vrf.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469
  1. /*
  2. * vrf.c: device driver to encapsulate a VRF space
  3. *
  4. * Copyright (c) 2015 Cumulus Networks. All rights reserved.
  5. * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
  6. * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
  7. *
  8. * Based on dummy, team and ipvlan drivers
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ip.h>
  20. #include <linux/init.h>
  21. #include <linux/moduleparam.h>
  22. #include <linux/netfilter.h>
  23. #include <linux/rtnetlink.h>
  24. #include <net/rtnetlink.h>
  25. #include <linux/u64_stats_sync.h>
  26. #include <linux/hashtable.h>
  27. #include <linux/inetdevice.h>
  28. #include <net/arp.h>
  29. #include <net/ip.h>
  30. #include <net/ip_fib.h>
  31. #include <net/ip6_fib.h>
  32. #include <net/ip6_route.h>
  33. #include <net/route.h>
  34. #include <net/addrconf.h>
  35. #include <net/l3mdev.h>
  36. #include <net/fib_rules.h>
  37. #include <net/netns/generic.h>
  38. #define DRV_NAME "vrf"
  39. #define DRV_VERSION "1.0"
  40. #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
  41. static unsigned int vrf_net_id;
  42. struct net_vrf {
  43. struct rtable __rcu *rth;
  44. struct rt6_info __rcu *rt6;
  45. #if IS_ENABLED(CONFIG_IPV6)
  46. struct fib6_table *fib6_table;
  47. #endif
  48. u32 tb_id;
  49. };
  50. struct pcpu_dstats {
  51. u64 tx_pkts;
  52. u64 tx_bytes;
  53. u64 tx_drps;
  54. u64 rx_pkts;
  55. u64 rx_bytes;
  56. u64 rx_drps;
  57. struct u64_stats_sync syncp;
  58. };
  59. static void vrf_rx_stats(struct net_device *dev, int len)
  60. {
  61. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  62. u64_stats_update_begin(&dstats->syncp);
  63. dstats->rx_pkts++;
  64. dstats->rx_bytes += len;
  65. u64_stats_update_end(&dstats->syncp);
  66. }
  67. static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  68. {
  69. vrf_dev->stats.tx_errors++;
  70. kfree_skb(skb);
  71. }
  72. static void vrf_get_stats64(struct net_device *dev,
  73. struct rtnl_link_stats64 *stats)
  74. {
  75. int i;
  76. for_each_possible_cpu(i) {
  77. const struct pcpu_dstats *dstats;
  78. u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  79. unsigned int start;
  80. dstats = per_cpu_ptr(dev->dstats, i);
  81. do {
  82. start = u64_stats_fetch_begin_irq(&dstats->syncp);
  83. tbytes = dstats->tx_bytes;
  84. tpkts = dstats->tx_pkts;
  85. tdrops = dstats->tx_drps;
  86. rbytes = dstats->rx_bytes;
  87. rpkts = dstats->rx_pkts;
  88. } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  89. stats->tx_bytes += tbytes;
  90. stats->tx_packets += tpkts;
  91. stats->tx_dropped += tdrops;
  92. stats->rx_bytes += rbytes;
  93. stats->rx_packets += rpkts;
  94. }
  95. }
  96. /* by default VRF devices do not have a qdisc and are expected
  97. * to be created with only a single queue.
  98. */
  99. static bool qdisc_tx_is_default(const struct net_device *dev)
  100. {
  101. struct netdev_queue *txq;
  102. struct Qdisc *qdisc;
  103. if (dev->num_tx_queues > 1)
  104. return false;
  105. txq = netdev_get_tx_queue(dev, 0);
  106. qdisc = rcu_access_pointer(txq->qdisc);
  107. return !qdisc->enqueue;
  108. }
  109. /* Local traffic destined to local address. Reinsert the packet to rx
  110. * path, similar to loopback handling.
  111. */
  112. static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
  113. struct dst_entry *dst)
  114. {
  115. int len = skb->len;
  116. skb_orphan(skb);
  117. skb_dst_set(skb, dst);
  118. /* set pkt_type to avoid skb hitting packet taps twice -
  119. * once on Tx and again in Rx processing
  120. */
  121. skb->pkt_type = PACKET_LOOPBACK;
  122. skb->protocol = eth_type_trans(skb, dev);
  123. if (likely(netif_rx(skb) == NET_RX_SUCCESS))
  124. vrf_rx_stats(dev, len);
  125. else
  126. this_cpu_inc(dev->dstats->rx_drps);
  127. return NETDEV_TX_OK;
  128. }
  129. #if IS_ENABLED(CONFIG_IPV6)
  130. static int vrf_ip6_local_out(struct net *net, struct sock *sk,
  131. struct sk_buff *skb)
  132. {
  133. int err;
  134. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
  135. sk, skb, NULL, skb_dst(skb)->dev, dst_output);
  136. if (likely(err == 1))
  137. err = dst_output(net, sk, skb);
  138. return err;
  139. }
  140. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  141. struct net_device *dev)
  142. {
  143. const struct ipv6hdr *iph;
  144. struct net *net = dev_net(skb->dev);
  145. struct flowi6 fl6;
  146. int ret = NET_XMIT_DROP;
  147. struct dst_entry *dst;
  148. struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
  149. if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
  150. goto err;
  151. iph = ipv6_hdr(skb);
  152. memset(&fl6, 0, sizeof(fl6));
  153. /* needed to match OIF rule */
  154. fl6.flowi6_oif = dev->ifindex;
  155. fl6.flowi6_iif = LOOPBACK_IFINDEX;
  156. fl6.daddr = iph->daddr;
  157. fl6.saddr = iph->saddr;
  158. fl6.flowlabel = ip6_flowinfo(iph);
  159. fl6.flowi6_mark = skb->mark;
  160. fl6.flowi6_proto = iph->nexthdr;
  161. fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
  162. dst = ip6_route_output(net, NULL, &fl6);
  163. if (dst == dst_null)
  164. goto err;
  165. skb_dst_drop(skb);
  166. /* if dst.dev is loopback or the VRF device again this is locally
  167. * originated traffic destined to a local address. Short circuit
  168. * to Rx path
  169. */
  170. if (dst->dev == dev)
  171. return vrf_local_xmit(skb, dev, dst);
  172. skb_dst_set(skb, dst);
  173. /* strip the ethernet header added for pass through VRF device */
  174. __skb_pull(skb, skb_network_offset(skb));
  175. ret = vrf_ip6_local_out(net, skb->sk, skb);
  176. if (unlikely(net_xmit_eval(ret)))
  177. dev->stats.tx_errors++;
  178. else
  179. ret = NET_XMIT_SUCCESS;
  180. return ret;
  181. err:
  182. vrf_tx_error(dev, skb);
  183. return NET_XMIT_DROP;
  184. }
  185. #else
  186. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  187. struct net_device *dev)
  188. {
  189. vrf_tx_error(dev, skb);
  190. return NET_XMIT_DROP;
  191. }
  192. #endif
  193. /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
  194. static int vrf_ip_local_out(struct net *net, struct sock *sk,
  195. struct sk_buff *skb)
  196. {
  197. int err;
  198. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  199. skb, NULL, skb_dst(skb)->dev, dst_output);
  200. if (likely(err == 1))
  201. err = dst_output(net, sk, skb);
  202. return err;
  203. }
  204. static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
  205. struct net_device *vrf_dev)
  206. {
  207. struct iphdr *ip4h;
  208. int ret = NET_XMIT_DROP;
  209. struct flowi4 fl4;
  210. struct net *net = dev_net(vrf_dev);
  211. struct rtable *rt;
  212. if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
  213. goto err;
  214. ip4h = ip_hdr(skb);
  215. memset(&fl4, 0, sizeof(fl4));
  216. /* needed to match OIF rule */
  217. fl4.flowi4_oif = vrf_dev->ifindex;
  218. fl4.flowi4_iif = LOOPBACK_IFINDEX;
  219. fl4.flowi4_tos = RT_TOS(ip4h->tos);
  220. fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
  221. fl4.flowi4_proto = ip4h->protocol;
  222. fl4.daddr = ip4h->daddr;
  223. fl4.saddr = ip4h->saddr;
  224. rt = ip_route_output_flow(net, &fl4, NULL);
  225. if (IS_ERR(rt))
  226. goto err;
  227. skb_dst_drop(skb);
  228. /* if dst.dev is loopback or the VRF device again this is locally
  229. * originated traffic destined to a local address. Short circuit
  230. * to Rx path
  231. */
  232. if (rt->dst.dev == vrf_dev)
  233. return vrf_local_xmit(skb, vrf_dev, &rt->dst);
  234. skb_dst_set(skb, &rt->dst);
  235. /* strip the ethernet header added for pass through VRF device */
  236. __skb_pull(skb, skb_network_offset(skb));
  237. if (!ip4h->saddr) {
  238. ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
  239. RT_SCOPE_LINK);
  240. }
  241. ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
  242. if (unlikely(net_xmit_eval(ret)))
  243. vrf_dev->stats.tx_errors++;
  244. else
  245. ret = NET_XMIT_SUCCESS;
  246. out:
  247. return ret;
  248. err:
  249. vrf_tx_error(vrf_dev, skb);
  250. goto out;
  251. }
  252. static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
  253. {
  254. switch (skb->protocol) {
  255. case htons(ETH_P_IP):
  256. return vrf_process_v4_outbound(skb, dev);
  257. case htons(ETH_P_IPV6):
  258. return vrf_process_v6_outbound(skb, dev);
  259. default:
  260. vrf_tx_error(dev, skb);
  261. return NET_XMIT_DROP;
  262. }
  263. }
  264. static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
  265. {
  266. int len = skb->len;
  267. netdev_tx_t ret = is_ip_tx_frame(skb, dev);
  268. if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
  269. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  270. u64_stats_update_begin(&dstats->syncp);
  271. dstats->tx_pkts++;
  272. dstats->tx_bytes += len;
  273. u64_stats_update_end(&dstats->syncp);
  274. } else {
  275. this_cpu_inc(dev->dstats->tx_drps);
  276. }
  277. return ret;
  278. }
  279. static int vrf_finish_direct(struct net *net, struct sock *sk,
  280. struct sk_buff *skb)
  281. {
  282. struct net_device *vrf_dev = skb->dev;
  283. if (!list_empty(&vrf_dev->ptype_all) &&
  284. likely(skb_headroom(skb) >= ETH_HLEN)) {
  285. struct ethhdr *eth = skb_push(skb, ETH_HLEN);
  286. ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
  287. eth_zero_addr(eth->h_dest);
  288. eth->h_proto = skb->protocol;
  289. rcu_read_lock_bh();
  290. dev_queue_xmit_nit(skb, vrf_dev);
  291. rcu_read_unlock_bh();
  292. skb_pull(skb, ETH_HLEN);
  293. }
  294. return 1;
  295. }
  296. #if IS_ENABLED(CONFIG_IPV6)
  297. /* modelled after ip6_finish_output2 */
  298. static int vrf_finish_output6(struct net *net, struct sock *sk,
  299. struct sk_buff *skb)
  300. {
  301. struct dst_entry *dst = skb_dst(skb);
  302. struct net_device *dev = dst->dev;
  303. struct neighbour *neigh;
  304. struct in6_addr *nexthop;
  305. int ret;
  306. nf_reset(skb);
  307. skb->protocol = htons(ETH_P_IPV6);
  308. skb->dev = dev;
  309. rcu_read_lock_bh();
  310. nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
  311. neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
  312. if (unlikely(!neigh))
  313. neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
  314. if (!IS_ERR(neigh)) {
  315. sock_confirm_neigh(skb, neigh);
  316. ret = neigh_output(neigh, skb);
  317. rcu_read_unlock_bh();
  318. return ret;
  319. }
  320. rcu_read_unlock_bh();
  321. IP6_INC_STATS(dev_net(dst->dev),
  322. ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
  323. kfree_skb(skb);
  324. return -EINVAL;
  325. }
  326. /* modelled after ip6_output */
  327. static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
  328. {
  329. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  330. net, sk, skb, NULL, skb_dst(skb)->dev,
  331. vrf_finish_output6,
  332. !(IP6CB(skb)->flags & IP6SKB_REROUTED));
  333. }
  334. /* set dst on skb to send packet to us via dev_xmit path. Allows
  335. * packet to go through device based features such as qdisc, netfilter
  336. * hooks and packet sockets with skb->dev set to vrf device.
  337. */
  338. static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
  339. struct sk_buff *skb)
  340. {
  341. struct net_vrf *vrf = netdev_priv(vrf_dev);
  342. struct dst_entry *dst = NULL;
  343. struct rt6_info *rt6;
  344. rcu_read_lock();
  345. rt6 = rcu_dereference(vrf->rt6);
  346. if (likely(rt6)) {
  347. dst = &rt6->dst;
  348. dst_hold(dst);
  349. }
  350. rcu_read_unlock();
  351. if (unlikely(!dst)) {
  352. vrf_tx_error(vrf_dev, skb);
  353. return NULL;
  354. }
  355. skb_dst_drop(skb);
  356. skb_dst_set(skb, dst);
  357. return skb;
  358. }
  359. static int vrf_output6_direct(struct net *net, struct sock *sk,
  360. struct sk_buff *skb)
  361. {
  362. skb->protocol = htons(ETH_P_IPV6);
  363. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  364. net, sk, skb, NULL, skb->dev,
  365. vrf_finish_direct,
  366. !(IPCB(skb)->flags & IPSKB_REROUTED));
  367. }
  368. static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
  369. struct sock *sk,
  370. struct sk_buff *skb)
  371. {
  372. struct net *net = dev_net(vrf_dev);
  373. int err;
  374. skb->dev = vrf_dev;
  375. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
  376. skb, NULL, vrf_dev, vrf_output6_direct);
  377. if (likely(err == 1))
  378. err = vrf_output6_direct(net, sk, skb);
  379. /* reset skb device */
  380. if (likely(err == 1))
  381. nf_reset(skb);
  382. else
  383. skb = NULL;
  384. return skb;
  385. }
  386. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  387. struct sock *sk,
  388. struct sk_buff *skb)
  389. {
  390. /* don't divert link scope packets */
  391. if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
  392. return skb;
  393. if (qdisc_tx_is_default(vrf_dev))
  394. return vrf_ip6_out_direct(vrf_dev, sk, skb);
  395. return vrf_ip6_out_redirect(vrf_dev, skb);
  396. }
  397. /* holding rtnl */
  398. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  399. {
  400. struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
  401. struct net *net = dev_net(dev);
  402. struct dst_entry *dst;
  403. RCU_INIT_POINTER(vrf->rt6, NULL);
  404. synchronize_rcu();
  405. /* move dev in dst's to loopback so this VRF device can be deleted
  406. * - based on dst_ifdown
  407. */
  408. if (rt6) {
  409. dst = &rt6->dst;
  410. dev_put(dst->dev);
  411. dst->dev = net->loopback_dev;
  412. dev_hold(dst->dev);
  413. dst_release(dst);
  414. }
  415. }
  416. static int vrf_rt6_create(struct net_device *dev)
  417. {
  418. int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
  419. struct net_vrf *vrf = netdev_priv(dev);
  420. struct net *net = dev_net(dev);
  421. struct rt6_info *rt6;
  422. int rc = -ENOMEM;
  423. /* IPv6 can be CONFIG enabled and then disabled runtime */
  424. if (!ipv6_mod_enabled())
  425. return 0;
  426. vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
  427. if (!vrf->fib6_table)
  428. goto out;
  429. /* create a dst for routing packets out a VRF device */
  430. rt6 = ip6_dst_alloc(net, dev, flags);
  431. if (!rt6)
  432. goto out;
  433. rt6->dst.output = vrf_output6;
  434. rcu_assign_pointer(vrf->rt6, rt6);
  435. rc = 0;
  436. out:
  437. return rc;
  438. }
  439. #else
  440. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  441. struct sock *sk,
  442. struct sk_buff *skb)
  443. {
  444. return skb;
  445. }
  446. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  447. {
  448. }
  449. static int vrf_rt6_create(struct net_device *dev)
  450. {
  451. return 0;
  452. }
  453. #endif
  454. /* modelled after ip_finish_output2 */
  455. static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  456. {
  457. struct dst_entry *dst = skb_dst(skb);
  458. struct rtable *rt = (struct rtable *)dst;
  459. struct net_device *dev = dst->dev;
  460. unsigned int hh_len = LL_RESERVED_SPACE(dev);
  461. struct neighbour *neigh;
  462. u32 nexthop;
  463. int ret = -EINVAL;
  464. nf_reset(skb);
  465. /* Be paranoid, rather than too clever. */
  466. if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
  467. struct sk_buff *skb2;
  468. skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
  469. if (!skb2) {
  470. ret = -ENOMEM;
  471. goto err;
  472. }
  473. if (skb->sk)
  474. skb_set_owner_w(skb2, skb->sk);
  475. consume_skb(skb);
  476. skb = skb2;
  477. }
  478. rcu_read_lock_bh();
  479. nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
  480. neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
  481. if (unlikely(!neigh))
  482. neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
  483. if (!IS_ERR(neigh)) {
  484. sock_confirm_neigh(skb, neigh);
  485. ret = neigh_output(neigh, skb);
  486. rcu_read_unlock_bh();
  487. return ret;
  488. }
  489. rcu_read_unlock_bh();
  490. err:
  491. vrf_tx_error(skb->dev, skb);
  492. return ret;
  493. }
  494. static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  495. {
  496. struct net_device *dev = skb_dst(skb)->dev;
  497. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  498. skb->dev = dev;
  499. skb->protocol = htons(ETH_P_IP);
  500. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  501. net, sk, skb, NULL, dev,
  502. vrf_finish_output,
  503. !(IPCB(skb)->flags & IPSKB_REROUTED));
  504. }
  505. /* set dst on skb to send packet to us via dev_xmit path. Allows
  506. * packet to go through device based features such as qdisc, netfilter
  507. * hooks and packet sockets with skb->dev set to vrf device.
  508. */
  509. static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
  510. struct sk_buff *skb)
  511. {
  512. struct net_vrf *vrf = netdev_priv(vrf_dev);
  513. struct dst_entry *dst = NULL;
  514. struct rtable *rth;
  515. rcu_read_lock();
  516. rth = rcu_dereference(vrf->rth);
  517. if (likely(rth)) {
  518. dst = &rth->dst;
  519. dst_hold(dst);
  520. }
  521. rcu_read_unlock();
  522. if (unlikely(!dst)) {
  523. vrf_tx_error(vrf_dev, skb);
  524. return NULL;
  525. }
  526. skb_dst_drop(skb);
  527. skb_dst_set(skb, dst);
  528. return skb;
  529. }
  530. static int vrf_output_direct(struct net *net, struct sock *sk,
  531. struct sk_buff *skb)
  532. {
  533. skb->protocol = htons(ETH_P_IP);
  534. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  535. net, sk, skb, NULL, skb->dev,
  536. vrf_finish_direct,
  537. !(IPCB(skb)->flags & IPSKB_REROUTED));
  538. }
  539. static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
  540. struct sock *sk,
  541. struct sk_buff *skb)
  542. {
  543. struct net *net = dev_net(vrf_dev);
  544. int err;
  545. skb->dev = vrf_dev;
  546. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  547. skb, NULL, vrf_dev, vrf_output_direct);
  548. if (likely(err == 1))
  549. err = vrf_output_direct(net, sk, skb);
  550. /* reset skb device */
  551. if (likely(err == 1))
  552. nf_reset(skb);
  553. else
  554. skb = NULL;
  555. return skb;
  556. }
  557. static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
  558. struct sock *sk,
  559. struct sk_buff *skb)
  560. {
  561. /* don't divert multicast or local broadcast */
  562. if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
  563. ipv4_is_lbcast(ip_hdr(skb)->daddr))
  564. return skb;
  565. if (qdisc_tx_is_default(vrf_dev))
  566. return vrf_ip_out_direct(vrf_dev, sk, skb);
  567. return vrf_ip_out_redirect(vrf_dev, skb);
  568. }
  569. /* called with rcu lock held */
  570. static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
  571. struct sock *sk,
  572. struct sk_buff *skb,
  573. u16 proto)
  574. {
  575. switch (proto) {
  576. case AF_INET:
  577. return vrf_ip_out(vrf_dev, sk, skb);
  578. case AF_INET6:
  579. return vrf_ip6_out(vrf_dev, sk, skb);
  580. }
  581. return skb;
  582. }
  583. /* holding rtnl */
  584. static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
  585. {
  586. struct rtable *rth = rtnl_dereference(vrf->rth);
  587. struct net *net = dev_net(dev);
  588. struct dst_entry *dst;
  589. RCU_INIT_POINTER(vrf->rth, NULL);
  590. synchronize_rcu();
  591. /* move dev in dst's to loopback so this VRF device can be deleted
  592. * - based on dst_ifdown
  593. */
  594. if (rth) {
  595. dst = &rth->dst;
  596. dev_put(dst->dev);
  597. dst->dev = net->loopback_dev;
  598. dev_hold(dst->dev);
  599. dst_release(dst);
  600. }
  601. }
  602. static int vrf_rtable_create(struct net_device *dev)
  603. {
  604. struct net_vrf *vrf = netdev_priv(dev);
  605. struct rtable *rth;
  606. if (!fib_new_table(dev_net(dev), vrf->tb_id))
  607. return -ENOMEM;
  608. /* create a dst for routing packets out through a VRF device */
  609. rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
  610. if (!rth)
  611. return -ENOMEM;
  612. rth->dst.output = vrf_output;
  613. rcu_assign_pointer(vrf->rth, rth);
  614. return 0;
  615. }
  616. /**************************** device handling ********************/
  617. /* cycle interface to flush neighbor cache and move routes across tables */
  618. static void cycle_netdev(struct net_device *dev)
  619. {
  620. unsigned int flags = dev->flags;
  621. int ret;
  622. if (!netif_running(dev))
  623. return;
  624. ret = dev_change_flags(dev, flags & ~IFF_UP);
  625. if (ret >= 0)
  626. ret = dev_change_flags(dev, flags);
  627. if (ret < 0) {
  628. netdev_err(dev,
  629. "Failed to cycle device %s; route tables might be wrong!\n",
  630. dev->name);
  631. }
  632. }
  633. static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  634. struct netlink_ext_ack *extack)
  635. {
  636. int ret;
  637. /* do not allow loopback device to be enslaved to a VRF.
  638. * The vrf device acts as the loopback for the vrf.
  639. */
  640. if (port_dev == dev_net(dev)->loopback_dev) {
  641. NL_SET_ERR_MSG(extack,
  642. "Can not enslave loopback device to a VRF");
  643. return -EOPNOTSUPP;
  644. }
  645. port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
  646. ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
  647. if (ret < 0)
  648. goto err;
  649. cycle_netdev(port_dev);
  650. return 0;
  651. err:
  652. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  653. return ret;
  654. }
  655. static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  656. struct netlink_ext_ack *extack)
  657. {
  658. if (netif_is_l3_master(port_dev)) {
  659. NL_SET_ERR_MSG(extack,
  660. "Can not enslave an L3 master device to a VRF");
  661. return -EINVAL;
  662. }
  663. if (netif_is_l3_slave(port_dev))
  664. return -EINVAL;
  665. return do_vrf_add_slave(dev, port_dev, extack);
  666. }
  667. /* inverse of do_vrf_add_slave */
  668. static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  669. {
  670. netdev_upper_dev_unlink(port_dev, dev);
  671. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  672. cycle_netdev(port_dev);
  673. return 0;
  674. }
  675. static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  676. {
  677. return do_vrf_del_slave(dev, port_dev);
  678. }
  679. static void vrf_dev_uninit(struct net_device *dev)
  680. {
  681. struct net_vrf *vrf = netdev_priv(dev);
  682. vrf_rtable_release(dev, vrf);
  683. vrf_rt6_release(dev, vrf);
  684. free_percpu(dev->dstats);
  685. dev->dstats = NULL;
  686. }
  687. static int vrf_dev_init(struct net_device *dev)
  688. {
  689. struct net_vrf *vrf = netdev_priv(dev);
  690. dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
  691. if (!dev->dstats)
  692. goto out_nomem;
  693. /* create the default dst which points back to us */
  694. if (vrf_rtable_create(dev) != 0)
  695. goto out_stats;
  696. if (vrf_rt6_create(dev) != 0)
  697. goto out_rth;
  698. dev->flags = IFF_MASTER | IFF_NOARP;
  699. /* MTU is irrelevant for VRF device; set to 64k similar to lo */
  700. dev->mtu = 64 * 1024;
  701. /* similarly, oper state is irrelevant; set to up to avoid confusion */
  702. dev->operstate = IF_OPER_UP;
  703. netdev_lockdep_set_classes(dev);
  704. return 0;
  705. out_rth:
  706. vrf_rtable_release(dev, vrf);
  707. out_stats:
  708. free_percpu(dev->dstats);
  709. dev->dstats = NULL;
  710. out_nomem:
  711. return -ENOMEM;
  712. }
  713. static const struct net_device_ops vrf_netdev_ops = {
  714. .ndo_init = vrf_dev_init,
  715. .ndo_uninit = vrf_dev_uninit,
  716. .ndo_start_xmit = vrf_xmit,
  717. .ndo_get_stats64 = vrf_get_stats64,
  718. .ndo_add_slave = vrf_add_slave,
  719. .ndo_del_slave = vrf_del_slave,
  720. };
  721. static u32 vrf_fib_table(const struct net_device *dev)
  722. {
  723. struct net_vrf *vrf = netdev_priv(dev);
  724. return vrf->tb_id;
  725. }
  726. static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
  727. {
  728. kfree_skb(skb);
  729. return 0;
  730. }
  731. static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
  732. struct sk_buff *skb,
  733. struct net_device *dev)
  734. {
  735. struct net *net = dev_net(dev);
  736. if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
  737. skb = NULL; /* kfree_skb(skb) handled by nf code */
  738. return skb;
  739. }
  740. #if IS_ENABLED(CONFIG_IPV6)
  741. /* neighbor handling is done with actual device; do not want
  742. * to flip skb->dev for those ndisc packets. This really fails
  743. * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
  744. * a start.
  745. */
  746. static bool ipv6_ndisc_frame(const struct sk_buff *skb)
  747. {
  748. const struct ipv6hdr *iph = ipv6_hdr(skb);
  749. bool rc = false;
  750. if (iph->nexthdr == NEXTHDR_ICMP) {
  751. const struct icmp6hdr *icmph;
  752. struct icmp6hdr _icmph;
  753. icmph = skb_header_pointer(skb, sizeof(*iph),
  754. sizeof(_icmph), &_icmph);
  755. if (!icmph)
  756. goto out;
  757. switch (icmph->icmp6_type) {
  758. case NDISC_ROUTER_SOLICITATION:
  759. case NDISC_ROUTER_ADVERTISEMENT:
  760. case NDISC_NEIGHBOUR_SOLICITATION:
  761. case NDISC_NEIGHBOUR_ADVERTISEMENT:
  762. case NDISC_REDIRECT:
  763. rc = true;
  764. break;
  765. }
  766. }
  767. out:
  768. return rc;
  769. }
  770. static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
  771. const struct net_device *dev,
  772. struct flowi6 *fl6,
  773. int ifindex,
  774. const struct sk_buff *skb,
  775. int flags)
  776. {
  777. struct net_vrf *vrf = netdev_priv(dev);
  778. return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
  779. }
  780. static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
  781. int ifindex)
  782. {
  783. const struct ipv6hdr *iph = ipv6_hdr(skb);
  784. struct flowi6 fl6 = {
  785. .flowi6_iif = ifindex,
  786. .flowi6_mark = skb->mark,
  787. .flowi6_proto = iph->nexthdr,
  788. .daddr = iph->daddr,
  789. .saddr = iph->saddr,
  790. .flowlabel = ip6_flowinfo(iph),
  791. };
  792. struct net *net = dev_net(vrf_dev);
  793. struct rt6_info *rt6;
  794. rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
  795. RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
  796. if (unlikely(!rt6))
  797. return;
  798. if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
  799. return;
  800. skb_dst_set(skb, &rt6->dst);
  801. }
  802. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  803. struct sk_buff *skb)
  804. {
  805. int orig_iif = skb->skb_iif;
  806. bool need_strict;
  807. /* loopback traffic; do not push through packet taps again.
  808. * Reset pkt_type for upper layers to process skb
  809. */
  810. if (skb->pkt_type == PACKET_LOOPBACK) {
  811. skb->dev = vrf_dev;
  812. skb->skb_iif = vrf_dev->ifindex;
  813. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  814. skb->pkt_type = PACKET_HOST;
  815. goto out;
  816. }
  817. /* if packet is NDISC or addressed to multicast or link-local
  818. * then keep the ingress interface
  819. */
  820. need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
  821. if (!ipv6_ndisc_frame(skb) && !need_strict) {
  822. vrf_rx_stats(vrf_dev, skb->len);
  823. skb->dev = vrf_dev;
  824. skb->skb_iif = vrf_dev->ifindex;
  825. if (!list_empty(&vrf_dev->ptype_all)) {
  826. skb_push(skb, skb->mac_len);
  827. dev_queue_xmit_nit(skb, vrf_dev);
  828. skb_pull(skb, skb->mac_len);
  829. }
  830. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  831. }
  832. if (need_strict)
  833. vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
  834. skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
  835. out:
  836. return skb;
  837. }
  838. #else
  839. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  840. struct sk_buff *skb)
  841. {
  842. return skb;
  843. }
  844. #endif
  845. static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
  846. struct sk_buff *skb)
  847. {
  848. skb->dev = vrf_dev;
  849. skb->skb_iif = vrf_dev->ifindex;
  850. IPCB(skb)->flags |= IPSKB_L3SLAVE;
  851. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  852. goto out;
  853. /* loopback traffic; do not push through packet taps again.
  854. * Reset pkt_type for upper layers to process skb
  855. */
  856. if (skb->pkt_type == PACKET_LOOPBACK) {
  857. skb->pkt_type = PACKET_HOST;
  858. goto out;
  859. }
  860. vrf_rx_stats(vrf_dev, skb->len);
  861. if (!list_empty(&vrf_dev->ptype_all)) {
  862. skb_push(skb, skb->mac_len);
  863. dev_queue_xmit_nit(skb, vrf_dev);
  864. skb_pull(skb, skb->mac_len);
  865. }
  866. skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
  867. out:
  868. return skb;
  869. }
  870. /* called with rcu lock held */
  871. static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
  872. struct sk_buff *skb,
  873. u16 proto)
  874. {
  875. switch (proto) {
  876. case AF_INET:
  877. return vrf_ip_rcv(vrf_dev, skb);
  878. case AF_INET6:
  879. return vrf_ip6_rcv(vrf_dev, skb);
  880. }
  881. return skb;
  882. }
  883. #if IS_ENABLED(CONFIG_IPV6)
  884. /* send to link-local or multicast address via interface enslaved to
  885. * VRF device. Force lookup to VRF table without changing flow struct
  886. */
  887. static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
  888. struct flowi6 *fl6)
  889. {
  890. struct net *net = dev_net(dev);
  891. int flags = RT6_LOOKUP_F_IFACE;
  892. struct dst_entry *dst = NULL;
  893. struct rt6_info *rt;
  894. /* VRF device does not have a link-local address and
  895. * sending packets to link-local or mcast addresses over
  896. * a VRF device does not make sense
  897. */
  898. if (fl6->flowi6_oif == dev->ifindex) {
  899. dst = &net->ipv6.ip6_null_entry->dst;
  900. dst_hold(dst);
  901. return dst;
  902. }
  903. if (!ipv6_addr_any(&fl6->saddr))
  904. flags |= RT6_LOOKUP_F_HAS_SADDR;
  905. rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
  906. if (rt)
  907. dst = &rt->dst;
  908. return dst;
  909. }
  910. #endif
  911. static const struct l3mdev_ops vrf_l3mdev_ops = {
  912. .l3mdev_fib_table = vrf_fib_table,
  913. .l3mdev_l3_rcv = vrf_l3_rcv,
  914. .l3mdev_l3_out = vrf_l3_out,
  915. #if IS_ENABLED(CONFIG_IPV6)
  916. .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
  917. #endif
  918. };
  919. static void vrf_get_drvinfo(struct net_device *dev,
  920. struct ethtool_drvinfo *info)
  921. {
  922. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  923. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  924. }
  925. static const struct ethtool_ops vrf_ethtool_ops = {
  926. .get_drvinfo = vrf_get_drvinfo,
  927. };
  928. static inline size_t vrf_fib_rule_nl_size(void)
  929. {
  930. size_t sz;
  931. sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
  932. sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
  933. sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
  934. sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
  935. return sz;
  936. }
  937. static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
  938. {
  939. struct fib_rule_hdr *frh;
  940. struct nlmsghdr *nlh;
  941. struct sk_buff *skb;
  942. int err;
  943. if (family == AF_INET6 && !ipv6_mod_enabled())
  944. return 0;
  945. skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
  946. if (!skb)
  947. return -ENOMEM;
  948. nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
  949. if (!nlh)
  950. goto nla_put_failure;
  951. /* rule only needs to appear once */
  952. nlh->nlmsg_flags |= NLM_F_EXCL;
  953. frh = nlmsg_data(nlh);
  954. memset(frh, 0, sizeof(*frh));
  955. frh->family = family;
  956. frh->action = FR_ACT_TO_TBL;
  957. if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
  958. goto nla_put_failure;
  959. if (nla_put_u8(skb, FRA_L3MDEV, 1))
  960. goto nla_put_failure;
  961. if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
  962. goto nla_put_failure;
  963. nlmsg_end(skb, nlh);
  964. /* fib_nl_{new,del}rule handling looks for net from skb->sk */
  965. skb->sk = dev_net(dev)->rtnl;
  966. if (add_it) {
  967. err = fib_nl_newrule(skb, nlh, NULL);
  968. if (err == -EEXIST)
  969. err = 0;
  970. } else {
  971. err = fib_nl_delrule(skb, nlh, NULL);
  972. if (err == -ENOENT)
  973. err = 0;
  974. }
  975. nlmsg_free(skb);
  976. return err;
  977. nla_put_failure:
  978. nlmsg_free(skb);
  979. return -EMSGSIZE;
  980. }
  981. static int vrf_add_fib_rules(const struct net_device *dev)
  982. {
  983. int err;
  984. err = vrf_fib_rule(dev, AF_INET, true);
  985. if (err < 0)
  986. goto out_err;
  987. err = vrf_fib_rule(dev, AF_INET6, true);
  988. if (err < 0)
  989. goto ipv6_err;
  990. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  991. err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
  992. if (err < 0)
  993. goto ipmr_err;
  994. #endif
  995. return 0;
  996. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  997. ipmr_err:
  998. vrf_fib_rule(dev, AF_INET6, false);
  999. #endif
  1000. ipv6_err:
  1001. vrf_fib_rule(dev, AF_INET, false);
  1002. out_err:
  1003. netdev_err(dev, "Failed to add FIB rules.\n");
  1004. return err;
  1005. }
  1006. static void vrf_setup(struct net_device *dev)
  1007. {
  1008. ether_setup(dev);
  1009. /* Initialize the device structure. */
  1010. dev->netdev_ops = &vrf_netdev_ops;
  1011. dev->l3mdev_ops = &vrf_l3mdev_ops;
  1012. dev->ethtool_ops = &vrf_ethtool_ops;
  1013. dev->needs_free_netdev = true;
  1014. /* Fill in device structure with ethernet-generic values. */
  1015. eth_hw_addr_random(dev);
  1016. /* don't acquire vrf device's netif_tx_lock when transmitting */
  1017. dev->features |= NETIF_F_LLTX;
  1018. /* don't allow vrf devices to change network namespaces. */
  1019. dev->features |= NETIF_F_NETNS_LOCAL;
  1020. /* does not make sense for a VLAN to be added to a vrf device */
  1021. dev->features |= NETIF_F_VLAN_CHALLENGED;
  1022. /* enable offload features */
  1023. dev->features |= NETIF_F_GSO_SOFTWARE;
  1024. dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
  1025. dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
  1026. dev->hw_features = dev->features;
  1027. dev->hw_enc_features = dev->features;
  1028. /* default to no qdisc; user can add if desired */
  1029. dev->priv_flags |= IFF_NO_QUEUE;
  1030. dev->priv_flags |= IFF_NO_RX_HANDLER;
  1031. }
  1032. static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
  1033. struct netlink_ext_ack *extack)
  1034. {
  1035. if (tb[IFLA_ADDRESS]) {
  1036. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
  1037. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1038. return -EINVAL;
  1039. }
  1040. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
  1041. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1042. return -EADDRNOTAVAIL;
  1043. }
  1044. }
  1045. return 0;
  1046. }
  1047. static void vrf_dellink(struct net_device *dev, struct list_head *head)
  1048. {
  1049. struct net_device *port_dev;
  1050. struct list_head *iter;
  1051. netdev_for_each_lower_dev(dev, port_dev, iter)
  1052. vrf_del_slave(dev, port_dev);
  1053. unregister_netdevice_queue(dev, head);
  1054. }
  1055. static int vrf_newlink(struct net *src_net, struct net_device *dev,
  1056. struct nlattr *tb[], struct nlattr *data[],
  1057. struct netlink_ext_ack *extack)
  1058. {
  1059. struct net_vrf *vrf = netdev_priv(dev);
  1060. bool *add_fib_rules;
  1061. struct net *net;
  1062. int err;
  1063. if (!data || !data[IFLA_VRF_TABLE]) {
  1064. NL_SET_ERR_MSG(extack, "VRF table id is missing");
  1065. return -EINVAL;
  1066. }
  1067. vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
  1068. if (vrf->tb_id == RT_TABLE_UNSPEC) {
  1069. NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
  1070. "Invalid VRF table id");
  1071. return -EINVAL;
  1072. }
  1073. dev->priv_flags |= IFF_L3MDEV_MASTER;
  1074. err = register_netdevice(dev);
  1075. if (err)
  1076. goto out;
  1077. net = dev_net(dev);
  1078. add_fib_rules = net_generic(net, vrf_net_id);
  1079. if (*add_fib_rules) {
  1080. err = vrf_add_fib_rules(dev);
  1081. if (err) {
  1082. unregister_netdevice(dev);
  1083. goto out;
  1084. }
  1085. *add_fib_rules = false;
  1086. }
  1087. out:
  1088. return err;
  1089. }
  1090. static size_t vrf_nl_getsize(const struct net_device *dev)
  1091. {
  1092. return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
  1093. }
  1094. static int vrf_fillinfo(struct sk_buff *skb,
  1095. const struct net_device *dev)
  1096. {
  1097. struct net_vrf *vrf = netdev_priv(dev);
  1098. return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
  1099. }
  1100. static size_t vrf_get_slave_size(const struct net_device *bond_dev,
  1101. const struct net_device *slave_dev)
  1102. {
  1103. return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
  1104. }
  1105. static int vrf_fill_slave_info(struct sk_buff *skb,
  1106. const struct net_device *vrf_dev,
  1107. const struct net_device *slave_dev)
  1108. {
  1109. struct net_vrf *vrf = netdev_priv(vrf_dev);
  1110. if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
  1111. return -EMSGSIZE;
  1112. return 0;
  1113. }
  1114. static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
  1115. [IFLA_VRF_TABLE] = { .type = NLA_U32 },
  1116. };
  1117. static struct rtnl_link_ops vrf_link_ops __read_mostly = {
  1118. .kind = DRV_NAME,
  1119. .priv_size = sizeof(struct net_vrf),
  1120. .get_size = vrf_nl_getsize,
  1121. .policy = vrf_nl_policy,
  1122. .validate = vrf_validate,
  1123. .fill_info = vrf_fillinfo,
  1124. .get_slave_size = vrf_get_slave_size,
  1125. .fill_slave_info = vrf_fill_slave_info,
  1126. .newlink = vrf_newlink,
  1127. .dellink = vrf_dellink,
  1128. .setup = vrf_setup,
  1129. .maxtype = IFLA_VRF_MAX,
  1130. };
  1131. static int vrf_device_event(struct notifier_block *unused,
  1132. unsigned long event, void *ptr)
  1133. {
  1134. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1135. /* only care about unregister events to drop slave references */
  1136. if (event == NETDEV_UNREGISTER) {
  1137. struct net_device *vrf_dev;
  1138. if (!netif_is_l3_slave(dev))
  1139. goto out;
  1140. vrf_dev = netdev_master_upper_dev_get(dev);
  1141. vrf_del_slave(vrf_dev, dev);
  1142. }
  1143. out:
  1144. return NOTIFY_DONE;
  1145. }
  1146. static struct notifier_block vrf_notifier_block __read_mostly = {
  1147. .notifier_call = vrf_device_event,
  1148. };
  1149. /* Initialize per network namespace state */
  1150. static int __net_init vrf_netns_init(struct net *net)
  1151. {
  1152. bool *add_fib_rules = net_generic(net, vrf_net_id);
  1153. *add_fib_rules = true;
  1154. return 0;
  1155. }
  1156. static struct pernet_operations vrf_net_ops __net_initdata = {
  1157. .init = vrf_netns_init,
  1158. .id = &vrf_net_id,
  1159. .size = sizeof(bool),
  1160. };
  1161. static int __init vrf_init_module(void)
  1162. {
  1163. int rc;
  1164. register_netdevice_notifier(&vrf_notifier_block);
  1165. rc = register_pernet_subsys(&vrf_net_ops);
  1166. if (rc < 0)
  1167. goto error;
  1168. rc = rtnl_link_register(&vrf_link_ops);
  1169. if (rc < 0) {
  1170. unregister_pernet_subsys(&vrf_net_ops);
  1171. goto error;
  1172. }
  1173. return 0;
  1174. error:
  1175. unregister_netdevice_notifier(&vrf_notifier_block);
  1176. return rc;
  1177. }
  1178. module_init(vrf_init_module);
  1179. MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
  1180. MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
  1181. MODULE_LICENSE("GPL");
  1182. MODULE_ALIAS_RTNL_LINK(DRV_NAME);
  1183. MODULE_VERSION(DRV_VERSION);