intel_dpll_mgr.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. struct intel_shared_dpll *
  25. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  26. enum intel_dpll_id id)
  27. {
  28. return &dev_priv->shared_dplls[id];
  29. }
  30. enum intel_dpll_id
  31. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  32. struct intel_shared_dpll *pll)
  33. {
  34. if (WARN_ON(pll < dev_priv->shared_dplls||
  35. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  36. return -1;
  37. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  38. }
  39. void
  40. intel_shared_dpll_config_get(struct intel_shared_dpll_config *config,
  41. struct intel_shared_dpll *pll,
  42. struct intel_crtc *crtc)
  43. {
  44. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  45. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  46. config[id].crtc_mask |= 1 << crtc->pipe;
  47. }
  48. void
  49. intel_shared_dpll_config_put(struct intel_shared_dpll_config *config,
  50. struct intel_shared_dpll *pll,
  51. struct intel_crtc *crtc)
  52. {
  53. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  54. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  55. config[id].crtc_mask &= ~(1 << crtc->pipe);
  56. }
  57. /* For ILK+ */
  58. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  59. struct intel_shared_dpll *pll,
  60. bool state)
  61. {
  62. bool cur_state;
  63. struct intel_dpll_hw_state hw_state;
  64. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  65. return;
  66. cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
  67. I915_STATE_WARN(cur_state != state,
  68. "%s assertion failure (expected %s, current %s)\n",
  69. pll->name, onoff(state), onoff(cur_state));
  70. }
  71. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  72. {
  73. struct drm_device *dev = crtc->base.dev;
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  76. if (WARN_ON(pll == NULL))
  77. return;
  78. mutex_lock(&dev_priv->dpll_lock);
  79. WARN_ON(!pll->config.crtc_mask);
  80. if (!pll->active_mask) {
  81. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  82. WARN_ON(pll->on);
  83. assert_shared_dpll_disabled(dev_priv, pll);
  84. pll->funcs.mode_set(dev_priv, pll);
  85. }
  86. mutex_unlock(&dev_priv->dpll_lock);
  87. }
  88. /**
  89. * intel_enable_shared_dpll - enable PCH PLL
  90. * @dev_priv: i915 private structure
  91. * @pipe: pipe PLL to enable
  92. *
  93. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  94. * drives the transcoder clock.
  95. */
  96. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  97. {
  98. struct drm_device *dev = crtc->base.dev;
  99. struct drm_i915_private *dev_priv = dev->dev_private;
  100. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  101. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  102. unsigned old_mask;
  103. if (WARN_ON(pll == NULL))
  104. return;
  105. mutex_lock(&dev_priv->dpll_lock);
  106. old_mask = pll->active_mask;
  107. if (WARN_ON(!(pll->config.crtc_mask & crtc_mask)) ||
  108. WARN_ON(pll->active_mask & crtc_mask))
  109. goto out;
  110. pll->active_mask |= crtc_mask;
  111. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  112. pll->name, pll->active_mask, pll->on,
  113. crtc->base.base.id);
  114. if (old_mask) {
  115. WARN_ON(!pll->on);
  116. assert_shared_dpll_enabled(dev_priv, pll);
  117. goto out;
  118. }
  119. WARN_ON(pll->on);
  120. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  121. pll->funcs.enable(dev_priv, pll);
  122. pll->on = true;
  123. out:
  124. mutex_unlock(&dev_priv->dpll_lock);
  125. }
  126. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  127. {
  128. struct drm_device *dev = crtc->base.dev;
  129. struct drm_i915_private *dev_priv = dev->dev_private;
  130. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  131. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  132. /* PCH only available on ILK+ */
  133. if (INTEL_INFO(dev)->gen < 5)
  134. return;
  135. if (pll == NULL)
  136. return;
  137. mutex_lock(&dev_priv->dpll_lock);
  138. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  139. goto out;
  140. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  141. pll->name, pll->active_mask, pll->on,
  142. crtc->base.base.id);
  143. assert_shared_dpll_enabled(dev_priv, pll);
  144. WARN_ON(!pll->on);
  145. pll->active_mask &= ~crtc_mask;
  146. if (pll->active_mask)
  147. goto out;
  148. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  149. pll->funcs.disable(dev_priv, pll);
  150. pll->on = false;
  151. out:
  152. mutex_unlock(&dev_priv->dpll_lock);
  153. }
  154. static struct intel_shared_dpll *
  155. intel_find_shared_dpll(struct intel_crtc *crtc,
  156. struct intel_crtc_state *crtc_state,
  157. enum intel_dpll_id range_min,
  158. enum intel_dpll_id range_max)
  159. {
  160. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  161. struct intel_shared_dpll *pll;
  162. struct intel_shared_dpll_config *shared_dpll;
  163. enum intel_dpll_id i;
  164. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  165. for (i = range_min; i <= range_max; i++) {
  166. pll = &dev_priv->shared_dplls[i];
  167. /* Only want to check enabled timings first */
  168. if (shared_dpll[i].crtc_mask == 0)
  169. continue;
  170. if (memcmp(&crtc_state->dpll_hw_state,
  171. &shared_dpll[i].hw_state,
  172. sizeof(crtc_state->dpll_hw_state)) == 0) {
  173. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  174. crtc->base.base.id, crtc->base.name, pll->name,
  175. shared_dpll[i].crtc_mask,
  176. pll->active_mask);
  177. return pll;
  178. }
  179. }
  180. /* Ok no matching timings, maybe there's a free one? */
  181. for (i = range_min; i <= range_max; i++) {
  182. pll = &dev_priv->shared_dplls[i];
  183. if (shared_dpll[i].crtc_mask == 0) {
  184. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  185. crtc->base.base.id, crtc->base.name, pll->name);
  186. return pll;
  187. }
  188. }
  189. return NULL;
  190. }
  191. static void
  192. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  193. struct intel_crtc_state *crtc_state)
  194. {
  195. struct intel_shared_dpll_config *shared_dpll;
  196. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  197. enum intel_dpll_id i = pll->id;
  198. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  199. if (shared_dpll[i].crtc_mask == 0)
  200. shared_dpll[i].hw_state =
  201. crtc_state->dpll_hw_state;
  202. crtc_state->shared_dpll = pll;
  203. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  204. pipe_name(crtc->pipe));
  205. intel_shared_dpll_config_get(shared_dpll, pll, crtc);
  206. }
  207. void intel_shared_dpll_commit(struct drm_atomic_state *state)
  208. {
  209. struct drm_i915_private *dev_priv = to_i915(state->dev);
  210. struct intel_shared_dpll_config *shared_dpll;
  211. struct intel_shared_dpll *pll;
  212. enum intel_dpll_id i;
  213. if (!to_intel_atomic_state(state)->dpll_set)
  214. return;
  215. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  216. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  217. pll = &dev_priv->shared_dplls[i];
  218. pll->config = shared_dpll[i];
  219. }
  220. }
  221. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  222. struct intel_shared_dpll *pll,
  223. struct intel_dpll_hw_state *hw_state)
  224. {
  225. uint32_t val;
  226. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  227. return false;
  228. val = I915_READ(PCH_DPLL(pll->id));
  229. hw_state->dpll = val;
  230. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  231. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  232. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  233. return val & DPLL_VCO_ENABLE;
  234. }
  235. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  236. struct intel_shared_dpll *pll)
  237. {
  238. I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  239. I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  240. }
  241. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  242. {
  243. u32 val;
  244. bool enabled;
  245. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  246. val = I915_READ(PCH_DREF_CONTROL);
  247. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  248. DREF_SUPERSPREAD_SOURCE_MASK));
  249. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  250. }
  251. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  252. struct intel_shared_dpll *pll)
  253. {
  254. /* PCH refclock must be enabled first */
  255. ibx_assert_pch_refclk_enabled(dev_priv);
  256. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  257. /* Wait for the clocks to stabilize. */
  258. POSTING_READ(PCH_DPLL(pll->id));
  259. udelay(150);
  260. /* The pixel multiplier can only be updated once the
  261. * DPLL is enabled and the clocks are stable.
  262. *
  263. * So write it again.
  264. */
  265. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  266. POSTING_READ(PCH_DPLL(pll->id));
  267. udelay(200);
  268. }
  269. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  270. struct intel_shared_dpll *pll)
  271. {
  272. struct drm_device *dev = dev_priv->dev;
  273. struct intel_crtc *crtc;
  274. /* Make sure no transcoder isn't still depending on us. */
  275. for_each_intel_crtc(dev, crtc) {
  276. if (crtc->config->shared_dpll == pll)
  277. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  278. }
  279. I915_WRITE(PCH_DPLL(pll->id), 0);
  280. POSTING_READ(PCH_DPLL(pll->id));
  281. udelay(200);
  282. }
  283. static struct intel_shared_dpll *
  284. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  285. struct intel_encoder *encoder)
  286. {
  287. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  288. struct intel_shared_dpll *pll;
  289. enum intel_dpll_id i;
  290. if (HAS_PCH_IBX(dev_priv)) {
  291. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  292. i = (enum intel_dpll_id) crtc->pipe;
  293. pll = &dev_priv->shared_dplls[i];
  294. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  295. crtc->base.base.id, crtc->base.name, pll->name);
  296. } else {
  297. pll = intel_find_shared_dpll(crtc, crtc_state,
  298. DPLL_ID_PCH_PLL_A,
  299. DPLL_ID_PCH_PLL_B);
  300. }
  301. if (!pll)
  302. return NULL;
  303. /* reference the pll */
  304. intel_reference_shared_dpll(pll, crtc_state);
  305. return pll;
  306. }
  307. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  308. .mode_set = ibx_pch_dpll_mode_set,
  309. .enable = ibx_pch_dpll_enable,
  310. .disable = ibx_pch_dpll_disable,
  311. .get_hw_state = ibx_pch_dpll_get_hw_state,
  312. };
  313. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  314. struct intel_shared_dpll *pll)
  315. {
  316. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  317. POSTING_READ(WRPLL_CTL(pll->id));
  318. udelay(20);
  319. }
  320. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  321. struct intel_shared_dpll *pll)
  322. {
  323. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  324. POSTING_READ(SPLL_CTL);
  325. udelay(20);
  326. }
  327. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  328. struct intel_shared_dpll *pll)
  329. {
  330. uint32_t val;
  331. val = I915_READ(WRPLL_CTL(pll->id));
  332. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  333. POSTING_READ(WRPLL_CTL(pll->id));
  334. }
  335. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  336. struct intel_shared_dpll *pll)
  337. {
  338. uint32_t val;
  339. val = I915_READ(SPLL_CTL);
  340. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  341. POSTING_READ(SPLL_CTL);
  342. }
  343. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  344. struct intel_shared_dpll *pll,
  345. struct intel_dpll_hw_state *hw_state)
  346. {
  347. uint32_t val;
  348. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  349. return false;
  350. val = I915_READ(WRPLL_CTL(pll->id));
  351. hw_state->wrpll = val;
  352. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  353. return val & WRPLL_PLL_ENABLE;
  354. }
  355. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  356. struct intel_shared_dpll *pll,
  357. struct intel_dpll_hw_state *hw_state)
  358. {
  359. uint32_t val;
  360. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  361. return false;
  362. val = I915_READ(SPLL_CTL);
  363. hw_state->spll = val;
  364. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  365. return val & SPLL_PLL_ENABLE;
  366. }
  367. static uint32_t hsw_pll_to_ddi_pll_sel(struct intel_shared_dpll *pll)
  368. {
  369. switch (pll->id) {
  370. case DPLL_ID_WRPLL1:
  371. return PORT_CLK_SEL_WRPLL1;
  372. case DPLL_ID_WRPLL2:
  373. return PORT_CLK_SEL_WRPLL2;
  374. case DPLL_ID_SPLL:
  375. return PORT_CLK_SEL_SPLL;
  376. case DPLL_ID_LCPLL_810:
  377. return PORT_CLK_SEL_LCPLL_810;
  378. case DPLL_ID_LCPLL_1350:
  379. return PORT_CLK_SEL_LCPLL_1350;
  380. case DPLL_ID_LCPLL_2700:
  381. return PORT_CLK_SEL_LCPLL_2700;
  382. default:
  383. return PORT_CLK_SEL_NONE;
  384. }
  385. }
  386. #define LC_FREQ 2700
  387. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  388. #define P_MIN 2
  389. #define P_MAX 64
  390. #define P_INC 2
  391. /* Constraints for PLL good behavior */
  392. #define REF_MIN 48
  393. #define REF_MAX 400
  394. #define VCO_MIN 2400
  395. #define VCO_MAX 4800
  396. struct hsw_wrpll_rnp {
  397. unsigned p, n2, r2;
  398. };
  399. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  400. {
  401. unsigned budget;
  402. switch (clock) {
  403. case 25175000:
  404. case 25200000:
  405. case 27000000:
  406. case 27027000:
  407. case 37762500:
  408. case 37800000:
  409. case 40500000:
  410. case 40541000:
  411. case 54000000:
  412. case 54054000:
  413. case 59341000:
  414. case 59400000:
  415. case 72000000:
  416. case 74176000:
  417. case 74250000:
  418. case 81000000:
  419. case 81081000:
  420. case 89012000:
  421. case 89100000:
  422. case 108000000:
  423. case 108108000:
  424. case 111264000:
  425. case 111375000:
  426. case 148352000:
  427. case 148500000:
  428. case 162000000:
  429. case 162162000:
  430. case 222525000:
  431. case 222750000:
  432. case 296703000:
  433. case 297000000:
  434. budget = 0;
  435. break;
  436. case 233500000:
  437. case 245250000:
  438. case 247750000:
  439. case 253250000:
  440. case 298000000:
  441. budget = 1500;
  442. break;
  443. case 169128000:
  444. case 169500000:
  445. case 179500000:
  446. case 202000000:
  447. budget = 2000;
  448. break;
  449. case 256250000:
  450. case 262500000:
  451. case 270000000:
  452. case 272500000:
  453. case 273750000:
  454. case 280750000:
  455. case 281250000:
  456. case 286000000:
  457. case 291750000:
  458. budget = 4000;
  459. break;
  460. case 267250000:
  461. case 268500000:
  462. budget = 5000;
  463. break;
  464. default:
  465. budget = 1000;
  466. break;
  467. }
  468. return budget;
  469. }
  470. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  471. unsigned r2, unsigned n2, unsigned p,
  472. struct hsw_wrpll_rnp *best)
  473. {
  474. uint64_t a, b, c, d, diff, diff_best;
  475. /* No best (r,n,p) yet */
  476. if (best->p == 0) {
  477. best->p = p;
  478. best->n2 = n2;
  479. best->r2 = r2;
  480. return;
  481. }
  482. /*
  483. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  484. * freq2k.
  485. *
  486. * delta = 1e6 *
  487. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  488. * freq2k;
  489. *
  490. * and we would like delta <= budget.
  491. *
  492. * If the discrepancy is above the PPM-based budget, always prefer to
  493. * improve upon the previous solution. However, if you're within the
  494. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  495. */
  496. a = freq2k * budget * p * r2;
  497. b = freq2k * budget * best->p * best->r2;
  498. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  499. diff_best = abs_diff(freq2k * best->p * best->r2,
  500. LC_FREQ_2K * best->n2);
  501. c = 1000000 * diff;
  502. d = 1000000 * diff_best;
  503. if (a < c && b < d) {
  504. /* If both are above the budget, pick the closer */
  505. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  506. best->p = p;
  507. best->n2 = n2;
  508. best->r2 = r2;
  509. }
  510. } else if (a >= c && b < d) {
  511. /* If A is below the threshold but B is above it? Update. */
  512. best->p = p;
  513. best->n2 = n2;
  514. best->r2 = r2;
  515. } else if (a >= c && b >= d) {
  516. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  517. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  518. best->p = p;
  519. best->n2 = n2;
  520. best->r2 = r2;
  521. }
  522. }
  523. /* Otherwise a < c && b >= d, do nothing */
  524. }
  525. static void
  526. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  527. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  528. {
  529. uint64_t freq2k;
  530. unsigned p, n2, r2;
  531. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  532. unsigned budget;
  533. freq2k = clock / 100;
  534. budget = hsw_wrpll_get_budget_for_freq(clock);
  535. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  536. * and directly pass the LC PLL to it. */
  537. if (freq2k == 5400000) {
  538. *n2_out = 2;
  539. *p_out = 1;
  540. *r2_out = 2;
  541. return;
  542. }
  543. /*
  544. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  545. * the WR PLL.
  546. *
  547. * We want R so that REF_MIN <= Ref <= REF_MAX.
  548. * Injecting R2 = 2 * R gives:
  549. * REF_MAX * r2 > LC_FREQ * 2 and
  550. * REF_MIN * r2 < LC_FREQ * 2
  551. *
  552. * Which means the desired boundaries for r2 are:
  553. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  554. *
  555. */
  556. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  557. r2 <= LC_FREQ * 2 / REF_MIN;
  558. r2++) {
  559. /*
  560. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  561. *
  562. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  563. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  564. * VCO_MAX * r2 > n2 * LC_FREQ and
  565. * VCO_MIN * r2 < n2 * LC_FREQ)
  566. *
  567. * Which means the desired boundaries for n2 are:
  568. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  569. */
  570. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  571. n2 <= VCO_MAX * r2 / LC_FREQ;
  572. n2++) {
  573. for (p = P_MIN; p <= P_MAX; p += P_INC)
  574. hsw_wrpll_update_rnp(freq2k, budget,
  575. r2, n2, p, &best);
  576. }
  577. }
  578. *n2_out = best.n2;
  579. *p_out = best.p;
  580. *r2_out = best.r2;
  581. }
  582. static struct intel_shared_dpll *
  583. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  584. struct intel_encoder *encoder)
  585. {
  586. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  587. struct intel_shared_dpll *pll;
  588. int clock = crtc_state->port_clock;
  589. memset(&crtc_state->dpll_hw_state, 0,
  590. sizeof(crtc_state->dpll_hw_state));
  591. if (encoder->type == INTEL_OUTPUT_HDMI) {
  592. uint32_t val;
  593. unsigned p, n2, r2;
  594. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  595. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  596. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  597. WRPLL_DIVIDER_POST(p);
  598. crtc_state->dpll_hw_state.wrpll = val;
  599. pll = intel_find_shared_dpll(crtc, crtc_state,
  600. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  601. } else if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  602. encoder->type == INTEL_OUTPUT_DP_MST ||
  603. encoder->type == INTEL_OUTPUT_EDP) {
  604. enum intel_dpll_id pll_id;
  605. switch (clock / 2) {
  606. case 81000:
  607. pll_id = DPLL_ID_LCPLL_810;
  608. break;
  609. case 135000:
  610. pll_id = DPLL_ID_LCPLL_1350;
  611. break;
  612. case 270000:
  613. pll_id = DPLL_ID_LCPLL_2700;
  614. break;
  615. default:
  616. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  617. return NULL;
  618. }
  619. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  620. } else if (encoder->type == INTEL_OUTPUT_ANALOG) {
  621. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  622. return NULL;
  623. crtc_state->dpll_hw_state.spll =
  624. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  625. pll = intel_find_shared_dpll(crtc, crtc_state,
  626. DPLL_ID_SPLL, DPLL_ID_SPLL);
  627. } else {
  628. return NULL;
  629. }
  630. if (!pll)
  631. return NULL;
  632. crtc_state->ddi_pll_sel = hsw_pll_to_ddi_pll_sel(pll);
  633. intel_reference_shared_dpll(pll, crtc_state);
  634. return pll;
  635. }
  636. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  637. .enable = hsw_ddi_wrpll_enable,
  638. .disable = hsw_ddi_wrpll_disable,
  639. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  640. };
  641. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  642. .enable = hsw_ddi_spll_enable,
  643. .disable = hsw_ddi_spll_disable,
  644. .get_hw_state = hsw_ddi_spll_get_hw_state,
  645. };
  646. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  647. struct intel_shared_dpll *pll)
  648. {
  649. }
  650. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  651. struct intel_shared_dpll *pll)
  652. {
  653. }
  654. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  655. struct intel_shared_dpll *pll,
  656. struct intel_dpll_hw_state *hw_state)
  657. {
  658. return true;
  659. }
  660. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  661. .enable = hsw_ddi_lcpll_enable,
  662. .disable = hsw_ddi_lcpll_disable,
  663. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  664. };
  665. struct skl_dpll_regs {
  666. i915_reg_t ctl, cfgcr1, cfgcr2;
  667. };
  668. /* this array is indexed by the *shared* pll id */
  669. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  670. {
  671. /* DPLL 0 */
  672. .ctl = LCPLL1_CTL,
  673. /* DPLL 0 doesn't support HDMI mode */
  674. },
  675. {
  676. /* DPLL 1 */
  677. .ctl = LCPLL2_CTL,
  678. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  679. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  680. },
  681. {
  682. /* DPLL 2 */
  683. .ctl = WRPLL_CTL(0),
  684. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  685. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  686. },
  687. {
  688. /* DPLL 3 */
  689. .ctl = WRPLL_CTL(1),
  690. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  691. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  692. },
  693. };
  694. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  695. struct intel_shared_dpll *pll)
  696. {
  697. uint32_t val;
  698. val = I915_READ(DPLL_CTRL1);
  699. val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
  700. DPLL_CTRL1_LINK_RATE_MASK(pll->id));
  701. val |= pll->config.hw_state.ctrl1 << (pll->id * 6);
  702. I915_WRITE(DPLL_CTRL1, val);
  703. POSTING_READ(DPLL_CTRL1);
  704. }
  705. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  706. struct intel_shared_dpll *pll)
  707. {
  708. const struct skl_dpll_regs *regs = skl_dpll_regs;
  709. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  710. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  711. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  712. POSTING_READ(regs[pll->id].cfgcr1);
  713. POSTING_READ(regs[pll->id].cfgcr2);
  714. /* the enable bit is always bit 31 */
  715. I915_WRITE(regs[pll->id].ctl,
  716. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  717. if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(pll->id), 5))
  718. DRM_ERROR("DPLL %d not locked\n", pll->id);
  719. }
  720. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  721. struct intel_shared_dpll *pll)
  722. {
  723. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  724. }
  725. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  726. struct intel_shared_dpll *pll)
  727. {
  728. const struct skl_dpll_regs *regs = skl_dpll_regs;
  729. /* the enable bit is always bit 31 */
  730. I915_WRITE(regs[pll->id].ctl,
  731. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  732. POSTING_READ(regs[pll->id].ctl);
  733. }
  734. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  735. struct intel_shared_dpll *pll)
  736. {
  737. }
  738. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  739. struct intel_shared_dpll *pll,
  740. struct intel_dpll_hw_state *hw_state)
  741. {
  742. uint32_t val;
  743. const struct skl_dpll_regs *regs = skl_dpll_regs;
  744. bool ret;
  745. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  746. return false;
  747. ret = false;
  748. val = I915_READ(regs[pll->id].ctl);
  749. if (!(val & LCPLL_PLL_ENABLE))
  750. goto out;
  751. val = I915_READ(DPLL_CTRL1);
  752. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  753. /* avoid reading back stale values if HDMI mode is not enabled */
  754. if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
  755. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  756. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  757. }
  758. ret = true;
  759. out:
  760. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  761. return ret;
  762. }
  763. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  764. struct intel_shared_dpll *pll,
  765. struct intel_dpll_hw_state *hw_state)
  766. {
  767. uint32_t val;
  768. const struct skl_dpll_regs *regs = skl_dpll_regs;
  769. bool ret;
  770. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  771. return false;
  772. ret = false;
  773. /* DPLL0 is always enabled since it drives CDCLK */
  774. val = I915_READ(regs[pll->id].ctl);
  775. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  776. goto out;
  777. val = I915_READ(DPLL_CTRL1);
  778. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  779. ret = true;
  780. out:
  781. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  782. return ret;
  783. }
  784. struct skl_wrpll_context {
  785. uint64_t min_deviation; /* current minimal deviation */
  786. uint64_t central_freq; /* chosen central freq */
  787. uint64_t dco_freq; /* chosen dco freq */
  788. unsigned int p; /* chosen divider */
  789. };
  790. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  791. {
  792. memset(ctx, 0, sizeof(*ctx));
  793. ctx->min_deviation = U64_MAX;
  794. }
  795. /* DCO freq must be within +1%/-6% of the DCO central freq */
  796. #define SKL_DCO_MAX_PDEVIATION 100
  797. #define SKL_DCO_MAX_NDEVIATION 600
  798. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  799. uint64_t central_freq,
  800. uint64_t dco_freq,
  801. unsigned int divider)
  802. {
  803. uint64_t deviation;
  804. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  805. central_freq);
  806. /* positive deviation */
  807. if (dco_freq >= central_freq) {
  808. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  809. deviation < ctx->min_deviation) {
  810. ctx->min_deviation = deviation;
  811. ctx->central_freq = central_freq;
  812. ctx->dco_freq = dco_freq;
  813. ctx->p = divider;
  814. }
  815. /* negative deviation */
  816. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  817. deviation < ctx->min_deviation) {
  818. ctx->min_deviation = deviation;
  819. ctx->central_freq = central_freq;
  820. ctx->dco_freq = dco_freq;
  821. ctx->p = divider;
  822. }
  823. }
  824. static void skl_wrpll_get_multipliers(unsigned int p,
  825. unsigned int *p0 /* out */,
  826. unsigned int *p1 /* out */,
  827. unsigned int *p2 /* out */)
  828. {
  829. /* even dividers */
  830. if (p % 2 == 0) {
  831. unsigned int half = p / 2;
  832. if (half == 1 || half == 2 || half == 3 || half == 5) {
  833. *p0 = 2;
  834. *p1 = 1;
  835. *p2 = half;
  836. } else if (half % 2 == 0) {
  837. *p0 = 2;
  838. *p1 = half / 2;
  839. *p2 = 2;
  840. } else if (half % 3 == 0) {
  841. *p0 = 3;
  842. *p1 = half / 3;
  843. *p2 = 2;
  844. } else if (half % 7 == 0) {
  845. *p0 = 7;
  846. *p1 = half / 7;
  847. *p2 = 2;
  848. }
  849. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  850. *p0 = 3;
  851. *p1 = 1;
  852. *p2 = p / 3;
  853. } else if (p == 5 || p == 7) {
  854. *p0 = p;
  855. *p1 = 1;
  856. *p2 = 1;
  857. } else if (p == 15) {
  858. *p0 = 3;
  859. *p1 = 1;
  860. *p2 = 5;
  861. } else if (p == 21) {
  862. *p0 = 7;
  863. *p1 = 1;
  864. *p2 = 3;
  865. } else if (p == 35) {
  866. *p0 = 7;
  867. *p1 = 1;
  868. *p2 = 5;
  869. }
  870. }
  871. struct skl_wrpll_params {
  872. uint32_t dco_fraction;
  873. uint32_t dco_integer;
  874. uint32_t qdiv_ratio;
  875. uint32_t qdiv_mode;
  876. uint32_t kdiv;
  877. uint32_t pdiv;
  878. uint32_t central_freq;
  879. };
  880. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  881. uint64_t afe_clock,
  882. uint64_t central_freq,
  883. uint32_t p0, uint32_t p1, uint32_t p2)
  884. {
  885. uint64_t dco_freq;
  886. switch (central_freq) {
  887. case 9600000000ULL:
  888. params->central_freq = 0;
  889. break;
  890. case 9000000000ULL:
  891. params->central_freq = 1;
  892. break;
  893. case 8400000000ULL:
  894. params->central_freq = 3;
  895. }
  896. switch (p0) {
  897. case 1:
  898. params->pdiv = 0;
  899. break;
  900. case 2:
  901. params->pdiv = 1;
  902. break;
  903. case 3:
  904. params->pdiv = 2;
  905. break;
  906. case 7:
  907. params->pdiv = 4;
  908. break;
  909. default:
  910. WARN(1, "Incorrect PDiv\n");
  911. }
  912. switch (p2) {
  913. case 5:
  914. params->kdiv = 0;
  915. break;
  916. case 2:
  917. params->kdiv = 1;
  918. break;
  919. case 3:
  920. params->kdiv = 2;
  921. break;
  922. case 1:
  923. params->kdiv = 3;
  924. break;
  925. default:
  926. WARN(1, "Incorrect KDiv\n");
  927. }
  928. params->qdiv_ratio = p1;
  929. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  930. dco_freq = p0 * p1 * p2 * afe_clock;
  931. /*
  932. * Intermediate values are in Hz.
  933. * Divide by MHz to match bsepc
  934. */
  935. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  936. params->dco_fraction =
  937. div_u64((div_u64(dco_freq, 24) -
  938. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  939. }
  940. static bool
  941. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  942. struct skl_wrpll_params *wrpll_params)
  943. {
  944. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  945. uint64_t dco_central_freq[3] = {8400000000ULL,
  946. 9000000000ULL,
  947. 9600000000ULL};
  948. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  949. 24, 28, 30, 32, 36, 40, 42, 44,
  950. 48, 52, 54, 56, 60, 64, 66, 68,
  951. 70, 72, 76, 78, 80, 84, 88, 90,
  952. 92, 96, 98 };
  953. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  954. static const struct {
  955. const int *list;
  956. int n_dividers;
  957. } dividers[] = {
  958. { even_dividers, ARRAY_SIZE(even_dividers) },
  959. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  960. };
  961. struct skl_wrpll_context ctx;
  962. unsigned int dco, d, i;
  963. unsigned int p0, p1, p2;
  964. skl_wrpll_context_init(&ctx);
  965. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  966. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  967. for (i = 0; i < dividers[d].n_dividers; i++) {
  968. unsigned int p = dividers[d].list[i];
  969. uint64_t dco_freq = p * afe_clock;
  970. skl_wrpll_try_divider(&ctx,
  971. dco_central_freq[dco],
  972. dco_freq,
  973. p);
  974. /*
  975. * Skip the remaining dividers if we're sure to
  976. * have found the definitive divider, we can't
  977. * improve a 0 deviation.
  978. */
  979. if (ctx.min_deviation == 0)
  980. goto skip_remaining_dividers;
  981. }
  982. }
  983. skip_remaining_dividers:
  984. /*
  985. * If a solution is found with an even divider, prefer
  986. * this one.
  987. */
  988. if (d == 0 && ctx.p)
  989. break;
  990. }
  991. if (!ctx.p) {
  992. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  993. return false;
  994. }
  995. /*
  996. * gcc incorrectly analyses that these can be used without being
  997. * initialized. To be fair, it's hard to guess.
  998. */
  999. p0 = p1 = p2 = 0;
  1000. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1001. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1002. p0, p1, p2);
  1003. return true;
  1004. }
  1005. static struct intel_shared_dpll *
  1006. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1007. struct intel_encoder *encoder)
  1008. {
  1009. struct intel_shared_dpll *pll;
  1010. uint32_t ctrl1, cfgcr1, cfgcr2;
  1011. int clock = crtc_state->port_clock;
  1012. /*
  1013. * See comment in intel_dpll_hw_state to understand why we always use 0
  1014. * as the DPLL id in this function.
  1015. */
  1016. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1017. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1018. struct skl_wrpll_params wrpll_params = { 0, };
  1019. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1020. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1021. return NULL;
  1022. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1023. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1024. wrpll_params.dco_integer;
  1025. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1026. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1027. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1028. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1029. wrpll_params.central_freq;
  1030. } else if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1031. encoder->type == INTEL_OUTPUT_DP_MST ||
  1032. encoder->type == INTEL_OUTPUT_EDP) {
  1033. switch (crtc_state->port_clock / 2) {
  1034. case 81000:
  1035. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1036. break;
  1037. case 135000:
  1038. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1039. break;
  1040. case 270000:
  1041. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1042. break;
  1043. /* eDP 1.4 rates */
  1044. case 162000:
  1045. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1046. break;
  1047. case 108000:
  1048. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1049. break;
  1050. case 216000:
  1051. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1052. break;
  1053. }
  1054. cfgcr1 = cfgcr2 = 0;
  1055. } else {
  1056. return NULL;
  1057. }
  1058. memset(&crtc_state->dpll_hw_state, 0,
  1059. sizeof(crtc_state->dpll_hw_state));
  1060. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1061. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1062. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1063. if (encoder->type == INTEL_OUTPUT_EDP)
  1064. pll = intel_find_shared_dpll(crtc, crtc_state,
  1065. DPLL_ID_SKL_DPLL0,
  1066. DPLL_ID_SKL_DPLL0);
  1067. else
  1068. pll = intel_find_shared_dpll(crtc, crtc_state,
  1069. DPLL_ID_SKL_DPLL1,
  1070. DPLL_ID_SKL_DPLL3);
  1071. if (!pll)
  1072. return NULL;
  1073. crtc_state->ddi_pll_sel = pll->id;
  1074. intel_reference_shared_dpll(pll, crtc_state);
  1075. return pll;
  1076. }
  1077. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1078. .enable = skl_ddi_pll_enable,
  1079. .disable = skl_ddi_pll_disable,
  1080. .get_hw_state = skl_ddi_pll_get_hw_state,
  1081. };
  1082. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1083. .enable = skl_ddi_dpll0_enable,
  1084. .disable = skl_ddi_dpll0_disable,
  1085. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1086. };
  1087. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1088. struct intel_shared_dpll *pll)
  1089. {
  1090. uint32_t temp;
  1091. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1092. /* Non-SSC reference */
  1093. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1094. temp |= PORT_PLL_REF_SEL;
  1095. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1096. /* Disable 10 bit clock */
  1097. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1098. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1099. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1100. /* Write P1 & P2 */
  1101. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1102. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1103. temp |= pll->config.hw_state.ebb0;
  1104. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  1105. /* Write M2 integer */
  1106. temp = I915_READ(BXT_PORT_PLL(port, 0));
  1107. temp &= ~PORT_PLL_M2_MASK;
  1108. temp |= pll->config.hw_state.pll0;
  1109. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  1110. /* Write N */
  1111. temp = I915_READ(BXT_PORT_PLL(port, 1));
  1112. temp &= ~PORT_PLL_N_MASK;
  1113. temp |= pll->config.hw_state.pll1;
  1114. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  1115. /* Write M2 fraction */
  1116. temp = I915_READ(BXT_PORT_PLL(port, 2));
  1117. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1118. temp |= pll->config.hw_state.pll2;
  1119. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  1120. /* Write M2 fraction enable */
  1121. temp = I915_READ(BXT_PORT_PLL(port, 3));
  1122. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1123. temp |= pll->config.hw_state.pll3;
  1124. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  1125. /* Write coeff */
  1126. temp = I915_READ(BXT_PORT_PLL(port, 6));
  1127. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1128. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1129. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1130. temp |= pll->config.hw_state.pll6;
  1131. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  1132. /* Write calibration val */
  1133. temp = I915_READ(BXT_PORT_PLL(port, 8));
  1134. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1135. temp |= pll->config.hw_state.pll8;
  1136. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  1137. temp = I915_READ(BXT_PORT_PLL(port, 9));
  1138. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1139. temp |= pll->config.hw_state.pll9;
  1140. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  1141. temp = I915_READ(BXT_PORT_PLL(port, 10));
  1142. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1143. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1144. temp |= pll->config.hw_state.pll10;
  1145. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  1146. /* Recalibrate with new settings */
  1147. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1148. temp |= PORT_PLL_RECALIBRATE;
  1149. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1150. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1151. temp |= pll->config.hw_state.ebb4;
  1152. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1153. /* Enable PLL */
  1154. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1155. temp |= PORT_PLL_ENABLE;
  1156. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1157. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1158. if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  1159. PORT_PLL_LOCK), 200))
  1160. DRM_ERROR("PLL %d not locked\n", port);
  1161. /*
  1162. * While we write to the group register to program all lanes at once we
  1163. * can read only lane registers and we pick lanes 0/1 for that.
  1164. */
  1165. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1166. temp &= ~LANE_STAGGER_MASK;
  1167. temp &= ~LANESTAGGER_STRAP_OVRD;
  1168. temp |= pll->config.hw_state.pcsdw12;
  1169. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  1170. }
  1171. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1172. struct intel_shared_dpll *pll)
  1173. {
  1174. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1175. uint32_t temp;
  1176. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1177. temp &= ~PORT_PLL_ENABLE;
  1178. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1179. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1180. }
  1181. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1182. struct intel_shared_dpll *pll,
  1183. struct intel_dpll_hw_state *hw_state)
  1184. {
  1185. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1186. uint32_t val;
  1187. bool ret;
  1188. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1189. return false;
  1190. ret = false;
  1191. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1192. if (!(val & PORT_PLL_ENABLE))
  1193. goto out;
  1194. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1195. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1196. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1197. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1198. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  1199. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1200. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  1201. hw_state->pll1 &= PORT_PLL_N_MASK;
  1202. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  1203. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1204. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  1205. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1206. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  1207. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1208. PORT_PLL_INT_COEFF_MASK |
  1209. PORT_PLL_GAIN_CTL_MASK;
  1210. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  1211. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1212. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  1213. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1214. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  1215. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1216. PORT_PLL_DCO_AMP_MASK;
  1217. /*
  1218. * While we write to the group register to program all lanes at once we
  1219. * can read only lane registers. We configure all lanes the same way, so
  1220. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1221. */
  1222. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1223. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
  1224. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1225. hw_state->pcsdw12,
  1226. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  1227. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1228. ret = true;
  1229. out:
  1230. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1231. return ret;
  1232. }
  1233. /* bxt clock parameters */
  1234. struct bxt_clk_div {
  1235. int clock;
  1236. uint32_t p1;
  1237. uint32_t p2;
  1238. uint32_t m2_int;
  1239. uint32_t m2_frac;
  1240. bool m2_frac_en;
  1241. uint32_t n;
  1242. };
  1243. /* pre-calculated values for DP linkrates */
  1244. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1245. {162000, 4, 2, 32, 1677722, 1, 1},
  1246. {270000, 4, 1, 27, 0, 0, 1},
  1247. {540000, 2, 1, 27, 0, 0, 1},
  1248. {216000, 3, 2, 32, 1677722, 1, 1},
  1249. {243000, 4, 1, 24, 1258291, 1, 1},
  1250. {324000, 4, 1, 32, 1677722, 1, 1},
  1251. {432000, 3, 1, 32, 1677722, 1, 1}
  1252. };
  1253. static struct intel_shared_dpll *
  1254. bxt_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1255. struct intel_encoder *encoder)
  1256. {
  1257. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1258. struct intel_shared_dpll *pll;
  1259. enum intel_dpll_id i;
  1260. struct intel_digital_port *intel_dig_port;
  1261. struct bxt_clk_div clk_div = {0};
  1262. int vco = 0;
  1263. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1264. uint32_t lanestagger;
  1265. int clock = crtc_state->port_clock;
  1266. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1267. struct dpll best_clock;
  1268. /* Calculate HDMI div */
  1269. /*
  1270. * FIXME: tie the following calculation into
  1271. * i9xx_crtc_compute_clock
  1272. */
  1273. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1274. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1275. clock, pipe_name(crtc->pipe));
  1276. return NULL;
  1277. }
  1278. clk_div.p1 = best_clock.p1;
  1279. clk_div.p2 = best_clock.p2;
  1280. WARN_ON(best_clock.m1 != 2);
  1281. clk_div.n = best_clock.n;
  1282. clk_div.m2_int = best_clock.m2 >> 22;
  1283. clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1284. clk_div.m2_frac_en = clk_div.m2_frac != 0;
  1285. vco = best_clock.vco;
  1286. } else if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1287. encoder->type == INTEL_OUTPUT_EDP) {
  1288. int i;
  1289. clk_div = bxt_dp_clk_val[0];
  1290. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1291. if (bxt_dp_clk_val[i].clock == clock) {
  1292. clk_div = bxt_dp_clk_val[i];
  1293. break;
  1294. }
  1295. }
  1296. vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
  1297. }
  1298. if (vco >= 6200000 && vco <= 6700000) {
  1299. prop_coef = 4;
  1300. int_coef = 9;
  1301. gain_ctl = 3;
  1302. targ_cnt = 8;
  1303. } else if ((vco > 5400000 && vco < 6200000) ||
  1304. (vco >= 4800000 && vco < 5400000)) {
  1305. prop_coef = 5;
  1306. int_coef = 11;
  1307. gain_ctl = 3;
  1308. targ_cnt = 9;
  1309. } else if (vco == 5400000) {
  1310. prop_coef = 3;
  1311. int_coef = 8;
  1312. gain_ctl = 1;
  1313. targ_cnt = 9;
  1314. } else {
  1315. DRM_ERROR("Invalid VCO\n");
  1316. return NULL;
  1317. }
  1318. memset(&crtc_state->dpll_hw_state, 0,
  1319. sizeof(crtc_state->dpll_hw_state));
  1320. if (clock > 270000)
  1321. lanestagger = 0x18;
  1322. else if (clock > 135000)
  1323. lanestagger = 0x0d;
  1324. else if (clock > 67000)
  1325. lanestagger = 0x07;
  1326. else if (clock > 33000)
  1327. lanestagger = 0x04;
  1328. else
  1329. lanestagger = 0x02;
  1330. crtc_state->dpll_hw_state.ebb0 =
  1331. PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
  1332. crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
  1333. crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
  1334. crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
  1335. if (clk_div.m2_frac_en)
  1336. crtc_state->dpll_hw_state.pll3 =
  1337. PORT_PLL_M2_FRAC_ENABLE;
  1338. crtc_state->dpll_hw_state.pll6 =
  1339. prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1340. crtc_state->dpll_hw_state.pll6 |=
  1341. PORT_PLL_GAIN_CTL(gain_ctl);
  1342. crtc_state->dpll_hw_state.pll8 = targ_cnt;
  1343. crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1344. crtc_state->dpll_hw_state.pll10 =
  1345. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1346. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1347. crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1348. crtc_state->dpll_hw_state.pcsdw12 =
  1349. LANESTAGGER_STRAP_OVRD | lanestagger;
  1350. intel_dig_port = enc_to_dig_port(&encoder->base);
  1351. /* 1:1 mapping between ports and PLLs */
  1352. i = (enum intel_dpll_id) intel_dig_port->port;
  1353. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1354. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1355. crtc->base.base.id, crtc->base.name, pll->name);
  1356. intel_reference_shared_dpll(pll, crtc_state);
  1357. /* shared DPLL id 0 is DPLL A */
  1358. crtc_state->ddi_pll_sel = pll->id;
  1359. return pll;
  1360. }
  1361. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1362. .enable = bxt_ddi_pll_enable,
  1363. .disable = bxt_ddi_pll_disable,
  1364. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1365. };
  1366. static void intel_ddi_pll_init(struct drm_device *dev)
  1367. {
  1368. struct drm_i915_private *dev_priv = dev->dev_private;
  1369. if (INTEL_GEN(dev_priv) < 9) {
  1370. uint32_t val = I915_READ(LCPLL_CTL);
  1371. /*
  1372. * The LCPLL register should be turned on by the BIOS. For now
  1373. * let's just check its state and print errors in case
  1374. * something is wrong. Don't even try to turn it on.
  1375. */
  1376. if (val & LCPLL_CD_SOURCE_FCLK)
  1377. DRM_ERROR("CDCLK source is not LCPLL\n");
  1378. if (val & LCPLL_PLL_DISABLE)
  1379. DRM_ERROR("LCPLL is disabled\n");
  1380. }
  1381. }
  1382. struct dpll_info {
  1383. const char *name;
  1384. const int id;
  1385. const struct intel_shared_dpll_funcs *funcs;
  1386. uint32_t flags;
  1387. };
  1388. struct intel_dpll_mgr {
  1389. const struct dpll_info *dpll_info;
  1390. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1391. struct intel_crtc_state *crtc_state,
  1392. struct intel_encoder *encoder);
  1393. };
  1394. static const struct dpll_info pch_plls[] = {
  1395. { "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
  1396. { "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
  1397. { NULL, -1, NULL, 0 },
  1398. };
  1399. static const struct intel_dpll_mgr pch_pll_mgr = {
  1400. .dpll_info = pch_plls,
  1401. .get_dpll = ibx_get_dpll,
  1402. };
  1403. static const struct dpll_info hsw_plls[] = {
  1404. { "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 },
  1405. { "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 },
  1406. { "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 },
  1407. { "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1408. { "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1409. { "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1410. { NULL, -1, NULL, },
  1411. };
  1412. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1413. .dpll_info = hsw_plls,
  1414. .get_dpll = hsw_get_dpll,
  1415. };
  1416. static const struct dpll_info skl_plls[] = {
  1417. { "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
  1418. { "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 },
  1419. { "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 },
  1420. { "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 },
  1421. { NULL, -1, NULL, },
  1422. };
  1423. static const struct intel_dpll_mgr skl_pll_mgr = {
  1424. .dpll_info = skl_plls,
  1425. .get_dpll = skl_get_dpll,
  1426. };
  1427. static const struct dpll_info bxt_plls[] = {
  1428. { "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
  1429. { "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
  1430. { "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
  1431. { NULL, -1, NULL, },
  1432. };
  1433. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1434. .dpll_info = bxt_plls,
  1435. .get_dpll = bxt_get_dpll,
  1436. };
  1437. void intel_shared_dpll_init(struct drm_device *dev)
  1438. {
  1439. struct drm_i915_private *dev_priv = dev->dev_private;
  1440. const struct intel_dpll_mgr *dpll_mgr = NULL;
  1441. const struct dpll_info *dpll_info;
  1442. int i;
  1443. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1444. dpll_mgr = &skl_pll_mgr;
  1445. else if (IS_BROXTON(dev))
  1446. dpll_mgr = &bxt_pll_mgr;
  1447. else if (HAS_DDI(dev))
  1448. dpll_mgr = &hsw_pll_mgr;
  1449. else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  1450. dpll_mgr = &pch_pll_mgr;
  1451. if (!dpll_mgr) {
  1452. dev_priv->num_shared_dpll = 0;
  1453. return;
  1454. }
  1455. dpll_info = dpll_mgr->dpll_info;
  1456. for (i = 0; dpll_info[i].id >= 0; i++) {
  1457. WARN_ON(i != dpll_info[i].id);
  1458. dev_priv->shared_dplls[i].id = dpll_info[i].id;
  1459. dev_priv->shared_dplls[i].name = dpll_info[i].name;
  1460. dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
  1461. dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
  1462. }
  1463. dev_priv->dpll_mgr = dpll_mgr;
  1464. dev_priv->num_shared_dpll = i;
  1465. mutex_init(&dev_priv->dpll_lock);
  1466. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  1467. /* FIXME: Move this to a more suitable place */
  1468. if (HAS_DDI(dev))
  1469. intel_ddi_pll_init(dev);
  1470. }
  1471. struct intel_shared_dpll *
  1472. intel_get_shared_dpll(struct intel_crtc *crtc,
  1473. struct intel_crtc_state *crtc_state,
  1474. struct intel_encoder *encoder)
  1475. {
  1476. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1477. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  1478. if (WARN_ON(!dpll_mgr))
  1479. return NULL;
  1480. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  1481. }