case AP_RESPONSE_RESET_IN_PROGRESS:
+		case AP_RESPONSE_BUSY:
+			msleep(20);
+			break;
+		default:
+			/* things are really broken, give up */
+			return -EIO;
+		}
+	} while (retry--);
+
+	return -EBUSY;
+}
+
+static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev)
+{
+	int ret;
+	int rc = 0;
+	unsigned long apid, apqi;
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+
+	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm,
+			     matrix_mdev->matrix.apm_max + 1) {
+		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
+				     matrix_mdev->matrix.aqm_max + 1) {
+			ret = vfio_ap_mdev_reset_queue(apid, apqi, 1);
+			/*
+			 * Regardless whether a queue turns out to be busy, or
+			 * is not operational, we need to continue resetting
+			 * the remaining queues.
+			 */
+			if (ret)
+				rc = ret;
+		}
+	}
+
+	return rc;
+}
+
+static int vfio_ap_mdev_open(struct mdev_device *mdev)
+{
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+	unsigned long events;
+	int ret;
+
+
+	if (!try_module_get(THIS_MODULE))
+		return -ENODEV;
+
+	matrix_mdev->group_notifier.notifier_call = vfio_ap_mdev_group_notifier;
+	events = VFIO_GROUP_NOTIFY_SET_KVM;
+
+	ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
+				     &events, &matrix_mdev->group_notifier);
+	if (ret) {
+		module_put(THIS_MODULE);
+		return ret;
+	}
+
+	return 0;
+}
+
+static void vfio_ap_mdev_release(struct mdev_device *mdev)
+{
+	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
+
+	if (matrix_mdev->kvm)
+		kvm_arch_crypto_clear_masks(matrix_mdev->kvm);
+
+	vfio_ap_mdev_reset_queues(mdev);
+	vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
+				 &matrix_mdev->group_notifier);
+	matrix_mdev->kvm = NULL;
+	module_put(THIS_MODULE);
+}
+
+static int vfio_ap_mdev_get_device_info(unsigned long arg)
+{
+	unsigned long minsz;
+	struct vfio_device_info info;
+
+	minsz = offsetofend(struct vfio_device_info, num_irqs);
+
+	if (copy_from_user(&info, (void __user *)arg, minsz))
+		return -EFAULT;
+
+	if (info.argsz < minsz)
+		return -EINVAL;
+
+	info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
+	info.num_regions = 0;
+	info.num_irqs = 0;
+
+	return copy_to_user((void __user *)arg, &info, minsz);
+}
+
+static ssize_t vfio_ap_mdev_ioctl(struct mdev_device *mdev,
+				    unsigned int cmd, unsigned long arg)
+{
+	int ret;
+
+	switch (cmd) {
+	case VFIO_DEVICE_GET_INFO:
+		ret = vfio_ap_mdev_get_device_info(arg);
+		break;
+	case VFIO_DEVICE_RESET:
+		ret = vfio_ap_mdev_reset_queues(mdev);
+		break;
+	default:
+		ret = -EOPNOTSUPP;
+		break;
+	}
+
+	return ret;
+}
+
+static const struct mdev_parent_ops vfio_ap_matrix_ops = {
+	.owner			= THIS_MODULE,
+	.supported_type_groups	= vfio_ap_mdev_type_groups,
+	.mdev_attr_groups	= vfio_ap_mdev_attr_groups,
+	.create			= vfio_ap_mdev_create,
+	.remove			= vfio_ap_mdev_remove,
+	.open			= vfio_ap_mdev_open,
+	.release		= vfio_ap_mdev_release,
+	.ioctl			= vfio_ap_mdev_ioctl,
+};
+
+int vfio_ap_mdev_register(void)
+{
+	atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);
+
+	return mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_ops);
+}
+
+void vfio_ap_mdev_unregister(void)
+{
+	mdev_unregister_device(&matrix_dev->device);
+}

+ 88 - 0
drivers/s390/crypto/vfio_ap_private.h

@@ -0,0 +1,88 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Private data and functions for adjunct processor VFIO matrix driver.
+ *
+ * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
+ *	      Halil Pasic <pasic@linux.ibm.com>
+ *
+ * Copyright IBM Corp. 2018
+ */
+
+#ifndef _VFIO_AP_PRIVATE_H_
+#define _VFIO_AP_PRIVATE_H_
+
+#include <linux/types.h>
+#include <linux/device.h>
+#include <linux/mdev.h>
+#include <linux/delay.h>
+#include <linux/mutex.h>
+
+#include "ap_bus.h"
+
+#define VFIO_AP_MODULE_NAME "vfio_ap"
+#define VFIO_AP_DRV_NAME "vfio_ap"
+
+/**
+ * ap_matrix_dev - the AP matrix device structure
+ * @device:	generic device structure associated with the AP matrix device
+ * @available_instances: number of mediated matrix devices that can be created
+ * @info:	the struct containing the output from the PQAP(QCI) instruction
+ * mdev_list:	the list of mediated matrix devices created
+ * lock:	mutex for locking the AP matrix device. This lock will be
+ *		taken every time we fiddle with state managed by the vfio_ap
+ *		driver, be it using @mdev_list or writing the state of a
+ *		single ap_matrix_mdev device. It's quite coarse but we don't
+ *		expect much contention.
+ */
+struct ap_matrix_dev {
+	struct device device;
+	atomic_t available_instances;
+	struct ap_config_info info;
+	struct list_head mdev_list;
+	struct mutex lock;
+};
+
+extern struct ap_matrix_dev *matrix_dev;
+
+/**
+ * The AP matrix is comprised of three bit masks identifying the adapters,
+ * queues (domains) and control domains that belong to an AP matrix. The bits i
+ * each mask, from least significant to most significant bit, correspond to IDs
+ * 0 to 255. When a bit is set, the corresponding ID belongs to the matrix.
+ *
+ * @apm_max: max adapter number in @apm
+ * @apm identifies the AP adapters in the matrix
+ * @aqm_max: max domain number in @aqm
+ * @aqm identifies the AP queues (domains) in the matrix
+ * @adm_max: max domain number in @adm
+ * @adm identifies the AP control domains in the matrix
+ */
+struct ap_matrix {
+	unsigned long apm_max;
+	DECLARE_BITMAP(apm, 256);
+	unsigned long aqm_max;
+	DECLARE_BITMAP(aqm, 256);
+	unsigned long adm_max;
+	DECLARE_BITMAP(adm, 256);
+};
+
+/**
+ * struct ap_matrix_mdev - the mediated matrix device structure
+ * @list:	allows the ap_matrix_mdev struct to be added to a list
+ * @matrix:	the adapters, usage domains and control domains assigned to the
+ *		mediated matrix device.
+ * @group_notifier: notifier block used for specifying callback function for
+ *		    handling the VFIO_GROUP_NOTIFY_SET_KVM event
+ * @kvm:	the struct holding guest's state
+ */
+struct ap_matrix_mdev {
+	struct list_head node;
+	struct ap_matrix matrix;
+	struct notifier_block group_notifier;
+	struct kvm *kvm;
+};
+
+extern int vfio_ap_mdev_register(void);
+extern void vfio_ap_mdev_unregister(void);
+
+#endif /* _VFIO_AP_PRIVATE_H_ */

Some files were not shown because too many files changed in this diff