intel_dpll_mgr.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. struct intel_shared_dpll *
  25. skl_find_link_pll(struct drm_i915_private *dev_priv, int clock)
  26. {
  27. struct intel_shared_dpll *pll = NULL;
  28. struct intel_dpll_hw_state dpll_hw_state;
  29. enum intel_dpll_id i;
  30. bool found = false;
  31. if (!skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  32. return pll;
  33. for (i = DPLL_ID_SKL_DPLL1; i <= DPLL_ID_SKL_DPLL3; i++) {
  34. pll = &dev_priv->shared_dplls[i];
  35. /* Only want to check enabled timings first */
  36. if (pll->config.crtc_mask == 0)
  37. continue;
  38. if (memcmp(&dpll_hw_state, &pll->config.hw_state,
  39. sizeof(pll->config.hw_state)) == 0) {
  40. found = true;
  41. break;
  42. }
  43. }
  44. /* Ok no matching timings, maybe there's a free one? */
  45. for (i = DPLL_ID_SKL_DPLL1;
  46. ((found == false) && (i <= DPLL_ID_SKL_DPLL3)); i++) {
  47. pll = &dev_priv->shared_dplls[i];
  48. if (pll->config.crtc_mask == 0) {
  49. pll->config.hw_state = dpll_hw_state;
  50. break;
  51. }
  52. }
  53. return pll;
  54. }
  55. struct intel_shared_dpll *
  56. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  57. enum intel_dpll_id id)
  58. {
  59. return &dev_priv->shared_dplls[id];
  60. }
  61. enum intel_dpll_id
  62. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  63. struct intel_shared_dpll *pll)
  64. {
  65. if (WARN_ON(pll < dev_priv->shared_dplls||
  66. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  67. return -1;
  68. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  69. }
  70. void
  71. intel_shared_dpll_config_get(struct intel_shared_dpll_config *config,
  72. struct intel_shared_dpll *pll,
  73. struct intel_crtc *crtc)
  74. {
  75. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  76. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  77. config[id].crtc_mask |= 1 << crtc->pipe;
  78. }
  79. void
  80. intel_shared_dpll_config_put(struct intel_shared_dpll_config *config,
  81. struct intel_shared_dpll *pll,
  82. struct intel_crtc *crtc)
  83. {
  84. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  85. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  86. config[id].crtc_mask &= ~(1 << crtc->pipe);
  87. }
  88. /* For ILK+ */
  89. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  90. struct intel_shared_dpll *pll,
  91. bool state)
  92. {
  93. bool cur_state;
  94. struct intel_dpll_hw_state hw_state;
  95. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  96. return;
  97. cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
  98. I915_STATE_WARN(cur_state != state,
  99. "%s assertion failure (expected %s, current %s)\n",
  100. pll->name, onoff(state), onoff(cur_state));
  101. }
  102. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  103. {
  104. struct drm_device *dev = crtc->base.dev;
  105. struct drm_i915_private *dev_priv = to_i915(dev);
  106. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  107. if (WARN_ON(pll == NULL))
  108. return;
  109. mutex_lock(&dev_priv->dpll_lock);
  110. WARN_ON(!pll->config.crtc_mask);
  111. if (!pll->active_mask) {
  112. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  113. WARN_ON(pll->on);
  114. assert_shared_dpll_disabled(dev_priv, pll);
  115. pll->funcs.mode_set(dev_priv, pll);
  116. }
  117. mutex_unlock(&dev_priv->dpll_lock);
  118. }
  119. /**
  120. * intel_enable_shared_dpll - enable PCH PLL
  121. * @dev_priv: i915 private structure
  122. * @pipe: pipe PLL to enable
  123. *
  124. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  125. * drives the transcoder clock.
  126. */
  127. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  128. {
  129. struct drm_device *dev = crtc->base.dev;
  130. struct drm_i915_private *dev_priv = to_i915(dev);
  131. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  132. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  133. unsigned old_mask;
  134. if (WARN_ON(pll == NULL))
  135. return;
  136. mutex_lock(&dev_priv->dpll_lock);
  137. old_mask = pll->active_mask;
  138. if (WARN_ON(!(pll->config.crtc_mask & crtc_mask)) ||
  139. WARN_ON(pll->active_mask & crtc_mask))
  140. goto out;
  141. pll->active_mask |= crtc_mask;
  142. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  143. pll->name, pll->active_mask, pll->on,
  144. crtc->base.base.id);
  145. if (old_mask) {
  146. WARN_ON(!pll->on);
  147. assert_shared_dpll_enabled(dev_priv, pll);
  148. goto out;
  149. }
  150. WARN_ON(pll->on);
  151. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  152. pll->funcs.enable(dev_priv, pll);
  153. pll->on = true;
  154. out:
  155. mutex_unlock(&dev_priv->dpll_lock);
  156. }
  157. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  158. {
  159. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  160. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  161. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  162. /* PCH only available on ILK+ */
  163. if (INTEL_GEN(dev_priv) < 5)
  164. return;
  165. if (pll == NULL)
  166. return;
  167. mutex_lock(&dev_priv->dpll_lock);
  168. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  169. goto out;
  170. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  171. pll->name, pll->active_mask, pll->on,
  172. crtc->base.base.id);
  173. assert_shared_dpll_enabled(dev_priv, pll);
  174. WARN_ON(!pll->on);
  175. pll->active_mask &= ~crtc_mask;
  176. if (pll->active_mask)
  177. goto out;
  178. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  179. pll->funcs.disable(dev_priv, pll);
  180. pll->on = false;
  181. out:
  182. mutex_unlock(&dev_priv->dpll_lock);
  183. }
  184. static struct intel_shared_dpll *
  185. intel_find_shared_dpll(struct intel_crtc *crtc,
  186. struct intel_crtc_state *crtc_state,
  187. enum intel_dpll_id range_min,
  188. enum intel_dpll_id range_max)
  189. {
  190. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  191. struct intel_shared_dpll *pll;
  192. struct intel_shared_dpll_config *shared_dpll;
  193. enum intel_dpll_id i;
  194. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  195. for (i = range_min; i <= range_max; i++) {
  196. pll = &dev_priv->shared_dplls[i];
  197. /* Only want to check enabled timings first */
  198. if (shared_dpll[i].crtc_mask == 0)
  199. continue;
  200. if (memcmp(&crtc_state->dpll_hw_state,
  201. &shared_dpll[i].hw_state,
  202. sizeof(crtc_state->dpll_hw_state)) == 0) {
  203. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  204. crtc->base.base.id, crtc->base.name, pll->name,
  205. shared_dpll[i].crtc_mask,
  206. pll->active_mask);
  207. return pll;
  208. }
  209. }
  210. /* Ok no matching timings, maybe there's a free one? */
  211. for (i = range_min; i <= range_max; i++) {
  212. pll = &dev_priv->shared_dplls[i];
  213. if (shared_dpll[i].crtc_mask == 0) {
  214. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  215. crtc->base.base.id, crtc->base.name, pll->name);
  216. return pll;
  217. }
  218. }
  219. return NULL;
  220. }
  221. static void
  222. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  223. struct intel_crtc_state *crtc_state)
  224. {
  225. struct intel_shared_dpll_config *shared_dpll;
  226. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  227. enum intel_dpll_id i = pll->id;
  228. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  229. if (shared_dpll[i].crtc_mask == 0)
  230. shared_dpll[i].hw_state =
  231. crtc_state->dpll_hw_state;
  232. crtc_state->shared_dpll = pll;
  233. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  234. pipe_name(crtc->pipe));
  235. intel_shared_dpll_config_get(shared_dpll, pll, crtc);
  236. }
  237. void intel_shared_dpll_commit(struct drm_atomic_state *state)
  238. {
  239. struct drm_i915_private *dev_priv = to_i915(state->dev);
  240. struct intel_shared_dpll_config *shared_dpll;
  241. struct intel_shared_dpll *pll;
  242. enum intel_dpll_id i;
  243. if (!to_intel_atomic_state(state)->dpll_set)
  244. return;
  245. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  246. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  247. pll = &dev_priv->shared_dplls[i];
  248. pll->config = shared_dpll[i];
  249. }
  250. }
  251. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  252. struct intel_shared_dpll *pll,
  253. struct intel_dpll_hw_state *hw_state)
  254. {
  255. uint32_t val;
  256. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  257. return false;
  258. val = I915_READ(PCH_DPLL(pll->id));
  259. hw_state->dpll = val;
  260. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  261. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  262. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  263. return val & DPLL_VCO_ENABLE;
  264. }
  265. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  266. struct intel_shared_dpll *pll)
  267. {
  268. I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  269. I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  270. }
  271. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  272. {
  273. u32 val;
  274. bool enabled;
  275. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  276. val = I915_READ(PCH_DREF_CONTROL);
  277. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  278. DREF_SUPERSPREAD_SOURCE_MASK));
  279. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  280. }
  281. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  282. struct intel_shared_dpll *pll)
  283. {
  284. /* PCH refclock must be enabled first */
  285. ibx_assert_pch_refclk_enabled(dev_priv);
  286. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  287. /* Wait for the clocks to stabilize. */
  288. POSTING_READ(PCH_DPLL(pll->id));
  289. udelay(150);
  290. /* The pixel multiplier can only be updated once the
  291. * DPLL is enabled and the clocks are stable.
  292. *
  293. * So write it again.
  294. */
  295. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  296. POSTING_READ(PCH_DPLL(pll->id));
  297. udelay(200);
  298. }
  299. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  300. struct intel_shared_dpll *pll)
  301. {
  302. struct drm_device *dev = &dev_priv->drm;
  303. struct intel_crtc *crtc;
  304. /* Make sure no transcoder isn't still depending on us. */
  305. for_each_intel_crtc(dev, crtc) {
  306. if (crtc->config->shared_dpll == pll)
  307. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  308. }
  309. I915_WRITE(PCH_DPLL(pll->id), 0);
  310. POSTING_READ(PCH_DPLL(pll->id));
  311. udelay(200);
  312. }
  313. static struct intel_shared_dpll *
  314. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  315. struct intel_encoder *encoder)
  316. {
  317. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  318. struct intel_shared_dpll *pll;
  319. enum intel_dpll_id i;
  320. if (HAS_PCH_IBX(dev_priv)) {
  321. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  322. i = (enum intel_dpll_id) crtc->pipe;
  323. pll = &dev_priv->shared_dplls[i];
  324. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  325. crtc->base.base.id, crtc->base.name, pll->name);
  326. } else {
  327. pll = intel_find_shared_dpll(crtc, crtc_state,
  328. DPLL_ID_PCH_PLL_A,
  329. DPLL_ID_PCH_PLL_B);
  330. }
  331. if (!pll)
  332. return NULL;
  333. /* reference the pll */
  334. intel_reference_shared_dpll(pll, crtc_state);
  335. return pll;
  336. }
  337. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  338. .mode_set = ibx_pch_dpll_mode_set,
  339. .enable = ibx_pch_dpll_enable,
  340. .disable = ibx_pch_dpll_disable,
  341. .get_hw_state = ibx_pch_dpll_get_hw_state,
  342. };
  343. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  344. struct intel_shared_dpll *pll)
  345. {
  346. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  347. POSTING_READ(WRPLL_CTL(pll->id));
  348. udelay(20);
  349. }
  350. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  351. struct intel_shared_dpll *pll)
  352. {
  353. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  354. POSTING_READ(SPLL_CTL);
  355. udelay(20);
  356. }
  357. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  358. struct intel_shared_dpll *pll)
  359. {
  360. uint32_t val;
  361. val = I915_READ(WRPLL_CTL(pll->id));
  362. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  363. POSTING_READ(WRPLL_CTL(pll->id));
  364. }
  365. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  366. struct intel_shared_dpll *pll)
  367. {
  368. uint32_t val;
  369. val = I915_READ(SPLL_CTL);
  370. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  371. POSTING_READ(SPLL_CTL);
  372. }
  373. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  374. struct intel_shared_dpll *pll,
  375. struct intel_dpll_hw_state *hw_state)
  376. {
  377. uint32_t val;
  378. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  379. return false;
  380. val = I915_READ(WRPLL_CTL(pll->id));
  381. hw_state->wrpll = val;
  382. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  383. return val & WRPLL_PLL_ENABLE;
  384. }
  385. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  386. struct intel_shared_dpll *pll,
  387. struct intel_dpll_hw_state *hw_state)
  388. {
  389. uint32_t val;
  390. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  391. return false;
  392. val = I915_READ(SPLL_CTL);
  393. hw_state->spll = val;
  394. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  395. return val & SPLL_PLL_ENABLE;
  396. }
  397. #define LC_FREQ 2700
  398. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  399. #define P_MIN 2
  400. #define P_MAX 64
  401. #define P_INC 2
  402. /* Constraints for PLL good behavior */
  403. #define REF_MIN 48
  404. #define REF_MAX 400
  405. #define VCO_MIN 2400
  406. #define VCO_MAX 4800
  407. struct hsw_wrpll_rnp {
  408. unsigned p, n2, r2;
  409. };
  410. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  411. {
  412. unsigned budget;
  413. switch (clock) {
  414. case 25175000:
  415. case 25200000:
  416. case 27000000:
  417. case 27027000:
  418. case 37762500:
  419. case 37800000:
  420. case 40500000:
  421. case 40541000:
  422. case 54000000:
  423. case 54054000:
  424. case 59341000:
  425. case 59400000:
  426. case 72000000:
  427. case 74176000:
  428. case 74250000:
  429. case 81000000:
  430. case 81081000:
  431. case 89012000:
  432. case 89100000:
  433. case 108000000:
  434. case 108108000:
  435. case 111264000:
  436. case 111375000:
  437. case 148352000:
  438. case 148500000:
  439. case 162000000:
  440. case 162162000:
  441. case 222525000:
  442. case 222750000:
  443. case 296703000:
  444. case 297000000:
  445. budget = 0;
  446. break;
  447. case 233500000:
  448. case 245250000:
  449. case 247750000:
  450. case 253250000:
  451. case 298000000:
  452. budget = 1500;
  453. break;
  454. case 169128000:
  455. case 169500000:
  456. case 179500000:
  457. case 202000000:
  458. budget = 2000;
  459. break;
  460. case 256250000:
  461. case 262500000:
  462. case 270000000:
  463. case 272500000:
  464. case 273750000:
  465. case 280750000:
  466. case 281250000:
  467. case 286000000:
  468. case 291750000:
  469. budget = 4000;
  470. break;
  471. case 267250000:
  472. case 268500000:
  473. budget = 5000;
  474. break;
  475. default:
  476. budget = 1000;
  477. break;
  478. }
  479. return budget;
  480. }
  481. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  482. unsigned r2, unsigned n2, unsigned p,
  483. struct hsw_wrpll_rnp *best)
  484. {
  485. uint64_t a, b, c, d, diff, diff_best;
  486. /* No best (r,n,p) yet */
  487. if (best->p == 0) {
  488. best->p = p;
  489. best->n2 = n2;
  490. best->r2 = r2;
  491. return;
  492. }
  493. /*
  494. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  495. * freq2k.
  496. *
  497. * delta = 1e6 *
  498. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  499. * freq2k;
  500. *
  501. * and we would like delta <= budget.
  502. *
  503. * If the discrepancy is above the PPM-based budget, always prefer to
  504. * improve upon the previous solution. However, if you're within the
  505. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  506. */
  507. a = freq2k * budget * p * r2;
  508. b = freq2k * budget * best->p * best->r2;
  509. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  510. diff_best = abs_diff(freq2k * best->p * best->r2,
  511. LC_FREQ_2K * best->n2);
  512. c = 1000000 * diff;
  513. d = 1000000 * diff_best;
  514. if (a < c && b < d) {
  515. /* If both are above the budget, pick the closer */
  516. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  517. best->p = p;
  518. best->n2 = n2;
  519. best->r2 = r2;
  520. }
  521. } else if (a >= c && b < d) {
  522. /* If A is below the threshold but B is above it? Update. */
  523. best->p = p;
  524. best->n2 = n2;
  525. best->r2 = r2;
  526. } else if (a >= c && b >= d) {
  527. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  528. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  529. best->p = p;
  530. best->n2 = n2;
  531. best->r2 = r2;
  532. }
  533. }
  534. /* Otherwise a < c && b >= d, do nothing */
  535. }
  536. static void
  537. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  538. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  539. {
  540. uint64_t freq2k;
  541. unsigned p, n2, r2;
  542. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  543. unsigned budget;
  544. freq2k = clock / 100;
  545. budget = hsw_wrpll_get_budget_for_freq(clock);
  546. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  547. * and directly pass the LC PLL to it. */
  548. if (freq2k == 5400000) {
  549. *n2_out = 2;
  550. *p_out = 1;
  551. *r2_out = 2;
  552. return;
  553. }
  554. /*
  555. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  556. * the WR PLL.
  557. *
  558. * We want R so that REF_MIN <= Ref <= REF_MAX.
  559. * Injecting R2 = 2 * R gives:
  560. * REF_MAX * r2 > LC_FREQ * 2 and
  561. * REF_MIN * r2 < LC_FREQ * 2
  562. *
  563. * Which means the desired boundaries for r2 are:
  564. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  565. *
  566. */
  567. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  568. r2 <= LC_FREQ * 2 / REF_MIN;
  569. r2++) {
  570. /*
  571. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  572. *
  573. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  574. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  575. * VCO_MAX * r2 > n2 * LC_FREQ and
  576. * VCO_MIN * r2 < n2 * LC_FREQ)
  577. *
  578. * Which means the desired boundaries for n2 are:
  579. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  580. */
  581. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  582. n2 <= VCO_MAX * r2 / LC_FREQ;
  583. n2++) {
  584. for (p = P_MIN; p <= P_MAX; p += P_INC)
  585. hsw_wrpll_update_rnp(freq2k, budget,
  586. r2, n2, p, &best);
  587. }
  588. }
  589. *n2_out = best.n2;
  590. *p_out = best.p;
  591. *r2_out = best.r2;
  592. }
  593. static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
  594. struct intel_crtc *crtc,
  595. struct intel_crtc_state *crtc_state)
  596. {
  597. struct intel_shared_dpll *pll;
  598. uint32_t val;
  599. unsigned int p, n2, r2;
  600. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  601. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  602. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  603. WRPLL_DIVIDER_POST(p);
  604. crtc_state->dpll_hw_state.wrpll = val;
  605. pll = intel_find_shared_dpll(crtc, crtc_state,
  606. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  607. if (!pll)
  608. return NULL;
  609. return pll;
  610. }
  611. struct intel_shared_dpll *hsw_ddi_dp_get_dpll(struct intel_encoder *encoder,
  612. int clock)
  613. {
  614. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  615. struct intel_shared_dpll *pll;
  616. enum intel_dpll_id pll_id;
  617. switch (clock / 2) {
  618. case 81000:
  619. pll_id = DPLL_ID_LCPLL_810;
  620. break;
  621. case 135000:
  622. pll_id = DPLL_ID_LCPLL_1350;
  623. break;
  624. case 270000:
  625. pll_id = DPLL_ID_LCPLL_2700;
  626. break;
  627. default:
  628. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  629. return NULL;
  630. }
  631. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  632. if (!pll)
  633. return NULL;
  634. return pll;
  635. }
  636. static struct intel_shared_dpll *
  637. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  638. struct intel_encoder *encoder)
  639. {
  640. struct intel_shared_dpll *pll;
  641. int clock = crtc_state->port_clock;
  642. memset(&crtc_state->dpll_hw_state, 0,
  643. sizeof(crtc_state->dpll_hw_state));
  644. if (encoder->type == INTEL_OUTPUT_HDMI) {
  645. pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
  646. } else if (encoder->type == INTEL_OUTPUT_DP ||
  647. encoder->type == INTEL_OUTPUT_DP_MST ||
  648. encoder->type == INTEL_OUTPUT_EDP) {
  649. pll = hsw_ddi_dp_get_dpll(encoder, clock);
  650. } else if (encoder->type == INTEL_OUTPUT_ANALOG) {
  651. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  652. return NULL;
  653. crtc_state->dpll_hw_state.spll =
  654. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  655. pll = intel_find_shared_dpll(crtc, crtc_state,
  656. DPLL_ID_SPLL, DPLL_ID_SPLL);
  657. } else {
  658. return NULL;
  659. }
  660. if (!pll)
  661. return NULL;
  662. intel_reference_shared_dpll(pll, crtc_state);
  663. return pll;
  664. }
  665. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  666. .enable = hsw_ddi_wrpll_enable,
  667. .disable = hsw_ddi_wrpll_disable,
  668. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  669. };
  670. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  671. .enable = hsw_ddi_spll_enable,
  672. .disable = hsw_ddi_spll_disable,
  673. .get_hw_state = hsw_ddi_spll_get_hw_state,
  674. };
  675. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  676. struct intel_shared_dpll *pll)
  677. {
  678. }
  679. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  680. struct intel_shared_dpll *pll)
  681. {
  682. }
  683. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  684. struct intel_shared_dpll *pll,
  685. struct intel_dpll_hw_state *hw_state)
  686. {
  687. return true;
  688. }
  689. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  690. .enable = hsw_ddi_lcpll_enable,
  691. .disable = hsw_ddi_lcpll_disable,
  692. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  693. };
  694. struct skl_dpll_regs {
  695. i915_reg_t ctl, cfgcr1, cfgcr2;
  696. };
  697. /* this array is indexed by the *shared* pll id */
  698. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  699. {
  700. /* DPLL 0 */
  701. .ctl = LCPLL1_CTL,
  702. /* DPLL 0 doesn't support HDMI mode */
  703. },
  704. {
  705. /* DPLL 1 */
  706. .ctl = LCPLL2_CTL,
  707. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  708. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  709. },
  710. {
  711. /* DPLL 2 */
  712. .ctl = WRPLL_CTL(0),
  713. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  714. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  715. },
  716. {
  717. /* DPLL 3 */
  718. .ctl = WRPLL_CTL(1),
  719. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  720. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  721. },
  722. };
  723. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  724. struct intel_shared_dpll *pll)
  725. {
  726. uint32_t val;
  727. val = I915_READ(DPLL_CTRL1);
  728. val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
  729. DPLL_CTRL1_LINK_RATE_MASK(pll->id));
  730. val |= pll->config.hw_state.ctrl1 << (pll->id * 6);
  731. I915_WRITE(DPLL_CTRL1, val);
  732. POSTING_READ(DPLL_CTRL1);
  733. }
  734. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  735. struct intel_shared_dpll *pll)
  736. {
  737. const struct skl_dpll_regs *regs = skl_dpll_regs;
  738. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  739. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  740. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  741. POSTING_READ(regs[pll->id].cfgcr1);
  742. POSTING_READ(regs[pll->id].cfgcr2);
  743. /* the enable bit is always bit 31 */
  744. I915_WRITE(regs[pll->id].ctl,
  745. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  746. if (intel_wait_for_register(dev_priv,
  747. DPLL_STATUS,
  748. DPLL_LOCK(pll->id),
  749. DPLL_LOCK(pll->id),
  750. 5))
  751. DRM_ERROR("DPLL %d not locked\n", pll->id);
  752. }
  753. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  754. struct intel_shared_dpll *pll)
  755. {
  756. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  757. }
  758. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  759. struct intel_shared_dpll *pll)
  760. {
  761. const struct skl_dpll_regs *regs = skl_dpll_regs;
  762. /* the enable bit is always bit 31 */
  763. I915_WRITE(regs[pll->id].ctl,
  764. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  765. POSTING_READ(regs[pll->id].ctl);
  766. }
  767. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  768. struct intel_shared_dpll *pll)
  769. {
  770. }
  771. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  772. struct intel_shared_dpll *pll,
  773. struct intel_dpll_hw_state *hw_state)
  774. {
  775. uint32_t val;
  776. const struct skl_dpll_regs *regs = skl_dpll_regs;
  777. bool ret;
  778. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  779. return false;
  780. ret = false;
  781. val = I915_READ(regs[pll->id].ctl);
  782. if (!(val & LCPLL_PLL_ENABLE))
  783. goto out;
  784. val = I915_READ(DPLL_CTRL1);
  785. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  786. /* avoid reading back stale values if HDMI mode is not enabled */
  787. if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
  788. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  789. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  790. }
  791. ret = true;
  792. out:
  793. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  794. return ret;
  795. }
  796. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  797. struct intel_shared_dpll *pll,
  798. struct intel_dpll_hw_state *hw_state)
  799. {
  800. uint32_t val;
  801. const struct skl_dpll_regs *regs = skl_dpll_regs;
  802. bool ret;
  803. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  804. return false;
  805. ret = false;
  806. /* DPLL0 is always enabled since it drives CDCLK */
  807. val = I915_READ(regs[pll->id].ctl);
  808. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  809. goto out;
  810. val = I915_READ(DPLL_CTRL1);
  811. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  812. ret = true;
  813. out:
  814. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  815. return ret;
  816. }
  817. struct skl_wrpll_context {
  818. uint64_t min_deviation; /* current minimal deviation */
  819. uint64_t central_freq; /* chosen central freq */
  820. uint64_t dco_freq; /* chosen dco freq */
  821. unsigned int p; /* chosen divider */
  822. };
  823. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  824. {
  825. memset(ctx, 0, sizeof(*ctx));
  826. ctx->min_deviation = U64_MAX;
  827. }
  828. /* DCO freq must be within +1%/-6% of the DCO central freq */
  829. #define SKL_DCO_MAX_PDEVIATION 100
  830. #define SKL_DCO_MAX_NDEVIATION 600
  831. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  832. uint64_t central_freq,
  833. uint64_t dco_freq,
  834. unsigned int divider)
  835. {
  836. uint64_t deviation;
  837. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  838. central_freq);
  839. /* positive deviation */
  840. if (dco_freq >= central_freq) {
  841. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  842. deviation < ctx->min_deviation) {
  843. ctx->min_deviation = deviation;
  844. ctx->central_freq = central_freq;
  845. ctx->dco_freq = dco_freq;
  846. ctx->p = divider;
  847. }
  848. /* negative deviation */
  849. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  850. deviation < ctx->min_deviation) {
  851. ctx->min_deviation = deviation;
  852. ctx->central_freq = central_freq;
  853. ctx->dco_freq = dco_freq;
  854. ctx->p = divider;
  855. }
  856. }
  857. static void skl_wrpll_get_multipliers(unsigned int p,
  858. unsigned int *p0 /* out */,
  859. unsigned int *p1 /* out */,
  860. unsigned int *p2 /* out */)
  861. {
  862. /* even dividers */
  863. if (p % 2 == 0) {
  864. unsigned int half = p / 2;
  865. if (half == 1 || half == 2 || half == 3 || half == 5) {
  866. *p0 = 2;
  867. *p1 = 1;
  868. *p2 = half;
  869. } else if (half % 2 == 0) {
  870. *p0 = 2;
  871. *p1 = half / 2;
  872. *p2 = 2;
  873. } else if (half % 3 == 0) {
  874. *p0 = 3;
  875. *p1 = half / 3;
  876. *p2 = 2;
  877. } else if (half % 7 == 0) {
  878. *p0 = 7;
  879. *p1 = half / 7;
  880. *p2 = 2;
  881. }
  882. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  883. *p0 = 3;
  884. *p1 = 1;
  885. *p2 = p / 3;
  886. } else if (p == 5 || p == 7) {
  887. *p0 = p;
  888. *p1 = 1;
  889. *p2 = 1;
  890. } else if (p == 15) {
  891. *p0 = 3;
  892. *p1 = 1;
  893. *p2 = 5;
  894. } else if (p == 21) {
  895. *p0 = 7;
  896. *p1 = 1;
  897. *p2 = 3;
  898. } else if (p == 35) {
  899. *p0 = 7;
  900. *p1 = 1;
  901. *p2 = 5;
  902. }
  903. }
  904. struct skl_wrpll_params {
  905. uint32_t dco_fraction;
  906. uint32_t dco_integer;
  907. uint32_t qdiv_ratio;
  908. uint32_t qdiv_mode;
  909. uint32_t kdiv;
  910. uint32_t pdiv;
  911. uint32_t central_freq;
  912. };
  913. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  914. uint64_t afe_clock,
  915. uint64_t central_freq,
  916. uint32_t p0, uint32_t p1, uint32_t p2)
  917. {
  918. uint64_t dco_freq;
  919. switch (central_freq) {
  920. case 9600000000ULL:
  921. params->central_freq = 0;
  922. break;
  923. case 9000000000ULL:
  924. params->central_freq = 1;
  925. break;
  926. case 8400000000ULL:
  927. params->central_freq = 3;
  928. }
  929. switch (p0) {
  930. case 1:
  931. params->pdiv = 0;
  932. break;
  933. case 2:
  934. params->pdiv = 1;
  935. break;
  936. case 3:
  937. params->pdiv = 2;
  938. break;
  939. case 7:
  940. params->pdiv = 4;
  941. break;
  942. default:
  943. WARN(1, "Incorrect PDiv\n");
  944. }
  945. switch (p2) {
  946. case 5:
  947. params->kdiv = 0;
  948. break;
  949. case 2:
  950. params->kdiv = 1;
  951. break;
  952. case 3:
  953. params->kdiv = 2;
  954. break;
  955. case 1:
  956. params->kdiv = 3;
  957. break;
  958. default:
  959. WARN(1, "Incorrect KDiv\n");
  960. }
  961. params->qdiv_ratio = p1;
  962. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  963. dco_freq = p0 * p1 * p2 * afe_clock;
  964. /*
  965. * Intermediate values are in Hz.
  966. * Divide by MHz to match bsepc
  967. */
  968. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  969. params->dco_fraction =
  970. div_u64((div_u64(dco_freq, 24) -
  971. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  972. }
  973. static bool
  974. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  975. struct skl_wrpll_params *wrpll_params)
  976. {
  977. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  978. uint64_t dco_central_freq[3] = {8400000000ULL,
  979. 9000000000ULL,
  980. 9600000000ULL};
  981. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  982. 24, 28, 30, 32, 36, 40, 42, 44,
  983. 48, 52, 54, 56, 60, 64, 66, 68,
  984. 70, 72, 76, 78, 80, 84, 88, 90,
  985. 92, 96, 98 };
  986. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  987. static const struct {
  988. const int *list;
  989. int n_dividers;
  990. } dividers[] = {
  991. { even_dividers, ARRAY_SIZE(even_dividers) },
  992. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  993. };
  994. struct skl_wrpll_context ctx;
  995. unsigned int dco, d, i;
  996. unsigned int p0, p1, p2;
  997. skl_wrpll_context_init(&ctx);
  998. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  999. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1000. for (i = 0; i < dividers[d].n_dividers; i++) {
  1001. unsigned int p = dividers[d].list[i];
  1002. uint64_t dco_freq = p * afe_clock;
  1003. skl_wrpll_try_divider(&ctx,
  1004. dco_central_freq[dco],
  1005. dco_freq,
  1006. p);
  1007. /*
  1008. * Skip the remaining dividers if we're sure to
  1009. * have found the definitive divider, we can't
  1010. * improve a 0 deviation.
  1011. */
  1012. if (ctx.min_deviation == 0)
  1013. goto skip_remaining_dividers;
  1014. }
  1015. }
  1016. skip_remaining_dividers:
  1017. /*
  1018. * If a solution is found with an even divider, prefer
  1019. * this one.
  1020. */
  1021. if (d == 0 && ctx.p)
  1022. break;
  1023. }
  1024. if (!ctx.p) {
  1025. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1026. return false;
  1027. }
  1028. /*
  1029. * gcc incorrectly analyses that these can be used without being
  1030. * initialized. To be fair, it's hard to guess.
  1031. */
  1032. p0 = p1 = p2 = 0;
  1033. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1034. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1035. p0, p1, p2);
  1036. return true;
  1037. }
  1038. static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
  1039. struct intel_crtc_state *crtc_state,
  1040. int clock)
  1041. {
  1042. uint32_t ctrl1, cfgcr1, cfgcr2;
  1043. struct skl_wrpll_params wrpll_params = { 0, };
  1044. /*
  1045. * See comment in intel_dpll_hw_state to understand why we always use 0
  1046. * as the DPLL id in this function.
  1047. */
  1048. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1049. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1050. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1051. return false;
  1052. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1053. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1054. wrpll_params.dco_integer;
  1055. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1056. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1057. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1058. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1059. wrpll_params.central_freq;
  1060. memset(&crtc_state->dpll_hw_state, 0,
  1061. sizeof(crtc_state->dpll_hw_state));
  1062. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1063. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1064. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1065. return true;
  1066. }
  1067. bool skl_ddi_dp_set_dpll_hw_state(int clock,
  1068. struct intel_dpll_hw_state *dpll_hw_state)
  1069. {
  1070. uint32_t ctrl1;
  1071. /*
  1072. * See comment in intel_dpll_hw_state to understand why we always use 0
  1073. * as the DPLL id in this function.
  1074. */
  1075. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1076. switch (clock / 2) {
  1077. case 81000:
  1078. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1079. break;
  1080. case 135000:
  1081. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1082. break;
  1083. case 270000:
  1084. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1085. break;
  1086. /* eDP 1.4 rates */
  1087. case 162000:
  1088. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1089. break;
  1090. case 108000:
  1091. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1092. break;
  1093. case 216000:
  1094. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1095. break;
  1096. }
  1097. dpll_hw_state->ctrl1 = ctrl1;
  1098. return true;
  1099. }
  1100. static struct intel_shared_dpll *
  1101. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1102. struct intel_encoder *encoder)
  1103. {
  1104. struct intel_shared_dpll *pll;
  1105. int clock = crtc_state->port_clock;
  1106. bool bret;
  1107. struct intel_dpll_hw_state dpll_hw_state;
  1108. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  1109. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1110. bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
  1111. if (!bret) {
  1112. DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
  1113. return NULL;
  1114. }
  1115. } else if (encoder->type == INTEL_OUTPUT_DP ||
  1116. encoder->type == INTEL_OUTPUT_DP_MST ||
  1117. encoder->type == INTEL_OUTPUT_EDP) {
  1118. bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
  1119. if (!bret) {
  1120. DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
  1121. return NULL;
  1122. }
  1123. crtc_state->dpll_hw_state = dpll_hw_state;
  1124. } else {
  1125. return NULL;
  1126. }
  1127. if (encoder->type == INTEL_OUTPUT_EDP)
  1128. pll = intel_find_shared_dpll(crtc, crtc_state,
  1129. DPLL_ID_SKL_DPLL0,
  1130. DPLL_ID_SKL_DPLL0);
  1131. else
  1132. pll = intel_find_shared_dpll(crtc, crtc_state,
  1133. DPLL_ID_SKL_DPLL1,
  1134. DPLL_ID_SKL_DPLL3);
  1135. if (!pll)
  1136. return NULL;
  1137. intel_reference_shared_dpll(pll, crtc_state);
  1138. return pll;
  1139. }
  1140. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1141. .enable = skl_ddi_pll_enable,
  1142. .disable = skl_ddi_pll_disable,
  1143. .get_hw_state = skl_ddi_pll_get_hw_state,
  1144. };
  1145. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1146. .enable = skl_ddi_dpll0_enable,
  1147. .disable = skl_ddi_dpll0_disable,
  1148. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1149. };
  1150. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1151. struct intel_shared_dpll *pll)
  1152. {
  1153. uint32_t temp;
  1154. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1155. enum dpio_phy phy;
  1156. enum dpio_channel ch;
  1157. bxt_port_to_phy_channel(port, &phy, &ch);
  1158. /* Non-SSC reference */
  1159. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1160. temp |= PORT_PLL_REF_SEL;
  1161. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1162. /* Disable 10 bit clock */
  1163. temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1164. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1165. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1166. /* Write P1 & P2 */
  1167. temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
  1168. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1169. temp |= pll->config.hw_state.ebb0;
  1170. I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
  1171. /* Write M2 integer */
  1172. temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
  1173. temp &= ~PORT_PLL_M2_MASK;
  1174. temp |= pll->config.hw_state.pll0;
  1175. I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
  1176. /* Write N */
  1177. temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
  1178. temp &= ~PORT_PLL_N_MASK;
  1179. temp |= pll->config.hw_state.pll1;
  1180. I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
  1181. /* Write M2 fraction */
  1182. temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
  1183. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1184. temp |= pll->config.hw_state.pll2;
  1185. I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
  1186. /* Write M2 fraction enable */
  1187. temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
  1188. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1189. temp |= pll->config.hw_state.pll3;
  1190. I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
  1191. /* Write coeff */
  1192. temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
  1193. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1194. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1195. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1196. temp |= pll->config.hw_state.pll6;
  1197. I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
  1198. /* Write calibration val */
  1199. temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
  1200. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1201. temp |= pll->config.hw_state.pll8;
  1202. I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
  1203. temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
  1204. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1205. temp |= pll->config.hw_state.pll9;
  1206. I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
  1207. temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
  1208. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1209. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1210. temp |= pll->config.hw_state.pll10;
  1211. I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
  1212. /* Recalibrate with new settings */
  1213. temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1214. temp |= PORT_PLL_RECALIBRATE;
  1215. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1216. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1217. temp |= pll->config.hw_state.ebb4;
  1218. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1219. /* Enable PLL */
  1220. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1221. temp |= PORT_PLL_ENABLE;
  1222. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1223. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1224. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
  1225. 200))
  1226. DRM_ERROR("PLL %d not locked\n", port);
  1227. /*
  1228. * While we write to the group register to program all lanes at once we
  1229. * can read only lane registers and we pick lanes 0/1 for that.
  1230. */
  1231. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
  1232. temp &= ~LANE_STAGGER_MASK;
  1233. temp &= ~LANESTAGGER_STRAP_OVRD;
  1234. temp |= pll->config.hw_state.pcsdw12;
  1235. I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
  1236. }
  1237. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1238. struct intel_shared_dpll *pll)
  1239. {
  1240. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1241. uint32_t temp;
  1242. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1243. temp &= ~PORT_PLL_ENABLE;
  1244. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1245. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1246. }
  1247. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1248. struct intel_shared_dpll *pll,
  1249. struct intel_dpll_hw_state *hw_state)
  1250. {
  1251. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1252. uint32_t val;
  1253. bool ret;
  1254. enum dpio_phy phy;
  1255. enum dpio_channel ch;
  1256. bxt_port_to_phy_channel(port, &phy, &ch);
  1257. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1258. return false;
  1259. ret = false;
  1260. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1261. if (!(val & PORT_PLL_ENABLE))
  1262. goto out;
  1263. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
  1264. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1265. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1266. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1267. hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
  1268. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1269. hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
  1270. hw_state->pll1 &= PORT_PLL_N_MASK;
  1271. hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
  1272. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1273. hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
  1274. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1275. hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
  1276. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1277. PORT_PLL_INT_COEFF_MASK |
  1278. PORT_PLL_GAIN_CTL_MASK;
  1279. hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
  1280. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1281. hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
  1282. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1283. hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
  1284. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1285. PORT_PLL_DCO_AMP_MASK;
  1286. /*
  1287. * While we write to the group register to program all lanes at once we
  1288. * can read only lane registers. We configure all lanes the same way, so
  1289. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1290. */
  1291. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
  1292. if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
  1293. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1294. hw_state->pcsdw12,
  1295. I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
  1296. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1297. ret = true;
  1298. out:
  1299. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1300. return ret;
  1301. }
  1302. /* bxt clock parameters */
  1303. struct bxt_clk_div {
  1304. int clock;
  1305. uint32_t p1;
  1306. uint32_t p2;
  1307. uint32_t m2_int;
  1308. uint32_t m2_frac;
  1309. bool m2_frac_en;
  1310. uint32_t n;
  1311. int vco;
  1312. };
  1313. /* pre-calculated values for DP linkrates */
  1314. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1315. {162000, 4, 2, 32, 1677722, 1, 1},
  1316. {270000, 4, 1, 27, 0, 0, 1},
  1317. {540000, 2, 1, 27, 0, 0, 1},
  1318. {216000, 3, 2, 32, 1677722, 1, 1},
  1319. {243000, 4, 1, 24, 1258291, 1, 1},
  1320. {324000, 4, 1, 32, 1677722, 1, 1},
  1321. {432000, 3, 1, 32, 1677722, 1, 1}
  1322. };
  1323. static bool
  1324. bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
  1325. struct intel_crtc_state *crtc_state, int clock,
  1326. struct bxt_clk_div *clk_div)
  1327. {
  1328. struct dpll best_clock;
  1329. /* Calculate HDMI div */
  1330. /*
  1331. * FIXME: tie the following calculation into
  1332. * i9xx_crtc_compute_clock
  1333. */
  1334. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1335. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1336. clock, pipe_name(intel_crtc->pipe));
  1337. return false;
  1338. }
  1339. clk_div->p1 = best_clock.p1;
  1340. clk_div->p2 = best_clock.p2;
  1341. WARN_ON(best_clock.m1 != 2);
  1342. clk_div->n = best_clock.n;
  1343. clk_div->m2_int = best_clock.m2 >> 22;
  1344. clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1345. clk_div->m2_frac_en = clk_div->m2_frac != 0;
  1346. clk_div->vco = best_clock.vco;
  1347. return true;
  1348. }
  1349. static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
  1350. {
  1351. int i;
  1352. *clk_div = bxt_dp_clk_val[0];
  1353. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1354. if (bxt_dp_clk_val[i].clock == clock) {
  1355. *clk_div = bxt_dp_clk_val[i];
  1356. break;
  1357. }
  1358. }
  1359. clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
  1360. }
  1361. static bool bxt_ddi_set_dpll_hw_state(int clock,
  1362. struct bxt_clk_div *clk_div,
  1363. struct intel_dpll_hw_state *dpll_hw_state)
  1364. {
  1365. int vco = clk_div->vco;
  1366. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1367. uint32_t lanestagger;
  1368. if (vco >= 6200000 && vco <= 6700000) {
  1369. prop_coef = 4;
  1370. int_coef = 9;
  1371. gain_ctl = 3;
  1372. targ_cnt = 8;
  1373. } else if ((vco > 5400000 && vco < 6200000) ||
  1374. (vco >= 4800000 && vco < 5400000)) {
  1375. prop_coef = 5;
  1376. int_coef = 11;
  1377. gain_ctl = 3;
  1378. targ_cnt = 9;
  1379. } else if (vco == 5400000) {
  1380. prop_coef = 3;
  1381. int_coef = 8;
  1382. gain_ctl = 1;
  1383. targ_cnt = 9;
  1384. } else {
  1385. DRM_ERROR("Invalid VCO\n");
  1386. return false;
  1387. }
  1388. if (clock > 270000)
  1389. lanestagger = 0x18;
  1390. else if (clock > 135000)
  1391. lanestagger = 0x0d;
  1392. else if (clock > 67000)
  1393. lanestagger = 0x07;
  1394. else if (clock > 33000)
  1395. lanestagger = 0x04;
  1396. else
  1397. lanestagger = 0x02;
  1398. dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
  1399. dpll_hw_state->pll0 = clk_div->m2_int;
  1400. dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
  1401. dpll_hw_state->pll2 = clk_div->m2_frac;
  1402. if (clk_div->m2_frac_en)
  1403. dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
  1404. dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1405. dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
  1406. dpll_hw_state->pll8 = targ_cnt;
  1407. dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1408. dpll_hw_state->pll10 =
  1409. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1410. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1411. dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1412. dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
  1413. return true;
  1414. }
  1415. bool bxt_ddi_dp_set_dpll_hw_state(int clock,
  1416. struct intel_dpll_hw_state *dpll_hw_state)
  1417. {
  1418. struct bxt_clk_div clk_div = {0};
  1419. bxt_ddi_dp_pll_dividers(clock, &clk_div);
  1420. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1421. }
  1422. static bool
  1423. bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
  1424. struct intel_crtc_state *crtc_state, int clock,
  1425. struct intel_dpll_hw_state *dpll_hw_state)
  1426. {
  1427. struct bxt_clk_div clk_div = { };
  1428. bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);
  1429. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1430. }
  1431. static struct intel_shared_dpll *
  1432. bxt_get_dpll(struct intel_crtc *crtc,
  1433. struct intel_crtc_state *crtc_state,
  1434. struct intel_encoder *encoder)
  1435. {
  1436. struct intel_dpll_hw_state dpll_hw_state = { };
  1437. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1438. struct intel_digital_port *intel_dig_port;
  1439. struct intel_shared_dpll *pll;
  1440. int i, clock = crtc_state->port_clock;
  1441. if (encoder->type == INTEL_OUTPUT_HDMI &&
  1442. !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
  1443. &dpll_hw_state))
  1444. return NULL;
  1445. if ((encoder->type == INTEL_OUTPUT_DP ||
  1446. encoder->type == INTEL_OUTPUT_EDP) &&
  1447. !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  1448. return NULL;
  1449. memset(&crtc_state->dpll_hw_state, 0,
  1450. sizeof(crtc_state->dpll_hw_state));
  1451. crtc_state->dpll_hw_state = dpll_hw_state;
  1452. if (encoder->type == INTEL_OUTPUT_DP_MST) {
  1453. struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);
  1454. intel_dig_port = intel_mst->primary;
  1455. } else
  1456. intel_dig_port = enc_to_dig_port(&encoder->base);
  1457. /* 1:1 mapping between ports and PLLs */
  1458. i = (enum intel_dpll_id) intel_dig_port->port;
  1459. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1460. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1461. crtc->base.base.id, crtc->base.name, pll->name);
  1462. intel_reference_shared_dpll(pll, crtc_state);
  1463. return pll;
  1464. }
  1465. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1466. .enable = bxt_ddi_pll_enable,
  1467. .disable = bxt_ddi_pll_disable,
  1468. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1469. };
  1470. static void intel_ddi_pll_init(struct drm_device *dev)
  1471. {
  1472. struct drm_i915_private *dev_priv = to_i915(dev);
  1473. if (INTEL_GEN(dev_priv) < 9) {
  1474. uint32_t val = I915_READ(LCPLL_CTL);
  1475. /*
  1476. * The LCPLL register should be turned on by the BIOS. For now
  1477. * let's just check its state and print errors in case
  1478. * something is wrong. Don't even try to turn it on.
  1479. */
  1480. if (val & LCPLL_CD_SOURCE_FCLK)
  1481. DRM_ERROR("CDCLK source is not LCPLL\n");
  1482. if (val & LCPLL_PLL_DISABLE)
  1483. DRM_ERROR("LCPLL is disabled\n");
  1484. }
  1485. }
  1486. struct dpll_info {
  1487. const char *name;
  1488. const int id;
  1489. const struct intel_shared_dpll_funcs *funcs;
  1490. uint32_t flags;
  1491. };
  1492. struct intel_dpll_mgr {
  1493. const struct dpll_info *dpll_info;
  1494. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1495. struct intel_crtc_state *crtc_state,
  1496. struct intel_encoder *encoder);
  1497. };
  1498. static const struct dpll_info pch_plls[] = {
  1499. { "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
  1500. { "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
  1501. { NULL, -1, NULL, 0 },
  1502. };
  1503. static const struct intel_dpll_mgr pch_pll_mgr = {
  1504. .dpll_info = pch_plls,
  1505. .get_dpll = ibx_get_dpll,
  1506. };
  1507. static const struct dpll_info hsw_plls[] = {
  1508. { "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 },
  1509. { "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 },
  1510. { "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 },
  1511. { "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1512. { "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1513. { "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1514. { NULL, -1, NULL, },
  1515. };
  1516. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1517. .dpll_info = hsw_plls,
  1518. .get_dpll = hsw_get_dpll,
  1519. };
  1520. static const struct dpll_info skl_plls[] = {
  1521. { "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
  1522. { "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 },
  1523. { "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 },
  1524. { "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 },
  1525. { NULL, -1, NULL, },
  1526. };
  1527. static const struct intel_dpll_mgr skl_pll_mgr = {
  1528. .dpll_info = skl_plls,
  1529. .get_dpll = skl_get_dpll,
  1530. };
  1531. static const struct dpll_info bxt_plls[] = {
  1532. { "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
  1533. { "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
  1534. { "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
  1535. { NULL, -1, NULL, },
  1536. };
  1537. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1538. .dpll_info = bxt_plls,
  1539. .get_dpll = bxt_get_dpll,
  1540. };
  1541. void intel_shared_dpll_init(struct drm_device *dev)
  1542. {
  1543. struct drm_i915_private *dev_priv = to_i915(dev);
  1544. const struct intel_dpll_mgr *dpll_mgr = NULL;
  1545. const struct dpll_info *dpll_info;
  1546. int i;
  1547. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  1548. dpll_mgr = &skl_pll_mgr;
  1549. else if (IS_BROXTON(dev_priv))
  1550. dpll_mgr = &bxt_pll_mgr;
  1551. else if (HAS_DDI(dev_priv))
  1552. dpll_mgr = &hsw_pll_mgr;
  1553. else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
  1554. dpll_mgr = &pch_pll_mgr;
  1555. if (!dpll_mgr) {
  1556. dev_priv->num_shared_dpll = 0;
  1557. return;
  1558. }
  1559. dpll_info = dpll_mgr->dpll_info;
  1560. for (i = 0; dpll_info[i].id >= 0; i++) {
  1561. WARN_ON(i != dpll_info[i].id);
  1562. dev_priv->shared_dplls[i].id = dpll_info[i].id;
  1563. dev_priv->shared_dplls[i].name = dpll_info[i].name;
  1564. dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
  1565. dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
  1566. }
  1567. dev_priv->dpll_mgr = dpll_mgr;
  1568. dev_priv->num_shared_dpll = i;
  1569. mutex_init(&dev_priv->dpll_lock);
  1570. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  1571. /* FIXME: Move this to a more suitable place */
  1572. if (HAS_DDI(dev_priv))
  1573. intel_ddi_pll_init(dev);
  1574. }
  1575. struct intel_shared_dpll *
  1576. intel_get_shared_dpll(struct intel_crtc *crtc,
  1577. struct intel_crtc_state *crtc_state,
  1578. struct intel_encoder *encoder)
  1579. {
  1580. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1581. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  1582. if (WARN_ON(!dpll_mgr))
  1583. return NULL;
  1584. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  1585. }