intel_dpll_mgr.c 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. /**
  25. * DOC: Display PLLs
  26. *
  27. * Display PLLs used for driving outputs vary by platform. While some have
  28. * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
  29. * from a pool. In the latter scenario, it is possible that multiple pipes
  30. * share a PLL if their configurations match.
  31. *
  32. * This file provides an abstraction over display PLLs. The function
  33. * intel_shared_dpll_init() initializes the PLLs for the given platform. The
  34. * users of a PLL are tracked and that tracking is integrated with the atomic
  35. * modest interface. During an atomic operation, a PLL can be requested for a
  36. * given CRTC and encoder configuration by calling intel_get_shared_dpll() and
  37. * a previously used PLL can be released with intel_release_shared_dpll().
  38. * Changes to the users are first staged in the atomic state, and then made
  39. * effective by calling intel_shared_dpll_swap_state() during the atomic
  40. * commit phase.
  41. */
  42. static void
  43. intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
  44. struct intel_shared_dpll_state *shared_dpll)
  45. {
  46. enum intel_dpll_id i;
  47. /* Copy shared dpll state */
  48. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  49. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  50. shared_dpll[i] = pll->state;
  51. }
  52. }
  53. static struct intel_shared_dpll_state *
  54. intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
  55. {
  56. struct intel_atomic_state *state = to_intel_atomic_state(s);
  57. WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));
  58. if (!state->dpll_set) {
  59. state->dpll_set = true;
  60. intel_atomic_duplicate_dpll_state(to_i915(s->dev),
  61. state->shared_dpll);
  62. }
  63. return state->shared_dpll;
  64. }
  65. /**
  66. * intel_get_shared_dpll_by_id - get a DPLL given its id
  67. * @dev_priv: i915 device instance
  68. * @id: pll id
  69. *
  70. * Returns:
  71. * A pointer to the DPLL with @id
  72. */
  73. struct intel_shared_dpll *
  74. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  75. enum intel_dpll_id id)
  76. {
  77. return &dev_priv->shared_dplls[id];
  78. }
  79. /**
  80. * intel_get_shared_dpll_id - get the id of a DPLL
  81. * @dev_priv: i915 device instance
  82. * @pll: the DPLL
  83. *
  84. * Returns:
  85. * The id of @pll
  86. */
  87. enum intel_dpll_id
  88. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  89. struct intel_shared_dpll *pll)
  90. {
  91. if (WARN_ON(pll < dev_priv->shared_dplls||
  92. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  93. return -1;
  94. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  95. }
  96. /* For ILK+ */
  97. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  98. struct intel_shared_dpll *pll,
  99. bool state)
  100. {
  101. bool cur_state;
  102. struct intel_dpll_hw_state hw_state;
  103. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  104. return;
  105. cur_state = pll->info->funcs->get_hw_state(dev_priv, pll, &hw_state);
  106. I915_STATE_WARN(cur_state != state,
  107. "%s assertion failure (expected %s, current %s)\n",
  108. pll->info->name, onoff(state), onoff(cur_state));
  109. }
  110. /**
  111. * intel_prepare_shared_dpll - call a dpll's prepare hook
  112. * @crtc: CRTC which has a shared dpll
  113. *
  114. * This calls the PLL's prepare hook if it has one and if the PLL is not
  115. * already enabled. The prepare hook is platform specific.
  116. */
  117. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  118. {
  119. struct drm_device *dev = crtc->base.dev;
  120. struct drm_i915_private *dev_priv = to_i915(dev);
  121. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  122. if (WARN_ON(pll == NULL))
  123. return;
  124. mutex_lock(&dev_priv->dpll_lock);
  125. WARN_ON(!pll->state.crtc_mask);
  126. if (!pll->active_mask) {
  127. DRM_DEBUG_DRIVER("setting up %s\n", pll->info->name);
  128. WARN_ON(pll->on);
  129. assert_shared_dpll_disabled(dev_priv, pll);
  130. pll->info->funcs->prepare(dev_priv, pll);
  131. }
  132. mutex_unlock(&dev_priv->dpll_lock);
  133. }
  134. /**
  135. * intel_enable_shared_dpll - enable a CRTC's shared DPLL
  136. * @crtc: CRTC which has a shared DPLL
  137. *
  138. * Enable the shared DPLL used by @crtc.
  139. */
  140. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  141. {
  142. struct drm_device *dev = crtc->base.dev;
  143. struct drm_i915_private *dev_priv = to_i915(dev);
  144. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  145. unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
  146. unsigned int old_mask;
  147. if (WARN_ON(pll == NULL))
  148. return;
  149. mutex_lock(&dev_priv->dpll_lock);
  150. old_mask = pll->active_mask;
  151. if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
  152. WARN_ON(pll->active_mask & crtc_mask))
  153. goto out;
  154. pll->active_mask |= crtc_mask;
  155. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  156. pll->info->name, pll->active_mask, pll->on,
  157. crtc->base.base.id);
  158. if (old_mask) {
  159. WARN_ON(!pll->on);
  160. assert_shared_dpll_enabled(dev_priv, pll);
  161. goto out;
  162. }
  163. WARN_ON(pll->on);
  164. DRM_DEBUG_KMS("enabling %s\n", pll->info->name);
  165. pll->info->funcs->enable(dev_priv, pll);
  166. pll->on = true;
  167. out:
  168. mutex_unlock(&dev_priv->dpll_lock);
  169. }
  170. /**
  171. * intel_disable_shared_dpll - disable a CRTC's shared DPLL
  172. * @crtc: CRTC which has a shared DPLL
  173. *
  174. * Disable the shared DPLL used by @crtc.
  175. */
  176. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  177. {
  178. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  179. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  180. unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
  181. /* PCH only available on ILK+ */
  182. if (INTEL_GEN(dev_priv) < 5)
  183. return;
  184. if (pll == NULL)
  185. return;
  186. mutex_lock(&dev_priv->dpll_lock);
  187. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  188. goto out;
  189. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  190. pll->info->name, pll->active_mask, pll->on,
  191. crtc->base.base.id);
  192. assert_shared_dpll_enabled(dev_priv, pll);
  193. WARN_ON(!pll->on);
  194. pll->active_mask &= ~crtc_mask;
  195. if (pll->active_mask)
  196. goto out;
  197. DRM_DEBUG_KMS("disabling %s\n", pll->info->name);
  198. pll->info->funcs->disable(dev_priv, pll);
  199. pll->on = false;
  200. out:
  201. mutex_unlock(&dev_priv->dpll_lock);
  202. }
  203. static struct intel_shared_dpll *
  204. intel_find_shared_dpll(struct intel_crtc *crtc,
  205. struct intel_crtc_state *crtc_state,
  206. enum intel_dpll_id range_min,
  207. enum intel_dpll_id range_max)
  208. {
  209. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  210. struct intel_shared_dpll *pll;
  211. struct intel_shared_dpll_state *shared_dpll;
  212. enum intel_dpll_id i;
  213. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  214. for (i = range_min; i <= range_max; i++) {
  215. pll = &dev_priv->shared_dplls[i];
  216. /* Only want to check enabled timings first */
  217. if (shared_dpll[i].crtc_mask == 0)
  218. continue;
  219. if (memcmp(&crtc_state->dpll_hw_state,
  220. &shared_dpll[i].hw_state,
  221. sizeof(crtc_state->dpll_hw_state)) == 0) {
  222. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  223. crtc->base.base.id, crtc->base.name,
  224. pll->info->name,
  225. shared_dpll[i].crtc_mask,
  226. pll->active_mask);
  227. return pll;
  228. }
  229. }
  230. /* Ok no matching timings, maybe there's a free one? */
  231. for (i = range_min; i <= range_max; i++) {
  232. pll = &dev_priv->shared_dplls[i];
  233. if (shared_dpll[i].crtc_mask == 0) {
  234. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  235. crtc->base.base.id, crtc->base.name,
  236. pll->info->name);
  237. return pll;
  238. }
  239. }
  240. return NULL;
  241. }
  242. static void
  243. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  244. struct intel_crtc_state *crtc_state)
  245. {
  246. struct intel_shared_dpll_state *shared_dpll;
  247. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  248. const enum intel_dpll_id id = pll->info->id;
  249. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  250. if (shared_dpll[id].crtc_mask == 0)
  251. shared_dpll[id].hw_state =
  252. crtc_state->dpll_hw_state;
  253. crtc_state->shared_dpll = pll;
  254. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->info->name,
  255. pipe_name(crtc->pipe));
  256. shared_dpll[id].crtc_mask |= 1 << crtc->pipe;
  257. }
  258. /**
  259. * intel_shared_dpll_swap_state - make atomic DPLL configuration effective
  260. * @state: atomic state
  261. *
  262. * This is the dpll version of drm_atomic_helper_swap_state() since the
  263. * helper does not handle driver-specific global state.
  264. *
  265. * For consistency with atomic helpers this function does a complete swap,
  266. * i.e. it also puts the current state into @state, even though there is no
  267. * need for that at this moment.
  268. */
  269. void intel_shared_dpll_swap_state(struct drm_atomic_state *state)
  270. {
  271. struct drm_i915_private *dev_priv = to_i915(state->dev);
  272. struct intel_shared_dpll_state *shared_dpll;
  273. struct intel_shared_dpll *pll;
  274. enum intel_dpll_id i;
  275. if (!to_intel_atomic_state(state)->dpll_set)
  276. return;
  277. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  278. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  279. struct intel_shared_dpll_state tmp;
  280. pll = &dev_priv->shared_dplls[i];
  281. tmp = pll->state;
  282. pll->state = shared_dpll[i];
  283. shared_dpll[i] = tmp;
  284. }
  285. }
  286. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  287. struct intel_shared_dpll *pll,
  288. struct intel_dpll_hw_state *hw_state)
  289. {
  290. const enum intel_dpll_id id = pll->info->id;
  291. uint32_t val;
  292. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  293. return false;
  294. val = I915_READ(PCH_DPLL(id));
  295. hw_state->dpll = val;
  296. hw_state->fp0 = I915_READ(PCH_FP0(id));
  297. hw_state->fp1 = I915_READ(PCH_FP1(id));
  298. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  299. return val & DPLL_VCO_ENABLE;
  300. }
  301. static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
  302. struct intel_shared_dpll *pll)
  303. {
  304. const enum intel_dpll_id id = pll->info->id;
  305. I915_WRITE(PCH_FP0(id), pll->state.hw_state.fp0);
  306. I915_WRITE(PCH_FP1(id), pll->state.hw_state.fp1);
  307. }
  308. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  309. {
  310. u32 val;
  311. bool enabled;
  312. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  313. val = I915_READ(PCH_DREF_CONTROL);
  314. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  315. DREF_SUPERSPREAD_SOURCE_MASK));
  316. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  317. }
  318. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  319. struct intel_shared_dpll *pll)
  320. {
  321. const enum intel_dpll_id id = pll->info->id;
  322. /* PCH refclock must be enabled first */
  323. ibx_assert_pch_refclk_enabled(dev_priv);
  324. I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
  325. /* Wait for the clocks to stabilize. */
  326. POSTING_READ(PCH_DPLL(id));
  327. udelay(150);
  328. /* The pixel multiplier can only be updated once the
  329. * DPLL is enabled and the clocks are stable.
  330. *
  331. * So write it again.
  332. */
  333. I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
  334. POSTING_READ(PCH_DPLL(id));
  335. udelay(200);
  336. }
  337. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  338. struct intel_shared_dpll *pll)
  339. {
  340. const enum intel_dpll_id id = pll->info->id;
  341. struct drm_device *dev = &dev_priv->drm;
  342. struct intel_crtc *crtc;
  343. /* Make sure no transcoder isn't still depending on us. */
  344. for_each_intel_crtc(dev, crtc) {
  345. if (crtc->config->shared_dpll == pll)
  346. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  347. }
  348. I915_WRITE(PCH_DPLL(id), 0);
  349. POSTING_READ(PCH_DPLL(id));
  350. udelay(200);
  351. }
  352. static struct intel_shared_dpll *
  353. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  354. struct intel_encoder *encoder)
  355. {
  356. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  357. struct intel_shared_dpll *pll;
  358. enum intel_dpll_id i;
  359. if (HAS_PCH_IBX(dev_priv)) {
  360. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  361. i = (enum intel_dpll_id) crtc->pipe;
  362. pll = &dev_priv->shared_dplls[i];
  363. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  364. crtc->base.base.id, crtc->base.name,
  365. pll->info->name);
  366. } else {
  367. pll = intel_find_shared_dpll(crtc, crtc_state,
  368. DPLL_ID_PCH_PLL_A,
  369. DPLL_ID_PCH_PLL_B);
  370. }
  371. if (!pll)
  372. return NULL;
  373. /* reference the pll */
  374. intel_reference_shared_dpll(pll, crtc_state);
  375. return pll;
  376. }
  377. static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
  378. struct intel_dpll_hw_state *hw_state)
  379. {
  380. DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
  381. "fp0: 0x%x, fp1: 0x%x\n",
  382. hw_state->dpll,
  383. hw_state->dpll_md,
  384. hw_state->fp0,
  385. hw_state->fp1);
  386. }
  387. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  388. .prepare = ibx_pch_dpll_prepare,
  389. .enable = ibx_pch_dpll_enable,
  390. .disable = ibx_pch_dpll_disable,
  391. .get_hw_state = ibx_pch_dpll_get_hw_state,
  392. };
  393. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  394. struct intel_shared_dpll *pll)
  395. {
  396. const enum intel_dpll_id id = pll->info->id;
  397. I915_WRITE(WRPLL_CTL(id), pll->state.hw_state.wrpll);
  398. POSTING_READ(WRPLL_CTL(id));
  399. udelay(20);
  400. }
  401. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  402. struct intel_shared_dpll *pll)
  403. {
  404. I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
  405. POSTING_READ(SPLL_CTL);
  406. udelay(20);
  407. }
  408. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  409. struct intel_shared_dpll *pll)
  410. {
  411. const enum intel_dpll_id id = pll->info->id;
  412. uint32_t val;
  413. val = I915_READ(WRPLL_CTL(id));
  414. I915_WRITE(WRPLL_CTL(id), val & ~WRPLL_PLL_ENABLE);
  415. POSTING_READ(WRPLL_CTL(id));
  416. }
  417. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  418. struct intel_shared_dpll *pll)
  419. {
  420. uint32_t val;
  421. val = I915_READ(SPLL_CTL);
  422. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  423. POSTING_READ(SPLL_CTL);
  424. }
  425. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  426. struct intel_shared_dpll *pll,
  427. struct intel_dpll_hw_state *hw_state)
  428. {
  429. const enum intel_dpll_id id = pll->info->id;
  430. uint32_t val;
  431. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  432. return false;
  433. val = I915_READ(WRPLL_CTL(id));
  434. hw_state->wrpll = val;
  435. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  436. return val & WRPLL_PLL_ENABLE;
  437. }
  438. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  439. struct intel_shared_dpll *pll,
  440. struct intel_dpll_hw_state *hw_state)
  441. {
  442. uint32_t val;
  443. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  444. return false;
  445. val = I915_READ(SPLL_CTL);
  446. hw_state->spll = val;
  447. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  448. return val & SPLL_PLL_ENABLE;
  449. }
  450. #define LC_FREQ 2700
  451. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  452. #define P_MIN 2
  453. #define P_MAX 64
  454. #define P_INC 2
  455. /* Constraints for PLL good behavior */
  456. #define REF_MIN 48
  457. #define REF_MAX 400
  458. #define VCO_MIN 2400
  459. #define VCO_MAX 4800
  460. struct hsw_wrpll_rnp {
  461. unsigned p, n2, r2;
  462. };
  463. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  464. {
  465. unsigned budget;
  466. switch (clock) {
  467. case 25175000:
  468. case 25200000:
  469. case 27000000:
  470. case 27027000:
  471. case 37762500:
  472. case 37800000:
  473. case 40500000:
  474. case 40541000:
  475. case 54000000:
  476. case 54054000:
  477. case 59341000:
  478. case 59400000:
  479. case 72000000:
  480. case 74176000:
  481. case 74250000:
  482. case 81000000:
  483. case 81081000:
  484. case 89012000:
  485. case 89100000:
  486. case 108000000:
  487. case 108108000:
  488. case 111264000:
  489. case 111375000:
  490. case 148352000:
  491. case 148500000:
  492. case 162000000:
  493. case 162162000:
  494. case 222525000:
  495. case 222750000:
  496. case 296703000:
  497. case 297000000:
  498. budget = 0;
  499. break;
  500. case 233500000:
  501. case 245250000:
  502. case 247750000:
  503. case 253250000:
  504. case 298000000:
  505. budget = 1500;
  506. break;
  507. case 169128000:
  508. case 169500000:
  509. case 179500000:
  510. case 202000000:
  511. budget = 2000;
  512. break;
  513. case 256250000:
  514. case 262500000:
  515. case 270000000:
  516. case 272500000:
  517. case 273750000:
  518. case 280750000:
  519. case 281250000:
  520. case 286000000:
  521. case 291750000:
  522. budget = 4000;
  523. break;
  524. case 267250000:
  525. case 268500000:
  526. budget = 5000;
  527. break;
  528. default:
  529. budget = 1000;
  530. break;
  531. }
  532. return budget;
  533. }
  534. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  535. unsigned r2, unsigned n2, unsigned p,
  536. struct hsw_wrpll_rnp *best)
  537. {
  538. uint64_t a, b, c, d, diff, diff_best;
  539. /* No best (r,n,p) yet */
  540. if (best->p == 0) {
  541. best->p = p;
  542. best->n2 = n2;
  543. best->r2 = r2;
  544. return;
  545. }
  546. /*
  547. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  548. * freq2k.
  549. *
  550. * delta = 1e6 *
  551. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  552. * freq2k;
  553. *
  554. * and we would like delta <= budget.
  555. *
  556. * If the discrepancy is above the PPM-based budget, always prefer to
  557. * improve upon the previous solution. However, if you're within the
  558. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  559. */
  560. a = freq2k * budget * p * r2;
  561. b = freq2k * budget * best->p * best->r2;
  562. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  563. diff_best = abs_diff(freq2k * best->p * best->r2,
  564. LC_FREQ_2K * best->n2);
  565. c = 1000000 * diff;
  566. d = 1000000 * diff_best;
  567. if (a < c && b < d) {
  568. /* If both are above the budget, pick the closer */
  569. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  570. best->p = p;
  571. best->n2 = n2;
  572. best->r2 = r2;
  573. }
  574. } else if (a >= c && b < d) {
  575. /* If A is below the threshold but B is above it? Update. */
  576. best->p = p;
  577. best->n2 = n2;
  578. best->r2 = r2;
  579. } else if (a >= c && b >= d) {
  580. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  581. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  582. best->p = p;
  583. best->n2 = n2;
  584. best->r2 = r2;
  585. }
  586. }
  587. /* Otherwise a < c && b >= d, do nothing */
  588. }
  589. static void
  590. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  591. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  592. {
  593. uint64_t freq2k;
  594. unsigned p, n2, r2;
  595. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  596. unsigned budget;
  597. freq2k = clock / 100;
  598. budget = hsw_wrpll_get_budget_for_freq(clock);
  599. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  600. * and directly pass the LC PLL to it. */
  601. if (freq2k == 5400000) {
  602. *n2_out = 2;
  603. *p_out = 1;
  604. *r2_out = 2;
  605. return;
  606. }
  607. /*
  608. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  609. * the WR PLL.
  610. *
  611. * We want R so that REF_MIN <= Ref <= REF_MAX.
  612. * Injecting R2 = 2 * R gives:
  613. * REF_MAX * r2 > LC_FREQ * 2 and
  614. * REF_MIN * r2 < LC_FREQ * 2
  615. *
  616. * Which means the desired boundaries for r2 are:
  617. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  618. *
  619. */
  620. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  621. r2 <= LC_FREQ * 2 / REF_MIN;
  622. r2++) {
  623. /*
  624. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  625. *
  626. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  627. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  628. * VCO_MAX * r2 > n2 * LC_FREQ and
  629. * VCO_MIN * r2 < n2 * LC_FREQ)
  630. *
  631. * Which means the desired boundaries for n2 are:
  632. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  633. */
  634. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  635. n2 <= VCO_MAX * r2 / LC_FREQ;
  636. n2++) {
  637. for (p = P_MIN; p <= P_MAX; p += P_INC)
  638. hsw_wrpll_update_rnp(freq2k, budget,
  639. r2, n2, p, &best);
  640. }
  641. }
  642. *n2_out = best.n2;
  643. *p_out = best.p;
  644. *r2_out = best.r2;
  645. }
  646. static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
  647. struct intel_crtc *crtc,
  648. struct intel_crtc_state *crtc_state)
  649. {
  650. struct intel_shared_dpll *pll;
  651. uint32_t val;
  652. unsigned int p, n2, r2;
  653. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  654. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  655. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  656. WRPLL_DIVIDER_POST(p);
  657. crtc_state->dpll_hw_state.wrpll = val;
  658. pll = intel_find_shared_dpll(crtc, crtc_state,
  659. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  660. if (!pll)
  661. return NULL;
  662. return pll;
  663. }
  664. static struct intel_shared_dpll *
  665. hsw_ddi_dp_get_dpll(struct intel_encoder *encoder, int clock)
  666. {
  667. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  668. struct intel_shared_dpll *pll;
  669. enum intel_dpll_id pll_id;
  670. switch (clock / 2) {
  671. case 81000:
  672. pll_id = DPLL_ID_LCPLL_810;
  673. break;
  674. case 135000:
  675. pll_id = DPLL_ID_LCPLL_1350;
  676. break;
  677. case 270000:
  678. pll_id = DPLL_ID_LCPLL_2700;
  679. break;
  680. default:
  681. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  682. return NULL;
  683. }
  684. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  685. if (!pll)
  686. return NULL;
  687. return pll;
  688. }
  689. static struct intel_shared_dpll *
  690. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  691. struct intel_encoder *encoder)
  692. {
  693. struct intel_shared_dpll *pll;
  694. int clock = crtc_state->port_clock;
  695. memset(&crtc_state->dpll_hw_state, 0,
  696. sizeof(crtc_state->dpll_hw_state));
  697. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  698. pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
  699. } else if (intel_crtc_has_dp_encoder(crtc_state)) {
  700. pll = hsw_ddi_dp_get_dpll(encoder, clock);
  701. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  702. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  703. return NULL;
  704. crtc_state->dpll_hw_state.spll =
  705. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  706. pll = intel_find_shared_dpll(crtc, crtc_state,
  707. DPLL_ID_SPLL, DPLL_ID_SPLL);
  708. } else {
  709. return NULL;
  710. }
  711. if (!pll)
  712. return NULL;
  713. intel_reference_shared_dpll(pll, crtc_state);
  714. return pll;
  715. }
  716. static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
  717. struct intel_dpll_hw_state *hw_state)
  718. {
  719. DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
  720. hw_state->wrpll, hw_state->spll);
  721. }
  722. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  723. .enable = hsw_ddi_wrpll_enable,
  724. .disable = hsw_ddi_wrpll_disable,
  725. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  726. };
  727. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  728. .enable = hsw_ddi_spll_enable,
  729. .disable = hsw_ddi_spll_disable,
  730. .get_hw_state = hsw_ddi_spll_get_hw_state,
  731. };
  732. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  733. struct intel_shared_dpll *pll)
  734. {
  735. }
  736. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  737. struct intel_shared_dpll *pll)
  738. {
  739. }
  740. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  741. struct intel_shared_dpll *pll,
  742. struct intel_dpll_hw_state *hw_state)
  743. {
  744. return true;
  745. }
  746. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  747. .enable = hsw_ddi_lcpll_enable,
  748. .disable = hsw_ddi_lcpll_disable,
  749. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  750. };
  751. struct skl_dpll_regs {
  752. i915_reg_t ctl, cfgcr1, cfgcr2;
  753. };
  754. /* this array is indexed by the *shared* pll id */
  755. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  756. {
  757. /* DPLL 0 */
  758. .ctl = LCPLL1_CTL,
  759. /* DPLL 0 doesn't support HDMI mode */
  760. },
  761. {
  762. /* DPLL 1 */
  763. .ctl = LCPLL2_CTL,
  764. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  765. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  766. },
  767. {
  768. /* DPLL 2 */
  769. .ctl = WRPLL_CTL(0),
  770. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  771. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  772. },
  773. {
  774. /* DPLL 3 */
  775. .ctl = WRPLL_CTL(1),
  776. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  777. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  778. },
  779. };
  780. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  781. struct intel_shared_dpll *pll)
  782. {
  783. const enum intel_dpll_id id = pll->info->id;
  784. uint32_t val;
  785. val = I915_READ(DPLL_CTRL1);
  786. val &= ~(DPLL_CTRL1_HDMI_MODE(id) |
  787. DPLL_CTRL1_SSC(id) |
  788. DPLL_CTRL1_LINK_RATE_MASK(id));
  789. val |= pll->state.hw_state.ctrl1 << (id * 6);
  790. I915_WRITE(DPLL_CTRL1, val);
  791. POSTING_READ(DPLL_CTRL1);
  792. }
  793. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  794. struct intel_shared_dpll *pll)
  795. {
  796. const struct skl_dpll_regs *regs = skl_dpll_regs;
  797. const enum intel_dpll_id id = pll->info->id;
  798. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  799. I915_WRITE(regs[id].cfgcr1, pll->state.hw_state.cfgcr1);
  800. I915_WRITE(regs[id].cfgcr2, pll->state.hw_state.cfgcr2);
  801. POSTING_READ(regs[id].cfgcr1);
  802. POSTING_READ(regs[id].cfgcr2);
  803. /* the enable bit is always bit 31 */
  804. I915_WRITE(regs[id].ctl,
  805. I915_READ(regs[id].ctl) | LCPLL_PLL_ENABLE);
  806. if (intel_wait_for_register(dev_priv,
  807. DPLL_STATUS,
  808. DPLL_LOCK(id),
  809. DPLL_LOCK(id),
  810. 5))
  811. DRM_ERROR("DPLL %d not locked\n", id);
  812. }
  813. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  814. struct intel_shared_dpll *pll)
  815. {
  816. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  817. }
  818. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  819. struct intel_shared_dpll *pll)
  820. {
  821. const struct skl_dpll_regs *regs = skl_dpll_regs;
  822. const enum intel_dpll_id id = pll->info->id;
  823. /* the enable bit is always bit 31 */
  824. I915_WRITE(regs[id].ctl,
  825. I915_READ(regs[id].ctl) & ~LCPLL_PLL_ENABLE);
  826. POSTING_READ(regs[id].ctl);
  827. }
  828. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  829. struct intel_shared_dpll *pll)
  830. {
  831. }
  832. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  833. struct intel_shared_dpll *pll,
  834. struct intel_dpll_hw_state *hw_state)
  835. {
  836. uint32_t val;
  837. const struct skl_dpll_regs *regs = skl_dpll_regs;
  838. const enum intel_dpll_id id = pll->info->id;
  839. bool ret;
  840. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  841. return false;
  842. ret = false;
  843. val = I915_READ(regs[id].ctl);
  844. if (!(val & LCPLL_PLL_ENABLE))
  845. goto out;
  846. val = I915_READ(DPLL_CTRL1);
  847. hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
  848. /* avoid reading back stale values if HDMI mode is not enabled */
  849. if (val & DPLL_CTRL1_HDMI_MODE(id)) {
  850. hw_state->cfgcr1 = I915_READ(regs[id].cfgcr1);
  851. hw_state->cfgcr2 = I915_READ(regs[id].cfgcr2);
  852. }
  853. ret = true;
  854. out:
  855. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  856. return ret;
  857. }
  858. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  859. struct intel_shared_dpll *pll,
  860. struct intel_dpll_hw_state *hw_state)
  861. {
  862. uint32_t val;
  863. const struct skl_dpll_regs *regs = skl_dpll_regs;
  864. const enum intel_dpll_id id = pll->info->id;
  865. bool ret;
  866. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  867. return false;
  868. ret = false;
  869. /* DPLL0 is always enabled since it drives CDCLK */
  870. val = I915_READ(regs[id].ctl);
  871. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  872. goto out;
  873. val = I915_READ(DPLL_CTRL1);
  874. hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
  875. ret = true;
  876. out:
  877. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  878. return ret;
  879. }
  880. struct skl_wrpll_context {
  881. uint64_t min_deviation; /* current minimal deviation */
  882. uint64_t central_freq; /* chosen central freq */
  883. uint64_t dco_freq; /* chosen dco freq */
  884. unsigned int p; /* chosen divider */
  885. };
  886. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  887. {
  888. memset(ctx, 0, sizeof(*ctx));
  889. ctx->min_deviation = U64_MAX;
  890. }
  891. /* DCO freq must be within +1%/-6% of the DCO central freq */
  892. #define SKL_DCO_MAX_PDEVIATION 100
  893. #define SKL_DCO_MAX_NDEVIATION 600
  894. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  895. uint64_t central_freq,
  896. uint64_t dco_freq,
  897. unsigned int divider)
  898. {
  899. uint64_t deviation;
  900. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  901. central_freq);
  902. /* positive deviation */
  903. if (dco_freq >= central_freq) {
  904. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  905. deviation < ctx->min_deviation) {
  906. ctx->min_deviation = deviation;
  907. ctx->central_freq = central_freq;
  908. ctx->dco_freq = dco_freq;
  909. ctx->p = divider;
  910. }
  911. /* negative deviation */
  912. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  913. deviation < ctx->min_deviation) {
  914. ctx->min_deviation = deviation;
  915. ctx->central_freq = central_freq;
  916. ctx->dco_freq = dco_freq;
  917. ctx->p = divider;
  918. }
  919. }
  920. static void skl_wrpll_get_multipliers(unsigned int p,
  921. unsigned int *p0 /* out */,
  922. unsigned int *p1 /* out */,
  923. unsigned int *p2 /* out */)
  924. {
  925. /* even dividers */
  926. if (p % 2 == 0) {
  927. unsigned int half = p / 2;
  928. if (half == 1 || half == 2 || half == 3 || half == 5) {
  929. *p0 = 2;
  930. *p1 = 1;
  931. *p2 = half;
  932. } else if (half % 2 == 0) {
  933. *p0 = 2;
  934. *p1 = half / 2;
  935. *p2 = 2;
  936. } else if (half % 3 == 0) {
  937. *p0 = 3;
  938. *p1 = half / 3;
  939. *p2 = 2;
  940. } else if (half % 7 == 0) {
  941. *p0 = 7;
  942. *p1 = half / 7;
  943. *p2 = 2;
  944. }
  945. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  946. *p0 = 3;
  947. *p1 = 1;
  948. *p2 = p / 3;
  949. } else if (p == 5 || p == 7) {
  950. *p0 = p;
  951. *p1 = 1;
  952. *p2 = 1;
  953. } else if (p == 15) {
  954. *p0 = 3;
  955. *p1 = 1;
  956. *p2 = 5;
  957. } else if (p == 21) {
  958. *p0 = 7;
  959. *p1 = 1;
  960. *p2 = 3;
  961. } else if (p == 35) {
  962. *p0 = 7;
  963. *p1 = 1;
  964. *p2 = 5;
  965. }
  966. }
  967. struct skl_wrpll_params {
  968. uint32_t dco_fraction;
  969. uint32_t dco_integer;
  970. uint32_t qdiv_ratio;
  971. uint32_t qdiv_mode;
  972. uint32_t kdiv;
  973. uint32_t pdiv;
  974. uint32_t central_freq;
  975. };
  976. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  977. uint64_t afe_clock,
  978. uint64_t central_freq,
  979. uint32_t p0, uint32_t p1, uint32_t p2)
  980. {
  981. uint64_t dco_freq;
  982. switch (central_freq) {
  983. case 9600000000ULL:
  984. params->central_freq = 0;
  985. break;
  986. case 9000000000ULL:
  987. params->central_freq = 1;
  988. break;
  989. case 8400000000ULL:
  990. params->central_freq = 3;
  991. }
  992. switch (p0) {
  993. case 1:
  994. params->pdiv = 0;
  995. break;
  996. case 2:
  997. params->pdiv = 1;
  998. break;
  999. case 3:
  1000. params->pdiv = 2;
  1001. break;
  1002. case 7:
  1003. params->pdiv = 4;
  1004. break;
  1005. default:
  1006. WARN(1, "Incorrect PDiv\n");
  1007. }
  1008. switch (p2) {
  1009. case 5:
  1010. params->kdiv = 0;
  1011. break;
  1012. case 2:
  1013. params->kdiv = 1;
  1014. break;
  1015. case 3:
  1016. params->kdiv = 2;
  1017. break;
  1018. case 1:
  1019. params->kdiv = 3;
  1020. break;
  1021. default:
  1022. WARN(1, "Incorrect KDiv\n");
  1023. }
  1024. params->qdiv_ratio = p1;
  1025. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  1026. dco_freq = p0 * p1 * p2 * afe_clock;
  1027. /*
  1028. * Intermediate values are in Hz.
  1029. * Divide by MHz to match bsepc
  1030. */
  1031. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  1032. params->dco_fraction =
  1033. div_u64((div_u64(dco_freq, 24) -
  1034. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  1035. }
  1036. static bool
  1037. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  1038. struct skl_wrpll_params *wrpll_params)
  1039. {
  1040. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  1041. uint64_t dco_central_freq[3] = {8400000000ULL,
  1042. 9000000000ULL,
  1043. 9600000000ULL};
  1044. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  1045. 24, 28, 30, 32, 36, 40, 42, 44,
  1046. 48, 52, 54, 56, 60, 64, 66, 68,
  1047. 70, 72, 76, 78, 80, 84, 88, 90,
  1048. 92, 96, 98 };
  1049. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  1050. static const struct {
  1051. const int *list;
  1052. int n_dividers;
  1053. } dividers[] = {
  1054. { even_dividers, ARRAY_SIZE(even_dividers) },
  1055. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  1056. };
  1057. struct skl_wrpll_context ctx;
  1058. unsigned int dco, d, i;
  1059. unsigned int p0, p1, p2;
  1060. skl_wrpll_context_init(&ctx);
  1061. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1062. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1063. for (i = 0; i < dividers[d].n_dividers; i++) {
  1064. unsigned int p = dividers[d].list[i];
  1065. uint64_t dco_freq = p * afe_clock;
  1066. skl_wrpll_try_divider(&ctx,
  1067. dco_central_freq[dco],
  1068. dco_freq,
  1069. p);
  1070. /*
  1071. * Skip the remaining dividers if we're sure to
  1072. * have found the definitive divider, we can't
  1073. * improve a 0 deviation.
  1074. */
  1075. if (ctx.min_deviation == 0)
  1076. goto skip_remaining_dividers;
  1077. }
  1078. }
  1079. skip_remaining_dividers:
  1080. /*
  1081. * If a solution is found with an even divider, prefer
  1082. * this one.
  1083. */
  1084. if (d == 0 && ctx.p)
  1085. break;
  1086. }
  1087. if (!ctx.p) {
  1088. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1089. return false;
  1090. }
  1091. /*
  1092. * gcc incorrectly analyses that these can be used without being
  1093. * initialized. To be fair, it's hard to guess.
  1094. */
  1095. p0 = p1 = p2 = 0;
  1096. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1097. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1098. p0, p1, p2);
  1099. return true;
  1100. }
  1101. static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
  1102. struct intel_crtc_state *crtc_state,
  1103. int clock)
  1104. {
  1105. uint32_t ctrl1, cfgcr1, cfgcr2;
  1106. struct skl_wrpll_params wrpll_params = { 0, };
  1107. /*
  1108. * See comment in intel_dpll_hw_state to understand why we always use 0
  1109. * as the DPLL id in this function.
  1110. */
  1111. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1112. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1113. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1114. return false;
  1115. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1116. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1117. wrpll_params.dco_integer;
  1118. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1119. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1120. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1121. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1122. wrpll_params.central_freq;
  1123. memset(&crtc_state->dpll_hw_state, 0,
  1124. sizeof(crtc_state->dpll_hw_state));
  1125. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1126. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1127. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1128. return true;
  1129. }
  1130. static bool
  1131. skl_ddi_dp_set_dpll_hw_state(int clock,
  1132. struct intel_dpll_hw_state *dpll_hw_state)
  1133. {
  1134. uint32_t ctrl1;
  1135. /*
  1136. * See comment in intel_dpll_hw_state to understand why we always use 0
  1137. * as the DPLL id in this function.
  1138. */
  1139. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1140. switch (clock / 2) {
  1141. case 81000:
  1142. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1143. break;
  1144. case 135000:
  1145. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1146. break;
  1147. case 270000:
  1148. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1149. break;
  1150. /* eDP 1.4 rates */
  1151. case 162000:
  1152. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1153. break;
  1154. case 108000:
  1155. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1156. break;
  1157. case 216000:
  1158. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1159. break;
  1160. }
  1161. dpll_hw_state->ctrl1 = ctrl1;
  1162. return true;
  1163. }
  1164. static struct intel_shared_dpll *
  1165. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1166. struct intel_encoder *encoder)
  1167. {
  1168. struct intel_shared_dpll *pll;
  1169. int clock = crtc_state->port_clock;
  1170. bool bret;
  1171. struct intel_dpll_hw_state dpll_hw_state;
  1172. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  1173. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  1174. bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
  1175. if (!bret) {
  1176. DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
  1177. return NULL;
  1178. }
  1179. } else if (intel_crtc_has_dp_encoder(crtc_state)) {
  1180. bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
  1181. if (!bret) {
  1182. DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
  1183. return NULL;
  1184. }
  1185. crtc_state->dpll_hw_state = dpll_hw_state;
  1186. } else {
  1187. return NULL;
  1188. }
  1189. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
  1190. pll = intel_find_shared_dpll(crtc, crtc_state,
  1191. DPLL_ID_SKL_DPLL0,
  1192. DPLL_ID_SKL_DPLL0);
  1193. else
  1194. pll = intel_find_shared_dpll(crtc, crtc_state,
  1195. DPLL_ID_SKL_DPLL1,
  1196. DPLL_ID_SKL_DPLL3);
  1197. if (!pll)
  1198. return NULL;
  1199. intel_reference_shared_dpll(pll, crtc_state);
  1200. return pll;
  1201. }
  1202. static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
  1203. struct intel_dpll_hw_state *hw_state)
  1204. {
  1205. DRM_DEBUG_KMS("dpll_hw_state: "
  1206. "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
  1207. hw_state->ctrl1,
  1208. hw_state->cfgcr1,
  1209. hw_state->cfgcr2);
  1210. }
  1211. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1212. .enable = skl_ddi_pll_enable,
  1213. .disable = skl_ddi_pll_disable,
  1214. .get_hw_state = skl_ddi_pll_get_hw_state,
  1215. };
  1216. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1217. .enable = skl_ddi_dpll0_enable,
  1218. .disable = skl_ddi_dpll0_disable,
  1219. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1220. };
  1221. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1222. struct intel_shared_dpll *pll)
  1223. {
  1224. uint32_t temp;
  1225. enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
  1226. enum dpio_phy phy;
  1227. enum dpio_channel ch;
  1228. bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
  1229. /* Non-SSC reference */
  1230. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1231. temp |= PORT_PLL_REF_SEL;
  1232. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1233. if (IS_GEMINILAKE(dev_priv)) {
  1234. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1235. temp |= PORT_PLL_POWER_ENABLE;
  1236. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1237. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  1238. PORT_PLL_POWER_STATE), 200))
  1239. DRM_ERROR("Power state not set for PLL:%d\n", port);
  1240. }
  1241. /* Disable 10 bit clock */
  1242. temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1243. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1244. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1245. /* Write P1 & P2 */
  1246. temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
  1247. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1248. temp |= pll->state.hw_state.ebb0;
  1249. I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
  1250. /* Write M2 integer */
  1251. temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
  1252. temp &= ~PORT_PLL_M2_MASK;
  1253. temp |= pll->state.hw_state.pll0;
  1254. I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
  1255. /* Write N */
  1256. temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
  1257. temp &= ~PORT_PLL_N_MASK;
  1258. temp |= pll->state.hw_state.pll1;
  1259. I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
  1260. /* Write M2 fraction */
  1261. temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
  1262. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1263. temp |= pll->state.hw_state.pll2;
  1264. I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
  1265. /* Write M2 fraction enable */
  1266. temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
  1267. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1268. temp |= pll->state.hw_state.pll3;
  1269. I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
  1270. /* Write coeff */
  1271. temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
  1272. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1273. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1274. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1275. temp |= pll->state.hw_state.pll6;
  1276. I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
  1277. /* Write calibration val */
  1278. temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
  1279. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1280. temp |= pll->state.hw_state.pll8;
  1281. I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
  1282. temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
  1283. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1284. temp |= pll->state.hw_state.pll9;
  1285. I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
  1286. temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
  1287. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1288. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1289. temp |= pll->state.hw_state.pll10;
  1290. I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
  1291. /* Recalibrate with new settings */
  1292. temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1293. temp |= PORT_PLL_RECALIBRATE;
  1294. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1295. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1296. temp |= pll->state.hw_state.ebb4;
  1297. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1298. /* Enable PLL */
  1299. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1300. temp |= PORT_PLL_ENABLE;
  1301. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1302. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1303. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
  1304. 200))
  1305. DRM_ERROR("PLL %d not locked\n", port);
  1306. if (IS_GEMINILAKE(dev_priv)) {
  1307. temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
  1308. temp |= DCC_DELAY_RANGE_2;
  1309. I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
  1310. }
  1311. /*
  1312. * While we write to the group register to program all lanes at once we
  1313. * can read only lane registers and we pick lanes 0/1 for that.
  1314. */
  1315. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
  1316. temp &= ~LANE_STAGGER_MASK;
  1317. temp &= ~LANESTAGGER_STRAP_OVRD;
  1318. temp |= pll->state.hw_state.pcsdw12;
  1319. I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
  1320. }
  1321. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1322. struct intel_shared_dpll *pll)
  1323. {
  1324. enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
  1325. uint32_t temp;
  1326. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1327. temp &= ~PORT_PLL_ENABLE;
  1328. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1329. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1330. if (IS_GEMINILAKE(dev_priv)) {
  1331. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1332. temp &= ~PORT_PLL_POWER_ENABLE;
  1333. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1334. if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  1335. PORT_PLL_POWER_STATE), 200))
  1336. DRM_ERROR("Power state not reset for PLL:%d\n", port);
  1337. }
  1338. }
  1339. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1340. struct intel_shared_dpll *pll,
  1341. struct intel_dpll_hw_state *hw_state)
  1342. {
  1343. enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
  1344. uint32_t val;
  1345. bool ret;
  1346. enum dpio_phy phy;
  1347. enum dpio_channel ch;
  1348. bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
  1349. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1350. return false;
  1351. ret = false;
  1352. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1353. if (!(val & PORT_PLL_ENABLE))
  1354. goto out;
  1355. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
  1356. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1357. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1358. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1359. hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
  1360. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1361. hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
  1362. hw_state->pll1 &= PORT_PLL_N_MASK;
  1363. hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
  1364. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1365. hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
  1366. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1367. hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
  1368. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1369. PORT_PLL_INT_COEFF_MASK |
  1370. PORT_PLL_GAIN_CTL_MASK;
  1371. hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
  1372. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1373. hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
  1374. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1375. hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
  1376. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1377. PORT_PLL_DCO_AMP_MASK;
  1378. /*
  1379. * While we write to the group register to program all lanes at once we
  1380. * can read only lane registers. We configure all lanes the same way, so
  1381. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1382. */
  1383. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
  1384. if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
  1385. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1386. hw_state->pcsdw12,
  1387. I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
  1388. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1389. ret = true;
  1390. out:
  1391. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1392. return ret;
  1393. }
  1394. /* bxt clock parameters */
  1395. struct bxt_clk_div {
  1396. int clock;
  1397. uint32_t p1;
  1398. uint32_t p2;
  1399. uint32_t m2_int;
  1400. uint32_t m2_frac;
  1401. bool m2_frac_en;
  1402. uint32_t n;
  1403. int vco;
  1404. };
  1405. /* pre-calculated values for DP linkrates */
  1406. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1407. {162000, 4, 2, 32, 1677722, 1, 1},
  1408. {270000, 4, 1, 27, 0, 0, 1},
  1409. {540000, 2, 1, 27, 0, 0, 1},
  1410. {216000, 3, 2, 32, 1677722, 1, 1},
  1411. {243000, 4, 1, 24, 1258291, 1, 1},
  1412. {324000, 4, 1, 32, 1677722, 1, 1},
  1413. {432000, 3, 1, 32, 1677722, 1, 1}
  1414. };
  1415. static bool
  1416. bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
  1417. struct intel_crtc_state *crtc_state, int clock,
  1418. struct bxt_clk_div *clk_div)
  1419. {
  1420. struct dpll best_clock;
  1421. /* Calculate HDMI div */
  1422. /*
  1423. * FIXME: tie the following calculation into
  1424. * i9xx_crtc_compute_clock
  1425. */
  1426. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1427. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1428. clock, pipe_name(intel_crtc->pipe));
  1429. return false;
  1430. }
  1431. clk_div->p1 = best_clock.p1;
  1432. clk_div->p2 = best_clock.p2;
  1433. WARN_ON(best_clock.m1 != 2);
  1434. clk_div->n = best_clock.n;
  1435. clk_div->m2_int = best_clock.m2 >> 22;
  1436. clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1437. clk_div->m2_frac_en = clk_div->m2_frac != 0;
  1438. clk_div->vco = best_clock.vco;
  1439. return true;
  1440. }
  1441. static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
  1442. {
  1443. int i;
  1444. *clk_div = bxt_dp_clk_val[0];
  1445. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1446. if (bxt_dp_clk_val[i].clock == clock) {
  1447. *clk_div = bxt_dp_clk_val[i];
  1448. break;
  1449. }
  1450. }
  1451. clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
  1452. }
  1453. static bool bxt_ddi_set_dpll_hw_state(int clock,
  1454. struct bxt_clk_div *clk_div,
  1455. struct intel_dpll_hw_state *dpll_hw_state)
  1456. {
  1457. int vco = clk_div->vco;
  1458. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1459. uint32_t lanestagger;
  1460. if (vco >= 6200000 && vco <= 6700000) {
  1461. prop_coef = 4;
  1462. int_coef = 9;
  1463. gain_ctl = 3;
  1464. targ_cnt = 8;
  1465. } else if ((vco > 5400000 && vco < 6200000) ||
  1466. (vco >= 4800000 && vco < 5400000)) {
  1467. prop_coef = 5;
  1468. int_coef = 11;
  1469. gain_ctl = 3;
  1470. targ_cnt = 9;
  1471. } else if (vco == 5400000) {
  1472. prop_coef = 3;
  1473. int_coef = 8;
  1474. gain_ctl = 1;
  1475. targ_cnt = 9;
  1476. } else {
  1477. DRM_ERROR("Invalid VCO\n");
  1478. return false;
  1479. }
  1480. if (clock > 270000)
  1481. lanestagger = 0x18;
  1482. else if (clock > 135000)
  1483. lanestagger = 0x0d;
  1484. else if (clock > 67000)
  1485. lanestagger = 0x07;
  1486. else if (clock > 33000)
  1487. lanestagger = 0x04;
  1488. else
  1489. lanestagger = 0x02;
  1490. dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
  1491. dpll_hw_state->pll0 = clk_div->m2_int;
  1492. dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
  1493. dpll_hw_state->pll2 = clk_div->m2_frac;
  1494. if (clk_div->m2_frac_en)
  1495. dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
  1496. dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1497. dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
  1498. dpll_hw_state->pll8 = targ_cnt;
  1499. dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1500. dpll_hw_state->pll10 =
  1501. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1502. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1503. dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1504. dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
  1505. return true;
  1506. }
  1507. static bool
  1508. bxt_ddi_dp_set_dpll_hw_state(int clock,
  1509. struct intel_dpll_hw_state *dpll_hw_state)
  1510. {
  1511. struct bxt_clk_div clk_div = {0};
  1512. bxt_ddi_dp_pll_dividers(clock, &clk_div);
  1513. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1514. }
  1515. static bool
  1516. bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
  1517. struct intel_crtc_state *crtc_state, int clock,
  1518. struct intel_dpll_hw_state *dpll_hw_state)
  1519. {
  1520. struct bxt_clk_div clk_div = { };
  1521. bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);
  1522. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1523. }
  1524. static struct intel_shared_dpll *
  1525. bxt_get_dpll(struct intel_crtc *crtc,
  1526. struct intel_crtc_state *crtc_state,
  1527. struct intel_encoder *encoder)
  1528. {
  1529. struct intel_dpll_hw_state dpll_hw_state = { };
  1530. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1531. struct intel_shared_dpll *pll;
  1532. int i, clock = crtc_state->port_clock;
  1533. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
  1534. !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
  1535. &dpll_hw_state))
  1536. return NULL;
  1537. if (intel_crtc_has_dp_encoder(crtc_state) &&
  1538. !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  1539. return NULL;
  1540. memset(&crtc_state->dpll_hw_state, 0,
  1541. sizeof(crtc_state->dpll_hw_state));
  1542. crtc_state->dpll_hw_state = dpll_hw_state;
  1543. /* 1:1 mapping between ports and PLLs */
  1544. i = (enum intel_dpll_id) encoder->port;
  1545. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1546. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1547. crtc->base.base.id, crtc->base.name, pll->info->name);
  1548. intel_reference_shared_dpll(pll, crtc_state);
  1549. return pll;
  1550. }
  1551. static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
  1552. struct intel_dpll_hw_state *hw_state)
  1553. {
  1554. DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
  1555. "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
  1556. "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
  1557. hw_state->ebb0,
  1558. hw_state->ebb4,
  1559. hw_state->pll0,
  1560. hw_state->pll1,
  1561. hw_state->pll2,
  1562. hw_state->pll3,
  1563. hw_state->pll6,
  1564. hw_state->pll8,
  1565. hw_state->pll9,
  1566. hw_state->pll10,
  1567. hw_state->pcsdw12);
  1568. }
  1569. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1570. .enable = bxt_ddi_pll_enable,
  1571. .disable = bxt_ddi_pll_disable,
  1572. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1573. };
  1574. static void intel_ddi_pll_init(struct drm_device *dev)
  1575. {
  1576. struct drm_i915_private *dev_priv = to_i915(dev);
  1577. if (INTEL_GEN(dev_priv) < 9) {
  1578. uint32_t val = I915_READ(LCPLL_CTL);
  1579. /*
  1580. * The LCPLL register should be turned on by the BIOS. For now
  1581. * let's just check its state and print errors in case
  1582. * something is wrong. Don't even try to turn it on.
  1583. */
  1584. if (val & LCPLL_CD_SOURCE_FCLK)
  1585. DRM_ERROR("CDCLK source is not LCPLL\n");
  1586. if (val & LCPLL_PLL_DISABLE)
  1587. DRM_ERROR("LCPLL is disabled\n");
  1588. }
  1589. }
  1590. struct intel_dpll_mgr {
  1591. const struct dpll_info *dpll_info;
  1592. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1593. struct intel_crtc_state *crtc_state,
  1594. struct intel_encoder *encoder);
  1595. void (*dump_hw_state)(struct drm_i915_private *dev_priv,
  1596. struct intel_dpll_hw_state *hw_state);
  1597. };
  1598. static const struct dpll_info pch_plls[] = {
  1599. { "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 },
  1600. { "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 },
  1601. { },
  1602. };
  1603. static const struct intel_dpll_mgr pch_pll_mgr = {
  1604. .dpll_info = pch_plls,
  1605. .get_dpll = ibx_get_dpll,
  1606. .dump_hw_state = ibx_dump_hw_state,
  1607. };
  1608. static const struct dpll_info hsw_plls[] = {
  1609. { "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 },
  1610. { "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 },
  1611. { "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 },
  1612. { "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON },
  1613. { "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON },
  1614. { "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON },
  1615. { },
  1616. };
  1617. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1618. .dpll_info = hsw_plls,
  1619. .get_dpll = hsw_get_dpll,
  1620. .dump_hw_state = hsw_dump_hw_state,
  1621. };
  1622. static const struct dpll_info skl_plls[] = {
  1623. { "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON },
  1624. { "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
  1625. { "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
  1626. { "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 },
  1627. { },
  1628. };
  1629. static const struct intel_dpll_mgr skl_pll_mgr = {
  1630. .dpll_info = skl_plls,
  1631. .get_dpll = skl_get_dpll,
  1632. .dump_hw_state = skl_dump_hw_state,
  1633. };
  1634. static const struct dpll_info bxt_plls[] = {
  1635. { "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
  1636. { "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
  1637. { "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
  1638. { },
  1639. };
  1640. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1641. .dpll_info = bxt_plls,
  1642. .get_dpll = bxt_get_dpll,
  1643. .dump_hw_state = bxt_dump_hw_state,
  1644. };
  1645. static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1646. struct intel_shared_dpll *pll)
  1647. {
  1648. const enum intel_dpll_id id = pll->info->id;
  1649. uint32_t val;
  1650. /* 1. Enable DPLL power in DPLL_ENABLE. */
  1651. val = I915_READ(CNL_DPLL_ENABLE(id));
  1652. val |= PLL_POWER_ENABLE;
  1653. I915_WRITE(CNL_DPLL_ENABLE(id), val);
  1654. /* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */
  1655. if (intel_wait_for_register(dev_priv,
  1656. CNL_DPLL_ENABLE(id),
  1657. PLL_POWER_STATE,
  1658. PLL_POWER_STATE,
  1659. 5))
  1660. DRM_ERROR("PLL %d Power not enabled\n", id);
  1661. /*
  1662. * 3. Configure DPLL_CFGCR0 to set SSC enable/disable,
  1663. * select DP mode, and set DP link rate.
  1664. */
  1665. val = pll->state.hw_state.cfgcr0;
  1666. I915_WRITE(CNL_DPLL_CFGCR0(id), val);
  1667. /* 4. Reab back to ensure writes completed */
  1668. POSTING_READ(CNL_DPLL_CFGCR0(id));
  1669. /* 3. Configure DPLL_CFGCR0 */
  1670. /* Avoid touch CFGCR1 if HDMI mode is not enabled */
  1671. if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
  1672. val = pll->state.hw_state.cfgcr1;
  1673. I915_WRITE(CNL_DPLL_CFGCR1(id), val);
  1674. /* 4. Reab back to ensure writes completed */
  1675. POSTING_READ(CNL_DPLL_CFGCR1(id));
  1676. }
  1677. /*
  1678. * 5. If the frequency will result in a change to the voltage
  1679. * requirement, follow the Display Voltage Frequency Switching
  1680. * Sequence Before Frequency Change
  1681. *
  1682. * Note: DVFS is actually handled via the cdclk code paths,
  1683. * hence we do nothing here.
  1684. */
  1685. /* 6. Enable DPLL in DPLL_ENABLE. */
  1686. val = I915_READ(CNL_DPLL_ENABLE(id));
  1687. val |= PLL_ENABLE;
  1688. I915_WRITE(CNL_DPLL_ENABLE(id), val);
  1689. /* 7. Wait for PLL lock status in DPLL_ENABLE. */
  1690. if (intel_wait_for_register(dev_priv,
  1691. CNL_DPLL_ENABLE(id),
  1692. PLL_LOCK,
  1693. PLL_LOCK,
  1694. 5))
  1695. DRM_ERROR("PLL %d not locked\n", id);
  1696. /*
  1697. * 8. If the frequency will result in a change to the voltage
  1698. * requirement, follow the Display Voltage Frequency Switching
  1699. * Sequence After Frequency Change
  1700. *
  1701. * Note: DVFS is actually handled via the cdclk code paths,
  1702. * hence we do nothing here.
  1703. */
  1704. /*
  1705. * 9. turn on the clock for the DDI and map the DPLL to the DDI
  1706. * Done at intel_ddi_clk_select
  1707. */
  1708. }
  1709. static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1710. struct intel_shared_dpll *pll)
  1711. {
  1712. const enum intel_dpll_id id = pll->info->id;
  1713. uint32_t val;
  1714. /*
  1715. * 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI.
  1716. * Done at intel_ddi_post_disable
  1717. */
  1718. /*
  1719. * 2. If the frequency will result in a change to the voltage
  1720. * requirement, follow the Display Voltage Frequency Switching
  1721. * Sequence Before Frequency Change
  1722. *
  1723. * Note: DVFS is actually handled via the cdclk code paths,
  1724. * hence we do nothing here.
  1725. */
  1726. /* 3. Disable DPLL through DPLL_ENABLE. */
  1727. val = I915_READ(CNL_DPLL_ENABLE(id));
  1728. val &= ~PLL_ENABLE;
  1729. I915_WRITE(CNL_DPLL_ENABLE(id), val);
  1730. /* 4. Wait for PLL not locked status in DPLL_ENABLE. */
  1731. if (intel_wait_for_register(dev_priv,
  1732. CNL_DPLL_ENABLE(id),
  1733. PLL_LOCK,
  1734. 0,
  1735. 5))
  1736. DRM_ERROR("PLL %d locked\n", id);
  1737. /*
  1738. * 5. If the frequency will result in a change to the voltage
  1739. * requirement, follow the Display Voltage Frequency Switching
  1740. * Sequence After Frequency Change
  1741. *
  1742. * Note: DVFS is actually handled via the cdclk code paths,
  1743. * hence we do nothing here.
  1744. */
  1745. /* 6. Disable DPLL power in DPLL_ENABLE. */
  1746. val = I915_READ(CNL_DPLL_ENABLE(id));
  1747. val &= ~PLL_POWER_ENABLE;
  1748. I915_WRITE(CNL_DPLL_ENABLE(id), val);
  1749. /* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */
  1750. if (intel_wait_for_register(dev_priv,
  1751. CNL_DPLL_ENABLE(id),
  1752. PLL_POWER_STATE,
  1753. 0,
  1754. 5))
  1755. DRM_ERROR("PLL %d Power not disabled\n", id);
  1756. }
  1757. static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1758. struct intel_shared_dpll *pll,
  1759. struct intel_dpll_hw_state *hw_state)
  1760. {
  1761. const enum intel_dpll_id id = pll->info->id;
  1762. uint32_t val;
  1763. bool ret;
  1764. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1765. return false;
  1766. ret = false;
  1767. val = I915_READ(CNL_DPLL_ENABLE(id));
  1768. if (!(val & PLL_ENABLE))
  1769. goto out;
  1770. val = I915_READ(CNL_DPLL_CFGCR0(id));
  1771. hw_state->cfgcr0 = val;
  1772. /* avoid reading back stale values if HDMI mode is not enabled */
  1773. if (val & DPLL_CFGCR0_HDMI_MODE) {
  1774. hw_state->cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(id));
  1775. }
  1776. ret = true;
  1777. out:
  1778. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1779. return ret;
  1780. }
  1781. static void cnl_wrpll_get_multipliers(int bestdiv, int *pdiv,
  1782. int *qdiv, int *kdiv)
  1783. {
  1784. /* even dividers */
  1785. if (bestdiv % 2 == 0) {
  1786. if (bestdiv == 2) {
  1787. *pdiv = 2;
  1788. *qdiv = 1;
  1789. *kdiv = 1;
  1790. } else if (bestdiv % 4 == 0) {
  1791. *pdiv = 2;
  1792. *qdiv = bestdiv / 4;
  1793. *kdiv = 2;
  1794. } else if (bestdiv % 6 == 0) {
  1795. *pdiv = 3;
  1796. *qdiv = bestdiv / 6;
  1797. *kdiv = 2;
  1798. } else if (bestdiv % 5 == 0) {
  1799. *pdiv = 5;
  1800. *qdiv = bestdiv / 10;
  1801. *kdiv = 2;
  1802. } else if (bestdiv % 14 == 0) {
  1803. *pdiv = 7;
  1804. *qdiv = bestdiv / 14;
  1805. *kdiv = 2;
  1806. }
  1807. } else {
  1808. if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) {
  1809. *pdiv = bestdiv;
  1810. *qdiv = 1;
  1811. *kdiv = 1;
  1812. } else { /* 9, 15, 21 */
  1813. *pdiv = bestdiv / 3;
  1814. *qdiv = 1;
  1815. *kdiv = 3;
  1816. }
  1817. }
  1818. }
  1819. static void cnl_wrpll_params_populate(struct skl_wrpll_params *params,
  1820. u32 dco_freq, u32 ref_freq,
  1821. int pdiv, int qdiv, int kdiv)
  1822. {
  1823. u32 dco;
  1824. switch (kdiv) {
  1825. case 1:
  1826. params->kdiv = 1;
  1827. break;
  1828. case 2:
  1829. params->kdiv = 2;
  1830. break;
  1831. case 3:
  1832. params->kdiv = 4;
  1833. break;
  1834. default:
  1835. WARN(1, "Incorrect KDiv\n");
  1836. }
  1837. switch (pdiv) {
  1838. case 2:
  1839. params->pdiv = 1;
  1840. break;
  1841. case 3:
  1842. params->pdiv = 2;
  1843. break;
  1844. case 5:
  1845. params->pdiv = 4;
  1846. break;
  1847. case 7:
  1848. params->pdiv = 8;
  1849. break;
  1850. default:
  1851. WARN(1, "Incorrect PDiv\n");
  1852. }
  1853. WARN_ON(kdiv != 2 && qdiv != 1);
  1854. params->qdiv_ratio = qdiv;
  1855. params->qdiv_mode = (qdiv == 1) ? 0 : 1;
  1856. dco = div_u64((u64)dco_freq << 15, ref_freq);
  1857. params->dco_integer = dco >> 15;
  1858. params->dco_fraction = dco & 0x7fff;
  1859. }
  1860. int cnl_hdmi_pll_ref_clock(struct drm_i915_private *dev_priv)
  1861. {
  1862. int ref_clock = dev_priv->cdclk.hw.ref;
  1863. /*
  1864. * For ICL+, the spec states: if reference frequency is 38.4,
  1865. * use 19.2 because the DPLL automatically divides that by 2.
  1866. */
  1867. if (INTEL_GEN(dev_priv) >= 11 && ref_clock == 38400)
  1868. ref_clock = 19200;
  1869. return ref_clock;
  1870. }
  1871. static bool
  1872. cnl_ddi_calculate_wrpll(int clock,
  1873. struct drm_i915_private *dev_priv,
  1874. struct skl_wrpll_params *wrpll_params)
  1875. {
  1876. u32 afe_clock = clock * 5;
  1877. uint32_t ref_clock;
  1878. u32 dco_min = 7998000;
  1879. u32 dco_max = 10000000;
  1880. u32 dco_mid = (dco_min + dco_max) / 2;
  1881. static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16,
  1882. 18, 20, 24, 28, 30, 32, 36, 40,
  1883. 42, 44, 48, 50, 52, 54, 56, 60,
  1884. 64, 66, 68, 70, 72, 76, 78, 80,
  1885. 84, 88, 90, 92, 96, 98, 100, 102,
  1886. 3, 5, 7, 9, 15, 21 };
  1887. u32 dco, best_dco = 0, dco_centrality = 0;
  1888. u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */
  1889. int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0;
  1890. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1891. dco = afe_clock * dividers[d];
  1892. if ((dco <= dco_max) && (dco >= dco_min)) {
  1893. dco_centrality = abs(dco - dco_mid);
  1894. if (dco_centrality < best_dco_centrality) {
  1895. best_dco_centrality = dco_centrality;
  1896. best_div = dividers[d];
  1897. best_dco = dco;
  1898. }
  1899. }
  1900. }
  1901. if (best_div == 0)
  1902. return false;
  1903. cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv);
  1904. ref_clock = cnl_hdmi_pll_ref_clock(dev_priv);
  1905. cnl_wrpll_params_populate(wrpll_params, best_dco, ref_clock, pdiv, qdiv,
  1906. kdiv);
  1907. return true;
  1908. }
  1909. static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
  1910. struct intel_crtc_state *crtc_state,
  1911. int clock)
  1912. {
  1913. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1914. uint32_t cfgcr0, cfgcr1;
  1915. struct skl_wrpll_params wrpll_params = { 0, };
  1916. cfgcr0 = DPLL_CFGCR0_HDMI_MODE;
  1917. if (!cnl_ddi_calculate_wrpll(clock, dev_priv, &wrpll_params))
  1918. return false;
  1919. cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) |
  1920. wrpll_params.dco_integer;
  1921. cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1922. DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) |
  1923. DPLL_CFGCR1_KDIV(wrpll_params.kdiv) |
  1924. DPLL_CFGCR1_PDIV(wrpll_params.pdiv) |
  1925. DPLL_CFGCR1_CENTRAL_FREQ;
  1926. memset(&crtc_state->dpll_hw_state, 0,
  1927. sizeof(crtc_state->dpll_hw_state));
  1928. crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
  1929. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1930. return true;
  1931. }
  1932. static bool
  1933. cnl_ddi_dp_set_dpll_hw_state(int clock,
  1934. struct intel_dpll_hw_state *dpll_hw_state)
  1935. {
  1936. uint32_t cfgcr0;
  1937. cfgcr0 = DPLL_CFGCR0_SSC_ENABLE;
  1938. switch (clock / 2) {
  1939. case 81000:
  1940. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810;
  1941. break;
  1942. case 135000:
  1943. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350;
  1944. break;
  1945. case 270000:
  1946. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700;
  1947. break;
  1948. /* eDP 1.4 rates */
  1949. case 162000:
  1950. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620;
  1951. break;
  1952. case 108000:
  1953. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080;
  1954. break;
  1955. case 216000:
  1956. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160;
  1957. break;
  1958. case 324000:
  1959. /* Some SKUs may require elevated I/O voltage to support this */
  1960. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240;
  1961. break;
  1962. case 405000:
  1963. /* Some SKUs may require elevated I/O voltage to support this */
  1964. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050;
  1965. break;
  1966. }
  1967. dpll_hw_state->cfgcr0 = cfgcr0;
  1968. return true;
  1969. }
  1970. static struct intel_shared_dpll *
  1971. cnl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1972. struct intel_encoder *encoder)
  1973. {
  1974. struct intel_shared_dpll *pll;
  1975. int clock = crtc_state->port_clock;
  1976. bool bret;
  1977. struct intel_dpll_hw_state dpll_hw_state;
  1978. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  1979. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  1980. bret = cnl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
  1981. if (!bret) {
  1982. DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
  1983. return NULL;
  1984. }
  1985. } else if (intel_crtc_has_dp_encoder(crtc_state)) {
  1986. bret = cnl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
  1987. if (!bret) {
  1988. DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
  1989. return NULL;
  1990. }
  1991. crtc_state->dpll_hw_state = dpll_hw_state;
  1992. } else {
  1993. DRM_DEBUG_KMS("Skip DPLL setup for output_types 0x%x\n",
  1994. crtc_state->output_types);
  1995. return NULL;
  1996. }
  1997. pll = intel_find_shared_dpll(crtc, crtc_state,
  1998. DPLL_ID_SKL_DPLL0,
  1999. DPLL_ID_SKL_DPLL2);
  2000. if (!pll) {
  2001. DRM_DEBUG_KMS("No PLL selected\n");
  2002. return NULL;
  2003. }
  2004. intel_reference_shared_dpll(pll, crtc_state);
  2005. return pll;
  2006. }
  2007. static void cnl_dump_hw_state(struct drm_i915_private *dev_priv,
  2008. struct intel_dpll_hw_state *hw_state)
  2009. {
  2010. DRM_DEBUG_KMS("dpll_hw_state: "
  2011. "cfgcr0: 0x%x, cfgcr1: 0x%x\n",
  2012. hw_state->cfgcr0,
  2013. hw_state->cfgcr1);
  2014. }
  2015. static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = {
  2016. .enable = cnl_ddi_pll_enable,
  2017. .disable = cnl_ddi_pll_disable,
  2018. .get_hw_state = cnl_ddi_pll_get_hw_state,
  2019. };
  2020. static const struct dpll_info cnl_plls[] = {
  2021. { "DPLL 0", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
  2022. { "DPLL 1", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
  2023. { "DPLL 2", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
  2024. { },
  2025. };
  2026. static const struct intel_dpll_mgr cnl_pll_mgr = {
  2027. .dpll_info = cnl_plls,
  2028. .get_dpll = cnl_get_dpll,
  2029. .dump_hw_state = cnl_dump_hw_state,
  2030. };
  2031. /*
  2032. * These values alrea already adjusted: they're the bits we write to the
  2033. * registers, not the logical values.
  2034. */
  2035. static const struct skl_wrpll_params icl_dp_combo_pll_24MHz_values[] = {
  2036. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */
  2037. .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2038. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */
  2039. .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2040. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */
  2041. .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2042. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */
  2043. .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2044. { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */
  2045. .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2},
  2046. { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */
  2047. .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2048. { .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */
  2049. .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2050. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */
  2051. .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2052. };
  2053. /* Also used for 38.4 MHz values. */
  2054. static const struct skl_wrpll_params icl_dp_combo_pll_19_2MHz_values[] = {
  2055. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */
  2056. .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2057. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */
  2058. .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2059. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */
  2060. .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2061. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */
  2062. .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2063. { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */
  2064. .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2},
  2065. { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */
  2066. .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2067. { .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */
  2068. .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2069. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */
  2070. .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2071. };
  2072. static const struct skl_wrpll_params icl_tbt_pll_24MHz_values = {
  2073. .dco_integer = 0x151, .dco_fraction = 0x4000,
  2074. .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
  2075. };
  2076. static const struct skl_wrpll_params icl_tbt_pll_19_2MHz_values = {
  2077. .dco_integer = 0x1A5, .dco_fraction = 0x7000,
  2078. .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
  2079. };
  2080. static bool icl_calc_dp_combo_pll(struct drm_i915_private *dev_priv, int clock,
  2081. struct skl_wrpll_params *pll_params)
  2082. {
  2083. const struct skl_wrpll_params *params;
  2084. params = dev_priv->cdclk.hw.ref == 24000 ?
  2085. icl_dp_combo_pll_24MHz_values :
  2086. icl_dp_combo_pll_19_2MHz_values;
  2087. switch (clock) {
  2088. case 540000:
  2089. *pll_params = params[0];
  2090. break;
  2091. case 270000:
  2092. *pll_params = params[1];
  2093. break;
  2094. case 162000:
  2095. *pll_params = params[2];
  2096. break;
  2097. case 324000:
  2098. *pll_params = params[3];
  2099. break;
  2100. case 216000:
  2101. *pll_params = params[4];
  2102. break;
  2103. case 432000:
  2104. *pll_params = params[5];
  2105. break;
  2106. case 648000:
  2107. *pll_params = params[6];
  2108. break;
  2109. case 810000:
  2110. *pll_params = params[7];
  2111. break;
  2112. default:
  2113. MISSING_CASE(clock);
  2114. return false;
  2115. }
  2116. return true;
  2117. }
  2118. static bool icl_calc_tbt_pll(struct drm_i915_private *dev_priv, int clock,
  2119. struct skl_wrpll_params *pll_params)
  2120. {
  2121. *pll_params = dev_priv->cdclk.hw.ref == 24000 ?
  2122. icl_tbt_pll_24MHz_values : icl_tbt_pll_19_2MHz_values;
  2123. return true;
  2124. }
  2125. static bool icl_calc_dpll_state(struct intel_crtc_state *crtc_state,
  2126. struct intel_encoder *encoder, int clock,
  2127. struct intel_dpll_hw_state *pll_state)
  2128. {
  2129. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2130. uint32_t cfgcr0, cfgcr1;
  2131. struct skl_wrpll_params pll_params = { 0 };
  2132. bool ret;
  2133. if (intel_port_is_tc(dev_priv, encoder->port))
  2134. ret = icl_calc_tbt_pll(dev_priv, clock, &pll_params);
  2135. else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  2136. ret = cnl_ddi_calculate_wrpll(clock, dev_priv, &pll_params);
  2137. else
  2138. ret = icl_calc_dp_combo_pll(dev_priv, clock, &pll_params);
  2139. if (!ret)
  2140. return false;
  2141. cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(pll_params.dco_fraction) |
  2142. pll_params.dco_integer;
  2143. cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params.qdiv_ratio) |
  2144. DPLL_CFGCR1_QDIV_MODE(pll_params.qdiv_mode) |
  2145. DPLL_CFGCR1_KDIV(pll_params.kdiv) |
  2146. DPLL_CFGCR1_PDIV(pll_params.pdiv) |
  2147. DPLL_CFGCR1_CENTRAL_FREQ_8400;
  2148. pll_state->cfgcr0 = cfgcr0;
  2149. pll_state->cfgcr1 = cfgcr1;
  2150. return true;
  2151. }
  2152. int icl_calc_dp_combo_pll_link(struct drm_i915_private *dev_priv,
  2153. uint32_t pll_id)
  2154. {
  2155. uint32_t cfgcr0, cfgcr1;
  2156. uint32_t pdiv, kdiv, qdiv_mode, qdiv_ratio, dco_integer, dco_fraction;
  2157. const struct skl_wrpll_params *params;
  2158. int index, n_entries, link_clock;
  2159. /* Read back values from DPLL CFGCR registers */
  2160. cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(pll_id));
  2161. cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(pll_id));
  2162. dco_integer = cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK;
  2163. dco_fraction = (cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >>
  2164. DPLL_CFGCR0_DCO_FRACTION_SHIFT;
  2165. pdiv = (cfgcr1 & DPLL_CFGCR1_PDIV_MASK) >> DPLL_CFGCR1_PDIV_SHIFT;
  2166. kdiv = (cfgcr1 & DPLL_CFGCR1_KDIV_MASK) >> DPLL_CFGCR1_KDIV_SHIFT;
  2167. qdiv_mode = (cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1)) >>
  2168. DPLL_CFGCR1_QDIV_MODE_SHIFT;
  2169. qdiv_ratio = (cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >>
  2170. DPLL_CFGCR1_QDIV_RATIO_SHIFT;
  2171. params = dev_priv->cdclk.hw.ref == 24000 ?
  2172. icl_dp_combo_pll_24MHz_values :
  2173. icl_dp_combo_pll_19_2MHz_values;
  2174. n_entries = ARRAY_SIZE(icl_dp_combo_pll_24MHz_values);
  2175. for (index = 0; index < n_entries; index++) {
  2176. if (dco_integer == params[index].dco_integer &&
  2177. dco_fraction == params[index].dco_fraction &&
  2178. pdiv == params[index].pdiv &&
  2179. kdiv == params[index].kdiv &&
  2180. qdiv_mode == params[index].qdiv_mode &&
  2181. qdiv_ratio == params[index].qdiv_ratio)
  2182. break;
  2183. }
  2184. /* Map PLL Index to Link Clock */
  2185. switch (index) {
  2186. default:
  2187. MISSING_CASE(index);
  2188. /* fall through */
  2189. case 0:
  2190. link_clock = 540000;
  2191. break;
  2192. case 1:
  2193. link_clock = 270000;
  2194. break;
  2195. case 2:
  2196. link_clock = 162000;
  2197. break;
  2198. case 3:
  2199. link_clock = 324000;
  2200. break;
  2201. case 4:
  2202. link_clock = 216000;
  2203. break;
  2204. case 5:
  2205. link_clock = 432000;
  2206. break;
  2207. case 6:
  2208. link_clock = 648000;
  2209. break;
  2210. case 7:
  2211. link_clock = 810000;
  2212. break;
  2213. }
  2214. return link_clock;
  2215. }
  2216. static enum port icl_mg_pll_id_to_port(enum intel_dpll_id id)
  2217. {
  2218. return id - DPLL_ID_ICL_MGPLL1 + PORT_C;
  2219. }
  2220. static enum intel_dpll_id icl_port_to_mg_pll_id(enum port port)
  2221. {
  2222. return port - PORT_C + DPLL_ID_ICL_MGPLL1;
  2223. }
  2224. static bool icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc,
  2225. uint32_t *target_dco_khz,
  2226. struct intel_dpll_hw_state *state)
  2227. {
  2228. uint32_t dco_min_freq, dco_max_freq;
  2229. int div1_vals[] = {7, 5, 3, 2};
  2230. unsigned int i;
  2231. int div2;
  2232. dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000;
  2233. dco_max_freq = is_dp ? 8100000 : 10000000;
  2234. for (i = 0; i < ARRAY_SIZE(div1_vals); i++) {
  2235. int div1 = div1_vals[i];
  2236. for (div2 = 10; div2 > 0; div2--) {
  2237. int dco = div1 * div2 * clock_khz * 5;
  2238. int a_divratio, tlinedrv, inputsel;
  2239. u32 hsdiv;
  2240. if (dco < dco_min_freq || dco > dco_max_freq)
  2241. continue;
  2242. if (div2 >= 2) {
  2243. a_divratio = is_dp ? 10 : 5;
  2244. tlinedrv = 2;
  2245. } else {
  2246. a_divratio = 5;
  2247. tlinedrv = 0;
  2248. }
  2249. inputsel = is_dp ? 0 : 1;
  2250. switch (div1) {
  2251. default:
  2252. MISSING_CASE(div1);
  2253. /* fall through */
  2254. case 2:
  2255. hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2;
  2256. break;
  2257. case 3:
  2258. hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3;
  2259. break;
  2260. case 5:
  2261. hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5;
  2262. break;
  2263. case 7:
  2264. hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7;
  2265. break;
  2266. }
  2267. *target_dco_khz = dco;
  2268. state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1);
  2269. state->mg_clktop2_coreclkctl1 =
  2270. MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio);
  2271. state->mg_clktop2_hsclkctl =
  2272. MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) |
  2273. MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) |
  2274. hsdiv |
  2275. MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2);
  2276. return true;
  2277. }
  2278. }
  2279. return false;
  2280. }
  2281. /*
  2282. * The specification for this function uses real numbers, so the math had to be
  2283. * adapted to integer-only calculation, that's why it looks so different.
  2284. */
  2285. static bool icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state,
  2286. struct intel_encoder *encoder, int clock,
  2287. struct intel_dpll_hw_state *pll_state)
  2288. {
  2289. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2290. int refclk_khz = dev_priv->cdclk.hw.ref;
  2291. uint32_t dco_khz, m1div, m2div_int, m2div_rem, m2div_frac;
  2292. uint32_t iref_ndiv, iref_trim, iref_pulse_w;
  2293. uint32_t prop_coeff, int_coeff;
  2294. uint32_t tdc_targetcnt, feedfwgain;
  2295. uint64_t ssc_stepsize, ssc_steplen, ssc_steplog;
  2296. uint64_t tmp;
  2297. bool use_ssc = false;
  2298. bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI);
  2299. if (!icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz,
  2300. pll_state)) {
  2301. DRM_DEBUG_KMS("Failed to find divisors for clock %d\n", clock);
  2302. return false;
  2303. }
  2304. m1div = 2;
  2305. m2div_int = dco_khz / (refclk_khz * m1div);
  2306. if (m2div_int > 255) {
  2307. m1div = 4;
  2308. m2div_int = dco_khz / (refclk_khz * m1div);
  2309. if (m2div_int > 255) {
  2310. DRM_DEBUG_KMS("Failed to find mdiv for clock %d\n",
  2311. clock);
  2312. return false;
  2313. }
  2314. }
  2315. m2div_rem = dco_khz % (refclk_khz * m1div);
  2316. tmp = (uint64_t)m2div_rem * (1 << 22);
  2317. do_div(tmp, refclk_khz * m1div);
  2318. m2div_frac = tmp;
  2319. switch (refclk_khz) {
  2320. case 19200:
  2321. iref_ndiv = 1;
  2322. iref_trim = 28;
  2323. iref_pulse_w = 1;
  2324. break;
  2325. case 24000:
  2326. iref_ndiv = 1;
  2327. iref_trim = 25;
  2328. iref_pulse_w = 2;
  2329. break;
  2330. case 38400:
  2331. iref_ndiv = 2;
  2332. iref_trim = 28;
  2333. iref_pulse_w = 1;
  2334. break;
  2335. default:
  2336. MISSING_CASE(refclk_khz);
  2337. return false;
  2338. }
  2339. /*
  2340. * tdc_res = 0.000003
  2341. * tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5)
  2342. *
  2343. * The multiplication by 1000 is due to refclk MHz to KHz conversion. It
  2344. * was supposed to be a division, but we rearranged the operations of
  2345. * the formula to avoid early divisions so we don't multiply the
  2346. * rounding errors.
  2347. *
  2348. * 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which
  2349. * we also rearrange to work with integers.
  2350. *
  2351. * The 0.5 transformed to 5 results in a multiplication by 10 and the
  2352. * last division by 10.
  2353. */
  2354. tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10;
  2355. /*
  2356. * Here we divide dco_khz by 10 in order to allow the dividend to fit in
  2357. * 32 bits. That's not a problem since we round the division down
  2358. * anyway.
  2359. */
  2360. feedfwgain = (use_ssc || m2div_rem > 0) ?
  2361. m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0;
  2362. if (dco_khz >= 9000000) {
  2363. prop_coeff = 5;
  2364. int_coeff = 10;
  2365. } else {
  2366. prop_coeff = 4;
  2367. int_coeff = 8;
  2368. }
  2369. if (use_ssc) {
  2370. tmp = (uint64_t)dco_khz * 47 * 32;
  2371. do_div(tmp, refclk_khz * m1div * 10000);
  2372. ssc_stepsize = tmp;
  2373. tmp = (uint64_t)dco_khz * 1000;
  2374. ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32);
  2375. } else {
  2376. ssc_stepsize = 0;
  2377. ssc_steplen = 0;
  2378. }
  2379. ssc_steplog = 4;
  2380. pll_state->mg_pll_div0 = (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) |
  2381. MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) |
  2382. MG_PLL_DIV0_FBDIV_INT(m2div_int);
  2383. pll_state->mg_pll_div1 = MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) |
  2384. MG_PLL_DIV1_DITHER_DIV_2 |
  2385. MG_PLL_DIV1_NDIVRATIO(1) |
  2386. MG_PLL_DIV1_FBPREDIV(m1div);
  2387. pll_state->mg_pll_lf = MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) |
  2388. MG_PLL_LF_AFCCNTSEL_512 |
  2389. MG_PLL_LF_GAINCTRL(1) |
  2390. MG_PLL_LF_INT_COEFF(int_coeff) |
  2391. MG_PLL_LF_PROP_COEFF(prop_coeff);
  2392. pll_state->mg_pll_frac_lock = MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 |
  2393. MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 |
  2394. MG_PLL_FRAC_LOCK_LOCKTHRESH(10) |
  2395. MG_PLL_FRAC_LOCK_DCODITHEREN |
  2396. MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain);
  2397. if (use_ssc || m2div_rem > 0)
  2398. pll_state->mg_pll_frac_lock |= MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN;
  2399. pll_state->mg_pll_ssc = (use_ssc ? MG_PLL_SSC_EN : 0) |
  2400. MG_PLL_SSC_TYPE(2) |
  2401. MG_PLL_SSC_STEPLENGTH(ssc_steplen) |
  2402. MG_PLL_SSC_STEPNUM(ssc_steplog) |
  2403. MG_PLL_SSC_FLLEN |
  2404. MG_PLL_SSC_STEPSIZE(ssc_stepsize);
  2405. pll_state->mg_pll_tdc_coldst_bias = MG_PLL_TDC_COLDST_COLDSTART |
  2406. MG_PLL_TDC_COLDST_IREFINT_EN |
  2407. MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) |
  2408. MG_PLL_TDC_TDCOVCCORR_EN |
  2409. MG_PLL_TDC_TDCSEL(3);
  2410. pll_state->mg_pll_bias = MG_PLL_BIAS_BIAS_GB_SEL(3) |
  2411. MG_PLL_BIAS_INIT_DCOAMP(0x3F) |
  2412. MG_PLL_BIAS_BIAS_BONUS(10) |
  2413. MG_PLL_BIAS_BIASCAL_EN |
  2414. MG_PLL_BIAS_CTRIM(12) |
  2415. MG_PLL_BIAS_VREF_RDAC(4) |
  2416. MG_PLL_BIAS_IREFTRIM(iref_trim);
  2417. if (refclk_khz == 38400) {
  2418. pll_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART;
  2419. pll_state->mg_pll_bias_mask = 0;
  2420. } else {
  2421. pll_state->mg_pll_tdc_coldst_bias_mask = -1U;
  2422. pll_state->mg_pll_bias_mask = -1U;
  2423. }
  2424. pll_state->mg_pll_tdc_coldst_bias &= pll_state->mg_pll_tdc_coldst_bias_mask;
  2425. pll_state->mg_pll_bias &= pll_state->mg_pll_bias_mask;
  2426. return true;
  2427. }
  2428. static struct intel_shared_dpll *
  2429. icl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  2430. struct intel_encoder *encoder)
  2431. {
  2432. struct intel_digital_port *intel_dig_port =
  2433. enc_to_dig_port(&encoder->base);
  2434. struct intel_shared_dpll *pll;
  2435. struct intel_dpll_hw_state pll_state = {};
  2436. enum port port = encoder->port;
  2437. enum intel_dpll_id min, max;
  2438. int clock = crtc_state->port_clock;
  2439. bool ret;
  2440. switch (port) {
  2441. case PORT_A:
  2442. case PORT_B:
  2443. min = DPLL_ID_ICL_DPLL0;
  2444. max = DPLL_ID_ICL_DPLL1;
  2445. ret = icl_calc_dpll_state(crtc_state, encoder, clock,
  2446. &pll_state);
  2447. break;
  2448. case PORT_C:
  2449. case PORT_D:
  2450. case PORT_E:
  2451. case PORT_F:
  2452. if (intel_dig_port->tc_type == TC_PORT_TBT) {
  2453. min = DPLL_ID_ICL_TBTPLL;
  2454. max = min;
  2455. ret = icl_calc_dpll_state(crtc_state, encoder, clock,
  2456. &pll_state);
  2457. } else {
  2458. min = icl_port_to_mg_pll_id(port);
  2459. max = min;
  2460. ret = icl_calc_mg_pll_state(crtc_state, encoder, clock,
  2461. &pll_state);
  2462. }
  2463. break;
  2464. default:
  2465. MISSING_CASE(port);
  2466. return NULL;
  2467. }
  2468. if (!ret) {
  2469. DRM_DEBUG_KMS("Could not calculate PLL state.\n");
  2470. return NULL;
  2471. }
  2472. crtc_state->dpll_hw_state = pll_state;
  2473. pll = intel_find_shared_dpll(crtc, crtc_state, min, max);
  2474. if (!pll) {
  2475. DRM_DEBUG_KMS("No PLL selected\n");
  2476. return NULL;
  2477. }
  2478. intel_reference_shared_dpll(pll, crtc_state);
  2479. return pll;
  2480. }
  2481. static i915_reg_t icl_pll_id_to_enable_reg(enum intel_dpll_id id)
  2482. {
  2483. switch (id) {
  2484. default:
  2485. MISSING_CASE(id);
  2486. /* fall through */
  2487. case DPLL_ID_ICL_DPLL0:
  2488. case DPLL_ID_ICL_DPLL1:
  2489. return CNL_DPLL_ENABLE(id);
  2490. case DPLL_ID_ICL_TBTPLL:
  2491. return TBT_PLL_ENABLE;
  2492. case DPLL_ID_ICL_MGPLL1:
  2493. case DPLL_ID_ICL_MGPLL2:
  2494. case DPLL_ID_ICL_MGPLL3:
  2495. case DPLL_ID_ICL_MGPLL4:
  2496. return MG_PLL_ENABLE(icl_mg_pll_id_to_port(id));
  2497. }
  2498. }
  2499. static bool icl_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2500. struct intel_shared_dpll *pll,
  2501. struct intel_dpll_hw_state *hw_state)
  2502. {
  2503. const enum intel_dpll_id id = pll->info->id;
  2504. uint32_t val;
  2505. enum port port;
  2506. bool ret = false;
  2507. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2508. return false;
  2509. val = I915_READ(icl_pll_id_to_enable_reg(id));
  2510. if (!(val & PLL_ENABLE))
  2511. goto out;
  2512. switch (id) {
  2513. case DPLL_ID_ICL_DPLL0:
  2514. case DPLL_ID_ICL_DPLL1:
  2515. case DPLL_ID_ICL_TBTPLL:
  2516. hw_state->cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(id));
  2517. hw_state->cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(id));
  2518. break;
  2519. case DPLL_ID_ICL_MGPLL1:
  2520. case DPLL_ID_ICL_MGPLL2:
  2521. case DPLL_ID_ICL_MGPLL3:
  2522. case DPLL_ID_ICL_MGPLL4:
  2523. port = icl_mg_pll_id_to_port(id);
  2524. hw_state->mg_refclkin_ctl = I915_READ(MG_REFCLKIN_CTL(port));
  2525. hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK;
  2526. hw_state->mg_clktop2_coreclkctl1 =
  2527. I915_READ(MG_CLKTOP2_CORECLKCTL1(port));
  2528. hw_state->mg_clktop2_coreclkctl1 &=
  2529. MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
  2530. hw_state->mg_clktop2_hsclkctl =
  2531. I915_READ(MG_CLKTOP2_HSCLKCTL(port));
  2532. hw_state->mg_clktop2_hsclkctl &=
  2533. MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
  2534. MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
  2535. MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
  2536. MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK;
  2537. hw_state->mg_pll_div0 = I915_READ(MG_PLL_DIV0(port));
  2538. hw_state->mg_pll_div1 = I915_READ(MG_PLL_DIV1(port));
  2539. hw_state->mg_pll_lf = I915_READ(MG_PLL_LF(port));
  2540. hw_state->mg_pll_frac_lock = I915_READ(MG_PLL_FRAC_LOCK(port));
  2541. hw_state->mg_pll_ssc = I915_READ(MG_PLL_SSC(port));
  2542. hw_state->mg_pll_bias = I915_READ(MG_PLL_BIAS(port));
  2543. hw_state->mg_pll_tdc_coldst_bias =
  2544. I915_READ(MG_PLL_TDC_COLDST_BIAS(port));
  2545. if (dev_priv->cdclk.hw.ref == 38400) {
  2546. hw_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART;
  2547. hw_state->mg_pll_bias_mask = 0;
  2548. } else {
  2549. hw_state->mg_pll_tdc_coldst_bias_mask = -1U;
  2550. hw_state->mg_pll_bias_mask = -1U;
  2551. }
  2552. hw_state->mg_pll_tdc_coldst_bias &= hw_state->mg_pll_tdc_coldst_bias_mask;
  2553. hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask;
  2554. break;
  2555. default:
  2556. MISSING_CASE(id);
  2557. }
  2558. ret = true;
  2559. out:
  2560. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2561. return ret;
  2562. }
  2563. static void icl_dpll_write(struct drm_i915_private *dev_priv,
  2564. struct intel_shared_dpll *pll)
  2565. {
  2566. struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
  2567. const enum intel_dpll_id id = pll->info->id;
  2568. I915_WRITE(ICL_DPLL_CFGCR0(id), hw_state->cfgcr0);
  2569. I915_WRITE(ICL_DPLL_CFGCR1(id), hw_state->cfgcr1);
  2570. POSTING_READ(ICL_DPLL_CFGCR1(id));
  2571. }
  2572. static void icl_mg_pll_write(struct drm_i915_private *dev_priv,
  2573. struct intel_shared_dpll *pll)
  2574. {
  2575. struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
  2576. enum port port = icl_mg_pll_id_to_port(pll->info->id);
  2577. u32 val;
  2578. /*
  2579. * Some of the following registers have reserved fields, so program
  2580. * these with RMW based on a mask. The mask can be fixed or generated
  2581. * during the calc/readout phase if the mask depends on some other HW
  2582. * state like refclk, see icl_calc_mg_pll_state().
  2583. */
  2584. val = I915_READ(MG_REFCLKIN_CTL(port));
  2585. val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK;
  2586. val |= hw_state->mg_refclkin_ctl;
  2587. I915_WRITE(MG_REFCLKIN_CTL(port), val);
  2588. val = I915_READ(MG_CLKTOP2_CORECLKCTL1(port));
  2589. val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
  2590. val |= hw_state->mg_clktop2_coreclkctl1;
  2591. I915_WRITE(MG_CLKTOP2_CORECLKCTL1(port), val);
  2592. val = I915_READ(MG_CLKTOP2_HSCLKCTL(port));
  2593. val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
  2594. MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
  2595. MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
  2596. MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK);
  2597. val |= hw_state->mg_clktop2_hsclkctl;
  2598. I915_WRITE(MG_CLKTOP2_HSCLKCTL(port), val);
  2599. I915_WRITE(MG_PLL_DIV0(port), hw_state->mg_pll_div0);
  2600. I915_WRITE(MG_PLL_DIV1(port), hw_state->mg_pll_div1);
  2601. I915_WRITE(MG_PLL_LF(port), hw_state->mg_pll_lf);
  2602. I915_WRITE(MG_PLL_FRAC_LOCK(port), hw_state->mg_pll_frac_lock);
  2603. I915_WRITE(MG_PLL_SSC(port), hw_state->mg_pll_ssc);
  2604. val = I915_READ(MG_PLL_BIAS(port));
  2605. val &= ~hw_state->mg_pll_bias_mask;
  2606. val |= hw_state->mg_pll_bias;
  2607. I915_WRITE(MG_PLL_BIAS(port), val);
  2608. val = I915_READ(MG_PLL_TDC_COLDST_BIAS(port));
  2609. val &= ~hw_state->mg_pll_tdc_coldst_bias_mask;
  2610. val |= hw_state->mg_pll_tdc_coldst_bias;
  2611. I915_WRITE(MG_PLL_TDC_COLDST_BIAS(port), val);
  2612. POSTING_READ(MG_PLL_TDC_COLDST_BIAS(port));
  2613. }
  2614. static void icl_pll_enable(struct drm_i915_private *dev_priv,
  2615. struct intel_shared_dpll *pll)
  2616. {
  2617. const enum intel_dpll_id id = pll->info->id;
  2618. i915_reg_t enable_reg = icl_pll_id_to_enable_reg(id);
  2619. uint32_t val;
  2620. val = I915_READ(enable_reg);
  2621. val |= PLL_POWER_ENABLE;
  2622. I915_WRITE(enable_reg, val);
  2623. /*
  2624. * The spec says we need to "wait" but it also says it should be
  2625. * immediate.
  2626. */
  2627. if (intel_wait_for_register(dev_priv, enable_reg, PLL_POWER_STATE,
  2628. PLL_POWER_STATE, 1))
  2629. DRM_ERROR("PLL %d Power not enabled\n", id);
  2630. switch (id) {
  2631. case DPLL_ID_ICL_DPLL0:
  2632. case DPLL_ID_ICL_DPLL1:
  2633. case DPLL_ID_ICL_TBTPLL:
  2634. icl_dpll_write(dev_priv, pll);
  2635. break;
  2636. case DPLL_ID_ICL_MGPLL1:
  2637. case DPLL_ID_ICL_MGPLL2:
  2638. case DPLL_ID_ICL_MGPLL3:
  2639. case DPLL_ID_ICL_MGPLL4:
  2640. icl_mg_pll_write(dev_priv, pll);
  2641. break;
  2642. default:
  2643. MISSING_CASE(id);
  2644. }
  2645. /*
  2646. * DVFS pre sequence would be here, but in our driver the cdclk code
  2647. * paths should already be setting the appropriate voltage, hence we do
  2648. * nothign here.
  2649. */
  2650. val = I915_READ(enable_reg);
  2651. val |= PLL_ENABLE;
  2652. I915_WRITE(enable_reg, val);
  2653. if (intel_wait_for_register(dev_priv, enable_reg, PLL_LOCK, PLL_LOCK,
  2654. 1)) /* 600us actually. */
  2655. DRM_ERROR("PLL %d not locked\n", id);
  2656. /* DVFS post sequence would be here. See the comment above. */
  2657. }
  2658. static void icl_pll_disable(struct drm_i915_private *dev_priv,
  2659. struct intel_shared_dpll *pll)
  2660. {
  2661. const enum intel_dpll_id id = pll->info->id;
  2662. i915_reg_t enable_reg = icl_pll_id_to_enable_reg(id);
  2663. uint32_t val;
  2664. /* The first steps are done by intel_ddi_post_disable(). */
  2665. /*
  2666. * DVFS pre sequence would be here, but in our driver the cdclk code
  2667. * paths should already be setting the appropriate voltage, hence we do
  2668. * nothign here.
  2669. */
  2670. val = I915_READ(enable_reg);
  2671. val &= ~PLL_ENABLE;
  2672. I915_WRITE(enable_reg, val);
  2673. /* Timeout is actually 1us. */
  2674. if (intel_wait_for_register(dev_priv, enable_reg, PLL_LOCK, 0, 1))
  2675. DRM_ERROR("PLL %d locked\n", id);
  2676. /* DVFS post sequence would be here. See the comment above. */
  2677. val = I915_READ(enable_reg);
  2678. val &= ~PLL_POWER_ENABLE;
  2679. I915_WRITE(enable_reg, val);
  2680. /*
  2681. * The spec says we need to "wait" but it also says it should be
  2682. * immediate.
  2683. */
  2684. if (intel_wait_for_register(dev_priv, enable_reg, PLL_POWER_STATE, 0,
  2685. 1))
  2686. DRM_ERROR("PLL %d Power not disabled\n", id);
  2687. }
  2688. static void icl_dump_hw_state(struct drm_i915_private *dev_priv,
  2689. struct intel_dpll_hw_state *hw_state)
  2690. {
  2691. DRM_DEBUG_KMS("dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, "
  2692. "mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, "
  2693. "mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, "
  2694. "mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, "
  2695. "mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, "
  2696. "mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n",
  2697. hw_state->cfgcr0, hw_state->cfgcr1,
  2698. hw_state->mg_refclkin_ctl,
  2699. hw_state->mg_clktop2_coreclkctl1,
  2700. hw_state->mg_clktop2_hsclkctl,
  2701. hw_state->mg_pll_div0,
  2702. hw_state->mg_pll_div1,
  2703. hw_state->mg_pll_lf,
  2704. hw_state->mg_pll_frac_lock,
  2705. hw_state->mg_pll_ssc,
  2706. hw_state->mg_pll_bias,
  2707. hw_state->mg_pll_tdc_coldst_bias);
  2708. }
  2709. static const struct intel_shared_dpll_funcs icl_pll_funcs = {
  2710. .enable = icl_pll_enable,
  2711. .disable = icl_pll_disable,
  2712. .get_hw_state = icl_pll_get_hw_state,
  2713. };
  2714. static const struct dpll_info icl_plls[] = {
  2715. { "DPLL 0", &icl_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
  2716. { "DPLL 1", &icl_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
  2717. { "TBT PLL", &icl_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 },
  2718. { "MG PLL 1", &icl_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 },
  2719. { "MG PLL 2", &icl_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 },
  2720. { "MG PLL 3", &icl_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 },
  2721. { "MG PLL 4", &icl_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 },
  2722. { },
  2723. };
  2724. static const struct intel_dpll_mgr icl_pll_mgr = {
  2725. .dpll_info = icl_plls,
  2726. .get_dpll = icl_get_dpll,
  2727. .dump_hw_state = icl_dump_hw_state,
  2728. };
  2729. /**
  2730. * intel_shared_dpll_init - Initialize shared DPLLs
  2731. * @dev: drm device
  2732. *
  2733. * Initialize shared DPLLs for @dev.
  2734. */
  2735. void intel_shared_dpll_init(struct drm_device *dev)
  2736. {
  2737. struct drm_i915_private *dev_priv = to_i915(dev);
  2738. const struct intel_dpll_mgr *dpll_mgr = NULL;
  2739. const struct dpll_info *dpll_info;
  2740. int i;
  2741. if (IS_ICELAKE(dev_priv))
  2742. dpll_mgr = &icl_pll_mgr;
  2743. else if (IS_CANNONLAKE(dev_priv))
  2744. dpll_mgr = &cnl_pll_mgr;
  2745. else if (IS_GEN9_BC(dev_priv))
  2746. dpll_mgr = &skl_pll_mgr;
  2747. else if (IS_GEN9_LP(dev_priv))
  2748. dpll_mgr = &bxt_pll_mgr;
  2749. else if (HAS_DDI(dev_priv))
  2750. dpll_mgr = &hsw_pll_mgr;
  2751. else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
  2752. dpll_mgr = &pch_pll_mgr;
  2753. if (!dpll_mgr) {
  2754. dev_priv->num_shared_dpll = 0;
  2755. return;
  2756. }
  2757. dpll_info = dpll_mgr->dpll_info;
  2758. for (i = 0; dpll_info[i].name; i++) {
  2759. WARN_ON(i != dpll_info[i].id);
  2760. dev_priv->shared_dplls[i].info = &dpll_info[i];
  2761. }
  2762. dev_priv->dpll_mgr = dpll_mgr;
  2763. dev_priv->num_shared_dpll = i;
  2764. mutex_init(&dev_priv->dpll_lock);
  2765. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  2766. /* FIXME: Move this to a more suitable place */
  2767. if (HAS_DDI(dev_priv))
  2768. intel_ddi_pll_init(dev);
  2769. }
  2770. /**
  2771. * intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination
  2772. * @crtc: CRTC
  2773. * @crtc_state: atomic state for @crtc
  2774. * @encoder: encoder
  2775. *
  2776. * Find an appropriate DPLL for the given CRTC and encoder combination. A
  2777. * reference from the @crtc to the returned pll is registered in the atomic
  2778. * state. That configuration is made effective by calling
  2779. * intel_shared_dpll_swap_state(). The reference should be released by calling
  2780. * intel_release_shared_dpll().
  2781. *
  2782. * Returns:
  2783. * A shared DPLL to be used by @crtc and @encoder with the given @crtc_state.
  2784. */
  2785. struct intel_shared_dpll *
  2786. intel_get_shared_dpll(struct intel_crtc *crtc,
  2787. struct intel_crtc_state *crtc_state,
  2788. struct intel_encoder *encoder)
  2789. {
  2790. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  2791. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  2792. if (WARN_ON(!dpll_mgr))
  2793. return NULL;
  2794. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  2795. }
  2796. /**
  2797. * intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
  2798. * @dpll: dpll in use by @crtc
  2799. * @crtc: crtc
  2800. * @state: atomic state
  2801. *
  2802. * This function releases the reference from @crtc to @dpll from the
  2803. * atomic @state. The new configuration is made effective by calling
  2804. * intel_shared_dpll_swap_state().
  2805. */
  2806. void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
  2807. struct intel_crtc *crtc,
  2808. struct drm_atomic_state *state)
  2809. {
  2810. struct intel_shared_dpll_state *shared_dpll_state;
  2811. shared_dpll_state = intel_atomic_get_shared_dpll_state(state);
  2812. shared_dpll_state[dpll->info->id].crtc_mask &= ~(1 << crtc->pipe);
  2813. }
  2814. /**
  2815. * intel_shared_dpll_dump_hw_state - write hw_state to dmesg
  2816. * @dev_priv: i915 drm device
  2817. * @hw_state: hw state to be written to the log
  2818. *
  2819. * Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS.
  2820. */
  2821. void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
  2822. struct intel_dpll_hw_state *hw_state)
  2823. {
  2824. if (dev_priv->dpll_mgr) {
  2825. dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state);
  2826. } else {
  2827. /* fallback for platforms that don't use the shared dpll
  2828. * infrastructure
  2829. */
  2830. DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
  2831. "fp0: 0x%x, fp1: 0x%x\n",
  2832. hw_state->dpll,
  2833. hw_state->dpll_md,
  2834. hw_state->fp0,
  2835. hw_state->fp1);
  2836. }
  2837. }