sunxi-mmc.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. /*
  2. * Driver for sunxi SD/MMC host controllers
  3. * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
  4. * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
  5. * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
  6. * (C) Copyright 2013-2014 David Lanzend�rfer <david.lanzendoerfer@o2s.ch>
  7. * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
  8. * (C) Copyright 2017 Sootech SA
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/io.h>
  18. #include <linux/device.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/delay.h>
  21. #include <linux/err.h>
  22. #include <linux/clk.h>
  23. #include <linux/gpio.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/slab.h>
  29. #include <linux/reset.h>
  30. #include <linux/regulator/consumer.h>
  31. #include <linux/of_address.h>
  32. #include <linux/of_gpio.h>
  33. #include <linux/of_platform.h>
  34. #include <linux/mmc/host.h>
  35. #include <linux/mmc/sd.h>
  36. #include <linux/mmc/sdio.h>
  37. #include <linux/mmc/mmc.h>
  38. #include <linux/mmc/core.h>
  39. #include <linux/mmc/card.h>
  40. #include <linux/mmc/slot-gpio.h>
  41. /* register offset definitions */
  42. #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
  43. #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
  44. #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
  45. #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
  46. #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
  47. #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
  48. #define SDXC_REG_CMDR (0x18) /* SMC Command Register */
  49. #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
  50. #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
  51. #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
  52. #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
  53. #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
  54. #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
  55. #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
  56. #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
  57. #define SDXC_REG_STAS (0x3C) /* SMC Status Register */
  58. #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
  59. #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
  60. #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
  61. #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
  62. #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
  63. #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
  64. #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
  65. #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
  66. #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
  67. #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
  68. #define SDXC_REG_CHDA (0x90)
  69. #define SDXC_REG_CBDA (0x94)
  70. /* New registers introduced in A64 */
  71. #define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */
  72. #define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */
  73. #define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */
  74. #define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */
  75. #define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */
  76. #define mmc_readl(host, reg) \
  77. readl((host)->reg_base + SDXC_##reg)
  78. #define mmc_writel(host, reg, value) \
  79. writel((value), (host)->reg_base + SDXC_##reg)
  80. /* global control register bits */
  81. #define SDXC_SOFT_RESET BIT(0)
  82. #define SDXC_FIFO_RESET BIT(1)
  83. #define SDXC_DMA_RESET BIT(2)
  84. #define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
  85. #define SDXC_DMA_ENABLE_BIT BIT(5)
  86. #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
  87. #define SDXC_POSEDGE_LATCH_DATA BIT(9)
  88. #define SDXC_DDR_MODE BIT(10)
  89. #define SDXC_MEMORY_ACCESS_DONE BIT(29)
  90. #define SDXC_ACCESS_DONE_DIRECT BIT(30)
  91. #define SDXC_ACCESS_BY_AHB BIT(31)
  92. #define SDXC_ACCESS_BY_DMA (0 << 31)
  93. #define SDXC_HARDWARE_RESET \
  94. (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
  95. /* clock control bits */
  96. #define SDXC_MASK_DATA0 BIT(31)
  97. #define SDXC_CARD_CLOCK_ON BIT(16)
  98. #define SDXC_LOW_POWER_ON BIT(17)
  99. /* bus width */
  100. #define SDXC_WIDTH1 0
  101. #define SDXC_WIDTH4 1
  102. #define SDXC_WIDTH8 2
  103. /* smc command bits */
  104. #define SDXC_RESP_EXPIRE BIT(6)
  105. #define SDXC_LONG_RESPONSE BIT(7)
  106. #define SDXC_CHECK_RESPONSE_CRC BIT(8)
  107. #define SDXC_DATA_EXPIRE BIT(9)
  108. #define SDXC_WRITE BIT(10)
  109. #define SDXC_SEQUENCE_MODE BIT(11)
  110. #define SDXC_SEND_AUTO_STOP BIT(12)
  111. #define SDXC_WAIT_PRE_OVER BIT(13)
  112. #define SDXC_STOP_ABORT_CMD BIT(14)
  113. #define SDXC_SEND_INIT_SEQUENCE BIT(15)
  114. #define SDXC_UPCLK_ONLY BIT(21)
  115. #define SDXC_READ_CEATA_DEV BIT(22)
  116. #define SDXC_CCS_EXPIRE BIT(23)
  117. #define SDXC_ENABLE_BIT_BOOT BIT(24)
  118. #define SDXC_ALT_BOOT_OPTIONS BIT(25)
  119. #define SDXC_BOOT_ACK_EXPIRE BIT(26)
  120. #define SDXC_BOOT_ABORT BIT(27)
  121. #define SDXC_VOLTAGE_SWITCH BIT(28)
  122. #define SDXC_USE_HOLD_REGISTER BIT(29)
  123. #define SDXC_START BIT(31)
  124. /* interrupt bits */
  125. #define SDXC_RESP_ERROR BIT(1)
  126. #define SDXC_COMMAND_DONE BIT(2)
  127. #define SDXC_DATA_OVER BIT(3)
  128. #define SDXC_TX_DATA_REQUEST BIT(4)
  129. #define SDXC_RX_DATA_REQUEST BIT(5)
  130. #define SDXC_RESP_CRC_ERROR BIT(6)
  131. #define SDXC_DATA_CRC_ERROR BIT(7)
  132. #define SDXC_RESP_TIMEOUT BIT(8)
  133. #define SDXC_DATA_TIMEOUT BIT(9)
  134. #define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
  135. #define SDXC_FIFO_RUN_ERROR BIT(11)
  136. #define SDXC_HARD_WARE_LOCKED BIT(12)
  137. #define SDXC_START_BIT_ERROR BIT(13)
  138. #define SDXC_AUTO_COMMAND_DONE BIT(14)
  139. #define SDXC_END_BIT_ERROR BIT(15)
  140. #define SDXC_SDIO_INTERRUPT BIT(16)
  141. #define SDXC_CARD_INSERT BIT(30)
  142. #define SDXC_CARD_REMOVE BIT(31)
  143. #define SDXC_INTERRUPT_ERROR_BIT \
  144. (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
  145. SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
  146. SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
  147. #define SDXC_INTERRUPT_DONE_BIT \
  148. (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
  149. SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
  150. /* status */
  151. #define SDXC_RXWL_FLAG BIT(0)
  152. #define SDXC_TXWL_FLAG BIT(1)
  153. #define SDXC_FIFO_EMPTY BIT(2)
  154. #define SDXC_FIFO_FULL BIT(3)
  155. #define SDXC_CARD_PRESENT BIT(8)
  156. #define SDXC_CARD_DATA_BUSY BIT(9)
  157. #define SDXC_DATA_FSM_BUSY BIT(10)
  158. #define SDXC_DMA_REQUEST BIT(31)
  159. #define SDXC_FIFO_SIZE 16
  160. /* Function select */
  161. #define SDXC_CEATA_ON (0xceaa << 16)
  162. #define SDXC_SEND_IRQ_RESPONSE BIT(0)
  163. #define SDXC_SDIO_READ_WAIT BIT(1)
  164. #define SDXC_ABORT_READ_DATA BIT(2)
  165. #define SDXC_SEND_CCSD BIT(8)
  166. #define SDXC_SEND_AUTO_STOPCCSD BIT(9)
  167. #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
  168. /* IDMA controller bus mod bit field */
  169. #define SDXC_IDMAC_SOFT_RESET BIT(0)
  170. #define SDXC_IDMAC_FIX_BURST BIT(1)
  171. #define SDXC_IDMAC_IDMA_ON BIT(7)
  172. #define SDXC_IDMAC_REFETCH_DES BIT(31)
  173. /* IDMA status bit field */
  174. #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
  175. #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
  176. #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
  177. #define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
  178. #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
  179. #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
  180. #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
  181. #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
  182. #define SDXC_IDMAC_IDLE (0 << 13)
  183. #define SDXC_IDMAC_SUSPEND (1 << 13)
  184. #define SDXC_IDMAC_DESC_READ (2 << 13)
  185. #define SDXC_IDMAC_DESC_CHECK (3 << 13)
  186. #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
  187. #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
  188. #define SDXC_IDMAC_READ (6 << 13)
  189. #define SDXC_IDMAC_WRITE (7 << 13)
  190. #define SDXC_IDMAC_DESC_CLOSE (8 << 13)
  191. /*
  192. * If the idma-des-size-bits of property is ie 13, bufsize bits are:
  193. * Bits 0-12: buf1 size
  194. * Bits 13-25: buf2 size
  195. * Bits 26-31: not used
  196. * Since we only ever set buf1 size, we can simply store it directly.
  197. */
  198. #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
  199. #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
  200. #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
  201. #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
  202. #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
  203. #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
  204. #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
  205. #define SDXC_CLK_400K 0
  206. #define SDXC_CLK_25M 1
  207. #define SDXC_CLK_50M 2
  208. #define SDXC_CLK_50M_DDR 3
  209. #define SDXC_CLK_50M_DDR_8BIT 4
  210. #define SDXC_2X_TIMING_MODE BIT(31)
  211. #define SDXC_CAL_START BIT(15)
  212. #define SDXC_CAL_DONE BIT(14)
  213. #define SDXC_CAL_DL_SHIFT 8
  214. #define SDXC_CAL_DL_SW_EN BIT(7)
  215. #define SDXC_CAL_DL_SW_SHIFT 0
  216. #define SDXC_CAL_DL_MASK 0x3f
  217. #define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/
  218. struct sunxi_mmc_clk_delay {
  219. u32 output;
  220. u32 sample;
  221. };
  222. struct sunxi_idma_des {
  223. __le32 config;
  224. __le32 buf_size;
  225. __le32 buf_addr_ptr1;
  226. __le32 buf_addr_ptr2;
  227. };
  228. struct sunxi_mmc_cfg {
  229. u32 idma_des_size_bits;
  230. const struct sunxi_mmc_clk_delay *clk_delays;
  231. /* does the IP block support autocalibration? */
  232. bool can_calibrate;
  233. /* Does DATA0 needs to be masked while the clock is updated */
  234. bool mask_data0;
  235. bool needs_new_timings;
  236. };
  237. struct sunxi_mmc_host {
  238. struct mmc_host *mmc;
  239. struct reset_control *reset;
  240. const struct sunxi_mmc_cfg *cfg;
  241. /* IO mapping base */
  242. void __iomem *reg_base;
  243. /* clock management */
  244. struct clk *clk_ahb;
  245. struct clk *clk_mmc;
  246. struct clk *clk_sample;
  247. struct clk *clk_output;
  248. /* irq */
  249. spinlock_t lock;
  250. int irq;
  251. u32 int_sum;
  252. u32 sdio_imask;
  253. /* dma */
  254. dma_addr_t sg_dma;
  255. void *sg_cpu;
  256. bool wait_dma;
  257. struct mmc_request *mrq;
  258. struct mmc_request *manual_stop_mrq;
  259. int ferror;
  260. /* vqmmc */
  261. bool vqmmc_enabled;
  262. };
  263. static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
  264. {
  265. unsigned long expire = jiffies + msecs_to_jiffies(250);
  266. u32 rval;
  267. mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
  268. do {
  269. rval = mmc_readl(host, REG_GCTRL);
  270. } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
  271. if (rval & SDXC_HARDWARE_RESET) {
  272. dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
  273. return -EIO;
  274. }
  275. return 0;
  276. }
  277. static int sunxi_mmc_init_host(struct mmc_host *mmc)
  278. {
  279. u32 rval;
  280. struct sunxi_mmc_host *host = mmc_priv(mmc);
  281. if (sunxi_mmc_reset_host(host))
  282. return -EIO;
  283. /*
  284. * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
  285. *
  286. * TODO: sun9i has a larger FIFO and supports higher trigger values
  287. */
  288. mmc_writel(host, REG_FTRGL, 0x20070008);
  289. /* Maximum timeout value */
  290. mmc_writel(host, REG_TMOUT, 0xffffffff);
  291. /* Unmask SDIO interrupt if needed */
  292. mmc_writel(host, REG_IMASK, host->sdio_imask);
  293. /* Clear all pending interrupts */
  294. mmc_writel(host, REG_RINTR, 0xffffffff);
  295. /* Debug register? undocumented */
  296. mmc_writel(host, REG_DBGC, 0xdeb);
  297. /* Enable CEATA support */
  298. mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
  299. /* Set DMA descriptor list base address */
  300. mmc_writel(host, REG_DLBA, host->sg_dma);
  301. rval = mmc_readl(host, REG_GCTRL);
  302. rval |= SDXC_INTERRUPT_ENABLE_BIT;
  303. /* Undocumented, but found in Allwinner code */
  304. rval &= ~SDXC_ACCESS_DONE_DIRECT;
  305. mmc_writel(host, REG_GCTRL, rval);
  306. return 0;
  307. }
  308. static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
  309. struct mmc_data *data)
  310. {
  311. struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
  312. dma_addr_t next_desc = host->sg_dma;
  313. int i, max_len = (1 << host->cfg->idma_des_size_bits);
  314. for (i = 0; i < data->sg_len; i++) {
  315. pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
  316. SDXC_IDMAC_DES0_OWN |
  317. SDXC_IDMAC_DES0_DIC);
  318. if (data->sg[i].length == max_len)
  319. pdes[i].buf_size = 0; /* 0 == max_len */
  320. else
  321. pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
  322. next_desc += sizeof(struct sunxi_idma_des);
  323. pdes[i].buf_addr_ptr1 =
  324. cpu_to_le32(sg_dma_address(&data->sg[i]));
  325. pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
  326. }
  327. pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
  328. pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
  329. SDXC_IDMAC_DES0_ER);
  330. pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
  331. pdes[i - 1].buf_addr_ptr2 = 0;
  332. /*
  333. * Avoid the io-store starting the idmac hitting io-mem before the
  334. * descriptors hit the main-mem.
  335. */
  336. wmb();
  337. }
  338. static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
  339. struct mmc_data *data)
  340. {
  341. u32 i, dma_len;
  342. struct scatterlist *sg;
  343. dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
  344. mmc_get_dma_dir(data));
  345. if (dma_len == 0) {
  346. dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
  347. return -ENOMEM;
  348. }
  349. for_each_sg(data->sg, sg, data->sg_len, i) {
  350. if (sg->offset & 3 || sg->length & 3) {
  351. dev_err(mmc_dev(host->mmc),
  352. "unaligned scatterlist: os %x length %d\n",
  353. sg->offset, sg->length);
  354. return -EINVAL;
  355. }
  356. }
  357. return 0;
  358. }
  359. static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
  360. struct mmc_data *data)
  361. {
  362. u32 rval;
  363. sunxi_mmc_init_idma_des(host, data);
  364. rval = mmc_readl(host, REG_GCTRL);
  365. rval |= SDXC_DMA_ENABLE_BIT;
  366. mmc_writel(host, REG_GCTRL, rval);
  367. rval |= SDXC_DMA_RESET;
  368. mmc_writel(host, REG_GCTRL, rval);
  369. mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
  370. if (!(data->flags & MMC_DATA_WRITE))
  371. mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
  372. mmc_writel(host, REG_DMAC,
  373. SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
  374. }
  375. static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
  376. struct mmc_request *req)
  377. {
  378. u32 arg, cmd_val, ri;
  379. unsigned long expire = jiffies + msecs_to_jiffies(1000);
  380. cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
  381. SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
  382. if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
  383. cmd_val |= SD_IO_RW_DIRECT;
  384. arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
  385. ((req->cmd->arg >> 28) & 0x7);
  386. } else {
  387. cmd_val |= MMC_STOP_TRANSMISSION;
  388. arg = 0;
  389. }
  390. mmc_writel(host, REG_CARG, arg);
  391. mmc_writel(host, REG_CMDR, cmd_val);
  392. do {
  393. ri = mmc_readl(host, REG_RINTR);
  394. } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
  395. time_before(jiffies, expire));
  396. if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
  397. dev_err(mmc_dev(host->mmc), "send stop command failed\n");
  398. if (req->stop)
  399. req->stop->resp[0] = -ETIMEDOUT;
  400. } else {
  401. if (req->stop)
  402. req->stop->resp[0] = mmc_readl(host, REG_RESP0);
  403. }
  404. mmc_writel(host, REG_RINTR, 0xffff);
  405. }
  406. static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
  407. {
  408. struct mmc_command *cmd = host->mrq->cmd;
  409. struct mmc_data *data = host->mrq->data;
  410. /* For some cmds timeout is normal with sd/mmc cards */
  411. if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
  412. SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
  413. cmd->opcode == SD_IO_RW_DIRECT))
  414. return;
  415. dev_dbg(mmc_dev(host->mmc),
  416. "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
  417. host->mmc->index, cmd->opcode,
  418. data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
  419. host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
  420. host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
  421. host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
  422. host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
  423. host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
  424. host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
  425. host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
  426. host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
  427. host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
  428. );
  429. }
  430. /* Called in interrupt context! */
  431. static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
  432. {
  433. struct mmc_request *mrq = host->mrq;
  434. struct mmc_data *data = mrq->data;
  435. u32 rval;
  436. mmc_writel(host, REG_IMASK, host->sdio_imask);
  437. mmc_writel(host, REG_IDIE, 0);
  438. if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
  439. sunxi_mmc_dump_errinfo(host);
  440. mrq->cmd->error = -ETIMEDOUT;
  441. if (data) {
  442. data->error = -ETIMEDOUT;
  443. host->manual_stop_mrq = mrq;
  444. }
  445. if (mrq->stop)
  446. mrq->stop->error = -ETIMEDOUT;
  447. } else {
  448. if (mrq->cmd->flags & MMC_RSP_136) {
  449. mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
  450. mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
  451. mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
  452. mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
  453. } else {
  454. mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
  455. }
  456. if (data)
  457. data->bytes_xfered = data->blocks * data->blksz;
  458. }
  459. if (data) {
  460. mmc_writel(host, REG_IDST, 0x337);
  461. mmc_writel(host, REG_DMAC, 0);
  462. rval = mmc_readl(host, REG_GCTRL);
  463. rval |= SDXC_DMA_RESET;
  464. mmc_writel(host, REG_GCTRL, rval);
  465. rval &= ~SDXC_DMA_ENABLE_BIT;
  466. mmc_writel(host, REG_GCTRL, rval);
  467. rval |= SDXC_FIFO_RESET;
  468. mmc_writel(host, REG_GCTRL, rval);
  469. dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
  470. mmc_get_dma_dir(data));
  471. }
  472. mmc_writel(host, REG_RINTR, 0xffff);
  473. host->mrq = NULL;
  474. host->int_sum = 0;
  475. host->wait_dma = false;
  476. return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
  477. }
  478. static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
  479. {
  480. struct sunxi_mmc_host *host = dev_id;
  481. struct mmc_request *mrq;
  482. u32 msk_int, idma_int;
  483. bool finalize = false;
  484. bool sdio_int = false;
  485. irqreturn_t ret = IRQ_HANDLED;
  486. spin_lock(&host->lock);
  487. idma_int = mmc_readl(host, REG_IDST);
  488. msk_int = mmc_readl(host, REG_MISTA);
  489. dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
  490. host->mrq, msk_int, idma_int);
  491. mrq = host->mrq;
  492. if (mrq) {
  493. if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
  494. host->wait_dma = false;
  495. host->int_sum |= msk_int;
  496. /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
  497. if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
  498. !(host->int_sum & SDXC_COMMAND_DONE))
  499. mmc_writel(host, REG_IMASK,
  500. host->sdio_imask | SDXC_COMMAND_DONE);
  501. /* Don't wait for dma on error */
  502. else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
  503. finalize = true;
  504. else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
  505. !host->wait_dma)
  506. finalize = true;
  507. }
  508. if (msk_int & SDXC_SDIO_INTERRUPT)
  509. sdio_int = true;
  510. mmc_writel(host, REG_RINTR, msk_int);
  511. mmc_writel(host, REG_IDST, idma_int);
  512. if (finalize)
  513. ret = sunxi_mmc_finalize_request(host);
  514. spin_unlock(&host->lock);
  515. if (finalize && ret == IRQ_HANDLED)
  516. mmc_request_done(host->mmc, mrq);
  517. if (sdio_int)
  518. mmc_signal_sdio_irq(host->mmc);
  519. return ret;
  520. }
  521. static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
  522. {
  523. struct sunxi_mmc_host *host = dev_id;
  524. struct mmc_request *mrq;
  525. unsigned long iflags;
  526. spin_lock_irqsave(&host->lock, iflags);
  527. mrq = host->manual_stop_mrq;
  528. spin_unlock_irqrestore(&host->lock, iflags);
  529. if (!mrq) {
  530. dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
  531. return IRQ_HANDLED;
  532. }
  533. dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
  534. /*
  535. * We will never have more than one outstanding request,
  536. * and we do not complete the request until after
  537. * we've cleared host->manual_stop_mrq so we do not need to
  538. * spin lock this function.
  539. * Additionally we have wait states within this function
  540. * so having it in a lock is a very bad idea.
  541. */
  542. sunxi_mmc_send_manual_stop(host, mrq);
  543. spin_lock_irqsave(&host->lock, iflags);
  544. host->manual_stop_mrq = NULL;
  545. spin_unlock_irqrestore(&host->lock, iflags);
  546. mmc_request_done(host->mmc, mrq);
  547. return IRQ_HANDLED;
  548. }
  549. static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
  550. {
  551. unsigned long expire = jiffies + msecs_to_jiffies(750);
  552. u32 rval;
  553. dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
  554. oclk_en ? "en" : "dis");
  555. rval = mmc_readl(host, REG_CLKCR);
  556. rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
  557. if (oclk_en)
  558. rval |= SDXC_CARD_CLOCK_ON;
  559. if (host->cfg->mask_data0)
  560. rval |= SDXC_MASK_DATA0;
  561. mmc_writel(host, REG_CLKCR, rval);
  562. rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
  563. mmc_writel(host, REG_CMDR, rval);
  564. do {
  565. rval = mmc_readl(host, REG_CMDR);
  566. } while (time_before(jiffies, expire) && (rval & SDXC_START));
  567. /* clear irq status bits set by the command */
  568. mmc_writel(host, REG_RINTR,
  569. mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
  570. if (rval & SDXC_START) {
  571. dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
  572. return -EIO;
  573. }
  574. if (host->cfg->mask_data0) {
  575. rval = mmc_readl(host, REG_CLKCR);
  576. mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
  577. }
  578. return 0;
  579. }
  580. static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
  581. {
  582. if (!host->cfg->can_calibrate)
  583. return 0;
  584. /*
  585. * FIXME:
  586. * This is not clear how the calibration is supposed to work
  587. * yet. The best rate have been obtained by simply setting the
  588. * delay to 0, as Allwinner does in its BSP.
  589. *
  590. * The only mode that doesn't have such a delay is HS400, that
  591. * is in itself a TODO.
  592. */
  593. writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
  594. return 0;
  595. }
  596. static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
  597. struct mmc_ios *ios, u32 rate)
  598. {
  599. int index;
  600. if (!host->cfg->clk_delays)
  601. return 0;
  602. /* determine delays */
  603. if (rate <= 400000) {
  604. index = SDXC_CLK_400K;
  605. } else if (rate <= 25000000) {
  606. index = SDXC_CLK_25M;
  607. } else if (rate <= 52000000) {
  608. if (ios->timing != MMC_TIMING_UHS_DDR50 &&
  609. ios->timing != MMC_TIMING_MMC_DDR52) {
  610. index = SDXC_CLK_50M;
  611. } else if (ios->bus_width == MMC_BUS_WIDTH_8) {
  612. index = SDXC_CLK_50M_DDR_8BIT;
  613. } else {
  614. index = SDXC_CLK_50M_DDR;
  615. }
  616. } else {
  617. dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
  618. return -EINVAL;
  619. }
  620. clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
  621. clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
  622. return 0;
  623. }
  624. static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
  625. struct mmc_ios *ios)
  626. {
  627. struct mmc_host *mmc = host->mmc;
  628. long rate;
  629. u32 rval, clock = ios->clock;
  630. int ret;
  631. ret = sunxi_mmc_oclk_onoff(host, 0);
  632. if (ret)
  633. return ret;
  634. /* Our clock is gated now */
  635. mmc->actual_clock = 0;
  636. if (!ios->clock)
  637. return 0;
  638. /* 8 bit DDR requires a higher module clock */
  639. if (ios->timing == MMC_TIMING_MMC_DDR52 &&
  640. ios->bus_width == MMC_BUS_WIDTH_8)
  641. clock <<= 1;
  642. rate = clk_round_rate(host->clk_mmc, clock);
  643. if (rate < 0) {
  644. dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
  645. clock, rate);
  646. return rate;
  647. }
  648. dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
  649. clock, rate);
  650. /* setting clock rate */
  651. ret = clk_set_rate(host->clk_mmc, rate);
  652. if (ret) {
  653. dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
  654. rate, ret);
  655. return ret;
  656. }
  657. /* clear internal divider */
  658. rval = mmc_readl(host, REG_CLKCR);
  659. rval &= ~0xff;
  660. /* set internal divider for 8 bit eMMC DDR, so card clock is right */
  661. if (ios->timing == MMC_TIMING_MMC_DDR52 &&
  662. ios->bus_width == MMC_BUS_WIDTH_8) {
  663. rval |= 1;
  664. rate >>= 1;
  665. }
  666. mmc_writel(host, REG_CLKCR, rval);
  667. if (host->cfg->needs_new_timings)
  668. mmc_writel(host, REG_SD_NTSR, SDXC_2X_TIMING_MODE);
  669. ret = sunxi_mmc_clk_set_phase(host, ios, rate);
  670. if (ret)
  671. return ret;
  672. ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
  673. if (ret)
  674. return ret;
  675. /*
  676. * FIXME:
  677. *
  678. * In HS400 we'll also need to calibrate the data strobe
  679. * signal. This should only happen on the MMC2 controller (at
  680. * least on the A64).
  681. */
  682. ret = sunxi_mmc_oclk_onoff(host, 1);
  683. if (ret)
  684. return ret;
  685. /* And we just enabled our clock back */
  686. mmc->actual_clock = rate;
  687. return 0;
  688. }
  689. static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  690. {
  691. struct sunxi_mmc_host *host = mmc_priv(mmc);
  692. u32 rval;
  693. /* Set the power state */
  694. switch (ios->power_mode) {
  695. case MMC_POWER_ON:
  696. break;
  697. case MMC_POWER_UP:
  698. if (!IS_ERR(mmc->supply.vmmc)) {
  699. host->ferror = mmc_regulator_set_ocr(mmc,
  700. mmc->supply.vmmc,
  701. ios->vdd);
  702. if (host->ferror)
  703. return;
  704. }
  705. if (!IS_ERR(mmc->supply.vqmmc)) {
  706. host->ferror = regulator_enable(mmc->supply.vqmmc);
  707. if (host->ferror) {
  708. dev_err(mmc_dev(mmc),
  709. "failed to enable vqmmc\n");
  710. return;
  711. }
  712. host->vqmmc_enabled = true;
  713. }
  714. host->ferror = sunxi_mmc_init_host(mmc);
  715. if (host->ferror)
  716. return;
  717. dev_dbg(mmc_dev(mmc), "power on!\n");
  718. break;
  719. case MMC_POWER_OFF:
  720. dev_dbg(mmc_dev(mmc), "power off!\n");
  721. sunxi_mmc_reset_host(host);
  722. if (!IS_ERR(mmc->supply.vmmc))
  723. mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
  724. if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
  725. regulator_disable(mmc->supply.vqmmc);
  726. host->vqmmc_enabled = false;
  727. break;
  728. }
  729. /* set bus width */
  730. switch (ios->bus_width) {
  731. case MMC_BUS_WIDTH_1:
  732. mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
  733. break;
  734. case MMC_BUS_WIDTH_4:
  735. mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
  736. break;
  737. case MMC_BUS_WIDTH_8:
  738. mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
  739. break;
  740. }
  741. /* set ddr mode */
  742. rval = mmc_readl(host, REG_GCTRL);
  743. if (ios->timing == MMC_TIMING_UHS_DDR50 ||
  744. ios->timing == MMC_TIMING_MMC_DDR52)
  745. rval |= SDXC_DDR_MODE;
  746. else
  747. rval &= ~SDXC_DDR_MODE;
  748. mmc_writel(host, REG_GCTRL, rval);
  749. /* set up clock */
  750. if (ios->power_mode) {
  751. host->ferror = sunxi_mmc_clk_set_rate(host, ios);
  752. /* Android code had a usleep_range(50000, 55000); here */
  753. }
  754. }
  755. static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
  756. {
  757. /* vqmmc regulator is available */
  758. if (!IS_ERR(mmc->supply.vqmmc))
  759. return mmc_regulator_set_vqmmc(mmc, ios);
  760. /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
  761. if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
  762. return 0;
  763. return -EINVAL;
  764. }
  765. static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
  766. {
  767. struct sunxi_mmc_host *host = mmc_priv(mmc);
  768. unsigned long flags;
  769. u32 imask;
  770. spin_lock_irqsave(&host->lock, flags);
  771. imask = mmc_readl(host, REG_IMASK);
  772. if (enable) {
  773. host->sdio_imask = SDXC_SDIO_INTERRUPT;
  774. imask |= SDXC_SDIO_INTERRUPT;
  775. } else {
  776. host->sdio_imask = 0;
  777. imask &= ~SDXC_SDIO_INTERRUPT;
  778. }
  779. mmc_writel(host, REG_IMASK, imask);
  780. spin_unlock_irqrestore(&host->lock, flags);
  781. }
  782. static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
  783. {
  784. struct sunxi_mmc_host *host = mmc_priv(mmc);
  785. mmc_writel(host, REG_HWRST, 0);
  786. udelay(10);
  787. mmc_writel(host, REG_HWRST, 1);
  788. udelay(300);
  789. }
  790. static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
  791. {
  792. struct sunxi_mmc_host *host = mmc_priv(mmc);
  793. struct mmc_command *cmd = mrq->cmd;
  794. struct mmc_data *data = mrq->data;
  795. unsigned long iflags;
  796. u32 imask = SDXC_INTERRUPT_ERROR_BIT;
  797. u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
  798. bool wait_dma = host->wait_dma;
  799. int ret;
  800. /* Check for set_ios errors (should never happen) */
  801. if (host->ferror) {
  802. mrq->cmd->error = host->ferror;
  803. mmc_request_done(mmc, mrq);
  804. return;
  805. }
  806. if (data) {
  807. ret = sunxi_mmc_map_dma(host, data);
  808. if (ret < 0) {
  809. dev_err(mmc_dev(mmc), "map DMA failed\n");
  810. cmd->error = ret;
  811. data->error = ret;
  812. mmc_request_done(mmc, mrq);
  813. return;
  814. }
  815. }
  816. if (cmd->opcode == MMC_GO_IDLE_STATE) {
  817. cmd_val |= SDXC_SEND_INIT_SEQUENCE;
  818. imask |= SDXC_COMMAND_DONE;
  819. }
  820. if (cmd->flags & MMC_RSP_PRESENT) {
  821. cmd_val |= SDXC_RESP_EXPIRE;
  822. if (cmd->flags & MMC_RSP_136)
  823. cmd_val |= SDXC_LONG_RESPONSE;
  824. if (cmd->flags & MMC_RSP_CRC)
  825. cmd_val |= SDXC_CHECK_RESPONSE_CRC;
  826. if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
  827. cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
  828. if (cmd->data->stop) {
  829. imask |= SDXC_AUTO_COMMAND_DONE;
  830. cmd_val |= SDXC_SEND_AUTO_STOP;
  831. } else {
  832. imask |= SDXC_DATA_OVER;
  833. }
  834. if (cmd->data->flags & MMC_DATA_WRITE)
  835. cmd_val |= SDXC_WRITE;
  836. else
  837. wait_dma = true;
  838. } else {
  839. imask |= SDXC_COMMAND_DONE;
  840. }
  841. } else {
  842. imask |= SDXC_COMMAND_DONE;
  843. }
  844. dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
  845. cmd_val & 0x3f, cmd_val, cmd->arg, imask,
  846. mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
  847. spin_lock_irqsave(&host->lock, iflags);
  848. if (host->mrq || host->manual_stop_mrq) {
  849. spin_unlock_irqrestore(&host->lock, iflags);
  850. if (data)
  851. dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
  852. mmc_get_dma_dir(data));
  853. dev_err(mmc_dev(mmc), "request already pending\n");
  854. mrq->cmd->error = -EBUSY;
  855. mmc_request_done(mmc, mrq);
  856. return;
  857. }
  858. if (data) {
  859. mmc_writel(host, REG_BLKSZ, data->blksz);
  860. mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
  861. sunxi_mmc_start_dma(host, data);
  862. }
  863. host->mrq = mrq;
  864. host->wait_dma = wait_dma;
  865. mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
  866. mmc_writel(host, REG_CARG, cmd->arg);
  867. mmc_writel(host, REG_CMDR, cmd_val);
  868. spin_unlock_irqrestore(&host->lock, iflags);
  869. }
  870. static int sunxi_mmc_card_busy(struct mmc_host *mmc)
  871. {
  872. struct sunxi_mmc_host *host = mmc_priv(mmc);
  873. return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
  874. }
  875. static struct mmc_host_ops sunxi_mmc_ops = {
  876. .request = sunxi_mmc_request,
  877. .set_ios = sunxi_mmc_set_ios,
  878. .get_ro = mmc_gpio_get_ro,
  879. .get_cd = mmc_gpio_get_cd,
  880. .enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
  881. .start_signal_voltage_switch = sunxi_mmc_volt_switch,
  882. .hw_reset = sunxi_mmc_hw_reset,
  883. .card_busy = sunxi_mmc_card_busy,
  884. };
  885. static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
  886. [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
  887. [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
  888. [SDXC_CLK_50M] = { .output = 90, .sample = 120 },
  889. [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
  890. /* Value from A83T "new timing mode". Works but might not be right. */
  891. [SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 },
  892. };
  893. static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
  894. [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
  895. [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
  896. [SDXC_CLK_50M] = { .output = 150, .sample = 120 },
  897. [SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 },
  898. [SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 },
  899. };
  900. static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
  901. .idma_des_size_bits = 13,
  902. .clk_delays = NULL,
  903. .can_calibrate = false,
  904. };
  905. static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
  906. .idma_des_size_bits = 16,
  907. .clk_delays = NULL,
  908. .can_calibrate = false,
  909. };
  910. static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
  911. .idma_des_size_bits = 16,
  912. .clk_delays = sunxi_mmc_clk_delays,
  913. .can_calibrate = false,
  914. };
  915. static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
  916. .idma_des_size_bits = 16,
  917. .clk_delays = sun9i_mmc_clk_delays,
  918. .can_calibrate = false,
  919. };
  920. static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
  921. .idma_des_size_bits = 16,
  922. .clk_delays = NULL,
  923. .can_calibrate = true,
  924. .mask_data0 = true,
  925. .needs_new_timings = true,
  926. };
  927. static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
  928. .idma_des_size_bits = 13,
  929. .clk_delays = NULL,
  930. .can_calibrate = true,
  931. };
  932. static const struct of_device_id sunxi_mmc_of_match[] = {
  933. { .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
  934. { .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
  935. { .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
  936. { .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
  937. { .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
  938. { .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
  939. { /* sentinel */ }
  940. };
  941. MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
  942. static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
  943. struct platform_device *pdev)
  944. {
  945. int ret;
  946. host->cfg = of_device_get_match_data(&pdev->dev);
  947. if (!host->cfg)
  948. return -EINVAL;
  949. ret = mmc_regulator_get_supply(host->mmc);
  950. if (ret) {
  951. if (ret != -EPROBE_DEFER)
  952. dev_err(&pdev->dev, "Could not get vmmc supply\n");
  953. return ret;
  954. }
  955. host->reg_base = devm_ioremap_resource(&pdev->dev,
  956. platform_get_resource(pdev, IORESOURCE_MEM, 0));
  957. if (IS_ERR(host->reg_base))
  958. return PTR_ERR(host->reg_base);
  959. host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
  960. if (IS_ERR(host->clk_ahb)) {
  961. dev_err(&pdev->dev, "Could not get ahb clock\n");
  962. return PTR_ERR(host->clk_ahb);
  963. }
  964. host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
  965. if (IS_ERR(host->clk_mmc)) {
  966. dev_err(&pdev->dev, "Could not get mmc clock\n");
  967. return PTR_ERR(host->clk_mmc);
  968. }
  969. if (host->cfg->clk_delays) {
  970. host->clk_output = devm_clk_get(&pdev->dev, "output");
  971. if (IS_ERR(host->clk_output)) {
  972. dev_err(&pdev->dev, "Could not get output clock\n");
  973. return PTR_ERR(host->clk_output);
  974. }
  975. host->clk_sample = devm_clk_get(&pdev->dev, "sample");
  976. if (IS_ERR(host->clk_sample)) {
  977. dev_err(&pdev->dev, "Could not get sample clock\n");
  978. return PTR_ERR(host->clk_sample);
  979. }
  980. }
  981. host->reset = devm_reset_control_get_optional(&pdev->dev, "ahb");
  982. if (PTR_ERR(host->reset) == -EPROBE_DEFER)
  983. return PTR_ERR(host->reset);
  984. ret = clk_prepare_enable(host->clk_ahb);
  985. if (ret) {
  986. dev_err(&pdev->dev, "Enable ahb clk err %d\n", ret);
  987. return ret;
  988. }
  989. ret = clk_prepare_enable(host->clk_mmc);
  990. if (ret) {
  991. dev_err(&pdev->dev, "Enable mmc clk err %d\n", ret);
  992. goto error_disable_clk_ahb;
  993. }
  994. ret = clk_prepare_enable(host->clk_output);
  995. if (ret) {
  996. dev_err(&pdev->dev, "Enable output clk err %d\n", ret);
  997. goto error_disable_clk_mmc;
  998. }
  999. ret = clk_prepare_enable(host->clk_sample);
  1000. if (ret) {
  1001. dev_err(&pdev->dev, "Enable sample clk err %d\n", ret);
  1002. goto error_disable_clk_output;
  1003. }
  1004. if (!IS_ERR(host->reset)) {
  1005. ret = reset_control_deassert(host->reset);
  1006. if (ret) {
  1007. dev_err(&pdev->dev, "reset err %d\n", ret);
  1008. goto error_disable_clk_sample;
  1009. }
  1010. }
  1011. /*
  1012. * Sometimes the controller asserts the irq on boot for some reason,
  1013. * make sure the controller is in a sane state before enabling irqs.
  1014. */
  1015. ret = sunxi_mmc_reset_host(host);
  1016. if (ret)
  1017. goto error_assert_reset;
  1018. host->irq = platform_get_irq(pdev, 0);
  1019. return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
  1020. sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
  1021. error_assert_reset:
  1022. if (!IS_ERR(host->reset))
  1023. reset_control_assert(host->reset);
  1024. error_disable_clk_sample:
  1025. clk_disable_unprepare(host->clk_sample);
  1026. error_disable_clk_output:
  1027. clk_disable_unprepare(host->clk_output);
  1028. error_disable_clk_mmc:
  1029. clk_disable_unprepare(host->clk_mmc);
  1030. error_disable_clk_ahb:
  1031. clk_disable_unprepare(host->clk_ahb);
  1032. return ret;
  1033. }
  1034. static int sunxi_mmc_probe(struct platform_device *pdev)
  1035. {
  1036. struct sunxi_mmc_host *host;
  1037. struct mmc_host *mmc;
  1038. int ret;
  1039. mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
  1040. if (!mmc) {
  1041. dev_err(&pdev->dev, "mmc alloc host failed\n");
  1042. return -ENOMEM;
  1043. }
  1044. host = mmc_priv(mmc);
  1045. host->mmc = mmc;
  1046. spin_lock_init(&host->lock);
  1047. ret = sunxi_mmc_resource_request(host, pdev);
  1048. if (ret)
  1049. goto error_free_host;
  1050. host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
  1051. &host->sg_dma, GFP_KERNEL);
  1052. if (!host->sg_cpu) {
  1053. dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
  1054. ret = -ENOMEM;
  1055. goto error_free_host;
  1056. }
  1057. mmc->ops = &sunxi_mmc_ops;
  1058. mmc->max_blk_count = 8192;
  1059. mmc->max_blk_size = 4096;
  1060. mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
  1061. mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
  1062. mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
  1063. /* 400kHz ~ 52MHz */
  1064. mmc->f_min = 400000;
  1065. mmc->f_max = 52000000;
  1066. mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
  1067. MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
  1068. if (host->cfg->clk_delays)
  1069. mmc->caps |= MMC_CAP_1_8V_DDR;
  1070. ret = mmc_of_parse(mmc);
  1071. if (ret)
  1072. goto error_free_dma;
  1073. ret = mmc_add_host(mmc);
  1074. if (ret)
  1075. goto error_free_dma;
  1076. dev_info(&pdev->dev, "base:0x%p irq:%u\n", host->reg_base, host->irq);
  1077. platform_set_drvdata(pdev, mmc);
  1078. return 0;
  1079. error_free_dma:
  1080. dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
  1081. error_free_host:
  1082. mmc_free_host(mmc);
  1083. return ret;
  1084. }
  1085. static int sunxi_mmc_remove(struct platform_device *pdev)
  1086. {
  1087. struct mmc_host *mmc = platform_get_drvdata(pdev);
  1088. struct sunxi_mmc_host *host = mmc_priv(mmc);
  1089. mmc_remove_host(mmc);
  1090. disable_irq(host->irq);
  1091. sunxi_mmc_reset_host(host);
  1092. if (!IS_ERR(host->reset))
  1093. reset_control_assert(host->reset);
  1094. clk_disable_unprepare(host->clk_sample);
  1095. clk_disable_unprepare(host->clk_output);
  1096. clk_disable_unprepare(host->clk_mmc);
  1097. clk_disable_unprepare(host->clk_ahb);
  1098. dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
  1099. mmc_free_host(mmc);
  1100. return 0;
  1101. }
  1102. static struct platform_driver sunxi_mmc_driver = {
  1103. .driver = {
  1104. .name = "sunxi-mmc",
  1105. .of_match_table = of_match_ptr(sunxi_mmc_of_match),
  1106. },
  1107. .probe = sunxi_mmc_probe,
  1108. .remove = sunxi_mmc_remove,
  1109. };
  1110. module_platform_driver(sunxi_mmc_driver);
  1111. MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
  1112. MODULE_LICENSE("GPL v2");
  1113. MODULE_AUTHOR("David Lanzend�rfer <david.lanzendoerfer@o2s.ch>");
  1114. MODULE_ALIAS("platform:sunxi-mmc");