Selaa lähdekoodia

Merge tag 'mtd/for-4.17' of git://git.infradead.org/linux-mtd

Pull MTD updates from Boris Brezillon:
 "MTD Core:
   - Remove support for asynchronous erase (not implemented by any of
     the existing drivers anyway)
   - Remove Cyrille from the list of SPI NOR and MTD maintainers
   - Fix kernel doc headers
   - Allow users to define the partitions parsers they want to test
     through a DT property (compatible of the partitions subnode)
   - Remove the bfin-async-flash driver (the only architecture using it
     has been removed)
   - Fix pagetest test
   - Add extra checks in mtd_erase()
   - Simplify the MTD partition creation logic and get rid of
     mtd_add_device_partitions()

  MTD Drivers:
   - Add endianness information to the physmap DT binding
   - Add Eon EN29LV400A IDs to JEDEC probe logic
   - Use %*ph where appropriate

  SPI NOR Drivers:
   - Make fsl-quaspi assign different names to MTD devices connected to
     the same QSPI controller
   - Remove an unneeded driver.bus assigned in the fsl-qspi driver

  NAND Core:
   - Prepare arrival of the SPI NAND subsystem by implementing a generic
     (interface-agnostic) layer to ease manipulation of NAND devices
   - Move onenand code base to the drivers/mtd/nand/ dir
   - Rework timing mode selection
   - Provide a generic way for NAND chip drivers to flag a specific
     GET/SET FEATURE operation as supported/unsupported
   - Stop embedding ONFI/JEDEC param page in nand_chip

  NAND Drivers:
   - Rework/cleanup of the mxc driver
   - Various cleanups in the vf610 driver
   - Migrate the fsmc and vf610 to ->exec_op()
   - Get rid of the pxa driver (replaced by marvell_nand)
   - Support ->setup_data_interface() in the GPMI driver
   - Fix probe error path in several drivers
   - Remove support for unused hw_syndrome mode in sunxi_nand
   - Various minor improvements"

* tag 'mtd/for-4.17' of git://git.infradead.org/linux-mtd: (89 commits)
  dt-bindings: fsl-quadspi: Add the example of two SPI NOR
  mtd: fsl-quadspi: Distinguish the mtd device names
  mtd: nand: Fix some function description mismatches in core.c
  mtd: fsl-quadspi: Remove unneeded driver.bus assignment
  mtd: rawnand: marvell: Rename ->ecc_clk into ->core_clk
  mtd: rawnand: s3c2410: enhance the probe function error path
  mtd: rawnand: tango: fix probe function error path
  mtd: rawnand: sh_flctl: fix the probe function error path
  mtd: rawnand: omap2: fix the probe function error path
  mtd: rawnand: mxc: fix probe function error path
  mtd: rawnand: denali: fix probe function error path
  mtd: rawnand: davinci: fix probe function error path
  mtd: rawnand: cafe: fix probe function error path
  mtd: rawnand: brcmnand: fix probe function error path
  mtd: rawnand: sunxi: Stop supporting ECC_HW_SYNDROME mode
  mtd: rawnand: marvell: Fix clock resource by adding a register clock
  mtd: ftl: Use DIV_ROUND_UP()
  mtd: Fix some function description mismatches in mtdcore.c
  mtd: physmap_of: update struct map_info's swap as per map requirement
  dt-bindings: mtd-physmap: Add endianness supports
  ...
Linus Torvalds 7 vuotta sitten
vanhempi
commit
3fd14cdcc0
100 muutettua tiedostoa jossa 1681 lisäystä ja 3213 poistoa
  1. 4 3
      .mailmap
  2. 1 1
      Documentation/arm/Samsung-S3C24XX/S3C2412.txt
  3. 24 0
      Documentation/devicetree/bindings/mtd/fsl-quadspi.txt
  4. 4 1
      Documentation/devicetree/bindings/mtd/marvell-nand.txt
  5. 7 0
      Documentation/devicetree/bindings/mtd/mtd-physmap.txt
  6. 2 2
      Documentation/devicetree/bindings/mtd/sunxi-nand.txt
  7. 2 2
      Documentation/driver-api/gpio/drivers-on-gpio.rst
  8. 4 4
      Documentation/driver-api/mtdnand.rst
  9. 17 19
      MAINTAINERS
  10. 0 2
      drivers/mtd/Kconfig
  11. 1 1
      drivers/mtd/Makefile
  12. 2 14
      drivers/mtd/chips/cfi_cmdset_0001.c
  13. 3 23
      drivers/mtd/chips/cfi_cmdset_0002.c
  14. 0 3
      drivers/mtd/chips/cfi_cmdset_0020.c
  15. 32 0
      drivers/mtd/chips/jedec_probe.c
  16. 0 2
      drivers/mtd/chips/map_ram.c
  17. 1 11
      drivers/mtd/devices/bcm47xxsflash.c
  18. 2 7
      drivers/mtd/devices/block2mtd.c
  19. 2 14
      drivers/mtd/devices/docg3.c
  20. 0 6
      drivers/mtd/devices/lart.c
  21. 0 4
      drivers/mtd/devices/mtd_dataflash.c
  22. 1 2
      drivers/mtd/devices/mtdram.c
  23. 0 7
      drivers/mtd/devices/phram.c
  24. 0 2
      drivers/mtd/devices/pmc551.c
  25. 2 10
      drivers/mtd/devices/powernv_flash.c
  26. 1 6
      drivers/mtd/devices/slram.c
  27. 0 3
      drivers/mtd/devices/spear_smi.c
  28. 0 3
      drivers/mtd/devices/sst25l.c
  29. 1 6
      drivers/mtd/devices/st_spi_fsm.c
  30. 10 46
      drivers/mtd/ftl.c
  31. 3 5
      drivers/mtd/inftlmount.c
  32. 2 8
      drivers/mtd/lpddr/lpddr2_nvm.c
  33. 0 2
      drivers/mtd/lpddr/lpddr_cmds.c
  34. 0 10
      drivers/mtd/maps/Kconfig
  35. 0 1
      drivers/mtd/maps/Makefile
  36. 0 196
      drivers/mtd/maps/bfin-async-flash.c
  37. 6 0
      drivers/mtd/maps/physmap_of_core.c
  38. 0 21
      drivers/mtd/mtdblock.c
  39. 1 33
      drivers/mtd/mtdchar.c
  40. 2 46
      drivers/mtd/mtdconcat.c
  41. 38 56
      drivers/mtd/mtdcore.c
  42. 0 20
      drivers/mtd/mtdoops.c
  43. 111 28
      drivers/mtd/mtdpart.c
  44. 0 34
      drivers/mtd/mtdswap.c
  45. 3 566
      drivers/mtd/nand/Kconfig
  46. 4 67
      drivers/mtd/nand/Makefile
  47. 130 0
      drivers/mtd/nand/bbt.c
  48. 0 862
      drivers/mtd/nand/bf5xx_nand.c
  49. 244 0
      drivers/mtd/nand/core.c
  50. 0 0
      drivers/mtd/nand/onenand/Kconfig
  51. 0 0
      drivers/mtd/nand/onenand/Makefile
  52. 0 2
      drivers/mtd/nand/onenand/generic.c
  53. 0 2
      drivers/mtd/nand/onenand/omap2.c
  54. 0 19
      drivers/mtd/nand/onenand/onenand_base.c
  55. 0 2
      drivers/mtd/nand/onenand/onenand_bbt.c
  56. 0 0
      drivers/mtd/nand/onenand/samsung.c
  57. 0 0
      drivers/mtd/nand/onenand/samsung.h
  58. 537 0
      drivers/mtd/nand/raw/Kconfig
  59. 66 0
      drivers/mtd/nand/raw/Makefile
  60. 7 6
      drivers/mtd/nand/raw/ams-delta.c
  61. 0 0
      drivers/mtd/nand/raw/atmel/Makefile
  62. 2 2
      drivers/mtd/nand/raw/atmel/nand-controller.c
  63. 2 2
      drivers/mtd/nand/raw/atmel/pmecc.c
  64. 2 2
      drivers/mtd/nand/raw/atmel/pmecc.h
  65. 0 2
      drivers/mtd/nand/raw/au1550nd.c
  66. 0 0
      drivers/mtd/nand/raw/bcm47xxnflash/Makefile
  67. 0 0
      drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h
  68. 0 0
      drivers/mtd/nand/raw/bcm47xxnflash/main.c
  69. 2 2
      drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
  70. 0 0
      drivers/mtd/nand/raw/brcmnand/Makefile
  71. 0 0
      drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
  72. 0 0
      drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
  73. 5 1
      drivers/mtd/nand/raw/brcmnand/brcmnand.c
  74. 0 0
      drivers/mtd/nand/raw/brcmnand/brcmnand.h
  75. 0 0
      drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
  76. 0 0
      drivers/mtd/nand/raw/brcmnand/iproc_nand.c
  77. 9 5
      drivers/mtd/nand/raw/cafe_nand.c
  78. 1 3
      drivers/mtd/nand/raw/cmx270_nand.c
  79. 5 6
      drivers/mtd/nand/raw/cs553x_nand.c
  80. 4 1
      drivers/mtd/nand/raw/davinci_nand.c
  81. 3 1
      drivers/mtd/nand/raw/denali.c
  82. 0 0
      drivers/mtd/nand/raw/denali.h
  83. 0 0
      drivers/mtd/nand/raw/denali_dt.c
  84. 0 0
      drivers/mtd/nand/raw/denali_pci.c
  85. 40 38
      drivers/mtd/nand/raw/diskonchip.c
  86. 2 2
      drivers/mtd/nand/raw/docg4.c
  87. 4 4
      drivers/mtd/nand/raw/fsl_elbc_nand.c
  88. 3 3
      drivers/mtd/nand/raw/fsl_ifc_nand.c
  89. 0 0
      drivers/mtd/nand/raw/fsl_upm.c
  90. 142 110
      drivers/mtd/nand/raw/fsmc_nand.c
  91. 0 2
      drivers/mtd/nand/raw/gpio.c
  92. 0 0
      drivers/mtd/nand/raw/gpmi-nand/Makefile
  93. 0 0
      drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
  94. 113 680
      drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
  95. 32 50
      drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
  96. 26 105
      drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
  97. 5 0
      drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
  98. 2 2
      drivers/mtd/nand/raw/hisi504_nand.c
  99. 0 0
      drivers/mtd/nand/raw/jz4740_nand.c
  100. 0 0
      drivers/mtd/nand/raw/jz4780_bch.c

+ 4 - 3
.mailmap

@@ -34,9 +34,9 @@ Axel Lin <axel.lin@gmail.com>
 Ben Gardner <bgardner@wabtec.com>
 Ben M Cahill <ben.m.cahill@intel.com>
 Björn Steinbrink <B.Steinbrink@gmx.de>
-Boris Brezillon <boris.brezillon@free-electrons.com>
-Boris Brezillon <boris.brezillon@free-electrons.com> <b.brezillon.dev@gmail.com>
-Boris Brezillon <boris.brezillon@free-electrons.com> <b.brezillon@overkiz.com>
+Boris Brezillon <boris.brezillon@bootlin.com> <boris.brezillon@free-electrons.com>
+Boris Brezillon <boris.brezillon@bootlin.com> <b.brezillon.dev@gmail.com>
+Boris Brezillon <boris.brezillon@bootlin.com> <b.brezillon@overkiz.com>
 Brian Avery <b.avery@hp.com>
 Brian King <brking@us.ibm.com>
 Christoph Hellwig <hch@lst.de>
@@ -128,6 +128,7 @@ Mayuresh Janorkar <mayur@ti.com>
 Michael Buesch <m@bues.ch>
 Michel Dänzer <michel@tungstengraphics.com>
 Miodrag Dinic <miodrag.dinic@mips.com> <miodrag.dinic@imgtec.com>
+Miquel Raynal <miquel.raynal@bootlin.com> <miquel.raynal@free-electrons.com>
 Mitesh shah <mshah@teja.com>
 Mohit Kumar <mohit.kumar@st.com> <mohit.kumar.dhaka@gmail.com>
 Morten Welinder <terra@gnome.org>

+ 1 - 1
Documentation/arm/Samsung-S3C24XX/S3C2412.txt

@@ -46,7 +46,7 @@ NAND
 ----
 
   The NAND hardware is similar to the S3C2440, and is supported by the
-  s3c2410 driver in the drivers/mtd/nand directory.
+  s3c2410 driver in the drivers/mtd/nand/raw directory.
 
 
 USB Host

+ 24 - 0
Documentation/devicetree/bindings/mtd/fsl-quadspi.txt

@@ -39,3 +39,27 @@ qspi0: quadspi@40044000 {
 		....
 	};
 };
+
+Example showing the usage of two SPI NOR devices:
+
+&qspi2 {
+	pinctrl-names = "default";
+	pinctrl-0 = <&pinctrl_qspi2>;
+	status = "okay";
+
+	flash0: n25q256a@0 {
+		#address-cells = <1>;
+		#size-cells = <1>;
+		compatible = "micron,n25q256a", "jedec,spi-nor";
+		spi-max-frequency = <29000000>;
+		reg = <0>;
+	};
+
+	flash1: n25q256a@1 {
+		#address-cells = <1>;
+		#size-cells = <1>;
+		compatible = "micron,n25q256a", "jedec,spi-nor";
+		spi-max-frequency = <29000000>;
+		reg = <1>;
+	};
+};

+ 4 - 1
Documentation/devicetree/bindings/mtd/marvell-nand.txt

@@ -14,7 +14,10 @@ Required properties:
 - #address-cells: shall be set to 1. Encode the NAND CS.
 - #size-cells: shall be set to 0.
 - interrupts: shall define the NAND controller interrupt.
-- clocks: shall reference the NAND controller clock.
+- clocks: shall reference the NAND controller clocks, the second one is
+  is only needed for the Armada 7K/8K SoCs
+- clock-names: mandatory if there is a second clock, in this case there
+  should be one clock named "core" and another one named "reg"
 - marvell,system-controller: Set to retrieve the syscon node that handles
   NAND controller related registers (only required with the
   "marvell,armada-8k-nand[-controller]" compatibles).

+ 7 - 0
Documentation/devicetree/bindings/mtd/mtd-physmap.txt

@@ -41,6 +41,13 @@ additional (optional) property is defined:
 
  - erase-size : The chip's physical erase block size in bytes.
 
+ The device tree may optionally contain endianness property.
+ little-endian or big-endian : It Represents the endianness that should be used
+                               by the controller to  properly read/write data
+			       from/to the flash. If this property is missing,
+			       the endianness is chosen by the system
+			       (potentially based on extra configuration options).
+
 The device tree may optionally contain sub-nodes describing partitions of the
 address space. See partition.txt for more detail.
 

+ 2 - 2
Documentation/devicetree/bindings/mtd/sunxi-nand.txt

@@ -24,8 +24,8 @@ Optional properties:
 - allwinner,rb : shall contain the native Ready/Busy ids.
  or
 - rb-gpios : shall contain the gpios used as R/B pins.
-- nand-ecc-mode : one of the supported ECC modes ("hw", "hw_syndrome", "soft",
-  "soft_bch" or "none")
+- nand-ecc-mode : one of the supported ECC modes ("hw", "soft", "soft_bch" or
+		  "none")
 
 see Documentation/devicetree/bindings/mtd/nand.txt for generic bindings.
 

+ 2 - 2
Documentation/driver-api/gpio/drivers-on-gpio.rst

@@ -75,8 +75,8 @@ hardware descriptions such as device tree or ACPI:
   it from 1-to-0-to-1. If that hardware does not receive its "ping"
   periodically, it will reset the system.
 
-- gpio-nand: drivers/mtd/nand/gpio.c is used to connect a NAND flash chip to
-  a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the
+- gpio-nand: drivers/mtd/nand/raw/gpio.c is used to connect a NAND flash chip
+  to a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the
   NAND flash MTD subsystem and provides chip access and partition parsing like
   any other NAND driving hardware.
 

+ 4 - 4
Documentation/driver-api/mtdnand.rst

@@ -967,10 +967,10 @@ API functions which are exported. Each function has a short description
 which is marked with an [XXX] identifier. See the chapter "Documentation
 hints" for an explanation.
 
-.. kernel-doc:: drivers/mtd/nand/nand_base.c
+.. kernel-doc:: drivers/mtd/nand/raw/nand_base.c
    :export:
 
-.. kernel-doc:: drivers/mtd/nand/nand_ecc.c
+.. kernel-doc:: drivers/mtd/nand/raw/nand_ecc.c
    :export:
 
 Internal Functions Provided
@@ -982,10 +982,10 @@ marked with an [XXX] identifier. See the chapter "Documentation hints"
 for an explanation. The functions marked with [DEFAULT] might be
 relevant for a board driver developer.
 
-.. kernel-doc:: drivers/mtd/nand/nand_base.c
+.. kernel-doc:: drivers/mtd/nand/raw/nand_base.c
    :internal:
 
-.. kernel-doc:: drivers/mtd/nand/nand_bbt.c
+.. kernel-doc:: drivers/mtd/nand/raw/nand_bbt.c
    :internal:
 
 Credits

+ 17 - 19
MAINTAINERS

@@ -1238,7 +1238,7 @@ F:	arch/arm/boot/dts/aspeed-*
 F:	drivers/*/*aspeed*
 
 ARM/ATMEL AT91 Clock Support
-M:	Boris Brezillon <boris.brezillon@free-electrons.com>
+M:	Boris Brezillon <boris.brezillon@bootlin.com>
 S:	Maintained
 F:	drivers/clk/at91
 
@@ -1721,7 +1721,7 @@ F:	drivers/input/keyboard/w90p910_keypad.c
 F:	drivers/input/touchscreen/w90p910_ts.c
 F:	drivers/watchdog/nuc900_wdt.c
 F:	drivers/net/ethernet/nuvoton/w90p910_ether.c
-F:	drivers/mtd/nand/nuc900_nand.c
+F:	drivers/mtd/nand/raw/nuc900_nand.c
 F:	drivers/rtc/rtc-nuc900.c
 F:	drivers/spi/spi-nuc900.c
 F:	drivers/usb/host/ehci-w90x900.c
@@ -2999,7 +2999,7 @@ M:	Kamal Dasu <kdasu.kdev@gmail.com>
 L:	linux-mtd@lists.infradead.org
 L:	bcm-kernel-feedback-list@broadcom.com
 S:	Maintained
-F:	drivers/mtd/nand/brcmnand/
+F:	drivers/mtd/nand/raw/brcmnand/
 
 BROADCOM STB DPFE DRIVER
 M:	Markus Mayer <mmayer@broadcom.com>
@@ -4091,7 +4091,7 @@ DENALI NAND DRIVER
 M:	Masahiro Yamada <yamada.masahiro@socionext.com>
 L:	linux-mtd@lists.infradead.org
 S:	Supported
-F:	drivers/mtd/nand/denali*
+F:	drivers/mtd/nand/raw/denali*
 
 DESIGNWARE USB2 DRD IP DRIVER
 M:	Minas Harutyunyan <hminas@synopsys.com>
@@ -4633,7 +4633,7 @@ F:	Documentation/gpu/meson.rst
 T:	git git://anongit.freedesktop.org/drm/drm-misc
 
 DRM DRIVERS FOR ATMEL HLCDC
-M:	Boris Brezillon <boris.brezillon@free-electrons.com>
+M:	Boris Brezillon <boris.brezillon@bootlin.com>
 L:	dri-devel@lists.freedesktop.org
 S:	Supported
 F:	drivers/gpu/drm/atmel-hlcdc/
@@ -5630,7 +5630,7 @@ FREESCALE GPMI NAND DRIVER
 M:	Han Xu <han.xu@nxp.com>
 L:	linux-mtd@lists.infradead.org
 S:	Maintained
-F:	drivers/mtd/nand/gpmi-nand/*
+F:	drivers/mtd/nand/raw/gpmi-nand/*
 
 FREESCALE I2C CPM DRIVER
 M:	Jochen Friedrich <jochen@scram.de>
@@ -6943,7 +6943,7 @@ INGENIC JZ4780 NAND DRIVER
 M:	Harvey Hunt <harveyhuntnexus@gmail.com>
 L:	linux-mtd@lists.infradead.org
 S:	Maintained
-F:	drivers/mtd/nand/jz4780_*
+F:	drivers/mtd/nand/raw/jz4780_*
 
 INOTIFY
 M:	Jan Kara <jack@suse.cz>
@@ -8431,7 +8431,7 @@ F:	include/uapi/drm/armada_drm.h
 F:	Documentation/devicetree/bindings/display/armada/
 
 MARVELL CRYPTO DRIVER
-M:	Boris Brezillon <boris.brezillon@free-electrons.com>
+M:	Boris Brezillon <boris.brezillon@bootlin.com>
 M:	Arnaud Ebalard <arno@natisbad.org>
 F:	drivers/crypto/marvell/
 S:	Maintained
@@ -8490,10 +8490,10 @@ S:	Odd Fixes
 F:	drivers/net/wireless/marvell/mwl8k.c
 
 MARVELL NAND CONTROLLER DRIVER
-M:	Miquel Raynal <miquel.raynal@free-electrons.com>
+M:	Miquel Raynal <miquel.raynal@bootlin.com>
 L:	linux-mtd@lists.infradead.org
 S:	Maintained
-F:	drivers/mtd/nand/marvell_nand.c
+F:	drivers/mtd/nand/raw/marvell_nand.c
 F:	Documentation/devicetree/bindings/mtd/marvell-nand.txt
 
 MARVELL SOC MMC/SD/SDIO CONTROLLER DRIVER
@@ -9098,10 +9098,9 @@ F:	mm/
 MEMORY TECHNOLOGY DEVICES (MTD)
 M:	David Woodhouse <dwmw2@infradead.org>
 M:	Brian Norris <computersforpeace@gmail.com>
-M:	Boris Brezillon <boris.brezillon@free-electrons.com>
+M:	Boris Brezillon <boris.brezillon@bootlin.com>
 M:	Marek Vasut <marek.vasut@gmail.com>
 M:	Richard Weinberger <richard@nod.at>
-M:	Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
 L:	linux-mtd@lists.infradead.org
 W:	http://www.linux-mtd.infradead.org/
 Q:	http://patchwork.ozlabs.org/project/linux-mtd/list/
@@ -9186,7 +9185,7 @@ M:	Wenyou Yang <wenyou.yang@microchip.com>
 M:	Josh Wu <rainyfeeling@outlook.com>
 L:	linux-mtd@lists.infradead.org
 S:	Supported
-F:	drivers/mtd/nand/atmel/*
+F:	drivers/mtd/nand/raw/atmel/*
 F:	Documentation/devicetree/bindings/mtd/atmel-nand.txt
 
 MICROCHIP KSZ SERIES ETHERNET SWITCH DRIVER
@@ -9518,7 +9517,7 @@ S:	Supported
 F:	drivers/net/ethernet/myricom/myri10ge/
 
 NAND FLASH SUBSYSTEM
-M:	Boris Brezillon <boris.brezillon@free-electrons.com>
+M:	Boris Brezillon <boris.brezillon@bootlin.com>
 R:	Richard Weinberger <richard@nod.at>
 L:	linux-mtd@lists.infradead.org
 W:	http://www.linux-mtd.infradead.org/
@@ -10312,7 +10311,7 @@ ONENAND FLASH DRIVER
 M:	Kyungmin Park <kyungmin.park@samsung.com>
 L:	linux-mtd@lists.infradead.org
 S:	Maintained
-F:	drivers/mtd/onenand/
+F:	drivers/mtd/nand/onenand/
 F:	include/linux/mtd/onenand*.h
 
 ONSTREAM SCSI TAPE DRIVER
@@ -11921,8 +11920,8 @@ F:	drivers/memstick/host/r592.*
 RICOH SMARTMEDIA/XD DRIVER
 M:	Maxim Levitsky <maximlevitsky@gmail.com>
 S:	Maintained
-F:	drivers/mtd/nand/r852.c
-F:	drivers/mtd/nand/r852.h
+F:	drivers/mtd/nand/raw/r852.c
+F:	drivers/mtd/nand/raw/r852.h
 
 RISC-V ARCHITECTURE
 M:	Palmer Dabbelt <palmer@sifive.com>
@@ -13118,7 +13117,6 @@ F:	arch/arm/boot/dts/spear*
 F:	arch/arm/mach-spear/
 
 SPI NOR SUBSYSTEM
-M:	Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
 M:	Marek Vasut <marek.vasut@gmail.com>
 L:	linux-mtd@lists.infradead.org
 W:	http://www.linux-mtd.infradead.org/
@@ -14762,7 +14760,7 @@ VF610 NAND DRIVER
 M:	Stefan Agner <stefan@agner.ch>
 L:	linux-mtd@lists.infradead.org
 S:	Supported
-F:	drivers/mtd/nand/vf610_nfc.c
+F:	drivers/mtd/nand/raw/vf610_nfc.c
 
 VFAT/FAT/MSDOS FILESYSTEM
 M:	OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>

+ 0 - 2
drivers/mtd/Kconfig

@@ -333,8 +333,6 @@ source "drivers/mtd/devices/Kconfig"
 
 source "drivers/mtd/nand/Kconfig"
 
-source "drivers/mtd/onenand/Kconfig"
-
 source "drivers/mtd/lpddr/Kconfig"
 
 source "drivers/mtd/spi-nor/Kconfig"

+ 1 - 1
drivers/mtd/Makefile

@@ -32,7 +32,7 @@ obj-$(CONFIG_MTD_SWAP)		+= mtdswap.o
 nftl-objs		:= nftlcore.o nftlmount.o
 inftl-objs		:= inftlcore.o inftlmount.o
 
-obj-y		+= chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/
+obj-y		+= chips/ lpddr/ maps/ devices/ nand/ tests/
 
 obj-$(CONFIG_MTD_SPI_NOR)	+= spi-nor/
 obj-$(CONFIG_MTD_UBI)		+= ubi/

+ 2 - 14
drivers/mtd/chips/cfi_cmdset_0001.c

@@ -1993,20 +1993,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
 
 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
 {
-	unsigned long ofs, len;
-	int ret;
-
-	ofs = instr->addr;
-	len = instr->len;
-
-	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
-	if (ret)
-		return ret;
-
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
-
-	return 0;
+	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
+				instr->len, NULL);
 }
 
 static void cfi_intelext_sync (struct mtd_info *mtd)

+ 3 - 23
drivers/mtd/chips/cfi_cmdset_0002.c

@@ -2415,20 +2415,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
 
 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
 {
-	unsigned long ofs, len;
-	int ret;
-
-	ofs = instr->addr;
-	len = instr->len;
-
-	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
-	if (ret)
-		return ret;
-
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
-
-	return 0;
+	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
+				instr->len, NULL);
 }
 
 
@@ -2436,7 +2424,6 @@ static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
 {
 	struct map_info *map = mtd->priv;
 	struct cfi_private *cfi = map->fldrv_priv;
-	int ret = 0;
 
 	if (instr->addr != 0)
 		return -EINVAL;
@@ -2444,14 +2431,7 @@ static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
 	if (instr->len != mtd->size)
 		return -EINVAL;
 
-	ret = do_erase_chip(map, &cfi->chips[0]);
-	if (ret)
-		return ret;
-
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
-
-	return 0;
+	return do_erase_chip(map, &cfi->chips[0]);
 }
 
 static int do_atmel_lock(struct map_info *map, struct flchip *chip,

+ 0 - 3
drivers/mtd/chips/cfi_cmdset_0020.c

@@ -965,9 +965,6 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd,
 		}
 	}
 
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
-
 	return 0;
 }
 

+ 32 - 0
drivers/mtd/chips/jedec_probe.c

@@ -53,6 +53,8 @@
 #define AT49BV32XT	0x00C9
 
 /* Eon */
+#define EN29LV400AT	0x22B9
+#define EN29LV400AB	0x22BA
 #define EN29SL800BB	0x226B
 #define EN29SL800BT	0x22EA
 
@@ -641,6 +643,36 @@ static const struct amd_flash_info jedec_table[] = {
 			ERASEINFO(0x10000,63),
 			ERASEINFO(0x02000,8)
 		}
+	}, {
+		.mfr_id		= CFI_MFR_EON,
+		.dev_id		= EN29LV400AT,
+		.name		= "Eon EN29LV400AT",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x10000,7),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x04000,1),
+		}
+	}, {
+		.mfr_id		= CFI_MFR_EON,
+		.dev_id		= EN29LV400AB,
+		.name		= "Eon EN29LV400AB",
+		.devtypes	= CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
+		.uaddr		= MTD_UADDR_0x0AAA_0x0555,
+		.dev_size	= SIZE_512KiB,
+		.cmd_set	= P_ID_AMD_STD,
+		.nr_regions	= 4,
+		.regions	= {
+			ERASEINFO(0x04000,1),
+			ERASEINFO(0x02000,2),
+			ERASEINFO(0x08000,1),
+			ERASEINFO(0x10000,7),
+		}
 	}, {
 		.mfr_id		= CFI_MFR_EON,
 		.dev_id		= EN29SL800BT,

+ 0 - 2
drivers/mtd/chips/map_ram.c

@@ -131,8 +131,6 @@ static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr)
 	allff = map_word_ff(map);
 	for (i=0; i<instr->len; i += map_bankwidth(map))
 		map_write(map, allff, instr->addr + i);
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
 	return 0;
 }
 

+ 1 - 11
drivers/mtd/devices/bcm47xxsflash.c

@@ -68,7 +68,6 @@ static int bcm47xxsflash_poll(struct bcm47xxsflash *b47s, int timeout)
 static int bcm47xxsflash_erase(struct mtd_info *mtd, struct erase_info *erase)
 {
 	struct bcm47xxsflash *b47s = mtd->priv;
-	int err;
 
 	switch (b47s->type) {
 	case BCM47XXSFLASH_TYPE_ST:
@@ -89,16 +88,7 @@ static int bcm47xxsflash_erase(struct mtd_info *mtd, struct erase_info *erase)
 		break;
 	}
 
-	err = bcm47xxsflash_poll(b47s, HZ);
-	if (err)
-		erase->state = MTD_ERASE_FAILED;
-	else
-		erase->state = MTD_ERASE_DONE;
-
-	if (erase->callback)
-		erase->callback(erase);
-
-	return err;
+	return bcm47xxsflash_poll(b47s, HZ);
 }
 
 static int bcm47xxsflash_read(struct mtd_info *mtd, loff_t from, size_t len,

+ 2 - 7
drivers/mtd/devices/block2mtd.c

@@ -88,17 +88,12 @@ static int block2mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
 	size_t len = instr->len;
 	int err;
 
-	instr->state = MTD_ERASING;
 	mutex_lock(&dev->write_mutex);
 	err = _block2mtd_erase(dev, from, len);
 	mutex_unlock(&dev->write_mutex);
-	if (err) {
+	if (err)
 		pr_err("erase failed err = %d\n", err);
-		instr->state = MTD_ERASE_FAILED;
-	} else
-		instr->state = MTD_ERASE_DONE;
 
-	mtd_erase_callback(instr);
 	return err;
 }
 
@@ -225,7 +220,7 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size,
 	int i;
 #endif
 	const fmode_t mode = FMODE_READ | FMODE_WRITE | FMODE_EXCL;
-	struct block_device *bdev = ERR_PTR(-ENODEV);
+	struct block_device *bdev;
 	struct block2mtd_dev *dev;
 	char *name;
 

+ 2 - 14
drivers/mtd/devices/docg3.c

@@ -1191,39 +1191,27 @@ static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
 {
 	struct docg3 *docg3 = mtd->priv;
 	uint64_t len;
-	int block0, block1, page, ret, ofs = 0;
+	int block0, block1, page, ret = 0, ofs = 0;
 
 	doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
 
-	info->state = MTD_ERASE_PENDING;
 	calc_block_sector(info->addr + info->len, &block0, &block1, &page,
 			  &ofs, docg3->reliable);
-	ret = -EINVAL;
 	if (info->addr + info->len > mtd->size || page || ofs)
-		goto reset_err;
+		return -EINVAL;
 
-	ret = 0;
 	calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
 			  docg3->reliable);
 	mutex_lock(&docg3->cascade->lock);
 	doc_set_device_id(docg3, docg3->device_id);
 	doc_set_reliable_mode(docg3);
 	for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
-		info->state = MTD_ERASING;
 		ret = doc_erase_block(docg3, block0, block1);
 		block0 += 2;
 		block1 += 2;
 	}
 	mutex_unlock(&docg3->cascade->lock);
 
-	if (ret)
-		goto reset_err;
-
-	info->state = MTD_ERASE_DONE;
-	return 0;
-
-reset_err:
-	info->state = MTD_ERASE_FAILED;
 	return ret;
 }
 

+ 0 - 6
drivers/mtd/devices/lart.c

@@ -414,10 +414,7 @@ static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
    while (len)
 	 {
 		if (!erase_block (addr))
-		  {
-			 instr->state = MTD_ERASE_FAILED;
 			 return (-EIO);
-		  }
 
 		addr += mtd->eraseregions[i].erasesize;
 		len -= mtd->eraseregions[i].erasesize;
@@ -425,9 +422,6 @@ static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
 		if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
 	 }
 
-   instr->state = MTD_ERASE_DONE;
-   mtd_erase_callback(instr);
-
    return (0);
 }
 

+ 0 - 4
drivers/mtd/devices/mtd_dataflash.c

@@ -220,10 +220,6 @@ static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
 	}
 	mutex_unlock(&priv->lock);
 
-	/* Inform MTD subsystem that erase is complete */
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
-
 	return 0;
 }
 

+ 1 - 2
drivers/mtd/devices/mtdram.c

@@ -60,8 +60,7 @@ static int ram_erase(struct mtd_info *mtd, struct erase_info *instr)
 	if (check_offs_len(mtd, instr->addr, instr->len))
 		return -EINVAL;
 	memset((char *)mtd->priv + instr->addr, 0xff, instr->len);
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
+
 	return 0;
 }
 

+ 0 - 7
drivers/mtd/devices/phram.c

@@ -39,13 +39,6 @@ static int phram_erase(struct mtd_info *mtd, struct erase_info *instr)
 
 	memset(start + instr->addr, 0xff, instr->len);
 
-	/*
-	 * This'll catch a few races. Free the thing before returning :)
-	 * I don't feel at all ashamed. This kind of thing is possible anyway
-	 * with flash, but unlikely.
-	 */
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
 	return 0;
 }
 

+ 0 - 2
drivers/mtd/devices/pmc551.c

@@ -184,12 +184,10 @@ static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr)
 	}
 
       out:
-	instr->state = MTD_ERASE_DONE;
 #ifdef CONFIG_MTD_PMC551_DEBUG
 	printk(KERN_DEBUG "pmc551_erase() done\n");
 #endif
 
-	mtd_erase_callback(instr);
 	return 0;
 }
 

+ 2 - 10
drivers/mtd/devices/powernv_flash.c

@@ -175,19 +175,11 @@ static int powernv_flash_erase(struct mtd_info *mtd, struct erase_info *erase)
 {
 	int rc;
 
-	erase->state = MTD_ERASING;
-
-	/* todo: register our own notifier to do a true async implementation */
 	rc =  powernv_flash_async_op(mtd, FLASH_OP_ERASE, erase->addr,
 			erase->len, NULL, NULL);
-
-	if (rc) {
+	if (rc)
 		erase->fail_addr = erase->addr;
-		erase->state = MTD_ERASE_FAILED;
-	} else {
-		erase->state = MTD_ERASE_DONE;
-	}
-	mtd_erase_callback(erase);
+
 	return rc;
 }
 

+ 1 - 6
drivers/mtd/devices/slram.c

@@ -84,12 +84,7 @@ static int slram_erase(struct mtd_info *mtd, struct erase_info *instr)
 	slram_priv_t *priv = mtd->priv;
 
 	memset(priv->start + instr->addr, 0xff, instr->len);
-	/* This'll catch a few races. Free the thing before returning :)
-	 * I don't feel at all ashamed. This kind of thing is possible anyway
-	 * with flash, but unlikely.
-	 */
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
+
 	return(0);
 }
 

+ 0 - 3
drivers/mtd/devices/spear_smi.c

@@ -518,7 +518,6 @@ static int spear_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info)
 		/* preparing the command for flash */
 		ret = spear_smi_erase_sector(dev, bank, command, 4);
 		if (ret) {
-			e_info->state = MTD_ERASE_FAILED;
 			mutex_unlock(&flash->lock);
 			return ret;
 		}
@@ -527,8 +526,6 @@ static int spear_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info)
 	}
 
 	mutex_unlock(&flash->lock);
-	e_info->state = MTD_ERASE_DONE;
-	mtd_erase_callback(e_info);
 
 	return 0;
 }

+ 0 - 3
drivers/mtd/devices/sst25l.c

@@ -195,7 +195,6 @@ static int sst25l_erase(struct mtd_info *mtd, struct erase_info *instr)
 		err = sst25l_erase_sector(flash, addr);
 		if (err) {
 			mutex_unlock(&flash->lock);
-			instr->state = MTD_ERASE_FAILED;
 			dev_err(&flash->spi->dev, "Erase failed\n");
 			return err;
 		}
@@ -205,8 +204,6 @@ static int sst25l_erase(struct mtd_info *mtd, struct erase_info *instr)
 
 	mutex_unlock(&flash->lock);
 
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
 	return 0;
 }
 

+ 1 - 6
drivers/mtd/devices/st_spi_fsm.c

@@ -1825,13 +1825,9 @@ static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
 
 	mutex_unlock(&fsm->lock);
 
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
-
 	return 0;
 
 out1:
-	instr->state = MTD_ERASE_FAILED;
 	mutex_unlock(&fsm->lock);
 
 	return ret;
@@ -1868,8 +1864,7 @@ static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
 	 */
 	ext_jedec = id[3] << 8  | id[4];
 
-	dev_dbg(fsm->dev, "JEDEC =  0x%08x [%02x %02x %02x %02x %02x]\n",
-		jedec, id[0], id[1], id[2], id[3], id[4]);
+	dev_dbg(fsm->dev, "JEDEC =  0x%08x [%5ph]\n", jedec, id);
 
 	for (info = flash_types; info->name; info++) {
 		if (info->jedec_id == jedec) {

+ 10 - 46
drivers/mtd/ftl.c

@@ -140,12 +140,6 @@ typedef struct partition_t {
 #define XFER_PREPARED	0x03
 #define XFER_FAILED	0x04
 
-/*====================================================================*/
-
-
-static void ftl_erase_callback(struct erase_info *done);
-
-
 /*======================================================================
 
     Scan_header() checks to see if a memory region contains an FTL
@@ -348,18 +342,19 @@ static int erase_xfer(partition_t *part,
     if (!erase)
             return -ENOMEM;
 
-    erase->mtd = part->mbd.mtd;
-    erase->callback = ftl_erase_callback;
     erase->addr = xfer->Offset;
     erase->len = 1 << part->header.EraseUnitSize;
-    erase->priv = (u_long)part;
 
     ret = mtd_erase(part->mbd.mtd, erase);
+    if (!ret) {
+	xfer->state = XFER_ERASED;
+	xfer->EraseCount++;
+    } else {
+	xfer->state = XFER_FAILED;
+	pr_notice("ftl_cs: erase failed: err = %d\n", ret);
+    }
 
-    if (!ret)
-	    xfer->EraseCount++;
-    else
-	    kfree(erase);
+    kfree(erase);
 
     return ret;
 } /* erase_xfer */
@@ -371,37 +366,6 @@ static int erase_xfer(partition_t *part,
 
 ======================================================================*/
 
-static void ftl_erase_callback(struct erase_info *erase)
-{
-    partition_t *part;
-    struct xfer_info_t *xfer;
-    int i;
-
-    /* Look up the transfer unit */
-    part = (partition_t *)(erase->priv);
-
-    for (i = 0; i < part->header.NumTransferUnits; i++)
-	if (part->XferInfo[i].Offset == erase->addr) break;
-
-    if (i == part->header.NumTransferUnits) {
-	printk(KERN_NOTICE "ftl_cs: internal error: "
-	       "erase lookup failed!\n");
-	return;
-    }
-
-    xfer = &part->XferInfo[i];
-    if (erase->state == MTD_ERASE_DONE)
-	xfer->state = XFER_ERASED;
-    else {
-	xfer->state = XFER_FAILED;
-	printk(KERN_NOTICE "ftl_cs: erase failed: state = %d\n",
-	       erase->state);
-    }
-
-    kfree(erase);
-
-} /* ftl_erase_callback */
-
 static int prepare_xfer(partition_t *part, int i)
 {
     erase_unit_header_t header;
@@ -429,8 +393,8 @@ static int prepare_xfer(partition_t *part, int i)
     }
 
     /* Write the BAM stub */
-    nbam = (part->BlocksPerUnit * sizeof(uint32_t) +
-	    le32_to_cpu(part->header.BAMOffset) + SECTOR_SIZE - 1) / SECTOR_SIZE;
+    nbam = DIV_ROUND_UP(part->BlocksPerUnit * sizeof(uint32_t) +
+			le32_to_cpu(part->header.BAMOffset), SECTOR_SIZE);
 
     offset = xfer->Offset + le32_to_cpu(part->header.BAMOffset);
     ctl = cpu_to_le32(BLOCK_CONTROL);

+ 3 - 5
drivers/mtd/inftlmount.c

@@ -208,8 +208,6 @@ static int find_boot_record(struct INFTLrecord *inftl)
 			if (ip->Reserved0 != ip->firstUnit) {
 				struct erase_info *instr = &inftl->instr;
 
-				instr->mtd = inftl->mbd.mtd;
-
 				/*
 				 * 	Most likely this is using the
 				 * 	undocumented qiuck mount feature.
@@ -385,7 +383,6 @@ int INFTL_formatblock(struct INFTLrecord *inftl, int block)
 	   _first_? */
 
 	/* Use async erase interface, test return code */
-	instr->mtd = inftl->mbd.mtd;
 	instr->addr = block * inftl->EraseSize;
 	instr->len = inftl->mbd.mtd->erasesize;
 	/* Erase one physical eraseblock at a time, even though the NAND api
@@ -393,9 +390,10 @@ int INFTL_formatblock(struct INFTLrecord *inftl, int block)
 	   mark only the failed block in the bbt. */
 	for (physblock = 0; physblock < inftl->EraseSize;
 	     physblock += instr->len, instr->addr += instr->len) {
-		mtd_erase(inftl->mbd.mtd, instr);
+		int ret;
 
-		if (instr->state == MTD_ERASE_FAILED) {
+		ret = mtd_erase(inftl->mbd.mtd, instr);
+		if (ret) {
 			printk(KERN_WARNING "INFTL: error while formatting block %d\n",
 				block);
 			goto fail;

+ 2 - 8
drivers/mtd/lpddr/lpddr2_nvm.c

@@ -380,14 +380,8 @@ out:
  */
 static int lpddr2_nvm_erase(struct mtd_info *mtd, struct erase_info *instr)
 {
-	int ret = lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len,
-		LPDDR2_NVM_ERASE);
-	if (!ret) {
-		instr->state = MTD_ERASE_DONE;
-		mtd_erase_callback(instr);
-	}
-
-	return ret;
+	return lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len,
+				      LPDDR2_NVM_ERASE);
 }
 
 /*

+ 0 - 2
drivers/mtd/lpddr/lpddr_cmds.c

@@ -693,8 +693,6 @@ static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
 		ofs += size;
 		len -= size;
 	}
-	instr->state = MTD_ERASE_DONE;
-	mtd_erase_callback(instr);
 
 	return 0;
 }

+ 0 - 10
drivers/mtd/maps/Kconfig

@@ -334,16 +334,6 @@ config MTD_PCMCIA_ANONYMOUS
 
 	  If unsure, say N.
 
-config MTD_BFIN_ASYNC
-	tristate "Blackfin BF533-STAMP Flash Chip Support"
-	depends on BFIN533_STAMP && MTD_CFI && MTD_COMPLEX_MAPPINGS
-	default y
-	help
-	  Map driver which allows for simultaneous utilization of
-	  ethernet and CFI parallel flash.
-
-	  If compiled as a module, it will be called bfin-async-flash.
-
 config MTD_GPIO_ADDR
 	tristate "GPIO-assisted Flash Chip Support"
 	depends on GPIOLIB || COMPILE_TEST

+ 0 - 1
drivers/mtd/maps/Makefile

@@ -42,7 +42,6 @@ obj-$(CONFIG_MTD_SCB2_FLASH)	+= scb2_flash.o
 obj-$(CONFIG_MTD_IXP4XX)	+= ixp4xx.o
 obj-$(CONFIG_MTD_PLATRAM)	+= plat-ram.o
 obj-$(CONFIG_MTD_INTEL_VR_NOR)	+= intel_vr_nor.o
-obj-$(CONFIG_MTD_BFIN_ASYNC)	+= bfin-async-flash.o
 obj-$(CONFIG_MTD_RBTX4939)	+= rbtx4939-flash.o
 obj-$(CONFIG_MTD_VMU)		+= vmu-flash.o
 obj-$(CONFIG_MTD_GPIO_ADDR)	+= gpio-addr-flash.o

+ 0 - 196
drivers/mtd/maps/bfin-async-flash.c

@@ -1,196 +0,0 @@
-/*
- * drivers/mtd/maps/bfin-async-flash.c
- *
- * Handle the case where flash memory and ethernet mac/phy are
- * mapped onto the same async bank.  The BF533-STAMP does this
- * for example.  All board-specific configuration goes in your
- * board resources file.
- *
- * Copyright 2000 Nicolas Pitre <nico@fluxnic.net>
- * Copyright 2005-2008 Analog Devices Inc.
- *
- * Enter bugs at http://blackfin.uclinux.org/
- *
- * Licensed under the GPL-2 or later.
- */
-
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/map.h>
-#include <linux/mtd/partitions.h>
-#include <linux/mtd/physmap.h>
-#include <linux/platform_device.h>
-#include <linux/slab.h>
-#include <linux/types.h>
-
-#include <asm/blackfin.h>
-#include <linux/gpio.h>
-#include <linux/io.h>
-#include <asm/unaligned.h>
-
-#define pr_devinit(fmt, args...) \
-		({ static const char __fmt[] = fmt; printk(__fmt, ## args); })
-
-#define DRIVER_NAME "bfin-async-flash"
-
-struct async_state {
-	struct mtd_info *mtd;
-	struct map_info map;
-	int enet_flash_pin;
-	uint32_t flash_ambctl0, flash_ambctl1;
-	uint32_t save_ambctl0, save_ambctl1;
-	unsigned long irq_flags;
-};
-
-static void switch_to_flash(struct async_state *state)
-{
-	local_irq_save(state->irq_flags);
-
-	gpio_set_value(state->enet_flash_pin, 0);
-
-	state->save_ambctl0 = bfin_read_EBIU_AMBCTL0();
-	state->save_ambctl1 = bfin_read_EBIU_AMBCTL1();
-	bfin_write_EBIU_AMBCTL0(state->flash_ambctl0);
-	bfin_write_EBIU_AMBCTL1(state->flash_ambctl1);
-	SSYNC();
-}
-
-static void switch_back(struct async_state *state)
-{
-	bfin_write_EBIU_AMBCTL0(state->save_ambctl0);
-	bfin_write_EBIU_AMBCTL1(state->save_ambctl1);
-	SSYNC();
-
-	gpio_set_value(state->enet_flash_pin, 1);
-
-	local_irq_restore(state->irq_flags);
-}
-
-static map_word bfin_flash_read(struct map_info *map, unsigned long ofs)
-{
-	struct async_state *state = (struct async_state *)map->map_priv_1;
-	uint16_t word;
-	map_word test;
-
-	switch_to_flash(state);
-
-	word = readw(map->virt + ofs);
-
-	switch_back(state);
-
-	test.x[0] = word;
-	return test;
-}
-
-static void bfin_flash_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len)
-{
-	struct async_state *state = (struct async_state *)map->map_priv_1;
-
-	switch_to_flash(state);
-
-	memcpy(to, map->virt + from, len);
-
-	switch_back(state);
-}
-
-static void bfin_flash_write(struct map_info *map, map_word d1, unsigned long ofs)
-{
-	struct async_state *state = (struct async_state *)map->map_priv_1;
-	uint16_t d;
-
-	d = d1.x[0];
-
-	switch_to_flash(state);
-
-	writew(d, map->virt + ofs);
-	SSYNC();
-
-	switch_back(state);
-}
-
-static void bfin_flash_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len)
-{
-	struct async_state *state = (struct async_state *)map->map_priv_1;
-
-	switch_to_flash(state);
-
-	memcpy(map->virt + to, from, len);
-	SSYNC();
-
-	switch_back(state);
-}
-
-static const char * const part_probe_types[] = {
-	"cmdlinepart", "RedBoot", NULL };
-
-static int bfin_flash_probe(struct platform_device *pdev)
-{
-	struct physmap_flash_data *pdata = dev_get_platdata(&pdev->dev);
-	struct resource *memory = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-	struct resource *flash_ambctl = platform_get_resource(pdev, IORESOURCE_MEM, 1);
-	struct async_state *state;
-
-	state = kzalloc(sizeof(*state), GFP_KERNEL);
-	if (!state)
-		return -ENOMEM;
-
-	state->map.name       = DRIVER_NAME;
-	state->map.read       = bfin_flash_read;
-	state->map.copy_from  = bfin_flash_copy_from;
-	state->map.write      = bfin_flash_write;
-	state->map.copy_to    = bfin_flash_copy_to;
-	state->map.bankwidth  = pdata->width;
-	state->map.size       = resource_size(memory);
-	state->map.virt       = (void __iomem *)memory->start;
-	state->map.phys       = memory->start;
-	state->map.map_priv_1 = (unsigned long)state;
-	state->enet_flash_pin = platform_get_irq(pdev, 0);
-	state->flash_ambctl0  = flash_ambctl->start;
-	state->flash_ambctl1  = flash_ambctl->end;
-
-	if (gpio_request(state->enet_flash_pin, DRIVER_NAME)) {
-		pr_devinit(KERN_ERR DRIVER_NAME ": Failed to request gpio %d\n", state->enet_flash_pin);
-		kfree(state);
-		return -EBUSY;
-	}
-	gpio_direction_output(state->enet_flash_pin, 1);
-
-	pr_devinit(KERN_NOTICE DRIVER_NAME ": probing %d-bit flash bus\n", state->map.bankwidth * 8);
-	state->mtd = do_map_probe(memory->name, &state->map);
-	if (!state->mtd) {
-		gpio_free(state->enet_flash_pin);
-		kfree(state);
-		return -ENXIO;
-	}
-
-	mtd_device_parse_register(state->mtd, part_probe_types, NULL,
-				  pdata->parts, pdata->nr_parts);
-
-	platform_set_drvdata(pdev, state);
-
-	return 0;
-}
-
-static int bfin_flash_remove(struct platform_device *pdev)
-{
-	struct async_state *state = platform_get_drvdata(pdev);
-	gpio_free(state->enet_flash_pin);
-	mtd_device_unregister(state->mtd);
-	map_destroy(state->mtd);
-	kfree(state);
-	return 0;
-}
-
-static struct platform_driver bfin_flash_driver = {
-	.probe		= bfin_flash_probe,
-	.remove		= bfin_flash_remove,
-	.driver		= {
-		.name	= DRIVER_NAME,
-	},
-};
-
-module_platform_driver(bfin_flash_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("MTD map driver for Blackfins with flash/ethernet on same async bank");

+ 6 - 0
drivers/mtd/maps/physmap_of_core.c

@@ -20,6 +20,7 @@
 #include <linux/mtd/map.h>
 #include <linux/mtd/partitions.h>
 #include <linux/mtd/concat.h>
+#include <linux/mtd/cfi_endian.h>
 #include <linux/of.h>
 #include <linux/of_address.h>
 #include <linux/of_platform.h>
@@ -233,6 +234,11 @@ static int of_flash_probe(struct platform_device *dev)
 		info->list[i].map.bankwidth = be32_to_cpup(width);
 		info->list[i].map.device_node = dp;
 
+		if (of_property_read_bool(dp, "big-endian"))
+			info->list[i].map.swap = CFI_BIG_ENDIAN;
+		else if (of_property_read_bool(dp, "little-endian"))
+			info->list[i].map.swap = CFI_LITTLE_ENDIAN;
+
 		err = of_flash_probe_gemini(dev, dp, &info->list[i].map);
 		if (err)
 			goto err_out;

+ 0 - 21
drivers/mtd/mtdblock.c

@@ -55,48 +55,27 @@ struct mtdblk_dev {
  * being written to until a different sector is required.
  */
 
-static void erase_callback(struct erase_info *done)
-{
-	wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
-	wake_up(wait_q);
-}
-
 static int erase_write (struct mtd_info *mtd, unsigned long pos,
 			int len, const char *buf)
 {
 	struct erase_info erase;
-	DECLARE_WAITQUEUE(wait, current);
-	wait_queue_head_t wait_q;
 	size_t retlen;
 	int ret;
 
 	/*
 	 * First, let's erase the flash block.
 	 */
-
-	init_waitqueue_head(&wait_q);
-	erase.mtd = mtd;
-	erase.callback = erase_callback;
 	erase.addr = pos;
 	erase.len = len;
-	erase.priv = (u_long)&wait_q;
-
-	set_current_state(TASK_INTERRUPTIBLE);
-	add_wait_queue(&wait_q, &wait);
 
 	ret = mtd_erase(mtd, &erase);
 	if (ret) {
-		set_current_state(TASK_RUNNING);
-		remove_wait_queue(&wait_q, &wait);
 		printk (KERN_WARNING "mtdblock: erase of region [0x%lx, 0x%x] "
 				     "on \"%s\" failed\n",
 			pos, len, mtd->name);
 		return ret;
 	}
 
-	schedule();  /* Wait for erase to finish. */
-	remove_wait_queue(&wait_q, &wait);
-
 	/*
 	 * Next, write the data to flash.
 	 */

+ 1 - 33
drivers/mtd/mtdchar.c

@@ -324,10 +324,6 @@ static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t c
     IOCTL calls for getting device parameters.
 
 ======================================================================*/
-static void mtdchar_erase_callback (struct erase_info *instr)
-{
-	wake_up((wait_queue_head_t *)instr->priv);
-}
 
 static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
 {
@@ -709,11 +705,6 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
 		if (!erase)
 			ret = -ENOMEM;
 		else {
-			wait_queue_head_t waitq;
-			DECLARE_WAITQUEUE(wait, current);
-
-			init_waitqueue_head(&waitq);
-
 			if (cmd == MEMERASE64) {
 				struct erase_info_user64 einfo64;
 
@@ -735,31 +726,8 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
 				erase->addr = einfo32.start;
 				erase->len = einfo32.length;
 			}
-			erase->mtd = mtd;
-			erase->callback = mtdchar_erase_callback;
-			erase->priv = (unsigned long)&waitq;
-
-			/*
-			  FIXME: Allow INTERRUPTIBLE. Which means
-			  not having the wait_queue head on the stack.
-
-			  If the wq_head is on the stack, and we
-			  leave because we got interrupted, then the
-			  wq_head is no longer there when the
-			  callback routine tries to wake us up.
-			*/
+
 			ret = mtd_erase(mtd, erase);
-			if (!ret) {
-				set_current_state(TASK_UNINTERRUPTIBLE);
-				add_wait_queue(&waitq, &wait);
-				if (erase->state != MTD_ERASE_DONE &&
-				    erase->state != MTD_ERASE_FAILED)
-					schedule();
-				remove_wait_queue(&waitq, &wait);
-				set_current_state(TASK_RUNNING);
-
-				ret = (erase->state == MTD_ERASE_FAILED)?-EIO:0;
-			}
 			kfree(erase);
 		}
 		break;

+ 2 - 46
drivers/mtd/mtdconcat.c

@@ -333,45 +333,6 @@ concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
 	return -EINVAL;
 }
 
-static void concat_erase_callback(struct erase_info *instr)
-{
-	wake_up((wait_queue_head_t *) instr->priv);
-}
-
-static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
-{
-	int err;
-	wait_queue_head_t waitq;
-	DECLARE_WAITQUEUE(wait, current);
-
-	/*
-	 * This code was stol^H^H^H^Hinspired by mtdchar.c
-	 */
-	init_waitqueue_head(&waitq);
-
-	erase->mtd = mtd;
-	erase->callback = concat_erase_callback;
-	erase->priv = (unsigned long) &waitq;
-
-	/*
-	 * FIXME: Allow INTERRUPTIBLE. Which means
-	 * not having the wait_queue head on the stack.
-	 */
-	err = mtd_erase(mtd, erase);
-	if (!err) {
-		set_current_state(TASK_UNINTERRUPTIBLE);
-		add_wait_queue(&waitq, &wait);
-		if (erase->state != MTD_ERASE_DONE
-		    && erase->state != MTD_ERASE_FAILED)
-			schedule();
-		remove_wait_queue(&waitq, &wait);
-		set_current_state(TASK_RUNNING);
-
-		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
-	}
-	return err;
-}
-
 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
 {
 	struct mtd_concat *concat = CONCAT(mtd);
@@ -466,7 +427,7 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
 			erase->len = length;
 
 		length -= erase->len;
-		if ((err = concat_dev_erase(subdev, erase))) {
+		if ((err = mtd_erase(subdev, erase))) {
 			/* sanity check: should never happen since
 			 * block alignment has been checked above */
 			BUG_ON(err == -EINVAL);
@@ -485,14 +446,9 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
 		erase->addr = 0;
 		offset += subdev->size;
 	}
-	instr->state = erase->state;
 	kfree(erase);
-	if (err)
-		return err;
 
-	if (instr->callback)
-		instr->callback(instr);
-	return 0;
+	return err;
 }
 
 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)

+ 38 - 56
drivers/mtd/mtdcore.c

@@ -419,7 +419,7 @@ int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 
 /**
- * mtd_wunit_to_pairing_info - get wunit from pairing information
+ * mtd_pairing_info_to_wunit - get wunit from pairing information
  * @mtd: pointer to new MTD device info structure
  * @info: pairing information struct
  *
@@ -641,29 +641,6 @@ out_error:
 	return ret;
 }
 
-static int mtd_add_device_partitions(struct mtd_info *mtd,
-				     struct mtd_partitions *parts)
-{
-	const struct mtd_partition *real_parts = parts->parts;
-	int nbparts = parts->nr_parts;
-	int ret;
-
-	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
-		ret = add_mtd_device(mtd);
-		if (ret)
-			return ret;
-	}
-
-	if (nbparts > 0) {
-		ret = add_mtd_partitions(mtd, real_parts, nbparts);
-		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
-			del_mtd_device(mtd);
-		return ret;
-	}
-
-	return 0;
-}
-
 /*
  * Set a few defaults based on the parent devices, if not provided by the
  * driver
@@ -696,14 +673,13 @@ static void mtd_set_dev_defaults(struct mtd_info *mtd)
  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
  * basically follows the most common pattern found in many MTD drivers:
  *
- * * It first tries to probe partitions on MTD device @mtd using parsers
+ * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
+ *   registered first.
+ * * Then It tries to probe partitions on MTD device @mtd using parsers
  *   specified in @types (if @types is %NULL, then the default list of parsers
  *   is used, see 'parse_mtd_partitions()' for more information). If none are
  *   found this functions tries to fallback to information specified in
  *   @parts/@nr_parts.
- * * If any partitioning info was found, this function registers the found
- *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
- *   as a whole is registered first.
  * * If no partitions were found this function just registers the MTD device
  *   @mtd and exits.
  *
@@ -714,29 +690,31 @@ int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 			      const struct mtd_partition *parts,
 			      int nr_parts)
 {
-	struct mtd_partitions parsed;
+	struct mtd_partitions parsed = { };
 	int ret;
 
 	mtd_set_dev_defaults(mtd);
 
-	memset(&parsed, 0, sizeof(parsed));
+	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
+		ret = add_mtd_device(mtd);
+		if (ret)
+			return ret;
+	}
 
+	/* Prefer parsed partitions over driver-provided fallback */
 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
-	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
-		/* Fall back to driver-provided partitions */
-		parsed = (struct mtd_partitions){
-			.parts		= parts,
-			.nr_parts	= nr_parts,
-		};
-	} else if (ret < 0) {
-		/* Didn't come up with parsed OR fallback partitions */
-		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
-			ret);
-		/* Don't abort on errors; we can still use unpartitioned MTD */
-		memset(&parsed, 0, sizeof(parsed));
+	if (!ret && parsed.nr_parts) {
+		parts = parsed.parts;
+		nr_parts = parsed.nr_parts;
 	}
 
-	ret = mtd_add_device_partitions(mtd, &parsed);
+	if (nr_parts)
+		ret = add_mtd_partitions(mtd, parts, nr_parts);
+	else if (!device_is_registered(&mtd->dev))
+		ret = add_mtd_device(mtd);
+	else
+		ret = 0;
+
 	if (ret)
 		goto out;
 
@@ -758,6 +736,9 @@ int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 out:
 	/* Cleanup any parsed partitions */
 	mtd_part_parser_cleanup(&parsed);
+	if (ret && device_is_registered(&mtd->dev))
+		del_mtd_device(mtd);
+
 	return ret;
 }
 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
@@ -963,24 +944,25 @@ void __put_mtd_device(struct mtd_info *mtd)
 EXPORT_SYMBOL_GPL(__put_mtd_device);
 
 /*
- * Erase is an asynchronous operation.  Device drivers are supposed
- * to call instr->callback() whenever the operation completes, even
- * if it completes with a failure.
- * Callers are supposed to pass a callback function and wait for it
- * to be called before writing to the block.
+ * Erase is an synchronous operation. Device drivers are epected to return a
+ * negative error code if the operation failed and update instr->fail_addr
+ * to point the portion that was not properly erased.
  */
 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
 {
+	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+
+	if (!mtd->erasesize || !mtd->_erase)
+		return -ENOTSUPP;
+
 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
 		return -EINVAL;
 	if (!(mtd->flags & MTD_WRITEABLE))
 		return -EROFS;
-	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
-	if (!instr->len) {
-		instr->state = MTD_ERASE_DONE;
-		mtd_erase_callback(instr);
+
+	if (!instr->len)
 		return 0;
-	}
+
 	ledtrig_mtd_activity();
 	return mtd->_erase(mtd, instr);
 }
@@ -1525,9 +1507,9 @@ int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
 
 /**
- * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
+ * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
  * @mtd: mtd info structure
- * @eccbuf: source buffer to get data bytes from
+ * @databuf: source buffer to get data bytes from
  * @oobbuf: OOB buffer
  * @start: first ECC byte to set
  * @nbytes: number of ECC bytes to set
@@ -1559,7 +1541,7 @@ int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
 
 /**
- * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
+ * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
  * @mtd: mtd info structure
  *
  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.

+ 0 - 20
drivers/mtd/mtdoops.c

@@ -84,12 +84,6 @@ static int page_is_used(struct mtdoops_context *cxt, int page)
 	return test_bit(page, cxt->oops_page_used);
 }
 
-static void mtdoops_erase_callback(struct erase_info *done)
-{
-	wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
-	wake_up(wait_q);
-}
-
 static int mtdoops_erase_block(struct mtdoops_context *cxt, int offset)
 {
 	struct mtd_info *mtd = cxt->mtd;
@@ -97,34 +91,20 @@ static int mtdoops_erase_block(struct mtdoops_context *cxt, int offset)
 	u32 start_page = start_page_offset / record_size;
 	u32 erase_pages = mtd->erasesize / record_size;
 	struct erase_info erase;
-	DECLARE_WAITQUEUE(wait, current);
-	wait_queue_head_t wait_q;
 	int ret;
 	int page;
 
-	init_waitqueue_head(&wait_q);
-	erase.mtd = mtd;
-	erase.callback = mtdoops_erase_callback;
 	erase.addr = offset;
 	erase.len = mtd->erasesize;
-	erase.priv = (u_long)&wait_q;
-
-	set_current_state(TASK_INTERRUPTIBLE);
-	add_wait_queue(&wait_q, &wait);
 
 	ret = mtd_erase(mtd, &erase);
 	if (ret) {
-		set_current_state(TASK_RUNNING);
-		remove_wait_queue(&wait_q, &wait);
 		printk(KERN_WARNING "mtdoops: erase of region [0x%llx, 0x%llx] on \"%s\" failed\n",
 		       (unsigned long long)erase.addr,
 		       (unsigned long long)erase.len, mtddev);
 		return ret;
 	}
 
-	schedule();  /* Wait for erase to finish. */
-	remove_wait_queue(&wait_q, &wait);
-
 	/* Mark pages as unused */
 	for (page = start_page; page < start_page + erase_pages; page++)
 		mark_page_unused(cxt, page);

+ 111 - 28
drivers/mtd/mtdpart.c

@@ -30,6 +30,7 @@
 #include <linux/mtd/mtd.h>
 #include <linux/mtd/partitions.h>
 #include <linux/err.h>
+#include <linux/of.h>
 
 #include "mtdcore.h"
 
@@ -205,27 +206,12 @@ static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
 
 	instr->addr += part->offset;
 	ret = part->parent->_erase(part->parent, instr);
-	if (ret) {
-		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
-			instr->fail_addr -= part->offset;
-		instr->addr -= part->offset;
-	}
-	return ret;
-}
-
-void mtd_erase_callback(struct erase_info *instr)
-{
-	if (instr->mtd->_erase == part_erase) {
-		struct mtd_part *part = mtd_to_part(instr->mtd);
+	if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
+		instr->fail_addr -= part->offset;
+	instr->addr -= part->offset;
 
-		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
-			instr->fail_addr -= part->offset;
-		instr->addr -= part->offset;
-	}
-	if (instr->callback)
-		instr->callback(instr);
+	return ret;
 }
-EXPORT_SYMBOL_GPL(mtd_erase_callback);
 
 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 {
@@ -860,6 +846,92 @@ static int mtd_part_do_parse(struct mtd_part_parser *parser,
 	return ret;
 }
 
+/**
+ * mtd_part_get_compatible_parser - find MTD parser by a compatible string
+ *
+ * @compat: compatible string describing partitions in a device tree
+ *
+ * MTD parsers can specify supported partitions by providing a table of
+ * compatibility strings. This function finds a parser that advertises support
+ * for a passed value of "compatible".
+ */
+static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
+{
+	struct mtd_part_parser *p, *ret = NULL;
+
+	spin_lock(&part_parser_lock);
+
+	list_for_each_entry(p, &part_parsers, list) {
+		const struct of_device_id *matches;
+
+		matches = p->of_match_table;
+		if (!matches)
+			continue;
+
+		for (; matches->compatible[0]; matches++) {
+			if (!strcmp(matches->compatible, compat) &&
+			    try_module_get(p->owner)) {
+				ret = p;
+				break;
+			}
+		}
+
+		if (ret)
+			break;
+	}
+
+	spin_unlock(&part_parser_lock);
+
+	return ret;
+}
+
+static int mtd_part_of_parse(struct mtd_info *master,
+			     struct mtd_partitions *pparts)
+{
+	struct mtd_part_parser *parser;
+	struct device_node *np;
+	struct property *prop;
+	const char *compat;
+	const char *fixed = "fixed-partitions";
+	int ret, err = 0;
+
+	np = of_get_child_by_name(mtd_get_of_node(master), "partitions");
+	of_property_for_each_string(np, "compatible", prop, compat) {
+		parser = mtd_part_get_compatible_parser(compat);
+		if (!parser)
+			continue;
+		ret = mtd_part_do_parse(parser, master, pparts, NULL);
+		if (ret > 0) {
+			of_node_put(np);
+			return ret;
+		}
+		mtd_part_parser_put(parser);
+		if (ret < 0 && !err)
+			err = ret;
+	}
+	of_node_put(np);
+
+	/*
+	 * For backward compatibility we have to try the "fixed-partitions"
+	 * parser. It supports old DT format with partitions specified as a
+	 * direct subnodes of a flash device DT node without any compatibility
+	 * specified we could match.
+	 */
+	parser = mtd_part_parser_get(fixed);
+	if (!parser && !request_module("%s", fixed))
+		parser = mtd_part_parser_get(fixed);
+	if (parser) {
+		ret = mtd_part_do_parse(parser, master, pparts, NULL);
+		if (ret > 0)
+			return ret;
+		mtd_part_parser_put(parser);
+		if (ret < 0 && !err)
+			err = ret;
+	}
+
+	return err;
+}
+
 /**
  * parse_mtd_partitions - parse MTD partitions
  * @master: the master partition (describes whole MTD device)
@@ -892,19 +964,30 @@ int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
 		types = default_mtd_part_types;
 
 	for ( ; *types; types++) {
-		pr_debug("%s: parsing partitions %s\n", master->name, *types);
-		parser = mtd_part_parser_get(*types);
-		if (!parser && !request_module("%s", *types))
+		/*
+		 * ofpart is a special type that means OF partitioning info
+		 * should be used. It requires a bit different logic so it is
+		 * handled in a separated function.
+		 */
+		if (!strcmp(*types, "ofpart")) {
+			ret = mtd_part_of_parse(master, pparts);
+		} else {
+			pr_debug("%s: parsing partitions %s\n", master->name,
+				 *types);
 			parser = mtd_part_parser_get(*types);
-		pr_debug("%s: got parser %s\n", master->name,
-			 parser ? parser->name : NULL);
-		if (!parser)
-			continue;
-		ret = mtd_part_do_parse(parser, master, pparts, data);
+			if (!parser && !request_module("%s", *types))
+				parser = mtd_part_parser_get(*types);
+			pr_debug("%s: got parser %s\n", master->name,
+				parser ? parser->name : NULL);
+			if (!parser)
+				continue;
+			ret = mtd_part_do_parse(parser, master, pparts, data);
+			if (ret <= 0)
+				mtd_part_parser_put(parser);
+		}
 		/* Found partitions! */
 		if (ret > 0)
 			return 0;
-		mtd_part_parser_put(parser);
 		/*
 		 * Stash the first error we see; only report it if no parser
 		 * succeeds

+ 0 - 34
drivers/mtd/mtdswap.c

@@ -536,18 +536,10 @@ static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb)
 		mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG);
 }
 
-
-static void mtdswap_erase_callback(struct erase_info *done)
-{
-	wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
-	wake_up(wait_q);
-}
-
 static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb)
 {
 	struct mtd_info *mtd = d->mtd;
 	struct erase_info erase;
-	wait_queue_head_t wq;
 	unsigned int retries = 0;
 	int ret;
 
@@ -556,14 +548,9 @@ static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb)
 		d->max_erase_count = eb->erase_count;
 
 retry:
-	init_waitqueue_head(&wq);
 	memset(&erase, 0, sizeof(struct erase_info));
-
-	erase.mtd	= mtd;
-	erase.callback	= mtdswap_erase_callback;
 	erase.addr	= mtdswap_eb_offset(d, eb);
 	erase.len	= mtd->erasesize;
-	erase.priv	= (u_long)&wq;
 
 	ret = mtd_erase(mtd, &erase);
 	if (ret) {
@@ -582,27 +569,6 @@ retry:
 		return -EIO;
 	}
 
-	ret = wait_event_interruptible(wq, erase.state == MTD_ERASE_DONE ||
-					   erase.state == MTD_ERASE_FAILED);
-	if (ret) {
-		dev_err(d->dev, "Interrupted erase block %#llx erasure on %s\n",
-			erase.addr, mtd->name);
-		return -EINTR;
-	}
-
-	if (erase.state == MTD_ERASE_FAILED) {
-		if (retries++ < MTDSWAP_ERASE_RETRIES) {
-			dev_warn(d->dev,
-				"erase of erase block %#llx on %s failed",
-				erase.addr, mtd->name);
-			yield();
-			goto retry;
-		}
-
-		mtdswap_handle_badblock(d, eb);
-		return -EIO;
-	}
-
 	return 0;
 }
 

+ 3 - 566
drivers/mtd/nand/Kconfig

@@ -1,569 +1,6 @@
-config MTD_NAND_ECC
+config MTD_NAND_CORE
 	tristate
 
-config MTD_NAND_ECC_SMC
-	bool "NAND ECC Smart Media byte order"
-	depends on MTD_NAND_ECC
-	default n
-	help
-	  Software ECC according to the Smart Media Specification.
-	  The original Linux implementation had byte 0 and 1 swapped.
+source "drivers/mtd/nand/onenand/Kconfig"
 
-
-menuconfig MTD_NAND
-	tristate "NAND Device Support"
-	depends on MTD
-	select MTD_NAND_ECC
-	help
-	  This enables support for accessing all type of NAND flash
-	  devices. For further information see
-	  <http://www.linux-mtd.infradead.org/doc/nand.html>.
-
-if MTD_NAND
-
-config MTD_NAND_BCH
-	tristate
-	select BCH
-	depends on MTD_NAND_ECC_BCH
-	default MTD_NAND
-
-config MTD_NAND_ECC_BCH
-	bool "Support software BCH ECC"
-	default n
-	help
-	  This enables support for software BCH error correction. Binary BCH
-	  codes are more powerful and cpu intensive than traditional Hamming
-	  ECC codes. They are used with NAND devices requiring more than 1 bit
-	  of error correction.
-
-config MTD_SM_COMMON
-	tristate
-	default n
-
-config MTD_NAND_DENALI
-	tristate
-
-config MTD_NAND_DENALI_PCI
-        tristate "Support Denali NAND controller on Intel Moorestown"
-	select MTD_NAND_DENALI
-	depends on HAS_DMA && PCI
-        help
-          Enable the driver for NAND flash on Intel Moorestown, using the
-          Denali NAND controller core.
-
-config MTD_NAND_DENALI_DT
-	tristate "Support Denali NAND controller as a DT device"
-	select MTD_NAND_DENALI
-	depends on HAS_DMA && HAVE_CLK && OF
-	help
-	  Enable the driver for NAND flash on platforms using a Denali NAND
-	  controller as a DT device.
-
-config MTD_NAND_GPIO
-	tristate "GPIO assisted NAND Flash driver"
-	depends on GPIOLIB || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  This enables a NAND flash driver where control signals are
-	  connected to GPIO pins, and commands and data are communicated
-	  via a memory mapped interface.
-
-config MTD_NAND_AMS_DELTA
-	tristate "NAND Flash device on Amstrad E3"
-	depends on MACH_AMS_DELTA
-	default y
-	help
-	  Support for NAND flash on Amstrad E3 (Delta).
-
-config MTD_NAND_OMAP2
-	tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone"
-	depends on (ARCH_OMAP2PLUS || ARCH_KEYSTONE)
-	help
-          Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4
-	  and Keystone platforms.
-
-config MTD_NAND_OMAP_BCH
-	depends on MTD_NAND_OMAP2
-	bool "Support hardware based BCH error correction"
-	default n
-	select BCH
-	help
-	  This config enables the ELM hardware engine, which can be used to
-	  locate and correct errors when using BCH ECC scheme. This offloads
-	  the cpu from doing ECC error searching and correction. However some
-	  legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine
-	  so this is optional for them.
-
-config MTD_NAND_OMAP_BCH_BUILD
-	def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
-
-config MTD_NAND_RICOH
-	tristate "Ricoh xD card reader"
-	default n
-	depends on PCI
-	select MTD_SM_COMMON
-	help
-	  Enable support for Ricoh R5C852 xD card reader
-	  You also need to enable ether
-	  NAND SSFDC (SmartMedia) read only translation layer' or new
-	  expermental, readwrite
-	  'SmartMedia/xD new translation layer'
-
-config MTD_NAND_AU1550
-	tristate "Au1550/1200 NAND support"
-	depends on MIPS_ALCHEMY
-	help
-	  This enables the driver for the NAND flash controller on the
-	  AMD/Alchemy 1550 SOC.
-
-config MTD_NAND_BF5XX
-	tristate "Blackfin on-chip NAND Flash Controller driver"
-	depends on BF54x || BF52x
-	help
-	  This enables the Blackfin on-chip NAND flash controller
-
-	  No board specific support is done by this driver, each board
-	  must advertise a platform_device for the driver to attach.
-
-	  This driver can also be built as a module. If so, the module
-	  will be called bf5xx-nand.
-
-config MTD_NAND_BF5XX_HWECC
-	bool "BF5XX NAND Hardware ECC"
-	default y
-	depends on MTD_NAND_BF5XX
-	help
-	  Enable the use of the BF5XX's internal ECC generator when
-	  using NAND.
-
-config MTD_NAND_BF5XX_BOOTROM_ECC
-	bool "Use Blackfin BootROM ECC Layout"
-	default n
-	depends on MTD_NAND_BF5XX_HWECC
-	help
-	  If you wish to modify NAND pages and allow the Blackfin on-chip
-	  BootROM to boot from them, say Y here.  This is only necessary
-	  if you are booting U-Boot out of NAND and you wish to update
-	  U-Boot from Linux' userspace.  Otherwise, you should say N here.
-
-	  If unsure, say N.
-
-config MTD_NAND_S3C2410
-	tristate "NAND Flash support for Samsung S3C SoCs"
-	depends on ARCH_S3C24XX || ARCH_S3C64XX
-	help
-	  This enables the NAND flash controller on the S3C24xx and S3C64xx
-	  SoCs
-
-	  No board specific support is done by this driver, each board
-	  must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_S3C2410_DEBUG
-	bool "Samsung S3C NAND driver debug"
-	depends on MTD_NAND_S3C2410
-	help
-	  Enable debugging of the S3C NAND driver
-
-config MTD_NAND_NDFC
-	tristate "NDFC NanD Flash Controller"
-	depends on 4xx
-	select MTD_NAND_ECC_SMC
-	help
-	 NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
-
-config MTD_NAND_S3C2410_CLKSTOP
-	bool "Samsung S3C NAND IDLE clock stop"
-	depends on MTD_NAND_S3C2410
-	default n
-	help
-	  Stop the clock to the NAND controller when there is no chip
-	  selected to save power. This will mean there is a small delay
-	  when the is NAND chip selected or released, but will save
-	  approximately 5mA of power when there is nothing happening.
-
-config MTD_NAND_TANGO
-	tristate "NAND Flash support for Tango chips"
-	depends on ARCH_TANGO || COMPILE_TEST
-	depends on HAS_DMA
-	help
-	  Enables the NAND Flash controller on Tango chips.
-
-config MTD_NAND_DISKONCHIP
-	tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)"
-	depends on HAS_IOMEM
-	select REED_SOLOMON
-	select REED_SOLOMON_DEC16
-	help
-	  This is a reimplementation of M-Systems DiskOnChip 2000,
-	  Millennium and Millennium Plus as a standard NAND device driver,
-	  as opposed to the earlier self-contained MTD device drivers.
-	  This should enable, among other things, proper JFFS2 operation on
-	  these devices.
-
-config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
-        bool "Advanced detection options for DiskOnChip"
-        depends on MTD_NAND_DISKONCHIP
-        help
-          This option allows you to specify nonstandard address at which to
-          probe for a DiskOnChip, or to change the detection options.  You
-          are unlikely to need any of this unless you are using LinuxBIOS.
-          Say 'N'.
-
-config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
-        hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
-        depends on MTD_NAND_DISKONCHIP
-        default "0"
-        ---help---
-        By default, the probe for DiskOnChip devices will look for a
-        DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
-        This option allows you to specify a single address at which to probe
-        for the device, which is useful if you have other devices in that
-        range which get upset when they are probed.
-
-        (Note that on PowerPC, the normal probe will only check at
-        0xE4000000.)
-
-        Normally, you should leave this set to zero, to allow the probe at
-        the normal addresses.
-
-config MTD_NAND_DISKONCHIP_PROBE_HIGH
-        bool "Probe high addresses"
-        depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
-        help
-          By default, the probe for DiskOnChip devices will look for a
-          DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
-          This option changes to make it probe between 0xFFFC8000 and
-          0xFFFEE000.  Unless you are using LinuxBIOS, this is unlikely to be
-          useful to you.  Say 'N'.
-
-config MTD_NAND_DISKONCHIP_BBTWRITE
-	bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
-	depends on MTD_NAND_DISKONCHIP
-	help
-	  On DiskOnChip devices shipped with the INFTL filesystem (Millennium
-	  and 2000 TSOP/Alon), Linux reserves some space at the end of the
-	  device for the Bad Block Table (BBT).  If you have existing INFTL
-	  data on your device (created by non-Linux tools such as M-Systems'
-	  DOS drivers), your data might overlap the area Linux wants to use for
-	  the BBT.  If this is a concern for you, leave this option disabled and
-	  Linux will not write BBT data into this area.
-	  The downside of leaving this option disabled is that if bad blocks
-	  are detected by Linux, they will not be recorded in the BBT, which
-	  could cause future problems.
-	  Once you enable this option, new filesystems (INFTL or others, created
-	  in Linux or other operating systems) will not use the reserved area.
-	  The only reason not to enable this option is to prevent damage to
-	  preexisting filesystems.
-	  Even if you leave this disabled, you can enable BBT writes at module
-	  load time (assuming you build diskonchip as a module) with the module
-	  parameter "inftl_bbt_write=1".
-
-config MTD_NAND_DOCG4
-	tristate "Support for DiskOnChip G4"
-	depends on HAS_IOMEM
-	select BCH
-	select BITREVERSE
-	help
-	  Support for diskonchip G4 nand flash, found in various smartphones and
-	  PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
-	  Portege G900, Asus P526, and O2 XDA Zinc.
-
-	  With this driver you will be able to use UBI and create a ubifs on the
-	  device, so you may wish to consider enabling UBI and UBIFS as well.
-
-	  These devices ship with the Mys/Sandisk SAFTL formatting, for which
-	  there is currently no mtd parser, so you may want to use command line
-	  partitioning to segregate write-protected blocks. On the Treo680, the
-	  first five erase blocks (256KiB each) are write-protected, followed
-	  by the block containing the saftl partition table.  This is probably
-	  typical.
-
-config MTD_NAND_SHARPSL
-	tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
-	depends on ARCH_PXA
-
-config MTD_NAND_CAFE
-	tristate "NAND support for OLPC CAFÉ chip"
-	depends on PCI
-	select REED_SOLOMON
-	select REED_SOLOMON_DEC16
-	help
-	  Use NAND flash attached to the CAFÉ chip designed for the OLPC
-	  laptop.
-
-config MTD_NAND_CS553X
-	tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
-	depends on X86_32
-	depends on !UML && HAS_IOMEM
-	help
-	  The CS553x companion chips for the AMD Geode processor
-	  include NAND flash controllers with built-in hardware ECC
-	  capabilities; enabling this option will allow you to use
-	  these. The driver will check the MSRs to verify that the
-	  controller is enabled for NAND, and currently requires that
-	  the controller be in MMIO mode.
-
-	  If you say "m", the module will be called cs553x_nand.
-
-config MTD_NAND_ATMEL
-	tristate "Support for NAND Flash / SmartMedia on AT91"
-	depends on ARCH_AT91
-	select MFD_ATMEL_SMC
-	help
-	  Enables support for NAND Flash / Smart Media Card interface
-	  on Atmel AT91 processors.
-
-config MTD_NAND_MARVELL
-	tristate "NAND controller support on Marvell boards"
-	depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
-		   COMPILE_TEST
-	depends on HAS_IOMEM && HAS_DMA
-	help
-	  This enables the NAND flash controller driver for Marvell boards,
-	  including:
-	  - PXA3xx processors (NFCv1)
-	  - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
-	  - 64-bit Aramda platforms (7k, 8k) (NFCv2)
-
-config MTD_NAND_SLC_LPC32XX
-	tristate "NXP LPC32xx SLC Controller"
-	depends on ARCH_LPC32XX
-	help
-	  Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
-	  chips) NAND controller. This is the default for the PHYTEC 3250
-	  reference board which contains a NAND256R3A2CZA6 chip.
-
-	  Please check the actual NAND chip connected and its support
-	  by the SLC NAND controller.
-
-config MTD_NAND_MLC_LPC32XX
-	tristate "NXP LPC32xx MLC Controller"
-	depends on ARCH_LPC32XX
-	help
-	  Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
-	  controller. This is the default for the WORK92105 controller
-	  board.
-
-	  Please check the actual NAND chip connected and its support
-	  by the MLC NAND controller.
-
-config MTD_NAND_CM_X270
-	tristate "Support for NAND Flash on CM-X270 modules"
-	depends on MACH_ARMCORE
-
-config MTD_NAND_PASEMI
-	tristate "NAND support for PA Semi PWRficient"
-	depends on PPC_PASEMI
-	help
-	  Enables support for NAND Flash interface on PA Semi PWRficient
-	  based boards
-
-config MTD_NAND_TMIO
-	tristate "NAND Flash device on Toshiba Mobile IO Controller"
-	depends on MFD_TMIO
-	help
-	  Support for NAND flash connected to a Toshiba Mobile IO
-	  Controller in some PDAs, including the Sharp SL6000x.
-
-config MTD_NAND_NANDSIM
-	tristate "Support for NAND Flash Simulator"
-	help
-	  The simulator may simulate various NAND flash chips for the
-	  MTD nand layer.
-
-config MTD_NAND_GPMI_NAND
-        tristate "GPMI NAND Flash Controller driver"
-        depends on MTD_NAND && MXS_DMA
-        help
-	 Enables NAND Flash support for IMX23, IMX28 or IMX6.
-	 The GPMI controller is very powerful, with the help of BCH
-	 module, it can do the hardware ECC. The GPMI supports several
-	 NAND flashs at the same time.
-
-config MTD_NAND_BRCMNAND
-	tristate "Broadcom STB NAND controller"
-	depends on ARM || ARM64 || MIPS
-	help
-	  Enables the Broadcom NAND controller driver. The controller was
-	  originally designed for Set-Top Box but is used on various BCM7xxx,
-	  BCM3xxx, BCM63xxx, iProc/Cygnus and more.
-
-config MTD_NAND_BCM47XXNFLASH
-	tristate "Support for NAND flash on BCM4706 BCMA bus"
-	depends on BCMA_NFLASH
-	help
-	  BCMA bus can have various flash memories attached, they are
-	  registered by bcma as platform devices. This enables driver for
-	  NAND flash memories. For now only BCM4706 is supported.
-
-config MTD_NAND_PLATFORM
-	tristate "Support for generic platform NAND driver"
-	depends on HAS_IOMEM
-	help
-	  This implements a generic NAND driver for on-SOC platform
-	  devices. You will need to provide platform-specific functions
-	  via platform_data.
-
-config MTD_NAND_ORION
-	tristate "NAND Flash support for Marvell Orion SoC"
-	depends on PLAT_ORION
-	help
-	  This enables the NAND flash controller on Orion machines.
-
-	  No board specific support is done by this driver, each board
-	  must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_OXNAS
-	tristate "NAND Flash support for Oxford Semiconductor SoC"
-	depends on ARCH_OXNAS || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  This enables the NAND flash controller on Oxford Semiconductor SoCs.
-
-config MTD_NAND_FSL_ELBC
-	tristate "NAND support for Freescale eLBC controllers"
-	depends on FSL_SOC
-	select FSL_LBC
-	help
-	  Various Freescale chips, including the 8313, include a NAND Flash
-	  Controller Module with built-in hardware ECC capabilities.
-	  Enabling this option will enable you to use this to control
-	  external NAND devices.
-
-config MTD_NAND_FSL_IFC
-	tristate "NAND support for Freescale IFC controller"
-	depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A
-	select FSL_IFC
-	select MEMORY
-	help
-	  Various Freescale chips e.g P1010, include a NAND Flash machine
-	  with built-in hardware ECC capabilities.
-	  Enabling this option will enable you to use this to control
-	  external NAND devices.
-
-config MTD_NAND_FSL_UPM
-	tristate "Support for NAND on Freescale UPM"
-	depends on PPC_83xx || PPC_85xx
-	select FSL_LBC
-	help
-	  Enables support for NAND Flash chips wired onto Freescale PowerPC
-	  processor localbus with User-Programmable Machine support.
-
-config MTD_NAND_MPC5121_NFC
-	tristate "MPC5121 built-in NAND Flash Controller support"
-	depends on PPC_MPC512x
-	help
-	  This enables the driver for the NAND flash controller on the
-	  MPC5121 SoC.
-
-config MTD_NAND_VF610_NFC
-	tristate "Support for Freescale NFC for VF610/MPC5125"
-	depends on (SOC_VF610 || COMPILE_TEST)
-	depends on HAS_IOMEM
-	help
-	  Enables support for NAND Flash Controller on some Freescale
-	  processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
-	  The driver supports a maximum 2k page size. With 2k pages and
-	  64 bytes or more of OOB, hardware ECC with up to 32-bit error
-	  correction is supported. Hardware ECC is only enabled through
-	  device tree.
-
-config MTD_NAND_MXC
-	tristate "MXC NAND support"
-	depends on ARCH_MXC
-	help
-	  This enables the driver for the NAND flash controller on the
-	  MXC processors.
-
-config MTD_NAND_SH_FLCTL
-	tristate "Support for NAND on Renesas SuperH FLCTL"
-	depends on SUPERH || COMPILE_TEST
-	depends on HAS_IOMEM
-	depends on HAS_DMA
-	help
-	  Several Renesas SuperH CPU has FLCTL. This option enables support
-	  for NAND Flash using FLCTL.
-
-config MTD_NAND_DAVINCI
-        tristate "Support NAND on DaVinci/Keystone SoC"
-        depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF)
-        help
-	  Enable the driver for NAND flash chips on Texas Instruments
-	  DaVinci/Keystone processors.
-
-config MTD_NAND_TXX9NDFMC
-	tristate "NAND Flash support for TXx9 SoC"
-	depends on SOC_TX4938 || SOC_TX4939
-	help
-	  This enables the NAND flash controller on the TXx9 SoCs.
-
-config MTD_NAND_SOCRATES
-	tristate "Support for NAND on Socrates board"
-	depends on SOCRATES
-	help
-	  Enables support for NAND Flash chips wired onto Socrates board.
-
-config MTD_NAND_NUC900
-	tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards."
-	depends on ARCH_W90X900
-	help
-	  This enables the driver for the NAND Flash on evaluation board based
-	  on w90p910 / NUC9xx.
-
-config MTD_NAND_JZ4740
-	tristate "Support for JZ4740 SoC NAND controller"
-	depends on MACH_JZ4740
-	help
-		Enables support for NAND Flash on JZ4740 SoC based boards.
-
-config MTD_NAND_JZ4780
-	tristate "Support for NAND on JZ4780 SoC"
-	depends on MACH_JZ4780 && JZ4780_NEMC
-	help
-	  Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
-	  based boards, using the BCH controller for hardware error correction.
-
-config MTD_NAND_FSMC
-	tristate "Support for NAND on ST Micros FSMC"
-	depends on OF
-	depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300
-	help
-	  Enables support for NAND Flash chips on the ST Microelectronics
-	  Flexible Static Memory Controller (FSMC)
-
-config MTD_NAND_XWAY
-	bool "Support for NAND on Lantiq XWAY SoC"
-	depends on LANTIQ && SOC_TYPE_XWAY
-	help
-	  Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
-	  to the External Bus Unit (EBU).
-
-config MTD_NAND_SUNXI
-	tristate "Support for NAND on Allwinner SoCs"
-	depends on ARCH_SUNXI
-	help
-	  Enables support for NAND Flash chips on Allwinner SoCs.
-
-config MTD_NAND_HISI504
-	tristate "Support for NAND controller on Hisilicon SoC Hip04"
-	depends on ARCH_HISI || COMPILE_TEST
-	depends on HAS_DMA
-	help
-	  Enables support for NAND controller on Hisilicon SoC Hip04.
-
-config MTD_NAND_QCOM
-	tristate "Support for NAND on QCOM SoCs"
-	depends on ARCH_QCOM
-	help
-	  Enables support for NAND flash chips on SoCs containing the EBI2 NAND
-	  controller. This controller is found on IPQ806x SoC.
-
-config MTD_NAND_MTK
-	tristate "Support for NAND controller on MTK SoCs"
-	depends on ARCH_MEDIATEK || COMPILE_TEST
-	depends on HAS_DMA
-	help
-	  Enables support for NAND controller on MTK SoCs.
-	  This controller is found on mt27xx, mt81xx, mt65xx SoCs.
-
-endif # MTD_NAND
+source "drivers/mtd/nand/raw/Kconfig"

+ 4 - 67
drivers/mtd/nand/Makefile

@@ -1,70 +1,7 @@
 # SPDX-License-Identifier: GPL-2.0
-#
-# linux/drivers/nand/Makefile
-#
 
-obj-$(CONFIG_MTD_NAND)			+= nand.o
-obj-$(CONFIG_MTD_NAND_ECC)		+= nand_ecc.o
-obj-$(CONFIG_MTD_NAND_BCH)		+= nand_bch.o
-obj-$(CONFIG_MTD_SM_COMMON) 		+= sm_common.o
+nandcore-objs := core.o bbt.o
+obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
 
-obj-$(CONFIG_MTD_NAND_CAFE)		+= cafe_nand.o
-obj-$(CONFIG_MTD_NAND_AMS_DELTA)	+= ams-delta.o
-obj-$(CONFIG_MTD_NAND_DENALI)		+= denali.o
-obj-$(CONFIG_MTD_NAND_DENALI_PCI)	+= denali_pci.o
-obj-$(CONFIG_MTD_NAND_DENALI_DT)	+= denali_dt.o
-obj-$(CONFIG_MTD_NAND_AU1550)		+= au1550nd.o
-obj-$(CONFIG_MTD_NAND_BF5XX)		+= bf5xx_nand.o
-obj-$(CONFIG_MTD_NAND_S3C2410)		+= s3c2410.o
-obj-$(CONFIG_MTD_NAND_TANGO)		+= tango_nand.o
-obj-$(CONFIG_MTD_NAND_DAVINCI)		+= davinci_nand.o
-obj-$(CONFIG_MTD_NAND_DISKONCHIP)	+= diskonchip.o
-obj-$(CONFIG_MTD_NAND_DOCG4)		+= docg4.o
-obj-$(CONFIG_MTD_NAND_FSMC)		+= fsmc_nand.o
-obj-$(CONFIG_MTD_NAND_SHARPSL)		+= sharpsl.o
-obj-$(CONFIG_MTD_NAND_NANDSIM)		+= nandsim.o
-obj-$(CONFIG_MTD_NAND_CS553X)		+= cs553x_nand.o
-obj-$(CONFIG_MTD_NAND_NDFC)		+= ndfc.o
-obj-$(CONFIG_MTD_NAND_ATMEL)		+= atmel/
-obj-$(CONFIG_MTD_NAND_GPIO)		+= gpio.o
-omap2_nand-objs := omap2.o
-obj-$(CONFIG_MTD_NAND_OMAP2) 		+= omap2_nand.o
-obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD)	+= omap_elm.o
-obj-$(CONFIG_MTD_NAND_CM_X270)		+= cmx270_nand.o
-obj-$(CONFIG_MTD_NAND_MARVELL)		+= marvell_nand.o
-obj-$(CONFIG_MTD_NAND_TMIO)		+= tmio_nand.o
-obj-$(CONFIG_MTD_NAND_PLATFORM)		+= plat_nand.o
-obj-$(CONFIG_MTD_NAND_PASEMI)		+= pasemi_nand.o
-obj-$(CONFIG_MTD_NAND_ORION)		+= orion_nand.o
-obj-$(CONFIG_MTD_NAND_OXNAS)		+= oxnas_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_ELBC)		+= fsl_elbc_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_IFC)		+= fsl_ifc_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_UPM)		+= fsl_upm.o
-obj-$(CONFIG_MTD_NAND_SLC_LPC32XX)      += lpc32xx_slc.o
-obj-$(CONFIG_MTD_NAND_MLC_LPC32XX)      += lpc32xx_mlc.o
-obj-$(CONFIG_MTD_NAND_SH_FLCTL)		+= sh_flctl.o
-obj-$(CONFIG_MTD_NAND_MXC)		+= mxc_nand.o
-obj-$(CONFIG_MTD_NAND_SOCRATES)		+= socrates_nand.o
-obj-$(CONFIG_MTD_NAND_TXX9NDFMC)	+= txx9ndfmc.o
-obj-$(CONFIG_MTD_NAND_NUC900)		+= nuc900_nand.o
-obj-$(CONFIG_MTD_NAND_MPC5121_NFC)	+= mpc5121_nfc.o
-obj-$(CONFIG_MTD_NAND_VF610_NFC)	+= vf610_nfc.o
-obj-$(CONFIG_MTD_NAND_RICOH)		+= r852.o
-obj-$(CONFIG_MTD_NAND_JZ4740)		+= jz4740_nand.o
-obj-$(CONFIG_MTD_NAND_JZ4780)		+= jz4780_nand.o jz4780_bch.o
-obj-$(CONFIG_MTD_NAND_GPMI_NAND)	+= gpmi-nand/
-obj-$(CONFIG_MTD_NAND_XWAY)		+= xway_nand.o
-obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)	+= bcm47xxnflash/
-obj-$(CONFIG_MTD_NAND_SUNXI)		+= sunxi_nand.o
-obj-$(CONFIG_MTD_NAND_HISI504)	        += hisi504_nand.o
-obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
-obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
-obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
-
-nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
-nand-objs += nand_amd.o
-nand-objs += nand_hynix.o
-nand-objs += nand_macronix.o
-nand-objs += nand_micron.o
-nand-objs += nand_samsung.o
-nand-objs += nand_toshiba.o
+obj-y	+= onenand/
+obj-y	+= raw/

+ 130 - 0
drivers/mtd/nand/bbt.c

@@ -0,0 +1,130 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 Free Electrons
+ *
+ * Authors:
+ *	Boris Brezillon <boris.brezillon@free-electrons.com>
+ *	Peter Pan <peterpandong@micron.com>
+ */
+
+#define pr_fmt(fmt)	"nand-bbt: " fmt
+
+#include <linux/mtd/nand.h>
+#include <linux/slab.h>
+
+/**
+ * nanddev_bbt_init() - Initialize the BBT (Bad Block Table)
+ * @nand: NAND device
+ *
+ * Initialize the in-memory BBT.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_bbt_init(struct nand_device *nand)
+{
+	unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+	unsigned int nblocks = nanddev_neraseblocks(nand);
+	unsigned int nwords = DIV_ROUND_UP(nblocks * bits_per_block,
+					   BITS_PER_LONG);
+
+	nand->bbt.cache = kzalloc(nwords, GFP_KERNEL);
+	if (!nand->bbt.cache)
+		return -ENOMEM;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_init);
+
+/**
+ * nanddev_bbt_cleanup() - Cleanup the BBT (Bad Block Table)
+ * @nand: NAND device
+ *
+ * Undoes what has been done in nanddev_bbt_init()
+ */
+void nanddev_bbt_cleanup(struct nand_device *nand)
+{
+	kfree(nand->bbt.cache);
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_cleanup);
+
+/**
+ * nanddev_bbt_update() - Update a BBT
+ * @nand: nand device
+ *
+ * Update the BBT. Currently a NOP function since on-flash bbt is not yet
+ * supported.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_bbt_update(struct nand_device *nand)
+{
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_update);
+
+/**
+ * nanddev_bbt_get_block_status() - Return the status of an eraseblock
+ * @nand: nand device
+ * @entry: the BBT entry
+ *
+ * Return: a positive number nand_bbt_block_status status or -%ERANGE if @entry
+ *	   is bigger than the BBT size.
+ */
+int nanddev_bbt_get_block_status(const struct nand_device *nand,
+				 unsigned int entry)
+{
+	unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+	unsigned long *pos = nand->bbt.cache +
+			     ((entry * bits_per_block) / BITS_PER_LONG);
+	unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
+	unsigned long status;
+
+	if (entry >= nanddev_neraseblocks(nand))
+		return -ERANGE;
+
+	status = pos[0] >> offs;
+	if (bits_per_block + offs > BITS_PER_LONG)
+		status |= pos[1] << (BITS_PER_LONG - offs);
+
+	return status & GENMASK(bits_per_block - 1, 0);
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_get_block_status);
+
+/**
+ * nanddev_bbt_set_block_status() - Update the status of an eraseblock in the
+ *				    in-memory BBT
+ * @nand: nand device
+ * @entry: the BBT entry to update
+ * @status: the new status
+ *
+ * Update an entry of the in-memory BBT. If you want to push the updated BBT
+ * the NAND you should call nanddev_bbt_update().
+ *
+ * Return: 0 in case of success or -%ERANGE if @entry is bigger than the BBT
+ *	   size.
+ */
+int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
+				 enum nand_bbt_block_status status)
+{
+	unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+	unsigned long *pos = nand->bbt.cache +
+			     ((entry * bits_per_block) / BITS_PER_LONG);
+	unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
+	unsigned long val = status & GENMASK(bits_per_block - 1, 0);
+
+	if (entry >= nanddev_neraseblocks(nand))
+		return -ERANGE;
+
+	pos[0] &= ~GENMASK(offs + bits_per_block - 1, offs);
+	pos[0] |= val << offs;
+
+	if (bits_per_block + offs > BITS_PER_LONG) {
+		unsigned int rbits = bits_per_block + offs - BITS_PER_LONG;
+
+		pos[1] &= ~GENMASK(rbits - 1, 0);
+		pos[1] |= val >> rbits;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_set_block_status);

+ 0 - 862
drivers/mtd/nand/bf5xx_nand.c

@@ -1,862 +0,0 @@
-/* linux/drivers/mtd/nand/bf5xx_nand.c
- *
- * Copyright 2006-2008 Analog Devices Inc.
- *	http://blackfin.uclinux.org/
- *	Bryan Wu <bryan.wu@analog.com>
- *
- * Blackfin BF5xx on-chip NAND flash controller driver
- *
- * Derived from drivers/mtd/nand/s3c2410.c
- * Copyright (c) 2007 Ben Dooks <ben@simtec.co.uk>
- *
- * Derived from drivers/mtd/nand/cafe.c
- * Copyright © 2006 Red Hat, Inc.
- * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
- *
- * Changelog:
- *	12-Jun-2007  Bryan Wu:  Initial version
- *	18-Jul-2007  Bryan Wu:
- *		- ECC_HW and ECC_SW supported
- *		- DMA supported in ECC_HW
- *		- YAFFS tested as rootfs in both ECC_HW and ECC_SW
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
-*/
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/string.h>
-#include <linux/ioport.h>
-#include <linux/platform_device.h>
-#include <linux/delay.h>
-#include <linux/dma-mapping.h>
-#include <linux/err.h>
-#include <linux/slab.h>
-#include <linux/io.h>
-#include <linux/bitops.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <linux/mtd/partitions.h>
-
-#include <asm/blackfin.h>
-#include <asm/dma.h>
-#include <asm/cacheflush.h>
-#include <asm/nand.h>
-#include <asm/portmux.h>
-
-#define DRV_NAME	"bf5xx-nand"
-#define DRV_VERSION	"1.2"
-#define DRV_AUTHOR	"Bryan Wu <bryan.wu@analog.com>"
-#define DRV_DESC	"BF5xx on-chip NAND FLash Controller Driver"
-
-/* NFC_STAT Masks */
-#define NBUSY       0x01  /* Not Busy */
-#define WB_FULL     0x02  /* Write Buffer Full */
-#define PG_WR_STAT  0x04  /* Page Write Pending */
-#define PG_RD_STAT  0x08  /* Page Read Pending */
-#define WB_EMPTY    0x10  /* Write Buffer Empty */
-
-/* NFC_IRQSTAT Masks */
-#define NBUSYIRQ    0x01  /* Not Busy IRQ */
-#define WB_OVF      0x02  /* Write Buffer Overflow */
-#define WB_EDGE     0x04  /* Write Buffer Edge Detect */
-#define RD_RDY      0x08  /* Read Data Ready */
-#define WR_DONE     0x10  /* Page Write Done */
-
-/* NFC_RST Masks */
-#define ECC_RST     0x01  /* ECC (and NFC counters) Reset */
-
-/* NFC_PGCTL Masks */
-#define PG_RD_START 0x01  /* Page Read Start */
-#define PG_WR_START 0x02  /* Page Write Start */
-
-#ifdef CONFIG_MTD_NAND_BF5XX_HWECC
-static int hardware_ecc = 1;
-#else
-static int hardware_ecc;
-#endif
-
-static const unsigned short bfin_nfc_pin_req[] =
-	{P_NAND_CE,
-	 P_NAND_RB,
-	 P_NAND_D0,
-	 P_NAND_D1,
-	 P_NAND_D2,
-	 P_NAND_D3,
-	 P_NAND_D4,
-	 P_NAND_D5,
-	 P_NAND_D6,
-	 P_NAND_D7,
-	 P_NAND_WE,
-	 P_NAND_RE,
-	 P_NAND_CLE,
-	 P_NAND_ALE,
-	 0};
-
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
-static int bootrom_ooblayout_ecc(struct mtd_info *mtd, int section,
-				 struct mtd_oob_region *oobregion)
-{
-	if (section > 7)
-		return -ERANGE;
-
-	oobregion->offset = section * 8;
-	oobregion->length = 3;
-
-	return 0;
-}
-
-static int bootrom_ooblayout_free(struct mtd_info *mtd, int section,
-				  struct mtd_oob_region *oobregion)
-{
-	if (section > 7)
-		return -ERANGE;
-
-	oobregion->offset = (section * 8) + 3;
-	oobregion->length = 5;
-
-	return 0;
-}
-
-static const struct mtd_ooblayout_ops bootrom_ooblayout_ops = {
-	.ecc = bootrom_ooblayout_ecc,
-	.free = bootrom_ooblayout_free,
-};
-#endif
-
-/*
- * Data structures for bf5xx nand flash controller driver
- */
-
-/* bf5xx nand info */
-struct bf5xx_nand_info {
-	/* mtd info */
-	struct nand_hw_control		controller;
-	struct nand_chip		chip;
-
-	/* platform info */
-	struct bf5xx_nand_platform	*platform;
-
-	/* device info */
-	struct device			*device;
-
-	/* DMA stuff */
-	struct completion		dma_completion;
-};
-
-/*
- * Conversion functions
- */
-static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd)
-{
-	return container_of(mtd_to_nand(mtd), struct bf5xx_nand_info,
-			    chip);
-}
-
-static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev)
-{
-	return platform_get_drvdata(pdev);
-}
-
-static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev)
-{
-	return dev_get_platdata(&pdev->dev);
-}
-
-/*
- * struct nand_chip interface function pointers
- */
-
-/*
- * bf5xx_nand_hwcontrol
- *
- * Issue command and address cycles to the chip
- */
-static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
-				   unsigned int ctrl)
-{
-	if (cmd == NAND_CMD_NONE)
-		return;
-
-	while (bfin_read_NFC_STAT() & WB_FULL)
-		cpu_relax();
-
-	if (ctrl & NAND_CLE)
-		bfin_write_NFC_CMD(cmd);
-	else if (ctrl & NAND_ALE)
-		bfin_write_NFC_ADDR(cmd);
-	SSYNC();
-}
-
-/*
- * bf5xx_nand_devready()
- *
- * returns 0 if the nand is busy, 1 if it is ready
- */
-static int bf5xx_nand_devready(struct mtd_info *mtd)
-{
-	unsigned short val = bfin_read_NFC_STAT();
-
-	if ((val & NBUSY) == NBUSY)
-		return 1;
-	else
-		return 0;
-}
-
-/*
- * ECC functions
- * These allow the bf5xx to use the controller's ECC
- * generator block to ECC the data as it passes through
- */
-
-/*
- * ECC error correction function
- */
-static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat,
-					u_char *read_ecc, u_char *calc_ecc)
-{
-	struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
-	u32 syndrome[5];
-	u32 calced, stored;
-	int i;
-	unsigned short failing_bit, failing_byte;
-	u_char data;
-
-	calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16);
-	stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16);
-
-	syndrome[0] = (calced ^ stored);
-
-	/*
-	 * syndrome 0: all zero
-	 * No error in data
-	 * No action
-	 */
-	if (!syndrome[0] || !calced || !stored)
-		return 0;
-
-	/*
-	 * sysdrome 0: only one bit is one
-	 * ECC data was incorrect
-	 * No action
-	 */
-	if (hweight32(syndrome[0]) == 1) {
-		dev_err(info->device, "ECC data was incorrect!\n");
-		return -EBADMSG;
-	}
-
-	syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF);
-	syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF);
-	syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF);
-	syndrome[4] = syndrome[2] ^ syndrome[3];
-
-	for (i = 0; i < 5; i++)
-		dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]);
-
-	dev_info(info->device,
-		"calced[0x%08x], stored[0x%08x]\n",
-		calced, stored);
-
-	/*
-	 * sysdrome 0: exactly 11 bits are one, each parity
-	 * and parity' pair is 1 & 0 or 0 & 1.
-	 * 1-bit correctable error
-	 * Correct the error
-	 */
-	if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) {
-		dev_info(info->device,
-			"1-bit correctable error, correct it.\n");
-		dev_info(info->device,
-			"syndrome[1] 0x%08x\n", syndrome[1]);
-
-		failing_bit = syndrome[1] & 0x7;
-		failing_byte = syndrome[1] >> 0x3;
-		data = *(dat + failing_byte);
-		data = data ^ (0x1 << failing_bit);
-		*(dat + failing_byte) = data;
-
-		return 1;
-	}
-
-	/*
-	 * sysdrome 0: random data
-	 * More than 1-bit error, non-correctable error
-	 * Discard data, mark bad block
-	 */
-	dev_err(info->device,
-		"More than 1-bit error, non-correctable error.\n");
-	dev_err(info->device,
-		"Please discard data, mark bad block\n");
-
-	return -EBADMSG;
-}
-
-static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat,
-					u_char *read_ecc, u_char *calc_ecc)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	int ret, bitflips = 0;
-
-	ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
-	if (ret < 0)
-		return ret;
-
-	bitflips = ret;
-
-	/* If ecc size is 512, correct second 256 bytes */
-	if (chip->ecc.size == 512) {
-		dat += 256;
-		read_ecc += 3;
-		calc_ecc += 3;
-		ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
-		if (ret < 0)
-			return ret;
-
-		bitflips += ret;
-	}
-
-	return bitflips;
-}
-
-static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
-{
-	return;
-}
-
-static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
-		const u_char *dat, u_char *ecc_code)
-{
-	struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	u16 ecc0, ecc1;
-	u32 code[2];
-	u8 *p;
-
-	/* first 3 bytes ECC code for 256 page size */
-	ecc0 = bfin_read_NFC_ECC0();
-	ecc1 = bfin_read_NFC_ECC1();
-
-	code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
-
-	dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]);
-
-	p = (u8 *) code;
-	memcpy(ecc_code, p, 3);
-
-	/* second 3 bytes ECC code for 512 ecc size */
-	if (chip->ecc.size == 512) {
-		ecc0 = bfin_read_NFC_ECC2();
-		ecc1 = bfin_read_NFC_ECC3();
-		code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
-
-		/* second 3 bytes in ecc_code for second 256
-		 * bytes of 512 page size
-		 */
-		p = (u8 *) (code + 1);
-		memcpy((ecc_code + 3), p, 3);
-		dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]);
-	}
-
-	return 0;
-}
-
-/*
- * PIO mode for buffer writing and reading
- */
-static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	int i;
-	unsigned short val;
-
-	/*
-	 * Data reads are requested by first writing to NFC_DATA_RD
-	 * and then reading back from NFC_READ.
-	 */
-	for (i = 0; i < len; i++) {
-		while (bfin_read_NFC_STAT() & WB_FULL)
-			cpu_relax();
-
-		/* Contents do not matter */
-		bfin_write_NFC_DATA_RD(0x0000);
-		SSYNC();
-
-		while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY)
-			cpu_relax();
-
-		buf[i] = bfin_read_NFC_READ();
-
-		val = bfin_read_NFC_IRQSTAT();
-		val |= RD_RDY;
-		bfin_write_NFC_IRQSTAT(val);
-		SSYNC();
-	}
-}
-
-static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd)
-{
-	uint8_t val;
-
-	bf5xx_nand_read_buf(mtd, &val, 1);
-
-	return val;
-}
-
-static void bf5xx_nand_write_buf(struct mtd_info *mtd,
-				const uint8_t *buf, int len)
-{
-	int i;
-
-	for (i = 0; i < len; i++) {
-		while (bfin_read_NFC_STAT() & WB_FULL)
-			cpu_relax();
-
-		bfin_write_NFC_DATA_WR(buf[i]);
-		SSYNC();
-	}
-}
-
-static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	int i;
-	u16 *p = (u16 *) buf;
-	len >>= 1;
-
-	/*
-	 * Data reads are requested by first writing to NFC_DATA_RD
-	 * and then reading back from NFC_READ.
-	 */
-	bfin_write_NFC_DATA_RD(0x5555);
-
-	SSYNC();
-
-	for (i = 0; i < len; i++)
-		p[i] = bfin_read_NFC_READ();
-}
-
-static void bf5xx_nand_write_buf16(struct mtd_info *mtd,
-				const uint8_t *buf, int len)
-{
-	int i;
-	u16 *p = (u16 *) buf;
-	len >>= 1;
-
-	for (i = 0; i < len; i++)
-		bfin_write_NFC_DATA_WR(p[i]);
-
-	SSYNC();
-}
-
-/*
- * DMA functions for buffer writing and reading
- */
-static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id)
-{
-	struct bf5xx_nand_info *info = dev_id;
-
-	clear_dma_irqstat(CH_NFC);
-	disable_dma(CH_NFC);
-	complete(&info->dma_completion);
-
-	return IRQ_HANDLED;
-}
-
-static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
-				uint8_t *buf, int is_read)
-{
-	struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	unsigned short val;
-
-	dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n",
-			mtd, buf, is_read);
-
-	/*
-	 * Before starting a dma transfer, be sure to invalidate/flush
-	 * the cache over the address range of your DMA buffer to
-	 * prevent cache coherency problems. Otherwise very subtle bugs
-	 * can be introduced to your driver.
-	 */
-	if (is_read)
-		invalidate_dcache_range((unsigned int)buf,
-				(unsigned int)(buf + chip->ecc.size));
-	else
-		flush_dcache_range((unsigned int)buf,
-				(unsigned int)(buf + chip->ecc.size));
-
-	/*
-	 * This register must be written before each page is
-	 * transferred to generate the correct ECC register
-	 * values.
-	 */
-	bfin_write_NFC_RST(ECC_RST);
-	SSYNC();
-	while (bfin_read_NFC_RST() & ECC_RST)
-		cpu_relax();
-
-	disable_dma(CH_NFC);
-	clear_dma_irqstat(CH_NFC);
-
-	/* setup DMA register with Blackfin DMA API */
-	set_dma_config(CH_NFC, 0x0);
-	set_dma_start_addr(CH_NFC, (unsigned long) buf);
-
-	/* The DMAs have different size on BF52x and BF54x */
-#ifdef CONFIG_BF52x
-	set_dma_x_count(CH_NFC, (chip->ecc.size >> 1));
-	set_dma_x_modify(CH_NFC, 2);
-	val = DI_EN | WDSIZE_16;
-#endif
-
-#ifdef CONFIG_BF54x
-	set_dma_x_count(CH_NFC, (chip->ecc.size >> 2));
-	set_dma_x_modify(CH_NFC, 4);
-	val = DI_EN | WDSIZE_32;
-#endif
-	/* setup write or read operation */
-	if (is_read)
-		val |= WNR;
-	set_dma_config(CH_NFC, val);
-	enable_dma(CH_NFC);
-
-	/* Start PAGE read/write operation */
-	if (is_read)
-		bfin_write_NFC_PGCTL(PG_RD_START);
-	else
-		bfin_write_NFC_PGCTL(PG_WR_START);
-	wait_for_completion(&info->dma_completion);
-}
-
-static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd,
-					uint8_t *buf, int len)
-{
-	struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len);
-
-	if (len == chip->ecc.size)
-		bf5xx_nand_dma_rw(mtd, buf, 1);
-	else
-		bf5xx_nand_read_buf(mtd, buf, len);
-}
-
-static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd,
-				const uint8_t *buf, int len)
-{
-	struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len);
-
-	if (len == chip->ecc.size)
-		bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0);
-	else
-		bf5xx_nand_write_buf(mtd, buf, len);
-}
-
-static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-		uint8_t *buf, int oob_required, int page)
-{
-	nand_read_page_op(chip, page, 0, NULL, 0);
-
-	bf5xx_nand_read_buf(mtd, buf, mtd->writesize);
-	bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
-
-	return 0;
-}
-
-static int bf5xx_nand_write_page_raw(struct mtd_info *mtd,
-		struct nand_chip *chip,	const uint8_t *buf, int oob_required,
-		int page)
-{
-	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
-	bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
-	return nand_prog_page_end_op(chip);
-}
-
-/*
- * System initialization functions
- */
-static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info)
-{
-	int ret;
-
-	/* Do not use dma */
-	if (!hardware_ecc)
-		return 0;
-
-	init_completion(&info->dma_completion);
-
-	/* Request NFC DMA channel */
-	ret = request_dma(CH_NFC, "BF5XX NFC driver");
-	if (ret < 0) {
-		dev_err(info->device, " unable to get DMA channel\n");
-		return ret;
-	}
-
-#ifdef CONFIG_BF54x
-	/* Setup DMAC1 channel mux for NFC which shared with SDH */
-	bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1);
-	SSYNC();
-#endif
-
-	set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info);
-
-	/* Turn off the DMA channel first */
-	disable_dma(CH_NFC);
-	return 0;
-}
-
-static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info)
-{
-	/* Free NFC DMA channel */
-	if (hardware_ecc)
-		free_dma(CH_NFC);
-}
-
-/*
- * BF5XX NFC hardware initialization
- *  - pin mux setup
- *  - clear interrupt status
- */
-static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info)
-{
-	int err = 0;
-	unsigned short val;
-	struct bf5xx_nand_platform *plat = info->platform;
-
-	/* setup NFC_CTL register */
-	dev_info(info->device,
-		"data_width=%d, wr_dly=%d, rd_dly=%d\n",
-		(plat->data_width ? 16 : 8),
-		plat->wr_dly, plat->rd_dly);
-
-	val = (1 << NFC_PG_SIZE_OFFSET) |
-		(plat->data_width << NFC_NWIDTH_OFFSET) |
-		(plat->rd_dly << NFC_RDDLY_OFFSET) |
-		(plat->wr_dly << NFC_WRDLY_OFFSET);
-	dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val);
-
-	bfin_write_NFC_CTL(val);
-	SSYNC();
-
-	/* clear interrupt status */
-	bfin_write_NFC_IRQMASK(0x0);
-	SSYNC();
-	val = bfin_read_NFC_IRQSTAT();
-	bfin_write_NFC_IRQSTAT(val);
-	SSYNC();
-
-	/* DMA initialization  */
-	if (bf5xx_nand_dma_init(info))
-		err = -ENXIO;
-
-	return err;
-}
-
-/*
- * Device management interface
- */
-static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info)
-{
-	struct mtd_info *mtd = nand_to_mtd(&info->chip);
-	struct mtd_partition *parts = info->platform->partitions;
-	int nr = info->platform->nr_partitions;
-
-	return mtd_device_register(mtd, parts, nr);
-}
-
-static int bf5xx_nand_remove(struct platform_device *pdev)
-{
-	struct bf5xx_nand_info *info = to_nand_info(pdev);
-
-	/* first thing we need to do is release all our mtds
-	 * and their partitions, then go through freeing the
-	 * resources used
-	 */
-	nand_release(nand_to_mtd(&info->chip));
-
-	peripheral_free_list(bfin_nfc_pin_req);
-	bf5xx_nand_dma_remove(info);
-
-	return 0;
-}
-
-static int bf5xx_nand_scan(struct mtd_info *mtd)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	int ret;
-
-	ret = nand_scan_ident(mtd, 1, NULL);
-	if (ret)
-		return ret;
-
-	if (hardware_ecc) {
-		/*
-		 * for nand with page size > 512B, think it as several sections with 512B
-		 */
-		if (likely(mtd->writesize >= 512)) {
-			chip->ecc.size = 512;
-			chip->ecc.bytes = 6;
-			chip->ecc.strength = 2;
-		} else {
-			chip->ecc.size = 256;
-			chip->ecc.bytes = 3;
-			chip->ecc.strength = 1;
-			bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET));
-			SSYNC();
-		}
-	}
-
-	return	nand_scan_tail(mtd);
-}
-
-/*
- * bf5xx_nand_probe
- *
- * called by device layer when it finds a device matching
- * one our driver can handled. This code checks to see if
- * it can allocate all necessary resources then calls the
- * nand layer to look for devices
- */
-static int bf5xx_nand_probe(struct platform_device *pdev)
-{
-	struct bf5xx_nand_platform *plat = to_nand_plat(pdev);
-	struct bf5xx_nand_info *info = NULL;
-	struct nand_chip *chip = NULL;
-	struct mtd_info *mtd = NULL;
-	int err = 0;
-
-	dev_dbg(&pdev->dev, "(%p)\n", pdev);
-
-	if (!plat) {
-		dev_err(&pdev->dev, "no platform specific information\n");
-		return -EINVAL;
-	}
-
-	if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) {
-		dev_err(&pdev->dev, "requesting Peripherals failed\n");
-		return -EFAULT;
-	}
-
-	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
-	if (info == NULL) {
-		err = -ENOMEM;
-		goto out_err;
-	}
-
-	platform_set_drvdata(pdev, info);
-
-	nand_hw_control_init(&info->controller);
-
-	info->device     = &pdev->dev;
-	info->platform   = plat;
-
-	/* initialise chip data struct */
-	chip = &info->chip;
-	mtd = nand_to_mtd(&info->chip);
-
-	if (plat->data_width)
-		chip->options |= NAND_BUSWIDTH_16;
-
-	chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN;
-
-	chip->read_buf = (plat->data_width) ?
-		bf5xx_nand_read_buf16 : bf5xx_nand_read_buf;
-	chip->write_buf = (plat->data_width) ?
-		bf5xx_nand_write_buf16 : bf5xx_nand_write_buf;
-
-	chip->read_byte    = bf5xx_nand_read_byte;
-
-	chip->cmd_ctrl     = bf5xx_nand_hwcontrol;
-	chip->dev_ready    = bf5xx_nand_devready;
-
-	nand_set_controller_data(chip, mtd);
-	chip->controller   = &info->controller;
-
-	chip->IO_ADDR_R    = (void __iomem *) NFC_READ;
-	chip->IO_ADDR_W    = (void __iomem *) NFC_DATA_WR;
-
-	chip->chip_delay   = 0;
-
-	/* initialise mtd info data struct */
-	mtd->dev.parent = &pdev->dev;
-
-	/* initialise the hardware */
-	err = bf5xx_nand_hw_init(info);
-	if (err)
-		goto out_err;
-
-	/* setup hardware ECC data struct */
-	if (hardware_ecc) {
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
-		mtd_set_ooblayout(mtd, &bootrom_ooblayout_ops);
-#endif
-		chip->read_buf      = bf5xx_nand_dma_read_buf;
-		chip->write_buf     = bf5xx_nand_dma_write_buf;
-		chip->ecc.calculate = bf5xx_nand_calculate_ecc;
-		chip->ecc.correct   = bf5xx_nand_correct_data;
-		chip->ecc.mode	    = NAND_ECC_HW;
-		chip->ecc.hwctl	    = bf5xx_nand_enable_hwecc;
-		chip->ecc.read_page_raw = bf5xx_nand_read_page_raw;
-		chip->ecc.write_page_raw = bf5xx_nand_write_page_raw;
-	} else {
-		chip->ecc.mode	    = NAND_ECC_SOFT;
-		chip->ecc.algo	= NAND_ECC_HAMMING;
-	}
-
-	/* scan hardware nand chip and setup mtd info data struct */
-	if (bf5xx_nand_scan(mtd)) {
-		err = -ENXIO;
-		goto out_err_nand_scan;
-	}
-
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
-	chip->badblockpos = 63;
-#endif
-
-	/* add NAND partition */
-	bf5xx_nand_add_partition(info);
-
-	dev_dbg(&pdev->dev, "initialised ok\n");
-	return 0;
-
-out_err_nand_scan:
-	bf5xx_nand_dma_remove(info);
-out_err:
-	peripheral_free_list(bfin_nfc_pin_req);
-
-	return err;
-}
-
-/* driver device registration */
-static struct platform_driver bf5xx_nand_driver = {
-	.probe		= bf5xx_nand_probe,
-	.remove		= bf5xx_nand_remove,
-	.driver		= {
-		.name	= DRV_NAME,
-	},
-};
-
-module_platform_driver(bf5xx_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR(DRV_AUTHOR);
-MODULE_DESCRIPTION(DRV_DESC);
-MODULE_ALIAS("platform:" DRV_NAME);

+ 244 - 0
drivers/mtd/nand/core.c

@@ -0,0 +1,244 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 Free Electrons
+ *
+ * Authors:
+ *	Boris Brezillon <boris.brezillon@free-electrons.com>
+ *	Peter Pan <peterpandong@micron.com>
+ */
+
+#define pr_fmt(fmt)	"nand: " fmt
+
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+
+/**
+ * nanddev_isbad() - Check if a block is bad
+ * @nand: NAND device
+ * @pos: position pointing to the block we want to check
+ *
+ * Return: true if the block is bad, false otherwise.
+ */
+bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+	if (nanddev_bbt_is_initialized(nand)) {
+		unsigned int entry;
+		int status;
+
+		entry = nanddev_bbt_pos_to_entry(nand, pos);
+		status = nanddev_bbt_get_block_status(nand, entry);
+		/* Lazy block status retrieval */
+		if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) {
+			if (nand->ops->isbad(nand, pos))
+				status = NAND_BBT_BLOCK_FACTORY_BAD;
+			else
+				status = NAND_BBT_BLOCK_GOOD;
+
+			nanddev_bbt_set_block_status(nand, entry, status);
+		}
+
+		if (status == NAND_BBT_BLOCK_WORN ||
+		    status == NAND_BBT_BLOCK_FACTORY_BAD)
+			return true;
+
+		return false;
+	}
+
+	return nand->ops->isbad(nand, pos);
+}
+EXPORT_SYMBOL_GPL(nanddev_isbad);
+
+/**
+ * nanddev_markbad() - Mark a block as bad
+ * @nand: NAND device
+ * @pos: position of the block to mark bad
+ *
+ * Mark a block bad. This function is updating the BBT if available and
+ * calls the low-level markbad hook (nand->ops->markbad()).
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+	struct mtd_info *mtd = nanddev_to_mtd(nand);
+	unsigned int entry;
+	int ret = 0;
+
+	if (nanddev_isbad(nand, pos))
+		return 0;
+
+	ret = nand->ops->markbad(nand, pos);
+	if (ret)
+		pr_warn("failed to write BBM to block @%llx (err = %d)\n",
+			nanddev_pos_to_offs(nand, pos), ret);
+
+	if (!nanddev_bbt_is_initialized(nand))
+		goto out;
+
+	entry = nanddev_bbt_pos_to_entry(nand, pos);
+	ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN);
+	if (ret)
+		goto out;
+
+	ret = nanddev_bbt_update(nand);
+
+out:
+	if (!ret)
+		mtd->ecc_stats.badblocks++;
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(nanddev_markbad);
+
+/**
+ * nanddev_isreserved() - Check whether an eraseblock is reserved or not
+ * @nand: NAND device
+ * @pos: NAND position to test
+ *
+ * Checks whether the eraseblock pointed by @pos is reserved or not.
+ *
+ * Return: true if the eraseblock is reserved, false otherwise.
+ */
+bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos)
+{
+	unsigned int entry;
+	int status;
+
+	if (!nanddev_bbt_is_initialized(nand))
+		return false;
+
+	/* Return info from the table */
+	entry = nanddev_bbt_pos_to_entry(nand, pos);
+	status = nanddev_bbt_get_block_status(nand, entry);
+	return status == NAND_BBT_BLOCK_RESERVED;
+}
+EXPORT_SYMBOL_GPL(nanddev_isreserved);
+
+/**
+ * nanddev_erase() - Erase a NAND portion
+ * @nand: NAND device
+ * @pos: position of the block to erase
+ *
+ * Erases the block if it's not bad.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos)
+{
+	if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) {
+		pr_warn("attempt to erase a bad/reserved block @%llx\n",
+			nanddev_pos_to_offs(nand, pos));
+		return -EIO;
+	}
+
+	return nand->ops->erase(nand, pos);
+}
+EXPORT_SYMBOL_GPL(nanddev_erase);
+
+/**
+ * nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices
+ * @mtd: MTD device
+ * @einfo: erase request
+ *
+ * This is a simple mtd->_erase() implementation iterating over all blocks
+ * concerned by @einfo and calling nand->ops->erase() on each of them.
+ *
+ * Note that mtd->_erase should not be directly assigned to this helper,
+ * because there's no locking here. NAND specialized layers should instead
+ * implement there own wrapper around nanddev_mtd_erase() taking the
+ * appropriate lock before calling nanddev_mtd_erase().
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo)
+{
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	struct nand_pos pos, last;
+	int ret;
+
+	nanddev_offs_to_pos(nand, einfo->addr, &pos);
+	nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last);
+	while (nanddev_pos_cmp(&pos, &last) <= 0) {
+		ret = nanddev_erase(nand, &pos);
+		if (ret) {
+			einfo->fail_addr = nanddev_pos_to_offs(nand, &pos);
+			einfo->state = MTD_ERASE_FAILED;
+
+			return ret;
+		}
+
+		nanddev_pos_next_eraseblock(nand, &pos);
+	}
+
+	einfo->state = MTD_ERASE_DONE;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_mtd_erase);
+
+/**
+ * nanddev_init() - Initialize a NAND device
+ * @nand: NAND device
+ * @ops: NAND device operations
+ * @owner: NAND device owner
+ *
+ * Initializes a NAND device object. Consistency checks are done on @ops and
+ * @nand->memorg. Also takes care of initializing the BBT.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
+		 struct module *owner)
+{
+	struct mtd_info *mtd = nanddev_to_mtd(nand);
+	struct nand_memory_organization *memorg = nanddev_get_memorg(nand);
+
+	if (!nand || !ops)
+		return -EINVAL;
+
+	if (!ops->erase || !ops->markbad || !ops->isbad)
+		return -EINVAL;
+
+	if (!memorg->bits_per_cell || !memorg->pagesize ||
+	    !memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun ||
+	    !memorg->planes_per_lun || !memorg->luns_per_target ||
+	    !memorg->ntargets)
+		return -EINVAL;
+
+	nand->rowconv.eraseblock_addr_shift =
+					fls(memorg->pages_per_eraseblock - 1);
+	nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) +
+				       nand->rowconv.eraseblock_addr_shift;
+
+	nand->ops = ops;
+
+	mtd->type = memorg->bits_per_cell == 1 ?
+		    MTD_NANDFLASH : MTD_MLCNANDFLASH;
+	mtd->flags = MTD_CAP_NANDFLASH;
+	mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock;
+	mtd->writesize = memorg->pagesize;
+	mtd->writebufsize = memorg->pagesize;
+	mtd->oobsize = memorg->oobsize;
+	mtd->size = nanddev_size(nand);
+	mtd->owner = owner;
+
+	return nanddev_bbt_init(nand);
+}
+EXPORT_SYMBOL_GPL(nanddev_init);
+
+/**
+ * nanddev_cleanup() - Release resources allocated in nanddev_init()
+ * @nand: NAND device
+ *
+ * Basically undoes what has been done in nanddev_init().
+ */
+void nanddev_cleanup(struct nand_device *nand)
+{
+	if (nanddev_bbt_is_initialized(nand))
+		nanddev_bbt_cleanup(nand);
+}
+EXPORT_SYMBOL_GPL(nanddev_cleanup);
+
+MODULE_DESCRIPTION("Generic NAND framework");
+MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
+MODULE_LICENSE("GPL v2");

+ 0 - 0
drivers/mtd/onenand/Kconfig → drivers/mtd/nand/onenand/Kconfig


+ 0 - 0
drivers/mtd/onenand/Makefile → drivers/mtd/nand/onenand/Makefile


+ 0 - 2
drivers/mtd/onenand/generic.c → drivers/mtd/nand/onenand/generic.c

@@ -1,6 +1,4 @@
 /*
- *  linux/drivers/mtd/onenand/generic.c
- *
  *  Copyright (c) 2005 Samsung Electronics
  *  Kyungmin Park <kyungmin.park@samsung.com>
  *

+ 0 - 2
drivers/mtd/onenand/omap2.c → drivers/mtd/nand/onenand/omap2.c

@@ -1,6 +1,4 @@
 /*
- *  linux/drivers/mtd/onenand/omap2.c
- *
  *  OneNAND driver for OMAP2 / OMAP3
  *
  *  Copyright © 2005-2006 Nokia Corporation

+ 0 - 19
drivers/mtd/onenand/onenand_base.c → drivers/mtd/nand/onenand/onenand_base.c

@@ -1,6 +1,4 @@
 /*
- *  linux/drivers/mtd/onenand/onenand_base.c
- *
  *  Copyright © 2005-2009 Samsung Electronics
  *  Copyright © 2007 Nokia Corporation
  *
@@ -2143,7 +2141,6 @@ static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
 		if (ret) {
 			printk(KERN_ERR "%s: Failed verify, block %d\n",
 			       __func__, onenand_block(this, addr));
-			instr->state = MTD_ERASE_FAILED;
 			instr->fail_addr = addr;
 			return -1;
 		}
@@ -2172,8 +2169,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd,
 	int ret = 0;
 	int bdry_block = 0;
 
-	instr->state = MTD_ERASING;
-
 	if (ONENAND_IS_DDP(this)) {
 		loff_t bdry_addr = this->chipsize >> 1;
 		if (addr < bdry_addr && (addr + len) > bdry_addr)
@@ -2187,7 +2182,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd,
 			printk(KERN_WARNING "%s: attempt to erase a bad block "
 			       "at addr 0x%012llx\n",
 			       __func__, (unsigned long long) addr);
-			instr->state = MTD_ERASE_FAILED;
 			return -EIO;
 		}
 		len -= block_size;
@@ -2227,7 +2221,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd,
 				printk(KERN_ERR "%s: Failed multiblock erase, "
 				       "block %d\n", __func__,
 				       onenand_block(this, addr));
-				instr->state = MTD_ERASE_FAILED;
 				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 				return -EIO;
 			}
@@ -2247,7 +2240,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd,
 		if (ret) {
 			printk(KERN_ERR "%s: Failed erase, block %d\n",
 			       __func__, onenand_block(this, addr));
-			instr->state = MTD_ERASE_FAILED;
 			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 			return -EIO;
 		}
@@ -2259,7 +2251,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd,
 		/* verify */
 		verify_instr.len = eb_count * block_size;
 		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
-			instr->state = verify_instr.state;
 			instr->fail_addr = verify_instr.fail_addr;
 			return -EIO;
 		}
@@ -2294,8 +2285,6 @@ static int onenand_block_by_block_erase(struct mtd_info *mtd,
 		region_end = region->offset + region->erasesize * region->numblocks;
 	}
 
-	instr->state = MTD_ERASING;
-
 	/* Loop through the blocks */
 	while (len) {
 		cond_resched();
@@ -2305,7 +2294,6 @@ static int onenand_block_by_block_erase(struct mtd_info *mtd,
 			printk(KERN_WARNING "%s: attempt to erase a bad block "
 					"at addr 0x%012llx\n",
 					__func__, (unsigned long long) addr);
-			instr->state = MTD_ERASE_FAILED;
 			return -EIO;
 		}
 
@@ -2318,7 +2306,6 @@ static int onenand_block_by_block_erase(struct mtd_info *mtd,
 		if (ret) {
 			printk(KERN_ERR "%s: Failed erase, block %d\n",
 				__func__, onenand_block(this, addr));
-			instr->state = MTD_ERASE_FAILED;
 			instr->fail_addr = addr;
 			return -EIO;
 		}
@@ -2407,12 +2394,6 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
 	/* Deselect and wake up anyone waiting on the device */
 	onenand_release_device(mtd);
 
-	/* Do call back function */
-	if (!ret) {
-		instr->state = MTD_ERASE_DONE;
-		mtd_erase_callback(instr);
-	}
-
 	return ret;
 }
 

+ 0 - 2
drivers/mtd/onenand/onenand_bbt.c → drivers/mtd/nand/onenand/onenand_bbt.c

@@ -1,7 +1,5 @@
 // SPDX-License-Identifier: GPL-2.0
 /*
- *  linux/drivers/mtd/onenand/onenand_bbt.c
- *
  *  Bad Block Table support for the OneNAND driver
  *
  *  Copyright(c) 2005 Samsung Electronics

+ 0 - 0
drivers/mtd/onenand/samsung.c → drivers/mtd/nand/onenand/samsung.c


+ 0 - 0
drivers/mtd/onenand/samsung.h → drivers/mtd/nand/onenand/samsung.h


+ 537 - 0
drivers/mtd/nand/raw/Kconfig

@@ -0,0 +1,537 @@
+config MTD_NAND_ECC
+	tristate
+
+config MTD_NAND_ECC_SMC
+	bool "NAND ECC Smart Media byte order"
+	depends on MTD_NAND_ECC
+	default n
+	help
+	  Software ECC according to the Smart Media Specification.
+	  The original Linux implementation had byte 0 and 1 swapped.
+
+
+menuconfig MTD_NAND
+	tristate "Raw/Parallel NAND Device Support"
+	depends on MTD
+	select MTD_NAND_ECC
+	help
+	  This enables support for accessing all type of raw/parallel
+	  NAND flash devices. For further information see
+	  <http://www.linux-mtd.infradead.org/doc/nand.html>.
+
+if MTD_NAND
+
+config MTD_NAND_BCH
+	tristate
+	select BCH
+	depends on MTD_NAND_ECC_BCH
+	default MTD_NAND
+
+config MTD_NAND_ECC_BCH
+	bool "Support software BCH ECC"
+	default n
+	help
+	  This enables support for software BCH error correction. Binary BCH
+	  codes are more powerful and cpu intensive than traditional Hamming
+	  ECC codes. They are used with NAND devices requiring more than 1 bit
+	  of error correction.
+
+config MTD_SM_COMMON
+	tristate
+	default n
+
+config MTD_NAND_DENALI
+	tristate
+
+config MTD_NAND_DENALI_PCI
+        tristate "Support Denali NAND controller on Intel Moorestown"
+	select MTD_NAND_DENALI
+	depends on HAS_DMA && PCI
+        help
+          Enable the driver for NAND flash on Intel Moorestown, using the
+          Denali NAND controller core.
+
+config MTD_NAND_DENALI_DT
+	tristate "Support Denali NAND controller as a DT device"
+	select MTD_NAND_DENALI
+	depends on HAS_DMA && HAVE_CLK && OF
+	help
+	  Enable the driver for NAND flash on platforms using a Denali NAND
+	  controller as a DT device.
+
+config MTD_NAND_GPIO
+	tristate "GPIO assisted NAND Flash driver"
+	depends on GPIOLIB || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables a NAND flash driver where control signals are
+	  connected to GPIO pins, and commands and data are communicated
+	  via a memory mapped interface.
+
+config MTD_NAND_AMS_DELTA
+	tristate "NAND Flash device on Amstrad E3"
+	depends on MACH_AMS_DELTA
+	default y
+	help
+	  Support for NAND flash on Amstrad E3 (Delta).
+
+config MTD_NAND_OMAP2
+	tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone"
+	depends on (ARCH_OMAP2PLUS || ARCH_KEYSTONE)
+	help
+          Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4
+	  and Keystone platforms.
+
+config MTD_NAND_OMAP_BCH
+	depends on MTD_NAND_OMAP2
+	bool "Support hardware based BCH error correction"
+	default n
+	select BCH
+	help
+	  This config enables the ELM hardware engine, which can be used to
+	  locate and correct errors when using BCH ECC scheme. This offloads
+	  the cpu from doing ECC error searching and correction. However some
+	  legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine
+	  so this is optional for them.
+
+config MTD_NAND_OMAP_BCH_BUILD
+	def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
+
+config MTD_NAND_RICOH
+	tristate "Ricoh xD card reader"
+	default n
+	depends on PCI
+	select MTD_SM_COMMON
+	help
+	  Enable support for Ricoh R5C852 xD card reader
+	  You also need to enable ether
+	  NAND SSFDC (SmartMedia) read only translation layer' or new
+	  expermental, readwrite
+	  'SmartMedia/xD new translation layer'
+
+config MTD_NAND_AU1550
+	tristate "Au1550/1200 NAND support"
+	depends on MIPS_ALCHEMY
+	help
+	  This enables the driver for the NAND flash controller on the
+	  AMD/Alchemy 1550 SOC.
+
+config MTD_NAND_S3C2410
+	tristate "NAND Flash support for Samsung S3C SoCs"
+	depends on ARCH_S3C24XX || ARCH_S3C64XX
+	help
+	  This enables the NAND flash controller on the S3C24xx and S3C64xx
+	  SoCs
+
+	  No board specific support is done by this driver, each board
+	  must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_S3C2410_DEBUG
+	bool "Samsung S3C NAND driver debug"
+	depends on MTD_NAND_S3C2410
+	help
+	  Enable debugging of the S3C NAND driver
+
+config MTD_NAND_NDFC
+	tristate "NDFC NanD Flash Controller"
+	depends on 4xx
+	select MTD_NAND_ECC_SMC
+	help
+	 NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
+
+config MTD_NAND_S3C2410_CLKSTOP
+	bool "Samsung S3C NAND IDLE clock stop"
+	depends on MTD_NAND_S3C2410
+	default n
+	help
+	  Stop the clock to the NAND controller when there is no chip
+	  selected to save power. This will mean there is a small delay
+	  when the is NAND chip selected or released, but will save
+	  approximately 5mA of power when there is nothing happening.
+
+config MTD_NAND_TANGO
+	tristate "NAND Flash support for Tango chips"
+	depends on ARCH_TANGO || COMPILE_TEST
+	depends on HAS_DMA
+	help
+	  Enables the NAND Flash controller on Tango chips.
+
+config MTD_NAND_DISKONCHIP
+	tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)"
+	depends on HAS_IOMEM
+	select REED_SOLOMON
+	select REED_SOLOMON_DEC16
+	help
+	  This is a reimplementation of M-Systems DiskOnChip 2000,
+	  Millennium and Millennium Plus as a standard NAND device driver,
+	  as opposed to the earlier self-contained MTD device drivers.
+	  This should enable, among other things, proper JFFS2 operation on
+	  these devices.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+        bool "Advanced detection options for DiskOnChip"
+        depends on MTD_NAND_DISKONCHIP
+        help
+          This option allows you to specify nonstandard address at which to
+          probe for a DiskOnChip, or to change the detection options.  You
+          are unlikely to need any of this unless you are using LinuxBIOS.
+          Say 'N'.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
+        hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+        depends on MTD_NAND_DISKONCHIP
+        default "0"
+        ---help---
+        By default, the probe for DiskOnChip devices will look for a
+        DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+        This option allows you to specify a single address at which to probe
+        for the device, which is useful if you have other devices in that
+        range which get upset when they are probed.
+
+        (Note that on PowerPC, the normal probe will only check at
+        0xE4000000.)
+
+        Normally, you should leave this set to zero, to allow the probe at
+        the normal addresses.
+
+config MTD_NAND_DISKONCHIP_PROBE_HIGH
+        bool "Probe high addresses"
+        depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+        help
+          By default, the probe for DiskOnChip devices will look for a
+          DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+          This option changes to make it probe between 0xFFFC8000 and
+          0xFFFEE000.  Unless you are using LinuxBIOS, this is unlikely to be
+          useful to you.  Say 'N'.
+
+config MTD_NAND_DISKONCHIP_BBTWRITE
+	bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
+	depends on MTD_NAND_DISKONCHIP
+	help
+	  On DiskOnChip devices shipped with the INFTL filesystem (Millennium
+	  and 2000 TSOP/Alon), Linux reserves some space at the end of the
+	  device for the Bad Block Table (BBT).  If you have existing INFTL
+	  data on your device (created by non-Linux tools such as M-Systems'
+	  DOS drivers), your data might overlap the area Linux wants to use for
+	  the BBT.  If this is a concern for you, leave this option disabled and
+	  Linux will not write BBT data into this area.
+	  The downside of leaving this option disabled is that if bad blocks
+	  are detected by Linux, they will not be recorded in the BBT, which
+	  could cause future problems.
+	  Once you enable this option, new filesystems (INFTL or others, created
+	  in Linux or other operating systems) will not use the reserved area.
+	  The only reason not to enable this option is to prevent damage to
+	  preexisting filesystems.
+	  Even if you leave this disabled, you can enable BBT writes at module
+	  load time (assuming you build diskonchip as a module) with the module
+	  parameter "inftl_bbt_write=1".
+
+config MTD_NAND_DOCG4
+	tristate "Support for DiskOnChip G4"
+	depends on HAS_IOMEM
+	select BCH
+	select BITREVERSE
+	help
+	  Support for diskonchip G4 nand flash, found in various smartphones and
+	  PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
+	  Portege G900, Asus P526, and O2 XDA Zinc.
+
+	  With this driver you will be able to use UBI and create a ubifs on the
+	  device, so you may wish to consider enabling UBI and UBIFS as well.
+
+	  These devices ship with the Mys/Sandisk SAFTL formatting, for which
+	  there is currently no mtd parser, so you may want to use command line
+	  partitioning to segregate write-protected blocks. On the Treo680, the
+	  first five erase blocks (256KiB each) are write-protected, followed
+	  by the block containing the saftl partition table.  This is probably
+	  typical.
+
+config MTD_NAND_SHARPSL
+	tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
+	depends on ARCH_PXA
+
+config MTD_NAND_CAFE
+	tristate "NAND support for OLPC CAFÉ chip"
+	depends on PCI
+	select REED_SOLOMON
+	select REED_SOLOMON_DEC16
+	help
+	  Use NAND flash attached to the CAFÉ chip designed for the OLPC
+	  laptop.
+
+config MTD_NAND_CS553X
+	tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
+	depends on X86_32
+	depends on !UML && HAS_IOMEM
+	help
+	  The CS553x companion chips for the AMD Geode processor
+	  include NAND flash controllers with built-in hardware ECC
+	  capabilities; enabling this option will allow you to use
+	  these. The driver will check the MSRs to verify that the
+	  controller is enabled for NAND, and currently requires that
+	  the controller be in MMIO mode.
+
+	  If you say "m", the module will be called cs553x_nand.
+
+config MTD_NAND_ATMEL
+	tristate "Support for NAND Flash / SmartMedia on AT91"
+	depends on ARCH_AT91
+	select MFD_ATMEL_SMC
+	help
+	  Enables support for NAND Flash / Smart Media Card interface
+	  on Atmel AT91 processors.
+
+config MTD_NAND_MARVELL
+	tristate "NAND controller support on Marvell boards"
+	depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
+		   COMPILE_TEST
+	depends on HAS_IOMEM && HAS_DMA
+	help
+	  This enables the NAND flash controller driver for Marvell boards,
+	  including:
+	  - PXA3xx processors (NFCv1)
+	  - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
+	  - 64-bit Aramda platforms (7k, 8k) (NFCv2)
+
+config MTD_NAND_SLC_LPC32XX
+	tristate "NXP LPC32xx SLC Controller"
+	depends on ARCH_LPC32XX
+	help
+	  Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
+	  chips) NAND controller. This is the default for the PHYTEC 3250
+	  reference board which contains a NAND256R3A2CZA6 chip.
+
+	  Please check the actual NAND chip connected and its support
+	  by the SLC NAND controller.
+
+config MTD_NAND_MLC_LPC32XX
+	tristate "NXP LPC32xx MLC Controller"
+	depends on ARCH_LPC32XX
+	help
+	  Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
+	  controller. This is the default for the WORK92105 controller
+	  board.
+
+	  Please check the actual NAND chip connected and its support
+	  by the MLC NAND controller.
+
+config MTD_NAND_CM_X270
+	tristate "Support for NAND Flash on CM-X270 modules"
+	depends on MACH_ARMCORE
+
+config MTD_NAND_PASEMI
+	tristate "NAND support for PA Semi PWRficient"
+	depends on PPC_PASEMI
+	help
+	  Enables support for NAND Flash interface on PA Semi PWRficient
+	  based boards
+
+config MTD_NAND_TMIO
+	tristate "NAND Flash device on Toshiba Mobile IO Controller"
+	depends on MFD_TMIO
+	help
+	  Support for NAND flash connected to a Toshiba Mobile IO
+	  Controller in some PDAs, including the Sharp SL6000x.
+
+config MTD_NAND_NANDSIM
+	tristate "Support for NAND Flash Simulator"
+	help
+	  The simulator may simulate various NAND flash chips for the
+	  MTD nand layer.
+
+config MTD_NAND_GPMI_NAND
+        tristate "GPMI NAND Flash Controller driver"
+        depends on MTD_NAND && MXS_DMA
+        help
+	 Enables NAND Flash support for IMX23, IMX28 or IMX6.
+	 The GPMI controller is very powerful, with the help of BCH
+	 module, it can do the hardware ECC. The GPMI supports several
+	 NAND flashs at the same time.
+
+config MTD_NAND_BRCMNAND
+	tristate "Broadcom STB NAND controller"
+	depends on ARM || ARM64 || MIPS
+	help
+	  Enables the Broadcom NAND controller driver. The controller was
+	  originally designed for Set-Top Box but is used on various BCM7xxx,
+	  BCM3xxx, BCM63xxx, iProc/Cygnus and more.
+
+config MTD_NAND_BCM47XXNFLASH
+	tristate "Support for NAND flash on BCM4706 BCMA bus"
+	depends on BCMA_NFLASH
+	help
+	  BCMA bus can have various flash memories attached, they are
+	  registered by bcma as platform devices. This enables driver for
+	  NAND flash memories. For now only BCM4706 is supported.
+
+config MTD_NAND_PLATFORM
+	tristate "Support for generic platform NAND driver"
+	depends on HAS_IOMEM
+	help
+	  This implements a generic NAND driver for on-SOC platform
+	  devices. You will need to provide platform-specific functions
+	  via platform_data.
+
+config MTD_NAND_ORION
+	tristate "NAND Flash support for Marvell Orion SoC"
+	depends on PLAT_ORION
+	help
+	  This enables the NAND flash controller on Orion machines.
+
+	  No board specific support is done by this driver, each board
+	  must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_OXNAS
+	tristate "NAND Flash support for Oxford Semiconductor SoC"
+	depends on ARCH_OXNAS || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the NAND flash controller on Oxford Semiconductor SoCs.
+
+config MTD_NAND_FSL_ELBC
+	tristate "NAND support for Freescale eLBC controllers"
+	depends on FSL_SOC
+	select FSL_LBC
+	help
+	  Various Freescale chips, including the 8313, include a NAND Flash
+	  Controller Module with built-in hardware ECC capabilities.
+	  Enabling this option will enable you to use this to control
+	  external NAND devices.
+
+config MTD_NAND_FSL_IFC
+	tristate "NAND support for Freescale IFC controller"
+	depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A
+	select FSL_IFC
+	select MEMORY
+	help
+	  Various Freescale chips e.g P1010, include a NAND Flash machine
+	  with built-in hardware ECC capabilities.
+	  Enabling this option will enable you to use this to control
+	  external NAND devices.
+
+config MTD_NAND_FSL_UPM
+	tristate "Support for NAND on Freescale UPM"
+	depends on PPC_83xx || PPC_85xx
+	select FSL_LBC
+	help
+	  Enables support for NAND Flash chips wired onto Freescale PowerPC
+	  processor localbus with User-Programmable Machine support.
+
+config MTD_NAND_MPC5121_NFC
+	tristate "MPC5121 built-in NAND Flash Controller support"
+	depends on PPC_MPC512x
+	help
+	  This enables the driver for the NAND flash controller on the
+	  MPC5121 SoC.
+
+config MTD_NAND_VF610_NFC
+	tristate "Support for Freescale NFC for VF610/MPC5125"
+	depends on (SOC_VF610 || COMPILE_TEST)
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND Flash Controller on some Freescale
+	  processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
+	  The driver supports a maximum 2k page size. With 2k pages and
+	  64 bytes or more of OOB, hardware ECC with up to 32-bit error
+	  correction is supported. Hardware ECC is only enabled through
+	  device tree.
+
+config MTD_NAND_MXC
+	tristate "MXC NAND support"
+	depends on ARCH_MXC
+	help
+	  This enables the driver for the NAND flash controller on the
+	  MXC processors.
+
+config MTD_NAND_SH_FLCTL
+	tristate "Support for NAND on Renesas SuperH FLCTL"
+	depends on SUPERH || COMPILE_TEST
+	depends on HAS_IOMEM
+	depends on HAS_DMA
+	help
+	  Several Renesas SuperH CPU has FLCTL. This option enables support
+	  for NAND Flash using FLCTL.
+
+config MTD_NAND_DAVINCI
+        tristate "Support NAND on DaVinci/Keystone SoC"
+        depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF)
+        help
+	  Enable the driver for NAND flash chips on Texas Instruments
+	  DaVinci/Keystone processors.
+
+config MTD_NAND_TXX9NDFMC
+	tristate "NAND Flash support for TXx9 SoC"
+	depends on SOC_TX4938 || SOC_TX4939
+	help
+	  This enables the NAND flash controller on the TXx9 SoCs.
+
+config MTD_NAND_SOCRATES
+	tristate "Support for NAND on Socrates board"
+	depends on SOCRATES
+	help
+	  Enables support for NAND Flash chips wired onto Socrates board.
+
+config MTD_NAND_NUC900
+	tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards."
+	depends on ARCH_W90X900
+	help
+	  This enables the driver for the NAND Flash on evaluation board based
+	  on w90p910 / NUC9xx.
+
+config MTD_NAND_JZ4740
+	tristate "Support for JZ4740 SoC NAND controller"
+	depends on MACH_JZ4740
+	help
+		Enables support for NAND Flash on JZ4740 SoC based boards.
+
+config MTD_NAND_JZ4780
+	tristate "Support for NAND on JZ4780 SoC"
+	depends on MACH_JZ4780 && JZ4780_NEMC
+	help
+	  Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
+	  based boards, using the BCH controller for hardware error correction.
+
+config MTD_NAND_FSMC
+	tristate "Support for NAND on ST Micros FSMC"
+	depends on OF
+	depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300
+	help
+	  Enables support for NAND Flash chips on the ST Microelectronics
+	  Flexible Static Memory Controller (FSMC)
+
+config MTD_NAND_XWAY
+	bool "Support for NAND on Lantiq XWAY SoC"
+	depends on LANTIQ && SOC_TYPE_XWAY
+	help
+	  Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
+	  to the External Bus Unit (EBU).
+
+config MTD_NAND_SUNXI
+	tristate "Support for NAND on Allwinner SoCs"
+	depends on ARCH_SUNXI
+	help
+	  Enables support for NAND Flash chips on Allwinner SoCs.
+
+config MTD_NAND_HISI504
+	tristate "Support for NAND controller on Hisilicon SoC Hip04"
+	depends on ARCH_HISI || COMPILE_TEST
+	depends on HAS_DMA
+	help
+	  Enables support for NAND controller on Hisilicon SoC Hip04.
+
+config MTD_NAND_QCOM
+	tristate "Support for NAND on QCOM SoCs"
+	depends on ARCH_QCOM
+	help
+	  Enables support for NAND flash chips on SoCs containing the EBI2 NAND
+	  controller. This controller is found on IPQ806x SoC.
+
+config MTD_NAND_MTK
+	tristate "Support for NAND controller on MTK SoCs"
+	depends on ARCH_MEDIATEK || COMPILE_TEST
+	depends on HAS_DMA
+	help
+	  Enables support for NAND controller on MTK SoCs.
+	  This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+
+endif # MTD_NAND

+ 66 - 0
drivers/mtd/nand/raw/Makefile

@@ -0,0 +1,66 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-$(CONFIG_MTD_NAND)			+= nand.o
+obj-$(CONFIG_MTD_NAND_ECC)		+= nand_ecc.o
+obj-$(CONFIG_MTD_NAND_BCH)		+= nand_bch.o
+obj-$(CONFIG_MTD_SM_COMMON) 		+= sm_common.o
+
+obj-$(CONFIG_MTD_NAND_CAFE)		+= cafe_nand.o
+obj-$(CONFIG_MTD_NAND_AMS_DELTA)	+= ams-delta.o
+obj-$(CONFIG_MTD_NAND_DENALI)		+= denali.o
+obj-$(CONFIG_MTD_NAND_DENALI_PCI)	+= denali_pci.o
+obj-$(CONFIG_MTD_NAND_DENALI_DT)	+= denali_dt.o
+obj-$(CONFIG_MTD_NAND_AU1550)		+= au1550nd.o
+obj-$(CONFIG_MTD_NAND_S3C2410)		+= s3c2410.o
+obj-$(CONFIG_MTD_NAND_TANGO)		+= tango_nand.o
+obj-$(CONFIG_MTD_NAND_DAVINCI)		+= davinci_nand.o
+obj-$(CONFIG_MTD_NAND_DISKONCHIP)	+= diskonchip.o
+obj-$(CONFIG_MTD_NAND_DOCG4)		+= docg4.o
+obj-$(CONFIG_MTD_NAND_FSMC)		+= fsmc_nand.o
+obj-$(CONFIG_MTD_NAND_SHARPSL)		+= sharpsl.o
+obj-$(CONFIG_MTD_NAND_NANDSIM)		+= nandsim.o
+obj-$(CONFIG_MTD_NAND_CS553X)		+= cs553x_nand.o
+obj-$(CONFIG_MTD_NAND_NDFC)		+= ndfc.o
+obj-$(CONFIG_MTD_NAND_ATMEL)		+= atmel/
+obj-$(CONFIG_MTD_NAND_GPIO)		+= gpio.o
+omap2_nand-objs := omap2.o
+obj-$(CONFIG_MTD_NAND_OMAP2) 		+= omap2_nand.o
+obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD)	+= omap_elm.o
+obj-$(CONFIG_MTD_NAND_CM_X270)		+= cmx270_nand.o
+obj-$(CONFIG_MTD_NAND_MARVELL)		+= marvell_nand.o
+obj-$(CONFIG_MTD_NAND_TMIO)		+= tmio_nand.o
+obj-$(CONFIG_MTD_NAND_PLATFORM)		+= plat_nand.o
+obj-$(CONFIG_MTD_NAND_PASEMI)		+= pasemi_nand.o
+obj-$(CONFIG_MTD_NAND_ORION)		+= orion_nand.o
+obj-$(CONFIG_MTD_NAND_OXNAS)		+= oxnas_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_ELBC)		+= fsl_elbc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_IFC)		+= fsl_ifc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_UPM)		+= fsl_upm.o
+obj-$(CONFIG_MTD_NAND_SLC_LPC32XX)      += lpc32xx_slc.o
+obj-$(CONFIG_MTD_NAND_MLC_LPC32XX)      += lpc32xx_mlc.o
+obj-$(CONFIG_MTD_NAND_SH_FLCTL)		+= sh_flctl.o
+obj-$(CONFIG_MTD_NAND_MXC)		+= mxc_nand.o
+obj-$(CONFIG_MTD_NAND_SOCRATES)		+= socrates_nand.o
+obj-$(CONFIG_MTD_NAND_TXX9NDFMC)	+= txx9ndfmc.o
+obj-$(CONFIG_MTD_NAND_NUC900)		+= nuc900_nand.o
+obj-$(CONFIG_MTD_NAND_MPC5121_NFC)	+= mpc5121_nfc.o
+obj-$(CONFIG_MTD_NAND_VF610_NFC)	+= vf610_nfc.o
+obj-$(CONFIG_MTD_NAND_RICOH)		+= r852.o
+obj-$(CONFIG_MTD_NAND_JZ4740)		+= jz4740_nand.o
+obj-$(CONFIG_MTD_NAND_JZ4780)		+= jz4780_nand.o jz4780_bch.o
+obj-$(CONFIG_MTD_NAND_GPMI_NAND)	+= gpmi-nand/
+obj-$(CONFIG_MTD_NAND_XWAY)		+= xway_nand.o
+obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)	+= bcm47xxnflash/
+obj-$(CONFIG_MTD_NAND_SUNXI)		+= sunxi_nand.o
+obj-$(CONFIG_MTD_NAND_HISI504)	        += hisi504_nand.o
+obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
+obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
+obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
+
+nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
+nand-objs += nand_amd.o
+nand-objs += nand_hynix.o
+nand-objs += nand_macronix.o
+nand-objs += nand_micron.o
+nand-objs += nand_samsung.o
+nand-objs += nand_toshiba.o

+ 7 - 6
drivers/mtd/nand/ams-delta.c → drivers/mtd/nand/raw/ams-delta.c

@@ -1,11 +1,12 @@
 /*
- *  drivers/mtd/nand/ams-delta.c
- *
  *  Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
  *
- *  Derived from drivers/mtd/toto.c
+ *  Derived from drivers/mtd/nand/toto.c (removed in v2.6.28)
+ *    Copyright (c) 2003 Texas Instruments
+ *    Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
+ *
  *  Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
- *  Partially stolen from drivers/mtd/nand/plat_nand.c
+ *  Partially stolen from plat_nand.c
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -185,7 +186,7 @@ static int ams_delta_init(struct platform_device *pdev)
 	/* Allocate memory for MTD device structure and private data */
 	this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
 	if (!this) {
-		printk (KERN_WARNING "Unable to allocate E3 NAND MTD device structure.\n");
+		pr_warn("Unable to allocate E3 NAND MTD device structure.\n");
 		err = -ENOMEM;
 		goto out;
 	}
@@ -219,7 +220,7 @@ static int ams_delta_init(struct platform_device *pdev)
 		this->dev_ready = ams_delta_nand_ready;
 	} else {
 		this->dev_ready = NULL;
-		printk(KERN_NOTICE "Couldn't request gpio for Delta NAND ready.\n");
+		pr_notice("Couldn't request gpio for Delta NAND ready.\n");
 	}
 	/* 25 us command delay time */
 	this->chip_delay = 30;

+ 0 - 0
drivers/mtd/nand/atmel/Makefile → drivers/mtd/nand/raw/atmel/Makefile


+ 2 - 2
drivers/mtd/nand/atmel/nand-controller.c → drivers/mtd/nand/raw/atmel/nand-controller.c

@@ -9,10 +9,10 @@
  *
  *   Copyright 2003 Rick Bronson
  *
- *   Derived from drivers/mtd/nand/autcpu12.c
+ *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
  *
- *   Derived from drivers/mtd/spia.c
+ *   Derived from drivers/mtd/spia.c (removed in v3.8)
  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
  *
  *

+ 2 - 2
drivers/mtd/nand/atmel/pmecc.c → drivers/mtd/nand/raw/atmel/pmecc.c

@@ -9,10 +9,10 @@
  *
  *   Copyright 2003 Rick Bronson
  *
- *   Derived from drivers/mtd/nand/autcpu12.c
+ *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
  *
- *   Derived from drivers/mtd/spia.c
+ *   Derived from drivers/mtd/spia.c (removed in v3.8)
  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
  *
  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263

+ 2 - 2
drivers/mtd/nand/atmel/pmecc.h → drivers/mtd/nand/raw/atmel/pmecc.h

@@ -9,10 +9,10 @@
  *
  *    Copyright © 2003 Rick Bronson
  *
- *    Derived from drivers/mtd/nand/autcpu12.c
+ *    Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
  *        Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
  *
- *    Derived from drivers/mtd/spia.c
+ *    Derived from drivers/mtd/spia.c (removed in v3.8)
  *        Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
  *
  *

+ 0 - 2
drivers/mtd/nand/au1550nd.c → drivers/mtd/nand/raw/au1550nd.c

@@ -1,6 +1,4 @@
 /*
- *  drivers/mtd/nand/au1550nd.c
- *
  *  Copyright (C) 2004 Embedded Edge, LLC
  *
  * This program is free software; you can redistribute it and/or modify

+ 0 - 0
drivers/mtd/nand/bcm47xxnflash/Makefile → drivers/mtd/nand/raw/bcm47xxnflash/Makefile


+ 0 - 0
drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h → drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h


+ 0 - 0
drivers/mtd/nand/bcm47xxnflash/main.c → drivers/mtd/nand/raw/bcm47xxnflash/main.c


+ 2 - 2
drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c → drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c

@@ -392,8 +392,8 @@ int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n)
 	b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte;
 	b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf;
 	b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf;
-	b47n->nand_chip.onfi_set_features = nand_onfi_get_set_features_notsupp;
-	b47n->nand_chip.onfi_get_features = nand_onfi_get_set_features_notsupp;
+	b47n->nand_chip.set_features = nand_get_set_features_notsupp;
+	b47n->nand_chip.get_features = nand_get_set_features_notsupp;
 
 	nand_chip->chip_delay = 50;
 	b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH;

+ 0 - 0
drivers/mtd/nand/brcmnand/Makefile → drivers/mtd/nand/raw/brcmnand/Makefile


+ 0 - 0
drivers/mtd/nand/brcmnand/bcm63138_nand.c → drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c


+ 0 - 0
drivers/mtd/nand/brcmnand/bcm6368_nand.c → drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c


+ 5 - 1
drivers/mtd/nand/brcmnand/brcmnand.c → drivers/mtd/nand/raw/brcmnand/brcmnand.c

@@ -2297,7 +2297,11 @@ static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
 	if (ret)
 		return ret;
 
-	return mtd_device_register(mtd, NULL, 0);
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		nand_cleanup(chip);
+
+	return ret;
 }
 
 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,

+ 0 - 0
drivers/mtd/nand/brcmnand/brcmnand.h → drivers/mtd/nand/raw/brcmnand/brcmnand.h


+ 0 - 0
drivers/mtd/nand/brcmnand/brcmstb_nand.c → drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c


+ 0 - 0
drivers/mtd/nand/brcmnand/iproc_nand.c → drivers/mtd/nand/raw/brcmnand/iproc_nand.c


+ 9 - 5
drivers/mtd/nand/cafe_nand.c → drivers/mtd/nand/raw/cafe_nand.c

@@ -645,8 +645,8 @@ static int cafe_nand_probe(struct pci_dev *pdev,
 	cafe->nand.read_buf = cafe_read_buf;
 	cafe->nand.write_buf = cafe_write_buf;
 	cafe->nand.select_chip = cafe_select_chip;
-	cafe->nand.onfi_set_features = nand_onfi_get_set_features_notsupp;
-	cafe->nand.onfi_get_features = nand_onfi_get_set_features_notsupp;
+	cafe->nand.set_features = nand_get_set_features_notsupp;
+	cafe->nand.get_features = nand_get_set_features_notsupp;
 
 	cafe->nand.chip_delay = 0;
 
@@ -751,8 +751,8 @@ static int cafe_nand_probe(struct pci_dev *pdev,
 		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
 	} else {
-		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
-		       mtd->writesize);
+		pr_warn("Unexpected NAND flash writesize %d. Aborting\n",
+			mtd->writesize);
 		goto out_free_dma;
 	}
 	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
@@ -774,10 +774,14 @@ static int cafe_nand_probe(struct pci_dev *pdev,
 	pci_set_drvdata(pdev, mtd);
 
 	mtd->name = "cafe_nand";
-	mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+	err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+	if (err)
+		goto out_cleanup_nand;
 
 	goto out;
 
+ out_cleanup_nand:
+	nand_cleanup(&cafe->nand);
  out_free_dma:
 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  out_irq:

+ 1 - 3
drivers/mtd/nand/cmx270_nand.c → drivers/mtd/nand/raw/cmx270_nand.c

@@ -1,10 +1,8 @@
 /*
- *  linux/drivers/mtd/nand/cmx270-nand.c
- *
  *  Copyright (C) 2006 Compulab, Ltd.
  *  Mike Rapoport <mike@compulab.co.il>
  *
- *  Derived from drivers/mtd/nand/h1910.c
+ *  Derived from drivers/mtd/nand/h1910.c (removed in v3.10)
  *       Copyright (C) 2002 Marius Gröger (mag@sysgo.de)
  *       Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
  *

+ 5 - 6
drivers/mtd/nand/cs553x_nand.c → drivers/mtd/nand/raw/cs553x_nand.c

@@ -1,6 +1,4 @@
 /*
- * drivers/mtd/nand/cs553x_nand.c
- *
  * (C) 2005, 2006 Red Hat Inc.
  *
  * Author: David Woodhouse <dwmw2@infradead.org>
@@ -189,10 +187,11 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
 	struct nand_chip *this;
 	struct mtd_info *new_mtd;
 
-	printk(KERN_NOTICE "Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio?"MM":"P", adr);
+	pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n",
+		  cs, mmio ? "MM" : "P", adr);
 
 	if (!mmio) {
-		printk(KERN_NOTICE "PIO mode not yet implemented for CS553X NAND controller\n");
+		pr_notice("PIO mode not yet implemented for CS553X NAND controller\n");
 		return -ENXIO;
 	}
 
@@ -211,7 +210,7 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
 	/* map physical address */
 	this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096);
 	if (!this->IO_ADDR_R) {
-		printk(KERN_WARNING "ioremap cs553x NAND @0x%08lx failed\n", adr);
+		pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr);
 		err = -EIO;
 		goto out_mtd;
 	}
@@ -295,7 +294,7 @@ static int __init cs553x_init(void)
 	/* If it doesn't have the NAND controller enabled, abort */
 	rdmsrl(MSR_DIVIL_BALL_OPTS, val);
 	if (val & PIN_OPT_IDE) {
-		printk(KERN_INFO "CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
+		pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
 		return -ENXIO;
 	}
 

+ 4 - 1
drivers/mtd/nand/davinci_nand.c → drivers/mtd/nand/raw/davinci_nand.c

@@ -826,7 +826,7 @@ static int nand_davinci_probe(struct platform_device *pdev)
 	else
 		ret = mtd_device_register(mtd, NULL, 0);
 	if (ret < 0)
-		goto err;
+		goto err_cleanup_nand;
 
 	val = davinci_nand_readl(info, NRCSR_OFFSET);
 	dev_info(&pdev->dev, "controller rev. %d.%d\n",
@@ -834,6 +834,9 @@ static int nand_davinci_probe(struct platform_device *pdev)
 
 	return 0;
 
+err_cleanup_nand:
+	nand_cleanup(&info->chip);
+
 err:
 	clk_disable_unprepare(info->clk);
 

+ 3 - 1
drivers/mtd/nand/denali.c → drivers/mtd/nand/raw/denali.c

@@ -1384,10 +1384,12 @@ int denali_init(struct denali_nand_info *denali)
 	ret = mtd_device_register(mtd, NULL, 0);
 	if (ret) {
 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
-		goto free_buf;
+		goto cleanup_nand;
 	}
 	return 0;
 
+cleanup_nand:
+	nand_cleanup(chip);
 free_buf:
 	kfree(denali->buf);
 disable_irq:

+ 0 - 0
drivers/mtd/nand/denali.h → drivers/mtd/nand/raw/denali.h


+ 0 - 0
drivers/mtd/nand/denali_dt.c → drivers/mtd/nand/raw/denali_dt.c


+ 0 - 0
drivers/mtd/nand/denali_pci.c → drivers/mtd/nand/raw/denali_pci.c


+ 40 - 38
drivers/mtd/nand/diskonchip.c → drivers/mtd/nand/raw/diskonchip.c

@@ -1,6 +1,4 @@
 /*
- * drivers/mtd/nand/diskonchip.c
- *
  * (C) 2003 Red Hat, Inc.
  * (C) 2004 Dan Brown <dan_brown@ieee.org>
  * (C) 2004 Kalev Lember <kalev@smartlink.ee>
@@ -411,7 +409,7 @@ static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 
 		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
-			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+			pr_info("DiskOnChip 2000 responds to DWORD access\n");
 			this->read_buf = &doc2000_readbuf_dword;
 		}
 	}
@@ -438,7 +436,7 @@ static void __init doc2000_count_chips(struct mtd_info *mtd)
 			break;
 	}
 	doc->chips_per_floor = i;
-	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+	pr_debug("Detected %d chips per floor.\n", i);
 }
 
 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
@@ -934,14 +932,15 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 
 		ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
 		if (ret > 0)
-			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+			pr_err("doc200x_correct_data corrected %d errors\n",
+			       ret);
 	}
 	if (DoC_is_MillenniumPlus(doc))
 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 	else
 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 	if (no_ecc_failures && mtd_is_eccerr(ret)) {
-		printk(KERN_ERR "suppressing ECC failure\n");
+		pr_err("suppressing ECC failure\n");
 		ret = 0;
 	}
 	return ret;
@@ -1014,11 +1013,11 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
 		if (retlen != mtd->writesize)
 			continue;
 		if (ret) {
-			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
+			pr_warn("ECC error scanning DOC at 0x%x\n", offs);
 		}
 		if (memcmp(buf, id, 6))
 			continue;
-		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+		pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
 		if (doc->mh0_page == -1) {
 			doc->mh0_page = offs >> this->page_shift;
 			if (!findmirror)
@@ -1029,7 +1028,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
 		return 2;
 	}
 	if (doc->mh0_page == -1) {
-		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+		pr_warn("DiskOnChip %s Media Header not found.\n", id);
 		return 0;
 	}
 	/* Only one mediaheader was found.  We want buf to contain a
@@ -1038,7 +1037,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
 	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
 	if (retlen != mtd->writesize) {
 		/* Insanity.  Give up. */
-		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+		pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
 		return 0;
 	}
 	return 1;
@@ -1068,11 +1067,11 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
 	le16_to_cpus(&mh->FirstPhysicalEUN);
 	le32_to_cpus(&mh->FormattedSize);
 
-	printk(KERN_INFO "    DataOrgID        = %s\n"
-			 "    NumEraseUnits    = %d\n"
-			 "    FirstPhysicalEUN = %d\n"
-			 "    FormattedSize    = %d\n"
-			 "    UnitSizeFactor   = %d\n",
+	pr_info("    DataOrgID        = %s\n"
+		"    NumEraseUnits    = %d\n"
+		"    FirstPhysicalEUN = %d\n"
+		"    FormattedSize    = %d\n"
+		"    UnitSizeFactor   = %d\n",
 		mh->DataOrgID, mh->NumEraseUnits,
 		mh->FirstPhysicalEUN, mh->FormattedSize,
 		mh->UnitSizeFactor);
@@ -1092,7 +1091,7 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
 			maxblocks = min(32768U, (maxblocks << 1) + psize);
 			mh->UnitSizeFactor--;
 		}
-		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+		pr_warn("UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
 	}
 
 	/* NOTE: The lines below modify internal variables of the NAND and MTD
@@ -1103,13 +1102,13 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
 	if (mh->UnitSizeFactor != 0xff) {
 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
-		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+		pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
 		blocks = mtd->size >> this->bbt_erase_shift;
 		maxblocks = min(32768U, mtd->erasesize - psize);
 	}
 
 	if (blocks > maxblocks) {
-		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
+		pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
 		goto out;
 	}
 
@@ -1180,14 +1179,14 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
 	le32_to_cpus(&mh->FormatFlags);
 	le32_to_cpus(&mh->PercentUsed);
 
-	printk(KERN_INFO "    bootRecordID          = %s\n"
-			 "    NoOfBootImageBlocks   = %d\n"
-			 "    NoOfBinaryPartitions  = %d\n"
-			 "    NoOfBDTLPartitions    = %d\n"
-			 "    BlockMultiplerBits    = %d\n"
-			 "    FormatFlgs            = %d\n"
-			 "    OsakVersion           = %d.%d.%d.%d\n"
-			 "    PercentUsed           = %d\n",
+	pr_info("    bootRecordID          = %s\n"
+		"    NoOfBootImageBlocks   = %d\n"
+		"    NoOfBinaryPartitions  = %d\n"
+		"    NoOfBDTLPartitions    = %d\n"
+		"    BlockMultiplerBits    = %d\n"
+		"    FormatFlgs            = %d\n"
+		"    OsakVersion           = %d.%d.%d.%d\n"
+		"    PercentUsed           = %d\n",
 		mh->bootRecordID, mh->NoOfBootImageBlocks,
 		mh->NoOfBinaryPartitions,
 		mh->NoOfBDTLPartitions,
@@ -1202,13 +1201,13 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
 
 	blocks = mtd->size >> vshift;
 	if (blocks > 32768) {
-		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
+		pr_err("BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
 		goto out;
 	}
 
 	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
 	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
-		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
+		pr_err("Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
 		goto out;
 	}
 
@@ -1222,7 +1221,7 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
 		le32_to_cpus(&ip->spareUnits);
 		le32_to_cpus(&ip->Reserved0);
 
-		printk(KERN_INFO	"    PARTITION[%d] ->\n"
+		pr_info("    PARTITION[%d] ->\n"
 			"        virtualUnits    = %d\n"
 			"        firstUnit       = %d\n"
 			"        lastUnit        = %d\n"
@@ -1308,7 +1307,7 @@ static int __init inftl_scan_bbt(struct mtd_info *mtd)
 	struct mtd_partition parts[5];
 
 	if (this->numchips > doc->chips_per_floor) {
-		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+		pr_err("Multi-floor INFTL devices not yet supported.\n");
 		return -EIO;
 	}
 
@@ -1436,7 +1435,8 @@ static int __init doc_probe(unsigned long physadr)
 		return -EBUSY;
 	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
 	if (!virtadr) {
-		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+		pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
+		       DOC_IOREMAP_LEN, physadr);
 		ret = -EIO;
 		goto error_ioremap;
 	}
@@ -1495,7 +1495,7 @@ static int __init doc_probe(unsigned long physadr)
 			reg = DoC_Mplus_Toggle;
 			break;
 		case DOC_ChipID_DocMilPlus32:
-			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+			pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
 		default:
 			ret = -ENODEV;
 			goto notfound;
@@ -1511,7 +1511,7 @@ static int __init doc_probe(unsigned long physadr)
 	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
 	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
 	if ((tmp == tmpb) || (tmp != tmpc)) {
-		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+		pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
 		ret = -ENODEV;
 		goto notfound;
 	}
@@ -1545,12 +1545,13 @@ static int __init doc_probe(unsigned long physadr)
 		}
 		newval = ~newval;
 		if (oldval == newval) {
-			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+			pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
+				 doc->physadr, physadr);
 			goto notfound;
 		}
 	}
 
-	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+	pr_notice("DiskOnChip found at 0x%lx\n", physadr);
 
 	len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
 	      (2 * sizeof(struct nand_bbt_descr));
@@ -1665,12 +1666,13 @@ static int __init init_nanddoc(void)
 	 */
 	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
 	if (!rs_decoder) {
-		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+		pr_err("DiskOnChip: Could not create a RS decoder\n");
 		return -ENOMEM;
 	}
 
 	if (doc_config_location) {
-		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+		pr_info("Using configured DiskOnChip probe address 0x%lx\n",
+			doc_config_location);
 		ret = doc_probe(doc_config_location);
 		if (ret < 0)
 			goto outerr;
@@ -1682,7 +1684,7 @@ static int __init init_nanddoc(void)
 	/* No banner message any more. Print a message if no DiskOnChip
 	   found, so the user knows we at least tried. */
 	if (!doclist) {
-		printk(KERN_INFO "No valid DiskOnChip devices found\n");
+		pr_info("No valid DiskOnChip devices found\n");
 		ret = -ENODEV;
 		goto outerr;
 	}

+ 2 - 2
drivers/mtd/nand/docg4.c → drivers/mtd/nand/raw/docg4.c

@@ -1269,8 +1269,8 @@ static void __init init_mtd_structs(struct mtd_info *mtd)
 	nand->read_buf = docg4_read_buf;
 	nand->write_buf = docg4_write_buf16;
 	nand->erase = docg4_erase_block;
-	nand->onfi_set_features = nand_onfi_get_set_features_notsupp;
-	nand->onfi_get_features = nand_onfi_get_set_features_notsupp;
+	nand->set_features = nand_get_set_features_notsupp;
+	nand->get_features = nand_get_set_features_notsupp;
 	nand->ecc.read_page = docg4_read_page;
 	nand->ecc.write_page = docg4_write_page;
 	nand->ecc.read_page_raw = docg4_read_page_raw;

+ 4 - 4
drivers/mtd/nand/fsl_elbc_nand.c → drivers/mtd/nand/raw/fsl_elbc_nand.c

@@ -775,8 +775,8 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 	chip->select_chip = fsl_elbc_select_chip;
 	chip->cmdfunc = fsl_elbc_cmdfunc;
 	chip->waitfunc = fsl_elbc_wait;
-	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
-	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+	chip->set_features = nand_get_set_features_notsupp;
+	chip->get_features = nand_get_set_features_notsupp;
 
 	chip->bbt_td = &bbt_main_descr;
 	chip->bbt_md = &bbt_mirror_descr;
@@ -929,8 +929,8 @@ static int fsl_elbc_nand_probe(struct platform_device *pdev)
 	mtd_device_parse_register(mtd, part_probe_types, NULL,
 				  NULL, 0);
 
-	printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
-	       (unsigned long long)res.start, priv->bank);
+	pr_info("eLBC NAND device at 0x%llx, bank %d\n",
+		(unsigned long long)res.start, priv->bank);
 	return 0;
 
 err:

+ 3 - 3
drivers/mtd/nand/fsl_ifc_nand.c → drivers/mtd/nand/raw/fsl_ifc_nand.c

@@ -799,7 +799,7 @@ static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
 			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 
 	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
-		printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n");
+		pr_err("fsl-ifc: Failed to Initialise SRAM\n");
 
 	/* Restore CSOR and CSOR_ext */
 	ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
@@ -832,8 +832,8 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
 	chip->select_chip = fsl_ifc_select_chip;
 	chip->cmdfunc = fsl_ifc_cmdfunc;
 	chip->waitfunc = fsl_ifc_wait;
-	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
-	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+	chip->set_features = nand_get_set_features_notsupp;
+	chip->get_features = nand_get_set_features_notsupp;
 
 	chip->bbt_td = &bbt_main_descr;
 	chip->bbt_md = &bbt_mirror_descr;

+ 0 - 0
drivers/mtd/nand/fsl_upm.c → drivers/mtd/nand/raw/fsl_upm.c


+ 142 - 110
drivers/mtd/nand/fsmc_nand.c → drivers/mtd/nand/raw/fsmc_nand.c

@@ -1,6 +1,4 @@
 /*
- * drivers/mtd/nand/fsmc_nand.c
- *
  * ST Microelectronics
  * Flexible Static Memory Controller (FSMC)
  * Driver for NAND portions
@@ -9,7 +7,9 @@
  * Vipin Kumar <vipin.kumar@st.com>
  * Ashish Priyadarshi
  *
- * Based on drivers/mtd/nand/nomadik_nand.c
+ * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
+ *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
+ *  Copyright © 2009 Alessandro Rubini
  *
  * This file is licensed under the terms of the GNU General Public
  * License version 2. This program is licensed "as is" without any
@@ -103,10 +103,6 @@
 #define ECC3			0x1C
 #define FSMC_NAND_BANK_SZ	0x20
 
-#define FSMC_NAND_REG(base, bank, reg)		(base + FSMC_NOR_REG_SIZE + \
-						(FSMC_NAND_BANK_SZ * (bank)) + \
-						reg)
-
 #define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ)
 
 struct fsmc_nand_timings {
@@ -143,7 +139,7 @@ enum access_mode {
  * @data_va:		NAND port for Data.
  * @cmd_va:		NAND port for Command.
  * @addr_va:		NAND port for Address.
- * @regs_va:		FSMC regs base address.
+ * @regs_va:		Registers base address for a given bank.
  */
 struct fsmc_nand_data {
 	u32			pid;
@@ -257,45 +253,6 @@ static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
 	return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
 }
 
-/*
- * fsmc_cmd_ctrl - For facilitaing Hardware access
- * This routine allows hardware specific access to control-lines(ALE,CLE)
- */
-static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
-{
-	struct nand_chip *this = mtd_to_nand(mtd);
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	void __iomem *regs = host->regs_va;
-	unsigned int bank = host->bank;
-
-	if (ctrl & NAND_CTRL_CHANGE) {
-		u32 pc;
-
-		if (ctrl & NAND_CLE) {
-			this->IO_ADDR_R = host->cmd_va;
-			this->IO_ADDR_W = host->cmd_va;
-		} else if (ctrl & NAND_ALE) {
-			this->IO_ADDR_R = host->addr_va;
-			this->IO_ADDR_W = host->addr_va;
-		} else {
-			this->IO_ADDR_R = host->data_va;
-			this->IO_ADDR_W = host->data_va;
-		}
-
-		pc = readl(FSMC_NAND_REG(regs, bank, PC));
-		if (ctrl & NAND_NCE)
-			pc |= FSMC_ENABLE;
-		else
-			pc &= ~FSMC_ENABLE;
-		writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
-	}
-
-	mb();
-
-	if (cmd != NAND_CMD_NONE)
-		writeb_relaxed(cmd, this->IO_ADDR_W);
-}
-
 /*
  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
  *
@@ -307,8 +264,6 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host,
 {
 	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 	uint32_t tclr, tar, thiz, thold, twait, tset;
-	unsigned int bank = host->bank;
-	void __iomem *regs = host->regs_va;
 
 	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
@@ -318,18 +273,14 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host,
 	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 
 	if (host->nand.options & NAND_BUSWIDTH_16)
-		writel_relaxed(value | FSMC_DEVWID_16,
-				FSMC_NAND_REG(regs, bank, PC));
+		writel_relaxed(value | FSMC_DEVWID_16, host->regs_va + PC);
 	else
-		writel_relaxed(value | FSMC_DEVWID_8,
-				FSMC_NAND_REG(regs, bank, PC));
-
-	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
-			FSMC_NAND_REG(regs, bank, PC));
-	writel_relaxed(thiz | thold | twait | tset,
-			FSMC_NAND_REG(regs, bank, COMM));
-	writel_relaxed(thiz | thold | twait | tset,
-			FSMC_NAND_REG(regs, bank, ATTRIB));
+		writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + PC);
+
+	writel_relaxed(readl(host->regs_va + PC) | tclr | tar,
+		       host->regs_va + PC);
+	writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
+	writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
 }
 
 static int fsmc_calc_timings(struct fsmc_nand_data *host,
@@ -419,15 +370,13 @@ static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
 {
 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	void __iomem *regs = host->regs_va;
-	uint32_t bank = host->bank;
-
-	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
-			FSMC_NAND_REG(regs, bank, PC));
-	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
-			FSMC_NAND_REG(regs, bank, PC));
-	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
-			FSMC_NAND_REG(regs, bank, PC));
+
+	writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCPLEN_256,
+		       host->regs_va + PC);
+	writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCEN,
+		       host->regs_va + PC);
+	writel_relaxed(readl(host->regs_va + PC) | FSMC_ECCEN,
+		       host->regs_va + PC);
 }
 
 /*
@@ -439,13 +388,11 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
 				uint8_t *ecc)
 {
 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	void __iomem *regs = host->regs_va;
-	uint32_t bank = host->bank;
 	uint32_t ecc_tmp;
 	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 
 	do {
-		if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
+		if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
 			break;
 		else
 			cond_resched();
@@ -456,25 +403,25 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
 		return -ETIMEDOUT;
 	}
 
-	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
+	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 	ecc[0] = (uint8_t) (ecc_tmp >> 0);
 	ecc[1] = (uint8_t) (ecc_tmp >> 8);
 	ecc[2] = (uint8_t) (ecc_tmp >> 16);
 	ecc[3] = (uint8_t) (ecc_tmp >> 24);
 
-	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
+	ecc_tmp = readl_relaxed(host->regs_va + ECC2);
 	ecc[4] = (uint8_t) (ecc_tmp >> 0);
 	ecc[5] = (uint8_t) (ecc_tmp >> 8);
 	ecc[6] = (uint8_t) (ecc_tmp >> 16);
 	ecc[7] = (uint8_t) (ecc_tmp >> 24);
 
-	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
+	ecc_tmp = readl_relaxed(host->regs_va + ECC3);
 	ecc[8] = (uint8_t) (ecc_tmp >> 0);
 	ecc[9] = (uint8_t) (ecc_tmp >> 8);
 	ecc[10] = (uint8_t) (ecc_tmp >> 16);
 	ecc[11] = (uint8_t) (ecc_tmp >> 24);
 
-	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
+	ecc_tmp = readl_relaxed(host->regs_va + STS);
 	ecc[12] = (uint8_t) (ecc_tmp >> 16);
 
 	return 0;
@@ -489,11 +436,9 @@ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
 				uint8_t *ecc)
 {
 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	void __iomem *regs = host->regs_va;
-	uint32_t bank = host->bank;
 	uint32_t ecc_tmp;
 
-	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
+	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 	ecc[0] = (uint8_t) (ecc_tmp >> 0);
 	ecc[1] = (uint8_t) (ecc_tmp >> 8);
 	ecc[2] = (uint8_t) (ecc_tmp >> 16);
@@ -598,18 +543,18 @@ unmap_dma:
  */
 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 {
+	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 	int i;
-	struct nand_chip *chip = mtd_to_nand(mtd);
 
 	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 			IS_ALIGNED(len, sizeof(uint32_t))) {
 		uint32_t *p = (uint32_t *)buf;
 		len = len >> 2;
 		for (i = 0; i < len; i++)
-			writel_relaxed(p[i], chip->IO_ADDR_W);
+			writel_relaxed(p[i], host->data_va);
 	} else {
 		for (i = 0; i < len; i++)
-			writeb_relaxed(buf[i], chip->IO_ADDR_W);
+			writeb_relaxed(buf[i], host->data_va);
 	}
 }
 
@@ -621,18 +566,18 @@ static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
  */
 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 {
+	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 	int i;
-	struct nand_chip *chip = mtd_to_nand(mtd);
 
 	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 			IS_ALIGNED(len, sizeof(uint32_t))) {
 		uint32_t *p = (uint32_t *)buf;
 		len = len >> 2;
 		for (i = 0; i < len; i++)
-			p[i] = readl_relaxed(chip->IO_ADDR_R);
+			p[i] = readl_relaxed(host->data_va);
 	} else {
 		for (i = 0; i < len; i++)
-			buf[i] = readb_relaxed(chip->IO_ADDR_R);
+			buf[i] = readb_relaxed(host->data_va);
 	}
 }
 
@@ -663,6 +608,102 @@ static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
 	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 }
 
+/* fsmc_select_chip - assert or deassert nCE */
+static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	u32 pc;
+
+	/* Support only one CS */
+	if (chipnr > 0)
+		return;
+
+	pc = readl(host->regs_va + PC);
+	if (chipnr < 0)
+		writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + PC);
+	else
+		writel_relaxed(pc | FSMC_ENABLE, host->regs_va + PC);
+
+	/* nCE line must be asserted before starting any operation */
+	mb();
+}
+
+/*
+ * fsmc_exec_op - hook called by the core to execute NAND operations
+ *
+ * This controller is simple enough and thus does not need to use the parser
+ * provided by the core, instead, handle every situation here.
+ */
+static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
+			bool check_only)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	const struct nand_op_instr *instr = NULL;
+	int ret = 0;
+	unsigned int op_id;
+	int i;
+
+	pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
+	for (op_id = 0; op_id < op->ninstrs; op_id++) {
+		instr = &op->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			pr_debug("  ->CMD      [0x%02x]\n",
+				 instr->ctx.cmd.opcode);
+
+			writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			pr_debug("  ->ADDR     [%d cyc]",
+				 instr->ctx.addr.naddrs);
+
+			for (i = 0; i < instr->ctx.addr.naddrs; i++)
+				writeb_relaxed(instr->ctx.addr.addrs[i],
+					       host->addr_va);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			pr_debug("  ->DATA_IN  [%d B%s]\n", instr->ctx.data.len,
+				 instr->ctx.data.force_8bit ?
+				 ", force 8-bit" : "");
+
+			if (host->mode == USE_DMA_ACCESS)
+				fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
+						  instr->ctx.data.len);
+			else
+				fsmc_read_buf(mtd, instr->ctx.data.buf.in,
+					      instr->ctx.data.len);
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			pr_debug("  ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
+				 instr->ctx.data.force_8bit ?
+				 ", force 8-bit" : "");
+
+			if (host->mode == USE_DMA_ACCESS)
+				fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
+						   instr->ctx.data.len);
+			else
+				fsmc_write_buf(mtd, instr->ctx.data.buf.out,
+					       instr->ctx.data.len);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			pr_debug("  ->WAITRDY  [max %d ms]\n",
+				 instr->ctx.waitrdy.timeout_ms);
+
+			ret = nand_soft_waitrdy(chip,
+						instr->ctx.waitrdy.timeout_ms);
+			break;
+		}
+	}
+
+	return ret;
+}
+
 /*
  * fsmc_read_page_hwecc
  * @mtd:	mtd info structure
@@ -754,13 +795,11 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
 {
 	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	void __iomem *regs = host->regs_va;
-	unsigned int bank = host->bank;
 	uint32_t err_idx[8];
 	uint32_t num_err, i;
 	uint32_t ecc1, ecc2, ecc3, ecc4;
 
-	num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
+	num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
 
 	/* no bit flipping */
 	if (likely(num_err == 0))
@@ -803,10 +842,10 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
 	 * uint64_t array and error offset indexes are populated in err_idx
 	 * array
 	 */
-	ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
-	ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
-	ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
-	ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
+	ecc1 = readl_relaxed(host->regs_va + ECC1);
+	ecc2 = readl_relaxed(host->regs_va + ECC2);
+	ecc3 = readl_relaxed(host->regs_va + ECC3);
+	ecc4 = readl_relaxed(host->regs_va + STS);
 
 	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
@@ -889,6 +928,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
 	struct mtd_info *mtd;
 	struct nand_chip *nand;
 	struct resource *res;
+	void __iomem *base;
 	dma_cap_mask_t mask;
 	int ret = 0;
 	u32 pid;
@@ -923,9 +963,12 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
 		return PTR_ERR(host->cmd_va);
 
 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
-	host->regs_va = devm_ioremap_resource(&pdev->dev, res);
-	if (IS_ERR(host->regs_va))
-		return PTR_ERR(host->regs_va);
+	base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(base))
+		return PTR_ERR(base);
+
+	host->regs_va = base + FSMC_NOR_REG_SIZE +
+		(host->bank * FSMC_NAND_BANK_SZ);
 
 	host->clk = devm_clk_get(&pdev->dev, NULL);
 	if (IS_ERR(host->clk)) {
@@ -942,7 +985,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
 	 * AMBA PrimeCell bus. However it is not a PrimeCell.
 	 */
 	for (pid = 0, i = 0; i < 4; i++)
-		pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
+		pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
 	host->pid = pid;
 	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
 		 "revision %02x, config %02x\n",
@@ -960,9 +1003,8 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
 	nand_set_flash_node(nand, pdev->dev.of_node);
 
 	mtd->dev.parent = &pdev->dev;
-	nand->IO_ADDR_R = host->data_va;
-	nand->IO_ADDR_W = host->data_va;
-	nand->cmd_ctrl = fsmc_cmd_ctrl;
+	nand->exec_op = fsmc_exec_op;
+	nand->select_chip = fsmc_select_chip;
 	nand->chip_delay = 30;
 
 	/*
@@ -974,8 +1016,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
 	nand->ecc.size = 512;
 	nand->badblockbits = 7;
 
-	switch (host->mode) {
-	case USE_DMA_ACCESS:
+	if (host->mode == USE_DMA_ACCESS) {
 		dma_cap_zero(mask);
 		dma_cap_set(DMA_MEMCPY, mask);
 		host->read_dma_chan = dma_request_channel(mask, filter, NULL);
@@ -988,15 +1029,6 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
 			dev_err(&pdev->dev, "Unable to get write dma channel\n");
 			goto err_req_write_chnl;
 		}
-		nand->read_buf = fsmc_read_buf_dma;
-		nand->write_buf = fsmc_write_buf_dma;
-		break;
-
-	default:
-	case USE_WORD_ACCESS:
-		nand->read_buf = fsmc_read_buf;
-		nand->write_buf = fsmc_write_buf;
-		break;
 	}
 
 	if (host->dev_timings)

+ 0 - 2
drivers/mtd/nand/gpio.c → drivers/mtd/nand/raw/gpio.c

@@ -1,6 +1,4 @@
 /*
- * drivers/mtd/nand/gpio.c
- *
  * Updated, and converted to generic GPIO based driver by Russell King.
  *
  * Written by Ben Dooks <ben@simtec.co.uk>

+ 0 - 0
drivers/mtd/nand/gpmi-nand/Makefile → drivers/mtd/nand/raw/gpmi-nand/Makefile


+ 0 - 0
drivers/mtd/nand/gpmi-nand/bch-regs.h → drivers/mtd/nand/raw/gpmi-nand/bch-regs.h


+ 113 - 680
drivers/mtd/nand/gpmi-nand/gpmi-lib.c → drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c

@@ -26,15 +26,8 @@
 #include "gpmi-regs.h"
 #include "bch-regs.h"
 
-static struct timing_threshold timing_default_threshold = {
-	.max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
-						BP_GPMI_TIMING0_DATA_SETUP),
-	.internal_data_setup_in_ns   = 0,
-	.max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
-						BP_GPMI_CTRL1_RDN_DELAY),
-	.max_dll_clock_period_in_ns  = 32,
-	.max_dll_delay_in_ns         = 16,
-};
+/* Converts time to clock cycles */
+#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
 
 #define MXS_SET_ADDR		0x4
 #define MXS_CLR_ADDR		0x8
@@ -151,8 +144,15 @@ err_clk:
 	return ret;
 }
 
-#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
-#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
+int gpmi_enable_clk(struct gpmi_nand_data *this)
+{
+	return __gpmi_enable_clk(this, true);
+}
+
+int gpmi_disable_clk(struct gpmi_nand_data *this)
+{
+	return __gpmi_enable_clk(this, false);
+}
 
 int gpmi_init(struct gpmi_nand_data *this)
 {
@@ -174,7 +174,6 @@ int gpmi_init(struct gpmi_nand_data *this)
 	if (ret)
 		goto err_out;
 
-
 	/* Choose NAND mode. */
 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
 
@@ -313,467 +312,6 @@ err_out:
 	return ret;
 }
 
-/* Converts time in nanoseconds to cycles. */
-static unsigned int ns_to_cycles(unsigned int time,
-			unsigned int period, unsigned int min)
-{
-	unsigned int k;
-
-	k = (time + period - 1) / period;
-	return max(k, min);
-}
-
-#define DEF_MIN_PROP_DELAY	5
-#define DEF_MAX_PROP_DELAY	9
-/* Apply timing to current hardware conditions. */
-static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
-					struct gpmi_nfc_hardware_timing *hw)
-{
-	struct timing_threshold *nfc = &timing_default_threshold;
-	struct resources *r = &this->resources;
-	struct nand_chip *nand = &this->nand;
-	struct nand_timing target = this->timing;
-	bool improved_timing_is_available;
-	unsigned long clock_frequency_in_hz;
-	unsigned int clock_period_in_ns;
-	bool dll_use_half_periods;
-	unsigned int dll_delay_shift;
-	unsigned int max_sample_delay_in_ns;
-	unsigned int address_setup_in_cycles;
-	unsigned int data_setup_in_ns;
-	unsigned int data_setup_in_cycles;
-	unsigned int data_hold_in_cycles;
-	int ideal_sample_delay_in_ns;
-	unsigned int sample_delay_factor;
-	int tEYE;
-	unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
-	unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
-
-	/*
-	 * If there are multiple chips, we need to relax the timings to allow
-	 * for signal distortion due to higher capacitance.
-	 */
-	if (nand->numchips > 2) {
-		target.data_setup_in_ns    += 10;
-		target.data_hold_in_ns     += 10;
-		target.address_setup_in_ns += 10;
-	} else if (nand->numchips > 1) {
-		target.data_setup_in_ns    += 5;
-		target.data_hold_in_ns     += 5;
-		target.address_setup_in_ns += 5;
-	}
-
-	/* Check if improved timing information is available. */
-	improved_timing_is_available =
-		(target.tREA_in_ns  >= 0) &&
-		(target.tRLOH_in_ns >= 0) &&
-		(target.tRHOH_in_ns >= 0);
-
-	/* Inspect the clock. */
-	nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
-	clock_frequency_in_hz = nfc->clock_frequency_in_hz;
-	clock_period_in_ns    = NSEC_PER_SEC / clock_frequency_in_hz;
-
-	/*
-	 * The NFC quantizes setup and hold parameters in terms of clock cycles.
-	 * Here, we quantize the setup and hold timing parameters to the
-	 * next-highest clock period to make sure we apply at least the
-	 * specified times.
-	 *
-	 * For data setup and data hold, the hardware interprets a value of zero
-	 * as the largest possible delay. This is not what's intended by a zero
-	 * in the input parameter, so we impose a minimum of one cycle.
-	 */
-	data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
-							clock_period_in_ns, 1);
-	data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
-							clock_period_in_ns, 1);
-	address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
-							clock_period_in_ns, 0);
-
-	/*
-	 * The clock's period affects the sample delay in a number of ways:
-	 *
-	 * (1) The NFC HAL tells us the maximum clock period the sample delay
-	 *     DLL can tolerate. If the clock period is greater than half that
-	 *     maximum, we must configure the DLL to be driven by half periods.
-	 *
-	 * (2) We need to convert from an ideal sample delay, in ns, to a
-	 *     "sample delay factor," which the NFC uses. This factor depends on
-	 *     whether we're driving the DLL with full or half periods.
-	 *     Paraphrasing the reference manual:
-	 *
-	 *         AD = SDF x 0.125 x RP
-	 *
-	 * where:
-	 *
-	 *     AD   is the applied delay, in ns.
-	 *     SDF  is the sample delay factor, which is dimensionless.
-	 *     RP   is the reference period, in ns, which is a full clock period
-	 *          if the DLL is being driven by full periods, or half that if
-	 *          the DLL is being driven by half periods.
-	 *
-	 * Let's re-arrange this in a way that's more useful to us:
-	 *
-	 *                        8
-	 *         SDF  =  AD x ----
-	 *                       RP
-	 *
-	 * The reference period is either the clock period or half that, so this
-	 * is:
-	 *
-	 *                        8       AD x DDF
-	 *         SDF  =  AD x -----  =  --------
-	 *                      f x P        P
-	 *
-	 * where:
-	 *
-	 *       f  is 1 or 1/2, depending on how we're driving the DLL.
-	 *       P  is the clock period.
-	 *     DDF  is the DLL Delay Factor, a dimensionless value that
-	 *          incorporates all the constants in the conversion.
-	 *
-	 * DDF will be either 8 or 16, both of which are powers of two. We can
-	 * reduce the cost of this conversion by using bit shifts instead of
-	 * multiplication or division. Thus:
-	 *
-	 *                 AD << DDS
-	 *         SDF  =  ---------
-	 *                     P
-	 *
-	 *     or
-	 *
-	 *         AD  =  (SDF >> DDS) x P
-	 *
-	 * where:
-	 *
-	 *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
-	 */
-	if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
-		dll_use_half_periods = true;
-		dll_delay_shift      = 3 + 1;
-	} else {
-		dll_use_half_periods = false;
-		dll_delay_shift      = 3;
-	}
-
-	/*
-	 * Compute the maximum sample delay the NFC allows, under current
-	 * conditions. If the clock is running too slowly, no sample delay is
-	 * possible.
-	 */
-	if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
-		max_sample_delay_in_ns = 0;
-	else {
-		/*
-		 * Compute the delay implied by the largest sample delay factor
-		 * the NFC allows.
-		 */
-		max_sample_delay_in_ns =
-			(nfc->max_sample_delay_factor * clock_period_in_ns) >>
-								dll_delay_shift;
-
-		/*
-		 * Check if the implied sample delay larger than the NFC
-		 * actually allows.
-		 */
-		if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
-			max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
-	}
-
-	/*
-	 * Check if improved timing information is available. If not, we have to
-	 * use a less-sophisticated algorithm.
-	 */
-	if (!improved_timing_is_available) {
-		/*
-		 * Fold the read setup time required by the NFC into the ideal
-		 * sample delay.
-		 */
-		ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
-						nfc->internal_data_setup_in_ns;
-
-		/*
-		 * The ideal sample delay may be greater than the maximum
-		 * allowed by the NFC. If so, we can trade off sample delay time
-		 * for more data setup time.
-		 *
-		 * In each iteration of the following loop, we add a cycle to
-		 * the data setup time and subtract a corresponding amount from
-		 * the sample delay until we've satisified the constraints or
-		 * can't do any better.
-		 */
-		while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
-			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
-
-			data_setup_in_cycles++;
-			ideal_sample_delay_in_ns -= clock_period_in_ns;
-
-			if (ideal_sample_delay_in_ns < 0)
-				ideal_sample_delay_in_ns = 0;
-
-		}
-
-		/*
-		 * Compute the sample delay factor that corresponds most closely
-		 * to the ideal sample delay. If the result is too large for the
-		 * NFC, use the maximum value.
-		 *
-		 * Notice that we use the ns_to_cycles function to compute the
-		 * sample delay factor. We do this because the form of the
-		 * computation is the same as that for calculating cycles.
-		 */
-		sample_delay_factor =
-			ns_to_cycles(
-				ideal_sample_delay_in_ns << dll_delay_shift,
-							clock_period_in_ns, 0);
-
-		if (sample_delay_factor > nfc->max_sample_delay_factor)
-			sample_delay_factor = nfc->max_sample_delay_factor;
-
-		/* Skip to the part where we return our results. */
-		goto return_results;
-	}
-
-	/*
-	 * If control arrives here, we have more detailed timing information,
-	 * so we can use a better algorithm.
-	 */
-
-	/*
-	 * Fold the read setup time required by the NFC into the maximum
-	 * propagation delay.
-	 */
-	max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
-
-	/*
-	 * Earlier, we computed the number of clock cycles required to satisfy
-	 * the data setup time. Now, we need to know the actual nanoseconds.
-	 */
-	data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
-
-	/*
-	 * Compute tEYE, the width of the data eye when reading from the NAND
-	 * Flash. The eye width is fundamentally determined by the data setup
-	 * time, perturbed by propagation delays and some characteristics of the
-	 * NAND Flash device.
-	 *
-	 * start of the eye = max_prop_delay + tREA
-	 * end of the eye   = min_prop_delay + tRHOH + data_setup
-	 */
-	tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
-							(int)data_setup_in_ns;
-
-	tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
-
-	/*
-	 * The eye must be open. If it's not, we can try to open it by
-	 * increasing its main forcer, the data setup time.
-	 *
-	 * In each iteration of the following loop, we increase the data setup
-	 * time by a single clock cycle. We do this until either the eye is
-	 * open or we run into NFC limits.
-	 */
-	while ((tEYE <= 0) &&
-			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
-		/* Give a cycle to data setup. */
-		data_setup_in_cycles++;
-		/* Synchronize the data setup time with the cycles. */
-		data_setup_in_ns += clock_period_in_ns;
-		/* Adjust tEYE accordingly. */
-		tEYE += clock_period_in_ns;
-	}
-
-	/*
-	 * When control arrives here, the eye is open. The ideal time to sample
-	 * the data is in the center of the eye:
-	 *
-	 *     end of the eye + start of the eye
-	 *     ---------------------------------  -  data_setup
-	 *                    2
-	 *
-	 * After some algebra, this simplifies to the code immediately below.
-	 */
-	ideal_sample_delay_in_ns =
-		((int)max_prop_delay_in_ns +
-			(int)target.tREA_in_ns +
-				(int)min_prop_delay_in_ns +
-					(int)target.tRHOH_in_ns -
-						(int)data_setup_in_ns) >> 1;
-
-	/*
-	 * The following figure illustrates some aspects of a NAND Flash read:
-	 *
-	 *
-	 *           __                   _____________________________________
-	 * RDN         \_________________/
-	 *
-	 *                                         <---- tEYE ----->
-	 *                                        /-----------------\
-	 * Read Data ----------------------------<                   >---------
-	 *                                        \-----------------/
-	 *             ^                 ^                 ^              ^
-	 *             |                 |                 |              |
-	 *             |<--Data Setup -->|<--Delay Time -->|              |
-	 *             |                 |                 |              |
-	 *             |                 |                                |
-	 *             |                 |<--   Quantized Delay Time   -->|
-	 *             |                 |                                |
-	 *
-	 *
-	 * We have some issues we must now address:
-	 *
-	 * (1) The *ideal* sample delay time must not be negative. If it is, we
-	 *     jam it to zero.
-	 *
-	 * (2) The *ideal* sample delay time must not be greater than that
-	 *     allowed by the NFC. If it is, we can increase the data setup
-	 *     time, which will reduce the delay between the end of the data
-	 *     setup and the center of the eye. It will also make the eye
-	 *     larger, which might help with the next issue...
-	 *
-	 * (3) The *quantized* sample delay time must not fall either before the
-	 *     eye opens or after it closes (the latter is the problem
-	 *     illustrated in the above figure).
-	 */
-
-	/* Jam a negative ideal sample delay to zero. */
-	if (ideal_sample_delay_in_ns < 0)
-		ideal_sample_delay_in_ns = 0;
-
-	/*
-	 * Extend the data setup as needed to reduce the ideal sample delay
-	 * below the maximum permitted by the NFC.
-	 */
-	while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
-			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
-
-		/* Give a cycle to data setup. */
-		data_setup_in_cycles++;
-		/* Synchronize the data setup time with the cycles. */
-		data_setup_in_ns += clock_period_in_ns;
-		/* Adjust tEYE accordingly. */
-		tEYE += clock_period_in_ns;
-
-		/*
-		 * Decrease the ideal sample delay by one half cycle, to keep it
-		 * in the middle of the eye.
-		 */
-		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
-
-		/* Jam a negative ideal sample delay to zero. */
-		if (ideal_sample_delay_in_ns < 0)
-			ideal_sample_delay_in_ns = 0;
-	}
-
-	/*
-	 * Compute the sample delay factor that corresponds to the ideal sample
-	 * delay. If the result is too large, then use the maximum allowed
-	 * value.
-	 *
-	 * Notice that we use the ns_to_cycles function to compute the sample
-	 * delay factor. We do this because the form of the computation is the
-	 * same as that for calculating cycles.
-	 */
-	sample_delay_factor =
-		ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
-							clock_period_in_ns, 0);
-
-	if (sample_delay_factor > nfc->max_sample_delay_factor)
-		sample_delay_factor = nfc->max_sample_delay_factor;
-
-	/*
-	 * These macros conveniently encapsulate a computation we'll use to
-	 * continuously evaluate whether or not the data sample delay is inside
-	 * the eye.
-	 */
-	#define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)
-
-	#define QUANTIZED_DELAY  \
-		((int) ((sample_delay_factor * clock_period_in_ns) >> \
-							dll_delay_shift))
-
-	#define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))
-
-	#define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))
-
-	/*
-	 * While the quantized sample time falls outside the eye, reduce the
-	 * sample delay or extend the data setup to move the sampling point back
-	 * toward the eye. Do not allow the number of data setup cycles to
-	 * exceed the maximum allowed by the NFC.
-	 */
-	while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
-			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
-		/*
-		 * If control arrives here, the quantized sample delay falls
-		 * outside the eye. Check if it's before the eye opens, or after
-		 * the eye closes.
-		 */
-		if (QUANTIZED_DELAY > IDEAL_DELAY) {
-			/*
-			 * If control arrives here, the quantized sample delay
-			 * falls after the eye closes. Decrease the quantized
-			 * delay time and then go back to re-evaluate.
-			 */
-			if (sample_delay_factor != 0)
-				sample_delay_factor--;
-			continue;
-		}
-
-		/*
-		 * If control arrives here, the quantized sample delay falls
-		 * before the eye opens. Shift the sample point by increasing
-		 * data setup time. This will also make the eye larger.
-		 */
-
-		/* Give a cycle to data setup. */
-		data_setup_in_cycles++;
-		/* Synchronize the data setup time with the cycles. */
-		data_setup_in_ns += clock_period_in_ns;
-		/* Adjust tEYE accordingly. */
-		tEYE += clock_period_in_ns;
-
-		/*
-		 * Decrease the ideal sample delay by one half cycle, to keep it
-		 * in the middle of the eye.
-		 */
-		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
-
-		/* ...and one less period for the delay time. */
-		ideal_sample_delay_in_ns -= clock_period_in_ns;
-
-		/* Jam a negative ideal sample delay to zero. */
-		if (ideal_sample_delay_in_ns < 0)
-			ideal_sample_delay_in_ns = 0;
-
-		/*
-		 * We have a new ideal sample delay, so re-compute the quantized
-		 * delay.
-		 */
-		sample_delay_factor =
-			ns_to_cycles(
-				ideal_sample_delay_in_ns << dll_delay_shift,
-							clock_period_in_ns, 0);
-
-		if (sample_delay_factor > nfc->max_sample_delay_factor)
-			sample_delay_factor = nfc->max_sample_delay_factor;
-	}
-
-	/* Control arrives here when we're ready to return our results. */
-return_results:
-	hw->data_setup_in_cycles    = data_setup_in_cycles;
-	hw->data_hold_in_cycles     = data_hold_in_cycles;
-	hw->address_setup_in_cycles = address_setup_in_cycles;
-	hw->use_half_periods        = dll_use_half_periods;
-	hw->sample_delay_factor     = sample_delay_factor;
-	hw->device_busy_timeout     = GPMI_DEFAULT_BUSY_TIMEOUT;
-	hw->wrn_dly_sel             = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
-
-	/* Return success. */
-	return 0;
-}
-
 /*
  * <1> Firstly, we should know what's the GPMI-clock means.
  *     The GPMI-clock is the internal clock in the gpmi nand controller.
@@ -824,13 +362,10 @@ return_results:
  *  4.1) From the aspect of the nand chip pins:
  *        Delay = (tREA + C - tRP)               {1}
  *
- *        tREA : the maximum read access time. From the ONFI nand standards,
- *               we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
- *               Please check it in : www.onfi.org
- *        C    : a constant for adjust the delay. default is 4.
- *        tRP  : the read pulse width.
- *               Specified by the HW_GPMI_TIMING0:DATA_SETUP:
- *                    tRP = (GPMI-clock-period) * DATA_SETUP
+ *        tREA : the maximum read access time.
+ *        C    : a constant to adjust the delay. default is 4000ps.
+ *        tRP  : the read pulse width, which is exactly:
+ *                   tRP = (GPMI-clock-period) * DATA_SETUP
  *
  *  4.2) From the aspect of the GPMI nand controller:
  *         Delay = RDN_DELAY * 0.125 * RP        {2}
@@ -843,239 +378,137 @@ return_results:
  *
  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
- *            is 16ns, but in mx6q, we use 12ns.
+ *            is 16000ps, but in mx6q, we use 12000ps.
  *
  *  4.3) since {1} equals {2}, we get:
  *
- *                    (tREA + 4 - tRP) * 8
- *         RDN_DELAY = ---------------------     {3}
+ *                     (tREA + 4000 - tRP) * 8
+ *         RDN_DELAY = -----------------------     {3}
  *                           RP
- *
- *  4.4) We only support the fastest asynchronous mode of ONFI nand.
- *       For some ONFI nand, the mode 4 is the fastest mode;
- *       while for some ONFI nand, the mode 5 is the fastest mode.
- *       So we only support the mode 4 and mode 5. It is no need to
- *       support other modes.
  */
-static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
-			struct gpmi_nfc_hardware_timing *hw)
+static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
+				     const struct nand_sdr_timings *sdr)
 {
-	struct resources *r = &this->resources;
-	unsigned long rate = clk_get_rate(r->clock[0]);
-	int mode = this->timing_mode;
-	int dll_threshold = this->devdata->max_chain_delay;
-	unsigned long delay;
-	unsigned long clk_period;
-	int t_rea;
-	int c = 4;
-	int t_rp;
-	int rp;
+	struct gpmi_nfc_hardware_timing *hw = &this->hw;
+	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
+	unsigned int period_ps, reference_period_ps;
+	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
+	unsigned int tRP_ps;
+	bool use_half_period;
+	int sample_delay_ps, sample_delay_factor;
+	u16 busy_timeout_cycles;
+	u8 wrn_dly_sel;
+
+	if (sdr->tRC_min >= 30000) {
+		/* ONFI non-EDO modes [0-3] */
+		hw->clk_rate = 22000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
+	} else if (sdr->tRC_min >= 25000) {
+		/* ONFI EDO mode 4 */
+		hw->clk_rate = 80000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+	} else {
+		/* ONFI EDO mode 5 */
+		hw->clk_rate = 100000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+	}
 
-	/*
-	 * [1] for GPMI_HW_GPMI_TIMING0:
-	 *     The async mode requires 40MHz for mode 4, 50MHz for mode 5.
-	 *     The GPMI can support 100MHz at most. So if we want to
-	 *     get the 40MHz or 50MHz, we have to set DS=1, DH=1.
-	 *     Set the ADDRESS_SETUP to 0 in mode 4.
-	 */
-	hw->data_setup_in_cycles = 1;
-	hw->data_hold_in_cycles = 1;
-	hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
+	/* SDR core timings are given in picoseconds */
+	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
 
-	/* [2] for GPMI_HW_GPMI_TIMING1 */
-	hw->device_busy_timeout = 0x9000;
+	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
+	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
+	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
+	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
 
-	/* [3] for GPMI_HW_GPMI_CTRL1 */
-	hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
+		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
+		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
+	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
 
 	/*
-	 * Enlarge 10 times for the numerator and denominator in {3}.
-	 * This make us to get more accurate result.
+	 * Derive NFC ideal delay from {3}:
+	 *
+	 *                     (tREA + 4000 - tRP) * 8
+	 *         RDN_DELAY = -----------------------
+	 *                                RP
 	 */
-	clk_period = NSEC_PER_SEC / (rate / 10);
-	dll_threshold *= 10;
-	t_rea = ((mode == 5) ? 16 : 20) * 10;
-	c *= 10;
-
-	t_rp = clk_period * 1; /* DATA_SETUP is 1 */
-
-	if (clk_period > dll_threshold) {
-		hw->use_half_periods = 1;
-		rp = clk_period / 2;
+	if (period_ps > dll_threshold_ps) {
+		use_half_period = true;
+		reference_period_ps = period_ps / 2;
 	} else {
-		hw->use_half_periods = 0;
-		rp = clk_period;
+		use_half_period = false;
+		reference_period_ps = period_ps;
 	}
 
-	/*
-	 * Multiply the numerator with 10, we could do a round off:
-	 *      7.8 round up to 8; 7.4 round down to 7.
-	 */
-	delay  = (((t_rea + c - t_rp) * 8) * 10) / rp;
-	delay = (delay + 5) / 10;
-
-	hw->sample_delay_factor = delay;
-}
-
-static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
-{
-	struct resources  *r = &this->resources;
-	struct nand_chip *nand = &this->nand;
-	struct mtd_info	 *mtd = nand_to_mtd(nand);
-	uint8_t *feature;
-	unsigned long rate;
-	int ret;
-
-	feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
-	if (!feature)
-		return -ENOMEM;
-
-	nand->select_chip(mtd, 0);
-
-	/* [1] send SET FEATURE command to NAND */
-	feature[0] = mode;
-	ret = nand->onfi_set_features(mtd, nand,
-				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
-	if (ret)
-		goto err_out;
-
-	/* [2] send GET FEATURE command to double-check the timing mode */
-	memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
-	ret = nand->onfi_get_features(mtd, nand,
-				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
-	if (ret || feature[0] != mode)
-		goto err_out;
-
-	nand->select_chip(mtd, -1);
-
-	/* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
-	rate = (mode == 5) ? 100000000 : 80000000;
-	clk_set_rate(r->clock[0], rate);
-
-	/* Let the gpmi_begin() re-compute the timing again. */
-	this->flags &= ~GPMI_TIMING_INIT_OK;
-
-	this->flags |= GPMI_ASYNC_EDO_ENABLED;
-	this->timing_mode = mode;
-	kfree(feature);
-	dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
-	return 0;
-
-err_out:
-	nand->select_chip(mtd, -1);
-	kfree(feature);
-	dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
-	return -EINVAL;
-}
-
-int gpmi_extra_init(struct gpmi_nand_data *this)
-{
-	struct nand_chip *chip = &this->nand;
-
-	/* Enable the asynchronous EDO feature. */
-	if (GPMI_IS_MX6(this) && chip->onfi_version) {
-		int mode = onfi_get_async_timing_mode(chip);
-
-		/* We only support the timing mode 4 and mode 5. */
-		if (mode & ONFI_TIMING_MODE_5)
-			mode = 5;
-		else if (mode & ONFI_TIMING_MODE_4)
-			mode = 4;
-		else
-			return 0;
+	tRP_ps = data_setup_cycles * period_ps;
+	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
+	if (sample_delay_ps > 0)
+		sample_delay_factor = sample_delay_ps / reference_period_ps;
+	else
+		sample_delay_factor = 0;
 
-		return enable_edo_mode(this, mode);
-	}
-	return 0;
+	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
+	if (sample_delay_factor)
+		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
+			      BM_GPMI_CTRL1_DLL_ENABLE |
+			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
 }
 
-/* Begin the I/O */
-void gpmi_begin(struct gpmi_nand_data *this)
+void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
 {
+	struct gpmi_nfc_hardware_timing *hw = &this->hw;
 	struct resources *r = &this->resources;
 	void __iomem *gpmi_regs = r->gpmi_regs;
-	unsigned int   clock_period_in_ns;
-	uint32_t       reg;
-	unsigned int   dll_wait_time_in_us;
-	struct gpmi_nfc_hardware_timing  hw;
-	int ret;
-
-	/* Enable the clock. */
-	ret = gpmi_enable_clk(this);
-	if (ret) {
-		dev_err(this->dev, "We failed in enable the clk\n");
-		goto err_out;
-	}
-
-	/* Only initialize the timing once */
-	if (this->flags & GPMI_TIMING_INIT_OK)
-		return;
-	this->flags |= GPMI_TIMING_INIT_OK;
+	unsigned int dll_wait_time_us;
 
-	if (this->flags & GPMI_ASYNC_EDO_ENABLED)
-		gpmi_compute_edo_timing(this, &hw);
-	else
-		gpmi_nfc_compute_hardware_timing(this, &hw);
-
-	/* [1] Set HW_GPMI_TIMING0 */
-	reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
-		BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
-		BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
-
-	writel(reg, gpmi_regs + HW_GPMI_TIMING0);
-
-	/* [2] Set HW_GPMI_TIMING1 */
-	writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
-		gpmi_regs + HW_GPMI_TIMING1);
+	clk_set_rate(r->clock[0], hw->clk_rate);
 
-	/* [3] The following code is to set the HW_GPMI_CTRL1. */
+	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
+	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
 
-	/* Set the WRN_DLY_SEL */
-	writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
-	writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
-					gpmi_regs + HW_GPMI_CTRL1_SET);
-
-	/* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
-	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
-
-	/* Clear out the DLL control fields. */
-	reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
-	writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
+	/*
+	 * Clear several CTRL1 fields, DLL must be disabled when setting
+	 * RDN_DELAY or HALF_PERIOD.
+	 */
+	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
+	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
 
-	/* If no sample delay is called for, return immediately. */
-	if (!hw.sample_delay_factor)
-		return;
+	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
+	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
+	if (!dll_wait_time_us)
+		dll_wait_time_us = 1;
 
-	/* Set RDN_DELAY or HALF_PERIOD. */
-	reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
-		| BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
+	/* Wait for the DLL to settle. */
+	udelay(dll_wait_time_us);
+}
 
-	writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
+int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
+			      const struct nand_data_interface *conf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	const struct nand_sdr_timings *sdr;
 
-	/* At last, we enable the DLL. */
-	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
+	/* Retrieve required NAND timings */
+	sdr = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
 
-	/*
-	 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
-	 * we can use the GPMI. Calculate the amount of time we need to wait,
-	 * in microseconds.
-	 */
-	clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
-	dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
+	/* Only MX6 GPMI controller can reach EDO timings */
+	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
+		return -ENOTSUPP;
 
-	if (!dll_wait_time_in_us)
-		dll_wait_time_in_us = 1;
+	/* Stop here if this call was just a check */
+	if (chipnr < 0)
+		return 0;
 
-	/* Wait for the DLL to settle. */
-	udelay(dll_wait_time_in_us);
+	/* Do the actual derivation of the controller timings */
+	gpmi_nfc_compute_timings(this, sdr);
 
-err_out:
-	return;
-}
+	this->hw.must_apply_timings = true;
 
-void gpmi_end(struct gpmi_nand_data *this)
-{
-	gpmi_disable_clk(this);
+	return 0;
 }
 
 /* Clears a BCH interrupt. */

+ 32 - 50
drivers/mtd/nand/gpmi-nand/gpmi-nand.c → drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c

@@ -94,7 +94,7 @@ static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
 static const struct gpmi_devdata gpmi_devdata_imx23 = {
 	.type = IS_MX23,
 	.bch_max_ecc_strength = 20,
-	.max_chain_delay = 16,
+	.max_chain_delay = 16000,
 	.clks = gpmi_clks_for_mx2x,
 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
 };
@@ -102,7 +102,7 @@ static const struct gpmi_devdata gpmi_devdata_imx23 = {
 static const struct gpmi_devdata gpmi_devdata_imx28 = {
 	.type = IS_MX28,
 	.bch_max_ecc_strength = 20,
-	.max_chain_delay = 16,
+	.max_chain_delay = 16000,
 	.clks = gpmi_clks_for_mx2x,
 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
 };
@@ -114,7 +114,7 @@ static const char * const gpmi_clks_for_mx6[] = {
 static const struct gpmi_devdata gpmi_devdata_imx6q = {
 	.type = IS_MX6Q,
 	.bch_max_ecc_strength = 40,
-	.max_chain_delay = 12,
+	.max_chain_delay = 12000,
 	.clks = gpmi_clks_for_mx6,
 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
 };
@@ -122,7 +122,7 @@ static const struct gpmi_devdata gpmi_devdata_imx6q = {
 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
 	.type = IS_MX6SX,
 	.bch_max_ecc_strength = 62,
-	.max_chain_delay = 12,
+	.max_chain_delay = 12000,
 	.clks = gpmi_clks_for_mx6,
 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
 };
@@ -134,7 +134,7 @@ static const char * const gpmi_clks_for_mx7d[] = {
 static const struct gpmi_devdata gpmi_devdata_imx7d = {
 	.type = IS_MX7D,
 	.bch_max_ecc_strength = 62,
-	.max_chain_delay = 12,
+	.max_chain_delay = 12000,
 	.clks = gpmi_clks_for_mx7d,
 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
 };
@@ -695,34 +695,6 @@ static void release_resources(struct gpmi_nand_data *this)
 	release_dma_channels(this);
 }
 
-static int init_hardware(struct gpmi_nand_data *this)
-{
-	int ret;
-
-	/*
-	 * This structure contains the "safe" GPMI timing that should succeed
-	 * with any NAND Flash device
-	 * (although, with less-than-optimal performance).
-	 */
-	struct nand_timing  safe_timing = {
-		.data_setup_in_ns        = 80,
-		.data_hold_in_ns         = 60,
-		.address_setup_in_ns     = 25,
-		.gpmi_sample_delay_in_ns =  6,
-		.tREA_in_ns              = -1,
-		.tRLOH_in_ns             = -1,
-		.tRHOH_in_ns             = -1,
-	};
-
-	/* Initialize the hardwares. */
-	ret = gpmi_init(this);
-	if (ret)
-		return ret;
-
-	this->timing = safe_timing;
-	return 0;
-}
-
 static int read_page_prepare(struct gpmi_nand_data *this,
 			void *destination, unsigned length,
 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
@@ -938,11 +910,32 @@ static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
 {
 	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	int ret;
 
-	if ((this->current_chip < 0) && (chipnr >= 0))
-		gpmi_begin(this);
-	else if ((this->current_chip >= 0) && (chipnr < 0))
-		gpmi_end(this);
+	/*
+	 * For power consumption matters, disable/enable the clock each time a
+	 * die is selected/unselected.
+	 */
+	if (this->current_chip < 0 && chipnr >= 0) {
+		ret = gpmi_enable_clk(this);
+		if (ret)
+			dev_err(this->dev, "Failed to enable the clock\n");
+	} else if (this->current_chip >= 0 && chipnr < 0) {
+		ret = gpmi_disable_clk(this);
+		if (ret)
+			dev_err(this->dev, "Failed to disable the clock\n");
+	}
+
+	/*
+	 * This driver currently supports only one NAND chip. Plus, dies share
+	 * the same configuration. So once timings have been applied on the
+	 * controller side, they will not change anymore. When the time will
+	 * come, the check on must_apply_timings will have to be dropped.
+	 */
+	if (chipnr >= 0 && this->hw.must_apply_timings) {
+		this->hw.must_apply_timings = false;
+		gpmi_nfc_apply_timings(this);
+	}
 
 	this->current_chip = chipnr;
 }
@@ -1955,14 +1948,6 @@ static int gpmi_init_last(struct gpmi_nand_data *this)
 		chip->options |= NAND_SUBPAGE_READ;
 	}
 
-	/*
-	 * Can we enable the extra features? such as EDO or Sync mode.
-	 *
-	 * We do not check the return value now. That's means if we fail in
-	 * enable the extra features, we still can run in the normal way.
-	 */
-	gpmi_extra_init(this);
-
 	return 0;
 }
 
@@ -1983,6 +1968,7 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
 	nand_set_controller_data(chip, this);
 	nand_set_flash_node(chip, this->pdev->dev.of_node);
 	chip->select_chip	= gpmi_select_chip;
+	chip->setup_data_interface = gpmi_setup_data_interface;
 	chip->cmd_ctrl		= gpmi_cmd_ctrl;
 	chip->dev_ready		= gpmi_dev_ready;
 	chip->read_byte		= gpmi_read_byte;
@@ -2093,7 +2079,7 @@ static int gpmi_nand_probe(struct platform_device *pdev)
 	if (ret)
 		goto exit_acquire_resources;
 
-	ret = init_hardware(this);
+	ret = gpmi_init(this);
 	if (ret)
 		goto exit_nfc_init;
 
@@ -2141,7 +2127,6 @@ static int gpmi_pm_resume(struct device *dev)
 		return ret;
 
 	/* re-init the GPMI registers */
-	this->flags &= ~GPMI_TIMING_INIT_OK;
 	ret = gpmi_init(this);
 	if (ret) {
 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
@@ -2155,9 +2140,6 @@ static int gpmi_pm_resume(struct device *dev)
 		return ret;
 	}
 
-	/* re-init others */
-	gpmi_extra_init(this);
-
 	return 0;
 }
 #endif /* CONFIG_PM_SLEEP */

+ 26 - 105
drivers/mtd/nand/gpmi-nand/gpmi-nand.h → drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h

@@ -86,39 +86,6 @@ enum dma_ops_type {
 	DMA_FOR_WRITE_ECC_PAGE
 };
 
-/**
- * struct nand_timing - Fundamental timing attributes for NAND.
- * @data_setup_in_ns:         The data setup time, in nanoseconds. Usually the
- *                            maximum of tDS and tWP. A negative value
- *                            indicates this characteristic isn't known.
- * @data_hold_in_ns:          The data hold time, in nanoseconds. Usually the
- *                            maximum of tDH, tWH and tREH. A negative value
- *                            indicates this characteristic isn't known.
- * @address_setup_in_ns:      The address setup time, in nanoseconds. Usually
- *                            the maximum of tCLS, tCS and tALS. A negative
- *                            value indicates this characteristic isn't known.
- * @gpmi_sample_delay_in_ns:  A GPMI-specific timing parameter. A negative value
- *                            indicates this characteristic isn't known.
- * @tREA_in_ns:               tREA, in nanoseconds, from the data sheet. A
- *                            negative value indicates this characteristic isn't
- *                            known.
- * @tRLOH_in_ns:              tRLOH, in nanoseconds, from the data sheet. A
- *                            negative value indicates this characteristic isn't
- *                            known.
- * @tRHOH_in_ns:              tRHOH, in nanoseconds, from the data sheet. A
- *                            negative value indicates this characteristic isn't
- *                            known.
- */
-struct nand_timing {
-	int8_t  data_setup_in_ns;
-	int8_t  data_hold_in_ns;
-	int8_t  address_setup_in_ns;
-	int8_t  gpmi_sample_delay_in_ns;
-	int8_t  tREA_in_ns;
-	int8_t  tRLOH_in_ns;
-	int8_t  tRHOH_in_ns;
-};
-
 enum gpmi_type {
 	IS_MX23,
 	IS_MX28,
@@ -135,11 +102,27 @@ struct gpmi_devdata {
 	const int clks_count;
 };
 
+/**
+ * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
+ * @must_apply_timings:        Whether controller timings have already been
+ *                             applied or not (useful only while there is
+ *                             support for only one chip select)
+ * @clk_rate:                  The clock rate that must be used to derive the
+ *                             following parameters
+ * @timing0:                   HW_GPMI_TIMING0 register
+ * @timing1:                   HW_GPMI_TIMING1 register
+ * @ctrl1n:                    HW_GPMI_CTRL1n register
+ */
+struct gpmi_nfc_hardware_timing {
+	bool must_apply_timings;
+	unsigned long int clk_rate;
+	u32 timing0;
+	u32 timing1;
+	u32 ctrl1n;
+};
+
 struct gpmi_nand_data {
-	/* flags */
-#define GPMI_ASYNC_EDO_ENABLED	(1 << 0)
-#define GPMI_TIMING_INIT_OK	(1 << 1)
-	int			flags;
+	/* Devdata */
 	const struct gpmi_devdata *devdata;
 
 	/* System Interface */
@@ -150,8 +133,7 @@ struct gpmi_nand_data {
 	struct resources	resources;
 
 	/* Flash Hardware */
-	struct nand_timing	timing;
-	int			timing_mode;
+	struct gpmi_nfc_hardware_timing hw;
 
 	/* BCH */
 	struct bch_geometry	bch_geometry;
@@ -204,69 +186,6 @@ struct gpmi_nand_data {
 	void			*private;
 };
 
-/**
- * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
- * @data_setup_in_cycles:      The data setup time, in cycles.
- * @data_hold_in_cycles:       The data hold time, in cycles.
- * @address_setup_in_cycles:   The address setup time, in cycles.
- * @device_busy_timeout:       The timeout waiting for NAND Ready/Busy,
- *                             this value is the number of cycles multiplied
- *                             by 4096.
- * @use_half_periods:          Indicates the clock is running slowly, so the
- *                             NFC DLL should use half-periods.
- * @sample_delay_factor:       The sample delay factor.
- * @wrn_dly_sel:               The delay on the GPMI write strobe.
- */
-struct gpmi_nfc_hardware_timing {
-	/* for HW_GPMI_TIMING0 */
-	uint8_t  data_setup_in_cycles;
-	uint8_t  data_hold_in_cycles;
-	uint8_t  address_setup_in_cycles;
-
-	/* for HW_GPMI_TIMING1 */
-	uint16_t device_busy_timeout;
-#define GPMI_DEFAULT_BUSY_TIMEOUT	0x500 /* default busy timeout value.*/
-
-	/* for HW_GPMI_CTRL1 */
-	bool     use_half_periods;
-	uint8_t  sample_delay_factor;
-	uint8_t  wrn_dly_sel;
-};
-
-/**
- * struct timing_threshold - Timing threshold
- * @max_data_setup_cycles:       The maximum number of data setup cycles that
- *                               can be expressed in the hardware.
- * @internal_data_setup_in_ns:   The time, in ns, that the NFC hardware requires
- *                               for data read internal setup. In the Reference
- *                               Manual, see the chapter "High-Speed NAND
- *                               Timing" for more details.
- * @max_sample_delay_factor:     The maximum sample delay factor that can be
- *                               expressed in the hardware.
- * @max_dll_clock_period_in_ns:  The maximum period of the GPMI clock that the
- *                               sample delay DLL hardware can possibly work
- *                               with (the DLL is unusable with longer periods).
- *                               If the full-cycle period is greater than HALF
- *                               this value, the DLL must be configured to use
- *                               half-periods.
- * @max_dll_delay_in_ns:         The maximum amount of delay, in ns, that the
- *                               DLL can implement.
- * @clock_frequency_in_hz:       The clock frequency, in Hz, during the current
- *                               I/O transaction. If no I/O transaction is in
- *                               progress, this is the clock frequency during
- *                               the most recent I/O transaction.
- */
-struct timing_threshold {
-	const unsigned int      max_chip_count;
-	const unsigned int      max_data_setup_cycles;
-	const unsigned int      internal_data_setup_in_ns;
-	const unsigned int      max_sample_delay_factor;
-	const unsigned int      max_dll_clock_period_in_ns;
-	const unsigned int      max_dll_delay_in_ns;
-	unsigned long           clock_frequency_in_hz;
-
-};
-
 /* Common Services */
 int common_nfc_set_geometry(struct gpmi_nand_data *);
 struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
@@ -279,14 +198,16 @@ int start_dma_with_bch_irq(struct gpmi_nand_data *,
 
 /* GPMI-NAND helper function library */
 int gpmi_init(struct gpmi_nand_data *);
-int gpmi_extra_init(struct gpmi_nand_data *);
 void gpmi_clear_bch(struct gpmi_nand_data *);
 void gpmi_dump_info(struct gpmi_nand_data *);
 int bch_set_geometry(struct gpmi_nand_data *);
 int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
 int gpmi_send_command(struct gpmi_nand_data *);
-void gpmi_begin(struct gpmi_nand_data *);
-void gpmi_end(struct gpmi_nand_data *);
+int gpmi_enable_clk(struct gpmi_nand_data *this);
+int gpmi_disable_clk(struct gpmi_nand_data *this);
+int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
+			      const struct nand_data_interface *conf);
+void gpmi_nfc_apply_timings(struct gpmi_nand_data *this);
 int gpmi_read_data(struct gpmi_nand_data *);
 int gpmi_send_data(struct gpmi_nand_data *);
 int gpmi_send_page(struct gpmi_nand_data *,

+ 5 - 0
drivers/mtd/nand/gpmi-nand/gpmi-regs.h → drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h

@@ -147,6 +147,11 @@
 
 #define BM_GPMI_CTRL1_GPMI_MODE				(1 << 0)
 
+#define BM_GPMI_CTRL1_CLEAR_MASK (BM_GPMI_CTRL1_WRN_DLY_SEL | \
+				  BM_GPMI_CTRL1_DLL_ENABLE |  \
+				  BM_GPMI_CTRL1_RDN_DELAY |   \
+				  BM_GPMI_CTRL1_HALF_PERIOD)
+
 #define HW_GPMI_TIMING0					0x00000070
 
 #define BP_GPMI_TIMING0_ADDRESS_SETUP			16

+ 2 - 2
drivers/mtd/nand/hisi504_nand.c → drivers/mtd/nand/raw/hisi504_nand.c

@@ -762,8 +762,8 @@ static int hisi_nfc_probe(struct platform_device *pdev)
 	chip->write_buf		= hisi_nfc_write_buf;
 	chip->read_buf		= hisi_nfc_read_buf;
 	chip->chip_delay	= HINFC504_CHIP_DELAY;
-	chip->onfi_set_features	= nand_onfi_get_set_features_notsupp;
-	chip->onfi_get_features	= nand_onfi_get_set_features_notsupp;
+	chip->set_features	= nand_get_set_features_notsupp;
+	chip->get_features	= nand_get_set_features_notsupp;
 
 	hisi_nfc_host_init(host);
 

+ 0 - 0
drivers/mtd/nand/jz4740_nand.c → drivers/mtd/nand/raw/jz4740_nand.c


+ 0 - 0
drivers/mtd/nand/jz4780_bch.c → drivers/mtd/nand/raw/jz4780_bch.c


Kaikkia tiedostoja ei voida näyttää, sillä liian monta tiedostoa muuttui tässä diffissä