mmio.c 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License, version 2, as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  17. */
  18. #include <linux/kvm_host.h>
  19. #include <asm/kvm_mmio.h>
  20. #include <asm/kvm_emulate.h>
  21. #include <trace/events/kvm.h>
  22. #include "trace.h"
  23. void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data)
  24. {
  25. void *datap = NULL;
  26. union {
  27. u8 byte;
  28. u16 hword;
  29. u32 word;
  30. u64 dword;
  31. } tmp;
  32. switch (len) {
  33. case 1:
  34. tmp.byte = data;
  35. datap = &tmp.byte;
  36. break;
  37. case 2:
  38. tmp.hword = data;
  39. datap = &tmp.hword;
  40. break;
  41. case 4:
  42. tmp.word = data;
  43. datap = &tmp.word;
  44. break;
  45. case 8:
  46. tmp.dword = data;
  47. datap = &tmp.dword;
  48. break;
  49. }
  50. memcpy(buf, datap, len);
  51. }
  52. unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len)
  53. {
  54. unsigned long data = 0;
  55. union {
  56. u16 hword;
  57. u32 word;
  58. u64 dword;
  59. } tmp;
  60. switch (len) {
  61. case 1:
  62. data = *(u8 *)buf;
  63. break;
  64. case 2:
  65. memcpy(&tmp.hword, buf, len);
  66. data = tmp.hword;
  67. break;
  68. case 4:
  69. memcpy(&tmp.word, buf, len);
  70. data = tmp.word;
  71. break;
  72. case 8:
  73. memcpy(&tmp.dword, buf, len);
  74. data = tmp.dword;
  75. break;
  76. }
  77. return data;
  78. }
  79. /**
  80. * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation
  81. * or in-kernel IO emulation
  82. *
  83. * @vcpu: The VCPU pointer
  84. * @run: The VCPU run struct containing the mmio data
  85. */
  86. int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
  87. {
  88. unsigned long data;
  89. unsigned int len;
  90. int mask;
  91. /* Detect an already handled MMIO return */
  92. if (unlikely(!vcpu->mmio_needed))
  93. return 0;
  94. vcpu->mmio_needed = 0;
  95. if (!run->mmio.is_write) {
  96. len = run->mmio.len;
  97. if (len > sizeof(unsigned long))
  98. return -EINVAL;
  99. data = kvm_mmio_read_buf(run->mmio.data, len);
  100. if (vcpu->arch.mmio_decode.sign_extend &&
  101. len < sizeof(unsigned long)) {
  102. mask = 1U << ((len * 8) - 1);
  103. data = (data ^ mask) - mask;
  104. }
  105. trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr,
  106. &data);
  107. data = vcpu_data_host_to_guest(vcpu, data, len);
  108. vcpu_set_reg(vcpu, vcpu->arch.mmio_decode.rt, data);
  109. }
  110. /*
  111. * The MMIO instruction is emulated and should not be re-executed
  112. * in the guest.
  113. */
  114. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  115. return 0;
  116. }
  117. static int decode_hsr(struct kvm_vcpu *vcpu, bool *is_write, int *len)
  118. {
  119. unsigned long rt;
  120. int access_size;
  121. bool sign_extend;
  122. if (kvm_vcpu_dabt_iss1tw(vcpu)) {
  123. /* page table accesses IO mem: tell guest to fix its TTBR */
  124. kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
  125. return 1;
  126. }
  127. access_size = kvm_vcpu_dabt_get_as(vcpu);
  128. if (unlikely(access_size < 0))
  129. return access_size;
  130. *is_write = kvm_vcpu_dabt_iswrite(vcpu);
  131. sign_extend = kvm_vcpu_dabt_issext(vcpu);
  132. rt = kvm_vcpu_dabt_get_rd(vcpu);
  133. *len = access_size;
  134. vcpu->arch.mmio_decode.sign_extend = sign_extend;
  135. vcpu->arch.mmio_decode.rt = rt;
  136. return 0;
  137. }
  138. int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
  139. phys_addr_t fault_ipa)
  140. {
  141. unsigned long data;
  142. unsigned long rt;
  143. int ret;
  144. bool is_write;
  145. int len;
  146. u8 data_buf[8];
  147. /*
  148. * Prepare MMIO operation. First decode the syndrome data we get
  149. * from the CPU. Then try if some in-kernel emulation feels
  150. * responsible, otherwise let user space do its magic.
  151. */
  152. if (kvm_vcpu_dabt_isvalid(vcpu)) {
  153. ret = decode_hsr(vcpu, &is_write, &len);
  154. if (ret)
  155. return ret;
  156. } else {
  157. kvm_err("load/store instruction decoding not implemented\n");
  158. return -ENOSYS;
  159. }
  160. rt = vcpu->arch.mmio_decode.rt;
  161. if (is_write) {
  162. data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt),
  163. len);
  164. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, &data);
  165. kvm_mmio_write_buf(data_buf, len, data);
  166. ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len,
  167. data_buf);
  168. } else {
  169. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len,
  170. fault_ipa, NULL);
  171. ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len,
  172. data_buf);
  173. }
  174. /* Now prepare kvm_run for the potential return to userland. */
  175. run->mmio.is_write = is_write;
  176. run->mmio.phys_addr = fault_ipa;
  177. run->mmio.len = len;
  178. vcpu->mmio_needed = 1;
  179. if (!ret) {
  180. /* We handled the access successfully in the kernel. */
  181. if (!is_write)
  182. memcpy(run->mmio.data, data_buf, len);
  183. vcpu->stat.mmio_exit_kernel++;
  184. kvm_handle_mmio_return(vcpu, run);
  185. return 1;
  186. }
  187. if (is_write)
  188. memcpy(run->mmio.data, data_buf, len);
  189. vcpu->stat.mmio_exit_user++;
  190. run->exit_reason = KVM_EXIT_MMIO;
  191. return 0;
  192. }