extent_cache.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791
  1. /*
  2. * f2fs extent cache support
  3. *
  4. * Copyright (c) 2015 Motorola Mobility
  5. * Copyright (c) 2015 Samsung Electronics
  6. * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
  7. * Chao Yu <chao2.yu@samsung.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/fs.h>
  14. #include <linux/f2fs_fs.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. #include <trace/events/f2fs.h>
  18. static struct kmem_cache *extent_tree_slab;
  19. static struct kmem_cache *extent_node_slab;
  20. static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
  21. struct extent_tree *et, struct extent_info *ei,
  22. struct rb_node *parent, struct rb_node **p)
  23. {
  24. struct extent_node *en;
  25. en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
  26. if (!en)
  27. return NULL;
  28. en->ei = *ei;
  29. INIT_LIST_HEAD(&en->list);
  30. rb_link_node(&en->rb_node, parent, p);
  31. rb_insert_color(&en->rb_node, &et->root);
  32. et->count++;
  33. atomic_inc(&sbi->total_ext_node);
  34. return en;
  35. }
  36. static void __detach_extent_node(struct f2fs_sb_info *sbi,
  37. struct extent_tree *et, struct extent_node *en)
  38. {
  39. rb_erase(&en->rb_node, &et->root);
  40. et->count--;
  41. atomic_dec(&sbi->total_ext_node);
  42. if (et->cached_en == en)
  43. et->cached_en = NULL;
  44. }
  45. static struct extent_tree *__grab_extent_tree(struct inode *inode)
  46. {
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct extent_tree *et;
  49. nid_t ino = inode->i_ino;
  50. down_write(&sbi->extent_tree_lock);
  51. et = radix_tree_lookup(&sbi->extent_tree_root, ino);
  52. if (!et) {
  53. et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
  54. f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
  55. memset(et, 0, sizeof(struct extent_tree));
  56. et->ino = ino;
  57. et->root = RB_ROOT;
  58. et->cached_en = NULL;
  59. rwlock_init(&et->lock);
  60. atomic_set(&et->refcount, 0);
  61. et->count = 0;
  62. sbi->total_ext_tree++;
  63. }
  64. atomic_inc(&et->refcount);
  65. up_write(&sbi->extent_tree_lock);
  66. /* never died until evict_inode */
  67. F2FS_I(inode)->extent_tree = et;
  68. return et;
  69. }
  70. static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
  71. struct extent_tree *et, unsigned int fofs)
  72. {
  73. struct rb_node *node = et->root.rb_node;
  74. struct extent_node *en = et->cached_en;
  75. if (en) {
  76. struct extent_info *cei = &en->ei;
  77. if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
  78. stat_inc_cached_node_hit(sbi);
  79. return en;
  80. }
  81. }
  82. while (node) {
  83. en = rb_entry(node, struct extent_node, rb_node);
  84. if (fofs < en->ei.fofs) {
  85. node = node->rb_left;
  86. } else if (fofs >= en->ei.fofs + en->ei.len) {
  87. node = node->rb_right;
  88. } else {
  89. stat_inc_rbtree_node_hit(sbi);
  90. return en;
  91. }
  92. }
  93. return NULL;
  94. }
  95. static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
  96. struct extent_tree *et, struct extent_info *ei)
  97. {
  98. struct rb_node **p = &et->root.rb_node;
  99. struct extent_node *en;
  100. en = __attach_extent_node(sbi, et, ei, NULL, p);
  101. if (!en)
  102. return NULL;
  103. et->largest = en->ei;
  104. et->cached_en = en;
  105. return en;
  106. }
  107. static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
  108. struct extent_tree *et, bool free_all)
  109. {
  110. struct rb_node *node, *next;
  111. struct extent_node *en;
  112. unsigned int count = et->count;
  113. node = rb_first(&et->root);
  114. while (node) {
  115. next = rb_next(node);
  116. en = rb_entry(node, struct extent_node, rb_node);
  117. if (free_all) {
  118. spin_lock(&sbi->extent_lock);
  119. if (!list_empty(&en->list))
  120. list_del_init(&en->list);
  121. spin_unlock(&sbi->extent_lock);
  122. }
  123. if (free_all || list_empty(&en->list)) {
  124. __detach_extent_node(sbi, et, en);
  125. kmem_cache_free(extent_node_slab, en);
  126. }
  127. node = next;
  128. }
  129. return count - et->count;
  130. }
  131. static void __drop_largest_extent(struct inode *inode, pgoff_t fofs)
  132. {
  133. struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
  134. if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
  135. largest->len = 0;
  136. }
  137. void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs)
  138. {
  139. if (!f2fs_may_extent_tree(inode))
  140. return;
  141. __drop_largest_extent(inode, fofs);
  142. }
  143. void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
  144. {
  145. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  146. struct extent_tree *et;
  147. struct extent_node *en;
  148. struct extent_info ei;
  149. if (!f2fs_may_extent_tree(inode))
  150. return;
  151. et = __grab_extent_tree(inode);
  152. if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
  153. return;
  154. set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
  155. le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
  156. write_lock(&et->lock);
  157. if (et->count)
  158. goto out;
  159. en = __init_extent_tree(sbi, et, &ei);
  160. if (en) {
  161. spin_lock(&sbi->extent_lock);
  162. list_add_tail(&en->list, &sbi->extent_list);
  163. spin_unlock(&sbi->extent_lock);
  164. }
  165. out:
  166. write_unlock(&et->lock);
  167. }
  168. static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
  169. struct extent_info *ei)
  170. {
  171. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  172. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  173. struct extent_node *en;
  174. bool ret = false;
  175. f2fs_bug_on(sbi, !et);
  176. trace_f2fs_lookup_extent_tree_start(inode, pgofs);
  177. read_lock(&et->lock);
  178. if (et->largest.fofs <= pgofs &&
  179. et->largest.fofs + et->largest.len > pgofs) {
  180. *ei = et->largest;
  181. ret = true;
  182. stat_inc_largest_node_hit(sbi);
  183. goto out;
  184. }
  185. en = __lookup_extent_tree(sbi, et, pgofs);
  186. if (en) {
  187. *ei = en->ei;
  188. spin_lock(&sbi->extent_lock);
  189. if (!list_empty(&en->list))
  190. list_move_tail(&en->list, &sbi->extent_list);
  191. et->cached_en = en;
  192. spin_unlock(&sbi->extent_lock);
  193. ret = true;
  194. }
  195. out:
  196. stat_inc_total_hit(sbi);
  197. read_unlock(&et->lock);
  198. trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
  199. return ret;
  200. }
  201. /*
  202. * lookup extent at @fofs, if hit, return the extent
  203. * if not, return NULL and
  204. * @prev_ex: extent before fofs
  205. * @next_ex: extent after fofs
  206. * @insert_p: insert point for new extent at fofs
  207. * in order to simpfy the insertion after.
  208. * tree must stay unchanged between lookup and insertion.
  209. */
  210. static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
  211. unsigned int fofs,
  212. struct extent_node **prev_ex,
  213. struct extent_node **next_ex,
  214. struct rb_node ***insert_p,
  215. struct rb_node **insert_parent)
  216. {
  217. struct rb_node **pnode = &et->root.rb_node;
  218. struct rb_node *parent = NULL, *tmp_node;
  219. struct extent_node *en = et->cached_en;
  220. *insert_p = NULL;
  221. *insert_parent = NULL;
  222. *prev_ex = NULL;
  223. *next_ex = NULL;
  224. if (RB_EMPTY_ROOT(&et->root))
  225. return NULL;
  226. if (en) {
  227. struct extent_info *cei = &en->ei;
  228. if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
  229. goto lookup_neighbors;
  230. }
  231. while (*pnode) {
  232. parent = *pnode;
  233. en = rb_entry(*pnode, struct extent_node, rb_node);
  234. if (fofs < en->ei.fofs)
  235. pnode = &(*pnode)->rb_left;
  236. else if (fofs >= en->ei.fofs + en->ei.len)
  237. pnode = &(*pnode)->rb_right;
  238. else
  239. goto lookup_neighbors;
  240. }
  241. *insert_p = pnode;
  242. *insert_parent = parent;
  243. en = rb_entry(parent, struct extent_node, rb_node);
  244. tmp_node = parent;
  245. if (parent && fofs > en->ei.fofs)
  246. tmp_node = rb_next(parent);
  247. *next_ex = tmp_node ?
  248. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  249. tmp_node = parent;
  250. if (parent && fofs < en->ei.fofs)
  251. tmp_node = rb_prev(parent);
  252. *prev_ex = tmp_node ?
  253. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  254. return NULL;
  255. lookup_neighbors:
  256. if (fofs == en->ei.fofs) {
  257. /* lookup prev node for merging backward later */
  258. tmp_node = rb_prev(&en->rb_node);
  259. *prev_ex = tmp_node ?
  260. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  261. }
  262. if (fofs == en->ei.fofs + en->ei.len - 1) {
  263. /* lookup next node for merging frontward later */
  264. tmp_node = rb_next(&en->rb_node);
  265. *next_ex = tmp_node ?
  266. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  267. }
  268. return en;
  269. }
  270. static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
  271. struct extent_tree *et, struct extent_info *ei,
  272. struct extent_node **den,
  273. struct extent_node *prev_ex,
  274. struct extent_node *next_ex)
  275. {
  276. struct extent_node *en = NULL;
  277. if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
  278. prev_ex->ei.len += ei->len;
  279. ei = &prev_ex->ei;
  280. en = prev_ex;
  281. }
  282. if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
  283. if (en) {
  284. __detach_extent_node(sbi, et, prev_ex);
  285. *den = prev_ex;
  286. }
  287. next_ex->ei.fofs = ei->fofs;
  288. next_ex->ei.blk = ei->blk;
  289. next_ex->ei.len += ei->len;
  290. en = next_ex;
  291. }
  292. if (en) {
  293. if (en->ei.len > et->largest.len)
  294. et->largest = en->ei;
  295. et->cached_en = en;
  296. }
  297. return en;
  298. }
  299. static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
  300. struct extent_tree *et, struct extent_info *ei,
  301. struct rb_node **insert_p,
  302. struct rb_node *insert_parent)
  303. {
  304. struct rb_node **p = &et->root.rb_node;
  305. struct rb_node *parent = NULL;
  306. struct extent_node *en = NULL;
  307. if (insert_p && insert_parent) {
  308. parent = insert_parent;
  309. p = insert_p;
  310. goto do_insert;
  311. }
  312. while (*p) {
  313. parent = *p;
  314. en = rb_entry(parent, struct extent_node, rb_node);
  315. if (ei->fofs < en->ei.fofs)
  316. p = &(*p)->rb_left;
  317. else if (ei->fofs >= en->ei.fofs + en->ei.len)
  318. p = &(*p)->rb_right;
  319. else
  320. f2fs_bug_on(sbi, 1);
  321. }
  322. do_insert:
  323. en = __attach_extent_node(sbi, et, ei, parent, p);
  324. if (!en)
  325. return NULL;
  326. if (en->ei.len > et->largest.len)
  327. et->largest = en->ei;
  328. et->cached_en = en;
  329. return en;
  330. }
  331. unsigned int f2fs_update_extent_tree_range(struct inode *inode,
  332. pgoff_t fofs, block_t blkaddr, unsigned int len)
  333. {
  334. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  335. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  336. struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
  337. struct extent_node *prev_en = NULL, *next_en = NULL;
  338. struct extent_info ei, dei, prev;
  339. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  340. unsigned int end = fofs + len;
  341. unsigned int pos = (unsigned int)fofs;
  342. if (!et)
  343. return false;
  344. write_lock(&et->lock);
  345. if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
  346. write_unlock(&et->lock);
  347. return false;
  348. }
  349. prev = et->largest;
  350. dei.len = 0;
  351. /* we do not guarantee that the largest extent is cached all the time */
  352. __drop_largest_extent(inode, fofs);
  353. /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
  354. en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
  355. &insert_p, &insert_parent);
  356. if (!en) {
  357. if (next_en) {
  358. en = next_en;
  359. f2fs_bug_on(sbi, en->ei.fofs <= pos);
  360. pos = en->ei.fofs;
  361. } else {
  362. /*
  363. * skip searching in the tree since there is no
  364. * larger extent node in the cache.
  365. */
  366. goto update_extent;
  367. }
  368. }
  369. /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
  370. while (en) {
  371. struct rb_node *node;
  372. if (pos >= end)
  373. break;
  374. dei = en->ei;
  375. en1 = en2 = NULL;
  376. node = rb_next(&en->rb_node);
  377. /*
  378. * 2.1 there are four cases when we invalidate blkaddr in extent
  379. * node, |V: valid address, X: will be invalidated|
  380. */
  381. /* case#1, invalidate right part of extent node |VVVVVXXXXX| */
  382. if (pos > dei.fofs && end >= dei.fofs + dei.len) {
  383. en->ei.len = pos - dei.fofs;
  384. if (en->ei.len < F2FS_MIN_EXTENT_LEN) {
  385. __detach_extent_node(sbi, et, en);
  386. insert_p = NULL;
  387. insert_parent = NULL;
  388. goto update;
  389. }
  390. if (__is_extent_same(&dei, &et->largest))
  391. et->largest = en->ei;
  392. goto next;
  393. }
  394. /* case#2, invalidate left part of extent node |XXXXXVVVVV| */
  395. if (pos <= dei.fofs && end < dei.fofs + dei.len) {
  396. en->ei.fofs = end;
  397. en->ei.blk += end - dei.fofs;
  398. en->ei.len -= end - dei.fofs;
  399. if (en->ei.len < F2FS_MIN_EXTENT_LEN) {
  400. __detach_extent_node(sbi, et, en);
  401. insert_p = NULL;
  402. insert_parent = NULL;
  403. goto update;
  404. }
  405. if (__is_extent_same(&dei, &et->largest))
  406. et->largest = en->ei;
  407. goto next;
  408. }
  409. __detach_extent_node(sbi, et, en);
  410. /*
  411. * if we remove node in rb-tree, our parent node pointer may
  412. * point the wrong place, discard them.
  413. */
  414. insert_p = NULL;
  415. insert_parent = NULL;
  416. /* case#3, invalidate entire extent node |XXXXXXXXXX| */
  417. if (pos <= dei.fofs && end >= dei.fofs + dei.len) {
  418. if (__is_extent_same(&dei, &et->largest))
  419. et->largest.len = 0;
  420. goto update;
  421. }
  422. /*
  423. * case#4, invalidate data in the middle of extent node
  424. * |VVVXXXXVVV|
  425. */
  426. if (dei.len > F2FS_MIN_EXTENT_LEN) {
  427. unsigned int endofs;
  428. /* insert left part of split extent into cache */
  429. if (pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
  430. set_extent_info(&ei, dei.fofs, dei.blk,
  431. pos - dei.fofs);
  432. en1 = __insert_extent_tree(sbi, et, &ei,
  433. NULL, NULL);
  434. }
  435. /* insert right part of split extent into cache */
  436. endofs = dei.fofs + dei.len;
  437. if (endofs - end >= F2FS_MIN_EXTENT_LEN) {
  438. set_extent_info(&ei, end,
  439. end - dei.fofs + dei.blk,
  440. endofs - end);
  441. en2 = __insert_extent_tree(sbi, et, &ei,
  442. NULL, NULL);
  443. }
  444. }
  445. update:
  446. /* 2.2 update in global extent list */
  447. spin_lock(&sbi->extent_lock);
  448. if (en && !list_empty(&en->list))
  449. list_del(&en->list);
  450. if (en1)
  451. list_add_tail(&en1->list, &sbi->extent_list);
  452. if (en2)
  453. list_add_tail(&en2->list, &sbi->extent_list);
  454. spin_unlock(&sbi->extent_lock);
  455. /* 2.3 release extent node */
  456. if (en)
  457. kmem_cache_free(extent_node_slab, en);
  458. next:
  459. en = node ? rb_entry(node, struct extent_node, rb_node) : NULL;
  460. next_en = en;
  461. if (en)
  462. pos = en->ei.fofs;
  463. }
  464. update_extent:
  465. /* 3. update extent in extent cache */
  466. if (blkaddr) {
  467. struct extent_node *den = NULL;
  468. set_extent_info(&ei, fofs, blkaddr, len);
  469. en3 = __try_merge_extent_node(sbi, et, &ei, &den,
  470. prev_en, next_en);
  471. if (!en3)
  472. en3 = __insert_extent_tree(sbi, et, &ei,
  473. insert_p, insert_parent);
  474. /* give up extent_cache, if split and small updates happen */
  475. if (dei.len >= 1 &&
  476. prev.len < F2FS_MIN_EXTENT_LEN &&
  477. et->largest.len < F2FS_MIN_EXTENT_LEN) {
  478. et->largest.len = 0;
  479. set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
  480. }
  481. spin_lock(&sbi->extent_lock);
  482. if (en3) {
  483. if (list_empty(&en3->list))
  484. list_add_tail(&en3->list, &sbi->extent_list);
  485. else
  486. list_move_tail(&en3->list, &sbi->extent_list);
  487. }
  488. if (den && !list_empty(&den->list))
  489. list_del(&den->list);
  490. spin_unlock(&sbi->extent_lock);
  491. if (den)
  492. kmem_cache_free(extent_node_slab, den);
  493. }
  494. if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
  495. __free_extent_tree(sbi, et, true);
  496. write_unlock(&et->lock);
  497. return !__is_extent_same(&prev, &et->largest);
  498. }
  499. unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
  500. {
  501. struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
  502. struct extent_node *en, *tmp;
  503. unsigned long ino = F2FS_ROOT_INO(sbi);
  504. struct radix_tree_root *root = &sbi->extent_tree_root;
  505. unsigned int found;
  506. unsigned int node_cnt = 0, tree_cnt = 0;
  507. int remained;
  508. if (!test_opt(sbi, EXTENT_CACHE))
  509. return 0;
  510. if (!down_write_trylock(&sbi->extent_tree_lock))
  511. goto out;
  512. /* 1. remove unreferenced extent tree */
  513. while ((found = radix_tree_gang_lookup(root,
  514. (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
  515. unsigned i;
  516. ino = treevec[found - 1]->ino + 1;
  517. for (i = 0; i < found; i++) {
  518. struct extent_tree *et = treevec[i];
  519. if (!atomic_read(&et->refcount)) {
  520. write_lock(&et->lock);
  521. node_cnt += __free_extent_tree(sbi, et, true);
  522. write_unlock(&et->lock);
  523. radix_tree_delete(root, et->ino);
  524. kmem_cache_free(extent_tree_slab, et);
  525. sbi->total_ext_tree--;
  526. tree_cnt++;
  527. if (node_cnt + tree_cnt >= nr_shrink)
  528. goto unlock_out;
  529. }
  530. }
  531. }
  532. up_write(&sbi->extent_tree_lock);
  533. /* 2. remove LRU extent entries */
  534. if (!down_write_trylock(&sbi->extent_tree_lock))
  535. goto out;
  536. remained = nr_shrink - (node_cnt + tree_cnt);
  537. spin_lock(&sbi->extent_lock);
  538. list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
  539. if (!remained--)
  540. break;
  541. list_del_init(&en->list);
  542. }
  543. spin_unlock(&sbi->extent_lock);
  544. while ((found = radix_tree_gang_lookup(root,
  545. (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
  546. unsigned i;
  547. ino = treevec[found - 1]->ino + 1;
  548. for (i = 0; i < found; i++) {
  549. struct extent_tree *et = treevec[i];
  550. write_lock(&et->lock);
  551. node_cnt += __free_extent_tree(sbi, et, false);
  552. write_unlock(&et->lock);
  553. if (node_cnt + tree_cnt >= nr_shrink)
  554. break;
  555. }
  556. }
  557. unlock_out:
  558. up_write(&sbi->extent_tree_lock);
  559. out:
  560. trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
  561. return node_cnt + tree_cnt;
  562. }
  563. unsigned int f2fs_destroy_extent_node(struct inode *inode)
  564. {
  565. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  566. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  567. unsigned int node_cnt = 0;
  568. if (!et)
  569. return 0;
  570. write_lock(&et->lock);
  571. node_cnt = __free_extent_tree(sbi, et, true);
  572. write_unlock(&et->lock);
  573. return node_cnt;
  574. }
  575. void f2fs_destroy_extent_tree(struct inode *inode)
  576. {
  577. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  578. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  579. unsigned int node_cnt = 0;
  580. if (!et)
  581. return;
  582. if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
  583. atomic_dec(&et->refcount);
  584. return;
  585. }
  586. /* free all extent info belong to this extent tree */
  587. node_cnt = f2fs_destroy_extent_node(inode);
  588. /* delete extent tree entry in radix tree */
  589. down_write(&sbi->extent_tree_lock);
  590. atomic_dec(&et->refcount);
  591. f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
  592. radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
  593. kmem_cache_free(extent_tree_slab, et);
  594. sbi->total_ext_tree--;
  595. up_write(&sbi->extent_tree_lock);
  596. F2FS_I(inode)->extent_tree = NULL;
  597. trace_f2fs_destroy_extent_tree(inode, node_cnt);
  598. }
  599. bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
  600. struct extent_info *ei)
  601. {
  602. if (!f2fs_may_extent_tree(inode))
  603. return false;
  604. return f2fs_lookup_extent_tree(inode, pgofs, ei);
  605. }
  606. void f2fs_update_extent_cache(struct dnode_of_data *dn)
  607. {
  608. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  609. pgoff_t fofs;
  610. if (!f2fs_may_extent_tree(dn->inode))
  611. return;
  612. f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
  613. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  614. dn->ofs_in_node;
  615. if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1))
  616. sync_inode_page(dn);
  617. }
  618. void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
  619. pgoff_t fofs, block_t blkaddr, unsigned int len)
  620. {
  621. if (!f2fs_may_extent_tree(dn->inode))
  622. return;
  623. if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
  624. sync_inode_page(dn);
  625. }
  626. void init_extent_cache_info(struct f2fs_sb_info *sbi)
  627. {
  628. INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
  629. init_rwsem(&sbi->extent_tree_lock);
  630. INIT_LIST_HEAD(&sbi->extent_list);
  631. spin_lock_init(&sbi->extent_lock);
  632. sbi->total_ext_tree = 0;
  633. atomic_set(&sbi->total_ext_node, 0);
  634. }
  635. int __init create_extent_cache(void)
  636. {
  637. extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
  638. sizeof(struct extent_tree));
  639. if (!extent_tree_slab)
  640. return -ENOMEM;
  641. extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
  642. sizeof(struct extent_node));
  643. if (!extent_node_slab) {
  644. kmem_cache_destroy(extent_tree_slab);
  645. return -ENOMEM;
  646. }
  647. return 0;
  648. }
  649. void destroy_extent_cache(void)
  650. {
  651. kmem_cache_destroy(extent_node_slab);
  652. kmem_cache_destroy(extent_tree_slab);
  653. }