qca8k.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2009 Felix Fietkau <nbd@nbd.name>
  4. * Copyright (C) 2011-2012 Gabor Juhos <juhosg@openwrt.org>
  5. * Copyright (c) 2015, The Linux Foundation. All rights reserved.
  6. * Copyright (c) 2016 John Crispin <john@phrozen.org>
  7. */
  8. #include <linux/module.h>
  9. #include <linux/phy.h>
  10. #include <linux/netdevice.h>
  11. #include <net/dsa.h>
  12. #include <linux/of_net.h>
  13. #include <linux/of_platform.h>
  14. #include <linux/if_bridge.h>
  15. #include <linux/mdio.h>
  16. #include <linux/etherdevice.h>
  17. #include "qca8k.h"
  18. #define MIB_DESC(_s, _o, _n) \
  19. { \
  20. .size = (_s), \
  21. .offset = (_o), \
  22. .name = (_n), \
  23. }
  24. static const struct qca8k_mib_desc ar8327_mib[] = {
  25. MIB_DESC(1, 0x00, "RxBroad"),
  26. MIB_DESC(1, 0x04, "RxPause"),
  27. MIB_DESC(1, 0x08, "RxMulti"),
  28. MIB_DESC(1, 0x0c, "RxFcsErr"),
  29. MIB_DESC(1, 0x10, "RxAlignErr"),
  30. MIB_DESC(1, 0x14, "RxRunt"),
  31. MIB_DESC(1, 0x18, "RxFragment"),
  32. MIB_DESC(1, 0x1c, "Rx64Byte"),
  33. MIB_DESC(1, 0x20, "Rx128Byte"),
  34. MIB_DESC(1, 0x24, "Rx256Byte"),
  35. MIB_DESC(1, 0x28, "Rx512Byte"),
  36. MIB_DESC(1, 0x2c, "Rx1024Byte"),
  37. MIB_DESC(1, 0x30, "Rx1518Byte"),
  38. MIB_DESC(1, 0x34, "RxMaxByte"),
  39. MIB_DESC(1, 0x38, "RxTooLong"),
  40. MIB_DESC(2, 0x3c, "RxGoodByte"),
  41. MIB_DESC(2, 0x44, "RxBadByte"),
  42. MIB_DESC(1, 0x4c, "RxOverFlow"),
  43. MIB_DESC(1, 0x50, "Filtered"),
  44. MIB_DESC(1, 0x54, "TxBroad"),
  45. MIB_DESC(1, 0x58, "TxPause"),
  46. MIB_DESC(1, 0x5c, "TxMulti"),
  47. MIB_DESC(1, 0x60, "TxUnderRun"),
  48. MIB_DESC(1, 0x64, "Tx64Byte"),
  49. MIB_DESC(1, 0x68, "Tx128Byte"),
  50. MIB_DESC(1, 0x6c, "Tx256Byte"),
  51. MIB_DESC(1, 0x70, "Tx512Byte"),
  52. MIB_DESC(1, 0x74, "Tx1024Byte"),
  53. MIB_DESC(1, 0x78, "Tx1518Byte"),
  54. MIB_DESC(1, 0x7c, "TxMaxByte"),
  55. MIB_DESC(1, 0x80, "TxOverSize"),
  56. MIB_DESC(2, 0x84, "TxByte"),
  57. MIB_DESC(1, 0x8c, "TxCollision"),
  58. MIB_DESC(1, 0x90, "TxAbortCol"),
  59. MIB_DESC(1, 0x94, "TxMultiCol"),
  60. MIB_DESC(1, 0x98, "TxSingleCol"),
  61. MIB_DESC(1, 0x9c, "TxExcDefer"),
  62. MIB_DESC(1, 0xa0, "TxDefer"),
  63. MIB_DESC(1, 0xa4, "TxLateCol"),
  64. };
  65. /* The 32bit switch registers are accessed indirectly. To achieve this we need
  66. * to set the page of the register. Track the last page that was set to reduce
  67. * mdio writes
  68. */
  69. static u16 qca8k_current_page = 0xffff;
  70. static void
  71. qca8k_split_addr(u32 regaddr, u16 *r1, u16 *r2, u16 *page)
  72. {
  73. regaddr >>= 1;
  74. *r1 = regaddr & 0x1e;
  75. regaddr >>= 5;
  76. *r2 = regaddr & 0x7;
  77. regaddr >>= 3;
  78. *page = regaddr & 0x3ff;
  79. }
  80. static u32
  81. qca8k_mii_read32(struct mii_bus *bus, int phy_id, u32 regnum)
  82. {
  83. u32 val;
  84. int ret;
  85. ret = bus->read(bus, phy_id, regnum);
  86. if (ret >= 0) {
  87. val = ret;
  88. ret = bus->read(bus, phy_id, regnum + 1);
  89. val |= ret << 16;
  90. }
  91. if (ret < 0) {
  92. dev_err_ratelimited(&bus->dev,
  93. "failed to read qca8k 32bit register\n");
  94. return ret;
  95. }
  96. return val;
  97. }
  98. static void
  99. qca8k_mii_write32(struct mii_bus *bus, int phy_id, u32 regnum, u32 val)
  100. {
  101. u16 lo, hi;
  102. int ret;
  103. lo = val & 0xffff;
  104. hi = (u16)(val >> 16);
  105. ret = bus->write(bus, phy_id, regnum, lo);
  106. if (ret >= 0)
  107. ret = bus->write(bus, phy_id, regnum + 1, hi);
  108. if (ret < 0)
  109. dev_err_ratelimited(&bus->dev,
  110. "failed to write qca8k 32bit register\n");
  111. }
  112. static void
  113. qca8k_set_page(struct mii_bus *bus, u16 page)
  114. {
  115. if (page == qca8k_current_page)
  116. return;
  117. if (bus->write(bus, 0x18, 0, page) < 0)
  118. dev_err_ratelimited(&bus->dev,
  119. "failed to set qca8k page\n");
  120. qca8k_current_page = page;
  121. }
  122. static u32
  123. qca8k_read(struct qca8k_priv *priv, u32 reg)
  124. {
  125. u16 r1, r2, page;
  126. u32 val;
  127. qca8k_split_addr(reg, &r1, &r2, &page);
  128. mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
  129. qca8k_set_page(priv->bus, page);
  130. val = qca8k_mii_read32(priv->bus, 0x10 | r2, r1);
  131. mutex_unlock(&priv->bus->mdio_lock);
  132. return val;
  133. }
  134. static void
  135. qca8k_write(struct qca8k_priv *priv, u32 reg, u32 val)
  136. {
  137. u16 r1, r2, page;
  138. qca8k_split_addr(reg, &r1, &r2, &page);
  139. mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
  140. qca8k_set_page(priv->bus, page);
  141. qca8k_mii_write32(priv->bus, 0x10 | r2, r1, val);
  142. mutex_unlock(&priv->bus->mdio_lock);
  143. }
  144. static u32
  145. qca8k_rmw(struct qca8k_priv *priv, u32 reg, u32 mask, u32 val)
  146. {
  147. u16 r1, r2, page;
  148. u32 ret;
  149. qca8k_split_addr(reg, &r1, &r2, &page);
  150. mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
  151. qca8k_set_page(priv->bus, page);
  152. ret = qca8k_mii_read32(priv->bus, 0x10 | r2, r1);
  153. ret &= ~mask;
  154. ret |= val;
  155. qca8k_mii_write32(priv->bus, 0x10 | r2, r1, ret);
  156. mutex_unlock(&priv->bus->mdio_lock);
  157. return ret;
  158. }
  159. static void
  160. qca8k_reg_set(struct qca8k_priv *priv, u32 reg, u32 val)
  161. {
  162. qca8k_rmw(priv, reg, 0, val);
  163. }
  164. static void
  165. qca8k_reg_clear(struct qca8k_priv *priv, u32 reg, u32 val)
  166. {
  167. qca8k_rmw(priv, reg, val, 0);
  168. }
  169. static int
  170. qca8k_regmap_read(void *ctx, uint32_t reg, uint32_t *val)
  171. {
  172. struct qca8k_priv *priv = (struct qca8k_priv *)ctx;
  173. *val = qca8k_read(priv, reg);
  174. return 0;
  175. }
  176. static int
  177. qca8k_regmap_write(void *ctx, uint32_t reg, uint32_t val)
  178. {
  179. struct qca8k_priv *priv = (struct qca8k_priv *)ctx;
  180. qca8k_write(priv, reg, val);
  181. return 0;
  182. }
  183. static const struct regmap_range qca8k_readable_ranges[] = {
  184. regmap_reg_range(0x0000, 0x00e4), /* Global control */
  185. regmap_reg_range(0x0100, 0x0168), /* EEE control */
  186. regmap_reg_range(0x0200, 0x0270), /* Parser control */
  187. regmap_reg_range(0x0400, 0x0454), /* ACL */
  188. regmap_reg_range(0x0600, 0x0718), /* Lookup */
  189. regmap_reg_range(0x0800, 0x0b70), /* QM */
  190. regmap_reg_range(0x0c00, 0x0c80), /* PKT */
  191. regmap_reg_range(0x0e00, 0x0e98), /* L3 */
  192. regmap_reg_range(0x1000, 0x10ac), /* MIB - Port0 */
  193. regmap_reg_range(0x1100, 0x11ac), /* MIB - Port1 */
  194. regmap_reg_range(0x1200, 0x12ac), /* MIB - Port2 */
  195. regmap_reg_range(0x1300, 0x13ac), /* MIB - Port3 */
  196. regmap_reg_range(0x1400, 0x14ac), /* MIB - Port4 */
  197. regmap_reg_range(0x1500, 0x15ac), /* MIB - Port5 */
  198. regmap_reg_range(0x1600, 0x16ac), /* MIB - Port6 */
  199. };
  200. static const struct regmap_access_table qca8k_readable_table = {
  201. .yes_ranges = qca8k_readable_ranges,
  202. .n_yes_ranges = ARRAY_SIZE(qca8k_readable_ranges),
  203. };
  204. static struct regmap_config qca8k_regmap_config = {
  205. .reg_bits = 16,
  206. .val_bits = 32,
  207. .reg_stride = 4,
  208. .max_register = 0x16ac, /* end MIB - Port6 range */
  209. .reg_read = qca8k_regmap_read,
  210. .reg_write = qca8k_regmap_write,
  211. .rd_table = &qca8k_readable_table,
  212. };
  213. static int
  214. qca8k_busy_wait(struct qca8k_priv *priv, u32 reg, u32 mask)
  215. {
  216. unsigned long timeout;
  217. timeout = jiffies + msecs_to_jiffies(20);
  218. /* loop until the busy flag has cleared */
  219. do {
  220. u32 val = qca8k_read(priv, reg);
  221. int busy = val & mask;
  222. if (!busy)
  223. break;
  224. cond_resched();
  225. } while (!time_after_eq(jiffies, timeout));
  226. return time_after_eq(jiffies, timeout);
  227. }
  228. static void
  229. qca8k_fdb_read(struct qca8k_priv *priv, struct qca8k_fdb *fdb)
  230. {
  231. u32 reg[4];
  232. int i;
  233. /* load the ARL table into an array */
  234. for (i = 0; i < 4; i++)
  235. reg[i] = qca8k_read(priv, QCA8K_REG_ATU_DATA0 + (i * 4));
  236. /* vid - 83:72 */
  237. fdb->vid = (reg[2] >> QCA8K_ATU_VID_S) & QCA8K_ATU_VID_M;
  238. /* aging - 67:64 */
  239. fdb->aging = reg[2] & QCA8K_ATU_STATUS_M;
  240. /* portmask - 54:48 */
  241. fdb->port_mask = (reg[1] >> QCA8K_ATU_PORT_S) & QCA8K_ATU_PORT_M;
  242. /* mac - 47:0 */
  243. fdb->mac[0] = (reg[1] >> QCA8K_ATU_ADDR0_S) & 0xff;
  244. fdb->mac[1] = reg[1] & 0xff;
  245. fdb->mac[2] = (reg[0] >> QCA8K_ATU_ADDR2_S) & 0xff;
  246. fdb->mac[3] = (reg[0] >> QCA8K_ATU_ADDR3_S) & 0xff;
  247. fdb->mac[4] = (reg[0] >> QCA8K_ATU_ADDR4_S) & 0xff;
  248. fdb->mac[5] = reg[0] & 0xff;
  249. }
  250. static void
  251. qca8k_fdb_write(struct qca8k_priv *priv, u16 vid, u8 port_mask, const u8 *mac,
  252. u8 aging)
  253. {
  254. u32 reg[3] = { 0 };
  255. int i;
  256. /* vid - 83:72 */
  257. reg[2] = (vid & QCA8K_ATU_VID_M) << QCA8K_ATU_VID_S;
  258. /* aging - 67:64 */
  259. reg[2] |= aging & QCA8K_ATU_STATUS_M;
  260. /* portmask - 54:48 */
  261. reg[1] = (port_mask & QCA8K_ATU_PORT_M) << QCA8K_ATU_PORT_S;
  262. /* mac - 47:0 */
  263. reg[1] |= mac[0] << QCA8K_ATU_ADDR0_S;
  264. reg[1] |= mac[1];
  265. reg[0] |= mac[2] << QCA8K_ATU_ADDR2_S;
  266. reg[0] |= mac[3] << QCA8K_ATU_ADDR3_S;
  267. reg[0] |= mac[4] << QCA8K_ATU_ADDR4_S;
  268. reg[0] |= mac[5];
  269. /* load the array into the ARL table */
  270. for (i = 0; i < 3; i++)
  271. qca8k_write(priv, QCA8K_REG_ATU_DATA0 + (i * 4), reg[i]);
  272. }
  273. static int
  274. qca8k_fdb_access(struct qca8k_priv *priv, enum qca8k_fdb_cmd cmd, int port)
  275. {
  276. u32 reg;
  277. /* Set the command and FDB index */
  278. reg = QCA8K_ATU_FUNC_BUSY;
  279. reg |= cmd;
  280. if (port >= 0) {
  281. reg |= QCA8K_ATU_FUNC_PORT_EN;
  282. reg |= (port & QCA8K_ATU_FUNC_PORT_M) << QCA8K_ATU_FUNC_PORT_S;
  283. }
  284. /* Write the function register triggering the table access */
  285. qca8k_write(priv, QCA8K_REG_ATU_FUNC, reg);
  286. /* wait for completion */
  287. if (qca8k_busy_wait(priv, QCA8K_REG_ATU_FUNC, QCA8K_ATU_FUNC_BUSY))
  288. return -1;
  289. /* Check for table full violation when adding an entry */
  290. if (cmd == QCA8K_FDB_LOAD) {
  291. reg = qca8k_read(priv, QCA8K_REG_ATU_FUNC);
  292. if (reg & QCA8K_ATU_FUNC_FULL)
  293. return -1;
  294. }
  295. return 0;
  296. }
  297. static int
  298. qca8k_fdb_next(struct qca8k_priv *priv, struct qca8k_fdb *fdb, int port)
  299. {
  300. int ret;
  301. qca8k_fdb_write(priv, fdb->vid, fdb->port_mask, fdb->mac, fdb->aging);
  302. ret = qca8k_fdb_access(priv, QCA8K_FDB_NEXT, port);
  303. if (ret >= 0)
  304. qca8k_fdb_read(priv, fdb);
  305. return ret;
  306. }
  307. static int
  308. qca8k_fdb_add(struct qca8k_priv *priv, const u8 *mac, u16 port_mask,
  309. u16 vid, u8 aging)
  310. {
  311. int ret;
  312. mutex_lock(&priv->reg_mutex);
  313. qca8k_fdb_write(priv, vid, port_mask, mac, aging);
  314. ret = qca8k_fdb_access(priv, QCA8K_FDB_LOAD, -1);
  315. mutex_unlock(&priv->reg_mutex);
  316. return ret;
  317. }
  318. static int
  319. qca8k_fdb_del(struct qca8k_priv *priv, const u8 *mac, u16 port_mask, u16 vid)
  320. {
  321. int ret;
  322. mutex_lock(&priv->reg_mutex);
  323. qca8k_fdb_write(priv, vid, port_mask, mac, 0);
  324. ret = qca8k_fdb_access(priv, QCA8K_FDB_PURGE, -1);
  325. mutex_unlock(&priv->reg_mutex);
  326. return ret;
  327. }
  328. static void
  329. qca8k_fdb_flush(struct qca8k_priv *priv)
  330. {
  331. mutex_lock(&priv->reg_mutex);
  332. qca8k_fdb_access(priv, QCA8K_FDB_FLUSH, -1);
  333. mutex_unlock(&priv->reg_mutex);
  334. }
  335. static void
  336. qca8k_mib_init(struct qca8k_priv *priv)
  337. {
  338. mutex_lock(&priv->reg_mutex);
  339. qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_FLUSH | QCA8K_MIB_BUSY);
  340. qca8k_busy_wait(priv, QCA8K_REG_MIB, QCA8K_MIB_BUSY);
  341. qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_CPU_KEEP);
  342. qca8k_write(priv, QCA8K_REG_MODULE_EN, QCA8K_MODULE_EN_MIB);
  343. mutex_unlock(&priv->reg_mutex);
  344. }
  345. static int
  346. qca8k_set_pad_ctrl(struct qca8k_priv *priv, int port, int mode)
  347. {
  348. u32 reg;
  349. switch (port) {
  350. case 0:
  351. reg = QCA8K_REG_PORT0_PAD_CTRL;
  352. break;
  353. case 6:
  354. reg = QCA8K_REG_PORT6_PAD_CTRL;
  355. break;
  356. default:
  357. pr_err("Can't set PAD_CTRL on port %d\n", port);
  358. return -EINVAL;
  359. }
  360. /* Configure a port to be directly connected to an external
  361. * PHY or MAC.
  362. */
  363. switch (mode) {
  364. case PHY_INTERFACE_MODE_RGMII:
  365. qca8k_write(priv, reg,
  366. QCA8K_PORT_PAD_RGMII_EN |
  367. QCA8K_PORT_PAD_RGMII_TX_DELAY(3) |
  368. QCA8K_PORT_PAD_RGMII_RX_DELAY(3));
  369. /* According to the datasheet, RGMII delay is enabled through
  370. * PORT5_PAD_CTRL for all ports, rather than individual port
  371. * registers
  372. */
  373. qca8k_write(priv, QCA8K_REG_PORT5_PAD_CTRL,
  374. QCA8K_PORT_PAD_RGMII_RX_DELAY_EN);
  375. break;
  376. case PHY_INTERFACE_MODE_SGMII:
  377. qca8k_write(priv, reg, QCA8K_PORT_PAD_SGMII_EN);
  378. break;
  379. default:
  380. pr_err("xMII mode %d not supported\n", mode);
  381. return -EINVAL;
  382. }
  383. return 0;
  384. }
  385. static void
  386. qca8k_port_set_status(struct qca8k_priv *priv, int port, int enable)
  387. {
  388. u32 mask = QCA8K_PORT_STATUS_TXMAC | QCA8K_PORT_STATUS_RXMAC;
  389. /* Port 0 and 6 have no internal PHY */
  390. if (port > 0 && port < 6)
  391. mask |= QCA8K_PORT_STATUS_LINK_AUTO;
  392. if (enable)
  393. qca8k_reg_set(priv, QCA8K_REG_PORT_STATUS(port), mask);
  394. else
  395. qca8k_reg_clear(priv, QCA8K_REG_PORT_STATUS(port), mask);
  396. }
  397. static int
  398. qca8k_setup(struct dsa_switch *ds)
  399. {
  400. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  401. int ret, i, phy_mode = -1;
  402. u32 mask;
  403. /* Make sure that port 0 is the cpu port */
  404. if (!dsa_is_cpu_port(ds, 0)) {
  405. pr_err("port 0 is not the CPU port\n");
  406. return -EINVAL;
  407. }
  408. mutex_init(&priv->reg_mutex);
  409. /* Start by setting up the register mapping */
  410. priv->regmap = devm_regmap_init(ds->dev, NULL, priv,
  411. &qca8k_regmap_config);
  412. if (IS_ERR(priv->regmap))
  413. pr_warn("regmap initialization failed");
  414. /* Initialize CPU port pad mode (xMII type, delays...) */
  415. phy_mode = of_get_phy_mode(ds->ports[QCA8K_CPU_PORT].dn);
  416. if (phy_mode < 0) {
  417. pr_err("Can't find phy-mode for master device\n");
  418. return phy_mode;
  419. }
  420. ret = qca8k_set_pad_ctrl(priv, QCA8K_CPU_PORT, phy_mode);
  421. if (ret < 0)
  422. return ret;
  423. /* Enable CPU Port, force it to maximum bandwidth and full-duplex */
  424. mask = QCA8K_PORT_STATUS_SPEED_1000 | QCA8K_PORT_STATUS_TXFLOW |
  425. QCA8K_PORT_STATUS_RXFLOW | QCA8K_PORT_STATUS_DUPLEX;
  426. qca8k_write(priv, QCA8K_REG_PORT_STATUS(QCA8K_CPU_PORT), mask);
  427. qca8k_reg_set(priv, QCA8K_REG_GLOBAL_FW_CTRL0,
  428. QCA8K_GLOBAL_FW_CTRL0_CPU_PORT_EN);
  429. qca8k_port_set_status(priv, QCA8K_CPU_PORT, 1);
  430. priv->port_sts[QCA8K_CPU_PORT].enabled = 1;
  431. /* Enable MIB counters */
  432. qca8k_mib_init(priv);
  433. /* Enable QCA header mode on the cpu port */
  434. qca8k_write(priv, QCA8K_REG_PORT_HDR_CTRL(QCA8K_CPU_PORT),
  435. QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_TX_S |
  436. QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_RX_S);
  437. /* Disable forwarding by default on all ports */
  438. for (i = 0; i < QCA8K_NUM_PORTS; i++)
  439. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i),
  440. QCA8K_PORT_LOOKUP_MEMBER, 0);
  441. /* Disable MAC by default on all user ports */
  442. for (i = 1; i < QCA8K_NUM_PORTS; i++)
  443. if (dsa_is_user_port(ds, i))
  444. qca8k_port_set_status(priv, i, 0);
  445. /* Forward all unknown frames to CPU port for Linux processing */
  446. qca8k_write(priv, QCA8K_REG_GLOBAL_FW_CTRL1,
  447. BIT(0) << QCA8K_GLOBAL_FW_CTRL1_IGMP_DP_S |
  448. BIT(0) << QCA8K_GLOBAL_FW_CTRL1_BC_DP_S |
  449. BIT(0) << QCA8K_GLOBAL_FW_CTRL1_MC_DP_S |
  450. BIT(0) << QCA8K_GLOBAL_FW_CTRL1_UC_DP_S);
  451. /* Setup connection between CPU port & user ports */
  452. for (i = 0; i < DSA_MAX_PORTS; i++) {
  453. /* CPU port gets connected to all user ports of the switch */
  454. if (dsa_is_cpu_port(ds, i)) {
  455. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(QCA8K_CPU_PORT),
  456. QCA8K_PORT_LOOKUP_MEMBER, dsa_user_ports(ds));
  457. }
  458. /* Invividual user ports get connected to CPU port only */
  459. if (dsa_is_user_port(ds, i)) {
  460. int shift = 16 * (i % 2);
  461. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i),
  462. QCA8K_PORT_LOOKUP_MEMBER,
  463. BIT(QCA8K_CPU_PORT));
  464. /* Enable ARP Auto-learning by default */
  465. qca8k_reg_set(priv, QCA8K_PORT_LOOKUP_CTRL(i),
  466. QCA8K_PORT_LOOKUP_LEARN);
  467. /* For port based vlans to work we need to set the
  468. * default egress vid
  469. */
  470. qca8k_rmw(priv, QCA8K_EGRESS_VLAN(i),
  471. 0xffff << shift, 1 << shift);
  472. qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(i),
  473. QCA8K_PORT_VLAN_CVID(1) |
  474. QCA8K_PORT_VLAN_SVID(1));
  475. }
  476. }
  477. /* Flush the FDB table */
  478. qca8k_fdb_flush(priv);
  479. return 0;
  480. }
  481. static void
  482. qca8k_adjust_link(struct dsa_switch *ds, int port, struct phy_device *phy)
  483. {
  484. struct qca8k_priv *priv = ds->priv;
  485. u32 reg;
  486. /* Force fixed-link setting for CPU port, skip others. */
  487. if (!phy_is_pseudo_fixed_link(phy))
  488. return;
  489. /* Set port speed */
  490. switch (phy->speed) {
  491. case 10:
  492. reg = QCA8K_PORT_STATUS_SPEED_10;
  493. break;
  494. case 100:
  495. reg = QCA8K_PORT_STATUS_SPEED_100;
  496. break;
  497. case 1000:
  498. reg = QCA8K_PORT_STATUS_SPEED_1000;
  499. break;
  500. default:
  501. dev_dbg(priv->dev, "port%d link speed %dMbps not supported.\n",
  502. port, phy->speed);
  503. return;
  504. }
  505. /* Set duplex mode */
  506. if (phy->duplex == DUPLEX_FULL)
  507. reg |= QCA8K_PORT_STATUS_DUPLEX;
  508. /* Force flow control */
  509. if (dsa_is_cpu_port(ds, port))
  510. reg |= QCA8K_PORT_STATUS_RXFLOW | QCA8K_PORT_STATUS_TXFLOW;
  511. /* Force link down before changing MAC options */
  512. qca8k_port_set_status(priv, port, 0);
  513. qca8k_write(priv, QCA8K_REG_PORT_STATUS(port), reg);
  514. qca8k_port_set_status(priv, port, 1);
  515. }
  516. static void
  517. qca8k_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data)
  518. {
  519. int i;
  520. if (stringset != ETH_SS_STATS)
  521. return;
  522. for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++)
  523. strncpy(data + i * ETH_GSTRING_LEN, ar8327_mib[i].name,
  524. ETH_GSTRING_LEN);
  525. }
  526. static void
  527. qca8k_get_ethtool_stats(struct dsa_switch *ds, int port,
  528. uint64_t *data)
  529. {
  530. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  531. const struct qca8k_mib_desc *mib;
  532. u32 reg, i;
  533. u64 hi;
  534. for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++) {
  535. mib = &ar8327_mib[i];
  536. reg = QCA8K_PORT_MIB_COUNTER(port) + mib->offset;
  537. data[i] = qca8k_read(priv, reg);
  538. if (mib->size == 2) {
  539. hi = qca8k_read(priv, reg + 4);
  540. data[i] |= hi << 32;
  541. }
  542. }
  543. }
  544. static int
  545. qca8k_get_sset_count(struct dsa_switch *ds, int port, int sset)
  546. {
  547. if (sset != ETH_SS_STATS)
  548. return 0;
  549. return ARRAY_SIZE(ar8327_mib);
  550. }
  551. static int
  552. qca8k_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *eee)
  553. {
  554. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  555. u32 lpi_en = QCA8K_REG_EEE_CTRL_LPI_EN(port);
  556. u32 reg;
  557. mutex_lock(&priv->reg_mutex);
  558. reg = qca8k_read(priv, QCA8K_REG_EEE_CTRL);
  559. if (eee->eee_enabled)
  560. reg |= lpi_en;
  561. else
  562. reg &= ~lpi_en;
  563. qca8k_write(priv, QCA8K_REG_EEE_CTRL, reg);
  564. mutex_unlock(&priv->reg_mutex);
  565. return 0;
  566. }
  567. static int
  568. qca8k_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
  569. {
  570. /* Nothing to do on the port's MAC */
  571. return 0;
  572. }
  573. static void
  574. qca8k_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
  575. {
  576. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  577. u32 stp_state;
  578. switch (state) {
  579. case BR_STATE_DISABLED:
  580. stp_state = QCA8K_PORT_LOOKUP_STATE_DISABLED;
  581. break;
  582. case BR_STATE_BLOCKING:
  583. stp_state = QCA8K_PORT_LOOKUP_STATE_BLOCKING;
  584. break;
  585. case BR_STATE_LISTENING:
  586. stp_state = QCA8K_PORT_LOOKUP_STATE_LISTENING;
  587. break;
  588. case BR_STATE_LEARNING:
  589. stp_state = QCA8K_PORT_LOOKUP_STATE_LEARNING;
  590. break;
  591. case BR_STATE_FORWARDING:
  592. default:
  593. stp_state = QCA8K_PORT_LOOKUP_STATE_FORWARD;
  594. break;
  595. }
  596. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
  597. QCA8K_PORT_LOOKUP_STATE_MASK, stp_state);
  598. }
  599. static int
  600. qca8k_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *br)
  601. {
  602. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  603. int port_mask = BIT(QCA8K_CPU_PORT);
  604. int i;
  605. for (i = 1; i < QCA8K_NUM_PORTS; i++) {
  606. if (dsa_to_port(ds, i)->bridge_dev != br)
  607. continue;
  608. /* Add this port to the portvlan mask of the other ports
  609. * in the bridge
  610. */
  611. qca8k_reg_set(priv,
  612. QCA8K_PORT_LOOKUP_CTRL(i),
  613. BIT(port));
  614. if (i != port)
  615. port_mask |= BIT(i);
  616. }
  617. /* Add all other ports to this ports portvlan mask */
  618. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
  619. QCA8K_PORT_LOOKUP_MEMBER, port_mask);
  620. return 0;
  621. }
  622. static void
  623. qca8k_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *br)
  624. {
  625. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  626. int i;
  627. for (i = 1; i < QCA8K_NUM_PORTS; i++) {
  628. if (dsa_to_port(ds, i)->bridge_dev != br)
  629. continue;
  630. /* Remove this port to the portvlan mask of the other ports
  631. * in the bridge
  632. */
  633. qca8k_reg_clear(priv,
  634. QCA8K_PORT_LOOKUP_CTRL(i),
  635. BIT(port));
  636. }
  637. /* Set the cpu port to be the only one in the portvlan mask of
  638. * this port
  639. */
  640. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
  641. QCA8K_PORT_LOOKUP_MEMBER, BIT(QCA8K_CPU_PORT));
  642. }
  643. static int
  644. qca8k_port_enable(struct dsa_switch *ds, int port,
  645. struct phy_device *phy)
  646. {
  647. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  648. qca8k_port_set_status(priv, port, 1);
  649. priv->port_sts[port].enabled = 1;
  650. return 0;
  651. }
  652. static void
  653. qca8k_port_disable(struct dsa_switch *ds, int port,
  654. struct phy_device *phy)
  655. {
  656. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  657. qca8k_port_set_status(priv, port, 0);
  658. priv->port_sts[port].enabled = 0;
  659. }
  660. static int
  661. qca8k_port_fdb_insert(struct qca8k_priv *priv, const u8 *addr,
  662. u16 port_mask, u16 vid)
  663. {
  664. /* Set the vid to the port vlan id if no vid is set */
  665. if (!vid)
  666. vid = 1;
  667. return qca8k_fdb_add(priv, addr, port_mask, vid,
  668. QCA8K_ATU_STATUS_STATIC);
  669. }
  670. static int
  671. qca8k_port_fdb_add(struct dsa_switch *ds, int port,
  672. const unsigned char *addr, u16 vid)
  673. {
  674. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  675. u16 port_mask = BIT(port);
  676. return qca8k_port_fdb_insert(priv, addr, port_mask, vid);
  677. }
  678. static int
  679. qca8k_port_fdb_del(struct dsa_switch *ds, int port,
  680. const unsigned char *addr, u16 vid)
  681. {
  682. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  683. u16 port_mask = BIT(port);
  684. if (!vid)
  685. vid = 1;
  686. return qca8k_fdb_del(priv, addr, port_mask, vid);
  687. }
  688. static int
  689. qca8k_port_fdb_dump(struct dsa_switch *ds, int port,
  690. dsa_fdb_dump_cb_t *cb, void *data)
  691. {
  692. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  693. struct qca8k_fdb _fdb = { 0 };
  694. int cnt = QCA8K_NUM_FDB_RECORDS;
  695. bool is_static;
  696. int ret = 0;
  697. mutex_lock(&priv->reg_mutex);
  698. while (cnt-- && !qca8k_fdb_next(priv, &_fdb, port)) {
  699. if (!_fdb.aging)
  700. break;
  701. is_static = (_fdb.aging == QCA8K_ATU_STATUS_STATIC);
  702. ret = cb(_fdb.mac, _fdb.vid, is_static, data);
  703. if (ret)
  704. break;
  705. }
  706. mutex_unlock(&priv->reg_mutex);
  707. return 0;
  708. }
  709. static enum dsa_tag_protocol
  710. qca8k_get_tag_protocol(struct dsa_switch *ds, int port)
  711. {
  712. return DSA_TAG_PROTO_QCA;
  713. }
  714. static const struct dsa_switch_ops qca8k_switch_ops = {
  715. .get_tag_protocol = qca8k_get_tag_protocol,
  716. .setup = qca8k_setup,
  717. .adjust_link = qca8k_adjust_link,
  718. .get_strings = qca8k_get_strings,
  719. .get_ethtool_stats = qca8k_get_ethtool_stats,
  720. .get_sset_count = qca8k_get_sset_count,
  721. .get_mac_eee = qca8k_get_mac_eee,
  722. .set_mac_eee = qca8k_set_mac_eee,
  723. .port_enable = qca8k_port_enable,
  724. .port_disable = qca8k_port_disable,
  725. .port_stp_state_set = qca8k_port_stp_state_set,
  726. .port_bridge_join = qca8k_port_bridge_join,
  727. .port_bridge_leave = qca8k_port_bridge_leave,
  728. .port_fdb_add = qca8k_port_fdb_add,
  729. .port_fdb_del = qca8k_port_fdb_del,
  730. .port_fdb_dump = qca8k_port_fdb_dump,
  731. };
  732. static int
  733. qca8k_sw_probe(struct mdio_device *mdiodev)
  734. {
  735. struct qca8k_priv *priv;
  736. u32 id;
  737. /* allocate the private data struct so that we can probe the switches
  738. * ID register
  739. */
  740. priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
  741. if (!priv)
  742. return -ENOMEM;
  743. priv->bus = mdiodev->bus;
  744. priv->dev = &mdiodev->dev;
  745. /* read the switches ID register */
  746. id = qca8k_read(priv, QCA8K_REG_MASK_CTRL);
  747. id >>= QCA8K_MASK_CTRL_ID_S;
  748. id &= QCA8K_MASK_CTRL_ID_M;
  749. if (id != QCA8K_ID_QCA8337)
  750. return -ENODEV;
  751. priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
  752. if (!priv->ds)
  753. return -ENOMEM;
  754. priv->ds->priv = priv;
  755. priv->ds->ops = &qca8k_switch_ops;
  756. mutex_init(&priv->reg_mutex);
  757. dev_set_drvdata(&mdiodev->dev, priv);
  758. return dsa_register_switch(priv->ds);
  759. }
  760. static void
  761. qca8k_sw_remove(struct mdio_device *mdiodev)
  762. {
  763. struct qca8k_priv *priv = dev_get_drvdata(&mdiodev->dev);
  764. int i;
  765. for (i = 0; i < QCA8K_NUM_PORTS; i++)
  766. qca8k_port_set_status(priv, i, 0);
  767. dsa_unregister_switch(priv->ds);
  768. }
  769. #ifdef CONFIG_PM_SLEEP
  770. static void
  771. qca8k_set_pm(struct qca8k_priv *priv, int enable)
  772. {
  773. int i;
  774. for (i = 0; i < QCA8K_NUM_PORTS; i++) {
  775. if (!priv->port_sts[i].enabled)
  776. continue;
  777. qca8k_port_set_status(priv, i, enable);
  778. }
  779. }
  780. static int qca8k_suspend(struct device *dev)
  781. {
  782. struct platform_device *pdev = to_platform_device(dev);
  783. struct qca8k_priv *priv = platform_get_drvdata(pdev);
  784. qca8k_set_pm(priv, 0);
  785. return dsa_switch_suspend(priv->ds);
  786. }
  787. static int qca8k_resume(struct device *dev)
  788. {
  789. struct platform_device *pdev = to_platform_device(dev);
  790. struct qca8k_priv *priv = platform_get_drvdata(pdev);
  791. qca8k_set_pm(priv, 1);
  792. return dsa_switch_resume(priv->ds);
  793. }
  794. #endif /* CONFIG_PM_SLEEP */
  795. static SIMPLE_DEV_PM_OPS(qca8k_pm_ops,
  796. qca8k_suspend, qca8k_resume);
  797. static const struct of_device_id qca8k_of_match[] = {
  798. { .compatible = "qca,qca8334" },
  799. { .compatible = "qca,qca8337" },
  800. { /* sentinel */ },
  801. };
  802. static struct mdio_driver qca8kmdio_driver = {
  803. .probe = qca8k_sw_probe,
  804. .remove = qca8k_sw_remove,
  805. .mdiodrv.driver = {
  806. .name = "qca8k",
  807. .of_match_table = qca8k_of_match,
  808. .pm = &qca8k_pm_ops,
  809. },
  810. };
  811. mdio_module_driver(qca8kmdio_driver);
  812. MODULE_AUTHOR("Mathieu Olivari, John Crispin <john@phrozen.org>");
  813. MODULE_DESCRIPTION("Driver for QCA8K ethernet switch family");
  814. MODULE_LICENSE("GPL v2");
  815. MODULE_ALIAS("platform:qca8k");