intel_dpll_mgr.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. struct intel_shared_dpll *
  25. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  26. enum intel_dpll_id id)
  27. {
  28. return &dev_priv->shared_dplls[id];
  29. }
  30. enum intel_dpll_id
  31. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  32. struct intel_shared_dpll *pll)
  33. {
  34. if (WARN_ON(pll < dev_priv->shared_dplls||
  35. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  36. return -1;
  37. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  38. }
  39. void
  40. intel_shared_dpll_config_get(struct intel_shared_dpll_config *config,
  41. struct intel_shared_dpll *pll,
  42. struct intel_crtc *crtc)
  43. {
  44. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  45. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  46. config[id].crtc_mask |= 1 << crtc->pipe;
  47. }
  48. void
  49. intel_shared_dpll_config_put(struct intel_shared_dpll_config *config,
  50. struct intel_shared_dpll *pll,
  51. struct intel_crtc *crtc)
  52. {
  53. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  54. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  55. config[id].crtc_mask &= ~(1 << crtc->pipe);
  56. }
  57. /* For ILK+ */
  58. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  59. struct intel_shared_dpll *pll,
  60. bool state)
  61. {
  62. bool cur_state;
  63. struct intel_dpll_hw_state hw_state;
  64. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  65. return;
  66. cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
  67. I915_STATE_WARN(cur_state != state,
  68. "%s assertion failure (expected %s, current %s)\n",
  69. pll->name, onoff(state), onoff(cur_state));
  70. }
  71. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  72. {
  73. struct drm_device *dev = crtc->base.dev;
  74. struct drm_i915_private *dev_priv = to_i915(dev);
  75. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  76. if (WARN_ON(pll == NULL))
  77. return;
  78. mutex_lock(&dev_priv->dpll_lock);
  79. WARN_ON(!pll->config.crtc_mask);
  80. if (!pll->active_mask) {
  81. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  82. WARN_ON(pll->on);
  83. assert_shared_dpll_disabled(dev_priv, pll);
  84. pll->funcs.mode_set(dev_priv, pll);
  85. }
  86. mutex_unlock(&dev_priv->dpll_lock);
  87. }
  88. /**
  89. * intel_enable_shared_dpll - enable PCH PLL
  90. * @dev_priv: i915 private structure
  91. * @pipe: pipe PLL to enable
  92. *
  93. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  94. * drives the transcoder clock.
  95. */
  96. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  97. {
  98. struct drm_device *dev = crtc->base.dev;
  99. struct drm_i915_private *dev_priv = to_i915(dev);
  100. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  101. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  102. unsigned old_mask;
  103. if (WARN_ON(pll == NULL))
  104. return;
  105. mutex_lock(&dev_priv->dpll_lock);
  106. old_mask = pll->active_mask;
  107. if (WARN_ON(!(pll->config.crtc_mask & crtc_mask)) ||
  108. WARN_ON(pll->active_mask & crtc_mask))
  109. goto out;
  110. pll->active_mask |= crtc_mask;
  111. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  112. pll->name, pll->active_mask, pll->on,
  113. crtc->base.base.id);
  114. if (old_mask) {
  115. WARN_ON(!pll->on);
  116. assert_shared_dpll_enabled(dev_priv, pll);
  117. goto out;
  118. }
  119. WARN_ON(pll->on);
  120. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  121. pll->funcs.enable(dev_priv, pll);
  122. pll->on = true;
  123. out:
  124. mutex_unlock(&dev_priv->dpll_lock);
  125. }
  126. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  127. {
  128. struct drm_device *dev = crtc->base.dev;
  129. struct drm_i915_private *dev_priv = to_i915(dev);
  130. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  131. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  132. /* PCH only available on ILK+ */
  133. if (INTEL_INFO(dev)->gen < 5)
  134. return;
  135. if (pll == NULL)
  136. return;
  137. mutex_lock(&dev_priv->dpll_lock);
  138. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  139. goto out;
  140. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  141. pll->name, pll->active_mask, pll->on,
  142. crtc->base.base.id);
  143. assert_shared_dpll_enabled(dev_priv, pll);
  144. WARN_ON(!pll->on);
  145. pll->active_mask &= ~crtc_mask;
  146. if (pll->active_mask)
  147. goto out;
  148. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  149. pll->funcs.disable(dev_priv, pll);
  150. pll->on = false;
  151. out:
  152. mutex_unlock(&dev_priv->dpll_lock);
  153. }
  154. static struct intel_shared_dpll *
  155. intel_find_shared_dpll(struct intel_crtc *crtc,
  156. struct intel_crtc_state *crtc_state,
  157. enum intel_dpll_id range_min,
  158. enum intel_dpll_id range_max)
  159. {
  160. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  161. struct intel_shared_dpll *pll;
  162. struct intel_shared_dpll_config *shared_dpll;
  163. enum intel_dpll_id i;
  164. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  165. for (i = range_min; i <= range_max; i++) {
  166. pll = &dev_priv->shared_dplls[i];
  167. /* Only want to check enabled timings first */
  168. if (shared_dpll[i].crtc_mask == 0)
  169. continue;
  170. if (memcmp(&crtc_state->dpll_hw_state,
  171. &shared_dpll[i].hw_state,
  172. sizeof(crtc_state->dpll_hw_state)) == 0) {
  173. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  174. crtc->base.base.id, crtc->base.name, pll->name,
  175. shared_dpll[i].crtc_mask,
  176. pll->active_mask);
  177. return pll;
  178. }
  179. }
  180. /* Ok no matching timings, maybe there's a free one? */
  181. for (i = range_min; i <= range_max; i++) {
  182. pll = &dev_priv->shared_dplls[i];
  183. if (shared_dpll[i].crtc_mask == 0) {
  184. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  185. crtc->base.base.id, crtc->base.name, pll->name);
  186. return pll;
  187. }
  188. }
  189. return NULL;
  190. }
  191. static void
  192. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  193. struct intel_crtc_state *crtc_state)
  194. {
  195. struct intel_shared_dpll_config *shared_dpll;
  196. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  197. enum intel_dpll_id i = pll->id;
  198. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  199. if (shared_dpll[i].crtc_mask == 0)
  200. shared_dpll[i].hw_state =
  201. crtc_state->dpll_hw_state;
  202. crtc_state->shared_dpll = pll;
  203. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  204. pipe_name(crtc->pipe));
  205. intel_shared_dpll_config_get(shared_dpll, pll, crtc);
  206. }
  207. void intel_shared_dpll_commit(struct drm_atomic_state *state)
  208. {
  209. struct drm_i915_private *dev_priv = to_i915(state->dev);
  210. struct intel_shared_dpll_config *shared_dpll;
  211. struct intel_shared_dpll *pll;
  212. enum intel_dpll_id i;
  213. if (!to_intel_atomic_state(state)->dpll_set)
  214. return;
  215. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  216. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  217. pll = &dev_priv->shared_dplls[i];
  218. pll->config = shared_dpll[i];
  219. }
  220. }
  221. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  222. struct intel_shared_dpll *pll,
  223. struct intel_dpll_hw_state *hw_state)
  224. {
  225. uint32_t val;
  226. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  227. return false;
  228. val = I915_READ(PCH_DPLL(pll->id));
  229. hw_state->dpll = val;
  230. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  231. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  232. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  233. return val & DPLL_VCO_ENABLE;
  234. }
  235. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  236. struct intel_shared_dpll *pll)
  237. {
  238. I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  239. I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  240. }
  241. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  242. {
  243. u32 val;
  244. bool enabled;
  245. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  246. val = I915_READ(PCH_DREF_CONTROL);
  247. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  248. DREF_SUPERSPREAD_SOURCE_MASK));
  249. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  250. }
  251. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  252. struct intel_shared_dpll *pll)
  253. {
  254. /* PCH refclock must be enabled first */
  255. ibx_assert_pch_refclk_enabled(dev_priv);
  256. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  257. /* Wait for the clocks to stabilize. */
  258. POSTING_READ(PCH_DPLL(pll->id));
  259. udelay(150);
  260. /* The pixel multiplier can only be updated once the
  261. * DPLL is enabled and the clocks are stable.
  262. *
  263. * So write it again.
  264. */
  265. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  266. POSTING_READ(PCH_DPLL(pll->id));
  267. udelay(200);
  268. }
  269. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  270. struct intel_shared_dpll *pll)
  271. {
  272. struct drm_device *dev = &dev_priv->drm;
  273. struct intel_crtc *crtc;
  274. /* Make sure no transcoder isn't still depending on us. */
  275. for_each_intel_crtc(dev, crtc) {
  276. if (crtc->config->shared_dpll == pll)
  277. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  278. }
  279. I915_WRITE(PCH_DPLL(pll->id), 0);
  280. POSTING_READ(PCH_DPLL(pll->id));
  281. udelay(200);
  282. }
  283. static struct intel_shared_dpll *
  284. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  285. struct intel_encoder *encoder)
  286. {
  287. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  288. struct intel_shared_dpll *pll;
  289. enum intel_dpll_id i;
  290. if (HAS_PCH_IBX(dev_priv)) {
  291. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  292. i = (enum intel_dpll_id) crtc->pipe;
  293. pll = &dev_priv->shared_dplls[i];
  294. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  295. crtc->base.base.id, crtc->base.name, pll->name);
  296. } else {
  297. pll = intel_find_shared_dpll(crtc, crtc_state,
  298. DPLL_ID_PCH_PLL_A,
  299. DPLL_ID_PCH_PLL_B);
  300. }
  301. if (!pll)
  302. return NULL;
  303. /* reference the pll */
  304. intel_reference_shared_dpll(pll, crtc_state);
  305. return pll;
  306. }
  307. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  308. .mode_set = ibx_pch_dpll_mode_set,
  309. .enable = ibx_pch_dpll_enable,
  310. .disable = ibx_pch_dpll_disable,
  311. .get_hw_state = ibx_pch_dpll_get_hw_state,
  312. };
  313. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  314. struct intel_shared_dpll *pll)
  315. {
  316. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  317. POSTING_READ(WRPLL_CTL(pll->id));
  318. udelay(20);
  319. }
  320. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  321. struct intel_shared_dpll *pll)
  322. {
  323. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  324. POSTING_READ(SPLL_CTL);
  325. udelay(20);
  326. }
  327. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  328. struct intel_shared_dpll *pll)
  329. {
  330. uint32_t val;
  331. val = I915_READ(WRPLL_CTL(pll->id));
  332. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  333. POSTING_READ(WRPLL_CTL(pll->id));
  334. }
  335. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  336. struct intel_shared_dpll *pll)
  337. {
  338. uint32_t val;
  339. val = I915_READ(SPLL_CTL);
  340. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  341. POSTING_READ(SPLL_CTL);
  342. }
  343. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  344. struct intel_shared_dpll *pll,
  345. struct intel_dpll_hw_state *hw_state)
  346. {
  347. uint32_t val;
  348. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  349. return false;
  350. val = I915_READ(WRPLL_CTL(pll->id));
  351. hw_state->wrpll = val;
  352. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  353. return val & WRPLL_PLL_ENABLE;
  354. }
  355. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  356. struct intel_shared_dpll *pll,
  357. struct intel_dpll_hw_state *hw_state)
  358. {
  359. uint32_t val;
  360. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  361. return false;
  362. val = I915_READ(SPLL_CTL);
  363. hw_state->spll = val;
  364. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  365. return val & SPLL_PLL_ENABLE;
  366. }
  367. static uint32_t hsw_pll_to_ddi_pll_sel(struct intel_shared_dpll *pll)
  368. {
  369. switch (pll->id) {
  370. case DPLL_ID_WRPLL1:
  371. return PORT_CLK_SEL_WRPLL1;
  372. case DPLL_ID_WRPLL2:
  373. return PORT_CLK_SEL_WRPLL2;
  374. case DPLL_ID_SPLL:
  375. return PORT_CLK_SEL_SPLL;
  376. case DPLL_ID_LCPLL_810:
  377. return PORT_CLK_SEL_LCPLL_810;
  378. case DPLL_ID_LCPLL_1350:
  379. return PORT_CLK_SEL_LCPLL_1350;
  380. case DPLL_ID_LCPLL_2700:
  381. return PORT_CLK_SEL_LCPLL_2700;
  382. default:
  383. return PORT_CLK_SEL_NONE;
  384. }
  385. }
  386. #define LC_FREQ 2700
  387. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  388. #define P_MIN 2
  389. #define P_MAX 64
  390. #define P_INC 2
  391. /* Constraints for PLL good behavior */
  392. #define REF_MIN 48
  393. #define REF_MAX 400
  394. #define VCO_MIN 2400
  395. #define VCO_MAX 4800
  396. struct hsw_wrpll_rnp {
  397. unsigned p, n2, r2;
  398. };
  399. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  400. {
  401. unsigned budget;
  402. switch (clock) {
  403. case 25175000:
  404. case 25200000:
  405. case 27000000:
  406. case 27027000:
  407. case 37762500:
  408. case 37800000:
  409. case 40500000:
  410. case 40541000:
  411. case 54000000:
  412. case 54054000:
  413. case 59341000:
  414. case 59400000:
  415. case 72000000:
  416. case 74176000:
  417. case 74250000:
  418. case 81000000:
  419. case 81081000:
  420. case 89012000:
  421. case 89100000:
  422. case 108000000:
  423. case 108108000:
  424. case 111264000:
  425. case 111375000:
  426. case 148352000:
  427. case 148500000:
  428. case 162000000:
  429. case 162162000:
  430. case 222525000:
  431. case 222750000:
  432. case 296703000:
  433. case 297000000:
  434. budget = 0;
  435. break;
  436. case 233500000:
  437. case 245250000:
  438. case 247750000:
  439. case 253250000:
  440. case 298000000:
  441. budget = 1500;
  442. break;
  443. case 169128000:
  444. case 169500000:
  445. case 179500000:
  446. case 202000000:
  447. budget = 2000;
  448. break;
  449. case 256250000:
  450. case 262500000:
  451. case 270000000:
  452. case 272500000:
  453. case 273750000:
  454. case 280750000:
  455. case 281250000:
  456. case 286000000:
  457. case 291750000:
  458. budget = 4000;
  459. break;
  460. case 267250000:
  461. case 268500000:
  462. budget = 5000;
  463. break;
  464. default:
  465. budget = 1000;
  466. break;
  467. }
  468. return budget;
  469. }
  470. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  471. unsigned r2, unsigned n2, unsigned p,
  472. struct hsw_wrpll_rnp *best)
  473. {
  474. uint64_t a, b, c, d, diff, diff_best;
  475. /* No best (r,n,p) yet */
  476. if (best->p == 0) {
  477. best->p = p;
  478. best->n2 = n2;
  479. best->r2 = r2;
  480. return;
  481. }
  482. /*
  483. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  484. * freq2k.
  485. *
  486. * delta = 1e6 *
  487. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  488. * freq2k;
  489. *
  490. * and we would like delta <= budget.
  491. *
  492. * If the discrepancy is above the PPM-based budget, always prefer to
  493. * improve upon the previous solution. However, if you're within the
  494. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  495. */
  496. a = freq2k * budget * p * r2;
  497. b = freq2k * budget * best->p * best->r2;
  498. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  499. diff_best = abs_diff(freq2k * best->p * best->r2,
  500. LC_FREQ_2K * best->n2);
  501. c = 1000000 * diff;
  502. d = 1000000 * diff_best;
  503. if (a < c && b < d) {
  504. /* If both are above the budget, pick the closer */
  505. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  506. best->p = p;
  507. best->n2 = n2;
  508. best->r2 = r2;
  509. }
  510. } else if (a >= c && b < d) {
  511. /* If A is below the threshold but B is above it? Update. */
  512. best->p = p;
  513. best->n2 = n2;
  514. best->r2 = r2;
  515. } else if (a >= c && b >= d) {
  516. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  517. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  518. best->p = p;
  519. best->n2 = n2;
  520. best->r2 = r2;
  521. }
  522. }
  523. /* Otherwise a < c && b >= d, do nothing */
  524. }
  525. static void
  526. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  527. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  528. {
  529. uint64_t freq2k;
  530. unsigned p, n2, r2;
  531. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  532. unsigned budget;
  533. freq2k = clock / 100;
  534. budget = hsw_wrpll_get_budget_for_freq(clock);
  535. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  536. * and directly pass the LC PLL to it. */
  537. if (freq2k == 5400000) {
  538. *n2_out = 2;
  539. *p_out = 1;
  540. *r2_out = 2;
  541. return;
  542. }
  543. /*
  544. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  545. * the WR PLL.
  546. *
  547. * We want R so that REF_MIN <= Ref <= REF_MAX.
  548. * Injecting R2 = 2 * R gives:
  549. * REF_MAX * r2 > LC_FREQ * 2 and
  550. * REF_MIN * r2 < LC_FREQ * 2
  551. *
  552. * Which means the desired boundaries for r2 are:
  553. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  554. *
  555. */
  556. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  557. r2 <= LC_FREQ * 2 / REF_MIN;
  558. r2++) {
  559. /*
  560. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  561. *
  562. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  563. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  564. * VCO_MAX * r2 > n2 * LC_FREQ and
  565. * VCO_MIN * r2 < n2 * LC_FREQ)
  566. *
  567. * Which means the desired boundaries for n2 are:
  568. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  569. */
  570. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  571. n2 <= VCO_MAX * r2 / LC_FREQ;
  572. n2++) {
  573. for (p = P_MIN; p <= P_MAX; p += P_INC)
  574. hsw_wrpll_update_rnp(freq2k, budget,
  575. r2, n2, p, &best);
  576. }
  577. }
  578. *n2_out = best.n2;
  579. *p_out = best.p;
  580. *r2_out = best.r2;
  581. }
  582. static struct intel_shared_dpll *
  583. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  584. struct intel_encoder *encoder)
  585. {
  586. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  587. struct intel_shared_dpll *pll;
  588. int clock = crtc_state->port_clock;
  589. memset(&crtc_state->dpll_hw_state, 0,
  590. sizeof(crtc_state->dpll_hw_state));
  591. if (encoder->type == INTEL_OUTPUT_HDMI) {
  592. uint32_t val;
  593. unsigned p, n2, r2;
  594. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  595. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  596. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  597. WRPLL_DIVIDER_POST(p);
  598. crtc_state->dpll_hw_state.wrpll = val;
  599. pll = intel_find_shared_dpll(crtc, crtc_state,
  600. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  601. } else if (encoder->type == INTEL_OUTPUT_DP ||
  602. encoder->type == INTEL_OUTPUT_DP_MST ||
  603. encoder->type == INTEL_OUTPUT_EDP) {
  604. enum intel_dpll_id pll_id;
  605. switch (clock / 2) {
  606. case 81000:
  607. pll_id = DPLL_ID_LCPLL_810;
  608. break;
  609. case 135000:
  610. pll_id = DPLL_ID_LCPLL_1350;
  611. break;
  612. case 270000:
  613. pll_id = DPLL_ID_LCPLL_2700;
  614. break;
  615. default:
  616. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  617. return NULL;
  618. }
  619. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  620. } else if (encoder->type == INTEL_OUTPUT_ANALOG) {
  621. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  622. return NULL;
  623. crtc_state->dpll_hw_state.spll =
  624. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  625. pll = intel_find_shared_dpll(crtc, crtc_state,
  626. DPLL_ID_SPLL, DPLL_ID_SPLL);
  627. } else {
  628. return NULL;
  629. }
  630. if (!pll)
  631. return NULL;
  632. crtc_state->ddi_pll_sel = hsw_pll_to_ddi_pll_sel(pll);
  633. intel_reference_shared_dpll(pll, crtc_state);
  634. return pll;
  635. }
  636. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  637. .enable = hsw_ddi_wrpll_enable,
  638. .disable = hsw_ddi_wrpll_disable,
  639. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  640. };
  641. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  642. .enable = hsw_ddi_spll_enable,
  643. .disable = hsw_ddi_spll_disable,
  644. .get_hw_state = hsw_ddi_spll_get_hw_state,
  645. };
  646. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  647. struct intel_shared_dpll *pll)
  648. {
  649. }
  650. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  651. struct intel_shared_dpll *pll)
  652. {
  653. }
  654. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  655. struct intel_shared_dpll *pll,
  656. struct intel_dpll_hw_state *hw_state)
  657. {
  658. return true;
  659. }
  660. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  661. .enable = hsw_ddi_lcpll_enable,
  662. .disable = hsw_ddi_lcpll_disable,
  663. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  664. };
  665. struct skl_dpll_regs {
  666. i915_reg_t ctl, cfgcr1, cfgcr2;
  667. };
  668. /* this array is indexed by the *shared* pll id */
  669. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  670. {
  671. /* DPLL 0 */
  672. .ctl = LCPLL1_CTL,
  673. /* DPLL 0 doesn't support HDMI mode */
  674. },
  675. {
  676. /* DPLL 1 */
  677. .ctl = LCPLL2_CTL,
  678. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  679. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  680. },
  681. {
  682. /* DPLL 2 */
  683. .ctl = WRPLL_CTL(0),
  684. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  685. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  686. },
  687. {
  688. /* DPLL 3 */
  689. .ctl = WRPLL_CTL(1),
  690. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  691. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  692. },
  693. };
  694. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  695. struct intel_shared_dpll *pll)
  696. {
  697. uint32_t val;
  698. val = I915_READ(DPLL_CTRL1);
  699. val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
  700. DPLL_CTRL1_LINK_RATE_MASK(pll->id));
  701. val |= pll->config.hw_state.ctrl1 << (pll->id * 6);
  702. I915_WRITE(DPLL_CTRL1, val);
  703. POSTING_READ(DPLL_CTRL1);
  704. }
  705. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  706. struct intel_shared_dpll *pll)
  707. {
  708. const struct skl_dpll_regs *regs = skl_dpll_regs;
  709. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  710. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  711. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  712. POSTING_READ(regs[pll->id].cfgcr1);
  713. POSTING_READ(regs[pll->id].cfgcr2);
  714. /* the enable bit is always bit 31 */
  715. I915_WRITE(regs[pll->id].ctl,
  716. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  717. if (intel_wait_for_register(dev_priv,
  718. DPLL_STATUS,
  719. DPLL_LOCK(pll->id),
  720. DPLL_LOCK(pll->id),
  721. 5))
  722. DRM_ERROR("DPLL %d not locked\n", pll->id);
  723. }
  724. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  725. struct intel_shared_dpll *pll)
  726. {
  727. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  728. }
  729. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  730. struct intel_shared_dpll *pll)
  731. {
  732. const struct skl_dpll_regs *regs = skl_dpll_regs;
  733. /* the enable bit is always bit 31 */
  734. I915_WRITE(regs[pll->id].ctl,
  735. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  736. POSTING_READ(regs[pll->id].ctl);
  737. }
  738. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  739. struct intel_shared_dpll *pll)
  740. {
  741. }
  742. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  743. struct intel_shared_dpll *pll,
  744. struct intel_dpll_hw_state *hw_state)
  745. {
  746. uint32_t val;
  747. const struct skl_dpll_regs *regs = skl_dpll_regs;
  748. bool ret;
  749. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  750. return false;
  751. ret = false;
  752. val = I915_READ(regs[pll->id].ctl);
  753. if (!(val & LCPLL_PLL_ENABLE))
  754. goto out;
  755. val = I915_READ(DPLL_CTRL1);
  756. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  757. /* avoid reading back stale values if HDMI mode is not enabled */
  758. if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
  759. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  760. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  761. }
  762. ret = true;
  763. out:
  764. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  765. return ret;
  766. }
  767. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  768. struct intel_shared_dpll *pll,
  769. struct intel_dpll_hw_state *hw_state)
  770. {
  771. uint32_t val;
  772. const struct skl_dpll_regs *regs = skl_dpll_regs;
  773. bool ret;
  774. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  775. return false;
  776. ret = false;
  777. /* DPLL0 is always enabled since it drives CDCLK */
  778. val = I915_READ(regs[pll->id].ctl);
  779. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  780. goto out;
  781. val = I915_READ(DPLL_CTRL1);
  782. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  783. ret = true;
  784. out:
  785. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  786. return ret;
  787. }
  788. struct skl_wrpll_context {
  789. uint64_t min_deviation; /* current minimal deviation */
  790. uint64_t central_freq; /* chosen central freq */
  791. uint64_t dco_freq; /* chosen dco freq */
  792. unsigned int p; /* chosen divider */
  793. };
  794. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  795. {
  796. memset(ctx, 0, sizeof(*ctx));
  797. ctx->min_deviation = U64_MAX;
  798. }
  799. /* DCO freq must be within +1%/-6% of the DCO central freq */
  800. #define SKL_DCO_MAX_PDEVIATION 100
  801. #define SKL_DCO_MAX_NDEVIATION 600
  802. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  803. uint64_t central_freq,
  804. uint64_t dco_freq,
  805. unsigned int divider)
  806. {
  807. uint64_t deviation;
  808. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  809. central_freq);
  810. /* positive deviation */
  811. if (dco_freq >= central_freq) {
  812. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  813. deviation < ctx->min_deviation) {
  814. ctx->min_deviation = deviation;
  815. ctx->central_freq = central_freq;
  816. ctx->dco_freq = dco_freq;
  817. ctx->p = divider;
  818. }
  819. /* negative deviation */
  820. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  821. deviation < ctx->min_deviation) {
  822. ctx->min_deviation = deviation;
  823. ctx->central_freq = central_freq;
  824. ctx->dco_freq = dco_freq;
  825. ctx->p = divider;
  826. }
  827. }
  828. static void skl_wrpll_get_multipliers(unsigned int p,
  829. unsigned int *p0 /* out */,
  830. unsigned int *p1 /* out */,
  831. unsigned int *p2 /* out */)
  832. {
  833. /* even dividers */
  834. if (p % 2 == 0) {
  835. unsigned int half = p / 2;
  836. if (half == 1 || half == 2 || half == 3 || half == 5) {
  837. *p0 = 2;
  838. *p1 = 1;
  839. *p2 = half;
  840. } else if (half % 2 == 0) {
  841. *p0 = 2;
  842. *p1 = half / 2;
  843. *p2 = 2;
  844. } else if (half % 3 == 0) {
  845. *p0 = 3;
  846. *p1 = half / 3;
  847. *p2 = 2;
  848. } else if (half % 7 == 0) {
  849. *p0 = 7;
  850. *p1 = half / 7;
  851. *p2 = 2;
  852. }
  853. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  854. *p0 = 3;
  855. *p1 = 1;
  856. *p2 = p / 3;
  857. } else if (p == 5 || p == 7) {
  858. *p0 = p;
  859. *p1 = 1;
  860. *p2 = 1;
  861. } else if (p == 15) {
  862. *p0 = 3;
  863. *p1 = 1;
  864. *p2 = 5;
  865. } else if (p == 21) {
  866. *p0 = 7;
  867. *p1 = 1;
  868. *p2 = 3;
  869. } else if (p == 35) {
  870. *p0 = 7;
  871. *p1 = 1;
  872. *p2 = 5;
  873. }
  874. }
  875. struct skl_wrpll_params {
  876. uint32_t dco_fraction;
  877. uint32_t dco_integer;
  878. uint32_t qdiv_ratio;
  879. uint32_t qdiv_mode;
  880. uint32_t kdiv;
  881. uint32_t pdiv;
  882. uint32_t central_freq;
  883. };
  884. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  885. uint64_t afe_clock,
  886. uint64_t central_freq,
  887. uint32_t p0, uint32_t p1, uint32_t p2)
  888. {
  889. uint64_t dco_freq;
  890. switch (central_freq) {
  891. case 9600000000ULL:
  892. params->central_freq = 0;
  893. break;
  894. case 9000000000ULL:
  895. params->central_freq = 1;
  896. break;
  897. case 8400000000ULL:
  898. params->central_freq = 3;
  899. }
  900. switch (p0) {
  901. case 1:
  902. params->pdiv = 0;
  903. break;
  904. case 2:
  905. params->pdiv = 1;
  906. break;
  907. case 3:
  908. params->pdiv = 2;
  909. break;
  910. case 7:
  911. params->pdiv = 4;
  912. break;
  913. default:
  914. WARN(1, "Incorrect PDiv\n");
  915. }
  916. switch (p2) {
  917. case 5:
  918. params->kdiv = 0;
  919. break;
  920. case 2:
  921. params->kdiv = 1;
  922. break;
  923. case 3:
  924. params->kdiv = 2;
  925. break;
  926. case 1:
  927. params->kdiv = 3;
  928. break;
  929. default:
  930. WARN(1, "Incorrect KDiv\n");
  931. }
  932. params->qdiv_ratio = p1;
  933. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  934. dco_freq = p0 * p1 * p2 * afe_clock;
  935. /*
  936. * Intermediate values are in Hz.
  937. * Divide by MHz to match bsepc
  938. */
  939. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  940. params->dco_fraction =
  941. div_u64((div_u64(dco_freq, 24) -
  942. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  943. }
  944. static bool
  945. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  946. struct skl_wrpll_params *wrpll_params)
  947. {
  948. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  949. uint64_t dco_central_freq[3] = {8400000000ULL,
  950. 9000000000ULL,
  951. 9600000000ULL};
  952. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  953. 24, 28, 30, 32, 36, 40, 42, 44,
  954. 48, 52, 54, 56, 60, 64, 66, 68,
  955. 70, 72, 76, 78, 80, 84, 88, 90,
  956. 92, 96, 98 };
  957. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  958. static const struct {
  959. const int *list;
  960. int n_dividers;
  961. } dividers[] = {
  962. { even_dividers, ARRAY_SIZE(even_dividers) },
  963. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  964. };
  965. struct skl_wrpll_context ctx;
  966. unsigned int dco, d, i;
  967. unsigned int p0, p1, p2;
  968. skl_wrpll_context_init(&ctx);
  969. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  970. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  971. for (i = 0; i < dividers[d].n_dividers; i++) {
  972. unsigned int p = dividers[d].list[i];
  973. uint64_t dco_freq = p * afe_clock;
  974. skl_wrpll_try_divider(&ctx,
  975. dco_central_freq[dco],
  976. dco_freq,
  977. p);
  978. /*
  979. * Skip the remaining dividers if we're sure to
  980. * have found the definitive divider, we can't
  981. * improve a 0 deviation.
  982. */
  983. if (ctx.min_deviation == 0)
  984. goto skip_remaining_dividers;
  985. }
  986. }
  987. skip_remaining_dividers:
  988. /*
  989. * If a solution is found with an even divider, prefer
  990. * this one.
  991. */
  992. if (d == 0 && ctx.p)
  993. break;
  994. }
  995. if (!ctx.p) {
  996. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  997. return false;
  998. }
  999. /*
  1000. * gcc incorrectly analyses that these can be used without being
  1001. * initialized. To be fair, it's hard to guess.
  1002. */
  1003. p0 = p1 = p2 = 0;
  1004. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1005. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1006. p0, p1, p2);
  1007. return true;
  1008. }
  1009. static struct intel_shared_dpll *
  1010. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1011. struct intel_encoder *encoder)
  1012. {
  1013. struct intel_shared_dpll *pll;
  1014. uint32_t ctrl1, cfgcr1, cfgcr2;
  1015. int clock = crtc_state->port_clock;
  1016. /*
  1017. * See comment in intel_dpll_hw_state to understand why we always use 0
  1018. * as the DPLL id in this function.
  1019. */
  1020. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1021. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1022. struct skl_wrpll_params wrpll_params = { 0, };
  1023. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1024. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1025. return NULL;
  1026. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1027. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1028. wrpll_params.dco_integer;
  1029. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1030. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1031. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1032. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1033. wrpll_params.central_freq;
  1034. } else if (encoder->type == INTEL_OUTPUT_DP ||
  1035. encoder->type == INTEL_OUTPUT_DP_MST ||
  1036. encoder->type == INTEL_OUTPUT_EDP) {
  1037. switch (crtc_state->port_clock / 2) {
  1038. case 81000:
  1039. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1040. break;
  1041. case 135000:
  1042. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1043. break;
  1044. case 270000:
  1045. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1046. break;
  1047. /* eDP 1.4 rates */
  1048. case 162000:
  1049. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1050. break;
  1051. case 108000:
  1052. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1053. break;
  1054. case 216000:
  1055. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1056. break;
  1057. }
  1058. cfgcr1 = cfgcr2 = 0;
  1059. } else {
  1060. return NULL;
  1061. }
  1062. memset(&crtc_state->dpll_hw_state, 0,
  1063. sizeof(crtc_state->dpll_hw_state));
  1064. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1065. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1066. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1067. if (encoder->type == INTEL_OUTPUT_EDP)
  1068. pll = intel_find_shared_dpll(crtc, crtc_state,
  1069. DPLL_ID_SKL_DPLL0,
  1070. DPLL_ID_SKL_DPLL0);
  1071. else
  1072. pll = intel_find_shared_dpll(crtc, crtc_state,
  1073. DPLL_ID_SKL_DPLL1,
  1074. DPLL_ID_SKL_DPLL3);
  1075. if (!pll)
  1076. return NULL;
  1077. crtc_state->ddi_pll_sel = pll->id;
  1078. intel_reference_shared_dpll(pll, crtc_state);
  1079. return pll;
  1080. }
  1081. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1082. .enable = skl_ddi_pll_enable,
  1083. .disable = skl_ddi_pll_disable,
  1084. .get_hw_state = skl_ddi_pll_get_hw_state,
  1085. };
  1086. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1087. .enable = skl_ddi_dpll0_enable,
  1088. .disable = skl_ddi_dpll0_disable,
  1089. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1090. };
  1091. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1092. struct intel_shared_dpll *pll)
  1093. {
  1094. uint32_t temp;
  1095. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1096. /* Non-SSC reference */
  1097. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1098. temp |= PORT_PLL_REF_SEL;
  1099. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1100. /* Disable 10 bit clock */
  1101. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1102. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1103. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1104. /* Write P1 & P2 */
  1105. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1106. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1107. temp |= pll->config.hw_state.ebb0;
  1108. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  1109. /* Write M2 integer */
  1110. temp = I915_READ(BXT_PORT_PLL(port, 0));
  1111. temp &= ~PORT_PLL_M2_MASK;
  1112. temp |= pll->config.hw_state.pll0;
  1113. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  1114. /* Write N */
  1115. temp = I915_READ(BXT_PORT_PLL(port, 1));
  1116. temp &= ~PORT_PLL_N_MASK;
  1117. temp |= pll->config.hw_state.pll1;
  1118. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  1119. /* Write M2 fraction */
  1120. temp = I915_READ(BXT_PORT_PLL(port, 2));
  1121. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1122. temp |= pll->config.hw_state.pll2;
  1123. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  1124. /* Write M2 fraction enable */
  1125. temp = I915_READ(BXT_PORT_PLL(port, 3));
  1126. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1127. temp |= pll->config.hw_state.pll3;
  1128. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  1129. /* Write coeff */
  1130. temp = I915_READ(BXT_PORT_PLL(port, 6));
  1131. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1132. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1133. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1134. temp |= pll->config.hw_state.pll6;
  1135. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  1136. /* Write calibration val */
  1137. temp = I915_READ(BXT_PORT_PLL(port, 8));
  1138. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1139. temp |= pll->config.hw_state.pll8;
  1140. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  1141. temp = I915_READ(BXT_PORT_PLL(port, 9));
  1142. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1143. temp |= pll->config.hw_state.pll9;
  1144. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  1145. temp = I915_READ(BXT_PORT_PLL(port, 10));
  1146. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1147. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1148. temp |= pll->config.hw_state.pll10;
  1149. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  1150. /* Recalibrate with new settings */
  1151. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1152. temp |= PORT_PLL_RECALIBRATE;
  1153. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1154. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1155. temp |= pll->config.hw_state.ebb4;
  1156. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1157. /* Enable PLL */
  1158. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1159. temp |= PORT_PLL_ENABLE;
  1160. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1161. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1162. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
  1163. 200))
  1164. DRM_ERROR("PLL %d not locked\n", port);
  1165. /*
  1166. * While we write to the group register to program all lanes at once we
  1167. * can read only lane registers and we pick lanes 0/1 for that.
  1168. */
  1169. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1170. temp &= ~LANE_STAGGER_MASK;
  1171. temp &= ~LANESTAGGER_STRAP_OVRD;
  1172. temp |= pll->config.hw_state.pcsdw12;
  1173. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  1174. }
  1175. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1176. struct intel_shared_dpll *pll)
  1177. {
  1178. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1179. uint32_t temp;
  1180. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1181. temp &= ~PORT_PLL_ENABLE;
  1182. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1183. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1184. }
  1185. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1186. struct intel_shared_dpll *pll,
  1187. struct intel_dpll_hw_state *hw_state)
  1188. {
  1189. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1190. uint32_t val;
  1191. bool ret;
  1192. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1193. return false;
  1194. ret = false;
  1195. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1196. if (!(val & PORT_PLL_ENABLE))
  1197. goto out;
  1198. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1199. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1200. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1201. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1202. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  1203. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1204. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  1205. hw_state->pll1 &= PORT_PLL_N_MASK;
  1206. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  1207. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1208. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  1209. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1210. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  1211. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1212. PORT_PLL_INT_COEFF_MASK |
  1213. PORT_PLL_GAIN_CTL_MASK;
  1214. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  1215. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1216. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  1217. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1218. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  1219. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1220. PORT_PLL_DCO_AMP_MASK;
  1221. /*
  1222. * While we write to the group register to program all lanes at once we
  1223. * can read only lane registers. We configure all lanes the same way, so
  1224. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1225. */
  1226. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1227. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
  1228. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1229. hw_state->pcsdw12,
  1230. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  1231. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1232. ret = true;
  1233. out:
  1234. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1235. return ret;
  1236. }
  1237. /* bxt clock parameters */
  1238. struct bxt_clk_div {
  1239. int clock;
  1240. uint32_t p1;
  1241. uint32_t p2;
  1242. uint32_t m2_int;
  1243. uint32_t m2_frac;
  1244. bool m2_frac_en;
  1245. uint32_t n;
  1246. };
  1247. /* pre-calculated values for DP linkrates */
  1248. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1249. {162000, 4, 2, 32, 1677722, 1, 1},
  1250. {270000, 4, 1, 27, 0, 0, 1},
  1251. {540000, 2, 1, 27, 0, 0, 1},
  1252. {216000, 3, 2, 32, 1677722, 1, 1},
  1253. {243000, 4, 1, 24, 1258291, 1, 1},
  1254. {324000, 4, 1, 32, 1677722, 1, 1},
  1255. {432000, 3, 1, 32, 1677722, 1, 1}
  1256. };
  1257. static struct intel_shared_dpll *
  1258. bxt_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1259. struct intel_encoder *encoder)
  1260. {
  1261. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1262. struct intel_shared_dpll *pll;
  1263. enum intel_dpll_id i;
  1264. struct intel_digital_port *intel_dig_port;
  1265. struct bxt_clk_div clk_div = {0};
  1266. int vco = 0;
  1267. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1268. uint32_t lanestagger;
  1269. int clock = crtc_state->port_clock;
  1270. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1271. struct dpll best_clock;
  1272. /* Calculate HDMI div */
  1273. /*
  1274. * FIXME: tie the following calculation into
  1275. * i9xx_crtc_compute_clock
  1276. */
  1277. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1278. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1279. clock, pipe_name(crtc->pipe));
  1280. return NULL;
  1281. }
  1282. clk_div.p1 = best_clock.p1;
  1283. clk_div.p2 = best_clock.p2;
  1284. WARN_ON(best_clock.m1 != 2);
  1285. clk_div.n = best_clock.n;
  1286. clk_div.m2_int = best_clock.m2 >> 22;
  1287. clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1288. clk_div.m2_frac_en = clk_div.m2_frac != 0;
  1289. vco = best_clock.vco;
  1290. } else if (encoder->type == INTEL_OUTPUT_DP ||
  1291. encoder->type == INTEL_OUTPUT_EDP) {
  1292. int i;
  1293. clk_div = bxt_dp_clk_val[0];
  1294. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1295. if (bxt_dp_clk_val[i].clock == clock) {
  1296. clk_div = bxt_dp_clk_val[i];
  1297. break;
  1298. }
  1299. }
  1300. vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
  1301. }
  1302. if (vco >= 6200000 && vco <= 6700000) {
  1303. prop_coef = 4;
  1304. int_coef = 9;
  1305. gain_ctl = 3;
  1306. targ_cnt = 8;
  1307. } else if ((vco > 5400000 && vco < 6200000) ||
  1308. (vco >= 4800000 && vco < 5400000)) {
  1309. prop_coef = 5;
  1310. int_coef = 11;
  1311. gain_ctl = 3;
  1312. targ_cnt = 9;
  1313. } else if (vco == 5400000) {
  1314. prop_coef = 3;
  1315. int_coef = 8;
  1316. gain_ctl = 1;
  1317. targ_cnt = 9;
  1318. } else {
  1319. DRM_ERROR("Invalid VCO\n");
  1320. return NULL;
  1321. }
  1322. memset(&crtc_state->dpll_hw_state, 0,
  1323. sizeof(crtc_state->dpll_hw_state));
  1324. if (clock > 270000)
  1325. lanestagger = 0x18;
  1326. else if (clock > 135000)
  1327. lanestagger = 0x0d;
  1328. else if (clock > 67000)
  1329. lanestagger = 0x07;
  1330. else if (clock > 33000)
  1331. lanestagger = 0x04;
  1332. else
  1333. lanestagger = 0x02;
  1334. crtc_state->dpll_hw_state.ebb0 =
  1335. PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
  1336. crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
  1337. crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
  1338. crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
  1339. if (clk_div.m2_frac_en)
  1340. crtc_state->dpll_hw_state.pll3 =
  1341. PORT_PLL_M2_FRAC_ENABLE;
  1342. crtc_state->dpll_hw_state.pll6 =
  1343. prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1344. crtc_state->dpll_hw_state.pll6 |=
  1345. PORT_PLL_GAIN_CTL(gain_ctl);
  1346. crtc_state->dpll_hw_state.pll8 = targ_cnt;
  1347. crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1348. crtc_state->dpll_hw_state.pll10 =
  1349. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1350. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1351. crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1352. crtc_state->dpll_hw_state.pcsdw12 =
  1353. LANESTAGGER_STRAP_OVRD | lanestagger;
  1354. intel_dig_port = enc_to_dig_port(&encoder->base);
  1355. /* 1:1 mapping between ports and PLLs */
  1356. i = (enum intel_dpll_id) intel_dig_port->port;
  1357. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1358. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1359. crtc->base.base.id, crtc->base.name, pll->name);
  1360. intel_reference_shared_dpll(pll, crtc_state);
  1361. /* shared DPLL id 0 is DPLL A */
  1362. crtc_state->ddi_pll_sel = pll->id;
  1363. return pll;
  1364. }
  1365. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1366. .enable = bxt_ddi_pll_enable,
  1367. .disable = bxt_ddi_pll_disable,
  1368. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1369. };
  1370. static void intel_ddi_pll_init(struct drm_device *dev)
  1371. {
  1372. struct drm_i915_private *dev_priv = to_i915(dev);
  1373. if (INTEL_GEN(dev_priv) < 9) {
  1374. uint32_t val = I915_READ(LCPLL_CTL);
  1375. /*
  1376. * The LCPLL register should be turned on by the BIOS. For now
  1377. * let's just check its state and print errors in case
  1378. * something is wrong. Don't even try to turn it on.
  1379. */
  1380. if (val & LCPLL_CD_SOURCE_FCLK)
  1381. DRM_ERROR("CDCLK source is not LCPLL\n");
  1382. if (val & LCPLL_PLL_DISABLE)
  1383. DRM_ERROR("LCPLL is disabled\n");
  1384. }
  1385. }
  1386. struct dpll_info {
  1387. const char *name;
  1388. const int id;
  1389. const struct intel_shared_dpll_funcs *funcs;
  1390. uint32_t flags;
  1391. };
  1392. struct intel_dpll_mgr {
  1393. const struct dpll_info *dpll_info;
  1394. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1395. struct intel_crtc_state *crtc_state,
  1396. struct intel_encoder *encoder);
  1397. };
  1398. static const struct dpll_info pch_plls[] = {
  1399. { "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
  1400. { "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
  1401. { NULL, -1, NULL, 0 },
  1402. };
  1403. static const struct intel_dpll_mgr pch_pll_mgr = {
  1404. .dpll_info = pch_plls,
  1405. .get_dpll = ibx_get_dpll,
  1406. };
  1407. static const struct dpll_info hsw_plls[] = {
  1408. { "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 },
  1409. { "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 },
  1410. { "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 },
  1411. { "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1412. { "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1413. { "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1414. { NULL, -1, NULL, },
  1415. };
  1416. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1417. .dpll_info = hsw_plls,
  1418. .get_dpll = hsw_get_dpll,
  1419. };
  1420. static const struct dpll_info skl_plls[] = {
  1421. { "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
  1422. { "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 },
  1423. { "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 },
  1424. { "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 },
  1425. { NULL, -1, NULL, },
  1426. };
  1427. static const struct intel_dpll_mgr skl_pll_mgr = {
  1428. .dpll_info = skl_plls,
  1429. .get_dpll = skl_get_dpll,
  1430. };
  1431. static const struct dpll_info bxt_plls[] = {
  1432. { "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
  1433. { "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
  1434. { "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
  1435. { NULL, -1, NULL, },
  1436. };
  1437. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1438. .dpll_info = bxt_plls,
  1439. .get_dpll = bxt_get_dpll,
  1440. };
  1441. void intel_shared_dpll_init(struct drm_device *dev)
  1442. {
  1443. struct drm_i915_private *dev_priv = to_i915(dev);
  1444. const struct intel_dpll_mgr *dpll_mgr = NULL;
  1445. const struct dpll_info *dpll_info;
  1446. int i;
  1447. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1448. dpll_mgr = &skl_pll_mgr;
  1449. else if (IS_BROXTON(dev))
  1450. dpll_mgr = &bxt_pll_mgr;
  1451. else if (HAS_DDI(dev))
  1452. dpll_mgr = &hsw_pll_mgr;
  1453. else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  1454. dpll_mgr = &pch_pll_mgr;
  1455. if (!dpll_mgr) {
  1456. dev_priv->num_shared_dpll = 0;
  1457. return;
  1458. }
  1459. dpll_info = dpll_mgr->dpll_info;
  1460. for (i = 0; dpll_info[i].id >= 0; i++) {
  1461. WARN_ON(i != dpll_info[i].id);
  1462. dev_priv->shared_dplls[i].id = dpll_info[i].id;
  1463. dev_priv->shared_dplls[i].name = dpll_info[i].name;
  1464. dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
  1465. dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
  1466. }
  1467. dev_priv->dpll_mgr = dpll_mgr;
  1468. dev_priv->num_shared_dpll = i;
  1469. mutex_init(&dev_priv->dpll_lock);
  1470. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  1471. /* FIXME: Move this to a more suitable place */
  1472. if (HAS_DDI(dev))
  1473. intel_ddi_pll_init(dev);
  1474. }
  1475. struct intel_shared_dpll *
  1476. intel_get_shared_dpll(struct intel_crtc *crtc,
  1477. struct intel_crtc_state *crtc_state,
  1478. struct intel_encoder *encoder)
  1479. {
  1480. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1481. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  1482. if (WARN_ON(!dpll_mgr))
  1483. return NULL;
  1484. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  1485. }