cls_flower.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986
  1. /*
  2. * net/sched/cls_flower.c Flower classifier
  3. *
  4. * Copyright (c) 2015 Jiri Pirko <jiri@resnulli.us>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/rhashtable.h>
  15. #include <linux/workqueue.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/in6.h>
  18. #include <linux/ip.h>
  19. #include <linux/mpls.h>
  20. #include <net/sch_generic.h>
  21. #include <net/pkt_cls.h>
  22. #include <net/ip.h>
  23. #include <net/flow_dissector.h>
  24. #include <net/geneve.h>
  25. #include <net/dst.h>
  26. #include <net/dst_metadata.h>
  27. struct fl_flow_key {
  28. int indev_ifindex;
  29. struct flow_dissector_key_control control;
  30. struct flow_dissector_key_control enc_control;
  31. struct flow_dissector_key_basic basic;
  32. struct flow_dissector_key_eth_addrs eth;
  33. struct flow_dissector_key_vlan vlan;
  34. struct flow_dissector_key_vlan cvlan;
  35. union {
  36. struct flow_dissector_key_ipv4_addrs ipv4;
  37. struct flow_dissector_key_ipv6_addrs ipv6;
  38. };
  39. struct flow_dissector_key_ports tp;
  40. struct flow_dissector_key_icmp icmp;
  41. struct flow_dissector_key_arp arp;
  42. struct flow_dissector_key_keyid enc_key_id;
  43. union {
  44. struct flow_dissector_key_ipv4_addrs enc_ipv4;
  45. struct flow_dissector_key_ipv6_addrs enc_ipv6;
  46. };
  47. struct flow_dissector_key_ports enc_tp;
  48. struct flow_dissector_key_mpls mpls;
  49. struct flow_dissector_key_tcp tcp;
  50. struct flow_dissector_key_ip ip;
  51. struct flow_dissector_key_ip enc_ip;
  52. struct flow_dissector_key_enc_opts enc_opts;
  53. } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */
  54. struct fl_flow_mask_range {
  55. unsigned short int start;
  56. unsigned short int end;
  57. };
  58. struct fl_flow_mask {
  59. struct fl_flow_key key;
  60. struct fl_flow_mask_range range;
  61. struct rhash_head ht_node;
  62. struct rhashtable ht;
  63. struct rhashtable_params filter_ht_params;
  64. struct flow_dissector dissector;
  65. struct list_head filters;
  66. struct rcu_work rwork;
  67. struct list_head list;
  68. };
  69. struct fl_flow_tmplt {
  70. struct fl_flow_key dummy_key;
  71. struct fl_flow_key mask;
  72. struct flow_dissector dissector;
  73. struct tcf_chain *chain;
  74. };
  75. struct cls_fl_head {
  76. struct rhashtable ht;
  77. struct list_head masks;
  78. struct rcu_work rwork;
  79. struct idr handle_idr;
  80. };
  81. struct cls_fl_filter {
  82. struct fl_flow_mask *mask;
  83. struct rhash_head ht_node;
  84. struct fl_flow_key mkey;
  85. struct tcf_exts exts;
  86. struct tcf_result res;
  87. struct fl_flow_key key;
  88. struct list_head list;
  89. u32 handle;
  90. u32 flags;
  91. unsigned int in_hw_count;
  92. struct rcu_work rwork;
  93. struct net_device *hw_dev;
  94. };
  95. static const struct rhashtable_params mask_ht_params = {
  96. .key_offset = offsetof(struct fl_flow_mask, key),
  97. .key_len = sizeof(struct fl_flow_key),
  98. .head_offset = offsetof(struct fl_flow_mask, ht_node),
  99. .automatic_shrinking = true,
  100. };
  101. static unsigned short int fl_mask_range(const struct fl_flow_mask *mask)
  102. {
  103. return mask->range.end - mask->range.start;
  104. }
  105. static void fl_mask_update_range(struct fl_flow_mask *mask)
  106. {
  107. const u8 *bytes = (const u8 *) &mask->key;
  108. size_t size = sizeof(mask->key);
  109. size_t i, first = 0, last;
  110. for (i = 0; i < size; i++) {
  111. if (bytes[i]) {
  112. first = i;
  113. break;
  114. }
  115. }
  116. last = first;
  117. for (i = size - 1; i != first; i--) {
  118. if (bytes[i]) {
  119. last = i;
  120. break;
  121. }
  122. }
  123. mask->range.start = rounddown(first, sizeof(long));
  124. mask->range.end = roundup(last + 1, sizeof(long));
  125. }
  126. static void *fl_key_get_start(struct fl_flow_key *key,
  127. const struct fl_flow_mask *mask)
  128. {
  129. return (u8 *) key + mask->range.start;
  130. }
  131. static void fl_set_masked_key(struct fl_flow_key *mkey, struct fl_flow_key *key,
  132. struct fl_flow_mask *mask)
  133. {
  134. const long *lkey = fl_key_get_start(key, mask);
  135. const long *lmask = fl_key_get_start(&mask->key, mask);
  136. long *lmkey = fl_key_get_start(mkey, mask);
  137. int i;
  138. for (i = 0; i < fl_mask_range(mask); i += sizeof(long))
  139. *lmkey++ = *lkey++ & *lmask++;
  140. }
  141. static bool fl_mask_fits_tmplt(struct fl_flow_tmplt *tmplt,
  142. struct fl_flow_mask *mask)
  143. {
  144. const long *lmask = fl_key_get_start(&mask->key, mask);
  145. const long *ltmplt;
  146. int i;
  147. if (!tmplt)
  148. return true;
  149. ltmplt = fl_key_get_start(&tmplt->mask, mask);
  150. for (i = 0; i < fl_mask_range(mask); i += sizeof(long)) {
  151. if (~*ltmplt++ & *lmask++)
  152. return false;
  153. }
  154. return true;
  155. }
  156. static void fl_clear_masked_range(struct fl_flow_key *key,
  157. struct fl_flow_mask *mask)
  158. {
  159. memset(fl_key_get_start(key, mask), 0, fl_mask_range(mask));
  160. }
  161. static struct cls_fl_filter *fl_lookup(struct fl_flow_mask *mask,
  162. struct fl_flow_key *mkey)
  163. {
  164. return rhashtable_lookup_fast(&mask->ht, fl_key_get_start(mkey, mask),
  165. mask->filter_ht_params);
  166. }
  167. static int fl_classify(struct sk_buff *skb, const struct tcf_proto *tp,
  168. struct tcf_result *res)
  169. {
  170. struct cls_fl_head *head = rcu_dereference_bh(tp->root);
  171. struct cls_fl_filter *f;
  172. struct fl_flow_mask *mask;
  173. struct fl_flow_key skb_key;
  174. struct fl_flow_key skb_mkey;
  175. list_for_each_entry_rcu(mask, &head->masks, list) {
  176. fl_clear_masked_range(&skb_key, mask);
  177. skb_key.indev_ifindex = skb->skb_iif;
  178. /* skb_flow_dissect() does not set n_proto in case an unknown
  179. * protocol, so do it rather here.
  180. */
  181. skb_key.basic.n_proto = skb->protocol;
  182. skb_flow_dissect_tunnel_info(skb, &mask->dissector, &skb_key);
  183. skb_flow_dissect(skb, &mask->dissector, &skb_key, 0);
  184. fl_set_masked_key(&skb_mkey, &skb_key, mask);
  185. f = fl_lookup(mask, &skb_mkey);
  186. if (f && !tc_skip_sw(f->flags)) {
  187. *res = f->res;
  188. return tcf_exts_exec(skb, &f->exts, res);
  189. }
  190. }
  191. return -1;
  192. }
  193. static int fl_init(struct tcf_proto *tp)
  194. {
  195. struct cls_fl_head *head;
  196. head = kzalloc(sizeof(*head), GFP_KERNEL);
  197. if (!head)
  198. return -ENOBUFS;
  199. INIT_LIST_HEAD_RCU(&head->masks);
  200. rcu_assign_pointer(tp->root, head);
  201. idr_init(&head->handle_idr);
  202. return rhashtable_init(&head->ht, &mask_ht_params);
  203. }
  204. static void fl_mask_free(struct fl_flow_mask *mask)
  205. {
  206. rhashtable_destroy(&mask->ht);
  207. kfree(mask);
  208. }
  209. static void fl_mask_free_work(struct work_struct *work)
  210. {
  211. struct fl_flow_mask *mask = container_of(to_rcu_work(work),
  212. struct fl_flow_mask, rwork);
  213. fl_mask_free(mask);
  214. }
  215. static bool fl_mask_put(struct cls_fl_head *head, struct fl_flow_mask *mask,
  216. bool async)
  217. {
  218. if (!list_empty(&mask->filters))
  219. return false;
  220. rhashtable_remove_fast(&head->ht, &mask->ht_node, mask_ht_params);
  221. list_del_rcu(&mask->list);
  222. if (async)
  223. tcf_queue_work(&mask->rwork, fl_mask_free_work);
  224. else
  225. fl_mask_free(mask);
  226. return true;
  227. }
  228. static void __fl_destroy_filter(struct cls_fl_filter *f)
  229. {
  230. tcf_exts_destroy(&f->exts);
  231. tcf_exts_put_net(&f->exts);
  232. kfree(f);
  233. }
  234. static void fl_destroy_filter_work(struct work_struct *work)
  235. {
  236. struct cls_fl_filter *f = container_of(to_rcu_work(work),
  237. struct cls_fl_filter, rwork);
  238. rtnl_lock();
  239. __fl_destroy_filter(f);
  240. rtnl_unlock();
  241. }
  242. static void fl_hw_destroy_filter(struct tcf_proto *tp, struct cls_fl_filter *f,
  243. struct netlink_ext_ack *extack)
  244. {
  245. struct tc_cls_flower_offload cls_flower = {};
  246. struct tcf_block *block = tp->chain->block;
  247. tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, extack);
  248. cls_flower.command = TC_CLSFLOWER_DESTROY;
  249. cls_flower.cookie = (unsigned long) f;
  250. tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
  251. &cls_flower, false);
  252. tcf_block_offload_dec(block, &f->flags);
  253. }
  254. static int fl_hw_replace_filter(struct tcf_proto *tp,
  255. struct cls_fl_filter *f,
  256. struct netlink_ext_ack *extack)
  257. {
  258. struct tc_cls_flower_offload cls_flower = {};
  259. struct tcf_block *block = tp->chain->block;
  260. bool skip_sw = tc_skip_sw(f->flags);
  261. int err;
  262. tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, extack);
  263. cls_flower.command = TC_CLSFLOWER_REPLACE;
  264. cls_flower.cookie = (unsigned long) f;
  265. cls_flower.dissector = &f->mask->dissector;
  266. cls_flower.mask = &f->mask->key;
  267. cls_flower.key = &f->mkey;
  268. cls_flower.exts = &f->exts;
  269. cls_flower.classid = f->res.classid;
  270. err = tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
  271. &cls_flower, skip_sw);
  272. if (err < 0) {
  273. fl_hw_destroy_filter(tp, f, NULL);
  274. return err;
  275. } else if (err > 0) {
  276. f->in_hw_count = err;
  277. tcf_block_offload_inc(block, &f->flags);
  278. }
  279. if (skip_sw && !(f->flags & TCA_CLS_FLAGS_IN_HW))
  280. return -EINVAL;
  281. return 0;
  282. }
  283. static void fl_hw_update_stats(struct tcf_proto *tp, struct cls_fl_filter *f)
  284. {
  285. struct tc_cls_flower_offload cls_flower = {};
  286. struct tcf_block *block = tp->chain->block;
  287. tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, NULL);
  288. cls_flower.command = TC_CLSFLOWER_STATS;
  289. cls_flower.cookie = (unsigned long) f;
  290. cls_flower.exts = &f->exts;
  291. cls_flower.classid = f->res.classid;
  292. tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
  293. &cls_flower, false);
  294. }
  295. static bool __fl_delete(struct tcf_proto *tp, struct cls_fl_filter *f,
  296. struct netlink_ext_ack *extack)
  297. {
  298. struct cls_fl_head *head = rtnl_dereference(tp->root);
  299. bool async = tcf_exts_get_net(&f->exts);
  300. bool last;
  301. idr_remove(&head->handle_idr, f->handle);
  302. list_del_rcu(&f->list);
  303. last = fl_mask_put(head, f->mask, async);
  304. if (!tc_skip_hw(f->flags))
  305. fl_hw_destroy_filter(tp, f, extack);
  306. tcf_unbind_filter(tp, &f->res);
  307. if (async)
  308. tcf_queue_work(&f->rwork, fl_destroy_filter_work);
  309. else
  310. __fl_destroy_filter(f);
  311. return last;
  312. }
  313. static void fl_destroy_sleepable(struct work_struct *work)
  314. {
  315. struct cls_fl_head *head = container_of(to_rcu_work(work),
  316. struct cls_fl_head,
  317. rwork);
  318. rhashtable_destroy(&head->ht);
  319. kfree(head);
  320. module_put(THIS_MODULE);
  321. }
  322. static void fl_destroy(struct tcf_proto *tp, struct netlink_ext_ack *extack)
  323. {
  324. struct cls_fl_head *head = rtnl_dereference(tp->root);
  325. struct fl_flow_mask *mask, *next_mask;
  326. struct cls_fl_filter *f, *next;
  327. list_for_each_entry_safe(mask, next_mask, &head->masks, list) {
  328. list_for_each_entry_safe(f, next, &mask->filters, list) {
  329. if (__fl_delete(tp, f, extack))
  330. break;
  331. }
  332. }
  333. idr_destroy(&head->handle_idr);
  334. __module_get(THIS_MODULE);
  335. tcf_queue_work(&head->rwork, fl_destroy_sleepable);
  336. }
  337. static void *fl_get(struct tcf_proto *tp, u32 handle)
  338. {
  339. struct cls_fl_head *head = rtnl_dereference(tp->root);
  340. return idr_find(&head->handle_idr, handle);
  341. }
  342. static const struct nla_policy fl_policy[TCA_FLOWER_MAX + 1] = {
  343. [TCA_FLOWER_UNSPEC] = { .type = NLA_UNSPEC },
  344. [TCA_FLOWER_CLASSID] = { .type = NLA_U32 },
  345. [TCA_FLOWER_INDEV] = { .type = NLA_STRING,
  346. .len = IFNAMSIZ },
  347. [TCA_FLOWER_KEY_ETH_DST] = { .len = ETH_ALEN },
  348. [TCA_FLOWER_KEY_ETH_DST_MASK] = { .len = ETH_ALEN },
  349. [TCA_FLOWER_KEY_ETH_SRC] = { .len = ETH_ALEN },
  350. [TCA_FLOWER_KEY_ETH_SRC_MASK] = { .len = ETH_ALEN },
  351. [TCA_FLOWER_KEY_ETH_TYPE] = { .type = NLA_U16 },
  352. [TCA_FLOWER_KEY_IP_PROTO] = { .type = NLA_U8 },
  353. [TCA_FLOWER_KEY_IPV4_SRC] = { .type = NLA_U32 },
  354. [TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NLA_U32 },
  355. [TCA_FLOWER_KEY_IPV4_DST] = { .type = NLA_U32 },
  356. [TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NLA_U32 },
  357. [TCA_FLOWER_KEY_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  358. [TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  359. [TCA_FLOWER_KEY_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  360. [TCA_FLOWER_KEY_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  361. [TCA_FLOWER_KEY_TCP_SRC] = { .type = NLA_U16 },
  362. [TCA_FLOWER_KEY_TCP_DST] = { .type = NLA_U16 },
  363. [TCA_FLOWER_KEY_UDP_SRC] = { .type = NLA_U16 },
  364. [TCA_FLOWER_KEY_UDP_DST] = { .type = NLA_U16 },
  365. [TCA_FLOWER_KEY_VLAN_ID] = { .type = NLA_U16 },
  366. [TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NLA_U8 },
  367. [TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NLA_U16 },
  368. [TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
  369. [TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
  370. [TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NLA_U32 },
  371. [TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
  372. [TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NLA_U32 },
  373. [TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  374. [TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  375. [TCA_FLOWER_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  376. [TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  377. [TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NLA_U16 },
  378. [TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NLA_U16 },
  379. [TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NLA_U16 },
  380. [TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NLA_U16 },
  381. [TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NLA_U16 },
  382. [TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NLA_U16 },
  383. [TCA_FLOWER_KEY_SCTP_SRC] = { .type = NLA_U16 },
  384. [TCA_FLOWER_KEY_SCTP_DST] = { .type = NLA_U16 },
  385. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT] = { .type = NLA_U16 },
  386. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK] = { .type = NLA_U16 },
  387. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NLA_U16 },
  388. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK] = { .type = NLA_U16 },
  389. [TCA_FLOWER_KEY_FLAGS] = { .type = NLA_U32 },
  390. [TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NLA_U32 },
  391. [TCA_FLOWER_KEY_ICMPV4_TYPE] = { .type = NLA_U8 },
  392. [TCA_FLOWER_KEY_ICMPV4_TYPE_MASK] = { .type = NLA_U8 },
  393. [TCA_FLOWER_KEY_ICMPV4_CODE] = { .type = NLA_U8 },
  394. [TCA_FLOWER_KEY_ICMPV4_CODE_MASK] = { .type = NLA_U8 },
  395. [TCA_FLOWER_KEY_ICMPV6_TYPE] = { .type = NLA_U8 },
  396. [TCA_FLOWER_KEY_ICMPV6_TYPE_MASK] = { .type = NLA_U8 },
  397. [TCA_FLOWER_KEY_ICMPV6_CODE] = { .type = NLA_U8 },
  398. [TCA_FLOWER_KEY_ICMPV6_CODE_MASK] = { .type = NLA_U8 },
  399. [TCA_FLOWER_KEY_ARP_SIP] = { .type = NLA_U32 },
  400. [TCA_FLOWER_KEY_ARP_SIP_MASK] = { .type = NLA_U32 },
  401. [TCA_FLOWER_KEY_ARP_TIP] = { .type = NLA_U32 },
  402. [TCA_FLOWER_KEY_ARP_TIP_MASK] = { .type = NLA_U32 },
  403. [TCA_FLOWER_KEY_ARP_OP] = { .type = NLA_U8 },
  404. [TCA_FLOWER_KEY_ARP_OP_MASK] = { .type = NLA_U8 },
  405. [TCA_FLOWER_KEY_ARP_SHA] = { .len = ETH_ALEN },
  406. [TCA_FLOWER_KEY_ARP_SHA_MASK] = { .len = ETH_ALEN },
  407. [TCA_FLOWER_KEY_ARP_THA] = { .len = ETH_ALEN },
  408. [TCA_FLOWER_KEY_ARP_THA_MASK] = { .len = ETH_ALEN },
  409. [TCA_FLOWER_KEY_MPLS_TTL] = { .type = NLA_U8 },
  410. [TCA_FLOWER_KEY_MPLS_BOS] = { .type = NLA_U8 },
  411. [TCA_FLOWER_KEY_MPLS_TC] = { .type = NLA_U8 },
  412. [TCA_FLOWER_KEY_MPLS_LABEL] = { .type = NLA_U32 },
  413. [TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NLA_U16 },
  414. [TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NLA_U16 },
  415. [TCA_FLOWER_KEY_IP_TOS] = { .type = NLA_U8 },
  416. [TCA_FLOWER_KEY_IP_TOS_MASK] = { .type = NLA_U8 },
  417. [TCA_FLOWER_KEY_IP_TTL] = { .type = NLA_U8 },
  418. [TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NLA_U8 },
  419. [TCA_FLOWER_KEY_CVLAN_ID] = { .type = NLA_U16 },
  420. [TCA_FLOWER_KEY_CVLAN_PRIO] = { .type = NLA_U8 },
  421. [TCA_FLOWER_KEY_CVLAN_ETH_TYPE] = { .type = NLA_U16 },
  422. [TCA_FLOWER_KEY_ENC_IP_TOS] = { .type = NLA_U8 },
  423. [TCA_FLOWER_KEY_ENC_IP_TOS_MASK] = { .type = NLA_U8 },
  424. [TCA_FLOWER_KEY_ENC_IP_TTL] = { .type = NLA_U8 },
  425. [TCA_FLOWER_KEY_ENC_IP_TTL_MASK] = { .type = NLA_U8 },
  426. [TCA_FLOWER_KEY_ENC_OPTS] = { .type = NLA_NESTED },
  427. [TCA_FLOWER_KEY_ENC_OPTS_MASK] = { .type = NLA_NESTED },
  428. };
  429. static const struct nla_policy
  430. enc_opts_policy[TCA_FLOWER_KEY_ENC_OPTS_MAX + 1] = {
  431. [TCA_FLOWER_KEY_ENC_OPTS_GENEVE] = { .type = NLA_NESTED },
  432. };
  433. static const struct nla_policy
  434. geneve_opt_policy[TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX + 1] = {
  435. [TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS] = { .type = NLA_U16 },
  436. [TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE] = { .type = NLA_U8 },
  437. [TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA] = { .type = NLA_BINARY,
  438. .len = 128 },
  439. };
  440. static void fl_set_key_val(struct nlattr **tb,
  441. void *val, int val_type,
  442. void *mask, int mask_type, int len)
  443. {
  444. if (!tb[val_type])
  445. return;
  446. memcpy(val, nla_data(tb[val_type]), len);
  447. if (mask_type == TCA_FLOWER_UNSPEC || !tb[mask_type])
  448. memset(mask, 0xff, len);
  449. else
  450. memcpy(mask, nla_data(tb[mask_type]), len);
  451. }
  452. static int fl_set_key_mpls(struct nlattr **tb,
  453. struct flow_dissector_key_mpls *key_val,
  454. struct flow_dissector_key_mpls *key_mask)
  455. {
  456. if (tb[TCA_FLOWER_KEY_MPLS_TTL]) {
  457. key_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TTL]);
  458. key_mask->mpls_ttl = MPLS_TTL_MASK;
  459. }
  460. if (tb[TCA_FLOWER_KEY_MPLS_BOS]) {
  461. u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_BOS]);
  462. if (bos & ~MPLS_BOS_MASK)
  463. return -EINVAL;
  464. key_val->mpls_bos = bos;
  465. key_mask->mpls_bos = MPLS_BOS_MASK;
  466. }
  467. if (tb[TCA_FLOWER_KEY_MPLS_TC]) {
  468. u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TC]);
  469. if (tc & ~MPLS_TC_MASK)
  470. return -EINVAL;
  471. key_val->mpls_tc = tc;
  472. key_mask->mpls_tc = MPLS_TC_MASK;
  473. }
  474. if (tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
  475. u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_LABEL]);
  476. if (label & ~MPLS_LABEL_MASK)
  477. return -EINVAL;
  478. key_val->mpls_label = label;
  479. key_mask->mpls_label = MPLS_LABEL_MASK;
  480. }
  481. return 0;
  482. }
  483. static void fl_set_key_vlan(struct nlattr **tb,
  484. __be16 ethertype,
  485. int vlan_id_key, int vlan_prio_key,
  486. struct flow_dissector_key_vlan *key_val,
  487. struct flow_dissector_key_vlan *key_mask)
  488. {
  489. #define VLAN_PRIORITY_MASK 0x7
  490. if (tb[vlan_id_key]) {
  491. key_val->vlan_id =
  492. nla_get_u16(tb[vlan_id_key]) & VLAN_VID_MASK;
  493. key_mask->vlan_id = VLAN_VID_MASK;
  494. }
  495. if (tb[vlan_prio_key]) {
  496. key_val->vlan_priority =
  497. nla_get_u8(tb[vlan_prio_key]) &
  498. VLAN_PRIORITY_MASK;
  499. key_mask->vlan_priority = VLAN_PRIORITY_MASK;
  500. }
  501. key_val->vlan_tpid = ethertype;
  502. key_mask->vlan_tpid = cpu_to_be16(~0);
  503. }
  504. static void fl_set_key_flag(u32 flower_key, u32 flower_mask,
  505. u32 *dissector_key, u32 *dissector_mask,
  506. u32 flower_flag_bit, u32 dissector_flag_bit)
  507. {
  508. if (flower_mask & flower_flag_bit) {
  509. *dissector_mask |= dissector_flag_bit;
  510. if (flower_key & flower_flag_bit)
  511. *dissector_key |= dissector_flag_bit;
  512. }
  513. }
  514. static int fl_set_key_flags(struct nlattr **tb,
  515. u32 *flags_key, u32 *flags_mask)
  516. {
  517. u32 key, mask;
  518. /* mask is mandatory for flags */
  519. if (!tb[TCA_FLOWER_KEY_FLAGS_MASK])
  520. return -EINVAL;
  521. key = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS]));
  522. mask = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS_MASK]));
  523. *flags_key = 0;
  524. *flags_mask = 0;
  525. fl_set_key_flag(key, mask, flags_key, flags_mask,
  526. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  527. fl_set_key_flag(key, mask, flags_key, flags_mask,
  528. TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST,
  529. FLOW_DIS_FIRST_FRAG);
  530. return 0;
  531. }
  532. static void fl_set_key_ip(struct nlattr **tb, bool encap,
  533. struct flow_dissector_key_ip *key,
  534. struct flow_dissector_key_ip *mask)
  535. {
  536. int tos_key = encap ? TCA_FLOWER_KEY_ENC_IP_TOS : TCA_FLOWER_KEY_IP_TOS;
  537. int ttl_key = encap ? TCA_FLOWER_KEY_ENC_IP_TTL : TCA_FLOWER_KEY_IP_TTL;
  538. int tos_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TOS_MASK : TCA_FLOWER_KEY_IP_TOS_MASK;
  539. int ttl_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TTL_MASK : TCA_FLOWER_KEY_IP_TTL_MASK;
  540. fl_set_key_val(tb, &key->tos, tos_key, &mask->tos, tos_mask, sizeof(key->tos));
  541. fl_set_key_val(tb, &key->ttl, ttl_key, &mask->ttl, ttl_mask, sizeof(key->ttl));
  542. }
  543. static int fl_set_geneve_opt(const struct nlattr *nla, struct fl_flow_key *key,
  544. int depth, int option_len,
  545. struct netlink_ext_ack *extack)
  546. {
  547. struct nlattr *tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX + 1];
  548. struct nlattr *class = NULL, *type = NULL, *data = NULL;
  549. struct geneve_opt *opt;
  550. int err, data_len = 0;
  551. if (option_len > sizeof(struct geneve_opt))
  552. data_len = option_len - sizeof(struct geneve_opt);
  553. opt = (struct geneve_opt *)&key->enc_opts.data[key->enc_opts.len];
  554. memset(opt, 0xff, option_len);
  555. opt->length = data_len / 4;
  556. opt->r1 = 0;
  557. opt->r2 = 0;
  558. opt->r3 = 0;
  559. /* If no mask has been prodived we assume an exact match. */
  560. if (!depth)
  561. return sizeof(struct geneve_opt) + data_len;
  562. if (nla_type(nla) != TCA_FLOWER_KEY_ENC_OPTS_GENEVE) {
  563. NL_SET_ERR_MSG(extack, "Non-geneve option type for mask");
  564. return -EINVAL;
  565. }
  566. err = nla_parse_nested(tb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX,
  567. nla, geneve_opt_policy, extack);
  568. if (err < 0)
  569. return err;
  570. /* We are not allowed to omit any of CLASS, TYPE or DATA
  571. * fields from the key.
  572. */
  573. if (!option_len &&
  574. (!tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS] ||
  575. !tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE] ||
  576. !tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA])) {
  577. NL_SET_ERR_MSG(extack, "Missing tunnel key geneve option class, type or data");
  578. return -EINVAL;
  579. }
  580. /* Omitting any of CLASS, TYPE or DATA fields is allowed
  581. * for the mask.
  582. */
  583. if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA]) {
  584. int new_len = key->enc_opts.len;
  585. data = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA];
  586. data_len = nla_len(data);
  587. if (data_len < 4) {
  588. NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is less than 4 bytes long");
  589. return -ERANGE;
  590. }
  591. if (data_len % 4) {
  592. NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is not a multiple of 4 bytes long");
  593. return -ERANGE;
  594. }
  595. new_len += sizeof(struct geneve_opt) + data_len;
  596. BUILD_BUG_ON(FLOW_DIS_TUN_OPTS_MAX != IP_TUNNEL_OPTS_MAX);
  597. if (new_len > FLOW_DIS_TUN_OPTS_MAX) {
  598. NL_SET_ERR_MSG(extack, "Tunnel options exceeds max size");
  599. return -ERANGE;
  600. }
  601. opt->length = data_len / 4;
  602. memcpy(opt->opt_data, nla_data(data), data_len);
  603. }
  604. if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS]) {
  605. class = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS];
  606. opt->opt_class = nla_get_be16(class);
  607. }
  608. if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE]) {
  609. type = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE];
  610. opt->type = nla_get_u8(type);
  611. }
  612. return sizeof(struct geneve_opt) + data_len;
  613. }
  614. static int fl_set_enc_opt(struct nlattr **tb, struct fl_flow_key *key,
  615. struct fl_flow_key *mask,
  616. struct netlink_ext_ack *extack)
  617. {
  618. const struct nlattr *nla_enc_key, *nla_opt_key, *nla_opt_msk = NULL;
  619. int err, option_len, key_depth, msk_depth = 0;
  620. err = nla_validate_nested(tb[TCA_FLOWER_KEY_ENC_OPTS],
  621. TCA_FLOWER_KEY_ENC_OPTS_MAX,
  622. enc_opts_policy, extack);
  623. if (err)
  624. return err;
  625. nla_enc_key = nla_data(tb[TCA_FLOWER_KEY_ENC_OPTS]);
  626. if (tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]) {
  627. err = nla_validate_nested(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK],
  628. TCA_FLOWER_KEY_ENC_OPTS_MAX,
  629. enc_opts_policy, extack);
  630. if (err)
  631. return err;
  632. nla_opt_msk = nla_data(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]);
  633. msk_depth = nla_len(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]);
  634. }
  635. nla_for_each_attr(nla_opt_key, nla_enc_key,
  636. nla_len(tb[TCA_FLOWER_KEY_ENC_OPTS]), key_depth) {
  637. switch (nla_type(nla_opt_key)) {
  638. case TCA_FLOWER_KEY_ENC_OPTS_GENEVE:
  639. option_len = 0;
  640. key->enc_opts.dst_opt_type = TUNNEL_GENEVE_OPT;
  641. option_len = fl_set_geneve_opt(nla_opt_key, key,
  642. key_depth, option_len,
  643. extack);
  644. if (option_len < 0)
  645. return option_len;
  646. key->enc_opts.len += option_len;
  647. /* At the same time we need to parse through the mask
  648. * in order to verify exact and mask attribute lengths.
  649. */
  650. mask->enc_opts.dst_opt_type = TUNNEL_GENEVE_OPT;
  651. option_len = fl_set_geneve_opt(nla_opt_msk, mask,
  652. msk_depth, option_len,
  653. extack);
  654. if (option_len < 0)
  655. return option_len;
  656. mask->enc_opts.len += option_len;
  657. if (key->enc_opts.len != mask->enc_opts.len) {
  658. NL_SET_ERR_MSG(extack, "Key and mask miss aligned");
  659. return -EINVAL;
  660. }
  661. if (msk_depth)
  662. nla_opt_msk = nla_next(nla_opt_msk, &msk_depth);
  663. break;
  664. default:
  665. NL_SET_ERR_MSG(extack, "Unknown tunnel option type");
  666. return -EINVAL;
  667. }
  668. }
  669. return 0;
  670. }
  671. static int fl_set_key(struct net *net, struct nlattr **tb,
  672. struct fl_flow_key *key, struct fl_flow_key *mask,
  673. struct netlink_ext_ack *extack)
  674. {
  675. __be16 ethertype;
  676. int ret = 0;
  677. #ifdef CONFIG_NET_CLS_IND
  678. if (tb[TCA_FLOWER_INDEV]) {
  679. int err = tcf_change_indev(net, tb[TCA_FLOWER_INDEV], extack);
  680. if (err < 0)
  681. return err;
  682. key->indev_ifindex = err;
  683. mask->indev_ifindex = 0xffffffff;
  684. }
  685. #endif
  686. fl_set_key_val(tb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  687. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  688. sizeof(key->eth.dst));
  689. fl_set_key_val(tb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  690. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  691. sizeof(key->eth.src));
  692. if (tb[TCA_FLOWER_KEY_ETH_TYPE]) {
  693. ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_ETH_TYPE]);
  694. if (eth_type_vlan(ethertype)) {
  695. fl_set_key_vlan(tb, ethertype, TCA_FLOWER_KEY_VLAN_ID,
  696. TCA_FLOWER_KEY_VLAN_PRIO, &key->vlan,
  697. &mask->vlan);
  698. if (tb[TCA_FLOWER_KEY_VLAN_ETH_TYPE]) {
  699. ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_VLAN_ETH_TYPE]);
  700. if (eth_type_vlan(ethertype)) {
  701. fl_set_key_vlan(tb, ethertype,
  702. TCA_FLOWER_KEY_CVLAN_ID,
  703. TCA_FLOWER_KEY_CVLAN_PRIO,
  704. &key->cvlan, &mask->cvlan);
  705. fl_set_key_val(tb, &key->basic.n_proto,
  706. TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
  707. &mask->basic.n_proto,
  708. TCA_FLOWER_UNSPEC,
  709. sizeof(key->basic.n_proto));
  710. } else {
  711. key->basic.n_proto = ethertype;
  712. mask->basic.n_proto = cpu_to_be16(~0);
  713. }
  714. }
  715. } else {
  716. key->basic.n_proto = ethertype;
  717. mask->basic.n_proto = cpu_to_be16(~0);
  718. }
  719. }
  720. if (key->basic.n_proto == htons(ETH_P_IP) ||
  721. key->basic.n_proto == htons(ETH_P_IPV6)) {
  722. fl_set_key_val(tb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  723. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  724. sizeof(key->basic.ip_proto));
  725. fl_set_key_ip(tb, false, &key->ip, &mask->ip);
  726. }
  727. if (tb[TCA_FLOWER_KEY_IPV4_SRC] || tb[TCA_FLOWER_KEY_IPV4_DST]) {
  728. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  729. mask->control.addr_type = ~0;
  730. fl_set_key_val(tb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  731. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  732. sizeof(key->ipv4.src));
  733. fl_set_key_val(tb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  734. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  735. sizeof(key->ipv4.dst));
  736. } else if (tb[TCA_FLOWER_KEY_IPV6_SRC] || tb[TCA_FLOWER_KEY_IPV6_DST]) {
  737. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  738. mask->control.addr_type = ~0;
  739. fl_set_key_val(tb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  740. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  741. sizeof(key->ipv6.src));
  742. fl_set_key_val(tb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  743. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  744. sizeof(key->ipv6.dst));
  745. }
  746. if (key->basic.ip_proto == IPPROTO_TCP) {
  747. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  748. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  749. sizeof(key->tp.src));
  750. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  751. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  752. sizeof(key->tp.dst));
  753. fl_set_key_val(tb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  754. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  755. sizeof(key->tcp.flags));
  756. } else if (key->basic.ip_proto == IPPROTO_UDP) {
  757. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  758. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  759. sizeof(key->tp.src));
  760. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  761. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  762. sizeof(key->tp.dst));
  763. } else if (key->basic.ip_proto == IPPROTO_SCTP) {
  764. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  765. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  766. sizeof(key->tp.src));
  767. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  768. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  769. sizeof(key->tp.dst));
  770. } else if (key->basic.n_proto == htons(ETH_P_IP) &&
  771. key->basic.ip_proto == IPPROTO_ICMP) {
  772. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV4_TYPE,
  773. &mask->icmp.type,
  774. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  775. sizeof(key->icmp.type));
  776. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV4_CODE,
  777. &mask->icmp.code,
  778. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  779. sizeof(key->icmp.code));
  780. } else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  781. key->basic.ip_proto == IPPROTO_ICMPV6) {
  782. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV6_TYPE,
  783. &mask->icmp.type,
  784. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  785. sizeof(key->icmp.type));
  786. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV6_CODE,
  787. &mask->icmp.code,
  788. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  789. sizeof(key->icmp.code));
  790. } else if (key->basic.n_proto == htons(ETH_P_MPLS_UC) ||
  791. key->basic.n_proto == htons(ETH_P_MPLS_MC)) {
  792. ret = fl_set_key_mpls(tb, &key->mpls, &mask->mpls);
  793. if (ret)
  794. return ret;
  795. } else if (key->basic.n_proto == htons(ETH_P_ARP) ||
  796. key->basic.n_proto == htons(ETH_P_RARP)) {
  797. fl_set_key_val(tb, &key->arp.sip, TCA_FLOWER_KEY_ARP_SIP,
  798. &mask->arp.sip, TCA_FLOWER_KEY_ARP_SIP_MASK,
  799. sizeof(key->arp.sip));
  800. fl_set_key_val(tb, &key->arp.tip, TCA_FLOWER_KEY_ARP_TIP,
  801. &mask->arp.tip, TCA_FLOWER_KEY_ARP_TIP_MASK,
  802. sizeof(key->arp.tip));
  803. fl_set_key_val(tb, &key->arp.op, TCA_FLOWER_KEY_ARP_OP,
  804. &mask->arp.op, TCA_FLOWER_KEY_ARP_OP_MASK,
  805. sizeof(key->arp.op));
  806. fl_set_key_val(tb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  807. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  808. sizeof(key->arp.sha));
  809. fl_set_key_val(tb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  810. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  811. sizeof(key->arp.tha));
  812. }
  813. if (tb[TCA_FLOWER_KEY_ENC_IPV4_SRC] ||
  814. tb[TCA_FLOWER_KEY_ENC_IPV4_DST]) {
  815. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  816. mask->enc_control.addr_type = ~0;
  817. fl_set_key_val(tb, &key->enc_ipv4.src,
  818. TCA_FLOWER_KEY_ENC_IPV4_SRC,
  819. &mask->enc_ipv4.src,
  820. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  821. sizeof(key->enc_ipv4.src));
  822. fl_set_key_val(tb, &key->enc_ipv4.dst,
  823. TCA_FLOWER_KEY_ENC_IPV4_DST,
  824. &mask->enc_ipv4.dst,
  825. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  826. sizeof(key->enc_ipv4.dst));
  827. }
  828. if (tb[TCA_FLOWER_KEY_ENC_IPV6_SRC] ||
  829. tb[TCA_FLOWER_KEY_ENC_IPV6_DST]) {
  830. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  831. mask->enc_control.addr_type = ~0;
  832. fl_set_key_val(tb, &key->enc_ipv6.src,
  833. TCA_FLOWER_KEY_ENC_IPV6_SRC,
  834. &mask->enc_ipv6.src,
  835. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  836. sizeof(key->enc_ipv6.src));
  837. fl_set_key_val(tb, &key->enc_ipv6.dst,
  838. TCA_FLOWER_KEY_ENC_IPV6_DST,
  839. &mask->enc_ipv6.dst,
  840. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  841. sizeof(key->enc_ipv6.dst));
  842. }
  843. fl_set_key_val(tb, &key->enc_key_id.keyid, TCA_FLOWER_KEY_ENC_KEY_ID,
  844. &mask->enc_key_id.keyid, TCA_FLOWER_UNSPEC,
  845. sizeof(key->enc_key_id.keyid));
  846. fl_set_key_val(tb, &key->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  847. &mask->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  848. sizeof(key->enc_tp.src));
  849. fl_set_key_val(tb, &key->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  850. &mask->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  851. sizeof(key->enc_tp.dst));
  852. fl_set_key_ip(tb, true, &key->enc_ip, &mask->enc_ip);
  853. if (tb[TCA_FLOWER_KEY_ENC_OPTS]) {
  854. ret = fl_set_enc_opt(tb, key, mask, extack);
  855. if (ret)
  856. return ret;
  857. }
  858. if (tb[TCA_FLOWER_KEY_FLAGS])
  859. ret = fl_set_key_flags(tb, &key->control.flags, &mask->control.flags);
  860. return ret;
  861. }
  862. static void fl_mask_copy(struct fl_flow_mask *dst,
  863. struct fl_flow_mask *src)
  864. {
  865. const void *psrc = fl_key_get_start(&src->key, src);
  866. void *pdst = fl_key_get_start(&dst->key, src);
  867. memcpy(pdst, psrc, fl_mask_range(src));
  868. dst->range = src->range;
  869. }
  870. static const struct rhashtable_params fl_ht_params = {
  871. .key_offset = offsetof(struct cls_fl_filter, mkey), /* base offset */
  872. .head_offset = offsetof(struct cls_fl_filter, ht_node),
  873. .automatic_shrinking = true,
  874. };
  875. static int fl_init_mask_hashtable(struct fl_flow_mask *mask)
  876. {
  877. mask->filter_ht_params = fl_ht_params;
  878. mask->filter_ht_params.key_len = fl_mask_range(mask);
  879. mask->filter_ht_params.key_offset += mask->range.start;
  880. return rhashtable_init(&mask->ht, &mask->filter_ht_params);
  881. }
  882. #define FL_KEY_MEMBER_OFFSET(member) offsetof(struct fl_flow_key, member)
  883. #define FL_KEY_MEMBER_SIZE(member) (sizeof(((struct fl_flow_key *) 0)->member))
  884. #define FL_KEY_IS_MASKED(mask, member) \
  885. memchr_inv(((char *)mask) + FL_KEY_MEMBER_OFFSET(member), \
  886. 0, FL_KEY_MEMBER_SIZE(member)) \
  887. #define FL_KEY_SET(keys, cnt, id, member) \
  888. do { \
  889. keys[cnt].key_id = id; \
  890. keys[cnt].offset = FL_KEY_MEMBER_OFFSET(member); \
  891. cnt++; \
  892. } while(0);
  893. #define FL_KEY_SET_IF_MASKED(mask, keys, cnt, id, member) \
  894. do { \
  895. if (FL_KEY_IS_MASKED(mask, member)) \
  896. FL_KEY_SET(keys, cnt, id, member); \
  897. } while(0);
  898. static void fl_init_dissector(struct flow_dissector *dissector,
  899. struct fl_flow_key *mask)
  900. {
  901. struct flow_dissector_key keys[FLOW_DISSECTOR_KEY_MAX];
  902. size_t cnt = 0;
  903. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_CONTROL, control);
  904. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_BASIC, basic);
  905. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  906. FLOW_DISSECTOR_KEY_ETH_ADDRS, eth);
  907. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  908. FLOW_DISSECTOR_KEY_IPV4_ADDRS, ipv4);
  909. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  910. FLOW_DISSECTOR_KEY_IPV6_ADDRS, ipv6);
  911. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  912. FLOW_DISSECTOR_KEY_PORTS, tp);
  913. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  914. FLOW_DISSECTOR_KEY_IP, ip);
  915. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  916. FLOW_DISSECTOR_KEY_TCP, tcp);
  917. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  918. FLOW_DISSECTOR_KEY_ICMP, icmp);
  919. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  920. FLOW_DISSECTOR_KEY_ARP, arp);
  921. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  922. FLOW_DISSECTOR_KEY_MPLS, mpls);
  923. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  924. FLOW_DISSECTOR_KEY_VLAN, vlan);
  925. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  926. FLOW_DISSECTOR_KEY_CVLAN, cvlan);
  927. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  928. FLOW_DISSECTOR_KEY_ENC_KEYID, enc_key_id);
  929. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  930. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, enc_ipv4);
  931. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  932. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, enc_ipv6);
  933. if (FL_KEY_IS_MASKED(mask, enc_ipv4) ||
  934. FL_KEY_IS_MASKED(mask, enc_ipv6))
  935. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_ENC_CONTROL,
  936. enc_control);
  937. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  938. FLOW_DISSECTOR_KEY_ENC_PORTS, enc_tp);
  939. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  940. FLOW_DISSECTOR_KEY_ENC_IP, enc_ip);
  941. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  942. FLOW_DISSECTOR_KEY_ENC_OPTS, enc_opts);
  943. skb_flow_dissector_init(dissector, keys, cnt);
  944. }
  945. static struct fl_flow_mask *fl_create_new_mask(struct cls_fl_head *head,
  946. struct fl_flow_mask *mask)
  947. {
  948. struct fl_flow_mask *newmask;
  949. int err;
  950. newmask = kzalloc(sizeof(*newmask), GFP_KERNEL);
  951. if (!newmask)
  952. return ERR_PTR(-ENOMEM);
  953. fl_mask_copy(newmask, mask);
  954. err = fl_init_mask_hashtable(newmask);
  955. if (err)
  956. goto errout_free;
  957. fl_init_dissector(&newmask->dissector, &newmask->key);
  958. INIT_LIST_HEAD_RCU(&newmask->filters);
  959. err = rhashtable_insert_fast(&head->ht, &newmask->ht_node,
  960. mask_ht_params);
  961. if (err)
  962. goto errout_destroy;
  963. list_add_tail_rcu(&newmask->list, &head->masks);
  964. return newmask;
  965. errout_destroy:
  966. rhashtable_destroy(&newmask->ht);
  967. errout_free:
  968. kfree(newmask);
  969. return ERR_PTR(err);
  970. }
  971. static int fl_check_assign_mask(struct cls_fl_head *head,
  972. struct cls_fl_filter *fnew,
  973. struct cls_fl_filter *fold,
  974. struct fl_flow_mask *mask)
  975. {
  976. struct fl_flow_mask *newmask;
  977. fnew->mask = rhashtable_lookup_fast(&head->ht, mask, mask_ht_params);
  978. if (!fnew->mask) {
  979. if (fold)
  980. return -EINVAL;
  981. newmask = fl_create_new_mask(head, mask);
  982. if (IS_ERR(newmask))
  983. return PTR_ERR(newmask);
  984. fnew->mask = newmask;
  985. } else if (fold && fold->mask != fnew->mask) {
  986. return -EINVAL;
  987. }
  988. return 0;
  989. }
  990. static int fl_set_parms(struct net *net, struct tcf_proto *tp,
  991. struct cls_fl_filter *f, struct fl_flow_mask *mask,
  992. unsigned long base, struct nlattr **tb,
  993. struct nlattr *est, bool ovr,
  994. struct fl_flow_tmplt *tmplt,
  995. struct netlink_ext_ack *extack)
  996. {
  997. int err;
  998. err = tcf_exts_validate(net, tp, tb, est, &f->exts, ovr, extack);
  999. if (err < 0)
  1000. return err;
  1001. if (tb[TCA_FLOWER_CLASSID]) {
  1002. f->res.classid = nla_get_u32(tb[TCA_FLOWER_CLASSID]);
  1003. tcf_bind_filter(tp, &f->res, base);
  1004. }
  1005. err = fl_set_key(net, tb, &f->key, &mask->key, extack);
  1006. if (err)
  1007. return err;
  1008. fl_mask_update_range(mask);
  1009. fl_set_masked_key(&f->mkey, &f->key, mask);
  1010. if (!fl_mask_fits_tmplt(tmplt, mask)) {
  1011. NL_SET_ERR_MSG_MOD(extack, "Mask does not fit the template");
  1012. return -EINVAL;
  1013. }
  1014. return 0;
  1015. }
  1016. static int fl_change(struct net *net, struct sk_buff *in_skb,
  1017. struct tcf_proto *tp, unsigned long base,
  1018. u32 handle, struct nlattr **tca,
  1019. void **arg, bool ovr, struct netlink_ext_ack *extack)
  1020. {
  1021. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1022. struct cls_fl_filter *fold = *arg;
  1023. struct cls_fl_filter *fnew;
  1024. struct fl_flow_mask *mask;
  1025. struct nlattr **tb;
  1026. int err;
  1027. if (!tca[TCA_OPTIONS])
  1028. return -EINVAL;
  1029. mask = kzalloc(sizeof(struct fl_flow_mask), GFP_KERNEL);
  1030. if (!mask)
  1031. return -ENOBUFS;
  1032. tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
  1033. if (!tb) {
  1034. err = -ENOBUFS;
  1035. goto errout_mask_alloc;
  1036. }
  1037. err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
  1038. fl_policy, NULL);
  1039. if (err < 0)
  1040. goto errout_tb;
  1041. if (fold && handle && fold->handle != handle) {
  1042. err = -EINVAL;
  1043. goto errout_tb;
  1044. }
  1045. fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
  1046. if (!fnew) {
  1047. err = -ENOBUFS;
  1048. goto errout_tb;
  1049. }
  1050. err = tcf_exts_init(&fnew->exts, TCA_FLOWER_ACT, 0);
  1051. if (err < 0)
  1052. goto errout;
  1053. if (tb[TCA_FLOWER_FLAGS]) {
  1054. fnew->flags = nla_get_u32(tb[TCA_FLOWER_FLAGS]);
  1055. if (!tc_flags_valid(fnew->flags)) {
  1056. err = -EINVAL;
  1057. goto errout;
  1058. }
  1059. }
  1060. err = fl_set_parms(net, tp, fnew, mask, base, tb, tca[TCA_RATE], ovr,
  1061. tp->chain->tmplt_priv, extack);
  1062. if (err)
  1063. goto errout;
  1064. err = fl_check_assign_mask(head, fnew, fold, mask);
  1065. if (err)
  1066. goto errout;
  1067. if (!handle) {
  1068. handle = 1;
  1069. err = idr_alloc_u32(&head->handle_idr, fnew, &handle,
  1070. INT_MAX, GFP_KERNEL);
  1071. } else if (!fold) {
  1072. /* user specifies a handle and it doesn't exist */
  1073. err = idr_alloc_u32(&head->handle_idr, fnew, &handle,
  1074. handle, GFP_KERNEL);
  1075. }
  1076. if (err)
  1077. goto errout_mask;
  1078. fnew->handle = handle;
  1079. if (!tc_skip_sw(fnew->flags)) {
  1080. if (!fold && fl_lookup(fnew->mask, &fnew->mkey)) {
  1081. err = -EEXIST;
  1082. goto errout_idr;
  1083. }
  1084. err = rhashtable_insert_fast(&fnew->mask->ht, &fnew->ht_node,
  1085. fnew->mask->filter_ht_params);
  1086. if (err)
  1087. goto errout_idr;
  1088. }
  1089. if (!tc_skip_hw(fnew->flags)) {
  1090. err = fl_hw_replace_filter(tp, fnew, extack);
  1091. if (err)
  1092. goto errout_mask;
  1093. }
  1094. if (!tc_in_hw(fnew->flags))
  1095. fnew->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
  1096. if (fold) {
  1097. if (!tc_skip_sw(fold->flags))
  1098. rhashtable_remove_fast(&fold->mask->ht,
  1099. &fold->ht_node,
  1100. fold->mask->filter_ht_params);
  1101. if (!tc_skip_hw(fold->flags))
  1102. fl_hw_destroy_filter(tp, fold, NULL);
  1103. }
  1104. *arg = fnew;
  1105. if (fold) {
  1106. idr_replace(&head->handle_idr, fnew, fnew->handle);
  1107. list_replace_rcu(&fold->list, &fnew->list);
  1108. tcf_unbind_filter(tp, &fold->res);
  1109. tcf_exts_get_net(&fold->exts);
  1110. tcf_queue_work(&fold->rwork, fl_destroy_filter_work);
  1111. } else {
  1112. list_add_tail_rcu(&fnew->list, &fnew->mask->filters);
  1113. }
  1114. kfree(tb);
  1115. kfree(mask);
  1116. return 0;
  1117. errout_idr:
  1118. if (!fold)
  1119. idr_remove(&head->handle_idr, fnew->handle);
  1120. errout_mask:
  1121. fl_mask_put(head, fnew->mask, false);
  1122. errout:
  1123. tcf_exts_destroy(&fnew->exts);
  1124. kfree(fnew);
  1125. errout_tb:
  1126. kfree(tb);
  1127. errout_mask_alloc:
  1128. kfree(mask);
  1129. return err;
  1130. }
  1131. static int fl_delete(struct tcf_proto *tp, void *arg, bool *last,
  1132. struct netlink_ext_ack *extack)
  1133. {
  1134. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1135. struct cls_fl_filter *f = arg;
  1136. if (!tc_skip_sw(f->flags))
  1137. rhashtable_remove_fast(&f->mask->ht, &f->ht_node,
  1138. f->mask->filter_ht_params);
  1139. __fl_delete(tp, f, extack);
  1140. *last = list_empty(&head->masks);
  1141. return 0;
  1142. }
  1143. static void fl_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  1144. {
  1145. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1146. struct cls_fl_filter *f;
  1147. arg->count = arg->skip;
  1148. while ((f = idr_get_next_ul(&head->handle_idr,
  1149. &arg->cookie)) != NULL) {
  1150. if (arg->fn(tp, f, arg) < 0) {
  1151. arg->stop = 1;
  1152. break;
  1153. }
  1154. arg->cookie = f->handle + 1;
  1155. arg->count++;
  1156. }
  1157. }
  1158. static int fl_reoffload(struct tcf_proto *tp, bool add, tc_setup_cb_t *cb,
  1159. void *cb_priv, struct netlink_ext_ack *extack)
  1160. {
  1161. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1162. struct tc_cls_flower_offload cls_flower = {};
  1163. struct tcf_block *block = tp->chain->block;
  1164. struct fl_flow_mask *mask;
  1165. struct cls_fl_filter *f;
  1166. int err;
  1167. list_for_each_entry(mask, &head->masks, list) {
  1168. list_for_each_entry(f, &mask->filters, list) {
  1169. if (tc_skip_hw(f->flags))
  1170. continue;
  1171. tc_cls_common_offload_init(&cls_flower.common, tp,
  1172. f->flags, extack);
  1173. cls_flower.command = add ?
  1174. TC_CLSFLOWER_REPLACE : TC_CLSFLOWER_DESTROY;
  1175. cls_flower.cookie = (unsigned long)f;
  1176. cls_flower.dissector = &mask->dissector;
  1177. cls_flower.mask = &mask->key;
  1178. cls_flower.key = &f->mkey;
  1179. cls_flower.exts = &f->exts;
  1180. cls_flower.classid = f->res.classid;
  1181. err = cb(TC_SETUP_CLSFLOWER, &cls_flower, cb_priv);
  1182. if (err) {
  1183. if (add && tc_skip_sw(f->flags))
  1184. return err;
  1185. continue;
  1186. }
  1187. tc_cls_offload_cnt_update(block, &f->in_hw_count,
  1188. &f->flags, add);
  1189. }
  1190. }
  1191. return 0;
  1192. }
  1193. static void fl_hw_create_tmplt(struct tcf_chain *chain,
  1194. struct fl_flow_tmplt *tmplt)
  1195. {
  1196. struct tc_cls_flower_offload cls_flower = {};
  1197. struct tcf_block *block = chain->block;
  1198. struct tcf_exts dummy_exts = { 0, };
  1199. cls_flower.common.chain_index = chain->index;
  1200. cls_flower.command = TC_CLSFLOWER_TMPLT_CREATE;
  1201. cls_flower.cookie = (unsigned long) tmplt;
  1202. cls_flower.dissector = &tmplt->dissector;
  1203. cls_flower.mask = &tmplt->mask;
  1204. cls_flower.key = &tmplt->dummy_key;
  1205. cls_flower.exts = &dummy_exts;
  1206. /* We don't care if driver (any of them) fails to handle this
  1207. * call. It serves just as a hint for it.
  1208. */
  1209. tc_setup_cb_call(block, NULL, TC_SETUP_CLSFLOWER,
  1210. &cls_flower, false);
  1211. }
  1212. static void fl_hw_destroy_tmplt(struct tcf_chain *chain,
  1213. struct fl_flow_tmplt *tmplt)
  1214. {
  1215. struct tc_cls_flower_offload cls_flower = {};
  1216. struct tcf_block *block = chain->block;
  1217. cls_flower.common.chain_index = chain->index;
  1218. cls_flower.command = TC_CLSFLOWER_TMPLT_DESTROY;
  1219. cls_flower.cookie = (unsigned long) tmplt;
  1220. tc_setup_cb_call(block, NULL, TC_SETUP_CLSFLOWER,
  1221. &cls_flower, false);
  1222. }
  1223. static void *fl_tmplt_create(struct net *net, struct tcf_chain *chain,
  1224. struct nlattr **tca,
  1225. struct netlink_ext_ack *extack)
  1226. {
  1227. struct fl_flow_tmplt *tmplt;
  1228. struct nlattr **tb;
  1229. int err;
  1230. if (!tca[TCA_OPTIONS])
  1231. return ERR_PTR(-EINVAL);
  1232. tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
  1233. if (!tb)
  1234. return ERR_PTR(-ENOBUFS);
  1235. err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
  1236. fl_policy, NULL);
  1237. if (err)
  1238. goto errout_tb;
  1239. tmplt = kzalloc(sizeof(*tmplt), GFP_KERNEL);
  1240. if (!tmplt) {
  1241. err = -ENOMEM;
  1242. goto errout_tb;
  1243. }
  1244. tmplt->chain = chain;
  1245. err = fl_set_key(net, tb, &tmplt->dummy_key, &tmplt->mask, extack);
  1246. if (err)
  1247. goto errout_tmplt;
  1248. kfree(tb);
  1249. fl_init_dissector(&tmplt->dissector, &tmplt->mask);
  1250. fl_hw_create_tmplt(chain, tmplt);
  1251. return tmplt;
  1252. errout_tmplt:
  1253. kfree(tmplt);
  1254. errout_tb:
  1255. kfree(tb);
  1256. return ERR_PTR(err);
  1257. }
  1258. static void fl_tmplt_destroy(void *tmplt_priv)
  1259. {
  1260. struct fl_flow_tmplt *tmplt = tmplt_priv;
  1261. fl_hw_destroy_tmplt(tmplt->chain, tmplt);
  1262. kfree(tmplt);
  1263. }
  1264. static int fl_dump_key_val(struct sk_buff *skb,
  1265. void *val, int val_type,
  1266. void *mask, int mask_type, int len)
  1267. {
  1268. int err;
  1269. if (!memchr_inv(mask, 0, len))
  1270. return 0;
  1271. err = nla_put(skb, val_type, len, val);
  1272. if (err)
  1273. return err;
  1274. if (mask_type != TCA_FLOWER_UNSPEC) {
  1275. err = nla_put(skb, mask_type, len, mask);
  1276. if (err)
  1277. return err;
  1278. }
  1279. return 0;
  1280. }
  1281. static int fl_dump_key_mpls(struct sk_buff *skb,
  1282. struct flow_dissector_key_mpls *mpls_key,
  1283. struct flow_dissector_key_mpls *mpls_mask)
  1284. {
  1285. int err;
  1286. if (!memchr_inv(mpls_mask, 0, sizeof(*mpls_mask)))
  1287. return 0;
  1288. if (mpls_mask->mpls_ttl) {
  1289. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TTL,
  1290. mpls_key->mpls_ttl);
  1291. if (err)
  1292. return err;
  1293. }
  1294. if (mpls_mask->mpls_tc) {
  1295. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TC,
  1296. mpls_key->mpls_tc);
  1297. if (err)
  1298. return err;
  1299. }
  1300. if (mpls_mask->mpls_label) {
  1301. err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_LABEL,
  1302. mpls_key->mpls_label);
  1303. if (err)
  1304. return err;
  1305. }
  1306. if (mpls_mask->mpls_bos) {
  1307. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_BOS,
  1308. mpls_key->mpls_bos);
  1309. if (err)
  1310. return err;
  1311. }
  1312. return 0;
  1313. }
  1314. static int fl_dump_key_ip(struct sk_buff *skb, bool encap,
  1315. struct flow_dissector_key_ip *key,
  1316. struct flow_dissector_key_ip *mask)
  1317. {
  1318. int tos_key = encap ? TCA_FLOWER_KEY_ENC_IP_TOS : TCA_FLOWER_KEY_IP_TOS;
  1319. int ttl_key = encap ? TCA_FLOWER_KEY_ENC_IP_TTL : TCA_FLOWER_KEY_IP_TTL;
  1320. int tos_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TOS_MASK : TCA_FLOWER_KEY_IP_TOS_MASK;
  1321. int ttl_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TTL_MASK : TCA_FLOWER_KEY_IP_TTL_MASK;
  1322. if (fl_dump_key_val(skb, &key->tos, tos_key, &mask->tos, tos_mask, sizeof(key->tos)) ||
  1323. fl_dump_key_val(skb, &key->ttl, ttl_key, &mask->ttl, ttl_mask, sizeof(key->ttl)))
  1324. return -1;
  1325. return 0;
  1326. }
  1327. static int fl_dump_key_vlan(struct sk_buff *skb,
  1328. int vlan_id_key, int vlan_prio_key,
  1329. struct flow_dissector_key_vlan *vlan_key,
  1330. struct flow_dissector_key_vlan *vlan_mask)
  1331. {
  1332. int err;
  1333. if (!memchr_inv(vlan_mask, 0, sizeof(*vlan_mask)))
  1334. return 0;
  1335. if (vlan_mask->vlan_id) {
  1336. err = nla_put_u16(skb, vlan_id_key,
  1337. vlan_key->vlan_id);
  1338. if (err)
  1339. return err;
  1340. }
  1341. if (vlan_mask->vlan_priority) {
  1342. err = nla_put_u8(skb, vlan_prio_key,
  1343. vlan_key->vlan_priority);
  1344. if (err)
  1345. return err;
  1346. }
  1347. return 0;
  1348. }
  1349. static void fl_get_key_flag(u32 dissector_key, u32 dissector_mask,
  1350. u32 *flower_key, u32 *flower_mask,
  1351. u32 flower_flag_bit, u32 dissector_flag_bit)
  1352. {
  1353. if (dissector_mask & dissector_flag_bit) {
  1354. *flower_mask |= flower_flag_bit;
  1355. if (dissector_key & dissector_flag_bit)
  1356. *flower_key |= flower_flag_bit;
  1357. }
  1358. }
  1359. static int fl_dump_key_flags(struct sk_buff *skb, u32 flags_key, u32 flags_mask)
  1360. {
  1361. u32 key, mask;
  1362. __be32 _key, _mask;
  1363. int err;
  1364. if (!memchr_inv(&flags_mask, 0, sizeof(flags_mask)))
  1365. return 0;
  1366. key = 0;
  1367. mask = 0;
  1368. fl_get_key_flag(flags_key, flags_mask, &key, &mask,
  1369. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  1370. fl_get_key_flag(flags_key, flags_mask, &key, &mask,
  1371. TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST,
  1372. FLOW_DIS_FIRST_FRAG);
  1373. _key = cpu_to_be32(key);
  1374. _mask = cpu_to_be32(mask);
  1375. err = nla_put(skb, TCA_FLOWER_KEY_FLAGS, 4, &_key);
  1376. if (err)
  1377. return err;
  1378. return nla_put(skb, TCA_FLOWER_KEY_FLAGS_MASK, 4, &_mask);
  1379. }
  1380. static int fl_dump_key_geneve_opt(struct sk_buff *skb,
  1381. struct flow_dissector_key_enc_opts *enc_opts)
  1382. {
  1383. struct geneve_opt *opt;
  1384. struct nlattr *nest;
  1385. int opt_off = 0;
  1386. nest = nla_nest_start(skb, TCA_FLOWER_KEY_ENC_OPTS_GENEVE);
  1387. if (!nest)
  1388. goto nla_put_failure;
  1389. while (enc_opts->len > opt_off) {
  1390. opt = (struct geneve_opt *)&enc_opts->data[opt_off];
  1391. if (nla_put_be16(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS,
  1392. opt->opt_class))
  1393. goto nla_put_failure;
  1394. if (nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE,
  1395. opt->type))
  1396. goto nla_put_failure;
  1397. if (nla_put(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA,
  1398. opt->length * 4, opt->opt_data))
  1399. goto nla_put_failure;
  1400. opt_off += sizeof(struct geneve_opt) + opt->length * 4;
  1401. }
  1402. nla_nest_end(skb, nest);
  1403. return 0;
  1404. nla_put_failure:
  1405. nla_nest_cancel(skb, nest);
  1406. return -EMSGSIZE;
  1407. }
  1408. static int fl_dump_key_options(struct sk_buff *skb, int enc_opt_type,
  1409. struct flow_dissector_key_enc_opts *enc_opts)
  1410. {
  1411. struct nlattr *nest;
  1412. int err;
  1413. if (!enc_opts->len)
  1414. return 0;
  1415. nest = nla_nest_start(skb, enc_opt_type);
  1416. if (!nest)
  1417. goto nla_put_failure;
  1418. switch (enc_opts->dst_opt_type) {
  1419. case TUNNEL_GENEVE_OPT:
  1420. err = fl_dump_key_geneve_opt(skb, enc_opts);
  1421. if (err)
  1422. goto nla_put_failure;
  1423. break;
  1424. default:
  1425. goto nla_put_failure;
  1426. }
  1427. nla_nest_end(skb, nest);
  1428. return 0;
  1429. nla_put_failure:
  1430. nla_nest_cancel(skb, nest);
  1431. return -EMSGSIZE;
  1432. }
  1433. static int fl_dump_key_enc_opt(struct sk_buff *skb,
  1434. struct flow_dissector_key_enc_opts *key_opts,
  1435. struct flow_dissector_key_enc_opts *msk_opts)
  1436. {
  1437. int err;
  1438. err = fl_dump_key_options(skb, TCA_FLOWER_KEY_ENC_OPTS, key_opts);
  1439. if (err)
  1440. return err;
  1441. return fl_dump_key_options(skb, TCA_FLOWER_KEY_ENC_OPTS_MASK, msk_opts);
  1442. }
  1443. static int fl_dump_key(struct sk_buff *skb, struct net *net,
  1444. struct fl_flow_key *key, struct fl_flow_key *mask)
  1445. {
  1446. if (mask->indev_ifindex) {
  1447. struct net_device *dev;
  1448. dev = __dev_get_by_index(net, key->indev_ifindex);
  1449. if (dev && nla_put_string(skb, TCA_FLOWER_INDEV, dev->name))
  1450. goto nla_put_failure;
  1451. }
  1452. if (fl_dump_key_val(skb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  1453. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  1454. sizeof(key->eth.dst)) ||
  1455. fl_dump_key_val(skb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  1456. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  1457. sizeof(key->eth.src)) ||
  1458. fl_dump_key_val(skb, &key->basic.n_proto, TCA_FLOWER_KEY_ETH_TYPE,
  1459. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  1460. sizeof(key->basic.n_proto)))
  1461. goto nla_put_failure;
  1462. if (fl_dump_key_mpls(skb, &key->mpls, &mask->mpls))
  1463. goto nla_put_failure;
  1464. if (fl_dump_key_vlan(skb, TCA_FLOWER_KEY_VLAN_ID,
  1465. TCA_FLOWER_KEY_VLAN_PRIO, &key->vlan, &mask->vlan))
  1466. goto nla_put_failure;
  1467. if (fl_dump_key_vlan(skb, TCA_FLOWER_KEY_CVLAN_ID,
  1468. TCA_FLOWER_KEY_CVLAN_PRIO,
  1469. &key->cvlan, &mask->cvlan) ||
  1470. (mask->cvlan.vlan_tpid &&
  1471. nla_put_be16(skb, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
  1472. key->cvlan.vlan_tpid)))
  1473. goto nla_put_failure;
  1474. if (mask->basic.n_proto) {
  1475. if (mask->cvlan.vlan_tpid) {
  1476. if (nla_put_be16(skb, TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
  1477. key->basic.n_proto))
  1478. goto nla_put_failure;
  1479. } else if (mask->vlan.vlan_tpid) {
  1480. if (nla_put_be16(skb, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
  1481. key->basic.n_proto))
  1482. goto nla_put_failure;
  1483. }
  1484. }
  1485. if ((key->basic.n_proto == htons(ETH_P_IP) ||
  1486. key->basic.n_proto == htons(ETH_P_IPV6)) &&
  1487. (fl_dump_key_val(skb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  1488. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  1489. sizeof(key->basic.ip_proto)) ||
  1490. fl_dump_key_ip(skb, false, &key->ip, &mask->ip)))
  1491. goto nla_put_failure;
  1492. if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1493. (fl_dump_key_val(skb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  1494. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  1495. sizeof(key->ipv4.src)) ||
  1496. fl_dump_key_val(skb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  1497. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  1498. sizeof(key->ipv4.dst))))
  1499. goto nla_put_failure;
  1500. else if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1501. (fl_dump_key_val(skb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  1502. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  1503. sizeof(key->ipv6.src)) ||
  1504. fl_dump_key_val(skb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  1505. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  1506. sizeof(key->ipv6.dst))))
  1507. goto nla_put_failure;
  1508. if (key->basic.ip_proto == IPPROTO_TCP &&
  1509. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  1510. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  1511. sizeof(key->tp.src)) ||
  1512. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  1513. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  1514. sizeof(key->tp.dst)) ||
  1515. fl_dump_key_val(skb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  1516. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  1517. sizeof(key->tcp.flags))))
  1518. goto nla_put_failure;
  1519. else if (key->basic.ip_proto == IPPROTO_UDP &&
  1520. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  1521. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  1522. sizeof(key->tp.src)) ||
  1523. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  1524. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  1525. sizeof(key->tp.dst))))
  1526. goto nla_put_failure;
  1527. else if (key->basic.ip_proto == IPPROTO_SCTP &&
  1528. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  1529. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  1530. sizeof(key->tp.src)) ||
  1531. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  1532. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  1533. sizeof(key->tp.dst))))
  1534. goto nla_put_failure;
  1535. else if (key->basic.n_proto == htons(ETH_P_IP) &&
  1536. key->basic.ip_proto == IPPROTO_ICMP &&
  1537. (fl_dump_key_val(skb, &key->icmp.type,
  1538. TCA_FLOWER_KEY_ICMPV4_TYPE, &mask->icmp.type,
  1539. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  1540. sizeof(key->icmp.type)) ||
  1541. fl_dump_key_val(skb, &key->icmp.code,
  1542. TCA_FLOWER_KEY_ICMPV4_CODE, &mask->icmp.code,
  1543. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  1544. sizeof(key->icmp.code))))
  1545. goto nla_put_failure;
  1546. else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  1547. key->basic.ip_proto == IPPROTO_ICMPV6 &&
  1548. (fl_dump_key_val(skb, &key->icmp.type,
  1549. TCA_FLOWER_KEY_ICMPV6_TYPE, &mask->icmp.type,
  1550. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  1551. sizeof(key->icmp.type)) ||
  1552. fl_dump_key_val(skb, &key->icmp.code,
  1553. TCA_FLOWER_KEY_ICMPV6_CODE, &mask->icmp.code,
  1554. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  1555. sizeof(key->icmp.code))))
  1556. goto nla_put_failure;
  1557. else if ((key->basic.n_proto == htons(ETH_P_ARP) ||
  1558. key->basic.n_proto == htons(ETH_P_RARP)) &&
  1559. (fl_dump_key_val(skb, &key->arp.sip,
  1560. TCA_FLOWER_KEY_ARP_SIP, &mask->arp.sip,
  1561. TCA_FLOWER_KEY_ARP_SIP_MASK,
  1562. sizeof(key->arp.sip)) ||
  1563. fl_dump_key_val(skb, &key->arp.tip,
  1564. TCA_FLOWER_KEY_ARP_TIP, &mask->arp.tip,
  1565. TCA_FLOWER_KEY_ARP_TIP_MASK,
  1566. sizeof(key->arp.tip)) ||
  1567. fl_dump_key_val(skb, &key->arp.op,
  1568. TCA_FLOWER_KEY_ARP_OP, &mask->arp.op,
  1569. TCA_FLOWER_KEY_ARP_OP_MASK,
  1570. sizeof(key->arp.op)) ||
  1571. fl_dump_key_val(skb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  1572. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  1573. sizeof(key->arp.sha)) ||
  1574. fl_dump_key_val(skb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  1575. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  1576. sizeof(key->arp.tha))))
  1577. goto nla_put_failure;
  1578. if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1579. (fl_dump_key_val(skb, &key->enc_ipv4.src,
  1580. TCA_FLOWER_KEY_ENC_IPV4_SRC, &mask->enc_ipv4.src,
  1581. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  1582. sizeof(key->enc_ipv4.src)) ||
  1583. fl_dump_key_val(skb, &key->enc_ipv4.dst,
  1584. TCA_FLOWER_KEY_ENC_IPV4_DST, &mask->enc_ipv4.dst,
  1585. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  1586. sizeof(key->enc_ipv4.dst))))
  1587. goto nla_put_failure;
  1588. else if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1589. (fl_dump_key_val(skb, &key->enc_ipv6.src,
  1590. TCA_FLOWER_KEY_ENC_IPV6_SRC, &mask->enc_ipv6.src,
  1591. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  1592. sizeof(key->enc_ipv6.src)) ||
  1593. fl_dump_key_val(skb, &key->enc_ipv6.dst,
  1594. TCA_FLOWER_KEY_ENC_IPV6_DST,
  1595. &mask->enc_ipv6.dst,
  1596. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  1597. sizeof(key->enc_ipv6.dst))))
  1598. goto nla_put_failure;
  1599. if (fl_dump_key_val(skb, &key->enc_key_id, TCA_FLOWER_KEY_ENC_KEY_ID,
  1600. &mask->enc_key_id, TCA_FLOWER_UNSPEC,
  1601. sizeof(key->enc_key_id)) ||
  1602. fl_dump_key_val(skb, &key->enc_tp.src,
  1603. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  1604. &mask->enc_tp.src,
  1605. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  1606. sizeof(key->enc_tp.src)) ||
  1607. fl_dump_key_val(skb, &key->enc_tp.dst,
  1608. TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  1609. &mask->enc_tp.dst,
  1610. TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  1611. sizeof(key->enc_tp.dst)) ||
  1612. fl_dump_key_ip(skb, true, &key->enc_ip, &mask->enc_ip) ||
  1613. fl_dump_key_enc_opt(skb, &key->enc_opts, &mask->enc_opts))
  1614. goto nla_put_failure;
  1615. if (fl_dump_key_flags(skb, key->control.flags, mask->control.flags))
  1616. goto nla_put_failure;
  1617. return 0;
  1618. nla_put_failure:
  1619. return -EMSGSIZE;
  1620. }
  1621. static int fl_dump(struct net *net, struct tcf_proto *tp, void *fh,
  1622. struct sk_buff *skb, struct tcmsg *t)
  1623. {
  1624. struct cls_fl_filter *f = fh;
  1625. struct nlattr *nest;
  1626. struct fl_flow_key *key, *mask;
  1627. if (!f)
  1628. return skb->len;
  1629. t->tcm_handle = f->handle;
  1630. nest = nla_nest_start(skb, TCA_OPTIONS);
  1631. if (!nest)
  1632. goto nla_put_failure;
  1633. if (f->res.classid &&
  1634. nla_put_u32(skb, TCA_FLOWER_CLASSID, f->res.classid))
  1635. goto nla_put_failure;
  1636. key = &f->key;
  1637. mask = &f->mask->key;
  1638. if (fl_dump_key(skb, net, key, mask))
  1639. goto nla_put_failure;
  1640. if (!tc_skip_hw(f->flags))
  1641. fl_hw_update_stats(tp, f);
  1642. if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
  1643. goto nla_put_failure;
  1644. if (tcf_exts_dump(skb, &f->exts))
  1645. goto nla_put_failure;
  1646. nla_nest_end(skb, nest);
  1647. if (tcf_exts_dump_stats(skb, &f->exts) < 0)
  1648. goto nla_put_failure;
  1649. return skb->len;
  1650. nla_put_failure:
  1651. nla_nest_cancel(skb, nest);
  1652. return -1;
  1653. }
  1654. static int fl_tmplt_dump(struct sk_buff *skb, struct net *net, void *tmplt_priv)
  1655. {
  1656. struct fl_flow_tmplt *tmplt = tmplt_priv;
  1657. struct fl_flow_key *key, *mask;
  1658. struct nlattr *nest;
  1659. nest = nla_nest_start(skb, TCA_OPTIONS);
  1660. if (!nest)
  1661. goto nla_put_failure;
  1662. key = &tmplt->dummy_key;
  1663. mask = &tmplt->mask;
  1664. if (fl_dump_key(skb, net, key, mask))
  1665. goto nla_put_failure;
  1666. nla_nest_end(skb, nest);
  1667. return skb->len;
  1668. nla_put_failure:
  1669. nla_nest_cancel(skb, nest);
  1670. return -EMSGSIZE;
  1671. }
  1672. static void fl_bind_class(void *fh, u32 classid, unsigned long cl)
  1673. {
  1674. struct cls_fl_filter *f = fh;
  1675. if (f && f->res.classid == classid)
  1676. f->res.class = cl;
  1677. }
  1678. static struct tcf_proto_ops cls_fl_ops __read_mostly = {
  1679. .kind = "flower",
  1680. .classify = fl_classify,
  1681. .init = fl_init,
  1682. .destroy = fl_destroy,
  1683. .get = fl_get,
  1684. .change = fl_change,
  1685. .delete = fl_delete,
  1686. .walk = fl_walk,
  1687. .reoffload = fl_reoffload,
  1688. .dump = fl_dump,
  1689. .bind_class = fl_bind_class,
  1690. .tmplt_create = fl_tmplt_create,
  1691. .tmplt_destroy = fl_tmplt_destroy,
  1692. .tmplt_dump = fl_tmplt_dump,
  1693. .owner = THIS_MODULE,
  1694. };
  1695. static int __init cls_fl_init(void)
  1696. {
  1697. return register_tcf_proto_ops(&cls_fl_ops);
  1698. }
  1699. static void __exit cls_fl_exit(void)
  1700. {
  1701. unregister_tcf_proto_ops(&cls_fl_ops);
  1702. }
  1703. module_init(cls_fl_init);
  1704. module_exit(cls_fl_exit);
  1705. MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>");
  1706. MODULE_DESCRIPTION("Flower classifier");
  1707. MODULE_LICENSE("GPL v2");