intel_ddi.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <drm/drm_scdc_helper.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. struct ddi_buf_trans {
  31. u32 trans1; /* balance leg enable, de-emph level */
  32. u32 trans2; /* vref sel, vswing */
  33. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  34. };
  35. static const u8 index_to_dp_signal_levels[] = {
  36. [0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  37. [1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  38. [2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2,
  39. [3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3,
  40. [4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  41. [5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  42. [6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2,
  43. [7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  44. [8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  45. [9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  46. };
  47. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  48. * them for both DP and FDI transports, allowing those ports to
  49. * automatically adapt to HDMI connections as well
  50. */
  51. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  52. { 0x00FFFFFF, 0x0006000E, 0x0 },
  53. { 0x00D75FFF, 0x0005000A, 0x0 },
  54. { 0x00C30FFF, 0x00040006, 0x0 },
  55. { 0x80AAAFFF, 0x000B0000, 0x0 },
  56. { 0x00FFFFFF, 0x0005000A, 0x0 },
  57. { 0x00D75FFF, 0x000C0004, 0x0 },
  58. { 0x80C30FFF, 0x000B0000, 0x0 },
  59. { 0x00FFFFFF, 0x00040006, 0x0 },
  60. { 0x80D75FFF, 0x000B0000, 0x0 },
  61. };
  62. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  63. { 0x00FFFFFF, 0x0007000E, 0x0 },
  64. { 0x00D75FFF, 0x000F000A, 0x0 },
  65. { 0x00C30FFF, 0x00060006, 0x0 },
  66. { 0x00AAAFFF, 0x001E0000, 0x0 },
  67. { 0x00FFFFFF, 0x000F000A, 0x0 },
  68. { 0x00D75FFF, 0x00160004, 0x0 },
  69. { 0x00C30FFF, 0x001E0000, 0x0 },
  70. { 0x00FFFFFF, 0x00060006, 0x0 },
  71. { 0x00D75FFF, 0x001E0000, 0x0 },
  72. };
  73. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  74. /* Idx NT mV d T mV d db */
  75. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  76. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  77. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  78. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  79. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  80. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  81. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  82. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  83. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  84. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  85. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  86. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  87. };
  88. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  89. { 0x00FFFFFF, 0x00000012, 0x0 },
  90. { 0x00EBAFFF, 0x00020011, 0x0 },
  91. { 0x00C71FFF, 0x0006000F, 0x0 },
  92. { 0x00AAAFFF, 0x000E000A, 0x0 },
  93. { 0x00FFFFFF, 0x00020011, 0x0 },
  94. { 0x00DB6FFF, 0x0005000F, 0x0 },
  95. { 0x00BEEFFF, 0x000A000C, 0x0 },
  96. { 0x00FFFFFF, 0x0005000F, 0x0 },
  97. { 0x00DB6FFF, 0x000A000C, 0x0 },
  98. };
  99. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  100. { 0x00FFFFFF, 0x0007000E, 0x0 },
  101. { 0x00D75FFF, 0x000E000A, 0x0 },
  102. { 0x00BEFFFF, 0x00140006, 0x0 },
  103. { 0x80B2CFFF, 0x001B0002, 0x0 },
  104. { 0x00FFFFFF, 0x000E000A, 0x0 },
  105. { 0x00DB6FFF, 0x00160005, 0x0 },
  106. { 0x80C71FFF, 0x001A0002, 0x0 },
  107. { 0x00F7DFFF, 0x00180004, 0x0 },
  108. { 0x80D75FFF, 0x001B0002, 0x0 },
  109. };
  110. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  111. { 0x00FFFFFF, 0x0001000E, 0x0 },
  112. { 0x00D75FFF, 0x0004000A, 0x0 },
  113. { 0x00C30FFF, 0x00070006, 0x0 },
  114. { 0x00AAAFFF, 0x000C0000, 0x0 },
  115. { 0x00FFFFFF, 0x0004000A, 0x0 },
  116. { 0x00D75FFF, 0x00090004, 0x0 },
  117. { 0x00C30FFF, 0x000C0000, 0x0 },
  118. { 0x00FFFFFF, 0x00070006, 0x0 },
  119. { 0x00D75FFF, 0x000C0000, 0x0 },
  120. };
  121. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  122. /* Idx NT mV d T mV df db */
  123. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  124. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  125. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  126. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  127. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  128. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  129. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  130. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  131. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  132. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  133. };
  134. /* Skylake H and S */
  135. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  136. { 0x00002016, 0x000000A0, 0x0 },
  137. { 0x00005012, 0x0000009B, 0x0 },
  138. { 0x00007011, 0x00000088, 0x0 },
  139. { 0x80009010, 0x000000C0, 0x1 },
  140. { 0x00002016, 0x0000009B, 0x0 },
  141. { 0x00005012, 0x00000088, 0x0 },
  142. { 0x80007011, 0x000000C0, 0x1 },
  143. { 0x00002016, 0x000000DF, 0x0 },
  144. { 0x80005012, 0x000000C0, 0x1 },
  145. };
  146. /* Skylake U */
  147. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  148. { 0x0000201B, 0x000000A2, 0x0 },
  149. { 0x00005012, 0x00000088, 0x0 },
  150. { 0x80007011, 0x000000CD, 0x1 },
  151. { 0x80009010, 0x000000C0, 0x1 },
  152. { 0x0000201B, 0x0000009D, 0x0 },
  153. { 0x80005012, 0x000000C0, 0x1 },
  154. { 0x80007011, 0x000000C0, 0x1 },
  155. { 0x00002016, 0x00000088, 0x0 },
  156. { 0x80005012, 0x000000C0, 0x1 },
  157. };
  158. /* Skylake Y */
  159. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  160. { 0x00000018, 0x000000A2, 0x0 },
  161. { 0x00005012, 0x00000088, 0x0 },
  162. { 0x80007011, 0x000000CD, 0x3 },
  163. { 0x80009010, 0x000000C0, 0x3 },
  164. { 0x00000018, 0x0000009D, 0x0 },
  165. { 0x80005012, 0x000000C0, 0x3 },
  166. { 0x80007011, 0x000000C0, 0x3 },
  167. { 0x00000018, 0x00000088, 0x0 },
  168. { 0x80005012, 0x000000C0, 0x3 },
  169. };
  170. /* Kabylake H and S */
  171. static const struct ddi_buf_trans kbl_ddi_translations_dp[] = {
  172. { 0x00002016, 0x000000A0, 0x0 },
  173. { 0x00005012, 0x0000009B, 0x0 },
  174. { 0x00007011, 0x00000088, 0x0 },
  175. { 0x80009010, 0x000000C0, 0x1 },
  176. { 0x00002016, 0x0000009B, 0x0 },
  177. { 0x00005012, 0x00000088, 0x0 },
  178. { 0x80007011, 0x000000C0, 0x1 },
  179. { 0x00002016, 0x00000097, 0x0 },
  180. { 0x80005012, 0x000000C0, 0x1 },
  181. };
  182. /* Kabylake U */
  183. static const struct ddi_buf_trans kbl_u_ddi_translations_dp[] = {
  184. { 0x0000201B, 0x000000A1, 0x0 },
  185. { 0x00005012, 0x00000088, 0x0 },
  186. { 0x80007011, 0x000000CD, 0x3 },
  187. { 0x80009010, 0x000000C0, 0x3 },
  188. { 0x0000201B, 0x0000009D, 0x0 },
  189. { 0x80005012, 0x000000C0, 0x3 },
  190. { 0x80007011, 0x000000C0, 0x3 },
  191. { 0x00002016, 0x0000004F, 0x0 },
  192. { 0x80005012, 0x000000C0, 0x3 },
  193. };
  194. /* Kabylake Y */
  195. static const struct ddi_buf_trans kbl_y_ddi_translations_dp[] = {
  196. { 0x00001017, 0x000000A1, 0x0 },
  197. { 0x00005012, 0x00000088, 0x0 },
  198. { 0x80007011, 0x000000CD, 0x3 },
  199. { 0x8000800F, 0x000000C0, 0x3 },
  200. { 0x00001017, 0x0000009D, 0x0 },
  201. { 0x80005012, 0x000000C0, 0x3 },
  202. { 0x80007011, 0x000000C0, 0x3 },
  203. { 0x00001017, 0x0000004C, 0x0 },
  204. { 0x80005012, 0x000000C0, 0x3 },
  205. };
  206. /*
  207. * Skylake/Kabylake H and S
  208. * eDP 1.4 low vswing translation parameters
  209. */
  210. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  211. { 0x00000018, 0x000000A8, 0x0 },
  212. { 0x00004013, 0x000000A9, 0x0 },
  213. { 0x00007011, 0x000000A2, 0x0 },
  214. { 0x00009010, 0x0000009C, 0x0 },
  215. { 0x00000018, 0x000000A9, 0x0 },
  216. { 0x00006013, 0x000000A2, 0x0 },
  217. { 0x00007011, 0x000000A6, 0x0 },
  218. { 0x00000018, 0x000000AB, 0x0 },
  219. { 0x00007013, 0x0000009F, 0x0 },
  220. { 0x00000018, 0x000000DF, 0x0 },
  221. };
  222. /*
  223. * Skylake/Kabylake U
  224. * eDP 1.4 low vswing translation parameters
  225. */
  226. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  227. { 0x00000018, 0x000000A8, 0x0 },
  228. { 0x00004013, 0x000000A9, 0x0 },
  229. { 0x00007011, 0x000000A2, 0x0 },
  230. { 0x00009010, 0x0000009C, 0x0 },
  231. { 0x00000018, 0x000000A9, 0x0 },
  232. { 0x00006013, 0x000000A2, 0x0 },
  233. { 0x00007011, 0x000000A6, 0x0 },
  234. { 0x00002016, 0x000000AB, 0x0 },
  235. { 0x00005013, 0x0000009F, 0x0 },
  236. { 0x00000018, 0x000000DF, 0x0 },
  237. };
  238. /*
  239. * Skylake/Kabylake Y
  240. * eDP 1.4 low vswing translation parameters
  241. */
  242. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  243. { 0x00000018, 0x000000A8, 0x0 },
  244. { 0x00004013, 0x000000AB, 0x0 },
  245. { 0x00007011, 0x000000A4, 0x0 },
  246. { 0x00009010, 0x000000DF, 0x0 },
  247. { 0x00000018, 0x000000AA, 0x0 },
  248. { 0x00006013, 0x000000A4, 0x0 },
  249. { 0x00007011, 0x0000009D, 0x0 },
  250. { 0x00000018, 0x000000A0, 0x0 },
  251. { 0x00006012, 0x000000DF, 0x0 },
  252. { 0x00000018, 0x0000008A, 0x0 },
  253. };
  254. /* Skylake/Kabylake U, H and S */
  255. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  256. { 0x00000018, 0x000000AC, 0x0 },
  257. { 0x00005012, 0x0000009D, 0x0 },
  258. { 0x00007011, 0x00000088, 0x0 },
  259. { 0x00000018, 0x000000A1, 0x0 },
  260. { 0x00000018, 0x00000098, 0x0 },
  261. { 0x00004013, 0x00000088, 0x0 },
  262. { 0x80006012, 0x000000CD, 0x1 },
  263. { 0x00000018, 0x000000DF, 0x0 },
  264. { 0x80003015, 0x000000CD, 0x1 }, /* Default */
  265. { 0x80003015, 0x000000C0, 0x1 },
  266. { 0x80000018, 0x000000C0, 0x1 },
  267. };
  268. /* Skylake/Kabylake Y */
  269. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  270. { 0x00000018, 0x000000A1, 0x0 },
  271. { 0x00005012, 0x000000DF, 0x0 },
  272. { 0x80007011, 0x000000CB, 0x3 },
  273. { 0x00000018, 0x000000A4, 0x0 },
  274. { 0x00000018, 0x0000009D, 0x0 },
  275. { 0x00004013, 0x00000080, 0x0 },
  276. { 0x80006013, 0x000000C0, 0x3 },
  277. { 0x00000018, 0x0000008A, 0x0 },
  278. { 0x80003015, 0x000000C0, 0x3 }, /* Default */
  279. { 0x80003015, 0x000000C0, 0x3 },
  280. { 0x80000018, 0x000000C0, 0x3 },
  281. };
  282. struct bxt_ddi_buf_trans {
  283. u8 margin; /* swing value */
  284. u8 scale; /* scale value */
  285. u8 enable; /* scale enable */
  286. u8 deemphasis;
  287. };
  288. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  289. /* Idx NT mV diff db */
  290. { 52, 0x9A, 0, 128, }, /* 0: 400 0 */
  291. { 78, 0x9A, 0, 85, }, /* 1: 400 3.5 */
  292. { 104, 0x9A, 0, 64, }, /* 2: 400 6 */
  293. { 154, 0x9A, 0, 43, }, /* 3: 400 9.5 */
  294. { 77, 0x9A, 0, 128, }, /* 4: 600 0 */
  295. { 116, 0x9A, 0, 85, }, /* 5: 600 3.5 */
  296. { 154, 0x9A, 0, 64, }, /* 6: 600 6 */
  297. { 102, 0x9A, 0, 128, }, /* 7: 800 0 */
  298. { 154, 0x9A, 0, 85, }, /* 8: 800 3.5 */
  299. { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
  300. };
  301. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  302. /* Idx NT mV diff db */
  303. { 26, 0, 0, 128, }, /* 0: 200 0 */
  304. { 38, 0, 0, 112, }, /* 1: 200 1.5 */
  305. { 48, 0, 0, 96, }, /* 2: 200 4 */
  306. { 54, 0, 0, 69, }, /* 3: 200 6 */
  307. { 32, 0, 0, 128, }, /* 4: 250 0 */
  308. { 48, 0, 0, 104, }, /* 5: 250 1.5 */
  309. { 54, 0, 0, 85, }, /* 6: 250 4 */
  310. { 43, 0, 0, 128, }, /* 7: 300 0 */
  311. { 54, 0, 0, 101, }, /* 8: 300 1.5 */
  312. { 48, 0, 0, 128, }, /* 9: 300 0 */
  313. };
  314. /* BSpec has 2 recommended values - entries 0 and 8.
  315. * Using the entry with higher vswing.
  316. */
  317. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  318. /* Idx NT mV diff db */
  319. { 52, 0x9A, 0, 128, }, /* 0: 400 0 */
  320. { 52, 0x9A, 0, 85, }, /* 1: 400 3.5 */
  321. { 52, 0x9A, 0, 64, }, /* 2: 400 6 */
  322. { 42, 0x9A, 0, 43, }, /* 3: 400 9.5 */
  323. { 77, 0x9A, 0, 128, }, /* 4: 600 0 */
  324. { 77, 0x9A, 0, 85, }, /* 5: 600 3.5 */
  325. { 77, 0x9A, 0, 64, }, /* 6: 600 6 */
  326. { 102, 0x9A, 0, 128, }, /* 7: 800 0 */
  327. { 102, 0x9A, 0, 85, }, /* 8: 800 3.5 */
  328. { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
  329. };
  330. struct cnl_ddi_buf_trans {
  331. u8 dw2_swing_sel;
  332. u8 dw7_n_scalar;
  333. u8 dw4_cursor_coeff;
  334. u8 dw4_post_cursor_2;
  335. u8 dw4_post_cursor_1;
  336. };
  337. /* Voltage Swing Programming for VccIO 0.85V for DP */
  338. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_85V[] = {
  339. /* NT mV Trans mV db */
  340. { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
  341. { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
  342. { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
  343. { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
  344. { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
  345. { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
  346. { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
  347. { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
  348. { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
  349. { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
  350. };
  351. /* Voltage Swing Programming for VccIO 0.85V for HDMI */
  352. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_85V[] = {
  353. /* NT mV Trans mV db */
  354. { 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  355. { 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */
  356. { 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */
  357. { 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 */
  358. { 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */
  359. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */
  360. { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  361. };
  362. /* Voltage Swing Programming for VccIO 0.85V for eDP */
  363. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_85V[] = {
  364. /* NT mV Trans mV db */
  365. { 0xA, 0x66, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  366. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  367. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  368. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  369. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  370. { 0xA, 0x66, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  371. { 0xB, 0x70, 0x3C, 0x00, 0x03 }, /* 460 600 2.3 */
  372. { 0xC, 0x75, 0x3C, 0x00, 0x03 }, /* 537 700 2.3 */
  373. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  374. };
  375. /* Voltage Swing Programming for VccIO 0.95V for DP */
  376. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_95V[] = {
  377. /* NT mV Trans mV db */
  378. { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
  379. { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
  380. { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
  381. { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
  382. { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
  383. { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
  384. { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
  385. { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
  386. { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
  387. { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
  388. };
  389. /* Voltage Swing Programming for VccIO 0.95V for HDMI */
  390. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_95V[] = {
  391. /* NT mV Trans mV db */
  392. { 0xA, 0x5C, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  393. { 0xB, 0x69, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  394. { 0x5, 0x76, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  395. { 0xA, 0x5E, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  396. { 0xB, 0x69, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  397. { 0xB, 0x79, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  398. { 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
  399. { 0x5, 0x76, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
  400. { 0x6, 0x7D, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
  401. { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
  402. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  403. };
  404. /* Voltage Swing Programming for VccIO 0.95V for eDP */
  405. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_95V[] = {
  406. /* NT mV Trans mV db */
  407. { 0xA, 0x61, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  408. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  409. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  410. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  411. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  412. { 0xA, 0x61, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  413. { 0xB, 0x68, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
  414. { 0xC, 0x6E, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
  415. { 0x4, 0x7F, 0x3A, 0x00, 0x05 }, /* 460 600 2.3 */
  416. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  417. };
  418. /* Voltage Swing Programming for VccIO 1.05V for DP */
  419. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_1_05V[] = {
  420. /* NT mV Trans mV db */
  421. { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  422. { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  423. { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  424. { 0x6, 0x7F, 0x2C, 0x00, 0x13 }, /* 400 1050 8.4 */
  425. { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  426. { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  427. { 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 550 1050 5.6 */
  428. { 0x5, 0x76, 0x3E, 0x00, 0x01 }, /* 850 900 0.5 */
  429. { 0x6, 0x7F, 0x36, 0x00, 0x09 }, /* 750 1050 2.9 */
  430. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  431. };
  432. /* Voltage Swing Programming for VccIO 1.05V for HDMI */
  433. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_1_05V[] = {
  434. /* NT mV Trans mV db */
  435. { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  436. { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  437. { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  438. { 0xA, 0x5B, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  439. { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  440. { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  441. { 0x6, 0x7C, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
  442. { 0x5, 0x70, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
  443. { 0x6, 0x7C, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
  444. { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
  445. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  446. };
  447. /* Voltage Swing Programming for VccIO 1.05V for eDP */
  448. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_1_05V[] = {
  449. /* NT mV Trans mV db */
  450. { 0xA, 0x5E, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  451. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  452. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  453. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  454. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  455. { 0xA, 0x5E, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  456. { 0xB, 0x64, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
  457. { 0xE, 0x6A, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
  458. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  459. };
  460. struct icl_combo_phy_ddi_buf_trans {
  461. u32 dw2_swing_select;
  462. u32 dw2_swing_scalar;
  463. u32 dw4_scaling;
  464. };
  465. /* Voltage Swing Programming for VccIO 0.85V for DP */
  466. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_0_85V[] = {
  467. /* Voltage mV db */
  468. { 0x2, 0x98, 0x0018 }, /* 400 0.0 */
  469. { 0x2, 0x98, 0x3015 }, /* 400 3.5 */
  470. { 0x2, 0x98, 0x6012 }, /* 400 6.0 */
  471. { 0x2, 0x98, 0x900F }, /* 400 9.5 */
  472. { 0xB, 0x70, 0x0018 }, /* 600 0.0 */
  473. { 0xB, 0x70, 0x3015 }, /* 600 3.5 */
  474. { 0xB, 0x70, 0x6012 }, /* 600 6.0 */
  475. { 0x5, 0x00, 0x0018 }, /* 800 0.0 */
  476. { 0x5, 0x00, 0x3015 }, /* 800 3.5 */
  477. { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */
  478. };
  479. /* FIXME - After table is updated in Bspec */
  480. /* Voltage Swing Programming for VccIO 0.85V for eDP */
  481. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_0_85V[] = {
  482. /* Voltage mV db */
  483. { 0x0, 0x00, 0x00 }, /* 200 0.0 */
  484. { 0x0, 0x00, 0x00 }, /* 200 1.5 */
  485. { 0x0, 0x00, 0x00 }, /* 200 4.0 */
  486. { 0x0, 0x00, 0x00 }, /* 200 6.0 */
  487. { 0x0, 0x00, 0x00 }, /* 250 0.0 */
  488. { 0x0, 0x00, 0x00 }, /* 250 1.5 */
  489. { 0x0, 0x00, 0x00 }, /* 250 4.0 */
  490. { 0x0, 0x00, 0x00 }, /* 300 0.0 */
  491. { 0x0, 0x00, 0x00 }, /* 300 1.5 */
  492. { 0x0, 0x00, 0x00 }, /* 350 0.0 */
  493. };
  494. /* Voltage Swing Programming for VccIO 0.95V for DP */
  495. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_0_95V[] = {
  496. /* Voltage mV db */
  497. { 0x2, 0x98, 0x0018 }, /* 400 0.0 */
  498. { 0x2, 0x98, 0x3015 }, /* 400 3.5 */
  499. { 0x2, 0x98, 0x6012 }, /* 400 6.0 */
  500. { 0x2, 0x98, 0x900F }, /* 400 9.5 */
  501. { 0x4, 0x98, 0x0018 }, /* 600 0.0 */
  502. { 0x4, 0x98, 0x3015 }, /* 600 3.5 */
  503. { 0x4, 0x98, 0x6012 }, /* 600 6.0 */
  504. { 0x5, 0x76, 0x0018 }, /* 800 0.0 */
  505. { 0x5, 0x76, 0x3015 }, /* 800 3.5 */
  506. { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */
  507. };
  508. /* FIXME - After table is updated in Bspec */
  509. /* Voltage Swing Programming for VccIO 0.95V for eDP */
  510. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_0_95V[] = {
  511. /* Voltage mV db */
  512. { 0x0, 0x00, 0x00 }, /* 200 0.0 */
  513. { 0x0, 0x00, 0x00 }, /* 200 1.5 */
  514. { 0x0, 0x00, 0x00 }, /* 200 4.0 */
  515. { 0x0, 0x00, 0x00 }, /* 200 6.0 */
  516. { 0x0, 0x00, 0x00 }, /* 250 0.0 */
  517. { 0x0, 0x00, 0x00 }, /* 250 1.5 */
  518. { 0x0, 0x00, 0x00 }, /* 250 4.0 */
  519. { 0x0, 0x00, 0x00 }, /* 300 0.0 */
  520. { 0x0, 0x00, 0x00 }, /* 300 1.5 */
  521. { 0x0, 0x00, 0x00 }, /* 350 0.0 */
  522. };
  523. /* Voltage Swing Programming for VccIO 1.05V for DP */
  524. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_1_05V[] = {
  525. /* Voltage mV db */
  526. { 0x2, 0x98, 0x0018 }, /* 400 0.0 */
  527. { 0x2, 0x98, 0x3015 }, /* 400 3.5 */
  528. { 0x2, 0x98, 0x6012 }, /* 400 6.0 */
  529. { 0x2, 0x98, 0x900F }, /* 400 9.5 */
  530. { 0x4, 0x98, 0x0018 }, /* 600 0.0 */
  531. { 0x4, 0x98, 0x3015 }, /* 600 3.5 */
  532. { 0x4, 0x98, 0x6012 }, /* 600 6.0 */
  533. { 0x5, 0x71, 0x0018 }, /* 800 0.0 */
  534. { 0x5, 0x71, 0x3015 }, /* 800 3.5 */
  535. { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */
  536. };
  537. /* FIXME - After table is updated in Bspec */
  538. /* Voltage Swing Programming for VccIO 1.05V for eDP */
  539. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_1_05V[] = {
  540. /* Voltage mV db */
  541. { 0x0, 0x00, 0x00 }, /* 200 0.0 */
  542. { 0x0, 0x00, 0x00 }, /* 200 1.5 */
  543. { 0x0, 0x00, 0x00 }, /* 200 4.0 */
  544. { 0x0, 0x00, 0x00 }, /* 200 6.0 */
  545. { 0x0, 0x00, 0x00 }, /* 250 0.0 */
  546. { 0x0, 0x00, 0x00 }, /* 250 1.5 */
  547. { 0x0, 0x00, 0x00 }, /* 250 4.0 */
  548. { 0x0, 0x00, 0x00 }, /* 300 0.0 */
  549. { 0x0, 0x00, 0x00 }, /* 300 1.5 */
  550. { 0x0, 0x00, 0x00 }, /* 350 0.0 */
  551. };
  552. struct icl_mg_phy_ddi_buf_trans {
  553. u32 cri_txdeemph_override_5_0;
  554. u32 cri_txdeemph_override_11_6;
  555. u32 cri_txdeemph_override_17_12;
  556. };
  557. static const struct icl_mg_phy_ddi_buf_trans icl_mg_phy_ddi_translations[] = {
  558. /* Voltage swing pre-emphasis */
  559. { 0x0, 0x1B, 0x00 }, /* 0 0 */
  560. { 0x0, 0x23, 0x08 }, /* 0 1 */
  561. { 0x0, 0x2D, 0x12 }, /* 0 2 */
  562. { 0x0, 0x00, 0x00 }, /* 0 3 */
  563. { 0x0, 0x23, 0x00 }, /* 1 0 */
  564. { 0x0, 0x2B, 0x09 }, /* 1 1 */
  565. { 0x0, 0x2E, 0x11 }, /* 1 2 */
  566. { 0x0, 0x2F, 0x00 }, /* 2 0 */
  567. { 0x0, 0x33, 0x0C }, /* 2 1 */
  568. { 0x0, 0x00, 0x00 }, /* 3 0 */
  569. };
  570. static const struct ddi_buf_trans *
  571. bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  572. {
  573. if (dev_priv->vbt.edp.low_vswing) {
  574. *n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  575. return bdw_ddi_translations_edp;
  576. } else {
  577. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  578. return bdw_ddi_translations_dp;
  579. }
  580. }
  581. static const struct ddi_buf_trans *
  582. skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  583. {
  584. if (IS_SKL_ULX(dev_priv)) {
  585. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  586. return skl_y_ddi_translations_dp;
  587. } else if (IS_SKL_ULT(dev_priv)) {
  588. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  589. return skl_u_ddi_translations_dp;
  590. } else {
  591. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  592. return skl_ddi_translations_dp;
  593. }
  594. }
  595. static const struct ddi_buf_trans *
  596. kbl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  597. {
  598. if (IS_KBL_ULX(dev_priv)) {
  599. *n_entries = ARRAY_SIZE(kbl_y_ddi_translations_dp);
  600. return kbl_y_ddi_translations_dp;
  601. } else if (IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv)) {
  602. *n_entries = ARRAY_SIZE(kbl_u_ddi_translations_dp);
  603. return kbl_u_ddi_translations_dp;
  604. } else {
  605. *n_entries = ARRAY_SIZE(kbl_ddi_translations_dp);
  606. return kbl_ddi_translations_dp;
  607. }
  608. }
  609. static const struct ddi_buf_trans *
  610. skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  611. {
  612. if (dev_priv->vbt.edp.low_vswing) {
  613. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  614. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  615. return skl_y_ddi_translations_edp;
  616. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv) ||
  617. IS_CFL_ULT(dev_priv)) {
  618. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  619. return skl_u_ddi_translations_edp;
  620. } else {
  621. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  622. return skl_ddi_translations_edp;
  623. }
  624. }
  625. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
  626. return kbl_get_buf_trans_dp(dev_priv, n_entries);
  627. else
  628. return skl_get_buf_trans_dp(dev_priv, n_entries);
  629. }
  630. static const struct ddi_buf_trans *
  631. skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  632. {
  633. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  634. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  635. return skl_y_ddi_translations_hdmi;
  636. } else {
  637. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  638. return skl_ddi_translations_hdmi;
  639. }
  640. }
  641. static int skl_buf_trans_num_entries(enum port port, int n_entries)
  642. {
  643. /* Only DDIA and DDIE can select the 10th register with DP */
  644. if (port == PORT_A || port == PORT_E)
  645. return min(n_entries, 10);
  646. else
  647. return min(n_entries, 9);
  648. }
  649. static const struct ddi_buf_trans *
  650. intel_ddi_get_buf_trans_dp(struct drm_i915_private *dev_priv,
  651. enum port port, int *n_entries)
  652. {
  653. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) {
  654. const struct ddi_buf_trans *ddi_translations =
  655. kbl_get_buf_trans_dp(dev_priv, n_entries);
  656. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  657. return ddi_translations;
  658. } else if (IS_SKYLAKE(dev_priv)) {
  659. const struct ddi_buf_trans *ddi_translations =
  660. skl_get_buf_trans_dp(dev_priv, n_entries);
  661. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  662. return ddi_translations;
  663. } else if (IS_BROADWELL(dev_priv)) {
  664. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  665. return bdw_ddi_translations_dp;
  666. } else if (IS_HASWELL(dev_priv)) {
  667. *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  668. return hsw_ddi_translations_dp;
  669. }
  670. *n_entries = 0;
  671. return NULL;
  672. }
  673. static const struct ddi_buf_trans *
  674. intel_ddi_get_buf_trans_edp(struct drm_i915_private *dev_priv,
  675. enum port port, int *n_entries)
  676. {
  677. if (IS_GEN9_BC(dev_priv)) {
  678. const struct ddi_buf_trans *ddi_translations =
  679. skl_get_buf_trans_edp(dev_priv, n_entries);
  680. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  681. return ddi_translations;
  682. } else if (IS_BROADWELL(dev_priv)) {
  683. return bdw_get_buf_trans_edp(dev_priv, n_entries);
  684. } else if (IS_HASWELL(dev_priv)) {
  685. *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  686. return hsw_ddi_translations_dp;
  687. }
  688. *n_entries = 0;
  689. return NULL;
  690. }
  691. static const struct ddi_buf_trans *
  692. intel_ddi_get_buf_trans_fdi(struct drm_i915_private *dev_priv,
  693. int *n_entries)
  694. {
  695. if (IS_BROADWELL(dev_priv)) {
  696. *n_entries = ARRAY_SIZE(bdw_ddi_translations_fdi);
  697. return bdw_ddi_translations_fdi;
  698. } else if (IS_HASWELL(dev_priv)) {
  699. *n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi);
  700. return hsw_ddi_translations_fdi;
  701. }
  702. *n_entries = 0;
  703. return NULL;
  704. }
  705. static const struct ddi_buf_trans *
  706. intel_ddi_get_buf_trans_hdmi(struct drm_i915_private *dev_priv,
  707. int *n_entries)
  708. {
  709. if (IS_GEN9_BC(dev_priv)) {
  710. return skl_get_buf_trans_hdmi(dev_priv, n_entries);
  711. } else if (IS_BROADWELL(dev_priv)) {
  712. *n_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  713. return bdw_ddi_translations_hdmi;
  714. } else if (IS_HASWELL(dev_priv)) {
  715. *n_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  716. return hsw_ddi_translations_hdmi;
  717. }
  718. *n_entries = 0;
  719. return NULL;
  720. }
  721. static const struct bxt_ddi_buf_trans *
  722. bxt_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  723. {
  724. *n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  725. return bxt_ddi_translations_dp;
  726. }
  727. static const struct bxt_ddi_buf_trans *
  728. bxt_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  729. {
  730. if (dev_priv->vbt.edp.low_vswing) {
  731. *n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  732. return bxt_ddi_translations_edp;
  733. }
  734. return bxt_get_buf_trans_dp(dev_priv, n_entries);
  735. }
  736. static const struct bxt_ddi_buf_trans *
  737. bxt_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  738. {
  739. *n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  740. return bxt_ddi_translations_hdmi;
  741. }
  742. static const struct cnl_ddi_buf_trans *
  743. cnl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  744. {
  745. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  746. if (voltage == VOLTAGE_INFO_0_85V) {
  747. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_85V);
  748. return cnl_ddi_translations_hdmi_0_85V;
  749. } else if (voltage == VOLTAGE_INFO_0_95V) {
  750. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_95V);
  751. return cnl_ddi_translations_hdmi_0_95V;
  752. } else if (voltage == VOLTAGE_INFO_1_05V) {
  753. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_1_05V);
  754. return cnl_ddi_translations_hdmi_1_05V;
  755. } else {
  756. *n_entries = 1; /* shut up gcc */
  757. MISSING_CASE(voltage);
  758. }
  759. return NULL;
  760. }
  761. static const struct cnl_ddi_buf_trans *
  762. cnl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  763. {
  764. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  765. if (voltage == VOLTAGE_INFO_0_85V) {
  766. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_85V);
  767. return cnl_ddi_translations_dp_0_85V;
  768. } else if (voltage == VOLTAGE_INFO_0_95V) {
  769. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_95V);
  770. return cnl_ddi_translations_dp_0_95V;
  771. } else if (voltage == VOLTAGE_INFO_1_05V) {
  772. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_1_05V);
  773. return cnl_ddi_translations_dp_1_05V;
  774. } else {
  775. *n_entries = 1; /* shut up gcc */
  776. MISSING_CASE(voltage);
  777. }
  778. return NULL;
  779. }
  780. static const struct cnl_ddi_buf_trans *
  781. cnl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  782. {
  783. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  784. if (dev_priv->vbt.edp.low_vswing) {
  785. if (voltage == VOLTAGE_INFO_0_85V) {
  786. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_85V);
  787. return cnl_ddi_translations_edp_0_85V;
  788. } else if (voltage == VOLTAGE_INFO_0_95V) {
  789. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_95V);
  790. return cnl_ddi_translations_edp_0_95V;
  791. } else if (voltage == VOLTAGE_INFO_1_05V) {
  792. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_1_05V);
  793. return cnl_ddi_translations_edp_1_05V;
  794. } else {
  795. *n_entries = 1; /* shut up gcc */
  796. MISSING_CASE(voltage);
  797. }
  798. return NULL;
  799. } else {
  800. return cnl_get_buf_trans_dp(dev_priv, n_entries);
  801. }
  802. }
  803. static const struct icl_combo_phy_ddi_buf_trans *
  804. icl_get_combo_buf_trans(struct drm_i915_private *dev_priv, enum port port,
  805. int type, int *n_entries)
  806. {
  807. u32 voltage = I915_READ(ICL_PORT_COMP_DW3(port)) & VOLTAGE_INFO_MASK;
  808. if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
  809. switch (voltage) {
  810. case VOLTAGE_INFO_0_85V:
  811. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_0_85V);
  812. return icl_combo_phy_ddi_translations_edp_0_85V;
  813. case VOLTAGE_INFO_0_95V:
  814. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_0_95V);
  815. return icl_combo_phy_ddi_translations_edp_0_95V;
  816. case VOLTAGE_INFO_1_05V:
  817. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_1_05V);
  818. return icl_combo_phy_ddi_translations_edp_1_05V;
  819. default:
  820. MISSING_CASE(voltage);
  821. return NULL;
  822. }
  823. } else {
  824. switch (voltage) {
  825. case VOLTAGE_INFO_0_85V:
  826. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hdmi_0_85V);
  827. return icl_combo_phy_ddi_translations_dp_hdmi_0_85V;
  828. case VOLTAGE_INFO_0_95V:
  829. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hdmi_0_95V);
  830. return icl_combo_phy_ddi_translations_dp_hdmi_0_95V;
  831. case VOLTAGE_INFO_1_05V:
  832. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hdmi_1_05V);
  833. return icl_combo_phy_ddi_translations_dp_hdmi_1_05V;
  834. default:
  835. MISSING_CASE(voltage);
  836. return NULL;
  837. }
  838. }
  839. }
  840. static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
  841. {
  842. int n_entries, level, default_entry;
  843. level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  844. if (IS_ICELAKE(dev_priv)) {
  845. if (port == PORT_A || port == PORT_B)
  846. icl_get_combo_buf_trans(dev_priv, port,
  847. INTEL_OUTPUT_HDMI, &n_entries);
  848. else
  849. n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations);
  850. default_entry = n_entries - 1;
  851. } else if (IS_CANNONLAKE(dev_priv)) {
  852. cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
  853. default_entry = n_entries - 1;
  854. } else if (IS_GEN9_LP(dev_priv)) {
  855. bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
  856. default_entry = n_entries - 1;
  857. } else if (IS_GEN9_BC(dev_priv)) {
  858. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  859. default_entry = 8;
  860. } else if (IS_BROADWELL(dev_priv)) {
  861. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  862. default_entry = 7;
  863. } else if (IS_HASWELL(dev_priv)) {
  864. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  865. default_entry = 6;
  866. } else {
  867. WARN(1, "ddi translation table missing\n");
  868. return 0;
  869. }
  870. /* Choose a good default if VBT is badly populated */
  871. if (level == HDMI_LEVEL_SHIFT_UNKNOWN || level >= n_entries)
  872. level = default_entry;
  873. if (WARN_ON_ONCE(n_entries == 0))
  874. return 0;
  875. if (WARN_ON_ONCE(level >= n_entries))
  876. level = n_entries - 1;
  877. return level;
  878. }
  879. /*
  880. * Starting with Haswell, DDI port buffers must be programmed with correct
  881. * values in advance. This function programs the correct values for
  882. * DP/eDP/FDI use cases.
  883. */
  884. static void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder,
  885. const struct intel_crtc_state *crtc_state)
  886. {
  887. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  888. u32 iboost_bit = 0;
  889. int i, n_entries;
  890. enum port port = encoder->port;
  891. const struct ddi_buf_trans *ddi_translations;
  892. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
  893. ddi_translations = intel_ddi_get_buf_trans_fdi(dev_priv,
  894. &n_entries);
  895. else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
  896. ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port,
  897. &n_entries);
  898. else
  899. ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port,
  900. &n_entries);
  901. /* If we're boosting the current, set bit 31 of trans1 */
  902. if (IS_GEN9_BC(dev_priv) &&
  903. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  904. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  905. for (i = 0; i < n_entries; i++) {
  906. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  907. ddi_translations[i].trans1 | iboost_bit);
  908. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  909. ddi_translations[i].trans2);
  910. }
  911. }
  912. /*
  913. * Starting with Haswell, DDI port buffers must be programmed with correct
  914. * values in advance. This function programs the correct values for
  915. * HDMI/DVI use cases.
  916. */
  917. static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder,
  918. int level)
  919. {
  920. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  921. u32 iboost_bit = 0;
  922. int n_entries;
  923. enum port port = encoder->port;
  924. const struct ddi_buf_trans *ddi_translations;
  925. ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  926. if (WARN_ON_ONCE(!ddi_translations))
  927. return;
  928. if (WARN_ON_ONCE(level >= n_entries))
  929. level = n_entries - 1;
  930. /* If we're boosting the current, set bit 31 of trans1 */
  931. if (IS_GEN9_BC(dev_priv) &&
  932. dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
  933. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  934. /* Entry 9 is for HDMI: */
  935. I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
  936. ddi_translations[level].trans1 | iboost_bit);
  937. I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
  938. ddi_translations[level].trans2);
  939. }
  940. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  941. enum port port)
  942. {
  943. i915_reg_t reg = DDI_BUF_CTL(port);
  944. int i;
  945. for (i = 0; i < 16; i++) {
  946. udelay(1);
  947. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  948. return;
  949. }
  950. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  951. }
  952. static uint32_t hsw_pll_to_ddi_pll_sel(const struct intel_shared_dpll *pll)
  953. {
  954. switch (pll->info->id) {
  955. case DPLL_ID_WRPLL1:
  956. return PORT_CLK_SEL_WRPLL1;
  957. case DPLL_ID_WRPLL2:
  958. return PORT_CLK_SEL_WRPLL2;
  959. case DPLL_ID_SPLL:
  960. return PORT_CLK_SEL_SPLL;
  961. case DPLL_ID_LCPLL_810:
  962. return PORT_CLK_SEL_LCPLL_810;
  963. case DPLL_ID_LCPLL_1350:
  964. return PORT_CLK_SEL_LCPLL_1350;
  965. case DPLL_ID_LCPLL_2700:
  966. return PORT_CLK_SEL_LCPLL_2700;
  967. default:
  968. MISSING_CASE(pll->info->id);
  969. return PORT_CLK_SEL_NONE;
  970. }
  971. }
  972. static uint32_t icl_pll_to_ddi_pll_sel(struct intel_encoder *encoder,
  973. const struct intel_shared_dpll *pll)
  974. {
  975. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  976. int clock = crtc->config->port_clock;
  977. const enum intel_dpll_id id = pll->info->id;
  978. switch (id) {
  979. default:
  980. MISSING_CASE(id);
  981. case DPLL_ID_ICL_DPLL0:
  982. case DPLL_ID_ICL_DPLL1:
  983. return DDI_CLK_SEL_NONE;
  984. case DPLL_ID_ICL_TBTPLL:
  985. switch (clock) {
  986. case 162000:
  987. return DDI_CLK_SEL_TBT_162;
  988. case 270000:
  989. return DDI_CLK_SEL_TBT_270;
  990. case 540000:
  991. return DDI_CLK_SEL_TBT_540;
  992. case 810000:
  993. return DDI_CLK_SEL_TBT_810;
  994. default:
  995. MISSING_CASE(clock);
  996. break;
  997. }
  998. case DPLL_ID_ICL_MGPLL1:
  999. case DPLL_ID_ICL_MGPLL2:
  1000. case DPLL_ID_ICL_MGPLL3:
  1001. case DPLL_ID_ICL_MGPLL4:
  1002. return DDI_CLK_SEL_MG;
  1003. }
  1004. }
  1005. /* Starting with Haswell, different DDI ports can work in FDI mode for
  1006. * connection to the PCH-located connectors. For this, it is necessary to train
  1007. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  1008. *
  1009. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  1010. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  1011. * DDI A (which is used for eDP)
  1012. */
  1013. void hsw_fdi_link_train(struct intel_crtc *crtc,
  1014. const struct intel_crtc_state *crtc_state)
  1015. {
  1016. struct drm_device *dev = crtc->base.dev;
  1017. struct drm_i915_private *dev_priv = to_i915(dev);
  1018. struct intel_encoder *encoder;
  1019. u32 temp, i, rx_ctl_val, ddi_pll_sel;
  1020. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  1021. WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
  1022. intel_prepare_dp_ddi_buffers(encoder, crtc_state);
  1023. }
  1024. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  1025. * mode set "sequence for CRT port" document:
  1026. * - TP1 to TP2 time with the default value
  1027. * - FDI delay to 90h
  1028. *
  1029. * WaFDIAutoLinkSetTimingOverrride:hsw
  1030. */
  1031. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  1032. FDI_RX_PWRDN_LANE0_VAL(2) |
  1033. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  1034. /* Enable the PCH Receiver FDI PLL */
  1035. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  1036. FDI_RX_PLL_ENABLE |
  1037. FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
  1038. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  1039. POSTING_READ(FDI_RX_CTL(PIPE_A));
  1040. udelay(220);
  1041. /* Switch from Rawclk to PCDclk */
  1042. rx_ctl_val |= FDI_PCDCLK;
  1043. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  1044. /* Configure Port Clock Select */
  1045. ddi_pll_sel = hsw_pll_to_ddi_pll_sel(crtc_state->shared_dpll);
  1046. I915_WRITE(PORT_CLK_SEL(PORT_E), ddi_pll_sel);
  1047. WARN_ON(ddi_pll_sel != PORT_CLK_SEL_SPLL);
  1048. /* Start the training iterating through available voltages and emphasis,
  1049. * testing each value twice. */
  1050. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  1051. /* Configure DP_TP_CTL with auto-training */
  1052. I915_WRITE(DP_TP_CTL(PORT_E),
  1053. DP_TP_CTL_FDI_AUTOTRAIN |
  1054. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  1055. DP_TP_CTL_LINK_TRAIN_PAT1 |
  1056. DP_TP_CTL_ENABLE);
  1057. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  1058. * DDI E does not support port reversal, the functionality is
  1059. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  1060. * port reversal bit */
  1061. I915_WRITE(DDI_BUF_CTL(PORT_E),
  1062. DDI_BUF_CTL_ENABLE |
  1063. ((crtc_state->fdi_lanes - 1) << 1) |
  1064. DDI_BUF_TRANS_SELECT(i / 2));
  1065. POSTING_READ(DDI_BUF_CTL(PORT_E));
  1066. udelay(600);
  1067. /* Program PCH FDI Receiver TU */
  1068. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  1069. /* Enable PCH FDI Receiver with auto-training */
  1070. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  1071. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  1072. POSTING_READ(FDI_RX_CTL(PIPE_A));
  1073. /* Wait for FDI receiver lane calibration */
  1074. udelay(30);
  1075. /* Unset FDI_RX_MISC pwrdn lanes */
  1076. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  1077. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1078. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  1079. POSTING_READ(FDI_RX_MISC(PIPE_A));
  1080. /* Wait for FDI auto training time */
  1081. udelay(5);
  1082. temp = I915_READ(DP_TP_STATUS(PORT_E));
  1083. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  1084. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  1085. break;
  1086. }
  1087. /*
  1088. * Leave things enabled even if we failed to train FDI.
  1089. * Results in less fireworks from the state checker.
  1090. */
  1091. if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
  1092. DRM_ERROR("FDI link training failed!\n");
  1093. break;
  1094. }
  1095. rx_ctl_val &= ~FDI_RX_ENABLE;
  1096. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  1097. POSTING_READ(FDI_RX_CTL(PIPE_A));
  1098. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  1099. temp &= ~DDI_BUF_CTL_ENABLE;
  1100. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  1101. POSTING_READ(DDI_BUF_CTL(PORT_E));
  1102. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  1103. temp = I915_READ(DP_TP_CTL(PORT_E));
  1104. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1105. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1106. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  1107. POSTING_READ(DP_TP_CTL(PORT_E));
  1108. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  1109. /* Reset FDI_RX_MISC pwrdn lanes */
  1110. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  1111. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1112. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1113. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  1114. POSTING_READ(FDI_RX_MISC(PIPE_A));
  1115. }
  1116. /* Enable normal pixel sending for FDI */
  1117. I915_WRITE(DP_TP_CTL(PORT_E),
  1118. DP_TP_CTL_FDI_AUTOTRAIN |
  1119. DP_TP_CTL_LINK_TRAIN_NORMAL |
  1120. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  1121. DP_TP_CTL_ENABLE);
  1122. }
  1123. static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  1124. {
  1125. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1126. struct intel_digital_port *intel_dig_port =
  1127. enc_to_dig_port(&encoder->base);
  1128. intel_dp->DP = intel_dig_port->saved_port_bits |
  1129. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  1130. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  1131. }
  1132. static struct intel_encoder *
  1133. intel_ddi_get_crtc_encoder(struct intel_crtc *crtc)
  1134. {
  1135. struct drm_device *dev = crtc->base.dev;
  1136. struct intel_encoder *encoder, *ret = NULL;
  1137. int num_encoders = 0;
  1138. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  1139. ret = encoder;
  1140. num_encoders++;
  1141. }
  1142. if (num_encoders != 1)
  1143. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  1144. pipe_name(crtc->pipe));
  1145. BUG_ON(ret == NULL);
  1146. return ret;
  1147. }
  1148. #define LC_FREQ 2700
  1149. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1150. i915_reg_t reg)
  1151. {
  1152. int refclk = LC_FREQ;
  1153. int n, p, r;
  1154. u32 wrpll;
  1155. wrpll = I915_READ(reg);
  1156. switch (wrpll & WRPLL_PLL_REF_MASK) {
  1157. case WRPLL_PLL_SSC:
  1158. case WRPLL_PLL_NON_SSC:
  1159. /*
  1160. * We could calculate spread here, but our checking
  1161. * code only cares about 5% accuracy, and spread is a max of
  1162. * 0.5% downspread.
  1163. */
  1164. refclk = 135;
  1165. break;
  1166. case WRPLL_PLL_LCPLL:
  1167. refclk = LC_FREQ;
  1168. break;
  1169. default:
  1170. WARN(1, "bad wrpll refclk\n");
  1171. return 0;
  1172. }
  1173. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  1174. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  1175. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  1176. /* Convert to KHz, p & r have a fixed point portion */
  1177. return (refclk * n * 100) / (p * r);
  1178. }
  1179. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1180. enum intel_dpll_id pll_id)
  1181. {
  1182. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  1183. uint32_t cfgcr1_val, cfgcr2_val;
  1184. uint32_t p0, p1, p2, dco_freq;
  1185. cfgcr1_reg = DPLL_CFGCR1(pll_id);
  1186. cfgcr2_reg = DPLL_CFGCR2(pll_id);
  1187. cfgcr1_val = I915_READ(cfgcr1_reg);
  1188. cfgcr2_val = I915_READ(cfgcr2_reg);
  1189. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  1190. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  1191. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  1192. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  1193. else
  1194. p1 = 1;
  1195. switch (p0) {
  1196. case DPLL_CFGCR2_PDIV_1:
  1197. p0 = 1;
  1198. break;
  1199. case DPLL_CFGCR2_PDIV_2:
  1200. p0 = 2;
  1201. break;
  1202. case DPLL_CFGCR2_PDIV_3:
  1203. p0 = 3;
  1204. break;
  1205. case DPLL_CFGCR2_PDIV_7:
  1206. p0 = 7;
  1207. break;
  1208. }
  1209. switch (p2) {
  1210. case DPLL_CFGCR2_KDIV_5:
  1211. p2 = 5;
  1212. break;
  1213. case DPLL_CFGCR2_KDIV_2:
  1214. p2 = 2;
  1215. break;
  1216. case DPLL_CFGCR2_KDIV_3:
  1217. p2 = 3;
  1218. break;
  1219. case DPLL_CFGCR2_KDIV_1:
  1220. p2 = 1;
  1221. break;
  1222. }
  1223. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  1224. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  1225. 1000) / 0x8000;
  1226. return dco_freq / (p0 * p1 * p2 * 5);
  1227. }
  1228. static int cnl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1229. enum intel_dpll_id pll_id)
  1230. {
  1231. uint32_t cfgcr0, cfgcr1;
  1232. uint32_t p0, p1, p2, dco_freq, ref_clock;
  1233. if (INTEL_GEN(dev_priv) >= 11) {
  1234. cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(pll_id));
  1235. cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(pll_id));
  1236. } else {
  1237. cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id));
  1238. cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(pll_id));
  1239. }
  1240. p0 = cfgcr1 & DPLL_CFGCR1_PDIV_MASK;
  1241. p2 = cfgcr1 & DPLL_CFGCR1_KDIV_MASK;
  1242. if (cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1))
  1243. p1 = (cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >>
  1244. DPLL_CFGCR1_QDIV_RATIO_SHIFT;
  1245. else
  1246. p1 = 1;
  1247. switch (p0) {
  1248. case DPLL_CFGCR1_PDIV_2:
  1249. p0 = 2;
  1250. break;
  1251. case DPLL_CFGCR1_PDIV_3:
  1252. p0 = 3;
  1253. break;
  1254. case DPLL_CFGCR1_PDIV_5:
  1255. p0 = 5;
  1256. break;
  1257. case DPLL_CFGCR1_PDIV_7:
  1258. p0 = 7;
  1259. break;
  1260. }
  1261. switch (p2) {
  1262. case DPLL_CFGCR1_KDIV_1:
  1263. p2 = 1;
  1264. break;
  1265. case DPLL_CFGCR1_KDIV_2:
  1266. p2 = 2;
  1267. break;
  1268. case DPLL_CFGCR1_KDIV_4:
  1269. p2 = 4;
  1270. break;
  1271. }
  1272. ref_clock = dev_priv->cdclk.hw.ref;
  1273. dco_freq = (cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK) * ref_clock;
  1274. dco_freq += (((cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >>
  1275. DPLL_CFGCR0_DCO_FRACTION_SHIFT) * ref_clock) / 0x8000;
  1276. if (WARN_ON(p0 == 0 || p1 == 0 || p2 == 0))
  1277. return 0;
  1278. return dco_freq / (p0 * p1 * p2 * 5);
  1279. }
  1280. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  1281. {
  1282. int dotclock;
  1283. if (pipe_config->has_pch_encoder)
  1284. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1285. &pipe_config->fdi_m_n);
  1286. else if (intel_crtc_has_dp_encoder(pipe_config))
  1287. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1288. &pipe_config->dp_m_n);
  1289. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  1290. dotclock = pipe_config->port_clock * 2 / 3;
  1291. else
  1292. dotclock = pipe_config->port_clock;
  1293. if (pipe_config->ycbcr420)
  1294. dotclock *= 2;
  1295. if (pipe_config->pixel_multiplier)
  1296. dotclock /= pipe_config->pixel_multiplier;
  1297. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  1298. }
  1299. static void icl_ddi_clock_get(struct intel_encoder *encoder,
  1300. struct intel_crtc_state *pipe_config)
  1301. {
  1302. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1303. enum port port = encoder->port;
  1304. int link_clock = 0;
  1305. uint32_t pll_id;
  1306. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1307. if (port == PORT_A || port == PORT_B) {
  1308. if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
  1309. link_clock = cnl_calc_wrpll_link(dev_priv, pll_id);
  1310. else
  1311. link_clock = icl_calc_dp_combo_pll_link(dev_priv,
  1312. pll_id);
  1313. } else {
  1314. /* FIXME - Add for MG PLL */
  1315. WARN(1, "MG PLL clock_get code not implemented yet\n");
  1316. }
  1317. pipe_config->port_clock = link_clock;
  1318. ddi_dotclock_get(pipe_config);
  1319. }
  1320. static void cnl_ddi_clock_get(struct intel_encoder *encoder,
  1321. struct intel_crtc_state *pipe_config)
  1322. {
  1323. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1324. int link_clock = 0;
  1325. uint32_t cfgcr0;
  1326. enum intel_dpll_id pll_id;
  1327. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1328. cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id));
  1329. if (cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
  1330. link_clock = cnl_calc_wrpll_link(dev_priv, pll_id);
  1331. } else {
  1332. link_clock = cfgcr0 & DPLL_CFGCR0_LINK_RATE_MASK;
  1333. switch (link_clock) {
  1334. case DPLL_CFGCR0_LINK_RATE_810:
  1335. link_clock = 81000;
  1336. break;
  1337. case DPLL_CFGCR0_LINK_RATE_1080:
  1338. link_clock = 108000;
  1339. break;
  1340. case DPLL_CFGCR0_LINK_RATE_1350:
  1341. link_clock = 135000;
  1342. break;
  1343. case DPLL_CFGCR0_LINK_RATE_1620:
  1344. link_clock = 162000;
  1345. break;
  1346. case DPLL_CFGCR0_LINK_RATE_2160:
  1347. link_clock = 216000;
  1348. break;
  1349. case DPLL_CFGCR0_LINK_RATE_2700:
  1350. link_clock = 270000;
  1351. break;
  1352. case DPLL_CFGCR0_LINK_RATE_3240:
  1353. link_clock = 324000;
  1354. break;
  1355. case DPLL_CFGCR0_LINK_RATE_4050:
  1356. link_clock = 405000;
  1357. break;
  1358. default:
  1359. WARN(1, "Unsupported link rate\n");
  1360. break;
  1361. }
  1362. link_clock *= 2;
  1363. }
  1364. pipe_config->port_clock = link_clock;
  1365. ddi_dotclock_get(pipe_config);
  1366. }
  1367. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  1368. struct intel_crtc_state *pipe_config)
  1369. {
  1370. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1371. int link_clock = 0;
  1372. uint32_t dpll_ctl1;
  1373. enum intel_dpll_id pll_id;
  1374. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1375. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  1376. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(pll_id)) {
  1377. link_clock = skl_calc_wrpll_link(dev_priv, pll_id);
  1378. } else {
  1379. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(pll_id);
  1380. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(pll_id);
  1381. switch (link_clock) {
  1382. case DPLL_CTRL1_LINK_RATE_810:
  1383. link_clock = 81000;
  1384. break;
  1385. case DPLL_CTRL1_LINK_RATE_1080:
  1386. link_clock = 108000;
  1387. break;
  1388. case DPLL_CTRL1_LINK_RATE_1350:
  1389. link_clock = 135000;
  1390. break;
  1391. case DPLL_CTRL1_LINK_RATE_1620:
  1392. link_clock = 162000;
  1393. break;
  1394. case DPLL_CTRL1_LINK_RATE_2160:
  1395. link_clock = 216000;
  1396. break;
  1397. case DPLL_CTRL1_LINK_RATE_2700:
  1398. link_clock = 270000;
  1399. break;
  1400. default:
  1401. WARN(1, "Unsupported link rate\n");
  1402. break;
  1403. }
  1404. link_clock *= 2;
  1405. }
  1406. pipe_config->port_clock = link_clock;
  1407. ddi_dotclock_get(pipe_config);
  1408. }
  1409. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  1410. struct intel_crtc_state *pipe_config)
  1411. {
  1412. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1413. int link_clock = 0;
  1414. u32 val, pll;
  1415. val = hsw_pll_to_ddi_pll_sel(pipe_config->shared_dpll);
  1416. switch (val & PORT_CLK_SEL_MASK) {
  1417. case PORT_CLK_SEL_LCPLL_810:
  1418. link_clock = 81000;
  1419. break;
  1420. case PORT_CLK_SEL_LCPLL_1350:
  1421. link_clock = 135000;
  1422. break;
  1423. case PORT_CLK_SEL_LCPLL_2700:
  1424. link_clock = 270000;
  1425. break;
  1426. case PORT_CLK_SEL_WRPLL1:
  1427. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  1428. break;
  1429. case PORT_CLK_SEL_WRPLL2:
  1430. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  1431. break;
  1432. case PORT_CLK_SEL_SPLL:
  1433. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  1434. if (pll == SPLL_PLL_FREQ_810MHz)
  1435. link_clock = 81000;
  1436. else if (pll == SPLL_PLL_FREQ_1350MHz)
  1437. link_clock = 135000;
  1438. else if (pll == SPLL_PLL_FREQ_2700MHz)
  1439. link_clock = 270000;
  1440. else {
  1441. WARN(1, "bad spll freq\n");
  1442. return;
  1443. }
  1444. break;
  1445. default:
  1446. WARN(1, "bad port clock sel\n");
  1447. return;
  1448. }
  1449. pipe_config->port_clock = link_clock * 2;
  1450. ddi_dotclock_get(pipe_config);
  1451. }
  1452. static int bxt_calc_pll_link(struct intel_crtc_state *crtc_state)
  1453. {
  1454. struct intel_dpll_hw_state *state;
  1455. struct dpll clock;
  1456. /* For DDI ports we always use a shared PLL. */
  1457. if (WARN_ON(!crtc_state->shared_dpll))
  1458. return 0;
  1459. state = &crtc_state->dpll_hw_state;
  1460. clock.m1 = 2;
  1461. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  1462. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  1463. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  1464. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  1465. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  1466. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  1467. return chv_calc_dpll_params(100000, &clock);
  1468. }
  1469. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  1470. struct intel_crtc_state *pipe_config)
  1471. {
  1472. pipe_config->port_clock = bxt_calc_pll_link(pipe_config);
  1473. ddi_dotclock_get(pipe_config);
  1474. }
  1475. static void intel_ddi_clock_get(struct intel_encoder *encoder,
  1476. struct intel_crtc_state *pipe_config)
  1477. {
  1478. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1479. if (INTEL_GEN(dev_priv) <= 8)
  1480. hsw_ddi_clock_get(encoder, pipe_config);
  1481. else if (IS_GEN9_BC(dev_priv))
  1482. skl_ddi_clock_get(encoder, pipe_config);
  1483. else if (IS_GEN9_LP(dev_priv))
  1484. bxt_ddi_clock_get(encoder, pipe_config);
  1485. else if (IS_CANNONLAKE(dev_priv))
  1486. cnl_ddi_clock_get(encoder, pipe_config);
  1487. else if (IS_ICELAKE(dev_priv))
  1488. icl_ddi_clock_get(encoder, pipe_config);
  1489. }
  1490. void intel_ddi_set_pipe_settings(const struct intel_crtc_state *crtc_state)
  1491. {
  1492. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1493. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1494. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1495. u32 temp;
  1496. if (!intel_crtc_has_dp_encoder(crtc_state))
  1497. return;
  1498. WARN_ON(transcoder_is_dsi(cpu_transcoder));
  1499. temp = TRANS_MSA_SYNC_CLK;
  1500. switch (crtc_state->pipe_bpp) {
  1501. case 18:
  1502. temp |= TRANS_MSA_6_BPC;
  1503. break;
  1504. case 24:
  1505. temp |= TRANS_MSA_8_BPC;
  1506. break;
  1507. case 30:
  1508. temp |= TRANS_MSA_10_BPC;
  1509. break;
  1510. case 36:
  1511. temp |= TRANS_MSA_12_BPC;
  1512. break;
  1513. default:
  1514. MISSING_CASE(crtc_state->pipe_bpp);
  1515. break;
  1516. }
  1517. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1518. }
  1519. void intel_ddi_set_vc_payload_alloc(const struct intel_crtc_state *crtc_state,
  1520. bool state)
  1521. {
  1522. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1523. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1524. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1525. uint32_t temp;
  1526. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1527. if (state == true)
  1528. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1529. else
  1530. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1531. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1532. }
  1533. void intel_ddi_enable_transcoder_func(const struct intel_crtc_state *crtc_state)
  1534. {
  1535. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1536. struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
  1537. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1538. enum pipe pipe = crtc->pipe;
  1539. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1540. enum port port = encoder->port;
  1541. uint32_t temp;
  1542. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1543. temp = TRANS_DDI_FUNC_ENABLE;
  1544. temp |= TRANS_DDI_SELECT_PORT(port);
  1545. switch (crtc_state->pipe_bpp) {
  1546. case 18:
  1547. temp |= TRANS_DDI_BPC_6;
  1548. break;
  1549. case 24:
  1550. temp |= TRANS_DDI_BPC_8;
  1551. break;
  1552. case 30:
  1553. temp |= TRANS_DDI_BPC_10;
  1554. break;
  1555. case 36:
  1556. temp |= TRANS_DDI_BPC_12;
  1557. break;
  1558. default:
  1559. BUG();
  1560. }
  1561. if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1562. temp |= TRANS_DDI_PVSYNC;
  1563. if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1564. temp |= TRANS_DDI_PHSYNC;
  1565. if (cpu_transcoder == TRANSCODER_EDP) {
  1566. switch (pipe) {
  1567. case PIPE_A:
  1568. /* On Haswell, can only use the always-on power well for
  1569. * eDP when not using the panel fitter, and when not
  1570. * using motion blur mitigation (which we don't
  1571. * support). */
  1572. if (IS_HASWELL(dev_priv) &&
  1573. (crtc_state->pch_pfit.enabled ||
  1574. crtc_state->pch_pfit.force_thru))
  1575. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1576. else
  1577. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1578. break;
  1579. case PIPE_B:
  1580. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1581. break;
  1582. case PIPE_C:
  1583. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1584. break;
  1585. default:
  1586. BUG();
  1587. break;
  1588. }
  1589. }
  1590. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  1591. if (crtc_state->has_hdmi_sink)
  1592. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1593. else
  1594. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1595. if (crtc_state->hdmi_scrambling)
  1596. temp |= TRANS_DDI_HDMI_SCRAMBLING_MASK;
  1597. if (crtc_state->hdmi_high_tmds_clock_ratio)
  1598. temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE;
  1599. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  1600. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1601. temp |= (crtc_state->fdi_lanes - 1) << 1;
  1602. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
  1603. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1604. temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
  1605. } else {
  1606. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1607. temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
  1608. }
  1609. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1610. }
  1611. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1612. enum transcoder cpu_transcoder)
  1613. {
  1614. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1615. uint32_t val = I915_READ(reg);
  1616. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1617. val |= TRANS_DDI_PORT_NONE;
  1618. I915_WRITE(reg, val);
  1619. }
  1620. int intel_ddi_toggle_hdcp_signalling(struct intel_encoder *intel_encoder,
  1621. bool enable)
  1622. {
  1623. struct drm_device *dev = intel_encoder->base.dev;
  1624. struct drm_i915_private *dev_priv = to_i915(dev);
  1625. enum pipe pipe = 0;
  1626. int ret = 0;
  1627. uint32_t tmp;
  1628. if (WARN_ON(!intel_display_power_get_if_enabled(dev_priv,
  1629. intel_encoder->power_domain)))
  1630. return -ENXIO;
  1631. if (WARN_ON(!intel_encoder->get_hw_state(intel_encoder, &pipe))) {
  1632. ret = -EIO;
  1633. goto out;
  1634. }
  1635. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe));
  1636. if (enable)
  1637. tmp |= TRANS_DDI_HDCP_SIGNALLING;
  1638. else
  1639. tmp &= ~TRANS_DDI_HDCP_SIGNALLING;
  1640. I915_WRITE(TRANS_DDI_FUNC_CTL(pipe), tmp);
  1641. out:
  1642. intel_display_power_put(dev_priv, intel_encoder->power_domain);
  1643. return ret;
  1644. }
  1645. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1646. {
  1647. struct drm_device *dev = intel_connector->base.dev;
  1648. struct drm_i915_private *dev_priv = to_i915(dev);
  1649. struct intel_encoder *encoder = intel_connector->encoder;
  1650. int type = intel_connector->base.connector_type;
  1651. enum port port = encoder->port;
  1652. enum pipe pipe = 0;
  1653. enum transcoder cpu_transcoder;
  1654. uint32_t tmp;
  1655. bool ret;
  1656. if (!intel_display_power_get_if_enabled(dev_priv,
  1657. encoder->power_domain))
  1658. return false;
  1659. if (!encoder->get_hw_state(encoder, &pipe)) {
  1660. ret = false;
  1661. goto out;
  1662. }
  1663. if (port == PORT_A)
  1664. cpu_transcoder = TRANSCODER_EDP;
  1665. else
  1666. cpu_transcoder = (enum transcoder) pipe;
  1667. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1668. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1669. case TRANS_DDI_MODE_SELECT_HDMI:
  1670. case TRANS_DDI_MODE_SELECT_DVI:
  1671. ret = type == DRM_MODE_CONNECTOR_HDMIA;
  1672. break;
  1673. case TRANS_DDI_MODE_SELECT_DP_SST:
  1674. ret = type == DRM_MODE_CONNECTOR_eDP ||
  1675. type == DRM_MODE_CONNECTOR_DisplayPort;
  1676. break;
  1677. case TRANS_DDI_MODE_SELECT_DP_MST:
  1678. /* if the transcoder is in MST state then
  1679. * connector isn't connected */
  1680. ret = false;
  1681. break;
  1682. case TRANS_DDI_MODE_SELECT_FDI:
  1683. ret = type == DRM_MODE_CONNECTOR_VGA;
  1684. break;
  1685. default:
  1686. ret = false;
  1687. break;
  1688. }
  1689. out:
  1690. intel_display_power_put(dev_priv, encoder->power_domain);
  1691. return ret;
  1692. }
  1693. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1694. enum pipe *pipe)
  1695. {
  1696. struct drm_device *dev = encoder->base.dev;
  1697. struct drm_i915_private *dev_priv = to_i915(dev);
  1698. enum port port = encoder->port;
  1699. enum pipe p;
  1700. u32 tmp;
  1701. bool ret;
  1702. if (!intel_display_power_get_if_enabled(dev_priv,
  1703. encoder->power_domain))
  1704. return false;
  1705. ret = false;
  1706. tmp = I915_READ(DDI_BUF_CTL(port));
  1707. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1708. goto out;
  1709. if (port == PORT_A) {
  1710. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1711. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1712. case TRANS_DDI_EDP_INPUT_A_ON:
  1713. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1714. *pipe = PIPE_A;
  1715. break;
  1716. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1717. *pipe = PIPE_B;
  1718. break;
  1719. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1720. *pipe = PIPE_C;
  1721. break;
  1722. }
  1723. ret = true;
  1724. goto out;
  1725. }
  1726. for_each_pipe(dev_priv, p) {
  1727. enum transcoder cpu_transcoder = (enum transcoder) p;
  1728. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1729. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
  1730. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
  1731. TRANS_DDI_MODE_SELECT_DP_MST)
  1732. goto out;
  1733. *pipe = p;
  1734. ret = true;
  1735. goto out;
  1736. }
  1737. }
  1738. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1739. out:
  1740. if (ret && IS_GEN9_LP(dev_priv)) {
  1741. tmp = I915_READ(BXT_PHY_CTL(port));
  1742. if ((tmp & (BXT_PHY_CMNLANE_POWERDOWN_ACK |
  1743. BXT_PHY_LANE_POWERDOWN_ACK |
  1744. BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
  1745. DRM_ERROR("Port %c enabled but PHY powered down? "
  1746. "(PHY_CTL %08x)\n", port_name(port), tmp);
  1747. }
  1748. intel_display_power_put(dev_priv, encoder->power_domain);
  1749. return ret;
  1750. }
  1751. static u64 intel_ddi_get_power_domains(struct intel_encoder *encoder)
  1752. {
  1753. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1754. enum pipe pipe;
  1755. if (intel_ddi_get_hw_state(encoder, &pipe))
  1756. return BIT_ULL(dig_port->ddi_io_power_domain);
  1757. return 0;
  1758. }
  1759. void intel_ddi_enable_pipe_clock(const struct intel_crtc_state *crtc_state)
  1760. {
  1761. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1762. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1763. struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
  1764. enum port port = encoder->port;
  1765. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1766. if (cpu_transcoder != TRANSCODER_EDP)
  1767. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1768. TRANS_CLK_SEL_PORT(port));
  1769. }
  1770. void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state)
  1771. {
  1772. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1773. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1774. if (cpu_transcoder != TRANSCODER_EDP)
  1775. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1776. TRANS_CLK_SEL_DISABLED);
  1777. }
  1778. static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
  1779. enum port port, uint8_t iboost)
  1780. {
  1781. u32 tmp;
  1782. tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1783. tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
  1784. if (iboost)
  1785. tmp |= iboost << BALANCE_LEG_SHIFT(port);
  1786. else
  1787. tmp |= BALANCE_LEG_DISABLE(port);
  1788. I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
  1789. }
  1790. static void skl_ddi_set_iboost(struct intel_encoder *encoder,
  1791. int level, enum intel_output_type type)
  1792. {
  1793. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  1794. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1795. enum port port = encoder->port;
  1796. uint8_t iboost;
  1797. if (type == INTEL_OUTPUT_HDMI)
  1798. iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1799. else
  1800. iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1801. if (iboost == 0) {
  1802. const struct ddi_buf_trans *ddi_translations;
  1803. int n_entries;
  1804. if (type == INTEL_OUTPUT_HDMI)
  1805. ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  1806. else if (type == INTEL_OUTPUT_EDP)
  1807. ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
  1808. else
  1809. ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
  1810. if (WARN_ON_ONCE(!ddi_translations))
  1811. return;
  1812. if (WARN_ON_ONCE(level >= n_entries))
  1813. level = n_entries - 1;
  1814. iboost = ddi_translations[level].i_boost;
  1815. }
  1816. /* Make sure that the requested I_boost is valid */
  1817. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1818. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1819. return;
  1820. }
  1821. _skl_ddi_set_iboost(dev_priv, port, iboost);
  1822. if (port == PORT_A && intel_dig_port->max_lanes == 4)
  1823. _skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
  1824. }
  1825. static void bxt_ddi_vswing_sequence(struct intel_encoder *encoder,
  1826. int level, enum intel_output_type type)
  1827. {
  1828. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1829. const struct bxt_ddi_buf_trans *ddi_translations;
  1830. enum port port = encoder->port;
  1831. int n_entries;
  1832. if (type == INTEL_OUTPUT_HDMI)
  1833. ddi_translations = bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
  1834. else if (type == INTEL_OUTPUT_EDP)
  1835. ddi_translations = bxt_get_buf_trans_edp(dev_priv, &n_entries);
  1836. else
  1837. ddi_translations = bxt_get_buf_trans_dp(dev_priv, &n_entries);
  1838. if (WARN_ON_ONCE(!ddi_translations))
  1839. return;
  1840. if (WARN_ON_ONCE(level >= n_entries))
  1841. level = n_entries - 1;
  1842. bxt_ddi_phy_set_signal_level(dev_priv, port,
  1843. ddi_translations[level].margin,
  1844. ddi_translations[level].scale,
  1845. ddi_translations[level].enable,
  1846. ddi_translations[level].deemphasis);
  1847. }
  1848. u8 intel_ddi_dp_voltage_max(struct intel_encoder *encoder)
  1849. {
  1850. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1851. enum port port = encoder->port;
  1852. int n_entries;
  1853. if (IS_ICELAKE(dev_priv)) {
  1854. if (port == PORT_A || port == PORT_B)
  1855. icl_get_combo_buf_trans(dev_priv, port, encoder->type,
  1856. &n_entries);
  1857. else
  1858. n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations);
  1859. } else if (IS_CANNONLAKE(dev_priv)) {
  1860. if (encoder->type == INTEL_OUTPUT_EDP)
  1861. cnl_get_buf_trans_edp(dev_priv, &n_entries);
  1862. else
  1863. cnl_get_buf_trans_dp(dev_priv, &n_entries);
  1864. } else if (IS_GEN9_LP(dev_priv)) {
  1865. if (encoder->type == INTEL_OUTPUT_EDP)
  1866. bxt_get_buf_trans_edp(dev_priv, &n_entries);
  1867. else
  1868. bxt_get_buf_trans_dp(dev_priv, &n_entries);
  1869. } else {
  1870. if (encoder->type == INTEL_OUTPUT_EDP)
  1871. intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
  1872. else
  1873. intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
  1874. }
  1875. if (WARN_ON(n_entries < 1))
  1876. n_entries = 1;
  1877. if (WARN_ON(n_entries > ARRAY_SIZE(index_to_dp_signal_levels)))
  1878. n_entries = ARRAY_SIZE(index_to_dp_signal_levels);
  1879. return index_to_dp_signal_levels[n_entries - 1] &
  1880. DP_TRAIN_VOLTAGE_SWING_MASK;
  1881. }
  1882. /*
  1883. * We assume that the full set of pre-emphasis values can be
  1884. * used on all DDI platforms. Should that change we need to
  1885. * rethink this code.
  1886. */
  1887. u8 intel_ddi_dp_pre_emphasis_max(struct intel_encoder *encoder, u8 voltage_swing)
  1888. {
  1889. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1890. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
  1891. return DP_TRAIN_PRE_EMPH_LEVEL_3;
  1892. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
  1893. return DP_TRAIN_PRE_EMPH_LEVEL_2;
  1894. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
  1895. return DP_TRAIN_PRE_EMPH_LEVEL_1;
  1896. case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
  1897. default:
  1898. return DP_TRAIN_PRE_EMPH_LEVEL_0;
  1899. }
  1900. }
  1901. static void cnl_ddi_vswing_program(struct intel_encoder *encoder,
  1902. int level, enum intel_output_type type)
  1903. {
  1904. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1905. const struct cnl_ddi_buf_trans *ddi_translations;
  1906. enum port port = encoder->port;
  1907. int n_entries, ln;
  1908. u32 val;
  1909. if (type == INTEL_OUTPUT_HDMI)
  1910. ddi_translations = cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
  1911. else if (type == INTEL_OUTPUT_EDP)
  1912. ddi_translations = cnl_get_buf_trans_edp(dev_priv, &n_entries);
  1913. else
  1914. ddi_translations = cnl_get_buf_trans_dp(dev_priv, &n_entries);
  1915. if (WARN_ON_ONCE(!ddi_translations))
  1916. return;
  1917. if (WARN_ON_ONCE(level >= n_entries))
  1918. level = n_entries - 1;
  1919. /* Set PORT_TX_DW5 Scaling Mode Sel to 010b. */
  1920. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1921. val &= ~SCALING_MODE_SEL_MASK;
  1922. val |= SCALING_MODE_SEL(2);
  1923. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1924. /* Program PORT_TX_DW2 */
  1925. val = I915_READ(CNL_PORT_TX_DW2_LN0(port));
  1926. val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
  1927. RCOMP_SCALAR_MASK);
  1928. val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel);
  1929. val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel);
  1930. /* Rcomp scalar is fixed as 0x98 for every table entry */
  1931. val |= RCOMP_SCALAR(0x98);
  1932. I915_WRITE(CNL_PORT_TX_DW2_GRP(port), val);
  1933. /* Program PORT_TX_DW4 */
  1934. /* We cannot write to GRP. It would overrite individual loadgen */
  1935. for (ln = 0; ln < 4; ln++) {
  1936. val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
  1937. val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
  1938. CURSOR_COEFF_MASK);
  1939. val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1);
  1940. val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2);
  1941. val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff);
  1942. I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
  1943. }
  1944. /* Program PORT_TX_DW5 */
  1945. /* All DW5 values are fixed for every table entry */
  1946. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1947. val &= ~RTERM_SELECT_MASK;
  1948. val |= RTERM_SELECT(6);
  1949. val |= TAP3_DISABLE;
  1950. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1951. /* Program PORT_TX_DW7 */
  1952. val = I915_READ(CNL_PORT_TX_DW7_LN0(port));
  1953. val &= ~N_SCALAR_MASK;
  1954. val |= N_SCALAR(ddi_translations[level].dw7_n_scalar);
  1955. I915_WRITE(CNL_PORT_TX_DW7_GRP(port), val);
  1956. }
  1957. static void cnl_ddi_vswing_sequence(struct intel_encoder *encoder,
  1958. int level, enum intel_output_type type)
  1959. {
  1960. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1961. enum port port = encoder->port;
  1962. int width, rate, ln;
  1963. u32 val;
  1964. if (type == INTEL_OUTPUT_HDMI) {
  1965. width = 4;
  1966. rate = 0; /* Rate is always < than 6GHz for HDMI */
  1967. } else {
  1968. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1969. width = intel_dp->lane_count;
  1970. rate = intel_dp->link_rate;
  1971. }
  1972. /*
  1973. * 1. If port type is eDP or DP,
  1974. * set PORT_PCS_DW1 cmnkeeper_enable to 1b,
  1975. * else clear to 0b.
  1976. */
  1977. val = I915_READ(CNL_PORT_PCS_DW1_LN0(port));
  1978. if (type != INTEL_OUTPUT_HDMI)
  1979. val |= COMMON_KEEPER_EN;
  1980. else
  1981. val &= ~COMMON_KEEPER_EN;
  1982. I915_WRITE(CNL_PORT_PCS_DW1_GRP(port), val);
  1983. /* 2. Program loadgen select */
  1984. /*
  1985. * Program PORT_TX_DW4_LN depending on Bit rate and used lanes
  1986. * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
  1987. * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
  1988. * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
  1989. */
  1990. for (ln = 0; ln <= 3; ln++) {
  1991. val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
  1992. val &= ~LOADGEN_SELECT;
  1993. if ((rate <= 600000 && width == 4 && ln >= 1) ||
  1994. (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
  1995. val |= LOADGEN_SELECT;
  1996. }
  1997. I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
  1998. }
  1999. /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
  2000. val = I915_READ(CNL_PORT_CL1CM_DW5);
  2001. val |= SUS_CLOCK_CONFIG;
  2002. I915_WRITE(CNL_PORT_CL1CM_DW5, val);
  2003. /* 4. Clear training enable to change swing values */
  2004. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  2005. val &= ~TX_TRAINING_EN;
  2006. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  2007. /* 5. Program swing and de-emphasis */
  2008. cnl_ddi_vswing_program(encoder, level, type);
  2009. /* 6. Set training enable to trigger update */
  2010. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  2011. val |= TX_TRAINING_EN;
  2012. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  2013. }
  2014. static void icl_ddi_combo_vswing_program(struct drm_i915_private *dev_priv,
  2015. u32 level, enum port port, int type)
  2016. {
  2017. const struct icl_combo_phy_ddi_buf_trans *ddi_translations = NULL;
  2018. u32 n_entries, val;
  2019. int ln;
  2020. ddi_translations = icl_get_combo_buf_trans(dev_priv, port, type,
  2021. &n_entries);
  2022. if (!ddi_translations)
  2023. return;
  2024. if (level >= n_entries) {
  2025. DRM_DEBUG_KMS("DDI translation not found for level %d. Using %d instead.", level, n_entries - 1);
  2026. level = n_entries - 1;
  2027. }
  2028. /* Set PORT_TX_DW5 Rterm Sel to 110b. */
  2029. val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
  2030. val &= ~RTERM_SELECT_MASK;
  2031. val |= RTERM_SELECT(0x6);
  2032. I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
  2033. /* Program PORT_TX_DW5 */
  2034. val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
  2035. /* Set DisableTap2 and DisableTap3 if MIPI DSI
  2036. * Clear DisableTap2 and DisableTap3 for all other Ports
  2037. */
  2038. if (type == INTEL_OUTPUT_DSI) {
  2039. val |= TAP2_DISABLE;
  2040. val |= TAP3_DISABLE;
  2041. } else {
  2042. val &= ~TAP2_DISABLE;
  2043. val &= ~TAP3_DISABLE;
  2044. }
  2045. I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
  2046. /* Program PORT_TX_DW2 */
  2047. val = I915_READ(ICL_PORT_TX_DW2_LN0(port));
  2048. val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
  2049. RCOMP_SCALAR_MASK);
  2050. val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_select);
  2051. val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_select);
  2052. /* Program Rcomp scalar for every table entry */
  2053. val |= RCOMP_SCALAR(ddi_translations[level].dw2_swing_scalar);
  2054. I915_WRITE(ICL_PORT_TX_DW2_GRP(port), val);
  2055. /* Program PORT_TX_DW4 */
  2056. /* We cannot write to GRP. It would overwrite individual loadgen. */
  2057. for (ln = 0; ln <= 3; ln++) {
  2058. val = I915_READ(ICL_PORT_TX_DW4_LN(port, ln));
  2059. val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
  2060. CURSOR_COEFF_MASK);
  2061. val |= ddi_translations[level].dw4_scaling;
  2062. I915_WRITE(ICL_PORT_TX_DW4_LN(port, ln), val);
  2063. }
  2064. }
  2065. static void icl_combo_phy_ddi_vswing_sequence(struct intel_encoder *encoder,
  2066. u32 level,
  2067. enum intel_output_type type)
  2068. {
  2069. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2070. enum port port = encoder->port;
  2071. int width = 0;
  2072. int rate = 0;
  2073. u32 val;
  2074. int ln = 0;
  2075. if (type == INTEL_OUTPUT_HDMI) {
  2076. width = 4;
  2077. /* Rate is always < than 6GHz for HDMI */
  2078. } else {
  2079. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2080. width = intel_dp->lane_count;
  2081. rate = intel_dp->link_rate;
  2082. }
  2083. /*
  2084. * 1. If port type is eDP or DP,
  2085. * set PORT_PCS_DW1 cmnkeeper_enable to 1b,
  2086. * else clear to 0b.
  2087. */
  2088. val = I915_READ(ICL_PORT_PCS_DW1_LN0(port));
  2089. if (type == INTEL_OUTPUT_HDMI)
  2090. val &= ~COMMON_KEEPER_EN;
  2091. else
  2092. val |= COMMON_KEEPER_EN;
  2093. I915_WRITE(ICL_PORT_PCS_DW1_GRP(port), val);
  2094. /* 2. Program loadgen select */
  2095. /*
  2096. * Program PORT_TX_DW4_LN depending on Bit rate and used lanes
  2097. * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
  2098. * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
  2099. * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
  2100. */
  2101. for (ln = 0; ln <= 3; ln++) {
  2102. val = I915_READ(ICL_PORT_TX_DW4_LN(port, ln));
  2103. val &= ~LOADGEN_SELECT;
  2104. if ((rate <= 600000 && width == 4 && ln >= 1) ||
  2105. (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
  2106. val |= LOADGEN_SELECT;
  2107. }
  2108. I915_WRITE(ICL_PORT_TX_DW4_LN(port, ln), val);
  2109. }
  2110. /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
  2111. val = I915_READ(ICL_PORT_CL_DW5(port));
  2112. val |= SUS_CLOCK_CONFIG;
  2113. I915_WRITE(ICL_PORT_CL_DW5(port), val);
  2114. /* 4. Clear training enable to change swing values */
  2115. val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
  2116. val &= ~TX_TRAINING_EN;
  2117. I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
  2118. /* 5. Program swing and de-emphasis */
  2119. icl_ddi_combo_vswing_program(dev_priv, level, port, type);
  2120. /* 6. Set training enable to trigger update */
  2121. val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
  2122. val |= TX_TRAINING_EN;
  2123. I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
  2124. }
  2125. static void icl_ddi_vswing_sequence(struct intel_encoder *encoder, u32 level,
  2126. enum intel_output_type type)
  2127. {
  2128. enum port port = encoder->port;
  2129. if (port == PORT_A || port == PORT_B)
  2130. icl_combo_phy_ddi_vswing_sequence(encoder, level, type);
  2131. else
  2132. /* Not Implemented Yet */
  2133. WARN_ON(1);
  2134. }
  2135. static uint32_t translate_signal_level(int signal_levels)
  2136. {
  2137. int i;
  2138. for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) {
  2139. if (index_to_dp_signal_levels[i] == signal_levels)
  2140. return i;
  2141. }
  2142. WARN(1, "Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  2143. signal_levels);
  2144. return 0;
  2145. }
  2146. static uint32_t intel_ddi_dp_level(struct intel_dp *intel_dp)
  2147. {
  2148. uint8_t train_set = intel_dp->train_set[0];
  2149. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2150. DP_TRAIN_PRE_EMPHASIS_MASK);
  2151. return translate_signal_level(signal_levels);
  2152. }
  2153. u32 bxt_signal_levels(struct intel_dp *intel_dp)
  2154. {
  2155. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  2156. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  2157. struct intel_encoder *encoder = &dport->base;
  2158. int level = intel_ddi_dp_level(intel_dp);
  2159. if (IS_ICELAKE(dev_priv))
  2160. icl_ddi_vswing_sequence(encoder, level, encoder->type);
  2161. else if (IS_CANNONLAKE(dev_priv))
  2162. cnl_ddi_vswing_sequence(encoder, level, encoder->type);
  2163. else
  2164. bxt_ddi_vswing_sequence(encoder, level, encoder->type);
  2165. return 0;
  2166. }
  2167. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  2168. {
  2169. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  2170. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  2171. struct intel_encoder *encoder = &dport->base;
  2172. int level = intel_ddi_dp_level(intel_dp);
  2173. if (IS_GEN9_BC(dev_priv))
  2174. skl_ddi_set_iboost(encoder, level, encoder->type);
  2175. return DDI_BUF_TRANS_SELECT(level);
  2176. }
  2177. void icl_map_plls_to_ports(struct drm_crtc *crtc,
  2178. struct intel_crtc_state *crtc_state,
  2179. struct drm_atomic_state *old_state)
  2180. {
  2181. struct intel_shared_dpll *pll = crtc_state->shared_dpll;
  2182. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  2183. struct drm_connector_state *conn_state;
  2184. struct drm_connector *conn;
  2185. int i;
  2186. for_each_new_connector_in_state(old_state, conn, conn_state, i) {
  2187. struct intel_encoder *encoder =
  2188. to_intel_encoder(conn_state->best_encoder);
  2189. enum port port;
  2190. uint32_t val;
  2191. if (conn_state->crtc != crtc)
  2192. continue;
  2193. port = encoder->port;
  2194. mutex_lock(&dev_priv->dpll_lock);
  2195. val = I915_READ(DPCLKA_CFGCR0_ICL);
  2196. WARN_ON((val & DPCLKA_CFGCR0_DDI_CLK_OFF(port)) == 0);
  2197. if (port == PORT_A || port == PORT_B) {
  2198. val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
  2199. val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, port);
  2200. I915_WRITE(DPCLKA_CFGCR0_ICL, val);
  2201. POSTING_READ(DPCLKA_CFGCR0_ICL);
  2202. }
  2203. val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port);
  2204. I915_WRITE(DPCLKA_CFGCR0_ICL, val);
  2205. mutex_unlock(&dev_priv->dpll_lock);
  2206. }
  2207. }
  2208. void icl_unmap_plls_to_ports(struct drm_crtc *crtc,
  2209. struct intel_crtc_state *crtc_state,
  2210. struct drm_atomic_state *old_state)
  2211. {
  2212. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  2213. struct drm_connector_state *old_conn_state;
  2214. struct drm_connector *conn;
  2215. int i;
  2216. for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
  2217. struct intel_encoder *encoder =
  2218. to_intel_encoder(old_conn_state->best_encoder);
  2219. enum port port;
  2220. if (old_conn_state->crtc != crtc)
  2221. continue;
  2222. port = encoder->port;
  2223. mutex_lock(&dev_priv->dpll_lock);
  2224. I915_WRITE(DPCLKA_CFGCR0_ICL,
  2225. I915_READ(DPCLKA_CFGCR0_ICL) |
  2226. DPCLKA_CFGCR0_DDI_CLK_OFF(port));
  2227. mutex_unlock(&dev_priv->dpll_lock);
  2228. }
  2229. }
  2230. static void intel_ddi_clk_select(struct intel_encoder *encoder,
  2231. const struct intel_shared_dpll *pll)
  2232. {
  2233. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2234. enum port port = encoder->port;
  2235. uint32_t val;
  2236. if (WARN_ON(!pll))
  2237. return;
  2238. mutex_lock(&dev_priv->dpll_lock);
  2239. if (IS_ICELAKE(dev_priv)) {
  2240. if (port >= PORT_C)
  2241. I915_WRITE(DDI_CLK_SEL(port),
  2242. icl_pll_to_ddi_pll_sel(encoder, pll));
  2243. } else if (IS_CANNONLAKE(dev_priv)) {
  2244. /* Configure DPCLKA_CFGCR0 to map the DPLL to the DDI. */
  2245. val = I915_READ(DPCLKA_CFGCR0);
  2246. val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
  2247. val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, port);
  2248. I915_WRITE(DPCLKA_CFGCR0, val);
  2249. /*
  2250. * Configure DPCLKA_CFGCR0 to turn on the clock for the DDI.
  2251. * This step and the step before must be done with separate
  2252. * register writes.
  2253. */
  2254. val = I915_READ(DPCLKA_CFGCR0);
  2255. val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port);
  2256. I915_WRITE(DPCLKA_CFGCR0, val);
  2257. } else if (IS_GEN9_BC(dev_priv)) {
  2258. /* DDI -> PLL mapping */
  2259. val = I915_READ(DPLL_CTRL2);
  2260. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  2261. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  2262. val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->info->id, port) |
  2263. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  2264. I915_WRITE(DPLL_CTRL2, val);
  2265. } else if (INTEL_GEN(dev_priv) < 9) {
  2266. I915_WRITE(PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll));
  2267. }
  2268. mutex_unlock(&dev_priv->dpll_lock);
  2269. }
  2270. static void intel_ddi_clk_disable(struct intel_encoder *encoder)
  2271. {
  2272. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2273. enum port port = encoder->port;
  2274. if (IS_ICELAKE(dev_priv)) {
  2275. if (port >= PORT_C)
  2276. I915_WRITE(DDI_CLK_SEL(port), DDI_CLK_SEL_NONE);
  2277. } else if (IS_CANNONLAKE(dev_priv)) {
  2278. I915_WRITE(DPCLKA_CFGCR0, I915_READ(DPCLKA_CFGCR0) |
  2279. DPCLKA_CFGCR0_DDI_CLK_OFF(port));
  2280. } else if (IS_GEN9_BC(dev_priv)) {
  2281. I915_WRITE(DPLL_CTRL2, I915_READ(DPLL_CTRL2) |
  2282. DPLL_CTRL2_DDI_CLK_OFF(port));
  2283. } else if (INTEL_GEN(dev_priv) < 9) {
  2284. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  2285. }
  2286. }
  2287. static void intel_ddi_pre_enable_dp(struct intel_encoder *encoder,
  2288. const struct intel_crtc_state *crtc_state,
  2289. const struct drm_connector_state *conn_state)
  2290. {
  2291. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2292. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2293. enum port port = encoder->port;
  2294. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2295. bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST);
  2296. int level = intel_ddi_dp_level(intel_dp);
  2297. WARN_ON(is_mst && (port == PORT_A || port == PORT_E));
  2298. intel_dp_set_link_params(intel_dp, crtc_state->port_clock,
  2299. crtc_state->lane_count, is_mst);
  2300. intel_edp_panel_on(intel_dp);
  2301. intel_ddi_clk_select(encoder, crtc_state->shared_dpll);
  2302. intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
  2303. if (IS_ICELAKE(dev_priv))
  2304. icl_ddi_vswing_sequence(encoder, level, encoder->type);
  2305. else if (IS_CANNONLAKE(dev_priv))
  2306. cnl_ddi_vswing_sequence(encoder, level, encoder->type);
  2307. else if (IS_GEN9_LP(dev_priv))
  2308. bxt_ddi_vswing_sequence(encoder, level, encoder->type);
  2309. else
  2310. intel_prepare_dp_ddi_buffers(encoder, crtc_state);
  2311. intel_ddi_init_dp_buf_reg(encoder);
  2312. if (!is_mst)
  2313. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  2314. intel_dp_start_link_train(intel_dp);
  2315. if (port != PORT_A || INTEL_GEN(dev_priv) >= 9)
  2316. intel_dp_stop_link_train(intel_dp);
  2317. intel_ddi_enable_pipe_clock(crtc_state);
  2318. }
  2319. static void intel_ddi_pre_enable_hdmi(struct intel_encoder *encoder,
  2320. const struct intel_crtc_state *crtc_state,
  2321. const struct drm_connector_state *conn_state)
  2322. {
  2323. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  2324. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  2325. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2326. enum port port = encoder->port;
  2327. int level = intel_ddi_hdmi_level(dev_priv, port);
  2328. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2329. intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
  2330. intel_ddi_clk_select(encoder, crtc_state->shared_dpll);
  2331. intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
  2332. if (IS_ICELAKE(dev_priv))
  2333. icl_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  2334. else if (IS_CANNONLAKE(dev_priv))
  2335. cnl_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  2336. else if (IS_GEN9_LP(dev_priv))
  2337. bxt_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  2338. else
  2339. intel_prepare_hdmi_ddi_buffers(encoder, level);
  2340. if (IS_GEN9_BC(dev_priv))
  2341. skl_ddi_set_iboost(encoder, level, INTEL_OUTPUT_HDMI);
  2342. intel_ddi_enable_pipe_clock(crtc_state);
  2343. intel_dig_port->set_infoframes(&encoder->base,
  2344. crtc_state->has_infoframe,
  2345. crtc_state, conn_state);
  2346. }
  2347. static void intel_ddi_pre_enable(struct intel_encoder *encoder,
  2348. const struct intel_crtc_state *crtc_state,
  2349. const struct drm_connector_state *conn_state)
  2350. {
  2351. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  2352. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  2353. enum pipe pipe = crtc->pipe;
  2354. /*
  2355. * When called from DP MST code:
  2356. * - conn_state will be NULL
  2357. * - encoder will be the main encoder (ie. mst->primary)
  2358. * - the main connector associated with this port
  2359. * won't be active or linked to a crtc
  2360. * - crtc_state will be the state of the first stream to
  2361. * be activated on this port, and it may not be the same
  2362. * stream that will be deactivated last, but each stream
  2363. * should have a state that is identical when it comes to
  2364. * the DP link parameteres
  2365. */
  2366. WARN_ON(crtc_state->has_pch_encoder);
  2367. intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  2368. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  2369. intel_ddi_pre_enable_hdmi(encoder, crtc_state, conn_state);
  2370. else
  2371. intel_ddi_pre_enable_dp(encoder, crtc_state, conn_state);
  2372. }
  2373. static void intel_disable_ddi_buf(struct intel_encoder *encoder)
  2374. {
  2375. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2376. enum port port = encoder->port;
  2377. bool wait = false;
  2378. u32 val;
  2379. val = I915_READ(DDI_BUF_CTL(port));
  2380. if (val & DDI_BUF_CTL_ENABLE) {
  2381. val &= ~DDI_BUF_CTL_ENABLE;
  2382. I915_WRITE(DDI_BUF_CTL(port), val);
  2383. wait = true;
  2384. }
  2385. val = I915_READ(DP_TP_CTL(port));
  2386. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2387. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2388. I915_WRITE(DP_TP_CTL(port), val);
  2389. if (wait)
  2390. intel_wait_ddi_buf_idle(dev_priv, port);
  2391. }
  2392. static void intel_ddi_post_disable_dp(struct intel_encoder *encoder,
  2393. const struct intel_crtc_state *old_crtc_state,
  2394. const struct drm_connector_state *old_conn_state)
  2395. {
  2396. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2397. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2398. struct intel_dp *intel_dp = &dig_port->dp;
  2399. bool is_mst = intel_crtc_has_type(old_crtc_state,
  2400. INTEL_OUTPUT_DP_MST);
  2401. intel_ddi_disable_pipe_clock(old_crtc_state);
  2402. /*
  2403. * Power down sink before disabling the port, otherwise we end
  2404. * up getting interrupts from the sink on detecting link loss.
  2405. */
  2406. if (!is_mst)
  2407. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  2408. intel_disable_ddi_buf(encoder);
  2409. intel_edp_panel_vdd_on(intel_dp);
  2410. intel_edp_panel_off(intel_dp);
  2411. intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
  2412. intel_ddi_clk_disable(encoder);
  2413. }
  2414. static void intel_ddi_post_disable_hdmi(struct intel_encoder *encoder,
  2415. const struct intel_crtc_state *old_crtc_state,
  2416. const struct drm_connector_state *old_conn_state)
  2417. {
  2418. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2419. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2420. struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
  2421. dig_port->set_infoframes(&encoder->base, false,
  2422. old_crtc_state, old_conn_state);
  2423. intel_ddi_disable_pipe_clock(old_crtc_state);
  2424. intel_disable_ddi_buf(encoder);
  2425. intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
  2426. intel_ddi_clk_disable(encoder);
  2427. intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
  2428. }
  2429. static void intel_ddi_post_disable(struct intel_encoder *encoder,
  2430. const struct intel_crtc_state *old_crtc_state,
  2431. const struct drm_connector_state *old_conn_state)
  2432. {
  2433. /*
  2434. * When called from DP MST code:
  2435. * - old_conn_state will be NULL
  2436. * - encoder will be the main encoder (ie. mst->primary)
  2437. * - the main connector associated with this port
  2438. * won't be active or linked to a crtc
  2439. * - old_crtc_state will be the state of the last stream to
  2440. * be deactivated on this port, and it may not be the same
  2441. * stream that was activated last, but each stream
  2442. * should have a state that is identical when it comes to
  2443. * the DP link parameteres
  2444. */
  2445. if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
  2446. intel_ddi_post_disable_hdmi(encoder,
  2447. old_crtc_state, old_conn_state);
  2448. else
  2449. intel_ddi_post_disable_dp(encoder,
  2450. old_crtc_state, old_conn_state);
  2451. }
  2452. void intel_ddi_fdi_post_disable(struct intel_encoder *encoder,
  2453. const struct intel_crtc_state *old_crtc_state,
  2454. const struct drm_connector_state *old_conn_state)
  2455. {
  2456. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2457. uint32_t val;
  2458. /*
  2459. * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
  2460. * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
  2461. * step 13 is the correct place for it. Step 18 is where it was
  2462. * originally before the BUN.
  2463. */
  2464. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2465. val &= ~FDI_RX_ENABLE;
  2466. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2467. intel_disable_ddi_buf(encoder);
  2468. intel_ddi_clk_disable(encoder);
  2469. val = I915_READ(FDI_RX_MISC(PIPE_A));
  2470. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  2471. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  2472. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  2473. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2474. val &= ~FDI_PCDCLK;
  2475. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2476. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2477. val &= ~FDI_RX_PLL_ENABLE;
  2478. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2479. }
  2480. static void intel_enable_ddi_dp(struct intel_encoder *encoder,
  2481. const struct intel_crtc_state *crtc_state,
  2482. const struct drm_connector_state *conn_state)
  2483. {
  2484. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2485. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2486. enum port port = encoder->port;
  2487. if (port == PORT_A && INTEL_GEN(dev_priv) < 9)
  2488. intel_dp_stop_link_train(intel_dp);
  2489. intel_edp_backlight_on(crtc_state, conn_state);
  2490. intel_psr_enable(intel_dp, crtc_state);
  2491. intel_edp_drrs_enable(intel_dp, crtc_state);
  2492. if (crtc_state->has_audio)
  2493. intel_audio_codec_enable(encoder, crtc_state, conn_state);
  2494. }
  2495. static void intel_enable_ddi_hdmi(struct intel_encoder *encoder,
  2496. const struct intel_crtc_state *crtc_state,
  2497. const struct drm_connector_state *conn_state)
  2498. {
  2499. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2500. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2501. struct drm_connector *connector = conn_state->connector;
  2502. enum port port = encoder->port;
  2503. if (!intel_hdmi_handle_sink_scrambling(encoder, connector,
  2504. crtc_state->hdmi_high_tmds_clock_ratio,
  2505. crtc_state->hdmi_scrambling))
  2506. DRM_ERROR("[CONNECTOR:%d:%s] Failed to configure sink scrambling/TMDS bit clock ratio\n",
  2507. connector->base.id, connector->name);
  2508. /* Display WA #1143: skl,kbl,cfl */
  2509. if (IS_GEN9_BC(dev_priv)) {
  2510. /*
  2511. * For some reason these chicken bits have been
  2512. * stuffed into a transcoder register, event though
  2513. * the bits affect a specific DDI port rather than
  2514. * a specific transcoder.
  2515. */
  2516. static const enum transcoder port_to_transcoder[] = {
  2517. [PORT_A] = TRANSCODER_EDP,
  2518. [PORT_B] = TRANSCODER_A,
  2519. [PORT_C] = TRANSCODER_B,
  2520. [PORT_D] = TRANSCODER_C,
  2521. [PORT_E] = TRANSCODER_A,
  2522. };
  2523. enum transcoder transcoder = port_to_transcoder[port];
  2524. u32 val;
  2525. val = I915_READ(CHICKEN_TRANS(transcoder));
  2526. if (port == PORT_E)
  2527. val |= DDIE_TRAINING_OVERRIDE_ENABLE |
  2528. DDIE_TRAINING_OVERRIDE_VALUE;
  2529. else
  2530. val |= DDI_TRAINING_OVERRIDE_ENABLE |
  2531. DDI_TRAINING_OVERRIDE_VALUE;
  2532. I915_WRITE(CHICKEN_TRANS(transcoder), val);
  2533. POSTING_READ(CHICKEN_TRANS(transcoder));
  2534. udelay(1);
  2535. if (port == PORT_E)
  2536. val &= ~(DDIE_TRAINING_OVERRIDE_ENABLE |
  2537. DDIE_TRAINING_OVERRIDE_VALUE);
  2538. else
  2539. val &= ~(DDI_TRAINING_OVERRIDE_ENABLE |
  2540. DDI_TRAINING_OVERRIDE_VALUE);
  2541. I915_WRITE(CHICKEN_TRANS(transcoder), val);
  2542. }
  2543. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  2544. * are ignored so nothing special needs to be done besides
  2545. * enabling the port.
  2546. */
  2547. I915_WRITE(DDI_BUF_CTL(port),
  2548. dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE);
  2549. if (crtc_state->has_audio)
  2550. intel_audio_codec_enable(encoder, crtc_state, conn_state);
  2551. }
  2552. static void intel_enable_ddi(struct intel_encoder *encoder,
  2553. const struct intel_crtc_state *crtc_state,
  2554. const struct drm_connector_state *conn_state)
  2555. {
  2556. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  2557. intel_enable_ddi_hdmi(encoder, crtc_state, conn_state);
  2558. else
  2559. intel_enable_ddi_dp(encoder, crtc_state, conn_state);
  2560. /* Enable hdcp if it's desired */
  2561. if (conn_state->content_protection ==
  2562. DRM_MODE_CONTENT_PROTECTION_DESIRED)
  2563. intel_hdcp_enable(to_intel_connector(conn_state->connector));
  2564. }
  2565. static void intel_disable_ddi_dp(struct intel_encoder *encoder,
  2566. const struct intel_crtc_state *old_crtc_state,
  2567. const struct drm_connector_state *old_conn_state)
  2568. {
  2569. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2570. intel_dp->link_trained = false;
  2571. if (old_crtc_state->has_audio)
  2572. intel_audio_codec_disable(encoder,
  2573. old_crtc_state, old_conn_state);
  2574. intel_edp_drrs_disable(intel_dp, old_crtc_state);
  2575. intel_psr_disable(intel_dp, old_crtc_state);
  2576. intel_edp_backlight_off(old_conn_state);
  2577. }
  2578. static void intel_disable_ddi_hdmi(struct intel_encoder *encoder,
  2579. const struct intel_crtc_state *old_crtc_state,
  2580. const struct drm_connector_state *old_conn_state)
  2581. {
  2582. struct drm_connector *connector = old_conn_state->connector;
  2583. if (old_crtc_state->has_audio)
  2584. intel_audio_codec_disable(encoder,
  2585. old_crtc_state, old_conn_state);
  2586. if (!intel_hdmi_handle_sink_scrambling(encoder, connector,
  2587. false, false))
  2588. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Failed to reset sink scrambling/TMDS bit clock ratio\n",
  2589. connector->base.id, connector->name);
  2590. }
  2591. static void intel_disable_ddi(struct intel_encoder *encoder,
  2592. const struct intel_crtc_state *old_crtc_state,
  2593. const struct drm_connector_state *old_conn_state)
  2594. {
  2595. intel_hdcp_disable(to_intel_connector(old_conn_state->connector));
  2596. if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
  2597. intel_disable_ddi_hdmi(encoder, old_crtc_state, old_conn_state);
  2598. else
  2599. intel_disable_ddi_dp(encoder, old_crtc_state, old_conn_state);
  2600. }
  2601. static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder,
  2602. const struct intel_crtc_state *pipe_config,
  2603. const struct drm_connector_state *conn_state)
  2604. {
  2605. uint8_t mask = pipe_config->lane_lat_optim_mask;
  2606. bxt_ddi_phy_set_lane_optim_mask(encoder, mask);
  2607. }
  2608. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  2609. {
  2610. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2611. struct drm_i915_private *dev_priv =
  2612. to_i915(intel_dig_port->base.base.dev);
  2613. enum port port = intel_dig_port->base.port;
  2614. uint32_t val;
  2615. bool wait = false;
  2616. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  2617. val = I915_READ(DDI_BUF_CTL(port));
  2618. if (val & DDI_BUF_CTL_ENABLE) {
  2619. val &= ~DDI_BUF_CTL_ENABLE;
  2620. I915_WRITE(DDI_BUF_CTL(port), val);
  2621. wait = true;
  2622. }
  2623. val = I915_READ(DP_TP_CTL(port));
  2624. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2625. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2626. I915_WRITE(DP_TP_CTL(port), val);
  2627. POSTING_READ(DP_TP_CTL(port));
  2628. if (wait)
  2629. intel_wait_ddi_buf_idle(dev_priv, port);
  2630. }
  2631. val = DP_TP_CTL_ENABLE |
  2632. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  2633. if (intel_dp->link_mst)
  2634. val |= DP_TP_CTL_MODE_MST;
  2635. else {
  2636. val |= DP_TP_CTL_MODE_SST;
  2637. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2638. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  2639. }
  2640. I915_WRITE(DP_TP_CTL(port), val);
  2641. POSTING_READ(DP_TP_CTL(port));
  2642. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  2643. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  2644. POSTING_READ(DDI_BUF_CTL(port));
  2645. udelay(600);
  2646. }
  2647. static bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
  2648. enum transcoder cpu_transcoder)
  2649. {
  2650. if (cpu_transcoder == TRANSCODER_EDP)
  2651. return false;
  2652. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO))
  2653. return false;
  2654. return I915_READ(HSW_AUD_PIN_ELD_CP_VLD) &
  2655. AUDIO_OUTPUT_ENABLE(cpu_transcoder);
  2656. }
  2657. void intel_ddi_compute_min_voltage_level(struct drm_i915_private *dev_priv,
  2658. struct intel_crtc_state *crtc_state)
  2659. {
  2660. if (IS_CANNONLAKE(dev_priv) && crtc_state->port_clock > 594000)
  2661. crtc_state->min_voltage_level = 2;
  2662. else if (IS_ICELAKE(dev_priv) && crtc_state->port_clock > 594000)
  2663. crtc_state->min_voltage_level = 1;
  2664. }
  2665. void intel_ddi_get_config(struct intel_encoder *encoder,
  2666. struct intel_crtc_state *pipe_config)
  2667. {
  2668. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2669. struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
  2670. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  2671. struct intel_digital_port *intel_dig_port;
  2672. u32 temp, flags = 0;
  2673. /* XXX: DSI transcoder paranoia */
  2674. if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
  2675. return;
  2676. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  2677. if (temp & TRANS_DDI_PHSYNC)
  2678. flags |= DRM_MODE_FLAG_PHSYNC;
  2679. else
  2680. flags |= DRM_MODE_FLAG_NHSYNC;
  2681. if (temp & TRANS_DDI_PVSYNC)
  2682. flags |= DRM_MODE_FLAG_PVSYNC;
  2683. else
  2684. flags |= DRM_MODE_FLAG_NVSYNC;
  2685. pipe_config->base.adjusted_mode.flags |= flags;
  2686. switch (temp & TRANS_DDI_BPC_MASK) {
  2687. case TRANS_DDI_BPC_6:
  2688. pipe_config->pipe_bpp = 18;
  2689. break;
  2690. case TRANS_DDI_BPC_8:
  2691. pipe_config->pipe_bpp = 24;
  2692. break;
  2693. case TRANS_DDI_BPC_10:
  2694. pipe_config->pipe_bpp = 30;
  2695. break;
  2696. case TRANS_DDI_BPC_12:
  2697. pipe_config->pipe_bpp = 36;
  2698. break;
  2699. default:
  2700. break;
  2701. }
  2702. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  2703. case TRANS_DDI_MODE_SELECT_HDMI:
  2704. pipe_config->has_hdmi_sink = true;
  2705. intel_dig_port = enc_to_dig_port(&encoder->base);
  2706. if (intel_dig_port->infoframe_enabled(&encoder->base, pipe_config))
  2707. pipe_config->has_infoframe = true;
  2708. if ((temp & TRANS_DDI_HDMI_SCRAMBLING_MASK) ==
  2709. TRANS_DDI_HDMI_SCRAMBLING_MASK)
  2710. pipe_config->hdmi_scrambling = true;
  2711. if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE)
  2712. pipe_config->hdmi_high_tmds_clock_ratio = true;
  2713. /* fall through */
  2714. case TRANS_DDI_MODE_SELECT_DVI:
  2715. pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
  2716. pipe_config->lane_count = 4;
  2717. break;
  2718. case TRANS_DDI_MODE_SELECT_FDI:
  2719. pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG);
  2720. break;
  2721. case TRANS_DDI_MODE_SELECT_DP_SST:
  2722. if (encoder->type == INTEL_OUTPUT_EDP)
  2723. pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
  2724. else
  2725. pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
  2726. pipe_config->lane_count =
  2727. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2728. intel_dp_get_m_n(intel_crtc, pipe_config);
  2729. break;
  2730. case TRANS_DDI_MODE_SELECT_DP_MST:
  2731. pipe_config->output_types |= BIT(INTEL_OUTPUT_DP_MST);
  2732. pipe_config->lane_count =
  2733. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2734. intel_dp_get_m_n(intel_crtc, pipe_config);
  2735. break;
  2736. default:
  2737. break;
  2738. }
  2739. pipe_config->has_audio =
  2740. intel_ddi_is_audio_enabled(dev_priv, cpu_transcoder);
  2741. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
  2742. pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
  2743. /*
  2744. * This is a big fat ugly hack.
  2745. *
  2746. * Some machines in UEFI boot mode provide us a VBT that has 18
  2747. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  2748. * unknown we fail to light up. Yet the same BIOS boots up with
  2749. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  2750. * max, not what it tells us to use.
  2751. *
  2752. * Note: This will still be broken if the eDP panel is not lit
  2753. * up by the BIOS, and thus we can't get the mode at module
  2754. * load.
  2755. */
  2756. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  2757. pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
  2758. dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
  2759. }
  2760. intel_ddi_clock_get(encoder, pipe_config);
  2761. if (IS_GEN9_LP(dev_priv))
  2762. pipe_config->lane_lat_optim_mask =
  2763. bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
  2764. intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
  2765. }
  2766. static enum intel_output_type
  2767. intel_ddi_compute_output_type(struct intel_encoder *encoder,
  2768. struct intel_crtc_state *crtc_state,
  2769. struct drm_connector_state *conn_state)
  2770. {
  2771. switch (conn_state->connector->connector_type) {
  2772. case DRM_MODE_CONNECTOR_HDMIA:
  2773. return INTEL_OUTPUT_HDMI;
  2774. case DRM_MODE_CONNECTOR_eDP:
  2775. return INTEL_OUTPUT_EDP;
  2776. case DRM_MODE_CONNECTOR_DisplayPort:
  2777. return INTEL_OUTPUT_DP;
  2778. default:
  2779. MISSING_CASE(conn_state->connector->connector_type);
  2780. return INTEL_OUTPUT_UNUSED;
  2781. }
  2782. }
  2783. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  2784. struct intel_crtc_state *pipe_config,
  2785. struct drm_connector_state *conn_state)
  2786. {
  2787. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2788. enum port port = encoder->port;
  2789. int ret;
  2790. if (port == PORT_A)
  2791. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2792. if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
  2793. ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state);
  2794. else
  2795. ret = intel_dp_compute_config(encoder, pipe_config, conn_state);
  2796. if (IS_GEN9_LP(dev_priv) && ret)
  2797. pipe_config->lane_lat_optim_mask =
  2798. bxt_ddi_phy_calc_lane_lat_optim_mask(pipe_config->lane_count);
  2799. intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
  2800. return ret;
  2801. }
  2802. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2803. .reset = intel_dp_encoder_reset,
  2804. .destroy = intel_dp_encoder_destroy,
  2805. };
  2806. static struct intel_connector *
  2807. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2808. {
  2809. struct intel_connector *connector;
  2810. enum port port = intel_dig_port->base.port;
  2811. connector = intel_connector_alloc();
  2812. if (!connector)
  2813. return NULL;
  2814. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2815. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2816. kfree(connector);
  2817. return NULL;
  2818. }
  2819. return connector;
  2820. }
  2821. static int modeset_pipe(struct drm_crtc *crtc,
  2822. struct drm_modeset_acquire_ctx *ctx)
  2823. {
  2824. struct drm_atomic_state *state;
  2825. struct drm_crtc_state *crtc_state;
  2826. int ret;
  2827. state = drm_atomic_state_alloc(crtc->dev);
  2828. if (!state)
  2829. return -ENOMEM;
  2830. state->acquire_ctx = ctx;
  2831. crtc_state = drm_atomic_get_crtc_state(state, crtc);
  2832. if (IS_ERR(crtc_state)) {
  2833. ret = PTR_ERR(crtc_state);
  2834. goto out;
  2835. }
  2836. crtc_state->mode_changed = true;
  2837. ret = drm_atomic_add_affected_connectors(state, crtc);
  2838. if (ret)
  2839. goto out;
  2840. ret = drm_atomic_add_affected_planes(state, crtc);
  2841. if (ret)
  2842. goto out;
  2843. ret = drm_atomic_commit(state);
  2844. if (ret)
  2845. goto out;
  2846. return 0;
  2847. out:
  2848. drm_atomic_state_put(state);
  2849. return ret;
  2850. }
  2851. static int intel_hdmi_reset_link(struct intel_encoder *encoder,
  2852. struct drm_modeset_acquire_ctx *ctx)
  2853. {
  2854. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2855. struct intel_hdmi *hdmi = enc_to_intel_hdmi(&encoder->base);
  2856. struct intel_connector *connector = hdmi->attached_connector;
  2857. struct i2c_adapter *adapter =
  2858. intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
  2859. struct drm_connector_state *conn_state;
  2860. struct intel_crtc_state *crtc_state;
  2861. struct intel_crtc *crtc;
  2862. u8 config;
  2863. int ret;
  2864. if (!connector || connector->base.status != connector_status_connected)
  2865. return 0;
  2866. ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
  2867. ctx);
  2868. if (ret)
  2869. return ret;
  2870. conn_state = connector->base.state;
  2871. crtc = to_intel_crtc(conn_state->crtc);
  2872. if (!crtc)
  2873. return 0;
  2874. ret = drm_modeset_lock(&crtc->base.mutex, ctx);
  2875. if (ret)
  2876. return ret;
  2877. crtc_state = to_intel_crtc_state(crtc->base.state);
  2878. WARN_ON(!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI));
  2879. if (!crtc_state->base.active)
  2880. return 0;
  2881. if (!crtc_state->hdmi_high_tmds_clock_ratio &&
  2882. !crtc_state->hdmi_scrambling)
  2883. return 0;
  2884. if (conn_state->commit &&
  2885. !try_wait_for_completion(&conn_state->commit->hw_done))
  2886. return 0;
  2887. ret = drm_scdc_readb(adapter, SCDC_TMDS_CONFIG, &config);
  2888. if (ret < 0) {
  2889. DRM_ERROR("Failed to read TMDS config: %d\n", ret);
  2890. return 0;
  2891. }
  2892. if (!!(config & SCDC_TMDS_BIT_CLOCK_RATIO_BY_40) ==
  2893. crtc_state->hdmi_high_tmds_clock_ratio &&
  2894. !!(config & SCDC_SCRAMBLING_ENABLE) ==
  2895. crtc_state->hdmi_scrambling)
  2896. return 0;
  2897. /*
  2898. * HDMI 2.0 says that one should not send scrambled data
  2899. * prior to configuring the sink scrambling, and that
  2900. * TMDS clock/data transmission should be suspended when
  2901. * changing the TMDS clock rate in the sink. So let's
  2902. * just do a full modeset here, even though some sinks
  2903. * would be perfectly happy if were to just reconfigure
  2904. * the SCDC settings on the fly.
  2905. */
  2906. return modeset_pipe(&crtc->base, ctx);
  2907. }
  2908. static bool intel_ddi_hotplug(struct intel_encoder *encoder,
  2909. struct intel_connector *connector)
  2910. {
  2911. struct drm_modeset_acquire_ctx ctx;
  2912. bool changed;
  2913. int ret;
  2914. changed = intel_encoder_hotplug(encoder, connector);
  2915. drm_modeset_acquire_init(&ctx, 0);
  2916. for (;;) {
  2917. if (connector->base.connector_type == DRM_MODE_CONNECTOR_HDMIA)
  2918. ret = intel_hdmi_reset_link(encoder, &ctx);
  2919. else
  2920. ret = intel_dp_retrain_link(encoder, &ctx);
  2921. if (ret == -EDEADLK) {
  2922. drm_modeset_backoff(&ctx);
  2923. continue;
  2924. }
  2925. break;
  2926. }
  2927. drm_modeset_drop_locks(&ctx);
  2928. drm_modeset_acquire_fini(&ctx);
  2929. WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
  2930. return changed;
  2931. }
  2932. static struct intel_connector *
  2933. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2934. {
  2935. struct intel_connector *connector;
  2936. enum port port = intel_dig_port->base.port;
  2937. connector = intel_connector_alloc();
  2938. if (!connector)
  2939. return NULL;
  2940. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2941. intel_hdmi_init_connector(intel_dig_port, connector);
  2942. return connector;
  2943. }
  2944. static bool intel_ddi_a_force_4_lanes(struct intel_digital_port *dport)
  2945. {
  2946. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  2947. if (dport->base.port != PORT_A)
  2948. return false;
  2949. if (dport->saved_port_bits & DDI_A_4_LANES)
  2950. return false;
  2951. /* Broxton/Geminilake: Bspec says that DDI_A_4_LANES is the only
  2952. * supported configuration
  2953. */
  2954. if (IS_GEN9_LP(dev_priv))
  2955. return true;
  2956. /* Cannonlake: Most of SKUs don't support DDI_E, and the only
  2957. * one who does also have a full A/E split called
  2958. * DDI_F what makes DDI_E useless. However for this
  2959. * case let's trust VBT info.
  2960. */
  2961. if (IS_CANNONLAKE(dev_priv) &&
  2962. !intel_bios_is_port_present(dev_priv, PORT_E))
  2963. return true;
  2964. return false;
  2965. }
  2966. static int
  2967. intel_ddi_max_lanes(struct intel_digital_port *intel_dport)
  2968. {
  2969. struct drm_i915_private *dev_priv = to_i915(intel_dport->base.base.dev);
  2970. enum port port = intel_dport->base.port;
  2971. int max_lanes = 4;
  2972. if (INTEL_GEN(dev_priv) >= 11)
  2973. return max_lanes;
  2974. if (port == PORT_A || port == PORT_E) {
  2975. if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
  2976. max_lanes = port == PORT_A ? 4 : 0;
  2977. else
  2978. /* Both A and E share 2 lanes */
  2979. max_lanes = 2;
  2980. }
  2981. /*
  2982. * Some BIOS might fail to set this bit on port A if eDP
  2983. * wasn't lit up at boot. Force this bit set when needed
  2984. * so we use the proper lane count for our calculations.
  2985. */
  2986. if (intel_ddi_a_force_4_lanes(intel_dport)) {
  2987. DRM_DEBUG_KMS("Forcing DDI_A_4_LANES for port A\n");
  2988. intel_dport->saved_port_bits |= DDI_A_4_LANES;
  2989. max_lanes = 4;
  2990. }
  2991. return max_lanes;
  2992. }
  2993. void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port)
  2994. {
  2995. struct intel_digital_port *intel_dig_port;
  2996. struct intel_encoder *intel_encoder;
  2997. struct drm_encoder *encoder;
  2998. bool init_hdmi, init_dp, init_lspcon = false;
  2999. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  3000. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  3001. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  3002. if (intel_bios_is_lspcon_present(dev_priv, port)) {
  3003. /*
  3004. * Lspcon device needs to be driven with DP connector
  3005. * with special detection sequence. So make sure DP
  3006. * is initialized before lspcon.
  3007. */
  3008. init_dp = true;
  3009. init_lspcon = true;
  3010. init_hdmi = false;
  3011. DRM_DEBUG_KMS("VBT says port %c has lspcon\n", port_name(port));
  3012. }
  3013. if (!init_dp && !init_hdmi) {
  3014. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  3015. port_name(port));
  3016. return;
  3017. }
  3018. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  3019. if (!intel_dig_port)
  3020. return;
  3021. intel_encoder = &intel_dig_port->base;
  3022. encoder = &intel_encoder->base;
  3023. drm_encoder_init(&dev_priv->drm, encoder, &intel_ddi_funcs,
  3024. DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
  3025. intel_encoder->hotplug = intel_ddi_hotplug;
  3026. intel_encoder->compute_output_type = intel_ddi_compute_output_type;
  3027. intel_encoder->compute_config = intel_ddi_compute_config;
  3028. intel_encoder->enable = intel_enable_ddi;
  3029. if (IS_GEN9_LP(dev_priv))
  3030. intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable;
  3031. intel_encoder->pre_enable = intel_ddi_pre_enable;
  3032. intel_encoder->disable = intel_disable_ddi;
  3033. intel_encoder->post_disable = intel_ddi_post_disable;
  3034. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  3035. intel_encoder->get_config = intel_ddi_get_config;
  3036. intel_encoder->suspend = intel_dp_encoder_suspend;
  3037. intel_encoder->get_power_domains = intel_ddi_get_power_domains;
  3038. intel_encoder->type = INTEL_OUTPUT_DDI;
  3039. intel_encoder->power_domain = intel_port_to_power_domain(port);
  3040. intel_encoder->port = port;
  3041. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3042. intel_encoder->cloneable = 0;
  3043. if (INTEL_GEN(dev_priv) >= 11)
  3044. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  3045. DDI_BUF_PORT_REVERSAL;
  3046. else
  3047. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  3048. (DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES);
  3049. intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
  3050. intel_dig_port->max_lanes = intel_ddi_max_lanes(intel_dig_port);
  3051. switch (port) {
  3052. case PORT_A:
  3053. intel_dig_port->ddi_io_power_domain =
  3054. POWER_DOMAIN_PORT_DDI_A_IO;
  3055. break;
  3056. case PORT_B:
  3057. intel_dig_port->ddi_io_power_domain =
  3058. POWER_DOMAIN_PORT_DDI_B_IO;
  3059. break;
  3060. case PORT_C:
  3061. intel_dig_port->ddi_io_power_domain =
  3062. POWER_DOMAIN_PORT_DDI_C_IO;
  3063. break;
  3064. case PORT_D:
  3065. intel_dig_port->ddi_io_power_domain =
  3066. POWER_DOMAIN_PORT_DDI_D_IO;
  3067. break;
  3068. case PORT_E:
  3069. intel_dig_port->ddi_io_power_domain =
  3070. POWER_DOMAIN_PORT_DDI_E_IO;
  3071. break;
  3072. case PORT_F:
  3073. intel_dig_port->ddi_io_power_domain =
  3074. POWER_DOMAIN_PORT_DDI_F_IO;
  3075. break;
  3076. default:
  3077. MISSING_CASE(port);
  3078. }
  3079. intel_infoframe_init(intel_dig_port);
  3080. if (init_dp) {
  3081. if (!intel_ddi_init_dp_connector(intel_dig_port))
  3082. goto err;
  3083. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  3084. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  3085. }
  3086. /* In theory we don't need the encoder->type check, but leave it just in
  3087. * case we have some really bad VBTs... */
  3088. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  3089. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  3090. goto err;
  3091. }
  3092. if (init_lspcon) {
  3093. if (lspcon_init(intel_dig_port))
  3094. /* TODO: handle hdmi info frame part */
  3095. DRM_DEBUG_KMS("LSPCON init success on port %c\n",
  3096. port_name(port));
  3097. else
  3098. /*
  3099. * LSPCON init faied, but DP init was success, so
  3100. * lets try to drive as DP++ port.
  3101. */
  3102. DRM_ERROR("LSPCON init failed on port %c\n",
  3103. port_name(port));
  3104. }
  3105. return;
  3106. err:
  3107. drm_encoder_cleanup(encoder);
  3108. kfree(intel_dig_port);
  3109. }