jz4740_nand.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
  3. * JZ4740 SoC NAND controller driver
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. *
  10. * You should have received a copy of the GNU General Public License along
  11. * with this program; if not, write to the Free Software Foundation, Inc.,
  12. * 675 Mass Ave, Cambridge, MA 02139, USA.
  13. *
  14. */
  15. #include <linux/ioport.h>
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/slab.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/rawnand.h>
  22. #include <linux/mtd/partitions.h>
  23. #include <linux/gpio.h>
  24. #include <asm/mach-jz4740/jz4740_nand.h>
  25. #define JZ_REG_NAND_CTRL 0x50
  26. #define JZ_REG_NAND_ECC_CTRL 0x100
  27. #define JZ_REG_NAND_DATA 0x104
  28. #define JZ_REG_NAND_PAR0 0x108
  29. #define JZ_REG_NAND_PAR1 0x10C
  30. #define JZ_REG_NAND_PAR2 0x110
  31. #define JZ_REG_NAND_IRQ_STAT 0x114
  32. #define JZ_REG_NAND_IRQ_CTRL 0x118
  33. #define JZ_REG_NAND_ERR(x) (0x11C + ((x) << 2))
  34. #define JZ_NAND_ECC_CTRL_PAR_READY BIT(4)
  35. #define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
  36. #define JZ_NAND_ECC_CTRL_RS BIT(2)
  37. #define JZ_NAND_ECC_CTRL_RESET BIT(1)
  38. #define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
  39. #define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29))
  40. #define JZ_NAND_STATUS_PAD_FINISH BIT(4)
  41. #define JZ_NAND_STATUS_DEC_FINISH BIT(3)
  42. #define JZ_NAND_STATUS_ENC_FINISH BIT(2)
  43. #define JZ_NAND_STATUS_UNCOR_ERROR BIT(1)
  44. #define JZ_NAND_STATUS_ERROR BIT(0)
  45. #define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1)
  46. #define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1)
  47. #define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa
  48. #define JZ_NAND_MEM_CMD_OFFSET 0x08000
  49. #define JZ_NAND_MEM_ADDR_OFFSET 0x10000
  50. struct jz_nand {
  51. struct nand_chip chip;
  52. void __iomem *base;
  53. struct resource *mem;
  54. unsigned char banks[JZ_NAND_NUM_BANKS];
  55. void __iomem *bank_base[JZ_NAND_NUM_BANKS];
  56. struct resource *bank_mem[JZ_NAND_NUM_BANKS];
  57. int selected_bank;
  58. struct gpio_desc *busy_gpio;
  59. bool is_reading;
  60. };
  61. static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd)
  62. {
  63. return container_of(mtd_to_nand(mtd), struct jz_nand, chip);
  64. }
  65. static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr)
  66. {
  67. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  68. struct nand_chip *chip = mtd_to_nand(mtd);
  69. uint32_t ctrl;
  70. int banknr;
  71. ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
  72. ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK;
  73. if (chipnr == -1) {
  74. banknr = -1;
  75. } else {
  76. banknr = nand->banks[chipnr] - 1;
  77. chip->IO_ADDR_R = nand->bank_base[banknr];
  78. chip->IO_ADDR_W = nand->bank_base[banknr];
  79. }
  80. writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
  81. nand->selected_bank = banknr;
  82. }
  83. static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
  84. {
  85. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  86. struct nand_chip *chip = mtd_to_nand(mtd);
  87. uint32_t reg;
  88. void __iomem *bank_base = nand->bank_base[nand->selected_bank];
  89. BUG_ON(nand->selected_bank < 0);
  90. if (ctrl & NAND_CTRL_CHANGE) {
  91. BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE));
  92. if (ctrl & NAND_ALE)
  93. bank_base += JZ_NAND_MEM_ADDR_OFFSET;
  94. else if (ctrl & NAND_CLE)
  95. bank_base += JZ_NAND_MEM_CMD_OFFSET;
  96. chip->IO_ADDR_W = bank_base;
  97. reg = readl(nand->base + JZ_REG_NAND_CTRL);
  98. if (ctrl & NAND_NCE)
  99. reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
  100. else
  101. reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
  102. writel(reg, nand->base + JZ_REG_NAND_CTRL);
  103. }
  104. if (dat != NAND_CMD_NONE)
  105. writeb(dat, chip->IO_ADDR_W);
  106. }
  107. static int jz_nand_dev_ready(struct mtd_info *mtd)
  108. {
  109. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  110. return gpiod_get_value_cansleep(nand->busy_gpio);
  111. }
  112. static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
  113. {
  114. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  115. uint32_t reg;
  116. writel(0, nand->base + JZ_REG_NAND_IRQ_STAT);
  117. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  118. reg |= JZ_NAND_ECC_CTRL_RESET;
  119. reg |= JZ_NAND_ECC_CTRL_ENABLE;
  120. reg |= JZ_NAND_ECC_CTRL_RS;
  121. switch (mode) {
  122. case NAND_ECC_READ:
  123. reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
  124. nand->is_reading = true;
  125. break;
  126. case NAND_ECC_WRITE:
  127. reg |= JZ_NAND_ECC_CTRL_ENCODING;
  128. nand->is_reading = false;
  129. break;
  130. default:
  131. break;
  132. }
  133. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  134. }
  135. static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat,
  136. uint8_t *ecc_code)
  137. {
  138. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  139. uint32_t reg, status;
  140. int i;
  141. unsigned int timeout = 1000;
  142. static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4,
  143. 0x8b, 0xff, 0xb7, 0x6f};
  144. if (nand->is_reading)
  145. return 0;
  146. do {
  147. status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
  148. } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
  149. if (timeout == 0)
  150. return -1;
  151. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  152. reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
  153. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  154. for (i = 0; i < 9; ++i)
  155. ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i);
  156. /* If the written data is completly 0xff, we also want to write 0xff as
  157. * ecc, otherwise we will get in trouble when doing subpage writes. */
  158. if (memcmp(ecc_code, empty_block_ecc, 9) == 0)
  159. memset(ecc_code, 0xff, 9);
  160. return 0;
  161. }
  162. static void jz_nand_correct_data(uint8_t *dat, int index, int mask)
  163. {
  164. int offset = index & 0x7;
  165. uint16_t data;
  166. index += (index >> 3);
  167. data = dat[index];
  168. data |= dat[index+1] << 8;
  169. mask ^= (data >> offset) & 0x1ff;
  170. data &= ~(0x1ff << offset);
  171. data |= (mask << offset);
  172. dat[index] = data & 0xff;
  173. dat[index+1] = (data >> 8) & 0xff;
  174. }
  175. static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat,
  176. uint8_t *read_ecc, uint8_t *calc_ecc)
  177. {
  178. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  179. int i, error_count, index;
  180. uint32_t reg, status, error;
  181. unsigned int timeout = 1000;
  182. for (i = 0; i < 9; ++i)
  183. writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i);
  184. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  185. reg |= JZ_NAND_ECC_CTRL_PAR_READY;
  186. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  187. do {
  188. status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
  189. } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
  190. if (timeout == 0)
  191. return -ETIMEDOUT;
  192. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  193. reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
  194. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  195. if (status & JZ_NAND_STATUS_ERROR) {
  196. if (status & JZ_NAND_STATUS_UNCOR_ERROR)
  197. return -EBADMSG;
  198. error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
  199. for (i = 0; i < error_count; ++i) {
  200. error = readl(nand->base + JZ_REG_NAND_ERR(i));
  201. index = ((error >> 16) & 0x1ff) - 1;
  202. if (index >= 0 && index < 512)
  203. jz_nand_correct_data(dat, index, error & 0x1ff);
  204. }
  205. return error_count;
  206. }
  207. return 0;
  208. }
  209. static int jz_nand_ioremap_resource(struct platform_device *pdev,
  210. const char *name, struct resource **res, void *__iomem *base)
  211. {
  212. int ret;
  213. *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
  214. if (!*res) {
  215. dev_err(&pdev->dev, "Failed to get platform %s memory\n", name);
  216. ret = -ENXIO;
  217. goto err;
  218. }
  219. *res = request_mem_region((*res)->start, resource_size(*res),
  220. pdev->name);
  221. if (!*res) {
  222. dev_err(&pdev->dev, "Failed to request %s memory region\n", name);
  223. ret = -EBUSY;
  224. goto err;
  225. }
  226. *base = ioremap((*res)->start, resource_size(*res));
  227. if (!*base) {
  228. dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name);
  229. ret = -EBUSY;
  230. goto err_release_mem;
  231. }
  232. return 0;
  233. err_release_mem:
  234. release_mem_region((*res)->start, resource_size(*res));
  235. err:
  236. *res = NULL;
  237. *base = NULL;
  238. return ret;
  239. }
  240. static inline void jz_nand_iounmap_resource(struct resource *res,
  241. void __iomem *base)
  242. {
  243. iounmap(base);
  244. release_mem_region(res->start, resource_size(res));
  245. }
  246. static int jz_nand_detect_bank(struct platform_device *pdev,
  247. struct jz_nand *nand, unsigned char bank,
  248. size_t chipnr, uint8_t *nand_maf_id,
  249. uint8_t *nand_dev_id)
  250. {
  251. int ret;
  252. char res_name[6];
  253. uint32_t ctrl;
  254. struct nand_chip *chip = &nand->chip;
  255. struct mtd_info *mtd = nand_to_mtd(chip);
  256. u8 id[2];
  257. /* Request I/O resource. */
  258. sprintf(res_name, "bank%d", bank);
  259. ret = jz_nand_ioremap_resource(pdev, res_name,
  260. &nand->bank_mem[bank - 1],
  261. &nand->bank_base[bank - 1]);
  262. if (ret)
  263. return ret;
  264. /* Enable chip in bank. */
  265. ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
  266. ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1);
  267. writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
  268. if (chipnr == 0) {
  269. /* Detect first chip. */
  270. ret = nand_scan_ident(mtd, 1, NULL);
  271. if (ret)
  272. goto notfound_id;
  273. /* Retrieve the IDs from the first chip. */
  274. chip->select_chip(mtd, 0);
  275. nand_reset_op(chip);
  276. nand_readid_op(chip, 0, id, sizeof(id));
  277. *nand_maf_id = id[0];
  278. *nand_dev_id = id[1];
  279. } else {
  280. /* Detect additional chip. */
  281. chip->select_chip(mtd, chipnr);
  282. nand_reset_op(chip);
  283. nand_readid_op(chip, 0, id, sizeof(id));
  284. if (*nand_maf_id != id[0] || *nand_dev_id != id[1]) {
  285. ret = -ENODEV;
  286. goto notfound_id;
  287. }
  288. /* Update size of the MTD. */
  289. chip->numchips++;
  290. mtd->size += chip->chipsize;
  291. }
  292. dev_info(&pdev->dev, "Found chip %i on bank %i\n", chipnr, bank);
  293. return 0;
  294. notfound_id:
  295. dev_info(&pdev->dev, "No chip found on bank %i\n", bank);
  296. ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1));
  297. writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
  298. jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
  299. nand->bank_base[bank - 1]);
  300. return ret;
  301. }
  302. static int jz_nand_probe(struct platform_device *pdev)
  303. {
  304. int ret;
  305. struct jz_nand *nand;
  306. struct nand_chip *chip;
  307. struct mtd_info *mtd;
  308. struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
  309. size_t chipnr, bank_idx;
  310. uint8_t nand_maf_id = 0, nand_dev_id = 0;
  311. nand = kzalloc(sizeof(*nand), GFP_KERNEL);
  312. if (!nand)
  313. return -ENOMEM;
  314. ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base);
  315. if (ret)
  316. goto err_free;
  317. nand->busy_gpio = devm_gpiod_get_optional(&pdev->dev, "busy", GPIOD_IN);
  318. if (IS_ERR(nand->busy_gpio)) {
  319. ret = PTR_ERR(nand->busy_gpio);
  320. dev_err(&pdev->dev, "Failed to request busy gpio %d\n",
  321. ret);
  322. goto err_iounmap_mmio;
  323. }
  324. chip = &nand->chip;
  325. mtd = nand_to_mtd(chip);
  326. mtd->dev.parent = &pdev->dev;
  327. mtd->name = "jz4740-nand";
  328. chip->ecc.hwctl = jz_nand_hwctl;
  329. chip->ecc.calculate = jz_nand_calculate_ecc_rs;
  330. chip->ecc.correct = jz_nand_correct_ecc_rs;
  331. chip->ecc.mode = NAND_ECC_HW_OOB_FIRST;
  332. chip->ecc.size = 512;
  333. chip->ecc.bytes = 9;
  334. chip->ecc.strength = 4;
  335. chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
  336. chip->chip_delay = 50;
  337. chip->cmd_ctrl = jz_nand_cmd_ctrl;
  338. chip->select_chip = jz_nand_select_chip;
  339. if (nand->busy_gpio)
  340. chip->dev_ready = jz_nand_dev_ready;
  341. platform_set_drvdata(pdev, nand);
  342. /* We are going to autodetect NAND chips in the banks specified in the
  343. * platform data. Although nand_scan_ident() can detect multiple chips,
  344. * it requires those chips to be numbered consecuitively, which is not
  345. * always the case for external memory banks. And a fixed chip-to-bank
  346. * mapping is not practical either, since for example Dingoo units
  347. * produced at different times have NAND chips in different banks.
  348. */
  349. chipnr = 0;
  350. for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) {
  351. unsigned char bank;
  352. /* If there is no platform data, look for NAND in bank 1,
  353. * which is the most likely bank since it is the only one
  354. * that can be booted from.
  355. */
  356. bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1;
  357. if (bank == 0)
  358. break;
  359. if (bank > JZ_NAND_NUM_BANKS) {
  360. dev_warn(&pdev->dev,
  361. "Skipping non-existing bank: %d\n", bank);
  362. continue;
  363. }
  364. /* The detection routine will directly or indirectly call
  365. * jz_nand_select_chip(), so nand->banks has to contain the
  366. * bank we're checking.
  367. */
  368. nand->banks[chipnr] = bank;
  369. if (jz_nand_detect_bank(pdev, nand, bank, chipnr,
  370. &nand_maf_id, &nand_dev_id) == 0)
  371. chipnr++;
  372. else
  373. nand->banks[chipnr] = 0;
  374. }
  375. if (chipnr == 0) {
  376. dev_err(&pdev->dev, "No NAND chips found\n");
  377. goto err_iounmap_mmio;
  378. }
  379. if (pdata && pdata->ident_callback) {
  380. pdata->ident_callback(pdev, mtd, &pdata->partitions,
  381. &pdata->num_partitions);
  382. }
  383. ret = nand_scan_tail(mtd);
  384. if (ret) {
  385. dev_err(&pdev->dev, "Failed to scan NAND\n");
  386. goto err_unclaim_banks;
  387. }
  388. ret = mtd_device_parse_register(mtd, NULL, NULL,
  389. pdata ? pdata->partitions : NULL,
  390. pdata ? pdata->num_partitions : 0);
  391. if (ret) {
  392. dev_err(&pdev->dev, "Failed to add mtd device\n");
  393. goto err_nand_release;
  394. }
  395. dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n");
  396. return 0;
  397. err_nand_release:
  398. nand_release(mtd);
  399. err_unclaim_banks:
  400. while (chipnr--) {
  401. unsigned char bank = nand->banks[chipnr];
  402. jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
  403. nand->bank_base[bank - 1]);
  404. }
  405. writel(0, nand->base + JZ_REG_NAND_CTRL);
  406. err_iounmap_mmio:
  407. jz_nand_iounmap_resource(nand->mem, nand->base);
  408. err_free:
  409. kfree(nand);
  410. return ret;
  411. }
  412. static int jz_nand_remove(struct platform_device *pdev)
  413. {
  414. struct jz_nand *nand = platform_get_drvdata(pdev);
  415. size_t i;
  416. nand_release(nand_to_mtd(&nand->chip));
  417. /* Deassert and disable all chips */
  418. writel(0, nand->base + JZ_REG_NAND_CTRL);
  419. for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) {
  420. unsigned char bank = nand->banks[i];
  421. if (bank != 0) {
  422. jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
  423. nand->bank_base[bank - 1]);
  424. }
  425. }
  426. jz_nand_iounmap_resource(nand->mem, nand->base);
  427. kfree(nand);
  428. return 0;
  429. }
  430. static struct platform_driver jz_nand_driver = {
  431. .probe = jz_nand_probe,
  432. .remove = jz_nand_remove,
  433. .driver = {
  434. .name = "jz4740-nand",
  435. },
  436. };
  437. module_platform_driver(jz_nand_driver);
  438. MODULE_LICENSE("GPL");
  439. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  440. MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC");
  441. MODULE_ALIAS("platform:jz4740-nand");