huge_memory.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/coredump.h>
  11. #include <linux/sched/numa_balancing.h>
  12. #include <linux/highmem.h>
  13. #include <linux/hugetlb.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <linux/rmap.h>
  16. #include <linux/swap.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/mm_inline.h>
  19. #include <linux/swapops.h>
  20. #include <linux/dax.h>
  21. #include <linux/khugepaged.h>
  22. #include <linux/freezer.h>
  23. #include <linux/pfn_t.h>
  24. #include <linux/mman.h>
  25. #include <linux/memremap.h>
  26. #include <linux/pagemap.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/migrate.h>
  29. #include <linux/hashtable.h>
  30. #include <linux/userfaultfd_k.h>
  31. #include <linux/page_idle.h>
  32. #include <linux/shmem_fs.h>
  33. #include <linux/oom.h>
  34. #include <linux/page_owner.h>
  35. #include <asm/tlb.h>
  36. #include <asm/pgalloc.h>
  37. #include "internal.h"
  38. /*
  39. * By default, transparent hugepage support is disabled in order to avoid
  40. * risking an increased memory footprint for applications that are not
  41. * guaranteed to benefit from it. When transparent hugepage support is
  42. * enabled, it is for all mappings, and khugepaged scans all mappings.
  43. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  44. * for all hugepage allocations.
  45. */
  46. unsigned long transparent_hugepage_flags __read_mostly =
  47. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  48. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  49. #endif
  50. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  51. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  52. #endif
  53. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  54. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  55. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  56. static struct shrinker deferred_split_shrinker;
  57. static atomic_t huge_zero_refcount;
  58. struct page *huge_zero_page __read_mostly;
  59. static struct page *get_huge_zero_page(void)
  60. {
  61. struct page *zero_page;
  62. retry:
  63. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  64. return READ_ONCE(huge_zero_page);
  65. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  66. HPAGE_PMD_ORDER);
  67. if (!zero_page) {
  68. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  69. return NULL;
  70. }
  71. count_vm_event(THP_ZERO_PAGE_ALLOC);
  72. preempt_disable();
  73. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  74. preempt_enable();
  75. __free_pages(zero_page, compound_order(zero_page));
  76. goto retry;
  77. }
  78. /* We take additional reference here. It will be put back by shrinker */
  79. atomic_set(&huge_zero_refcount, 2);
  80. preempt_enable();
  81. return READ_ONCE(huge_zero_page);
  82. }
  83. static void put_huge_zero_page(void)
  84. {
  85. /*
  86. * Counter should never go to zero here. Only shrinker can put
  87. * last reference.
  88. */
  89. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  90. }
  91. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  92. {
  93. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  94. return READ_ONCE(huge_zero_page);
  95. if (!get_huge_zero_page())
  96. return NULL;
  97. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  98. put_huge_zero_page();
  99. return READ_ONCE(huge_zero_page);
  100. }
  101. void mm_put_huge_zero_page(struct mm_struct *mm)
  102. {
  103. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  104. put_huge_zero_page();
  105. }
  106. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  107. struct shrink_control *sc)
  108. {
  109. /* we can free zero page only if last reference remains */
  110. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  111. }
  112. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  113. struct shrink_control *sc)
  114. {
  115. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  116. struct page *zero_page = xchg(&huge_zero_page, NULL);
  117. BUG_ON(zero_page == NULL);
  118. __free_pages(zero_page, compound_order(zero_page));
  119. return HPAGE_PMD_NR;
  120. }
  121. return 0;
  122. }
  123. static struct shrinker huge_zero_page_shrinker = {
  124. .count_objects = shrink_huge_zero_page_count,
  125. .scan_objects = shrink_huge_zero_page_scan,
  126. .seeks = DEFAULT_SEEKS,
  127. };
  128. #ifdef CONFIG_SYSFS
  129. static ssize_t enabled_show(struct kobject *kobj,
  130. struct kobj_attribute *attr, char *buf)
  131. {
  132. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  133. return sprintf(buf, "[always] madvise never\n");
  134. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  135. return sprintf(buf, "always [madvise] never\n");
  136. else
  137. return sprintf(buf, "always madvise [never]\n");
  138. }
  139. static ssize_t enabled_store(struct kobject *kobj,
  140. struct kobj_attribute *attr,
  141. const char *buf, size_t count)
  142. {
  143. ssize_t ret = count;
  144. if (!memcmp("always", buf,
  145. min(sizeof("always")-1, count))) {
  146. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  147. set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  148. } else if (!memcmp("madvise", buf,
  149. min(sizeof("madvise")-1, count))) {
  150. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  151. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  152. } else if (!memcmp("never", buf,
  153. min(sizeof("never")-1, count))) {
  154. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  155. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  156. } else
  157. ret = -EINVAL;
  158. if (ret > 0) {
  159. int err = start_stop_khugepaged();
  160. if (err)
  161. ret = err;
  162. }
  163. return ret;
  164. }
  165. static struct kobj_attribute enabled_attr =
  166. __ATTR(enabled, 0644, enabled_show, enabled_store);
  167. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  168. struct kobj_attribute *attr, char *buf,
  169. enum transparent_hugepage_flag flag)
  170. {
  171. return sprintf(buf, "%d\n",
  172. !!test_bit(flag, &transparent_hugepage_flags));
  173. }
  174. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  175. struct kobj_attribute *attr,
  176. const char *buf, size_t count,
  177. enum transparent_hugepage_flag flag)
  178. {
  179. unsigned long value;
  180. int ret;
  181. ret = kstrtoul(buf, 10, &value);
  182. if (ret < 0)
  183. return ret;
  184. if (value > 1)
  185. return -EINVAL;
  186. if (value)
  187. set_bit(flag, &transparent_hugepage_flags);
  188. else
  189. clear_bit(flag, &transparent_hugepage_flags);
  190. return count;
  191. }
  192. static ssize_t defrag_show(struct kobject *kobj,
  193. struct kobj_attribute *attr, char *buf)
  194. {
  195. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  196. return sprintf(buf, "[always] defer defer+madvise madvise never\n");
  197. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  198. return sprintf(buf, "always [defer] defer+madvise madvise never\n");
  199. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  200. return sprintf(buf, "always defer [defer+madvise] madvise never\n");
  201. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  202. return sprintf(buf, "always defer defer+madvise [madvise] never\n");
  203. return sprintf(buf, "always defer defer+madvise madvise [never]\n");
  204. }
  205. static ssize_t defrag_store(struct kobject *kobj,
  206. struct kobj_attribute *attr,
  207. const char *buf, size_t count)
  208. {
  209. if (!memcmp("always", buf,
  210. min(sizeof("always")-1, count))) {
  211. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  212. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  213. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  214. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  215. } else if (!memcmp("defer+madvise", buf,
  216. min(sizeof("defer+madvise")-1, count))) {
  217. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  218. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  219. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  220. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  221. } else if (!memcmp("defer", buf,
  222. min(sizeof("defer")-1, count))) {
  223. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  224. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  225. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  226. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  227. } else if (!memcmp("madvise", buf,
  228. min(sizeof("madvise")-1, count))) {
  229. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  230. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  231. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  232. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  233. } else if (!memcmp("never", buf,
  234. min(sizeof("never")-1, count))) {
  235. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  236. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  237. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  238. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  239. } else
  240. return -EINVAL;
  241. return count;
  242. }
  243. static struct kobj_attribute defrag_attr =
  244. __ATTR(defrag, 0644, defrag_show, defrag_store);
  245. static ssize_t use_zero_page_show(struct kobject *kobj,
  246. struct kobj_attribute *attr, char *buf)
  247. {
  248. return single_hugepage_flag_show(kobj, attr, buf,
  249. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  250. }
  251. static ssize_t use_zero_page_store(struct kobject *kobj,
  252. struct kobj_attribute *attr, const char *buf, size_t count)
  253. {
  254. return single_hugepage_flag_store(kobj, attr, buf, count,
  255. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  256. }
  257. static struct kobj_attribute use_zero_page_attr =
  258. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  259. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  260. struct kobj_attribute *attr, char *buf)
  261. {
  262. return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
  263. }
  264. static struct kobj_attribute hpage_pmd_size_attr =
  265. __ATTR_RO(hpage_pmd_size);
  266. #ifdef CONFIG_DEBUG_VM
  267. static ssize_t debug_cow_show(struct kobject *kobj,
  268. struct kobj_attribute *attr, char *buf)
  269. {
  270. return single_hugepage_flag_show(kobj, attr, buf,
  271. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  272. }
  273. static ssize_t debug_cow_store(struct kobject *kobj,
  274. struct kobj_attribute *attr,
  275. const char *buf, size_t count)
  276. {
  277. return single_hugepage_flag_store(kobj, attr, buf, count,
  278. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  279. }
  280. static struct kobj_attribute debug_cow_attr =
  281. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  282. #endif /* CONFIG_DEBUG_VM */
  283. static struct attribute *hugepage_attr[] = {
  284. &enabled_attr.attr,
  285. &defrag_attr.attr,
  286. &use_zero_page_attr.attr,
  287. &hpage_pmd_size_attr.attr,
  288. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  289. &shmem_enabled_attr.attr,
  290. #endif
  291. #ifdef CONFIG_DEBUG_VM
  292. &debug_cow_attr.attr,
  293. #endif
  294. NULL,
  295. };
  296. static const struct attribute_group hugepage_attr_group = {
  297. .attrs = hugepage_attr,
  298. };
  299. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  300. {
  301. int err;
  302. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  303. if (unlikely(!*hugepage_kobj)) {
  304. pr_err("failed to create transparent hugepage kobject\n");
  305. return -ENOMEM;
  306. }
  307. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  308. if (err) {
  309. pr_err("failed to register transparent hugepage group\n");
  310. goto delete_obj;
  311. }
  312. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  313. if (err) {
  314. pr_err("failed to register transparent hugepage group\n");
  315. goto remove_hp_group;
  316. }
  317. return 0;
  318. remove_hp_group:
  319. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  320. delete_obj:
  321. kobject_put(*hugepage_kobj);
  322. return err;
  323. }
  324. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  325. {
  326. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  327. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  328. kobject_put(hugepage_kobj);
  329. }
  330. #else
  331. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  332. {
  333. return 0;
  334. }
  335. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  336. {
  337. }
  338. #endif /* CONFIG_SYSFS */
  339. static int __init hugepage_init(void)
  340. {
  341. int err;
  342. struct kobject *hugepage_kobj;
  343. if (!has_transparent_hugepage()) {
  344. transparent_hugepage_flags = 0;
  345. return -EINVAL;
  346. }
  347. /*
  348. * hugepages can't be allocated by the buddy allocator
  349. */
  350. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  351. /*
  352. * we use page->mapping and page->index in second tail page
  353. * as list_head: assuming THP order >= 2
  354. */
  355. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  356. err = hugepage_init_sysfs(&hugepage_kobj);
  357. if (err)
  358. goto err_sysfs;
  359. err = khugepaged_init();
  360. if (err)
  361. goto err_slab;
  362. err = register_shrinker(&huge_zero_page_shrinker);
  363. if (err)
  364. goto err_hzp_shrinker;
  365. err = register_shrinker(&deferred_split_shrinker);
  366. if (err)
  367. goto err_split_shrinker;
  368. /*
  369. * By default disable transparent hugepages on smaller systems,
  370. * where the extra memory used could hurt more than TLB overhead
  371. * is likely to save. The admin can still enable it through /sys.
  372. */
  373. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  374. transparent_hugepage_flags = 0;
  375. return 0;
  376. }
  377. err = start_stop_khugepaged();
  378. if (err)
  379. goto err_khugepaged;
  380. return 0;
  381. err_khugepaged:
  382. unregister_shrinker(&deferred_split_shrinker);
  383. err_split_shrinker:
  384. unregister_shrinker(&huge_zero_page_shrinker);
  385. err_hzp_shrinker:
  386. khugepaged_destroy();
  387. err_slab:
  388. hugepage_exit_sysfs(hugepage_kobj);
  389. err_sysfs:
  390. return err;
  391. }
  392. subsys_initcall(hugepage_init);
  393. static int __init setup_transparent_hugepage(char *str)
  394. {
  395. int ret = 0;
  396. if (!str)
  397. goto out;
  398. if (!strcmp(str, "always")) {
  399. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  400. &transparent_hugepage_flags);
  401. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  402. &transparent_hugepage_flags);
  403. ret = 1;
  404. } else if (!strcmp(str, "madvise")) {
  405. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  406. &transparent_hugepage_flags);
  407. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  408. &transparent_hugepage_flags);
  409. ret = 1;
  410. } else if (!strcmp(str, "never")) {
  411. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  412. &transparent_hugepage_flags);
  413. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  414. &transparent_hugepage_flags);
  415. ret = 1;
  416. }
  417. out:
  418. if (!ret)
  419. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  420. return ret;
  421. }
  422. __setup("transparent_hugepage=", setup_transparent_hugepage);
  423. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  424. {
  425. if (likely(vma->vm_flags & VM_WRITE))
  426. pmd = pmd_mkwrite(pmd);
  427. return pmd;
  428. }
  429. static inline struct list_head *page_deferred_list(struct page *page)
  430. {
  431. /* ->lru in the tail pages is occupied by compound_head. */
  432. return &page[2].deferred_list;
  433. }
  434. void prep_transhuge_page(struct page *page)
  435. {
  436. /*
  437. * we use page->mapping and page->indexlru in second tail page
  438. * as list_head: assuming THP order >= 2
  439. */
  440. INIT_LIST_HEAD(page_deferred_list(page));
  441. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  442. }
  443. unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
  444. loff_t off, unsigned long flags, unsigned long size)
  445. {
  446. unsigned long addr;
  447. loff_t off_end = off + len;
  448. loff_t off_align = round_up(off, size);
  449. unsigned long len_pad;
  450. if (off_end <= off_align || (off_end - off_align) < size)
  451. return 0;
  452. len_pad = len + size;
  453. if (len_pad < len || (off + len_pad) < off)
  454. return 0;
  455. addr = current->mm->get_unmapped_area(filp, 0, len_pad,
  456. off >> PAGE_SHIFT, flags);
  457. if (IS_ERR_VALUE(addr))
  458. return 0;
  459. addr += (off - addr) & (size - 1);
  460. return addr;
  461. }
  462. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  463. unsigned long len, unsigned long pgoff, unsigned long flags)
  464. {
  465. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  466. if (addr)
  467. goto out;
  468. if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
  469. goto out;
  470. addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
  471. if (addr)
  472. return addr;
  473. out:
  474. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  475. }
  476. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  477. static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
  478. struct page *page, gfp_t gfp)
  479. {
  480. struct vm_area_struct *vma = vmf->vma;
  481. struct mem_cgroup *memcg;
  482. pgtable_t pgtable;
  483. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  484. vm_fault_t ret = 0;
  485. VM_BUG_ON_PAGE(!PageCompound(page), page);
  486. if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
  487. put_page(page);
  488. count_vm_event(THP_FAULT_FALLBACK);
  489. return VM_FAULT_FALLBACK;
  490. }
  491. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  492. if (unlikely(!pgtable)) {
  493. ret = VM_FAULT_OOM;
  494. goto release;
  495. }
  496. clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
  497. /*
  498. * The memory barrier inside __SetPageUptodate makes sure that
  499. * clear_huge_page writes become visible before the set_pmd_at()
  500. * write.
  501. */
  502. __SetPageUptodate(page);
  503. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  504. if (unlikely(!pmd_none(*vmf->pmd))) {
  505. goto unlock_release;
  506. } else {
  507. pmd_t entry;
  508. ret = check_stable_address_space(vma->vm_mm);
  509. if (ret)
  510. goto unlock_release;
  511. /* Deliver the page fault to userland */
  512. if (userfaultfd_missing(vma)) {
  513. vm_fault_t ret2;
  514. spin_unlock(vmf->ptl);
  515. mem_cgroup_cancel_charge(page, memcg, true);
  516. put_page(page);
  517. pte_free(vma->vm_mm, pgtable);
  518. ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
  519. VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
  520. return ret2;
  521. }
  522. entry = mk_huge_pmd(page, vma->vm_page_prot);
  523. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  524. page_add_new_anon_rmap(page, vma, haddr, true);
  525. mem_cgroup_commit_charge(page, memcg, false, true);
  526. lru_cache_add_active_or_unevictable(page, vma);
  527. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  528. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  529. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  530. mm_inc_nr_ptes(vma->vm_mm);
  531. spin_unlock(vmf->ptl);
  532. count_vm_event(THP_FAULT_ALLOC);
  533. }
  534. return 0;
  535. unlock_release:
  536. spin_unlock(vmf->ptl);
  537. release:
  538. if (pgtable)
  539. pte_free(vma->vm_mm, pgtable);
  540. mem_cgroup_cancel_charge(page, memcg, true);
  541. put_page(page);
  542. return ret;
  543. }
  544. /*
  545. * always: directly stall for all thp allocations
  546. * defer: wake kswapd and fail if not immediately available
  547. * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
  548. * fail if not immediately available
  549. * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
  550. * available
  551. * never: never stall for any thp allocation
  552. */
  553. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  554. {
  555. const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  556. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  557. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  558. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  559. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  560. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  561. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  562. __GFP_KSWAPD_RECLAIM);
  563. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  564. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  565. 0);
  566. return GFP_TRANSHUGE_LIGHT;
  567. }
  568. /* Caller must hold page table lock. */
  569. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  570. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  571. struct page *zero_page)
  572. {
  573. pmd_t entry;
  574. if (!pmd_none(*pmd))
  575. return false;
  576. entry = mk_pmd(zero_page, vma->vm_page_prot);
  577. entry = pmd_mkhuge(entry);
  578. if (pgtable)
  579. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  580. set_pmd_at(mm, haddr, pmd, entry);
  581. mm_inc_nr_ptes(mm);
  582. return true;
  583. }
  584. vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  585. {
  586. struct vm_area_struct *vma = vmf->vma;
  587. gfp_t gfp;
  588. struct page *page;
  589. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  590. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  591. return VM_FAULT_FALLBACK;
  592. if (unlikely(anon_vma_prepare(vma)))
  593. return VM_FAULT_OOM;
  594. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  595. return VM_FAULT_OOM;
  596. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  597. !mm_forbids_zeropage(vma->vm_mm) &&
  598. transparent_hugepage_use_zero_page()) {
  599. pgtable_t pgtable;
  600. struct page *zero_page;
  601. bool set;
  602. vm_fault_t ret;
  603. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  604. if (unlikely(!pgtable))
  605. return VM_FAULT_OOM;
  606. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  607. if (unlikely(!zero_page)) {
  608. pte_free(vma->vm_mm, pgtable);
  609. count_vm_event(THP_FAULT_FALLBACK);
  610. return VM_FAULT_FALLBACK;
  611. }
  612. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  613. ret = 0;
  614. set = false;
  615. if (pmd_none(*vmf->pmd)) {
  616. ret = check_stable_address_space(vma->vm_mm);
  617. if (ret) {
  618. spin_unlock(vmf->ptl);
  619. } else if (userfaultfd_missing(vma)) {
  620. spin_unlock(vmf->ptl);
  621. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  622. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  623. } else {
  624. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  625. haddr, vmf->pmd, zero_page);
  626. spin_unlock(vmf->ptl);
  627. set = true;
  628. }
  629. } else
  630. spin_unlock(vmf->ptl);
  631. if (!set)
  632. pte_free(vma->vm_mm, pgtable);
  633. return ret;
  634. }
  635. gfp = alloc_hugepage_direct_gfpmask(vma);
  636. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  637. if (unlikely(!page)) {
  638. count_vm_event(THP_FAULT_FALLBACK);
  639. return VM_FAULT_FALLBACK;
  640. }
  641. prep_transhuge_page(page);
  642. return __do_huge_pmd_anonymous_page(vmf, page, gfp);
  643. }
  644. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  645. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
  646. pgtable_t pgtable)
  647. {
  648. struct mm_struct *mm = vma->vm_mm;
  649. pmd_t entry;
  650. spinlock_t *ptl;
  651. ptl = pmd_lock(mm, pmd);
  652. if (!pmd_none(*pmd)) {
  653. if (write) {
  654. if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
  655. WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
  656. goto out_unlock;
  657. }
  658. entry = pmd_mkyoung(*pmd);
  659. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  660. if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
  661. update_mmu_cache_pmd(vma, addr, pmd);
  662. }
  663. goto out_unlock;
  664. }
  665. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  666. if (pfn_t_devmap(pfn))
  667. entry = pmd_mkdevmap(entry);
  668. if (write) {
  669. entry = pmd_mkyoung(pmd_mkdirty(entry));
  670. entry = maybe_pmd_mkwrite(entry, vma);
  671. }
  672. if (pgtable) {
  673. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  674. mm_inc_nr_ptes(mm);
  675. pgtable = NULL;
  676. }
  677. set_pmd_at(mm, addr, pmd, entry);
  678. update_mmu_cache_pmd(vma, addr, pmd);
  679. out_unlock:
  680. spin_unlock(ptl);
  681. if (pgtable)
  682. pte_free(mm, pgtable);
  683. }
  684. vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
  685. {
  686. unsigned long addr = vmf->address & PMD_MASK;
  687. struct vm_area_struct *vma = vmf->vma;
  688. pgprot_t pgprot = vma->vm_page_prot;
  689. pgtable_t pgtable = NULL;
  690. /*
  691. * If we had pmd_special, we could avoid all these restrictions,
  692. * but we need to be consistent with PTEs and architectures that
  693. * can't support a 'special' bit.
  694. */
  695. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
  696. !pfn_t_devmap(pfn));
  697. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  698. (VM_PFNMAP|VM_MIXEDMAP));
  699. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  700. if (addr < vma->vm_start || addr >= vma->vm_end)
  701. return VM_FAULT_SIGBUS;
  702. if (arch_needs_pgtable_deposit()) {
  703. pgtable = pte_alloc_one(vma->vm_mm, addr);
  704. if (!pgtable)
  705. return VM_FAULT_OOM;
  706. }
  707. track_pfn_insert(vma, &pgprot, pfn);
  708. insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
  709. return VM_FAULT_NOPAGE;
  710. }
  711. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  712. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  713. static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
  714. {
  715. if (likely(vma->vm_flags & VM_WRITE))
  716. pud = pud_mkwrite(pud);
  717. return pud;
  718. }
  719. static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  720. pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
  721. {
  722. struct mm_struct *mm = vma->vm_mm;
  723. pud_t entry;
  724. spinlock_t *ptl;
  725. ptl = pud_lock(mm, pud);
  726. if (!pud_none(*pud)) {
  727. if (write) {
  728. if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
  729. WARN_ON_ONCE(!is_huge_zero_pud(*pud));
  730. goto out_unlock;
  731. }
  732. entry = pud_mkyoung(*pud);
  733. entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
  734. if (pudp_set_access_flags(vma, addr, pud, entry, 1))
  735. update_mmu_cache_pud(vma, addr, pud);
  736. }
  737. goto out_unlock;
  738. }
  739. entry = pud_mkhuge(pfn_t_pud(pfn, prot));
  740. if (pfn_t_devmap(pfn))
  741. entry = pud_mkdevmap(entry);
  742. if (write) {
  743. entry = pud_mkyoung(pud_mkdirty(entry));
  744. entry = maybe_pud_mkwrite(entry, vma);
  745. }
  746. set_pud_at(mm, addr, pud, entry);
  747. update_mmu_cache_pud(vma, addr, pud);
  748. out_unlock:
  749. spin_unlock(ptl);
  750. }
  751. vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
  752. {
  753. unsigned long addr = vmf->address & PUD_MASK;
  754. struct vm_area_struct *vma = vmf->vma;
  755. pgprot_t pgprot = vma->vm_page_prot;
  756. /*
  757. * If we had pud_special, we could avoid all these restrictions,
  758. * but we need to be consistent with PTEs and architectures that
  759. * can't support a 'special' bit.
  760. */
  761. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
  762. !pfn_t_devmap(pfn));
  763. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  764. (VM_PFNMAP|VM_MIXEDMAP));
  765. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  766. if (addr < vma->vm_start || addr >= vma->vm_end)
  767. return VM_FAULT_SIGBUS;
  768. track_pfn_insert(vma, &pgprot, pfn);
  769. insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
  770. return VM_FAULT_NOPAGE;
  771. }
  772. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
  773. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  774. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  775. pmd_t *pmd, int flags)
  776. {
  777. pmd_t _pmd;
  778. _pmd = pmd_mkyoung(*pmd);
  779. if (flags & FOLL_WRITE)
  780. _pmd = pmd_mkdirty(_pmd);
  781. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  782. pmd, _pmd, flags & FOLL_WRITE))
  783. update_mmu_cache_pmd(vma, addr, pmd);
  784. }
  785. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  786. pmd_t *pmd, int flags)
  787. {
  788. unsigned long pfn = pmd_pfn(*pmd);
  789. struct mm_struct *mm = vma->vm_mm;
  790. struct dev_pagemap *pgmap;
  791. struct page *page;
  792. assert_spin_locked(pmd_lockptr(mm, pmd));
  793. /*
  794. * When we COW a devmap PMD entry, we split it into PTEs, so we should
  795. * not be in this function with `flags & FOLL_COW` set.
  796. */
  797. WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
  798. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  799. return NULL;
  800. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  801. /* pass */;
  802. else
  803. return NULL;
  804. if (flags & FOLL_TOUCH)
  805. touch_pmd(vma, addr, pmd, flags);
  806. /*
  807. * device mapped pages can only be returned if the
  808. * caller will manage the page reference count.
  809. */
  810. if (!(flags & FOLL_GET))
  811. return ERR_PTR(-EEXIST);
  812. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  813. pgmap = get_dev_pagemap(pfn, NULL);
  814. if (!pgmap)
  815. return ERR_PTR(-EFAULT);
  816. page = pfn_to_page(pfn);
  817. get_page(page);
  818. put_dev_pagemap(pgmap);
  819. return page;
  820. }
  821. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  822. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  823. struct vm_area_struct *vma)
  824. {
  825. spinlock_t *dst_ptl, *src_ptl;
  826. struct page *src_page;
  827. pmd_t pmd;
  828. pgtable_t pgtable = NULL;
  829. int ret = -ENOMEM;
  830. /* Skip if can be re-fill on fault */
  831. if (!vma_is_anonymous(vma))
  832. return 0;
  833. pgtable = pte_alloc_one(dst_mm, addr);
  834. if (unlikely(!pgtable))
  835. goto out;
  836. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  837. src_ptl = pmd_lockptr(src_mm, src_pmd);
  838. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  839. ret = -EAGAIN;
  840. pmd = *src_pmd;
  841. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  842. if (unlikely(is_swap_pmd(pmd))) {
  843. swp_entry_t entry = pmd_to_swp_entry(pmd);
  844. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  845. if (is_write_migration_entry(entry)) {
  846. make_migration_entry_read(&entry);
  847. pmd = swp_entry_to_pmd(entry);
  848. if (pmd_swp_soft_dirty(*src_pmd))
  849. pmd = pmd_swp_mksoft_dirty(pmd);
  850. set_pmd_at(src_mm, addr, src_pmd, pmd);
  851. }
  852. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  853. mm_inc_nr_ptes(dst_mm);
  854. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  855. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  856. ret = 0;
  857. goto out_unlock;
  858. }
  859. #endif
  860. if (unlikely(!pmd_trans_huge(pmd))) {
  861. pte_free(dst_mm, pgtable);
  862. goto out_unlock;
  863. }
  864. /*
  865. * When page table lock is held, the huge zero pmd should not be
  866. * under splitting since we don't split the page itself, only pmd to
  867. * a page table.
  868. */
  869. if (is_huge_zero_pmd(pmd)) {
  870. struct page *zero_page;
  871. /*
  872. * get_huge_zero_page() will never allocate a new page here,
  873. * since we already have a zero page to copy. It just takes a
  874. * reference.
  875. */
  876. zero_page = mm_get_huge_zero_page(dst_mm);
  877. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  878. zero_page);
  879. ret = 0;
  880. goto out_unlock;
  881. }
  882. src_page = pmd_page(pmd);
  883. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  884. get_page(src_page);
  885. page_dup_rmap(src_page, true);
  886. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  887. mm_inc_nr_ptes(dst_mm);
  888. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  889. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  890. pmd = pmd_mkold(pmd_wrprotect(pmd));
  891. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  892. ret = 0;
  893. out_unlock:
  894. spin_unlock(src_ptl);
  895. spin_unlock(dst_ptl);
  896. out:
  897. return ret;
  898. }
  899. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  900. static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
  901. pud_t *pud, int flags)
  902. {
  903. pud_t _pud;
  904. _pud = pud_mkyoung(*pud);
  905. if (flags & FOLL_WRITE)
  906. _pud = pud_mkdirty(_pud);
  907. if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
  908. pud, _pud, flags & FOLL_WRITE))
  909. update_mmu_cache_pud(vma, addr, pud);
  910. }
  911. struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
  912. pud_t *pud, int flags)
  913. {
  914. unsigned long pfn = pud_pfn(*pud);
  915. struct mm_struct *mm = vma->vm_mm;
  916. struct dev_pagemap *pgmap;
  917. struct page *page;
  918. assert_spin_locked(pud_lockptr(mm, pud));
  919. if (flags & FOLL_WRITE && !pud_write(*pud))
  920. return NULL;
  921. if (pud_present(*pud) && pud_devmap(*pud))
  922. /* pass */;
  923. else
  924. return NULL;
  925. if (flags & FOLL_TOUCH)
  926. touch_pud(vma, addr, pud, flags);
  927. /*
  928. * device mapped pages can only be returned if the
  929. * caller will manage the page reference count.
  930. */
  931. if (!(flags & FOLL_GET))
  932. return ERR_PTR(-EEXIST);
  933. pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
  934. pgmap = get_dev_pagemap(pfn, NULL);
  935. if (!pgmap)
  936. return ERR_PTR(-EFAULT);
  937. page = pfn_to_page(pfn);
  938. get_page(page);
  939. put_dev_pagemap(pgmap);
  940. return page;
  941. }
  942. int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  943. pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
  944. struct vm_area_struct *vma)
  945. {
  946. spinlock_t *dst_ptl, *src_ptl;
  947. pud_t pud;
  948. int ret;
  949. dst_ptl = pud_lock(dst_mm, dst_pud);
  950. src_ptl = pud_lockptr(src_mm, src_pud);
  951. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  952. ret = -EAGAIN;
  953. pud = *src_pud;
  954. if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
  955. goto out_unlock;
  956. /*
  957. * When page table lock is held, the huge zero pud should not be
  958. * under splitting since we don't split the page itself, only pud to
  959. * a page table.
  960. */
  961. if (is_huge_zero_pud(pud)) {
  962. /* No huge zero pud yet */
  963. }
  964. pudp_set_wrprotect(src_mm, addr, src_pud);
  965. pud = pud_mkold(pud_wrprotect(pud));
  966. set_pud_at(dst_mm, addr, dst_pud, pud);
  967. ret = 0;
  968. out_unlock:
  969. spin_unlock(src_ptl);
  970. spin_unlock(dst_ptl);
  971. return ret;
  972. }
  973. void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
  974. {
  975. pud_t entry;
  976. unsigned long haddr;
  977. bool write = vmf->flags & FAULT_FLAG_WRITE;
  978. vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
  979. if (unlikely(!pud_same(*vmf->pud, orig_pud)))
  980. goto unlock;
  981. entry = pud_mkyoung(orig_pud);
  982. if (write)
  983. entry = pud_mkdirty(entry);
  984. haddr = vmf->address & HPAGE_PUD_MASK;
  985. if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
  986. update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
  987. unlock:
  988. spin_unlock(vmf->ptl);
  989. }
  990. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  991. void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
  992. {
  993. pmd_t entry;
  994. unsigned long haddr;
  995. bool write = vmf->flags & FAULT_FLAG_WRITE;
  996. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  997. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  998. goto unlock;
  999. entry = pmd_mkyoung(orig_pmd);
  1000. if (write)
  1001. entry = pmd_mkdirty(entry);
  1002. haddr = vmf->address & HPAGE_PMD_MASK;
  1003. if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
  1004. update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
  1005. unlock:
  1006. spin_unlock(vmf->ptl);
  1007. }
  1008. static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
  1009. pmd_t orig_pmd, struct page *page)
  1010. {
  1011. struct vm_area_struct *vma = vmf->vma;
  1012. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1013. struct mem_cgroup *memcg;
  1014. pgtable_t pgtable;
  1015. pmd_t _pmd;
  1016. int i;
  1017. vm_fault_t ret = 0;
  1018. struct page **pages;
  1019. unsigned long mmun_start; /* For mmu_notifiers */
  1020. unsigned long mmun_end; /* For mmu_notifiers */
  1021. pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
  1022. GFP_KERNEL);
  1023. if (unlikely(!pages)) {
  1024. ret |= VM_FAULT_OOM;
  1025. goto out;
  1026. }
  1027. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1028. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
  1029. vmf->address, page_to_nid(page));
  1030. if (unlikely(!pages[i] ||
  1031. mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
  1032. GFP_KERNEL, &memcg, false))) {
  1033. if (pages[i])
  1034. put_page(pages[i]);
  1035. while (--i >= 0) {
  1036. memcg = (void *)page_private(pages[i]);
  1037. set_page_private(pages[i], 0);
  1038. mem_cgroup_cancel_charge(pages[i], memcg,
  1039. false);
  1040. put_page(pages[i]);
  1041. }
  1042. kfree(pages);
  1043. ret |= VM_FAULT_OOM;
  1044. goto out;
  1045. }
  1046. set_page_private(pages[i], (unsigned long)memcg);
  1047. }
  1048. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1049. copy_user_highpage(pages[i], page + i,
  1050. haddr + PAGE_SIZE * i, vma);
  1051. __SetPageUptodate(pages[i]);
  1052. cond_resched();
  1053. }
  1054. mmun_start = haddr;
  1055. mmun_end = haddr + HPAGE_PMD_SIZE;
  1056. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1057. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1058. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1059. goto out_free_pages;
  1060. VM_BUG_ON_PAGE(!PageHead(page), page);
  1061. /*
  1062. * Leave pmd empty until pte is filled note we must notify here as
  1063. * concurrent CPU thread might write to new page before the call to
  1064. * mmu_notifier_invalidate_range_end() happens which can lead to a
  1065. * device seeing memory write in different order than CPU.
  1066. *
  1067. * See Documentation/vm/mmu_notifier.rst
  1068. */
  1069. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1070. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
  1071. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  1072. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1073. pte_t entry;
  1074. entry = mk_pte(pages[i], vma->vm_page_prot);
  1075. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1076. memcg = (void *)page_private(pages[i]);
  1077. set_page_private(pages[i], 0);
  1078. page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
  1079. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1080. lru_cache_add_active_or_unevictable(pages[i], vma);
  1081. vmf->pte = pte_offset_map(&_pmd, haddr);
  1082. VM_BUG_ON(!pte_none(*vmf->pte));
  1083. set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
  1084. pte_unmap(vmf->pte);
  1085. }
  1086. kfree(pages);
  1087. smp_wmb(); /* make pte visible before pmd */
  1088. pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
  1089. page_remove_rmap(page, true);
  1090. spin_unlock(vmf->ptl);
  1091. /*
  1092. * No need to double call mmu_notifier->invalidate_range() callback as
  1093. * the above pmdp_huge_clear_flush_notify() did already call it.
  1094. */
  1095. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1096. mmun_end);
  1097. ret |= VM_FAULT_WRITE;
  1098. put_page(page);
  1099. out:
  1100. return ret;
  1101. out_free_pages:
  1102. spin_unlock(vmf->ptl);
  1103. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1104. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1105. memcg = (void *)page_private(pages[i]);
  1106. set_page_private(pages[i], 0);
  1107. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1108. put_page(pages[i]);
  1109. }
  1110. kfree(pages);
  1111. goto out;
  1112. }
  1113. vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
  1114. {
  1115. struct vm_area_struct *vma = vmf->vma;
  1116. struct page *page = NULL, *new_page;
  1117. struct mem_cgroup *memcg;
  1118. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1119. unsigned long mmun_start; /* For mmu_notifiers */
  1120. unsigned long mmun_end; /* For mmu_notifiers */
  1121. gfp_t huge_gfp; /* for allocation and charge */
  1122. vm_fault_t ret = 0;
  1123. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  1124. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1125. if (is_huge_zero_pmd(orig_pmd))
  1126. goto alloc;
  1127. spin_lock(vmf->ptl);
  1128. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1129. goto out_unlock;
  1130. page = pmd_page(orig_pmd);
  1131. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1132. /*
  1133. * We can only reuse the page if nobody else maps the huge page or it's
  1134. * part.
  1135. */
  1136. if (!trylock_page(page)) {
  1137. get_page(page);
  1138. spin_unlock(vmf->ptl);
  1139. lock_page(page);
  1140. spin_lock(vmf->ptl);
  1141. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1142. unlock_page(page);
  1143. put_page(page);
  1144. goto out_unlock;
  1145. }
  1146. put_page(page);
  1147. }
  1148. if (reuse_swap_page(page, NULL)) {
  1149. pmd_t entry;
  1150. entry = pmd_mkyoung(orig_pmd);
  1151. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1152. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  1153. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1154. ret |= VM_FAULT_WRITE;
  1155. unlock_page(page);
  1156. goto out_unlock;
  1157. }
  1158. unlock_page(page);
  1159. get_page(page);
  1160. spin_unlock(vmf->ptl);
  1161. alloc:
  1162. if (transparent_hugepage_enabled(vma) &&
  1163. !transparent_hugepage_debug_cow()) {
  1164. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1165. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1166. } else
  1167. new_page = NULL;
  1168. if (likely(new_page)) {
  1169. prep_transhuge_page(new_page);
  1170. } else {
  1171. if (!page) {
  1172. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1173. ret |= VM_FAULT_FALLBACK;
  1174. } else {
  1175. ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
  1176. if (ret & VM_FAULT_OOM) {
  1177. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1178. ret |= VM_FAULT_FALLBACK;
  1179. }
  1180. put_page(page);
  1181. }
  1182. count_vm_event(THP_FAULT_FALLBACK);
  1183. goto out;
  1184. }
  1185. if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
  1186. huge_gfp, &memcg, true))) {
  1187. put_page(new_page);
  1188. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1189. if (page)
  1190. put_page(page);
  1191. ret |= VM_FAULT_FALLBACK;
  1192. count_vm_event(THP_FAULT_FALLBACK);
  1193. goto out;
  1194. }
  1195. count_vm_event(THP_FAULT_ALLOC);
  1196. if (!page)
  1197. clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
  1198. else
  1199. copy_user_huge_page(new_page, page, vmf->address,
  1200. vma, HPAGE_PMD_NR);
  1201. __SetPageUptodate(new_page);
  1202. mmun_start = haddr;
  1203. mmun_end = haddr + HPAGE_PMD_SIZE;
  1204. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1205. spin_lock(vmf->ptl);
  1206. if (page)
  1207. put_page(page);
  1208. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1209. spin_unlock(vmf->ptl);
  1210. mem_cgroup_cancel_charge(new_page, memcg, true);
  1211. put_page(new_page);
  1212. goto out_mn;
  1213. } else {
  1214. pmd_t entry;
  1215. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1216. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1217. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1218. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1219. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1220. lru_cache_add_active_or_unevictable(new_page, vma);
  1221. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  1222. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1223. if (!page) {
  1224. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1225. } else {
  1226. VM_BUG_ON_PAGE(!PageHead(page), page);
  1227. page_remove_rmap(page, true);
  1228. put_page(page);
  1229. }
  1230. ret |= VM_FAULT_WRITE;
  1231. }
  1232. spin_unlock(vmf->ptl);
  1233. out_mn:
  1234. /*
  1235. * No need to double call mmu_notifier->invalidate_range() callback as
  1236. * the above pmdp_huge_clear_flush_notify() did already call it.
  1237. */
  1238. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1239. mmun_end);
  1240. out:
  1241. return ret;
  1242. out_unlock:
  1243. spin_unlock(vmf->ptl);
  1244. return ret;
  1245. }
  1246. /*
  1247. * FOLL_FORCE can write to even unwritable pmd's, but only
  1248. * after we've gone through a COW cycle and they are dirty.
  1249. */
  1250. static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
  1251. {
  1252. return pmd_write(pmd) ||
  1253. ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
  1254. }
  1255. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1256. unsigned long addr,
  1257. pmd_t *pmd,
  1258. unsigned int flags)
  1259. {
  1260. struct mm_struct *mm = vma->vm_mm;
  1261. struct page *page = NULL;
  1262. assert_spin_locked(pmd_lockptr(mm, pmd));
  1263. if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
  1264. goto out;
  1265. /* Avoid dumping huge zero page */
  1266. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1267. return ERR_PTR(-EFAULT);
  1268. /* Full NUMA hinting faults to serialise migration in fault paths */
  1269. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1270. goto out;
  1271. page = pmd_page(*pmd);
  1272. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1273. if (flags & FOLL_TOUCH)
  1274. touch_pmd(vma, addr, pmd, flags);
  1275. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1276. /*
  1277. * We don't mlock() pte-mapped THPs. This way we can avoid
  1278. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1279. *
  1280. * For anon THP:
  1281. *
  1282. * In most cases the pmd is the only mapping of the page as we
  1283. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1284. * writable private mappings in populate_vma_page_range().
  1285. *
  1286. * The only scenario when we have the page shared here is if we
  1287. * mlocking read-only mapping shared over fork(). We skip
  1288. * mlocking such pages.
  1289. *
  1290. * For file THP:
  1291. *
  1292. * We can expect PageDoubleMap() to be stable under page lock:
  1293. * for file pages we set it in page_add_file_rmap(), which
  1294. * requires page to be locked.
  1295. */
  1296. if (PageAnon(page) && compound_mapcount(page) != 1)
  1297. goto skip_mlock;
  1298. if (PageDoubleMap(page) || !page->mapping)
  1299. goto skip_mlock;
  1300. if (!trylock_page(page))
  1301. goto skip_mlock;
  1302. lru_add_drain();
  1303. if (page->mapping && !PageDoubleMap(page))
  1304. mlock_vma_page(page);
  1305. unlock_page(page);
  1306. }
  1307. skip_mlock:
  1308. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1309. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1310. if (flags & FOLL_GET)
  1311. get_page(page);
  1312. out:
  1313. return page;
  1314. }
  1315. /* NUMA hinting page fault entry point for trans huge pmds */
  1316. vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
  1317. {
  1318. struct vm_area_struct *vma = vmf->vma;
  1319. struct anon_vma *anon_vma = NULL;
  1320. struct page *page;
  1321. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1322. int page_nid = -1, this_nid = numa_node_id();
  1323. int target_nid, last_cpupid = -1;
  1324. bool page_locked;
  1325. bool migrated = false;
  1326. bool was_writable;
  1327. int flags = 0;
  1328. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1329. if (unlikely(!pmd_same(pmd, *vmf->pmd)))
  1330. goto out_unlock;
  1331. /*
  1332. * If there are potential migrations, wait for completion and retry
  1333. * without disrupting NUMA hinting information. Do not relock and
  1334. * check_same as the page may no longer be mapped.
  1335. */
  1336. if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
  1337. page = pmd_page(*vmf->pmd);
  1338. if (!get_page_unless_zero(page))
  1339. goto out_unlock;
  1340. spin_unlock(vmf->ptl);
  1341. wait_on_page_locked(page);
  1342. put_page(page);
  1343. goto out;
  1344. }
  1345. page = pmd_page(pmd);
  1346. BUG_ON(is_huge_zero_page(page));
  1347. page_nid = page_to_nid(page);
  1348. last_cpupid = page_cpupid_last(page);
  1349. count_vm_numa_event(NUMA_HINT_FAULTS);
  1350. if (page_nid == this_nid) {
  1351. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1352. flags |= TNF_FAULT_LOCAL;
  1353. }
  1354. /* See similar comment in do_numa_page for explanation */
  1355. if (!pmd_savedwrite(pmd))
  1356. flags |= TNF_NO_GROUP;
  1357. /*
  1358. * Acquire the page lock to serialise THP migrations but avoid dropping
  1359. * page_table_lock if at all possible
  1360. */
  1361. page_locked = trylock_page(page);
  1362. target_nid = mpol_misplaced(page, vma, haddr);
  1363. if (target_nid == -1) {
  1364. /* If the page was locked, there are no parallel migrations */
  1365. if (page_locked)
  1366. goto clear_pmdnuma;
  1367. }
  1368. /* Migration could have started since the pmd_trans_migrating check */
  1369. if (!page_locked) {
  1370. page_nid = -1;
  1371. if (!get_page_unless_zero(page))
  1372. goto out_unlock;
  1373. spin_unlock(vmf->ptl);
  1374. wait_on_page_locked(page);
  1375. put_page(page);
  1376. goto out;
  1377. }
  1378. /*
  1379. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1380. * to serialises splits
  1381. */
  1382. get_page(page);
  1383. spin_unlock(vmf->ptl);
  1384. anon_vma = page_lock_anon_vma_read(page);
  1385. /* Confirm the PMD did not change while page_table_lock was released */
  1386. spin_lock(vmf->ptl);
  1387. if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
  1388. unlock_page(page);
  1389. put_page(page);
  1390. page_nid = -1;
  1391. goto out_unlock;
  1392. }
  1393. /* Bail if we fail to protect against THP splits for any reason */
  1394. if (unlikely(!anon_vma)) {
  1395. put_page(page);
  1396. page_nid = -1;
  1397. goto clear_pmdnuma;
  1398. }
  1399. /*
  1400. * Since we took the NUMA fault, we must have observed the !accessible
  1401. * bit. Make sure all other CPUs agree with that, to avoid them
  1402. * modifying the page we're about to migrate.
  1403. *
  1404. * Must be done under PTL such that we'll observe the relevant
  1405. * inc_tlb_flush_pending().
  1406. *
  1407. * We are not sure a pending tlb flush here is for a huge page
  1408. * mapping or not. Hence use the tlb range variant
  1409. */
  1410. if (mm_tlb_flush_pending(vma->vm_mm))
  1411. flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
  1412. /*
  1413. * Migrate the THP to the requested node, returns with page unlocked
  1414. * and access rights restored.
  1415. */
  1416. spin_unlock(vmf->ptl);
  1417. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1418. vmf->pmd, pmd, vmf->address, page, target_nid);
  1419. if (migrated) {
  1420. flags |= TNF_MIGRATED;
  1421. page_nid = target_nid;
  1422. } else
  1423. flags |= TNF_MIGRATE_FAIL;
  1424. goto out;
  1425. clear_pmdnuma:
  1426. BUG_ON(!PageLocked(page));
  1427. was_writable = pmd_savedwrite(pmd);
  1428. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1429. pmd = pmd_mkyoung(pmd);
  1430. if (was_writable)
  1431. pmd = pmd_mkwrite(pmd);
  1432. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1433. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1434. unlock_page(page);
  1435. out_unlock:
  1436. spin_unlock(vmf->ptl);
  1437. out:
  1438. if (anon_vma)
  1439. page_unlock_anon_vma_read(anon_vma);
  1440. if (page_nid != -1)
  1441. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1442. flags);
  1443. return 0;
  1444. }
  1445. /*
  1446. * Return true if we do MADV_FREE successfully on entire pmd page.
  1447. * Otherwise, return false.
  1448. */
  1449. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1450. pmd_t *pmd, unsigned long addr, unsigned long next)
  1451. {
  1452. spinlock_t *ptl;
  1453. pmd_t orig_pmd;
  1454. struct page *page;
  1455. struct mm_struct *mm = tlb->mm;
  1456. bool ret = false;
  1457. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1458. ptl = pmd_trans_huge_lock(pmd, vma);
  1459. if (!ptl)
  1460. goto out_unlocked;
  1461. orig_pmd = *pmd;
  1462. if (is_huge_zero_pmd(orig_pmd))
  1463. goto out;
  1464. if (unlikely(!pmd_present(orig_pmd))) {
  1465. VM_BUG_ON(thp_migration_supported() &&
  1466. !is_pmd_migration_entry(orig_pmd));
  1467. goto out;
  1468. }
  1469. page = pmd_page(orig_pmd);
  1470. /*
  1471. * If other processes are mapping this page, we couldn't discard
  1472. * the page unless they all do MADV_FREE so let's skip the page.
  1473. */
  1474. if (page_mapcount(page) != 1)
  1475. goto out;
  1476. if (!trylock_page(page))
  1477. goto out;
  1478. /*
  1479. * If user want to discard part-pages of THP, split it so MADV_FREE
  1480. * will deactivate only them.
  1481. */
  1482. if (next - addr != HPAGE_PMD_SIZE) {
  1483. get_page(page);
  1484. spin_unlock(ptl);
  1485. split_huge_page(page);
  1486. unlock_page(page);
  1487. put_page(page);
  1488. goto out_unlocked;
  1489. }
  1490. if (PageDirty(page))
  1491. ClearPageDirty(page);
  1492. unlock_page(page);
  1493. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1494. pmdp_invalidate(vma, addr, pmd);
  1495. orig_pmd = pmd_mkold(orig_pmd);
  1496. orig_pmd = pmd_mkclean(orig_pmd);
  1497. set_pmd_at(mm, addr, pmd, orig_pmd);
  1498. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1499. }
  1500. mark_page_lazyfree(page);
  1501. ret = true;
  1502. out:
  1503. spin_unlock(ptl);
  1504. out_unlocked:
  1505. return ret;
  1506. }
  1507. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1508. {
  1509. pgtable_t pgtable;
  1510. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1511. pte_free(mm, pgtable);
  1512. mm_dec_nr_ptes(mm);
  1513. }
  1514. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1515. pmd_t *pmd, unsigned long addr)
  1516. {
  1517. pmd_t orig_pmd;
  1518. spinlock_t *ptl;
  1519. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1520. ptl = __pmd_trans_huge_lock(pmd, vma);
  1521. if (!ptl)
  1522. return 0;
  1523. /*
  1524. * For architectures like ppc64 we look at deposited pgtable
  1525. * when calling pmdp_huge_get_and_clear. So do the
  1526. * pgtable_trans_huge_withdraw after finishing pmdp related
  1527. * operations.
  1528. */
  1529. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1530. tlb->fullmm);
  1531. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1532. if (vma_is_dax(vma)) {
  1533. if (arch_needs_pgtable_deposit())
  1534. zap_deposited_table(tlb->mm, pmd);
  1535. spin_unlock(ptl);
  1536. if (is_huge_zero_pmd(orig_pmd))
  1537. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1538. } else if (is_huge_zero_pmd(orig_pmd)) {
  1539. zap_deposited_table(tlb->mm, pmd);
  1540. spin_unlock(ptl);
  1541. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1542. } else {
  1543. struct page *page = NULL;
  1544. int flush_needed = 1;
  1545. if (pmd_present(orig_pmd)) {
  1546. page = pmd_page(orig_pmd);
  1547. page_remove_rmap(page, true);
  1548. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1549. VM_BUG_ON_PAGE(!PageHead(page), page);
  1550. } else if (thp_migration_supported()) {
  1551. swp_entry_t entry;
  1552. VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
  1553. entry = pmd_to_swp_entry(orig_pmd);
  1554. page = pfn_to_page(swp_offset(entry));
  1555. flush_needed = 0;
  1556. } else
  1557. WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
  1558. if (PageAnon(page)) {
  1559. zap_deposited_table(tlb->mm, pmd);
  1560. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1561. } else {
  1562. if (arch_needs_pgtable_deposit())
  1563. zap_deposited_table(tlb->mm, pmd);
  1564. add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
  1565. }
  1566. spin_unlock(ptl);
  1567. if (flush_needed)
  1568. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1569. }
  1570. return 1;
  1571. }
  1572. #ifndef pmd_move_must_withdraw
  1573. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1574. spinlock_t *old_pmd_ptl,
  1575. struct vm_area_struct *vma)
  1576. {
  1577. /*
  1578. * With split pmd lock we also need to move preallocated
  1579. * PTE page table if new_pmd is on different PMD page table.
  1580. *
  1581. * We also don't deposit and withdraw tables for file pages.
  1582. */
  1583. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1584. }
  1585. #endif
  1586. static pmd_t move_soft_dirty_pmd(pmd_t pmd)
  1587. {
  1588. #ifdef CONFIG_MEM_SOFT_DIRTY
  1589. if (unlikely(is_pmd_migration_entry(pmd)))
  1590. pmd = pmd_swp_mksoft_dirty(pmd);
  1591. else if (pmd_present(pmd))
  1592. pmd = pmd_mksoft_dirty(pmd);
  1593. #endif
  1594. return pmd;
  1595. }
  1596. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1597. unsigned long new_addr, unsigned long old_end,
  1598. pmd_t *old_pmd, pmd_t *new_pmd)
  1599. {
  1600. spinlock_t *old_ptl, *new_ptl;
  1601. pmd_t pmd;
  1602. struct mm_struct *mm = vma->vm_mm;
  1603. bool force_flush = false;
  1604. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1605. (new_addr & ~HPAGE_PMD_MASK) ||
  1606. old_end - old_addr < HPAGE_PMD_SIZE)
  1607. return false;
  1608. /*
  1609. * The destination pmd shouldn't be established, free_pgtables()
  1610. * should have release it.
  1611. */
  1612. if (WARN_ON(!pmd_none(*new_pmd))) {
  1613. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1614. return false;
  1615. }
  1616. /*
  1617. * We don't have to worry about the ordering of src and dst
  1618. * ptlocks because exclusive mmap_sem prevents deadlock.
  1619. */
  1620. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1621. if (old_ptl) {
  1622. new_ptl = pmd_lockptr(mm, new_pmd);
  1623. if (new_ptl != old_ptl)
  1624. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1625. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1626. if (pmd_present(pmd))
  1627. force_flush = true;
  1628. VM_BUG_ON(!pmd_none(*new_pmd));
  1629. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1630. pgtable_t pgtable;
  1631. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1632. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1633. }
  1634. pmd = move_soft_dirty_pmd(pmd);
  1635. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1636. if (force_flush)
  1637. flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1638. if (new_ptl != old_ptl)
  1639. spin_unlock(new_ptl);
  1640. spin_unlock(old_ptl);
  1641. return true;
  1642. }
  1643. return false;
  1644. }
  1645. /*
  1646. * Returns
  1647. * - 0 if PMD could not be locked
  1648. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1649. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1650. */
  1651. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1652. unsigned long addr, pgprot_t newprot, int prot_numa)
  1653. {
  1654. struct mm_struct *mm = vma->vm_mm;
  1655. spinlock_t *ptl;
  1656. pmd_t entry;
  1657. bool preserve_write;
  1658. int ret;
  1659. ptl = __pmd_trans_huge_lock(pmd, vma);
  1660. if (!ptl)
  1661. return 0;
  1662. preserve_write = prot_numa && pmd_write(*pmd);
  1663. ret = 1;
  1664. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1665. if (is_swap_pmd(*pmd)) {
  1666. swp_entry_t entry = pmd_to_swp_entry(*pmd);
  1667. VM_BUG_ON(!is_pmd_migration_entry(*pmd));
  1668. if (is_write_migration_entry(entry)) {
  1669. pmd_t newpmd;
  1670. /*
  1671. * A protection check is difficult so
  1672. * just be safe and disable write
  1673. */
  1674. make_migration_entry_read(&entry);
  1675. newpmd = swp_entry_to_pmd(entry);
  1676. if (pmd_swp_soft_dirty(*pmd))
  1677. newpmd = pmd_swp_mksoft_dirty(newpmd);
  1678. set_pmd_at(mm, addr, pmd, newpmd);
  1679. }
  1680. goto unlock;
  1681. }
  1682. #endif
  1683. /*
  1684. * Avoid trapping faults against the zero page. The read-only
  1685. * data is likely to be read-cached on the local CPU and
  1686. * local/remote hits to the zero page are not interesting.
  1687. */
  1688. if (prot_numa && is_huge_zero_pmd(*pmd))
  1689. goto unlock;
  1690. if (prot_numa && pmd_protnone(*pmd))
  1691. goto unlock;
  1692. /*
  1693. * In case prot_numa, we are under down_read(mmap_sem). It's critical
  1694. * to not clear pmd intermittently to avoid race with MADV_DONTNEED
  1695. * which is also under down_read(mmap_sem):
  1696. *
  1697. * CPU0: CPU1:
  1698. * change_huge_pmd(prot_numa=1)
  1699. * pmdp_huge_get_and_clear_notify()
  1700. * madvise_dontneed()
  1701. * zap_pmd_range()
  1702. * pmd_trans_huge(*pmd) == 0 (without ptl)
  1703. * // skip the pmd
  1704. * set_pmd_at();
  1705. * // pmd is re-established
  1706. *
  1707. * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
  1708. * which may break userspace.
  1709. *
  1710. * pmdp_invalidate() is required to make sure we don't miss
  1711. * dirty/young flags set by hardware.
  1712. */
  1713. entry = pmdp_invalidate(vma, addr, pmd);
  1714. entry = pmd_modify(entry, newprot);
  1715. if (preserve_write)
  1716. entry = pmd_mk_savedwrite(entry);
  1717. ret = HPAGE_PMD_NR;
  1718. set_pmd_at(mm, addr, pmd, entry);
  1719. BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
  1720. unlock:
  1721. spin_unlock(ptl);
  1722. return ret;
  1723. }
  1724. /*
  1725. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1726. *
  1727. * Note that if it returns page table lock pointer, this routine returns without
  1728. * unlocking page table lock. So callers must unlock it.
  1729. */
  1730. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1731. {
  1732. spinlock_t *ptl;
  1733. ptl = pmd_lock(vma->vm_mm, pmd);
  1734. if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
  1735. pmd_devmap(*pmd)))
  1736. return ptl;
  1737. spin_unlock(ptl);
  1738. return NULL;
  1739. }
  1740. /*
  1741. * Returns true if a given pud maps a thp, false otherwise.
  1742. *
  1743. * Note that if it returns true, this routine returns without unlocking page
  1744. * table lock. So callers must unlock it.
  1745. */
  1746. spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
  1747. {
  1748. spinlock_t *ptl;
  1749. ptl = pud_lock(vma->vm_mm, pud);
  1750. if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
  1751. return ptl;
  1752. spin_unlock(ptl);
  1753. return NULL;
  1754. }
  1755. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1756. int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1757. pud_t *pud, unsigned long addr)
  1758. {
  1759. pud_t orig_pud;
  1760. spinlock_t *ptl;
  1761. ptl = __pud_trans_huge_lock(pud, vma);
  1762. if (!ptl)
  1763. return 0;
  1764. /*
  1765. * For architectures like ppc64 we look at deposited pgtable
  1766. * when calling pudp_huge_get_and_clear. So do the
  1767. * pgtable_trans_huge_withdraw after finishing pudp related
  1768. * operations.
  1769. */
  1770. orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
  1771. tlb->fullmm);
  1772. tlb_remove_pud_tlb_entry(tlb, pud, addr);
  1773. if (vma_is_dax(vma)) {
  1774. spin_unlock(ptl);
  1775. /* No zero page support yet */
  1776. } else {
  1777. /* No support for anonymous PUD pages yet */
  1778. BUG();
  1779. }
  1780. return 1;
  1781. }
  1782. static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
  1783. unsigned long haddr)
  1784. {
  1785. VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
  1786. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1787. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
  1788. VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
  1789. count_vm_event(THP_SPLIT_PUD);
  1790. pudp_huge_clear_flush_notify(vma, haddr, pud);
  1791. }
  1792. void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
  1793. unsigned long address)
  1794. {
  1795. spinlock_t *ptl;
  1796. struct mm_struct *mm = vma->vm_mm;
  1797. unsigned long haddr = address & HPAGE_PUD_MASK;
  1798. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1799. ptl = pud_lock(mm, pud);
  1800. if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
  1801. goto out;
  1802. __split_huge_pud_locked(vma, pud, haddr);
  1803. out:
  1804. spin_unlock(ptl);
  1805. /*
  1806. * No need to double call mmu_notifier->invalidate_range() callback as
  1807. * the above pudp_huge_clear_flush_notify() did already call it.
  1808. */
  1809. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  1810. HPAGE_PUD_SIZE);
  1811. }
  1812. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1813. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1814. unsigned long haddr, pmd_t *pmd)
  1815. {
  1816. struct mm_struct *mm = vma->vm_mm;
  1817. pgtable_t pgtable;
  1818. pmd_t _pmd;
  1819. int i;
  1820. /*
  1821. * Leave pmd empty until pte is filled note that it is fine to delay
  1822. * notification until mmu_notifier_invalidate_range_end() as we are
  1823. * replacing a zero pmd write protected page with a zero pte write
  1824. * protected page.
  1825. *
  1826. * See Documentation/vm/mmu_notifier.rst
  1827. */
  1828. pmdp_huge_clear_flush(vma, haddr, pmd);
  1829. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1830. pmd_populate(mm, &_pmd, pgtable);
  1831. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1832. pte_t *pte, entry;
  1833. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1834. entry = pte_mkspecial(entry);
  1835. pte = pte_offset_map(&_pmd, haddr);
  1836. VM_BUG_ON(!pte_none(*pte));
  1837. set_pte_at(mm, haddr, pte, entry);
  1838. pte_unmap(pte);
  1839. }
  1840. smp_wmb(); /* make pte visible before pmd */
  1841. pmd_populate(mm, pmd, pgtable);
  1842. }
  1843. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1844. unsigned long haddr, bool freeze)
  1845. {
  1846. struct mm_struct *mm = vma->vm_mm;
  1847. struct page *page;
  1848. pgtable_t pgtable;
  1849. pmd_t old_pmd, _pmd;
  1850. bool young, write, soft_dirty, pmd_migration = false;
  1851. unsigned long addr;
  1852. int i;
  1853. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1854. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1855. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1856. VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
  1857. && !pmd_devmap(*pmd));
  1858. count_vm_event(THP_SPLIT_PMD);
  1859. if (!vma_is_anonymous(vma)) {
  1860. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1861. /*
  1862. * We are going to unmap this huge page. So
  1863. * just go ahead and zap it
  1864. */
  1865. if (arch_needs_pgtable_deposit())
  1866. zap_deposited_table(mm, pmd);
  1867. if (vma_is_dax(vma))
  1868. return;
  1869. page = pmd_page(_pmd);
  1870. if (!PageDirty(page) && pmd_dirty(_pmd))
  1871. set_page_dirty(page);
  1872. if (!PageReferenced(page) && pmd_young(_pmd))
  1873. SetPageReferenced(page);
  1874. page_remove_rmap(page, true);
  1875. put_page(page);
  1876. add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
  1877. return;
  1878. } else if (is_huge_zero_pmd(*pmd)) {
  1879. /*
  1880. * FIXME: Do we want to invalidate secondary mmu by calling
  1881. * mmu_notifier_invalidate_range() see comments below inside
  1882. * __split_huge_pmd() ?
  1883. *
  1884. * We are going from a zero huge page write protected to zero
  1885. * small page also write protected so it does not seems useful
  1886. * to invalidate secondary mmu at this time.
  1887. */
  1888. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1889. }
  1890. /*
  1891. * Up to this point the pmd is present and huge and userland has the
  1892. * whole access to the hugepage during the split (which happens in
  1893. * place). If we overwrite the pmd with the not-huge version pointing
  1894. * to the pte here (which of course we could if all CPUs were bug
  1895. * free), userland could trigger a small page size TLB miss on the
  1896. * small sized TLB while the hugepage TLB entry is still established in
  1897. * the huge TLB. Some CPU doesn't like that.
  1898. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1899. * 383 on page 93. Intel should be safe but is also warns that it's
  1900. * only safe if the permission and cache attributes of the two entries
  1901. * loaded in the two TLB is identical (which should be the case here).
  1902. * But it is generally safer to never allow small and huge TLB entries
  1903. * for the same virtual address to be loaded simultaneously. So instead
  1904. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1905. * current pmd notpresent (atomically because here the pmd_trans_huge
  1906. * must remain set at all times on the pmd until the split is complete
  1907. * for this pmd), then we flush the SMP TLB and finally we write the
  1908. * non-huge version of the pmd entry with pmd_populate.
  1909. */
  1910. old_pmd = pmdp_invalidate(vma, haddr, pmd);
  1911. pmd_migration = is_pmd_migration_entry(old_pmd);
  1912. if (unlikely(pmd_migration)) {
  1913. swp_entry_t entry;
  1914. entry = pmd_to_swp_entry(old_pmd);
  1915. page = pfn_to_page(swp_offset(entry));
  1916. write = is_write_migration_entry(entry);
  1917. young = false;
  1918. soft_dirty = pmd_swp_soft_dirty(old_pmd);
  1919. } else {
  1920. page = pmd_page(old_pmd);
  1921. if (pmd_dirty(old_pmd))
  1922. SetPageDirty(page);
  1923. write = pmd_write(old_pmd);
  1924. young = pmd_young(old_pmd);
  1925. soft_dirty = pmd_soft_dirty(old_pmd);
  1926. }
  1927. VM_BUG_ON_PAGE(!page_count(page), page);
  1928. page_ref_add(page, HPAGE_PMD_NR - 1);
  1929. /*
  1930. * Withdraw the table only after we mark the pmd entry invalid.
  1931. * This's critical for some architectures (Power).
  1932. */
  1933. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1934. pmd_populate(mm, &_pmd, pgtable);
  1935. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1936. pte_t entry, *pte;
  1937. /*
  1938. * Note that NUMA hinting access restrictions are not
  1939. * transferred to avoid any possibility of altering
  1940. * permissions across VMAs.
  1941. */
  1942. if (freeze || pmd_migration) {
  1943. swp_entry_t swp_entry;
  1944. swp_entry = make_migration_entry(page + i, write);
  1945. entry = swp_entry_to_pte(swp_entry);
  1946. if (soft_dirty)
  1947. entry = pte_swp_mksoft_dirty(entry);
  1948. } else {
  1949. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1950. entry = maybe_mkwrite(entry, vma);
  1951. if (!write)
  1952. entry = pte_wrprotect(entry);
  1953. if (!young)
  1954. entry = pte_mkold(entry);
  1955. if (soft_dirty)
  1956. entry = pte_mksoft_dirty(entry);
  1957. }
  1958. pte = pte_offset_map(&_pmd, addr);
  1959. BUG_ON(!pte_none(*pte));
  1960. set_pte_at(mm, addr, pte, entry);
  1961. atomic_inc(&page[i]._mapcount);
  1962. pte_unmap(pte);
  1963. }
  1964. /*
  1965. * Set PG_double_map before dropping compound_mapcount to avoid
  1966. * false-negative page_mapped().
  1967. */
  1968. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  1969. for (i = 0; i < HPAGE_PMD_NR; i++)
  1970. atomic_inc(&page[i]._mapcount);
  1971. }
  1972. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1973. /* Last compound_mapcount is gone. */
  1974. __dec_node_page_state(page, NR_ANON_THPS);
  1975. if (TestClearPageDoubleMap(page)) {
  1976. /* No need in mapcount reference anymore */
  1977. for (i = 0; i < HPAGE_PMD_NR; i++)
  1978. atomic_dec(&page[i]._mapcount);
  1979. }
  1980. }
  1981. smp_wmb(); /* make pte visible before pmd */
  1982. pmd_populate(mm, pmd, pgtable);
  1983. if (freeze) {
  1984. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1985. page_remove_rmap(page + i, false);
  1986. put_page(page + i);
  1987. }
  1988. }
  1989. }
  1990. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1991. unsigned long address, bool freeze, struct page *page)
  1992. {
  1993. spinlock_t *ptl;
  1994. struct mm_struct *mm = vma->vm_mm;
  1995. unsigned long haddr = address & HPAGE_PMD_MASK;
  1996. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1997. ptl = pmd_lock(mm, pmd);
  1998. /*
  1999. * If caller asks to setup a migration entries, we need a page to check
  2000. * pmd against. Otherwise we can end up replacing wrong page.
  2001. */
  2002. VM_BUG_ON(freeze && !page);
  2003. if (page && page != pmd_page(*pmd))
  2004. goto out;
  2005. if (pmd_trans_huge(*pmd)) {
  2006. page = pmd_page(*pmd);
  2007. if (PageMlocked(page))
  2008. clear_page_mlock(page);
  2009. } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
  2010. goto out;
  2011. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  2012. out:
  2013. spin_unlock(ptl);
  2014. /*
  2015. * No need to double call mmu_notifier->invalidate_range() callback.
  2016. * They are 3 cases to consider inside __split_huge_pmd_locked():
  2017. * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
  2018. * 2) __split_huge_zero_page_pmd() read only zero page and any write
  2019. * fault will trigger a flush_notify before pointing to a new page
  2020. * (it is fine if the secondary mmu keeps pointing to the old zero
  2021. * page in the meantime)
  2022. * 3) Split a huge pmd into pte pointing to the same page. No need
  2023. * to invalidate secondary tlb entry they are all still valid.
  2024. * any further changes to individual pte will notify. So no need
  2025. * to call mmu_notifier->invalidate_range()
  2026. */
  2027. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  2028. HPAGE_PMD_SIZE);
  2029. }
  2030. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  2031. bool freeze, struct page *page)
  2032. {
  2033. pgd_t *pgd;
  2034. p4d_t *p4d;
  2035. pud_t *pud;
  2036. pmd_t *pmd;
  2037. pgd = pgd_offset(vma->vm_mm, address);
  2038. if (!pgd_present(*pgd))
  2039. return;
  2040. p4d = p4d_offset(pgd, address);
  2041. if (!p4d_present(*p4d))
  2042. return;
  2043. pud = pud_offset(p4d, address);
  2044. if (!pud_present(*pud))
  2045. return;
  2046. pmd = pmd_offset(pud, address);
  2047. __split_huge_pmd(vma, pmd, address, freeze, page);
  2048. }
  2049. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2050. unsigned long start,
  2051. unsigned long end,
  2052. long adjust_next)
  2053. {
  2054. /*
  2055. * If the new start address isn't hpage aligned and it could
  2056. * previously contain an hugepage: check if we need to split
  2057. * an huge pmd.
  2058. */
  2059. if (start & ~HPAGE_PMD_MASK &&
  2060. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2061. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2062. split_huge_pmd_address(vma, start, false, NULL);
  2063. /*
  2064. * If the new end address isn't hpage aligned and it could
  2065. * previously contain an hugepage: check if we need to split
  2066. * an huge pmd.
  2067. */
  2068. if (end & ~HPAGE_PMD_MASK &&
  2069. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2070. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2071. split_huge_pmd_address(vma, end, false, NULL);
  2072. /*
  2073. * If we're also updating the vma->vm_next->vm_start, if the new
  2074. * vm_next->vm_start isn't page aligned and it could previously
  2075. * contain an hugepage: check if we need to split an huge pmd.
  2076. */
  2077. if (adjust_next > 0) {
  2078. struct vm_area_struct *next = vma->vm_next;
  2079. unsigned long nstart = next->vm_start;
  2080. nstart += adjust_next << PAGE_SHIFT;
  2081. if (nstart & ~HPAGE_PMD_MASK &&
  2082. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2083. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2084. split_huge_pmd_address(next, nstart, false, NULL);
  2085. }
  2086. }
  2087. static void unmap_page(struct page *page)
  2088. {
  2089. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  2090. TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
  2091. bool unmap_success;
  2092. VM_BUG_ON_PAGE(!PageHead(page), page);
  2093. if (PageAnon(page))
  2094. ttu_flags |= TTU_SPLIT_FREEZE;
  2095. unmap_success = try_to_unmap(page, ttu_flags);
  2096. VM_BUG_ON_PAGE(!unmap_success, page);
  2097. }
  2098. static void remap_page(struct page *page)
  2099. {
  2100. int i;
  2101. if (PageTransHuge(page)) {
  2102. remove_migration_ptes(page, page, true);
  2103. } else {
  2104. for (i = 0; i < HPAGE_PMD_NR; i++)
  2105. remove_migration_ptes(page + i, page + i, true);
  2106. }
  2107. }
  2108. static void __split_huge_page_tail(struct page *head, int tail,
  2109. struct lruvec *lruvec, struct list_head *list)
  2110. {
  2111. struct page *page_tail = head + tail;
  2112. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2113. /*
  2114. * Clone page flags before unfreezing refcount.
  2115. *
  2116. * After successful get_page_unless_zero() might follow flags change,
  2117. * for exmaple lock_page() which set PG_waiters.
  2118. */
  2119. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2120. page_tail->flags |= (head->flags &
  2121. ((1L << PG_referenced) |
  2122. (1L << PG_swapbacked) |
  2123. (1L << PG_swapcache) |
  2124. (1L << PG_mlocked) |
  2125. (1L << PG_uptodate) |
  2126. (1L << PG_active) |
  2127. (1L << PG_locked) |
  2128. (1L << PG_unevictable) |
  2129. (1L << PG_dirty)));
  2130. /* ->mapping in first tail page is compound_mapcount */
  2131. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2132. page_tail);
  2133. page_tail->mapping = head->mapping;
  2134. page_tail->index = head->index + tail;
  2135. /* Page flags must be visible before we make the page non-compound. */
  2136. smp_wmb();
  2137. /*
  2138. * Clear PageTail before unfreezing page refcount.
  2139. *
  2140. * After successful get_page_unless_zero() might follow put_page()
  2141. * which needs correct compound_head().
  2142. */
  2143. clear_compound_head(page_tail);
  2144. /* Finally unfreeze refcount. Additional reference from page cache. */
  2145. page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
  2146. PageSwapCache(head)));
  2147. if (page_is_young(head))
  2148. set_page_young(page_tail);
  2149. if (page_is_idle(head))
  2150. set_page_idle(page_tail);
  2151. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2152. /*
  2153. * always add to the tail because some iterators expect new
  2154. * pages to show after the currently processed elements - e.g.
  2155. * migrate_pages
  2156. */
  2157. lru_add_page_tail(head, page_tail, lruvec, list);
  2158. }
  2159. static void __split_huge_page(struct page *page, struct list_head *list,
  2160. pgoff_t end, unsigned long flags)
  2161. {
  2162. struct page *head = compound_head(page);
  2163. struct zone *zone = page_zone(head);
  2164. struct lruvec *lruvec;
  2165. int i;
  2166. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  2167. /* complete memcg works before add pages to LRU */
  2168. mem_cgroup_split_huge_fixup(head);
  2169. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  2170. __split_huge_page_tail(head, i, lruvec, list);
  2171. /* Some pages can be beyond i_size: drop them from page cache */
  2172. if (head[i].index >= end) {
  2173. ClearPageDirty(head + i);
  2174. __delete_from_page_cache(head + i, NULL);
  2175. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  2176. shmem_uncharge(head->mapping->host, 1);
  2177. put_page(head + i);
  2178. }
  2179. }
  2180. ClearPageCompound(head);
  2181. split_page_owner(head, HPAGE_PMD_ORDER);
  2182. /* See comment in __split_huge_page_tail() */
  2183. if (PageAnon(head)) {
  2184. /* Additional pin to radix tree of swap cache */
  2185. if (PageSwapCache(head))
  2186. page_ref_add(head, 2);
  2187. else
  2188. page_ref_inc(head);
  2189. } else {
  2190. /* Additional pin to radix tree */
  2191. page_ref_add(head, 2);
  2192. xa_unlock(&head->mapping->i_pages);
  2193. }
  2194. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2195. remap_page(head);
  2196. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2197. struct page *subpage = head + i;
  2198. if (subpage == page)
  2199. continue;
  2200. unlock_page(subpage);
  2201. /*
  2202. * Subpages may be freed if there wasn't any mapping
  2203. * like if add_to_swap() is running on a lru page that
  2204. * had its mapping zapped. And freeing these pages
  2205. * requires taking the lru_lock so we do the put_page
  2206. * of the tail pages after the split is complete.
  2207. */
  2208. put_page(subpage);
  2209. }
  2210. }
  2211. int total_mapcount(struct page *page)
  2212. {
  2213. int i, compound, ret;
  2214. VM_BUG_ON_PAGE(PageTail(page), page);
  2215. if (likely(!PageCompound(page)))
  2216. return atomic_read(&page->_mapcount) + 1;
  2217. compound = compound_mapcount(page);
  2218. if (PageHuge(page))
  2219. return compound;
  2220. ret = compound;
  2221. for (i = 0; i < HPAGE_PMD_NR; i++)
  2222. ret += atomic_read(&page[i]._mapcount) + 1;
  2223. /* File pages has compound_mapcount included in _mapcount */
  2224. if (!PageAnon(page))
  2225. return ret - compound * HPAGE_PMD_NR;
  2226. if (PageDoubleMap(page))
  2227. ret -= HPAGE_PMD_NR;
  2228. return ret;
  2229. }
  2230. /*
  2231. * This calculates accurately how many mappings a transparent hugepage
  2232. * has (unlike page_mapcount() which isn't fully accurate). This full
  2233. * accuracy is primarily needed to know if copy-on-write faults can
  2234. * reuse the page and change the mapping to read-write instead of
  2235. * copying them. At the same time this returns the total_mapcount too.
  2236. *
  2237. * The function returns the highest mapcount any one of the subpages
  2238. * has. If the return value is one, even if different processes are
  2239. * mapping different subpages of the transparent hugepage, they can
  2240. * all reuse it, because each process is reusing a different subpage.
  2241. *
  2242. * The total_mapcount is instead counting all virtual mappings of the
  2243. * subpages. If the total_mapcount is equal to "one", it tells the
  2244. * caller all mappings belong to the same "mm" and in turn the
  2245. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2246. * local one as no other process may be mapping any of the subpages.
  2247. *
  2248. * It would be more accurate to replace page_mapcount() with
  2249. * page_trans_huge_mapcount(), however we only use
  2250. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2251. * need full accuracy to avoid breaking page pinning, because
  2252. * page_trans_huge_mapcount() is slower than page_mapcount().
  2253. */
  2254. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2255. {
  2256. int i, ret, _total_mapcount, mapcount;
  2257. /* hugetlbfs shouldn't call it */
  2258. VM_BUG_ON_PAGE(PageHuge(page), page);
  2259. if (likely(!PageTransCompound(page))) {
  2260. mapcount = atomic_read(&page->_mapcount) + 1;
  2261. if (total_mapcount)
  2262. *total_mapcount = mapcount;
  2263. return mapcount;
  2264. }
  2265. page = compound_head(page);
  2266. _total_mapcount = ret = 0;
  2267. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2268. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2269. ret = max(ret, mapcount);
  2270. _total_mapcount += mapcount;
  2271. }
  2272. if (PageDoubleMap(page)) {
  2273. ret -= 1;
  2274. _total_mapcount -= HPAGE_PMD_NR;
  2275. }
  2276. mapcount = compound_mapcount(page);
  2277. ret += mapcount;
  2278. _total_mapcount += mapcount;
  2279. if (total_mapcount)
  2280. *total_mapcount = _total_mapcount;
  2281. return ret;
  2282. }
  2283. /* Racy check whether the huge page can be split */
  2284. bool can_split_huge_page(struct page *page, int *pextra_pins)
  2285. {
  2286. int extra_pins;
  2287. /* Additional pins from radix tree */
  2288. if (PageAnon(page))
  2289. extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
  2290. else
  2291. extra_pins = HPAGE_PMD_NR;
  2292. if (pextra_pins)
  2293. *pextra_pins = extra_pins;
  2294. return total_mapcount(page) == page_count(page) - extra_pins - 1;
  2295. }
  2296. /*
  2297. * This function splits huge page into normal pages. @page can point to any
  2298. * subpage of huge page to split. Split doesn't change the position of @page.
  2299. *
  2300. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2301. * The huge page must be locked.
  2302. *
  2303. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2304. *
  2305. * Both head page and tail pages will inherit mapping, flags, and so on from
  2306. * the hugepage.
  2307. *
  2308. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2309. * they are not mapped.
  2310. *
  2311. * Returns 0 if the hugepage is split successfully.
  2312. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2313. * us.
  2314. */
  2315. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2316. {
  2317. struct page *head = compound_head(page);
  2318. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2319. struct anon_vma *anon_vma = NULL;
  2320. struct address_space *mapping = NULL;
  2321. int count, mapcount, extra_pins, ret;
  2322. bool mlocked;
  2323. unsigned long flags;
  2324. pgoff_t end;
  2325. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2326. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2327. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2328. if (PageWriteback(page))
  2329. return -EBUSY;
  2330. if (PageAnon(head)) {
  2331. /*
  2332. * The caller does not necessarily hold an mmap_sem that would
  2333. * prevent the anon_vma disappearing so we first we take a
  2334. * reference to it and then lock the anon_vma for write. This
  2335. * is similar to page_lock_anon_vma_read except the write lock
  2336. * is taken to serialise against parallel split or collapse
  2337. * operations.
  2338. */
  2339. anon_vma = page_get_anon_vma(head);
  2340. if (!anon_vma) {
  2341. ret = -EBUSY;
  2342. goto out;
  2343. }
  2344. end = -1;
  2345. mapping = NULL;
  2346. anon_vma_lock_write(anon_vma);
  2347. } else {
  2348. mapping = head->mapping;
  2349. /* Truncated ? */
  2350. if (!mapping) {
  2351. ret = -EBUSY;
  2352. goto out;
  2353. }
  2354. anon_vma = NULL;
  2355. i_mmap_lock_read(mapping);
  2356. /*
  2357. *__split_huge_page() may need to trim off pages beyond EOF:
  2358. * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
  2359. * which cannot be nested inside the page tree lock. So note
  2360. * end now: i_size itself may be changed at any moment, but
  2361. * head page lock is good enough to serialize the trimming.
  2362. */
  2363. end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
  2364. }
  2365. /*
  2366. * Racy check if we can split the page, before unmap_page() will
  2367. * split PMDs
  2368. */
  2369. if (!can_split_huge_page(head, &extra_pins)) {
  2370. ret = -EBUSY;
  2371. goto out_unlock;
  2372. }
  2373. mlocked = PageMlocked(page);
  2374. unmap_page(head);
  2375. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2376. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2377. if (mlocked)
  2378. lru_add_drain();
  2379. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2380. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  2381. if (mapping) {
  2382. void **pslot;
  2383. xa_lock(&mapping->i_pages);
  2384. pslot = radix_tree_lookup_slot(&mapping->i_pages,
  2385. page_index(head));
  2386. /*
  2387. * Check if the head page is present in radix tree.
  2388. * We assume all tail are present too, if head is there.
  2389. */
  2390. if (radix_tree_deref_slot_protected(pslot,
  2391. &mapping->i_pages.xa_lock) != head)
  2392. goto fail;
  2393. }
  2394. /* Prevent deferred_split_scan() touching ->_refcount */
  2395. spin_lock(&pgdata->split_queue_lock);
  2396. count = page_count(head);
  2397. mapcount = total_mapcount(head);
  2398. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  2399. if (!list_empty(page_deferred_list(head))) {
  2400. pgdata->split_queue_len--;
  2401. list_del(page_deferred_list(head));
  2402. }
  2403. if (mapping)
  2404. __dec_node_page_state(page, NR_SHMEM_THPS);
  2405. spin_unlock(&pgdata->split_queue_lock);
  2406. __split_huge_page(page, list, end, flags);
  2407. if (PageSwapCache(head)) {
  2408. swp_entry_t entry = { .val = page_private(head) };
  2409. ret = split_swap_cluster(entry);
  2410. } else
  2411. ret = 0;
  2412. } else {
  2413. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2414. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2415. mapcount, count);
  2416. if (PageTail(page))
  2417. dump_page(head, NULL);
  2418. dump_page(page, "total_mapcount(head) > 0");
  2419. BUG();
  2420. }
  2421. spin_unlock(&pgdata->split_queue_lock);
  2422. fail: if (mapping)
  2423. xa_unlock(&mapping->i_pages);
  2424. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2425. remap_page(head);
  2426. ret = -EBUSY;
  2427. }
  2428. out_unlock:
  2429. if (anon_vma) {
  2430. anon_vma_unlock_write(anon_vma);
  2431. put_anon_vma(anon_vma);
  2432. }
  2433. if (mapping)
  2434. i_mmap_unlock_read(mapping);
  2435. out:
  2436. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2437. return ret;
  2438. }
  2439. void free_transhuge_page(struct page *page)
  2440. {
  2441. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2442. unsigned long flags;
  2443. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2444. if (!list_empty(page_deferred_list(page))) {
  2445. pgdata->split_queue_len--;
  2446. list_del(page_deferred_list(page));
  2447. }
  2448. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2449. free_compound_page(page);
  2450. }
  2451. void deferred_split_huge_page(struct page *page)
  2452. {
  2453. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2454. unsigned long flags;
  2455. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2456. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2457. if (list_empty(page_deferred_list(page))) {
  2458. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2459. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2460. pgdata->split_queue_len++;
  2461. }
  2462. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2463. }
  2464. static unsigned long deferred_split_count(struct shrinker *shrink,
  2465. struct shrink_control *sc)
  2466. {
  2467. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2468. return READ_ONCE(pgdata->split_queue_len);
  2469. }
  2470. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2471. struct shrink_control *sc)
  2472. {
  2473. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2474. unsigned long flags;
  2475. LIST_HEAD(list), *pos, *next;
  2476. struct page *page;
  2477. int split = 0;
  2478. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2479. /* Take pin on all head pages to avoid freeing them under us */
  2480. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2481. page = list_entry((void *)pos, struct page, mapping);
  2482. page = compound_head(page);
  2483. if (get_page_unless_zero(page)) {
  2484. list_move(page_deferred_list(page), &list);
  2485. } else {
  2486. /* We lost race with put_compound_page() */
  2487. list_del_init(page_deferred_list(page));
  2488. pgdata->split_queue_len--;
  2489. }
  2490. if (!--sc->nr_to_scan)
  2491. break;
  2492. }
  2493. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2494. list_for_each_safe(pos, next, &list) {
  2495. page = list_entry((void *)pos, struct page, mapping);
  2496. if (!trylock_page(page))
  2497. goto next;
  2498. /* split_huge_page() removes page from list on success */
  2499. if (!split_huge_page(page))
  2500. split++;
  2501. unlock_page(page);
  2502. next:
  2503. put_page(page);
  2504. }
  2505. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2506. list_splice_tail(&list, &pgdata->split_queue);
  2507. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2508. /*
  2509. * Stop shrinker if we didn't split any page, but the queue is empty.
  2510. * This can happen if pages were freed under us.
  2511. */
  2512. if (!split && list_empty(&pgdata->split_queue))
  2513. return SHRINK_STOP;
  2514. return split;
  2515. }
  2516. static struct shrinker deferred_split_shrinker = {
  2517. .count_objects = deferred_split_count,
  2518. .scan_objects = deferred_split_scan,
  2519. .seeks = DEFAULT_SEEKS,
  2520. .flags = SHRINKER_NUMA_AWARE,
  2521. };
  2522. #ifdef CONFIG_DEBUG_FS
  2523. static int split_huge_pages_set(void *data, u64 val)
  2524. {
  2525. struct zone *zone;
  2526. struct page *page;
  2527. unsigned long pfn, max_zone_pfn;
  2528. unsigned long total = 0, split = 0;
  2529. if (val != 1)
  2530. return -EINVAL;
  2531. for_each_populated_zone(zone) {
  2532. max_zone_pfn = zone_end_pfn(zone);
  2533. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2534. if (!pfn_valid(pfn))
  2535. continue;
  2536. page = pfn_to_page(pfn);
  2537. if (!get_page_unless_zero(page))
  2538. continue;
  2539. if (zone != page_zone(page))
  2540. goto next;
  2541. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2542. goto next;
  2543. total++;
  2544. lock_page(page);
  2545. if (!split_huge_page(page))
  2546. split++;
  2547. unlock_page(page);
  2548. next:
  2549. put_page(page);
  2550. }
  2551. }
  2552. pr_info("%lu of %lu THP split\n", split, total);
  2553. return 0;
  2554. }
  2555. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  2556. "%llu\n");
  2557. static int __init split_huge_pages_debugfs(void)
  2558. {
  2559. void *ret;
  2560. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2561. &split_huge_pages_fops);
  2562. if (!ret)
  2563. pr_warn("Failed to create split_huge_pages in debugfs");
  2564. return 0;
  2565. }
  2566. late_initcall(split_huge_pages_debugfs);
  2567. #endif
  2568. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  2569. void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
  2570. struct page *page)
  2571. {
  2572. struct vm_area_struct *vma = pvmw->vma;
  2573. struct mm_struct *mm = vma->vm_mm;
  2574. unsigned long address = pvmw->address;
  2575. pmd_t pmdval;
  2576. swp_entry_t entry;
  2577. pmd_t pmdswp;
  2578. if (!(pvmw->pmd && !pvmw->pte))
  2579. return;
  2580. flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
  2581. pmdval = *pvmw->pmd;
  2582. pmdp_invalidate(vma, address, pvmw->pmd);
  2583. if (pmd_dirty(pmdval))
  2584. set_page_dirty(page);
  2585. entry = make_migration_entry(page, pmd_write(pmdval));
  2586. pmdswp = swp_entry_to_pmd(entry);
  2587. if (pmd_soft_dirty(pmdval))
  2588. pmdswp = pmd_swp_mksoft_dirty(pmdswp);
  2589. set_pmd_at(mm, address, pvmw->pmd, pmdswp);
  2590. page_remove_rmap(page, true);
  2591. put_page(page);
  2592. }
  2593. void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
  2594. {
  2595. struct vm_area_struct *vma = pvmw->vma;
  2596. struct mm_struct *mm = vma->vm_mm;
  2597. unsigned long address = pvmw->address;
  2598. unsigned long mmun_start = address & HPAGE_PMD_MASK;
  2599. pmd_t pmde;
  2600. swp_entry_t entry;
  2601. if (!(pvmw->pmd && !pvmw->pte))
  2602. return;
  2603. entry = pmd_to_swp_entry(*pvmw->pmd);
  2604. get_page(new);
  2605. pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
  2606. if (pmd_swp_soft_dirty(*pvmw->pmd))
  2607. pmde = pmd_mksoft_dirty(pmde);
  2608. if (is_write_migration_entry(entry))
  2609. pmde = maybe_pmd_mkwrite(pmde, vma);
  2610. flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
  2611. if (PageAnon(new))
  2612. page_add_anon_rmap(new, vma, mmun_start, true);
  2613. else
  2614. page_add_file_rmap(new, true);
  2615. set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
  2616. if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
  2617. mlock_vma_page(new);
  2618. update_mmu_cache_pmd(vma, address, pvmw->pmd);
  2619. }
  2620. #endif