|
@@ -359,32 +359,28 @@ static int imx_init_calib(struct platform_device *pdev, u32 ocotp_ana1)
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Sensor data layout:
|
|
|
- * [31:20] - sensor value @ 25C
|
|
|
- * Use universal formula now and only need sensor value @ 25C
|
|
|
- * slope = 0.4297157 - (0.0015976 * 25C fuse)
|
|
|
+ * The sensor is calibrated at 25 °C (aka T1) and the value measured
|
|
|
+ * (aka N1) at this temperature is provided in bits [31:20] in the
|
|
|
+ * i.MX's OCOTP value ANA1.
|
|
|
+ * To find the actual temperature T, the following formula has to be used
|
|
|
+ * when reading value n from the sensor:
|
|
|
+ *
|
|
|
+ * T = T1 + (N - N1) / (0.4297157 - 0.0015976 * N1) °C
|
|
|
+ * = [T1 - N1 / (0.4297157 - 0.0015976 * N1) °C] + N / (0.4297157 - 0.0015976 * N1) °C
|
|
|
+ * = [T1 + N1 / (0.0015976 * N1 - 0.4297157) °C] - N / (0.0015976 * N1 - 0.4297157) °C
|
|
|
+ * = c2 - c1 * N
|
|
|
+ *
|
|
|
+ * with
|
|
|
+ *
|
|
|
+ * c1 = 1 / (0.0015976 * N1 - 0.4297157) °C
|
|
|
+ * c2 = T1 + N1 / (0.0015976 * N1 - 0.4297157) °C
|
|
|
+ * = T1 + N1 * C1
|
|
|
*/
|
|
|
n1 = ocotp_ana1 >> 20;
|
|
|
- t1 = 25; /* t1 always 25C */
|
|
|
+ t1 = 25; /* °C */
|
|
|
|
|
|
- /*
|
|
|
- * Derived from linear interpolation:
|
|
|
- * slope = 0.4297157 - (0.0015976 * 25C fuse)
|
|
|
- * slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0
|
|
|
- * (Nmeas - n1) / (Tmeas - t1) = slope
|
|
|
- * We want to reduce this down to the minimum computation necessary
|
|
|
- * for each temperature read. Also, we want Tmeas in millicelsius
|
|
|
- * and we don't want to lose precision from integer division. So...
|
|
|
- * Tmeas = (Nmeas - n1) / slope + t1
|
|
|
- * milli_Tmeas = 1000 * (Nmeas - n1) / slope + 1000 * t1
|
|
|
- * milli_Tmeas = -1000 * (n1 - Nmeas) / slope + 1000 * t1
|
|
|
- * Let constant c1 = (-1000 / slope)
|
|
|
- * milli_Tmeas = (n1 - Nmeas) * c1 + 1000 * t1
|
|
|
- * Let constant c2 = n1 *c1 + 1000 * t1
|
|
|
- * milli_Tmeas = c2 - Nmeas * c1
|
|
|
- */
|
|
|
- temp64 = FACTOR0;
|
|
|
- temp64 *= 1000;
|
|
|
+ temp64 = FACTOR0; /* 10^7 for FACTOR1 and FACTOR2 */
|
|
|
+ temp64 *= 1000; /* to get result in °mC */
|
|
|
do_div(temp64, FACTOR1 * n1 - FACTOR2);
|
|
|
data->c1 = temp64;
|
|
|
data->c2 = n1 * data->c1 + 1000 * t1;
|