dm-integrity.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652
  1. /*
  2. * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
  3. * Copyright (C) 2016-2017 Milan Broz
  4. * Copyright (C) 2016-2017 Mikulas Patocka
  5. *
  6. * This file is released under the GPL.
  7. */
  8. #include <linux/compiler.h>
  9. #include <linux/module.h>
  10. #include <linux/device-mapper.h>
  11. #include <linux/dm-io.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/sort.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/delay.h>
  16. #include <linux/random.h>
  17. #include <crypto/hash.h>
  18. #include <crypto/skcipher.h>
  19. #include <linux/async_tx.h>
  20. #include <linux/dm-bufio.h>
  21. #define DM_MSG_PREFIX "integrity"
  22. #define DEFAULT_INTERLEAVE_SECTORS 32768
  23. #define DEFAULT_JOURNAL_SIZE_FACTOR 7
  24. #define DEFAULT_BUFFER_SECTORS 128
  25. #define DEFAULT_JOURNAL_WATERMARK 50
  26. #define DEFAULT_SYNC_MSEC 10000
  27. #define DEFAULT_MAX_JOURNAL_SECTORS 131072
  28. #define MIN_LOG2_INTERLEAVE_SECTORS 3
  29. #define MAX_LOG2_INTERLEAVE_SECTORS 31
  30. #define METADATA_WORKQUEUE_MAX_ACTIVE 16
  31. #define RECALC_SECTORS 8192
  32. #define RECALC_WRITE_SUPER 16
  33. /*
  34. * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  35. * so it should not be enabled in the official kernel
  36. */
  37. //#define DEBUG_PRINT
  38. //#define INTERNAL_VERIFY
  39. /*
  40. * On disk structures
  41. */
  42. #define SB_MAGIC "integrt"
  43. #define SB_VERSION_1 1
  44. #define SB_VERSION_2 2
  45. #define SB_SECTORS 8
  46. #define MAX_SECTORS_PER_BLOCK 8
  47. struct superblock {
  48. __u8 magic[8];
  49. __u8 version;
  50. __u8 log2_interleave_sectors;
  51. __u16 integrity_tag_size;
  52. __u32 journal_sections;
  53. __u64 provided_data_sectors; /* userspace uses this value */
  54. __u32 flags;
  55. __u8 log2_sectors_per_block;
  56. __u8 pad[3];
  57. __u64 recalc_sector;
  58. };
  59. #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
  60. #define SB_FLAG_RECALCULATING 0x2
  61. #define JOURNAL_ENTRY_ROUNDUP 8
  62. typedef __u64 commit_id_t;
  63. #define JOURNAL_MAC_PER_SECTOR 8
  64. struct journal_entry {
  65. union {
  66. struct {
  67. __u32 sector_lo;
  68. __u32 sector_hi;
  69. } s;
  70. __u64 sector;
  71. } u;
  72. commit_id_t last_bytes[0];
  73. /* __u8 tag[0]; */
  74. };
  75. #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
  76. #if BITS_PER_LONG == 64
  77. #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
  78. #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
  79. #elif defined(CONFIG_LBDAF)
  80. #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
  81. #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
  82. #else
  83. #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
  84. #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
  85. #endif
  86. #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
  87. #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
  88. #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
  89. #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
  90. #define JOURNAL_BLOCK_SECTORS 8
  91. #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
  92. #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
  93. struct journal_sector {
  94. __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
  95. __u8 mac[JOURNAL_MAC_PER_SECTOR];
  96. commit_id_t commit_id;
  97. };
  98. #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
  99. #define METADATA_PADDING_SECTORS 8
  100. #define N_COMMIT_IDS 4
  101. static unsigned char prev_commit_seq(unsigned char seq)
  102. {
  103. return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
  104. }
  105. static unsigned char next_commit_seq(unsigned char seq)
  106. {
  107. return (seq + 1) % N_COMMIT_IDS;
  108. }
  109. /*
  110. * In-memory structures
  111. */
  112. struct journal_node {
  113. struct rb_node node;
  114. sector_t sector;
  115. };
  116. struct alg_spec {
  117. char *alg_string;
  118. char *key_string;
  119. __u8 *key;
  120. unsigned key_size;
  121. };
  122. struct dm_integrity_c {
  123. struct dm_dev *dev;
  124. struct dm_dev *meta_dev;
  125. unsigned tag_size;
  126. __s8 log2_tag_size;
  127. sector_t start;
  128. mempool_t journal_io_mempool;
  129. struct dm_io_client *io;
  130. struct dm_bufio_client *bufio;
  131. struct workqueue_struct *metadata_wq;
  132. struct superblock *sb;
  133. unsigned journal_pages;
  134. struct page_list *journal;
  135. struct page_list *journal_io;
  136. struct page_list *journal_xor;
  137. struct crypto_skcipher *journal_crypt;
  138. struct scatterlist **journal_scatterlist;
  139. struct scatterlist **journal_io_scatterlist;
  140. struct skcipher_request **sk_requests;
  141. struct crypto_shash *journal_mac;
  142. struct journal_node *journal_tree;
  143. struct rb_root journal_tree_root;
  144. sector_t provided_data_sectors;
  145. unsigned short journal_entry_size;
  146. unsigned char journal_entries_per_sector;
  147. unsigned char journal_section_entries;
  148. unsigned short journal_section_sectors;
  149. unsigned journal_sections;
  150. unsigned journal_entries;
  151. sector_t data_device_sectors;
  152. sector_t meta_device_sectors;
  153. unsigned initial_sectors;
  154. unsigned metadata_run;
  155. __s8 log2_metadata_run;
  156. __u8 log2_buffer_sectors;
  157. __u8 sectors_per_block;
  158. unsigned char mode;
  159. int suspending;
  160. int failed;
  161. struct crypto_shash *internal_hash;
  162. /* these variables are locked with endio_wait.lock */
  163. struct rb_root in_progress;
  164. struct list_head wait_list;
  165. wait_queue_head_t endio_wait;
  166. struct workqueue_struct *wait_wq;
  167. unsigned char commit_seq;
  168. commit_id_t commit_ids[N_COMMIT_IDS];
  169. unsigned committed_section;
  170. unsigned n_committed_sections;
  171. unsigned uncommitted_section;
  172. unsigned n_uncommitted_sections;
  173. unsigned free_section;
  174. unsigned char free_section_entry;
  175. unsigned free_sectors;
  176. unsigned free_sectors_threshold;
  177. struct workqueue_struct *commit_wq;
  178. struct work_struct commit_work;
  179. struct workqueue_struct *writer_wq;
  180. struct work_struct writer_work;
  181. struct workqueue_struct *recalc_wq;
  182. struct work_struct recalc_work;
  183. u8 *recalc_buffer;
  184. u8 *recalc_tags;
  185. struct bio_list flush_bio_list;
  186. unsigned long autocommit_jiffies;
  187. struct timer_list autocommit_timer;
  188. unsigned autocommit_msec;
  189. wait_queue_head_t copy_to_journal_wait;
  190. struct completion crypto_backoff;
  191. bool journal_uptodate;
  192. bool just_formatted;
  193. struct alg_spec internal_hash_alg;
  194. struct alg_spec journal_crypt_alg;
  195. struct alg_spec journal_mac_alg;
  196. atomic64_t number_of_mismatches;
  197. };
  198. struct dm_integrity_range {
  199. sector_t logical_sector;
  200. unsigned n_sectors;
  201. bool waiting;
  202. union {
  203. struct rb_node node;
  204. struct {
  205. struct task_struct *task;
  206. struct list_head wait_entry;
  207. };
  208. };
  209. };
  210. struct dm_integrity_io {
  211. struct work_struct work;
  212. struct dm_integrity_c *ic;
  213. bool write;
  214. bool fua;
  215. struct dm_integrity_range range;
  216. sector_t metadata_block;
  217. unsigned metadata_offset;
  218. atomic_t in_flight;
  219. blk_status_t bi_status;
  220. struct completion *completion;
  221. struct gendisk *orig_bi_disk;
  222. u8 orig_bi_partno;
  223. bio_end_io_t *orig_bi_end_io;
  224. struct bio_integrity_payload *orig_bi_integrity;
  225. struct bvec_iter orig_bi_iter;
  226. };
  227. struct journal_completion {
  228. struct dm_integrity_c *ic;
  229. atomic_t in_flight;
  230. struct completion comp;
  231. };
  232. struct journal_io {
  233. struct dm_integrity_range range;
  234. struct journal_completion *comp;
  235. };
  236. static struct kmem_cache *journal_io_cache;
  237. #define JOURNAL_IO_MEMPOOL 32
  238. #ifdef DEBUG_PRINT
  239. #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
  240. static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
  241. {
  242. va_list args;
  243. va_start(args, msg);
  244. vprintk(msg, args);
  245. va_end(args);
  246. if (len)
  247. pr_cont(":");
  248. while (len) {
  249. pr_cont(" %02x", *bytes);
  250. bytes++;
  251. len--;
  252. }
  253. pr_cont("\n");
  254. }
  255. #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
  256. #else
  257. #define DEBUG_print(x, ...) do { } while (0)
  258. #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
  259. #endif
  260. /*
  261. * DM Integrity profile, protection is performed layer above (dm-crypt)
  262. */
  263. static const struct blk_integrity_profile dm_integrity_profile = {
  264. .name = "DM-DIF-EXT-TAG",
  265. .generate_fn = NULL,
  266. .verify_fn = NULL,
  267. };
  268. static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
  269. static void integrity_bio_wait(struct work_struct *w);
  270. static void dm_integrity_dtr(struct dm_target *ti);
  271. static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
  272. {
  273. if (err == -EILSEQ)
  274. atomic64_inc(&ic->number_of_mismatches);
  275. if (!cmpxchg(&ic->failed, 0, err))
  276. DMERR("Error on %s: %d", msg, err);
  277. }
  278. static int dm_integrity_failed(struct dm_integrity_c *ic)
  279. {
  280. return READ_ONCE(ic->failed);
  281. }
  282. static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
  283. unsigned j, unsigned char seq)
  284. {
  285. /*
  286. * Xor the number with section and sector, so that if a piece of
  287. * journal is written at wrong place, it is detected.
  288. */
  289. return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
  290. }
  291. static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
  292. sector_t *area, sector_t *offset)
  293. {
  294. if (!ic->meta_dev) {
  295. __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
  296. *area = data_sector >> log2_interleave_sectors;
  297. *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
  298. } else {
  299. *area = 0;
  300. *offset = data_sector;
  301. }
  302. }
  303. #define sector_to_block(ic, n) \
  304. do { \
  305. BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
  306. (n) >>= (ic)->sb->log2_sectors_per_block; \
  307. } while (0)
  308. static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
  309. sector_t offset, unsigned *metadata_offset)
  310. {
  311. __u64 ms;
  312. unsigned mo;
  313. ms = area << ic->sb->log2_interleave_sectors;
  314. if (likely(ic->log2_metadata_run >= 0))
  315. ms += area << ic->log2_metadata_run;
  316. else
  317. ms += area * ic->metadata_run;
  318. ms >>= ic->log2_buffer_sectors;
  319. sector_to_block(ic, offset);
  320. if (likely(ic->log2_tag_size >= 0)) {
  321. ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
  322. mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
  323. } else {
  324. ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
  325. mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
  326. }
  327. *metadata_offset = mo;
  328. return ms;
  329. }
  330. static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
  331. {
  332. sector_t result;
  333. if (ic->meta_dev)
  334. return offset;
  335. result = area << ic->sb->log2_interleave_sectors;
  336. if (likely(ic->log2_metadata_run >= 0))
  337. result += (area + 1) << ic->log2_metadata_run;
  338. else
  339. result += (area + 1) * ic->metadata_run;
  340. result += (sector_t)ic->initial_sectors + offset;
  341. result += ic->start;
  342. return result;
  343. }
  344. static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
  345. {
  346. if (unlikely(*sec_ptr >= ic->journal_sections))
  347. *sec_ptr -= ic->journal_sections;
  348. }
  349. static void sb_set_version(struct dm_integrity_c *ic)
  350. {
  351. if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  352. ic->sb->version = SB_VERSION_2;
  353. else
  354. ic->sb->version = SB_VERSION_1;
  355. }
  356. static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
  357. {
  358. struct dm_io_request io_req;
  359. struct dm_io_region io_loc;
  360. io_req.bi_op = op;
  361. io_req.bi_op_flags = op_flags;
  362. io_req.mem.type = DM_IO_KMEM;
  363. io_req.mem.ptr.addr = ic->sb;
  364. io_req.notify.fn = NULL;
  365. io_req.client = ic->io;
  366. io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
  367. io_loc.sector = ic->start;
  368. io_loc.count = SB_SECTORS;
  369. return dm_io(&io_req, 1, &io_loc, NULL);
  370. }
  371. static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  372. bool e, const char *function)
  373. {
  374. #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
  375. unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
  376. if (unlikely(section >= ic->journal_sections) ||
  377. unlikely(offset >= limit)) {
  378. printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
  379. function, section, offset, ic->journal_sections, limit);
  380. BUG();
  381. }
  382. #endif
  383. }
  384. static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  385. unsigned *pl_index, unsigned *pl_offset)
  386. {
  387. unsigned sector;
  388. access_journal_check(ic, section, offset, false, "page_list_location");
  389. sector = section * ic->journal_section_sectors + offset;
  390. *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  391. *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  392. }
  393. static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
  394. unsigned section, unsigned offset, unsigned *n_sectors)
  395. {
  396. unsigned pl_index, pl_offset;
  397. char *va;
  398. page_list_location(ic, section, offset, &pl_index, &pl_offset);
  399. if (n_sectors)
  400. *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
  401. va = lowmem_page_address(pl[pl_index].page);
  402. return (struct journal_sector *)(va + pl_offset);
  403. }
  404. static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
  405. {
  406. return access_page_list(ic, ic->journal, section, offset, NULL);
  407. }
  408. static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
  409. {
  410. unsigned rel_sector, offset;
  411. struct journal_sector *js;
  412. access_journal_check(ic, section, n, true, "access_journal_entry");
  413. rel_sector = n % JOURNAL_BLOCK_SECTORS;
  414. offset = n / JOURNAL_BLOCK_SECTORS;
  415. js = access_journal(ic, section, rel_sector);
  416. return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
  417. }
  418. static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
  419. {
  420. n <<= ic->sb->log2_sectors_per_block;
  421. n += JOURNAL_BLOCK_SECTORS;
  422. access_journal_check(ic, section, n, false, "access_journal_data");
  423. return access_journal(ic, section, n);
  424. }
  425. static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
  426. {
  427. SHASH_DESC_ON_STACK(desc, ic->journal_mac);
  428. int r;
  429. unsigned j, size;
  430. desc->tfm = ic->journal_mac;
  431. desc->flags = 0;
  432. r = crypto_shash_init(desc);
  433. if (unlikely(r)) {
  434. dm_integrity_io_error(ic, "crypto_shash_init", r);
  435. goto err;
  436. }
  437. for (j = 0; j < ic->journal_section_entries; j++) {
  438. struct journal_entry *je = access_journal_entry(ic, section, j);
  439. r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
  440. if (unlikely(r)) {
  441. dm_integrity_io_error(ic, "crypto_shash_update", r);
  442. goto err;
  443. }
  444. }
  445. size = crypto_shash_digestsize(ic->journal_mac);
  446. if (likely(size <= JOURNAL_MAC_SIZE)) {
  447. r = crypto_shash_final(desc, result);
  448. if (unlikely(r)) {
  449. dm_integrity_io_error(ic, "crypto_shash_final", r);
  450. goto err;
  451. }
  452. memset(result + size, 0, JOURNAL_MAC_SIZE - size);
  453. } else {
  454. __u8 digest[size];
  455. r = crypto_shash_final(desc, digest);
  456. if (unlikely(r)) {
  457. dm_integrity_io_error(ic, "crypto_shash_final", r);
  458. goto err;
  459. }
  460. memcpy(result, digest, JOURNAL_MAC_SIZE);
  461. }
  462. return;
  463. err:
  464. memset(result, 0, JOURNAL_MAC_SIZE);
  465. }
  466. static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
  467. {
  468. __u8 result[JOURNAL_MAC_SIZE];
  469. unsigned j;
  470. if (!ic->journal_mac)
  471. return;
  472. section_mac(ic, section, result);
  473. for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
  474. struct journal_sector *js = access_journal(ic, section, j);
  475. if (likely(wr))
  476. memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
  477. else {
  478. if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
  479. dm_integrity_io_error(ic, "journal mac", -EILSEQ);
  480. }
  481. }
  482. }
  483. static void complete_journal_op(void *context)
  484. {
  485. struct journal_completion *comp = context;
  486. BUG_ON(!atomic_read(&comp->in_flight));
  487. if (likely(atomic_dec_and_test(&comp->in_flight)))
  488. complete(&comp->comp);
  489. }
  490. static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  491. unsigned n_sections, struct journal_completion *comp)
  492. {
  493. struct async_submit_ctl submit;
  494. size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
  495. unsigned pl_index, pl_offset, section_index;
  496. struct page_list *source_pl, *target_pl;
  497. if (likely(encrypt)) {
  498. source_pl = ic->journal;
  499. target_pl = ic->journal_io;
  500. } else {
  501. source_pl = ic->journal_io;
  502. target_pl = ic->journal;
  503. }
  504. page_list_location(ic, section, 0, &pl_index, &pl_offset);
  505. atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
  506. init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
  507. section_index = pl_index;
  508. do {
  509. size_t this_step;
  510. struct page *src_pages[2];
  511. struct page *dst_page;
  512. while (unlikely(pl_index == section_index)) {
  513. unsigned dummy;
  514. if (likely(encrypt))
  515. rw_section_mac(ic, section, true);
  516. section++;
  517. n_sections--;
  518. if (!n_sections)
  519. break;
  520. page_list_location(ic, section, 0, &section_index, &dummy);
  521. }
  522. this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
  523. dst_page = target_pl[pl_index].page;
  524. src_pages[0] = source_pl[pl_index].page;
  525. src_pages[1] = ic->journal_xor[pl_index].page;
  526. async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
  527. pl_index++;
  528. pl_offset = 0;
  529. n_bytes -= this_step;
  530. } while (n_bytes);
  531. BUG_ON(n_sections);
  532. async_tx_issue_pending_all();
  533. }
  534. static void complete_journal_encrypt(struct crypto_async_request *req, int err)
  535. {
  536. struct journal_completion *comp = req->data;
  537. if (unlikely(err)) {
  538. if (likely(err == -EINPROGRESS)) {
  539. complete(&comp->ic->crypto_backoff);
  540. return;
  541. }
  542. dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
  543. }
  544. complete_journal_op(comp);
  545. }
  546. static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
  547. {
  548. int r;
  549. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  550. complete_journal_encrypt, comp);
  551. if (likely(encrypt))
  552. r = crypto_skcipher_encrypt(req);
  553. else
  554. r = crypto_skcipher_decrypt(req);
  555. if (likely(!r))
  556. return false;
  557. if (likely(r == -EINPROGRESS))
  558. return true;
  559. if (likely(r == -EBUSY)) {
  560. wait_for_completion(&comp->ic->crypto_backoff);
  561. reinit_completion(&comp->ic->crypto_backoff);
  562. return true;
  563. }
  564. dm_integrity_io_error(comp->ic, "encrypt", r);
  565. return false;
  566. }
  567. static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  568. unsigned n_sections, struct journal_completion *comp)
  569. {
  570. struct scatterlist **source_sg;
  571. struct scatterlist **target_sg;
  572. atomic_add(2, &comp->in_flight);
  573. if (likely(encrypt)) {
  574. source_sg = ic->journal_scatterlist;
  575. target_sg = ic->journal_io_scatterlist;
  576. } else {
  577. source_sg = ic->journal_io_scatterlist;
  578. target_sg = ic->journal_scatterlist;
  579. }
  580. do {
  581. struct skcipher_request *req;
  582. unsigned ivsize;
  583. char *iv;
  584. if (likely(encrypt))
  585. rw_section_mac(ic, section, true);
  586. req = ic->sk_requests[section];
  587. ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
  588. iv = req->iv;
  589. memcpy(iv, iv + ivsize, ivsize);
  590. req->src = source_sg[section];
  591. req->dst = target_sg[section];
  592. if (unlikely(do_crypt(encrypt, req, comp)))
  593. atomic_inc(&comp->in_flight);
  594. section++;
  595. n_sections--;
  596. } while (n_sections);
  597. atomic_dec(&comp->in_flight);
  598. complete_journal_op(comp);
  599. }
  600. static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  601. unsigned n_sections, struct journal_completion *comp)
  602. {
  603. if (ic->journal_xor)
  604. return xor_journal(ic, encrypt, section, n_sections, comp);
  605. else
  606. return crypt_journal(ic, encrypt, section, n_sections, comp);
  607. }
  608. static void complete_journal_io(unsigned long error, void *context)
  609. {
  610. struct journal_completion *comp = context;
  611. if (unlikely(error != 0))
  612. dm_integrity_io_error(comp->ic, "writing journal", -EIO);
  613. complete_journal_op(comp);
  614. }
  615. static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
  616. unsigned n_sections, struct journal_completion *comp)
  617. {
  618. struct dm_io_request io_req;
  619. struct dm_io_region io_loc;
  620. unsigned sector, n_sectors, pl_index, pl_offset;
  621. int r;
  622. if (unlikely(dm_integrity_failed(ic))) {
  623. if (comp)
  624. complete_journal_io(-1UL, comp);
  625. return;
  626. }
  627. sector = section * ic->journal_section_sectors;
  628. n_sectors = n_sections * ic->journal_section_sectors;
  629. pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  630. pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  631. io_req.bi_op = op;
  632. io_req.bi_op_flags = op_flags;
  633. io_req.mem.type = DM_IO_PAGE_LIST;
  634. if (ic->journal_io)
  635. io_req.mem.ptr.pl = &ic->journal_io[pl_index];
  636. else
  637. io_req.mem.ptr.pl = &ic->journal[pl_index];
  638. io_req.mem.offset = pl_offset;
  639. if (likely(comp != NULL)) {
  640. io_req.notify.fn = complete_journal_io;
  641. io_req.notify.context = comp;
  642. } else {
  643. io_req.notify.fn = NULL;
  644. }
  645. io_req.client = ic->io;
  646. io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
  647. io_loc.sector = ic->start + SB_SECTORS + sector;
  648. io_loc.count = n_sectors;
  649. r = dm_io(&io_req, 1, &io_loc, NULL);
  650. if (unlikely(r)) {
  651. dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
  652. if (comp) {
  653. WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
  654. complete_journal_io(-1UL, comp);
  655. }
  656. }
  657. }
  658. static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
  659. {
  660. struct journal_completion io_comp;
  661. struct journal_completion crypt_comp_1;
  662. struct journal_completion crypt_comp_2;
  663. unsigned i;
  664. io_comp.ic = ic;
  665. init_completion(&io_comp.comp);
  666. if (commit_start + commit_sections <= ic->journal_sections) {
  667. io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  668. if (ic->journal_io) {
  669. crypt_comp_1.ic = ic;
  670. init_completion(&crypt_comp_1.comp);
  671. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  672. encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
  673. wait_for_completion_io(&crypt_comp_1.comp);
  674. } else {
  675. for (i = 0; i < commit_sections; i++)
  676. rw_section_mac(ic, commit_start + i, true);
  677. }
  678. rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
  679. commit_sections, &io_comp);
  680. } else {
  681. unsigned to_end;
  682. io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
  683. to_end = ic->journal_sections - commit_start;
  684. if (ic->journal_io) {
  685. crypt_comp_1.ic = ic;
  686. init_completion(&crypt_comp_1.comp);
  687. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  688. encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
  689. if (try_wait_for_completion(&crypt_comp_1.comp)) {
  690. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  691. reinit_completion(&crypt_comp_1.comp);
  692. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  693. encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
  694. wait_for_completion_io(&crypt_comp_1.comp);
  695. } else {
  696. crypt_comp_2.ic = ic;
  697. init_completion(&crypt_comp_2.comp);
  698. crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
  699. encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
  700. wait_for_completion_io(&crypt_comp_1.comp);
  701. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  702. wait_for_completion_io(&crypt_comp_2.comp);
  703. }
  704. } else {
  705. for (i = 0; i < to_end; i++)
  706. rw_section_mac(ic, commit_start + i, true);
  707. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  708. for (i = 0; i < commit_sections - to_end; i++)
  709. rw_section_mac(ic, i, true);
  710. }
  711. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
  712. }
  713. wait_for_completion_io(&io_comp.comp);
  714. }
  715. static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  716. unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
  717. {
  718. struct dm_io_request io_req;
  719. struct dm_io_region io_loc;
  720. int r;
  721. unsigned sector, pl_index, pl_offset;
  722. BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
  723. if (unlikely(dm_integrity_failed(ic))) {
  724. fn(-1UL, data);
  725. return;
  726. }
  727. sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
  728. pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  729. pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  730. io_req.bi_op = REQ_OP_WRITE;
  731. io_req.bi_op_flags = 0;
  732. io_req.mem.type = DM_IO_PAGE_LIST;
  733. io_req.mem.ptr.pl = &ic->journal[pl_index];
  734. io_req.mem.offset = pl_offset;
  735. io_req.notify.fn = fn;
  736. io_req.notify.context = data;
  737. io_req.client = ic->io;
  738. io_loc.bdev = ic->dev->bdev;
  739. io_loc.sector = target;
  740. io_loc.count = n_sectors;
  741. r = dm_io(&io_req, 1, &io_loc, NULL);
  742. if (unlikely(r)) {
  743. WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
  744. fn(-1UL, data);
  745. }
  746. }
  747. static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
  748. {
  749. return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
  750. range1->logical_sector + range1->n_sectors > range2->logical_sector;
  751. }
  752. static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
  753. {
  754. struct rb_node **n = &ic->in_progress.rb_node;
  755. struct rb_node *parent;
  756. BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
  757. if (likely(check_waiting)) {
  758. struct dm_integrity_range *range;
  759. list_for_each_entry(range, &ic->wait_list, wait_entry) {
  760. if (unlikely(ranges_overlap(range, new_range)))
  761. return false;
  762. }
  763. }
  764. parent = NULL;
  765. while (*n) {
  766. struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
  767. parent = *n;
  768. if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
  769. n = &range->node.rb_left;
  770. } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
  771. n = &range->node.rb_right;
  772. } else {
  773. return false;
  774. }
  775. }
  776. rb_link_node(&new_range->node, parent, n);
  777. rb_insert_color(&new_range->node, &ic->in_progress);
  778. return true;
  779. }
  780. static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
  781. {
  782. rb_erase(&range->node, &ic->in_progress);
  783. while (unlikely(!list_empty(&ic->wait_list))) {
  784. struct dm_integrity_range *last_range =
  785. list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
  786. struct task_struct *last_range_task;
  787. last_range_task = last_range->task;
  788. list_del(&last_range->wait_entry);
  789. if (!add_new_range(ic, last_range, false)) {
  790. last_range->task = last_range_task;
  791. list_add(&last_range->wait_entry, &ic->wait_list);
  792. break;
  793. }
  794. last_range->waiting = false;
  795. wake_up_process(last_range_task);
  796. }
  797. }
  798. static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
  799. {
  800. unsigned long flags;
  801. spin_lock_irqsave(&ic->endio_wait.lock, flags);
  802. remove_range_unlocked(ic, range);
  803. spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
  804. }
  805. static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
  806. {
  807. new_range->waiting = true;
  808. list_add_tail(&new_range->wait_entry, &ic->wait_list);
  809. new_range->task = current;
  810. do {
  811. __set_current_state(TASK_UNINTERRUPTIBLE);
  812. spin_unlock_irq(&ic->endio_wait.lock);
  813. io_schedule();
  814. spin_lock_irq(&ic->endio_wait.lock);
  815. } while (unlikely(new_range->waiting));
  816. }
  817. static void init_journal_node(struct journal_node *node)
  818. {
  819. RB_CLEAR_NODE(&node->node);
  820. node->sector = (sector_t)-1;
  821. }
  822. static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
  823. {
  824. struct rb_node **link;
  825. struct rb_node *parent;
  826. node->sector = sector;
  827. BUG_ON(!RB_EMPTY_NODE(&node->node));
  828. link = &ic->journal_tree_root.rb_node;
  829. parent = NULL;
  830. while (*link) {
  831. struct journal_node *j;
  832. parent = *link;
  833. j = container_of(parent, struct journal_node, node);
  834. if (sector < j->sector)
  835. link = &j->node.rb_left;
  836. else
  837. link = &j->node.rb_right;
  838. }
  839. rb_link_node(&node->node, parent, link);
  840. rb_insert_color(&node->node, &ic->journal_tree_root);
  841. }
  842. static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
  843. {
  844. BUG_ON(RB_EMPTY_NODE(&node->node));
  845. rb_erase(&node->node, &ic->journal_tree_root);
  846. init_journal_node(node);
  847. }
  848. #define NOT_FOUND (-1U)
  849. static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
  850. {
  851. struct rb_node *n = ic->journal_tree_root.rb_node;
  852. unsigned found = NOT_FOUND;
  853. *next_sector = (sector_t)-1;
  854. while (n) {
  855. struct journal_node *j = container_of(n, struct journal_node, node);
  856. if (sector == j->sector) {
  857. found = j - ic->journal_tree;
  858. }
  859. if (sector < j->sector) {
  860. *next_sector = j->sector;
  861. n = j->node.rb_left;
  862. } else {
  863. n = j->node.rb_right;
  864. }
  865. }
  866. return found;
  867. }
  868. static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
  869. {
  870. struct journal_node *node, *next_node;
  871. struct rb_node *next;
  872. if (unlikely(pos >= ic->journal_entries))
  873. return false;
  874. node = &ic->journal_tree[pos];
  875. if (unlikely(RB_EMPTY_NODE(&node->node)))
  876. return false;
  877. if (unlikely(node->sector != sector))
  878. return false;
  879. next = rb_next(&node->node);
  880. if (unlikely(!next))
  881. return true;
  882. next_node = container_of(next, struct journal_node, node);
  883. return next_node->sector != sector;
  884. }
  885. static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
  886. {
  887. struct rb_node *next;
  888. struct journal_node *next_node;
  889. unsigned next_section;
  890. BUG_ON(RB_EMPTY_NODE(&node->node));
  891. next = rb_next(&node->node);
  892. if (unlikely(!next))
  893. return false;
  894. next_node = container_of(next, struct journal_node, node);
  895. if (next_node->sector != node->sector)
  896. return false;
  897. next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
  898. if (next_section >= ic->committed_section &&
  899. next_section < ic->committed_section + ic->n_committed_sections)
  900. return true;
  901. if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
  902. return true;
  903. return false;
  904. }
  905. #define TAG_READ 0
  906. #define TAG_WRITE 1
  907. #define TAG_CMP 2
  908. static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
  909. unsigned *metadata_offset, unsigned total_size, int op)
  910. {
  911. do {
  912. unsigned char *data, *dp;
  913. struct dm_buffer *b;
  914. unsigned to_copy;
  915. int r;
  916. r = dm_integrity_failed(ic);
  917. if (unlikely(r))
  918. return r;
  919. data = dm_bufio_read(ic->bufio, *metadata_block, &b);
  920. if (unlikely(IS_ERR(data)))
  921. return PTR_ERR(data);
  922. to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
  923. dp = data + *metadata_offset;
  924. if (op == TAG_READ) {
  925. memcpy(tag, dp, to_copy);
  926. } else if (op == TAG_WRITE) {
  927. memcpy(dp, tag, to_copy);
  928. dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
  929. } else {
  930. /* e.g.: op == TAG_CMP */
  931. if (unlikely(memcmp(dp, tag, to_copy))) {
  932. unsigned i;
  933. for (i = 0; i < to_copy; i++) {
  934. if (dp[i] != tag[i])
  935. break;
  936. total_size--;
  937. }
  938. dm_bufio_release(b);
  939. return total_size;
  940. }
  941. }
  942. dm_bufio_release(b);
  943. tag += to_copy;
  944. *metadata_offset += to_copy;
  945. if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
  946. (*metadata_block)++;
  947. *metadata_offset = 0;
  948. }
  949. total_size -= to_copy;
  950. } while (unlikely(total_size));
  951. return 0;
  952. }
  953. static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
  954. {
  955. int r;
  956. r = dm_bufio_write_dirty_buffers(ic->bufio);
  957. if (unlikely(r))
  958. dm_integrity_io_error(ic, "writing tags", r);
  959. }
  960. static void sleep_on_endio_wait(struct dm_integrity_c *ic)
  961. {
  962. DECLARE_WAITQUEUE(wait, current);
  963. __add_wait_queue(&ic->endio_wait, &wait);
  964. __set_current_state(TASK_UNINTERRUPTIBLE);
  965. spin_unlock_irq(&ic->endio_wait.lock);
  966. io_schedule();
  967. spin_lock_irq(&ic->endio_wait.lock);
  968. __remove_wait_queue(&ic->endio_wait, &wait);
  969. }
  970. static void autocommit_fn(struct timer_list *t)
  971. {
  972. struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
  973. if (likely(!dm_integrity_failed(ic)))
  974. queue_work(ic->commit_wq, &ic->commit_work);
  975. }
  976. static void schedule_autocommit(struct dm_integrity_c *ic)
  977. {
  978. if (!timer_pending(&ic->autocommit_timer))
  979. mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
  980. }
  981. static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
  982. {
  983. struct bio *bio;
  984. unsigned long flags;
  985. spin_lock_irqsave(&ic->endio_wait.lock, flags);
  986. bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  987. bio_list_add(&ic->flush_bio_list, bio);
  988. spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
  989. queue_work(ic->commit_wq, &ic->commit_work);
  990. }
  991. static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
  992. {
  993. int r = dm_integrity_failed(ic);
  994. if (unlikely(r) && !bio->bi_status)
  995. bio->bi_status = errno_to_blk_status(r);
  996. bio_endio(bio);
  997. }
  998. static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
  999. {
  1000. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1001. if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
  1002. submit_flush_bio(ic, dio);
  1003. else
  1004. do_endio(ic, bio);
  1005. }
  1006. static void dec_in_flight(struct dm_integrity_io *dio)
  1007. {
  1008. if (atomic_dec_and_test(&dio->in_flight)) {
  1009. struct dm_integrity_c *ic = dio->ic;
  1010. struct bio *bio;
  1011. remove_range(ic, &dio->range);
  1012. if (unlikely(dio->write))
  1013. schedule_autocommit(ic);
  1014. bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1015. if (unlikely(dio->bi_status) && !bio->bi_status)
  1016. bio->bi_status = dio->bi_status;
  1017. if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
  1018. dio->range.logical_sector += dio->range.n_sectors;
  1019. bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
  1020. INIT_WORK(&dio->work, integrity_bio_wait);
  1021. queue_work(ic->wait_wq, &dio->work);
  1022. return;
  1023. }
  1024. do_endio_flush(ic, dio);
  1025. }
  1026. }
  1027. static void integrity_end_io(struct bio *bio)
  1028. {
  1029. struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
  1030. bio->bi_iter = dio->orig_bi_iter;
  1031. bio->bi_disk = dio->orig_bi_disk;
  1032. bio->bi_partno = dio->orig_bi_partno;
  1033. if (dio->orig_bi_integrity) {
  1034. bio->bi_integrity = dio->orig_bi_integrity;
  1035. bio->bi_opf |= REQ_INTEGRITY;
  1036. }
  1037. bio->bi_end_io = dio->orig_bi_end_io;
  1038. if (dio->completion)
  1039. complete(dio->completion);
  1040. dec_in_flight(dio);
  1041. }
  1042. static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
  1043. const char *data, char *result)
  1044. {
  1045. __u64 sector_le = cpu_to_le64(sector);
  1046. SHASH_DESC_ON_STACK(req, ic->internal_hash);
  1047. int r;
  1048. unsigned digest_size;
  1049. req->tfm = ic->internal_hash;
  1050. req->flags = 0;
  1051. r = crypto_shash_init(req);
  1052. if (unlikely(r < 0)) {
  1053. dm_integrity_io_error(ic, "crypto_shash_init", r);
  1054. goto failed;
  1055. }
  1056. r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
  1057. if (unlikely(r < 0)) {
  1058. dm_integrity_io_error(ic, "crypto_shash_update", r);
  1059. goto failed;
  1060. }
  1061. r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
  1062. if (unlikely(r < 0)) {
  1063. dm_integrity_io_error(ic, "crypto_shash_update", r);
  1064. goto failed;
  1065. }
  1066. r = crypto_shash_final(req, result);
  1067. if (unlikely(r < 0)) {
  1068. dm_integrity_io_error(ic, "crypto_shash_final", r);
  1069. goto failed;
  1070. }
  1071. digest_size = crypto_shash_digestsize(ic->internal_hash);
  1072. if (unlikely(digest_size < ic->tag_size))
  1073. memset(result + digest_size, 0, ic->tag_size - digest_size);
  1074. return;
  1075. failed:
  1076. /* this shouldn't happen anyway, the hash functions have no reason to fail */
  1077. get_random_bytes(result, ic->tag_size);
  1078. }
  1079. static void integrity_metadata(struct work_struct *w)
  1080. {
  1081. struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
  1082. struct dm_integrity_c *ic = dio->ic;
  1083. int r;
  1084. if (ic->internal_hash) {
  1085. struct bvec_iter iter;
  1086. struct bio_vec bv;
  1087. unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
  1088. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1089. char *checksums;
  1090. unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
  1091. char checksums_onstack[ic->tag_size + extra_space];
  1092. unsigned sectors_to_process = dio->range.n_sectors;
  1093. sector_t sector = dio->range.logical_sector;
  1094. if (unlikely(ic->mode == 'R'))
  1095. goto skip_io;
  1096. checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
  1097. GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
  1098. if (!checksums)
  1099. checksums = checksums_onstack;
  1100. __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
  1101. unsigned pos;
  1102. char *mem, *checksums_ptr;
  1103. again:
  1104. mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
  1105. pos = 0;
  1106. checksums_ptr = checksums;
  1107. do {
  1108. integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
  1109. checksums_ptr += ic->tag_size;
  1110. sectors_to_process -= ic->sectors_per_block;
  1111. pos += ic->sectors_per_block << SECTOR_SHIFT;
  1112. sector += ic->sectors_per_block;
  1113. } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
  1114. kunmap_atomic(mem);
  1115. r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
  1116. checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
  1117. if (unlikely(r)) {
  1118. if (r > 0) {
  1119. DMERR_LIMIT("Checksum failed at sector 0x%llx",
  1120. (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
  1121. r = -EILSEQ;
  1122. atomic64_inc(&ic->number_of_mismatches);
  1123. }
  1124. if (likely(checksums != checksums_onstack))
  1125. kfree(checksums);
  1126. goto error;
  1127. }
  1128. if (!sectors_to_process)
  1129. break;
  1130. if (unlikely(pos < bv.bv_len)) {
  1131. bv.bv_offset += pos;
  1132. bv.bv_len -= pos;
  1133. goto again;
  1134. }
  1135. }
  1136. if (likely(checksums != checksums_onstack))
  1137. kfree(checksums);
  1138. } else {
  1139. struct bio_integrity_payload *bip = dio->orig_bi_integrity;
  1140. if (bip) {
  1141. struct bio_vec biv;
  1142. struct bvec_iter iter;
  1143. unsigned data_to_process = dio->range.n_sectors;
  1144. sector_to_block(ic, data_to_process);
  1145. data_to_process *= ic->tag_size;
  1146. bip_for_each_vec(biv, bip, iter) {
  1147. unsigned char *tag;
  1148. unsigned this_len;
  1149. BUG_ON(PageHighMem(biv.bv_page));
  1150. tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
  1151. this_len = min(biv.bv_len, data_to_process);
  1152. r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
  1153. this_len, !dio->write ? TAG_READ : TAG_WRITE);
  1154. if (unlikely(r))
  1155. goto error;
  1156. data_to_process -= this_len;
  1157. if (!data_to_process)
  1158. break;
  1159. }
  1160. }
  1161. }
  1162. skip_io:
  1163. dec_in_flight(dio);
  1164. return;
  1165. error:
  1166. dio->bi_status = errno_to_blk_status(r);
  1167. dec_in_flight(dio);
  1168. }
  1169. static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
  1170. {
  1171. struct dm_integrity_c *ic = ti->private;
  1172. struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
  1173. struct bio_integrity_payload *bip;
  1174. sector_t area, offset;
  1175. dio->ic = ic;
  1176. dio->bi_status = 0;
  1177. if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
  1178. submit_flush_bio(ic, dio);
  1179. return DM_MAPIO_SUBMITTED;
  1180. }
  1181. dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
  1182. dio->write = bio_op(bio) == REQ_OP_WRITE;
  1183. dio->fua = dio->write && bio->bi_opf & REQ_FUA;
  1184. if (unlikely(dio->fua)) {
  1185. /*
  1186. * Don't pass down the FUA flag because we have to flush
  1187. * disk cache anyway.
  1188. */
  1189. bio->bi_opf &= ~REQ_FUA;
  1190. }
  1191. if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
  1192. DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
  1193. (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
  1194. (unsigned long long)ic->provided_data_sectors);
  1195. return DM_MAPIO_KILL;
  1196. }
  1197. if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
  1198. DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
  1199. ic->sectors_per_block,
  1200. (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
  1201. return DM_MAPIO_KILL;
  1202. }
  1203. if (ic->sectors_per_block > 1) {
  1204. struct bvec_iter iter;
  1205. struct bio_vec bv;
  1206. bio_for_each_segment(bv, bio, iter) {
  1207. if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
  1208. DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
  1209. bv.bv_offset, bv.bv_len, ic->sectors_per_block);
  1210. return DM_MAPIO_KILL;
  1211. }
  1212. }
  1213. }
  1214. bip = bio_integrity(bio);
  1215. if (!ic->internal_hash) {
  1216. if (bip) {
  1217. unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
  1218. if (ic->log2_tag_size >= 0)
  1219. wanted_tag_size <<= ic->log2_tag_size;
  1220. else
  1221. wanted_tag_size *= ic->tag_size;
  1222. if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
  1223. DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
  1224. return DM_MAPIO_KILL;
  1225. }
  1226. }
  1227. } else {
  1228. if (unlikely(bip != NULL)) {
  1229. DMERR("Unexpected integrity data when using internal hash");
  1230. return DM_MAPIO_KILL;
  1231. }
  1232. }
  1233. if (unlikely(ic->mode == 'R') && unlikely(dio->write))
  1234. return DM_MAPIO_KILL;
  1235. get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
  1236. dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
  1237. bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
  1238. dm_integrity_map_continue(dio, true);
  1239. return DM_MAPIO_SUBMITTED;
  1240. }
  1241. static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
  1242. unsigned journal_section, unsigned journal_entry)
  1243. {
  1244. struct dm_integrity_c *ic = dio->ic;
  1245. sector_t logical_sector;
  1246. unsigned n_sectors;
  1247. logical_sector = dio->range.logical_sector;
  1248. n_sectors = dio->range.n_sectors;
  1249. do {
  1250. struct bio_vec bv = bio_iovec(bio);
  1251. char *mem;
  1252. if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
  1253. bv.bv_len = n_sectors << SECTOR_SHIFT;
  1254. n_sectors -= bv.bv_len >> SECTOR_SHIFT;
  1255. bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
  1256. retry_kmap:
  1257. mem = kmap_atomic(bv.bv_page);
  1258. if (likely(dio->write))
  1259. flush_dcache_page(bv.bv_page);
  1260. do {
  1261. struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
  1262. if (unlikely(!dio->write)) {
  1263. struct journal_sector *js;
  1264. char *mem_ptr;
  1265. unsigned s;
  1266. if (unlikely(journal_entry_is_inprogress(je))) {
  1267. flush_dcache_page(bv.bv_page);
  1268. kunmap_atomic(mem);
  1269. __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
  1270. goto retry_kmap;
  1271. }
  1272. smp_rmb();
  1273. BUG_ON(journal_entry_get_sector(je) != logical_sector);
  1274. js = access_journal_data(ic, journal_section, journal_entry);
  1275. mem_ptr = mem + bv.bv_offset;
  1276. s = 0;
  1277. do {
  1278. memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
  1279. *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
  1280. js++;
  1281. mem_ptr += 1 << SECTOR_SHIFT;
  1282. } while (++s < ic->sectors_per_block);
  1283. #ifdef INTERNAL_VERIFY
  1284. if (ic->internal_hash) {
  1285. char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
  1286. integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
  1287. if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
  1288. DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
  1289. (unsigned long long)logical_sector);
  1290. }
  1291. }
  1292. #endif
  1293. }
  1294. if (!ic->internal_hash) {
  1295. struct bio_integrity_payload *bip = bio_integrity(bio);
  1296. unsigned tag_todo = ic->tag_size;
  1297. char *tag_ptr = journal_entry_tag(ic, je);
  1298. if (bip) do {
  1299. struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
  1300. unsigned tag_now = min(biv.bv_len, tag_todo);
  1301. char *tag_addr;
  1302. BUG_ON(PageHighMem(biv.bv_page));
  1303. tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
  1304. if (likely(dio->write))
  1305. memcpy(tag_ptr, tag_addr, tag_now);
  1306. else
  1307. memcpy(tag_addr, tag_ptr, tag_now);
  1308. bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
  1309. tag_ptr += tag_now;
  1310. tag_todo -= tag_now;
  1311. } while (unlikely(tag_todo)); else {
  1312. if (likely(dio->write))
  1313. memset(tag_ptr, 0, tag_todo);
  1314. }
  1315. }
  1316. if (likely(dio->write)) {
  1317. struct journal_sector *js;
  1318. unsigned s;
  1319. js = access_journal_data(ic, journal_section, journal_entry);
  1320. memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
  1321. s = 0;
  1322. do {
  1323. je->last_bytes[s] = js[s].commit_id;
  1324. } while (++s < ic->sectors_per_block);
  1325. if (ic->internal_hash) {
  1326. unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
  1327. if (unlikely(digest_size > ic->tag_size)) {
  1328. char checksums_onstack[digest_size];
  1329. integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
  1330. memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
  1331. } else
  1332. integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
  1333. }
  1334. journal_entry_set_sector(je, logical_sector);
  1335. }
  1336. logical_sector += ic->sectors_per_block;
  1337. journal_entry++;
  1338. if (unlikely(journal_entry == ic->journal_section_entries)) {
  1339. journal_entry = 0;
  1340. journal_section++;
  1341. wraparound_section(ic, &journal_section);
  1342. }
  1343. bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
  1344. } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
  1345. if (unlikely(!dio->write))
  1346. flush_dcache_page(bv.bv_page);
  1347. kunmap_atomic(mem);
  1348. } while (n_sectors);
  1349. if (likely(dio->write)) {
  1350. smp_mb();
  1351. if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
  1352. wake_up(&ic->copy_to_journal_wait);
  1353. if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
  1354. queue_work(ic->commit_wq, &ic->commit_work);
  1355. } else {
  1356. schedule_autocommit(ic);
  1357. }
  1358. } else {
  1359. remove_range(ic, &dio->range);
  1360. }
  1361. if (unlikely(bio->bi_iter.bi_size)) {
  1362. sector_t area, offset;
  1363. dio->range.logical_sector = logical_sector;
  1364. get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
  1365. dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
  1366. return true;
  1367. }
  1368. return false;
  1369. }
  1370. static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
  1371. {
  1372. struct dm_integrity_c *ic = dio->ic;
  1373. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1374. unsigned journal_section, journal_entry;
  1375. unsigned journal_read_pos;
  1376. struct completion read_comp;
  1377. bool need_sync_io = ic->internal_hash && !dio->write;
  1378. if (need_sync_io && from_map) {
  1379. INIT_WORK(&dio->work, integrity_bio_wait);
  1380. queue_work(ic->metadata_wq, &dio->work);
  1381. return;
  1382. }
  1383. lock_retry:
  1384. spin_lock_irq(&ic->endio_wait.lock);
  1385. retry:
  1386. if (unlikely(dm_integrity_failed(ic))) {
  1387. spin_unlock_irq(&ic->endio_wait.lock);
  1388. do_endio(ic, bio);
  1389. return;
  1390. }
  1391. dio->range.n_sectors = bio_sectors(bio);
  1392. journal_read_pos = NOT_FOUND;
  1393. if (likely(ic->mode == 'J')) {
  1394. if (dio->write) {
  1395. unsigned next_entry, i, pos;
  1396. unsigned ws, we, range_sectors;
  1397. dio->range.n_sectors = min(dio->range.n_sectors,
  1398. ic->free_sectors << ic->sb->log2_sectors_per_block);
  1399. if (unlikely(!dio->range.n_sectors)) {
  1400. if (from_map)
  1401. goto offload_to_thread;
  1402. sleep_on_endio_wait(ic);
  1403. goto retry;
  1404. }
  1405. range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
  1406. ic->free_sectors -= range_sectors;
  1407. journal_section = ic->free_section;
  1408. journal_entry = ic->free_section_entry;
  1409. next_entry = ic->free_section_entry + range_sectors;
  1410. ic->free_section_entry = next_entry % ic->journal_section_entries;
  1411. ic->free_section += next_entry / ic->journal_section_entries;
  1412. ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
  1413. wraparound_section(ic, &ic->free_section);
  1414. pos = journal_section * ic->journal_section_entries + journal_entry;
  1415. ws = journal_section;
  1416. we = journal_entry;
  1417. i = 0;
  1418. do {
  1419. struct journal_entry *je;
  1420. add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
  1421. pos++;
  1422. if (unlikely(pos >= ic->journal_entries))
  1423. pos = 0;
  1424. je = access_journal_entry(ic, ws, we);
  1425. BUG_ON(!journal_entry_is_unused(je));
  1426. journal_entry_set_inprogress(je);
  1427. we++;
  1428. if (unlikely(we == ic->journal_section_entries)) {
  1429. we = 0;
  1430. ws++;
  1431. wraparound_section(ic, &ws);
  1432. }
  1433. } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
  1434. spin_unlock_irq(&ic->endio_wait.lock);
  1435. goto journal_read_write;
  1436. } else {
  1437. sector_t next_sector;
  1438. journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
  1439. if (likely(journal_read_pos == NOT_FOUND)) {
  1440. if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
  1441. dio->range.n_sectors = next_sector - dio->range.logical_sector;
  1442. } else {
  1443. unsigned i;
  1444. unsigned jp = journal_read_pos + 1;
  1445. for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
  1446. if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
  1447. break;
  1448. }
  1449. dio->range.n_sectors = i;
  1450. }
  1451. }
  1452. }
  1453. if (unlikely(!add_new_range(ic, &dio->range, true))) {
  1454. /*
  1455. * We must not sleep in the request routine because it could
  1456. * stall bios on current->bio_list.
  1457. * So, we offload the bio to a workqueue if we have to sleep.
  1458. */
  1459. if (from_map) {
  1460. offload_to_thread:
  1461. spin_unlock_irq(&ic->endio_wait.lock);
  1462. INIT_WORK(&dio->work, integrity_bio_wait);
  1463. queue_work(ic->wait_wq, &dio->work);
  1464. return;
  1465. }
  1466. if (journal_read_pos != NOT_FOUND)
  1467. dio->range.n_sectors = ic->sectors_per_block;
  1468. wait_and_add_new_range(ic, &dio->range);
  1469. /*
  1470. * wait_and_add_new_range drops the spinlock, so the journal
  1471. * may have been changed arbitrarily. We need to recheck.
  1472. * To simplify the code, we restrict I/O size to just one block.
  1473. */
  1474. if (journal_read_pos != NOT_FOUND) {
  1475. sector_t next_sector;
  1476. unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
  1477. if (unlikely(new_pos != journal_read_pos)) {
  1478. remove_range_unlocked(ic, &dio->range);
  1479. goto retry;
  1480. }
  1481. }
  1482. }
  1483. spin_unlock_irq(&ic->endio_wait.lock);
  1484. if (unlikely(journal_read_pos != NOT_FOUND)) {
  1485. journal_section = journal_read_pos / ic->journal_section_entries;
  1486. journal_entry = journal_read_pos % ic->journal_section_entries;
  1487. goto journal_read_write;
  1488. }
  1489. dio->in_flight = (atomic_t)ATOMIC_INIT(2);
  1490. if (need_sync_io) {
  1491. init_completion(&read_comp);
  1492. dio->completion = &read_comp;
  1493. } else
  1494. dio->completion = NULL;
  1495. dio->orig_bi_iter = bio->bi_iter;
  1496. dio->orig_bi_disk = bio->bi_disk;
  1497. dio->orig_bi_partno = bio->bi_partno;
  1498. bio_set_dev(bio, ic->dev->bdev);
  1499. dio->orig_bi_integrity = bio_integrity(bio);
  1500. bio->bi_integrity = NULL;
  1501. bio->bi_opf &= ~REQ_INTEGRITY;
  1502. dio->orig_bi_end_io = bio->bi_end_io;
  1503. bio->bi_end_io = integrity_end_io;
  1504. bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
  1505. generic_make_request(bio);
  1506. if (need_sync_io) {
  1507. wait_for_completion_io(&read_comp);
  1508. if (unlikely(ic->recalc_wq != NULL) &&
  1509. ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
  1510. dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
  1511. goto skip_check;
  1512. if (likely(!bio->bi_status))
  1513. integrity_metadata(&dio->work);
  1514. else
  1515. skip_check:
  1516. dec_in_flight(dio);
  1517. } else {
  1518. INIT_WORK(&dio->work, integrity_metadata);
  1519. queue_work(ic->metadata_wq, &dio->work);
  1520. }
  1521. return;
  1522. journal_read_write:
  1523. if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
  1524. goto lock_retry;
  1525. do_endio_flush(ic, dio);
  1526. }
  1527. static void integrity_bio_wait(struct work_struct *w)
  1528. {
  1529. struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
  1530. dm_integrity_map_continue(dio, false);
  1531. }
  1532. static void pad_uncommitted(struct dm_integrity_c *ic)
  1533. {
  1534. if (ic->free_section_entry) {
  1535. ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
  1536. ic->free_section_entry = 0;
  1537. ic->free_section++;
  1538. wraparound_section(ic, &ic->free_section);
  1539. ic->n_uncommitted_sections++;
  1540. }
  1541. WARN_ON(ic->journal_sections * ic->journal_section_entries !=
  1542. (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
  1543. }
  1544. static void integrity_commit(struct work_struct *w)
  1545. {
  1546. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
  1547. unsigned commit_start, commit_sections;
  1548. unsigned i, j, n;
  1549. struct bio *flushes;
  1550. del_timer(&ic->autocommit_timer);
  1551. spin_lock_irq(&ic->endio_wait.lock);
  1552. flushes = bio_list_get(&ic->flush_bio_list);
  1553. if (unlikely(ic->mode != 'J')) {
  1554. spin_unlock_irq(&ic->endio_wait.lock);
  1555. dm_integrity_flush_buffers(ic);
  1556. goto release_flush_bios;
  1557. }
  1558. pad_uncommitted(ic);
  1559. commit_start = ic->uncommitted_section;
  1560. commit_sections = ic->n_uncommitted_sections;
  1561. spin_unlock_irq(&ic->endio_wait.lock);
  1562. if (!commit_sections)
  1563. goto release_flush_bios;
  1564. i = commit_start;
  1565. for (n = 0; n < commit_sections; n++) {
  1566. for (j = 0; j < ic->journal_section_entries; j++) {
  1567. struct journal_entry *je;
  1568. je = access_journal_entry(ic, i, j);
  1569. io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
  1570. }
  1571. for (j = 0; j < ic->journal_section_sectors; j++) {
  1572. struct journal_sector *js;
  1573. js = access_journal(ic, i, j);
  1574. js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
  1575. }
  1576. i++;
  1577. if (unlikely(i >= ic->journal_sections))
  1578. ic->commit_seq = next_commit_seq(ic->commit_seq);
  1579. wraparound_section(ic, &i);
  1580. }
  1581. smp_rmb();
  1582. write_journal(ic, commit_start, commit_sections);
  1583. spin_lock_irq(&ic->endio_wait.lock);
  1584. ic->uncommitted_section += commit_sections;
  1585. wraparound_section(ic, &ic->uncommitted_section);
  1586. ic->n_uncommitted_sections -= commit_sections;
  1587. ic->n_committed_sections += commit_sections;
  1588. spin_unlock_irq(&ic->endio_wait.lock);
  1589. if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
  1590. queue_work(ic->writer_wq, &ic->writer_work);
  1591. release_flush_bios:
  1592. while (flushes) {
  1593. struct bio *next = flushes->bi_next;
  1594. flushes->bi_next = NULL;
  1595. do_endio(ic, flushes);
  1596. flushes = next;
  1597. }
  1598. }
  1599. static void complete_copy_from_journal(unsigned long error, void *context)
  1600. {
  1601. struct journal_io *io = context;
  1602. struct journal_completion *comp = io->comp;
  1603. struct dm_integrity_c *ic = comp->ic;
  1604. remove_range(ic, &io->range);
  1605. mempool_free(io, &ic->journal_io_mempool);
  1606. if (unlikely(error != 0))
  1607. dm_integrity_io_error(ic, "copying from journal", -EIO);
  1608. complete_journal_op(comp);
  1609. }
  1610. static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
  1611. struct journal_entry *je)
  1612. {
  1613. unsigned s = 0;
  1614. do {
  1615. js->commit_id = je->last_bytes[s];
  1616. js++;
  1617. } while (++s < ic->sectors_per_block);
  1618. }
  1619. static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
  1620. unsigned write_sections, bool from_replay)
  1621. {
  1622. unsigned i, j, n;
  1623. struct journal_completion comp;
  1624. struct blk_plug plug;
  1625. blk_start_plug(&plug);
  1626. comp.ic = ic;
  1627. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  1628. init_completion(&comp.comp);
  1629. i = write_start;
  1630. for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
  1631. #ifndef INTERNAL_VERIFY
  1632. if (unlikely(from_replay))
  1633. #endif
  1634. rw_section_mac(ic, i, false);
  1635. for (j = 0; j < ic->journal_section_entries; j++) {
  1636. struct journal_entry *je = access_journal_entry(ic, i, j);
  1637. sector_t sec, area, offset;
  1638. unsigned k, l, next_loop;
  1639. sector_t metadata_block;
  1640. unsigned metadata_offset;
  1641. struct journal_io *io;
  1642. if (journal_entry_is_unused(je))
  1643. continue;
  1644. BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
  1645. sec = journal_entry_get_sector(je);
  1646. if (unlikely(from_replay)) {
  1647. if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
  1648. dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
  1649. sec &= ~(sector_t)(ic->sectors_per_block - 1);
  1650. }
  1651. }
  1652. get_area_and_offset(ic, sec, &area, &offset);
  1653. restore_last_bytes(ic, access_journal_data(ic, i, j), je);
  1654. for (k = j + 1; k < ic->journal_section_entries; k++) {
  1655. struct journal_entry *je2 = access_journal_entry(ic, i, k);
  1656. sector_t sec2, area2, offset2;
  1657. if (journal_entry_is_unused(je2))
  1658. break;
  1659. BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
  1660. sec2 = journal_entry_get_sector(je2);
  1661. get_area_and_offset(ic, sec2, &area2, &offset2);
  1662. if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
  1663. break;
  1664. restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
  1665. }
  1666. next_loop = k - 1;
  1667. io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
  1668. io->comp = &comp;
  1669. io->range.logical_sector = sec;
  1670. io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
  1671. spin_lock_irq(&ic->endio_wait.lock);
  1672. if (unlikely(!add_new_range(ic, &io->range, true)))
  1673. wait_and_add_new_range(ic, &io->range);
  1674. if (likely(!from_replay)) {
  1675. struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
  1676. /* don't write if there is newer committed sector */
  1677. while (j < k && find_newer_committed_node(ic, &section_node[j])) {
  1678. struct journal_entry *je2 = access_journal_entry(ic, i, j);
  1679. journal_entry_set_unused(je2);
  1680. remove_journal_node(ic, &section_node[j]);
  1681. j++;
  1682. sec += ic->sectors_per_block;
  1683. offset += ic->sectors_per_block;
  1684. }
  1685. while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
  1686. struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
  1687. journal_entry_set_unused(je2);
  1688. remove_journal_node(ic, &section_node[k - 1]);
  1689. k--;
  1690. }
  1691. if (j == k) {
  1692. remove_range_unlocked(ic, &io->range);
  1693. spin_unlock_irq(&ic->endio_wait.lock);
  1694. mempool_free(io, &ic->journal_io_mempool);
  1695. goto skip_io;
  1696. }
  1697. for (l = j; l < k; l++) {
  1698. remove_journal_node(ic, &section_node[l]);
  1699. }
  1700. }
  1701. spin_unlock_irq(&ic->endio_wait.lock);
  1702. metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
  1703. for (l = j; l < k; l++) {
  1704. int r;
  1705. struct journal_entry *je2 = access_journal_entry(ic, i, l);
  1706. if (
  1707. #ifndef INTERNAL_VERIFY
  1708. unlikely(from_replay) &&
  1709. #endif
  1710. ic->internal_hash) {
  1711. char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
  1712. integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
  1713. (char *)access_journal_data(ic, i, l), test_tag);
  1714. if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
  1715. dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
  1716. }
  1717. journal_entry_set_unused(je2);
  1718. r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
  1719. ic->tag_size, TAG_WRITE);
  1720. if (unlikely(r)) {
  1721. dm_integrity_io_error(ic, "reading tags", r);
  1722. }
  1723. }
  1724. atomic_inc(&comp.in_flight);
  1725. copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
  1726. (k - j) << ic->sb->log2_sectors_per_block,
  1727. get_data_sector(ic, area, offset),
  1728. complete_copy_from_journal, io);
  1729. skip_io:
  1730. j = next_loop;
  1731. }
  1732. }
  1733. dm_bufio_write_dirty_buffers_async(ic->bufio);
  1734. blk_finish_plug(&plug);
  1735. complete_journal_op(&comp);
  1736. wait_for_completion_io(&comp.comp);
  1737. dm_integrity_flush_buffers(ic);
  1738. }
  1739. static void integrity_writer(struct work_struct *w)
  1740. {
  1741. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
  1742. unsigned write_start, write_sections;
  1743. unsigned prev_free_sectors;
  1744. /* the following test is not needed, but it tests the replay code */
  1745. if (READ_ONCE(ic->suspending) && !ic->meta_dev)
  1746. return;
  1747. spin_lock_irq(&ic->endio_wait.lock);
  1748. write_start = ic->committed_section;
  1749. write_sections = ic->n_committed_sections;
  1750. spin_unlock_irq(&ic->endio_wait.lock);
  1751. if (!write_sections)
  1752. return;
  1753. do_journal_write(ic, write_start, write_sections, false);
  1754. spin_lock_irq(&ic->endio_wait.lock);
  1755. ic->committed_section += write_sections;
  1756. wraparound_section(ic, &ic->committed_section);
  1757. ic->n_committed_sections -= write_sections;
  1758. prev_free_sectors = ic->free_sectors;
  1759. ic->free_sectors += write_sections * ic->journal_section_entries;
  1760. if (unlikely(!prev_free_sectors))
  1761. wake_up_locked(&ic->endio_wait);
  1762. spin_unlock_irq(&ic->endio_wait.lock);
  1763. }
  1764. static void recalc_write_super(struct dm_integrity_c *ic)
  1765. {
  1766. int r;
  1767. dm_integrity_flush_buffers(ic);
  1768. if (dm_integrity_failed(ic))
  1769. return;
  1770. sb_set_version(ic);
  1771. r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
  1772. if (unlikely(r))
  1773. dm_integrity_io_error(ic, "writing superblock", r);
  1774. }
  1775. static void integrity_recalc(struct work_struct *w)
  1776. {
  1777. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
  1778. struct dm_integrity_range range;
  1779. struct dm_io_request io_req;
  1780. struct dm_io_region io_loc;
  1781. sector_t area, offset;
  1782. sector_t metadata_block;
  1783. unsigned metadata_offset;
  1784. __u8 *t;
  1785. unsigned i;
  1786. int r;
  1787. unsigned super_counter = 0;
  1788. spin_lock_irq(&ic->endio_wait.lock);
  1789. next_chunk:
  1790. if (unlikely(READ_ONCE(ic->suspending)))
  1791. goto unlock_ret;
  1792. range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
  1793. if (unlikely(range.logical_sector >= ic->provided_data_sectors))
  1794. goto unlock_ret;
  1795. get_area_and_offset(ic, range.logical_sector, &area, &offset);
  1796. range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
  1797. if (!ic->meta_dev)
  1798. range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
  1799. if (unlikely(!add_new_range(ic, &range, true)))
  1800. wait_and_add_new_range(ic, &range);
  1801. spin_unlock_irq(&ic->endio_wait.lock);
  1802. if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
  1803. recalc_write_super(ic);
  1804. super_counter = 0;
  1805. }
  1806. if (unlikely(dm_integrity_failed(ic)))
  1807. goto err;
  1808. io_req.bi_op = REQ_OP_READ;
  1809. io_req.bi_op_flags = 0;
  1810. io_req.mem.type = DM_IO_VMA;
  1811. io_req.mem.ptr.addr = ic->recalc_buffer;
  1812. io_req.notify.fn = NULL;
  1813. io_req.client = ic->io;
  1814. io_loc.bdev = ic->dev->bdev;
  1815. io_loc.sector = get_data_sector(ic, area, offset);
  1816. io_loc.count = range.n_sectors;
  1817. r = dm_io(&io_req, 1, &io_loc, NULL);
  1818. if (unlikely(r)) {
  1819. dm_integrity_io_error(ic, "reading data", r);
  1820. goto err;
  1821. }
  1822. t = ic->recalc_tags;
  1823. for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
  1824. integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
  1825. t += ic->tag_size;
  1826. }
  1827. metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
  1828. r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
  1829. if (unlikely(r)) {
  1830. dm_integrity_io_error(ic, "writing tags", r);
  1831. goto err;
  1832. }
  1833. spin_lock_irq(&ic->endio_wait.lock);
  1834. remove_range_unlocked(ic, &range);
  1835. ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
  1836. goto next_chunk;
  1837. err:
  1838. remove_range(ic, &range);
  1839. return;
  1840. unlock_ret:
  1841. spin_unlock_irq(&ic->endio_wait.lock);
  1842. recalc_write_super(ic);
  1843. }
  1844. static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
  1845. unsigned n_sections, unsigned char commit_seq)
  1846. {
  1847. unsigned i, j, n;
  1848. if (!n_sections)
  1849. return;
  1850. for (n = 0; n < n_sections; n++) {
  1851. i = start_section + n;
  1852. wraparound_section(ic, &i);
  1853. for (j = 0; j < ic->journal_section_sectors; j++) {
  1854. struct journal_sector *js = access_journal(ic, i, j);
  1855. memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
  1856. js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
  1857. }
  1858. for (j = 0; j < ic->journal_section_entries; j++) {
  1859. struct journal_entry *je = access_journal_entry(ic, i, j);
  1860. journal_entry_set_unused(je);
  1861. }
  1862. }
  1863. write_journal(ic, start_section, n_sections);
  1864. }
  1865. static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
  1866. {
  1867. unsigned char k;
  1868. for (k = 0; k < N_COMMIT_IDS; k++) {
  1869. if (dm_integrity_commit_id(ic, i, j, k) == id)
  1870. return k;
  1871. }
  1872. dm_integrity_io_error(ic, "journal commit id", -EIO);
  1873. return -EIO;
  1874. }
  1875. static void replay_journal(struct dm_integrity_c *ic)
  1876. {
  1877. unsigned i, j;
  1878. bool used_commit_ids[N_COMMIT_IDS];
  1879. unsigned max_commit_id_sections[N_COMMIT_IDS];
  1880. unsigned write_start, write_sections;
  1881. unsigned continue_section;
  1882. bool journal_empty;
  1883. unsigned char unused, last_used, want_commit_seq;
  1884. if (ic->mode == 'R')
  1885. return;
  1886. if (ic->journal_uptodate)
  1887. return;
  1888. last_used = 0;
  1889. write_start = 0;
  1890. if (!ic->just_formatted) {
  1891. DEBUG_print("reading journal\n");
  1892. rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
  1893. if (ic->journal_io)
  1894. DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
  1895. if (ic->journal_io) {
  1896. struct journal_completion crypt_comp;
  1897. crypt_comp.ic = ic;
  1898. init_completion(&crypt_comp.comp);
  1899. crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
  1900. encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
  1901. wait_for_completion(&crypt_comp.comp);
  1902. }
  1903. DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
  1904. }
  1905. if (dm_integrity_failed(ic))
  1906. goto clear_journal;
  1907. journal_empty = true;
  1908. memset(used_commit_ids, 0, sizeof used_commit_ids);
  1909. memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
  1910. for (i = 0; i < ic->journal_sections; i++) {
  1911. for (j = 0; j < ic->journal_section_sectors; j++) {
  1912. int k;
  1913. struct journal_sector *js = access_journal(ic, i, j);
  1914. k = find_commit_seq(ic, i, j, js->commit_id);
  1915. if (k < 0)
  1916. goto clear_journal;
  1917. used_commit_ids[k] = true;
  1918. max_commit_id_sections[k] = i;
  1919. }
  1920. if (journal_empty) {
  1921. for (j = 0; j < ic->journal_section_entries; j++) {
  1922. struct journal_entry *je = access_journal_entry(ic, i, j);
  1923. if (!journal_entry_is_unused(je)) {
  1924. journal_empty = false;
  1925. break;
  1926. }
  1927. }
  1928. }
  1929. }
  1930. if (!used_commit_ids[N_COMMIT_IDS - 1]) {
  1931. unused = N_COMMIT_IDS - 1;
  1932. while (unused && !used_commit_ids[unused - 1])
  1933. unused--;
  1934. } else {
  1935. for (unused = 0; unused < N_COMMIT_IDS; unused++)
  1936. if (!used_commit_ids[unused])
  1937. break;
  1938. if (unused == N_COMMIT_IDS) {
  1939. dm_integrity_io_error(ic, "journal commit ids", -EIO);
  1940. goto clear_journal;
  1941. }
  1942. }
  1943. DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
  1944. unused, used_commit_ids[0], used_commit_ids[1],
  1945. used_commit_ids[2], used_commit_ids[3]);
  1946. last_used = prev_commit_seq(unused);
  1947. want_commit_seq = prev_commit_seq(last_used);
  1948. if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
  1949. journal_empty = true;
  1950. write_start = max_commit_id_sections[last_used] + 1;
  1951. if (unlikely(write_start >= ic->journal_sections))
  1952. want_commit_seq = next_commit_seq(want_commit_seq);
  1953. wraparound_section(ic, &write_start);
  1954. i = write_start;
  1955. for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
  1956. for (j = 0; j < ic->journal_section_sectors; j++) {
  1957. struct journal_sector *js = access_journal(ic, i, j);
  1958. if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
  1959. /*
  1960. * This could be caused by crash during writing.
  1961. * We won't replay the inconsistent part of the
  1962. * journal.
  1963. */
  1964. DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
  1965. i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
  1966. goto brk;
  1967. }
  1968. }
  1969. i++;
  1970. if (unlikely(i >= ic->journal_sections))
  1971. want_commit_seq = next_commit_seq(want_commit_seq);
  1972. wraparound_section(ic, &i);
  1973. }
  1974. brk:
  1975. if (!journal_empty) {
  1976. DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
  1977. write_sections, write_start, want_commit_seq);
  1978. do_journal_write(ic, write_start, write_sections, true);
  1979. }
  1980. if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
  1981. continue_section = write_start;
  1982. ic->commit_seq = want_commit_seq;
  1983. DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
  1984. } else {
  1985. unsigned s;
  1986. unsigned char erase_seq;
  1987. clear_journal:
  1988. DEBUG_print("clearing journal\n");
  1989. erase_seq = prev_commit_seq(prev_commit_seq(last_used));
  1990. s = write_start;
  1991. init_journal(ic, s, 1, erase_seq);
  1992. s++;
  1993. wraparound_section(ic, &s);
  1994. if (ic->journal_sections >= 2) {
  1995. init_journal(ic, s, ic->journal_sections - 2, erase_seq);
  1996. s += ic->journal_sections - 2;
  1997. wraparound_section(ic, &s);
  1998. init_journal(ic, s, 1, erase_seq);
  1999. }
  2000. continue_section = 0;
  2001. ic->commit_seq = next_commit_seq(erase_seq);
  2002. }
  2003. ic->committed_section = continue_section;
  2004. ic->n_committed_sections = 0;
  2005. ic->uncommitted_section = continue_section;
  2006. ic->n_uncommitted_sections = 0;
  2007. ic->free_section = continue_section;
  2008. ic->free_section_entry = 0;
  2009. ic->free_sectors = ic->journal_entries;
  2010. ic->journal_tree_root = RB_ROOT;
  2011. for (i = 0; i < ic->journal_entries; i++)
  2012. init_journal_node(&ic->journal_tree[i]);
  2013. }
  2014. static void dm_integrity_postsuspend(struct dm_target *ti)
  2015. {
  2016. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2017. del_timer_sync(&ic->autocommit_timer);
  2018. WRITE_ONCE(ic->suspending, 1);
  2019. if (ic->recalc_wq)
  2020. drain_workqueue(ic->recalc_wq);
  2021. queue_work(ic->commit_wq, &ic->commit_work);
  2022. drain_workqueue(ic->commit_wq);
  2023. if (ic->mode == 'J') {
  2024. if (ic->meta_dev)
  2025. queue_work(ic->writer_wq, &ic->writer_work);
  2026. drain_workqueue(ic->writer_wq);
  2027. dm_integrity_flush_buffers(ic);
  2028. }
  2029. WRITE_ONCE(ic->suspending, 0);
  2030. BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
  2031. ic->journal_uptodate = true;
  2032. }
  2033. static void dm_integrity_resume(struct dm_target *ti)
  2034. {
  2035. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2036. replay_journal(ic);
  2037. if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
  2038. __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
  2039. if (recalc_pos < ic->provided_data_sectors) {
  2040. queue_work(ic->recalc_wq, &ic->recalc_work);
  2041. } else if (recalc_pos > ic->provided_data_sectors) {
  2042. ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
  2043. recalc_write_super(ic);
  2044. }
  2045. }
  2046. }
  2047. static void dm_integrity_status(struct dm_target *ti, status_type_t type,
  2048. unsigned status_flags, char *result, unsigned maxlen)
  2049. {
  2050. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2051. unsigned arg_count;
  2052. size_t sz = 0;
  2053. switch (type) {
  2054. case STATUSTYPE_INFO:
  2055. DMEMIT("%llu %llu",
  2056. (unsigned long long)atomic64_read(&ic->number_of_mismatches),
  2057. (unsigned long long)ic->provided_data_sectors);
  2058. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  2059. DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
  2060. else
  2061. DMEMIT(" -");
  2062. break;
  2063. case STATUSTYPE_TABLE: {
  2064. __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
  2065. watermark_percentage += ic->journal_entries / 2;
  2066. do_div(watermark_percentage, ic->journal_entries);
  2067. arg_count = 5;
  2068. arg_count += !!ic->meta_dev;
  2069. arg_count += ic->sectors_per_block != 1;
  2070. arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
  2071. arg_count += !!ic->internal_hash_alg.alg_string;
  2072. arg_count += !!ic->journal_crypt_alg.alg_string;
  2073. arg_count += !!ic->journal_mac_alg.alg_string;
  2074. DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
  2075. ic->tag_size, ic->mode, arg_count);
  2076. if (ic->meta_dev)
  2077. DMEMIT(" meta_device:%s", ic->meta_dev->name);
  2078. if (ic->sectors_per_block != 1)
  2079. DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
  2080. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  2081. DMEMIT(" recalculate");
  2082. DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
  2083. DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
  2084. DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
  2085. DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
  2086. DMEMIT(" commit_time:%u", ic->autocommit_msec);
  2087. #define EMIT_ALG(a, n) \
  2088. do { \
  2089. if (ic->a.alg_string) { \
  2090. DMEMIT(" %s:%s", n, ic->a.alg_string); \
  2091. if (ic->a.key_string) \
  2092. DMEMIT(":%s", ic->a.key_string);\
  2093. } \
  2094. } while (0)
  2095. EMIT_ALG(internal_hash_alg, "internal_hash");
  2096. EMIT_ALG(journal_crypt_alg, "journal_crypt");
  2097. EMIT_ALG(journal_mac_alg, "journal_mac");
  2098. break;
  2099. }
  2100. }
  2101. }
  2102. static int dm_integrity_iterate_devices(struct dm_target *ti,
  2103. iterate_devices_callout_fn fn, void *data)
  2104. {
  2105. struct dm_integrity_c *ic = ti->private;
  2106. if (!ic->meta_dev)
  2107. return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
  2108. else
  2109. return fn(ti, ic->dev, 0, ti->len, data);
  2110. }
  2111. static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2112. {
  2113. struct dm_integrity_c *ic = ti->private;
  2114. if (ic->sectors_per_block > 1) {
  2115. limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
  2116. limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
  2117. blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
  2118. }
  2119. }
  2120. static void calculate_journal_section_size(struct dm_integrity_c *ic)
  2121. {
  2122. unsigned sector_space = JOURNAL_SECTOR_DATA;
  2123. ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
  2124. ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
  2125. JOURNAL_ENTRY_ROUNDUP);
  2126. if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
  2127. sector_space -= JOURNAL_MAC_PER_SECTOR;
  2128. ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
  2129. ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
  2130. ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
  2131. ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
  2132. }
  2133. static int calculate_device_limits(struct dm_integrity_c *ic)
  2134. {
  2135. __u64 initial_sectors;
  2136. calculate_journal_section_size(ic);
  2137. initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
  2138. if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
  2139. return -EINVAL;
  2140. ic->initial_sectors = initial_sectors;
  2141. if (!ic->meta_dev) {
  2142. sector_t last_sector, last_area, last_offset;
  2143. ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
  2144. (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
  2145. if (!(ic->metadata_run & (ic->metadata_run - 1)))
  2146. ic->log2_metadata_run = __ffs(ic->metadata_run);
  2147. else
  2148. ic->log2_metadata_run = -1;
  2149. get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
  2150. last_sector = get_data_sector(ic, last_area, last_offset);
  2151. if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
  2152. return -EINVAL;
  2153. } else {
  2154. __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
  2155. meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
  2156. >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
  2157. meta_size <<= ic->log2_buffer_sectors;
  2158. if (ic->initial_sectors + meta_size < ic->initial_sectors ||
  2159. ic->initial_sectors + meta_size > ic->meta_device_sectors)
  2160. return -EINVAL;
  2161. ic->metadata_run = 1;
  2162. ic->log2_metadata_run = 0;
  2163. }
  2164. return 0;
  2165. }
  2166. static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
  2167. {
  2168. unsigned journal_sections;
  2169. int test_bit;
  2170. memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
  2171. memcpy(ic->sb->magic, SB_MAGIC, 8);
  2172. ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
  2173. ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
  2174. if (ic->journal_mac_alg.alg_string)
  2175. ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
  2176. calculate_journal_section_size(ic);
  2177. journal_sections = journal_sectors / ic->journal_section_sectors;
  2178. if (!journal_sections)
  2179. journal_sections = 1;
  2180. if (!ic->meta_dev) {
  2181. ic->sb->journal_sections = cpu_to_le32(journal_sections);
  2182. if (!interleave_sectors)
  2183. interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
  2184. ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
  2185. ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
  2186. ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
  2187. ic->provided_data_sectors = 0;
  2188. for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
  2189. __u64 prev_data_sectors = ic->provided_data_sectors;
  2190. ic->provided_data_sectors |= (sector_t)1 << test_bit;
  2191. if (calculate_device_limits(ic))
  2192. ic->provided_data_sectors = prev_data_sectors;
  2193. }
  2194. if (!ic->provided_data_sectors)
  2195. return -EINVAL;
  2196. } else {
  2197. ic->sb->log2_interleave_sectors = 0;
  2198. ic->provided_data_sectors = ic->data_device_sectors;
  2199. ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
  2200. try_smaller_buffer:
  2201. ic->sb->journal_sections = cpu_to_le32(0);
  2202. for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
  2203. __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
  2204. __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
  2205. if (test_journal_sections > journal_sections)
  2206. continue;
  2207. ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
  2208. if (calculate_device_limits(ic))
  2209. ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
  2210. }
  2211. if (!le32_to_cpu(ic->sb->journal_sections)) {
  2212. if (ic->log2_buffer_sectors > 3) {
  2213. ic->log2_buffer_sectors--;
  2214. goto try_smaller_buffer;
  2215. }
  2216. return -EINVAL;
  2217. }
  2218. }
  2219. ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
  2220. sb_set_version(ic);
  2221. return 0;
  2222. }
  2223. static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
  2224. {
  2225. struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
  2226. struct blk_integrity bi;
  2227. memset(&bi, 0, sizeof(bi));
  2228. bi.profile = &dm_integrity_profile;
  2229. bi.tuple_size = ic->tag_size;
  2230. bi.tag_size = bi.tuple_size;
  2231. bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
  2232. blk_integrity_register(disk, &bi);
  2233. blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
  2234. }
  2235. static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
  2236. {
  2237. unsigned i;
  2238. if (!pl)
  2239. return;
  2240. for (i = 0; i < ic->journal_pages; i++)
  2241. if (pl[i].page)
  2242. __free_page(pl[i].page);
  2243. kvfree(pl);
  2244. }
  2245. static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
  2246. {
  2247. size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
  2248. struct page_list *pl;
  2249. unsigned i;
  2250. pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
  2251. if (!pl)
  2252. return NULL;
  2253. for (i = 0; i < ic->journal_pages; i++) {
  2254. pl[i].page = alloc_page(GFP_KERNEL);
  2255. if (!pl[i].page) {
  2256. dm_integrity_free_page_list(ic, pl);
  2257. return NULL;
  2258. }
  2259. if (i)
  2260. pl[i - 1].next = &pl[i];
  2261. }
  2262. return pl;
  2263. }
  2264. static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
  2265. {
  2266. unsigned i;
  2267. for (i = 0; i < ic->journal_sections; i++)
  2268. kvfree(sl[i]);
  2269. kvfree(sl);
  2270. }
  2271. static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
  2272. {
  2273. struct scatterlist **sl;
  2274. unsigned i;
  2275. sl = kvmalloc_array(ic->journal_sections,
  2276. sizeof(struct scatterlist *),
  2277. GFP_KERNEL | __GFP_ZERO);
  2278. if (!sl)
  2279. return NULL;
  2280. for (i = 0; i < ic->journal_sections; i++) {
  2281. struct scatterlist *s;
  2282. unsigned start_index, start_offset;
  2283. unsigned end_index, end_offset;
  2284. unsigned n_pages;
  2285. unsigned idx;
  2286. page_list_location(ic, i, 0, &start_index, &start_offset);
  2287. page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
  2288. n_pages = (end_index - start_index + 1);
  2289. s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
  2290. GFP_KERNEL);
  2291. if (!s) {
  2292. dm_integrity_free_journal_scatterlist(ic, sl);
  2293. return NULL;
  2294. }
  2295. sg_init_table(s, n_pages);
  2296. for (idx = start_index; idx <= end_index; idx++) {
  2297. char *va = lowmem_page_address(pl[idx].page);
  2298. unsigned start = 0, end = PAGE_SIZE;
  2299. if (idx == start_index)
  2300. start = start_offset;
  2301. if (idx == end_index)
  2302. end = end_offset + (1 << SECTOR_SHIFT);
  2303. sg_set_buf(&s[idx - start_index], va + start, end - start);
  2304. }
  2305. sl[i] = s;
  2306. }
  2307. return sl;
  2308. }
  2309. static void free_alg(struct alg_spec *a)
  2310. {
  2311. kzfree(a->alg_string);
  2312. kzfree(a->key);
  2313. memset(a, 0, sizeof *a);
  2314. }
  2315. static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
  2316. {
  2317. char *k;
  2318. free_alg(a);
  2319. a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
  2320. if (!a->alg_string)
  2321. goto nomem;
  2322. k = strchr(a->alg_string, ':');
  2323. if (k) {
  2324. *k = 0;
  2325. a->key_string = k + 1;
  2326. if (strlen(a->key_string) & 1)
  2327. goto inval;
  2328. a->key_size = strlen(a->key_string) / 2;
  2329. a->key = kmalloc(a->key_size, GFP_KERNEL);
  2330. if (!a->key)
  2331. goto nomem;
  2332. if (hex2bin(a->key, a->key_string, a->key_size))
  2333. goto inval;
  2334. }
  2335. return 0;
  2336. inval:
  2337. *error = error_inval;
  2338. return -EINVAL;
  2339. nomem:
  2340. *error = "Out of memory for an argument";
  2341. return -ENOMEM;
  2342. }
  2343. static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
  2344. char *error_alg, char *error_key)
  2345. {
  2346. int r;
  2347. if (a->alg_string) {
  2348. *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
  2349. if (IS_ERR(*hash)) {
  2350. *error = error_alg;
  2351. r = PTR_ERR(*hash);
  2352. *hash = NULL;
  2353. return r;
  2354. }
  2355. if (a->key) {
  2356. r = crypto_shash_setkey(*hash, a->key, a->key_size);
  2357. if (r) {
  2358. *error = error_key;
  2359. return r;
  2360. }
  2361. } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
  2362. *error = error_key;
  2363. return -ENOKEY;
  2364. }
  2365. }
  2366. return 0;
  2367. }
  2368. static int create_journal(struct dm_integrity_c *ic, char **error)
  2369. {
  2370. int r = 0;
  2371. unsigned i;
  2372. __u64 journal_pages, journal_desc_size, journal_tree_size;
  2373. unsigned char *crypt_data = NULL, *crypt_iv = NULL;
  2374. struct skcipher_request *req = NULL;
  2375. ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
  2376. ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
  2377. ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
  2378. ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
  2379. journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
  2380. PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
  2381. journal_desc_size = journal_pages * sizeof(struct page_list);
  2382. if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
  2383. *error = "Journal doesn't fit into memory";
  2384. r = -ENOMEM;
  2385. goto bad;
  2386. }
  2387. ic->journal_pages = journal_pages;
  2388. ic->journal = dm_integrity_alloc_page_list(ic);
  2389. if (!ic->journal) {
  2390. *error = "Could not allocate memory for journal";
  2391. r = -ENOMEM;
  2392. goto bad;
  2393. }
  2394. if (ic->journal_crypt_alg.alg_string) {
  2395. unsigned ivsize, blocksize;
  2396. struct journal_completion comp;
  2397. comp.ic = ic;
  2398. ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
  2399. if (IS_ERR(ic->journal_crypt)) {
  2400. *error = "Invalid journal cipher";
  2401. r = PTR_ERR(ic->journal_crypt);
  2402. ic->journal_crypt = NULL;
  2403. goto bad;
  2404. }
  2405. ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
  2406. blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
  2407. if (ic->journal_crypt_alg.key) {
  2408. r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
  2409. ic->journal_crypt_alg.key_size);
  2410. if (r) {
  2411. *error = "Error setting encryption key";
  2412. goto bad;
  2413. }
  2414. }
  2415. DEBUG_print("cipher %s, block size %u iv size %u\n",
  2416. ic->journal_crypt_alg.alg_string, blocksize, ivsize);
  2417. ic->journal_io = dm_integrity_alloc_page_list(ic);
  2418. if (!ic->journal_io) {
  2419. *error = "Could not allocate memory for journal io";
  2420. r = -ENOMEM;
  2421. goto bad;
  2422. }
  2423. if (blocksize == 1) {
  2424. struct scatterlist *sg;
  2425. req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2426. if (!req) {
  2427. *error = "Could not allocate crypt request";
  2428. r = -ENOMEM;
  2429. goto bad;
  2430. }
  2431. crypt_iv = kmalloc(ivsize, GFP_KERNEL);
  2432. if (!crypt_iv) {
  2433. *error = "Could not allocate iv";
  2434. r = -ENOMEM;
  2435. goto bad;
  2436. }
  2437. ic->journal_xor = dm_integrity_alloc_page_list(ic);
  2438. if (!ic->journal_xor) {
  2439. *error = "Could not allocate memory for journal xor";
  2440. r = -ENOMEM;
  2441. goto bad;
  2442. }
  2443. sg = kvmalloc_array(ic->journal_pages + 1,
  2444. sizeof(struct scatterlist),
  2445. GFP_KERNEL);
  2446. if (!sg) {
  2447. *error = "Unable to allocate sg list";
  2448. r = -ENOMEM;
  2449. goto bad;
  2450. }
  2451. sg_init_table(sg, ic->journal_pages + 1);
  2452. for (i = 0; i < ic->journal_pages; i++) {
  2453. char *va = lowmem_page_address(ic->journal_xor[i].page);
  2454. clear_page(va);
  2455. sg_set_buf(&sg[i], va, PAGE_SIZE);
  2456. }
  2457. sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
  2458. memset(crypt_iv, 0x00, ivsize);
  2459. skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
  2460. init_completion(&comp.comp);
  2461. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  2462. if (do_crypt(true, req, &comp))
  2463. wait_for_completion(&comp.comp);
  2464. kvfree(sg);
  2465. r = dm_integrity_failed(ic);
  2466. if (r) {
  2467. *error = "Unable to encrypt journal";
  2468. goto bad;
  2469. }
  2470. DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
  2471. crypto_free_skcipher(ic->journal_crypt);
  2472. ic->journal_crypt = NULL;
  2473. } else {
  2474. unsigned crypt_len = roundup(ivsize, blocksize);
  2475. req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2476. if (!req) {
  2477. *error = "Could not allocate crypt request";
  2478. r = -ENOMEM;
  2479. goto bad;
  2480. }
  2481. crypt_iv = kmalloc(ivsize, GFP_KERNEL);
  2482. if (!crypt_iv) {
  2483. *error = "Could not allocate iv";
  2484. r = -ENOMEM;
  2485. goto bad;
  2486. }
  2487. crypt_data = kmalloc(crypt_len, GFP_KERNEL);
  2488. if (!crypt_data) {
  2489. *error = "Unable to allocate crypt data";
  2490. r = -ENOMEM;
  2491. goto bad;
  2492. }
  2493. ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
  2494. if (!ic->journal_scatterlist) {
  2495. *error = "Unable to allocate sg list";
  2496. r = -ENOMEM;
  2497. goto bad;
  2498. }
  2499. ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
  2500. if (!ic->journal_io_scatterlist) {
  2501. *error = "Unable to allocate sg list";
  2502. r = -ENOMEM;
  2503. goto bad;
  2504. }
  2505. ic->sk_requests = kvmalloc_array(ic->journal_sections,
  2506. sizeof(struct skcipher_request *),
  2507. GFP_KERNEL | __GFP_ZERO);
  2508. if (!ic->sk_requests) {
  2509. *error = "Unable to allocate sk requests";
  2510. r = -ENOMEM;
  2511. goto bad;
  2512. }
  2513. for (i = 0; i < ic->journal_sections; i++) {
  2514. struct scatterlist sg;
  2515. struct skcipher_request *section_req;
  2516. __u32 section_le = cpu_to_le32(i);
  2517. memset(crypt_iv, 0x00, ivsize);
  2518. memset(crypt_data, 0x00, crypt_len);
  2519. memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
  2520. sg_init_one(&sg, crypt_data, crypt_len);
  2521. skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
  2522. init_completion(&comp.comp);
  2523. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  2524. if (do_crypt(true, req, &comp))
  2525. wait_for_completion(&comp.comp);
  2526. r = dm_integrity_failed(ic);
  2527. if (r) {
  2528. *error = "Unable to generate iv";
  2529. goto bad;
  2530. }
  2531. section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2532. if (!section_req) {
  2533. *error = "Unable to allocate crypt request";
  2534. r = -ENOMEM;
  2535. goto bad;
  2536. }
  2537. section_req->iv = kmalloc_array(ivsize, 2,
  2538. GFP_KERNEL);
  2539. if (!section_req->iv) {
  2540. skcipher_request_free(section_req);
  2541. *error = "Unable to allocate iv";
  2542. r = -ENOMEM;
  2543. goto bad;
  2544. }
  2545. memcpy(section_req->iv + ivsize, crypt_data, ivsize);
  2546. section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
  2547. ic->sk_requests[i] = section_req;
  2548. DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
  2549. }
  2550. }
  2551. }
  2552. for (i = 0; i < N_COMMIT_IDS; i++) {
  2553. unsigned j;
  2554. retest_commit_id:
  2555. for (j = 0; j < i; j++) {
  2556. if (ic->commit_ids[j] == ic->commit_ids[i]) {
  2557. ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
  2558. goto retest_commit_id;
  2559. }
  2560. }
  2561. DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
  2562. }
  2563. journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
  2564. if (journal_tree_size > ULONG_MAX) {
  2565. *error = "Journal doesn't fit into memory";
  2566. r = -ENOMEM;
  2567. goto bad;
  2568. }
  2569. ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
  2570. if (!ic->journal_tree) {
  2571. *error = "Could not allocate memory for journal tree";
  2572. r = -ENOMEM;
  2573. }
  2574. bad:
  2575. kfree(crypt_data);
  2576. kfree(crypt_iv);
  2577. skcipher_request_free(req);
  2578. return r;
  2579. }
  2580. /*
  2581. * Construct a integrity mapping
  2582. *
  2583. * Arguments:
  2584. * device
  2585. * offset from the start of the device
  2586. * tag size
  2587. * D - direct writes, J - journal writes, R - recovery mode
  2588. * number of optional arguments
  2589. * optional arguments:
  2590. * journal_sectors
  2591. * interleave_sectors
  2592. * buffer_sectors
  2593. * journal_watermark
  2594. * commit_time
  2595. * internal_hash
  2596. * journal_crypt
  2597. * journal_mac
  2598. * block_size
  2599. */
  2600. static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2601. {
  2602. struct dm_integrity_c *ic;
  2603. char dummy;
  2604. int r;
  2605. unsigned extra_args;
  2606. struct dm_arg_set as;
  2607. static const struct dm_arg _args[] = {
  2608. {0, 9, "Invalid number of feature args"},
  2609. };
  2610. unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
  2611. bool recalculate;
  2612. bool should_write_sb;
  2613. __u64 threshold;
  2614. unsigned long long start;
  2615. #define DIRECT_ARGUMENTS 4
  2616. if (argc <= DIRECT_ARGUMENTS) {
  2617. ti->error = "Invalid argument count";
  2618. return -EINVAL;
  2619. }
  2620. ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
  2621. if (!ic) {
  2622. ti->error = "Cannot allocate integrity context";
  2623. return -ENOMEM;
  2624. }
  2625. ti->private = ic;
  2626. ti->per_io_data_size = sizeof(struct dm_integrity_io);
  2627. ic->in_progress = RB_ROOT;
  2628. INIT_LIST_HEAD(&ic->wait_list);
  2629. init_waitqueue_head(&ic->endio_wait);
  2630. bio_list_init(&ic->flush_bio_list);
  2631. init_waitqueue_head(&ic->copy_to_journal_wait);
  2632. init_completion(&ic->crypto_backoff);
  2633. atomic64_set(&ic->number_of_mismatches, 0);
  2634. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
  2635. if (r) {
  2636. ti->error = "Device lookup failed";
  2637. goto bad;
  2638. }
  2639. if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
  2640. ti->error = "Invalid starting offset";
  2641. r = -EINVAL;
  2642. goto bad;
  2643. }
  2644. ic->start = start;
  2645. if (strcmp(argv[2], "-")) {
  2646. if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
  2647. ti->error = "Invalid tag size";
  2648. r = -EINVAL;
  2649. goto bad;
  2650. }
  2651. }
  2652. if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
  2653. ic->mode = argv[3][0];
  2654. else {
  2655. ti->error = "Invalid mode (expecting J, D, R)";
  2656. r = -EINVAL;
  2657. goto bad;
  2658. }
  2659. journal_sectors = 0;
  2660. interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
  2661. buffer_sectors = DEFAULT_BUFFER_SECTORS;
  2662. journal_watermark = DEFAULT_JOURNAL_WATERMARK;
  2663. sync_msec = DEFAULT_SYNC_MSEC;
  2664. recalculate = false;
  2665. ic->sectors_per_block = 1;
  2666. as.argc = argc - DIRECT_ARGUMENTS;
  2667. as.argv = argv + DIRECT_ARGUMENTS;
  2668. r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
  2669. if (r)
  2670. goto bad;
  2671. while (extra_args--) {
  2672. const char *opt_string;
  2673. unsigned val;
  2674. opt_string = dm_shift_arg(&as);
  2675. if (!opt_string) {
  2676. r = -EINVAL;
  2677. ti->error = "Not enough feature arguments";
  2678. goto bad;
  2679. }
  2680. if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
  2681. journal_sectors = val ? val : 1;
  2682. else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
  2683. interleave_sectors = val;
  2684. else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
  2685. buffer_sectors = val;
  2686. else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
  2687. journal_watermark = val;
  2688. else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
  2689. sync_msec = val;
  2690. else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
  2691. if (ic->meta_dev) {
  2692. dm_put_device(ti, ic->meta_dev);
  2693. ic->meta_dev = NULL;
  2694. }
  2695. r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
  2696. if (r) {
  2697. ti->error = "Device lookup failed";
  2698. goto bad;
  2699. }
  2700. } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
  2701. if (val < 1 << SECTOR_SHIFT ||
  2702. val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
  2703. (val & (val -1))) {
  2704. r = -EINVAL;
  2705. ti->error = "Invalid block_size argument";
  2706. goto bad;
  2707. }
  2708. ic->sectors_per_block = val >> SECTOR_SHIFT;
  2709. } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
  2710. r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
  2711. "Invalid internal_hash argument");
  2712. if (r)
  2713. goto bad;
  2714. } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
  2715. r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
  2716. "Invalid journal_crypt argument");
  2717. if (r)
  2718. goto bad;
  2719. } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
  2720. r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
  2721. "Invalid journal_mac argument");
  2722. if (r)
  2723. goto bad;
  2724. } else if (!strcmp(opt_string, "recalculate")) {
  2725. recalculate = true;
  2726. } else {
  2727. r = -EINVAL;
  2728. ti->error = "Invalid argument";
  2729. goto bad;
  2730. }
  2731. }
  2732. ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
  2733. if (!ic->meta_dev)
  2734. ic->meta_device_sectors = ic->data_device_sectors;
  2735. else
  2736. ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  2737. if (!journal_sectors) {
  2738. journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
  2739. ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
  2740. }
  2741. if (!buffer_sectors)
  2742. buffer_sectors = 1;
  2743. ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
  2744. r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
  2745. "Invalid internal hash", "Error setting internal hash key");
  2746. if (r)
  2747. goto bad;
  2748. r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
  2749. "Invalid journal mac", "Error setting journal mac key");
  2750. if (r)
  2751. goto bad;
  2752. if (!ic->tag_size) {
  2753. if (!ic->internal_hash) {
  2754. ti->error = "Unknown tag size";
  2755. r = -EINVAL;
  2756. goto bad;
  2757. }
  2758. ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
  2759. }
  2760. if (ic->tag_size > MAX_TAG_SIZE) {
  2761. ti->error = "Too big tag size";
  2762. r = -EINVAL;
  2763. goto bad;
  2764. }
  2765. if (!(ic->tag_size & (ic->tag_size - 1)))
  2766. ic->log2_tag_size = __ffs(ic->tag_size);
  2767. else
  2768. ic->log2_tag_size = -1;
  2769. ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
  2770. ic->autocommit_msec = sync_msec;
  2771. timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
  2772. ic->io = dm_io_client_create();
  2773. if (IS_ERR(ic->io)) {
  2774. r = PTR_ERR(ic->io);
  2775. ic->io = NULL;
  2776. ti->error = "Cannot allocate dm io";
  2777. goto bad;
  2778. }
  2779. r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
  2780. if (r) {
  2781. ti->error = "Cannot allocate mempool";
  2782. goto bad;
  2783. }
  2784. ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
  2785. WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
  2786. if (!ic->metadata_wq) {
  2787. ti->error = "Cannot allocate workqueue";
  2788. r = -ENOMEM;
  2789. goto bad;
  2790. }
  2791. /*
  2792. * If this workqueue were percpu, it would cause bio reordering
  2793. * and reduced performance.
  2794. */
  2795. ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
  2796. if (!ic->wait_wq) {
  2797. ti->error = "Cannot allocate workqueue";
  2798. r = -ENOMEM;
  2799. goto bad;
  2800. }
  2801. ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
  2802. if (!ic->commit_wq) {
  2803. ti->error = "Cannot allocate workqueue";
  2804. r = -ENOMEM;
  2805. goto bad;
  2806. }
  2807. INIT_WORK(&ic->commit_work, integrity_commit);
  2808. if (ic->mode == 'J') {
  2809. ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
  2810. if (!ic->writer_wq) {
  2811. ti->error = "Cannot allocate workqueue";
  2812. r = -ENOMEM;
  2813. goto bad;
  2814. }
  2815. INIT_WORK(&ic->writer_work, integrity_writer);
  2816. }
  2817. ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
  2818. if (!ic->sb) {
  2819. r = -ENOMEM;
  2820. ti->error = "Cannot allocate superblock area";
  2821. goto bad;
  2822. }
  2823. r = sync_rw_sb(ic, REQ_OP_READ, 0);
  2824. if (r) {
  2825. ti->error = "Error reading superblock";
  2826. goto bad;
  2827. }
  2828. should_write_sb = false;
  2829. if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
  2830. if (ic->mode != 'R') {
  2831. if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
  2832. r = -EINVAL;
  2833. ti->error = "The device is not initialized";
  2834. goto bad;
  2835. }
  2836. }
  2837. r = initialize_superblock(ic, journal_sectors, interleave_sectors);
  2838. if (r) {
  2839. ti->error = "Could not initialize superblock";
  2840. goto bad;
  2841. }
  2842. if (ic->mode != 'R')
  2843. should_write_sb = true;
  2844. }
  2845. if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
  2846. r = -EINVAL;
  2847. ti->error = "Unknown version";
  2848. goto bad;
  2849. }
  2850. if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
  2851. r = -EINVAL;
  2852. ti->error = "Tag size doesn't match the information in superblock";
  2853. goto bad;
  2854. }
  2855. if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
  2856. r = -EINVAL;
  2857. ti->error = "Block size doesn't match the information in superblock";
  2858. goto bad;
  2859. }
  2860. if (!le32_to_cpu(ic->sb->journal_sections)) {
  2861. r = -EINVAL;
  2862. ti->error = "Corrupted superblock, journal_sections is 0";
  2863. goto bad;
  2864. }
  2865. /* make sure that ti->max_io_len doesn't overflow */
  2866. if (!ic->meta_dev) {
  2867. if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
  2868. ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
  2869. r = -EINVAL;
  2870. ti->error = "Invalid interleave_sectors in the superblock";
  2871. goto bad;
  2872. }
  2873. } else {
  2874. if (ic->sb->log2_interleave_sectors) {
  2875. r = -EINVAL;
  2876. ti->error = "Invalid interleave_sectors in the superblock";
  2877. goto bad;
  2878. }
  2879. }
  2880. ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
  2881. if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
  2882. /* test for overflow */
  2883. r = -EINVAL;
  2884. ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
  2885. goto bad;
  2886. }
  2887. if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
  2888. r = -EINVAL;
  2889. ti->error = "Journal mac mismatch";
  2890. goto bad;
  2891. }
  2892. try_smaller_buffer:
  2893. r = calculate_device_limits(ic);
  2894. if (r) {
  2895. if (ic->meta_dev) {
  2896. if (ic->log2_buffer_sectors > 3) {
  2897. ic->log2_buffer_sectors--;
  2898. goto try_smaller_buffer;
  2899. }
  2900. }
  2901. ti->error = "The device is too small";
  2902. goto bad;
  2903. }
  2904. if (!ic->meta_dev)
  2905. ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
  2906. if (ti->len > ic->provided_data_sectors) {
  2907. r = -EINVAL;
  2908. ti->error = "Not enough provided sectors for requested mapping size";
  2909. goto bad;
  2910. }
  2911. threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
  2912. threshold += 50;
  2913. do_div(threshold, 100);
  2914. ic->free_sectors_threshold = threshold;
  2915. DEBUG_print("initialized:\n");
  2916. DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
  2917. DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
  2918. DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
  2919. DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
  2920. DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
  2921. DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
  2922. DEBUG_print(" journal_entries %u\n", ic->journal_entries);
  2923. DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
  2924. DEBUG_print(" data_device_sectors 0x%llx\n", (unsigned long long)ic->data_device_sectors);
  2925. DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
  2926. DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
  2927. DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
  2928. DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
  2929. (unsigned long long)ic->provided_data_sectors);
  2930. DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
  2931. if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
  2932. ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
  2933. ic->sb->recalc_sector = cpu_to_le64(0);
  2934. }
  2935. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
  2936. if (!ic->internal_hash) {
  2937. r = -EINVAL;
  2938. ti->error = "Recalculate is only valid with internal hash";
  2939. goto bad;
  2940. }
  2941. ic->recalc_wq = alloc_workqueue("dm-intergrity-recalc", WQ_MEM_RECLAIM, 1);
  2942. if (!ic->recalc_wq ) {
  2943. ti->error = "Cannot allocate workqueue";
  2944. r = -ENOMEM;
  2945. goto bad;
  2946. }
  2947. INIT_WORK(&ic->recalc_work, integrity_recalc);
  2948. ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
  2949. if (!ic->recalc_buffer) {
  2950. ti->error = "Cannot allocate buffer for recalculating";
  2951. r = -ENOMEM;
  2952. goto bad;
  2953. }
  2954. ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
  2955. ic->tag_size, GFP_KERNEL);
  2956. if (!ic->recalc_tags) {
  2957. ti->error = "Cannot allocate tags for recalculating";
  2958. r = -ENOMEM;
  2959. goto bad;
  2960. }
  2961. }
  2962. ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
  2963. 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
  2964. if (IS_ERR(ic->bufio)) {
  2965. r = PTR_ERR(ic->bufio);
  2966. ti->error = "Cannot initialize dm-bufio";
  2967. ic->bufio = NULL;
  2968. goto bad;
  2969. }
  2970. dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
  2971. if (ic->mode != 'R') {
  2972. r = create_journal(ic, &ti->error);
  2973. if (r)
  2974. goto bad;
  2975. }
  2976. if (should_write_sb) {
  2977. int r;
  2978. init_journal(ic, 0, ic->journal_sections, 0);
  2979. r = dm_integrity_failed(ic);
  2980. if (unlikely(r)) {
  2981. ti->error = "Error initializing journal";
  2982. goto bad;
  2983. }
  2984. r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
  2985. if (r) {
  2986. ti->error = "Error initializing superblock";
  2987. goto bad;
  2988. }
  2989. ic->just_formatted = true;
  2990. }
  2991. if (!ic->meta_dev) {
  2992. r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
  2993. if (r)
  2994. goto bad;
  2995. }
  2996. if (!ic->internal_hash)
  2997. dm_integrity_set(ti, ic);
  2998. ti->num_flush_bios = 1;
  2999. ti->flush_supported = true;
  3000. return 0;
  3001. bad:
  3002. dm_integrity_dtr(ti);
  3003. return r;
  3004. }
  3005. static void dm_integrity_dtr(struct dm_target *ti)
  3006. {
  3007. struct dm_integrity_c *ic = ti->private;
  3008. BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
  3009. BUG_ON(!list_empty(&ic->wait_list));
  3010. if (ic->metadata_wq)
  3011. destroy_workqueue(ic->metadata_wq);
  3012. if (ic->wait_wq)
  3013. destroy_workqueue(ic->wait_wq);
  3014. if (ic->commit_wq)
  3015. destroy_workqueue(ic->commit_wq);
  3016. if (ic->writer_wq)
  3017. destroy_workqueue(ic->writer_wq);
  3018. if (ic->recalc_wq)
  3019. destroy_workqueue(ic->recalc_wq);
  3020. if (ic->recalc_buffer)
  3021. vfree(ic->recalc_buffer);
  3022. if (ic->recalc_tags)
  3023. kvfree(ic->recalc_tags);
  3024. if (ic->bufio)
  3025. dm_bufio_client_destroy(ic->bufio);
  3026. mempool_exit(&ic->journal_io_mempool);
  3027. if (ic->io)
  3028. dm_io_client_destroy(ic->io);
  3029. if (ic->dev)
  3030. dm_put_device(ti, ic->dev);
  3031. if (ic->meta_dev)
  3032. dm_put_device(ti, ic->meta_dev);
  3033. dm_integrity_free_page_list(ic, ic->journal);
  3034. dm_integrity_free_page_list(ic, ic->journal_io);
  3035. dm_integrity_free_page_list(ic, ic->journal_xor);
  3036. if (ic->journal_scatterlist)
  3037. dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
  3038. if (ic->journal_io_scatterlist)
  3039. dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
  3040. if (ic->sk_requests) {
  3041. unsigned i;
  3042. for (i = 0; i < ic->journal_sections; i++) {
  3043. struct skcipher_request *req = ic->sk_requests[i];
  3044. if (req) {
  3045. kzfree(req->iv);
  3046. skcipher_request_free(req);
  3047. }
  3048. }
  3049. kvfree(ic->sk_requests);
  3050. }
  3051. kvfree(ic->journal_tree);
  3052. if (ic->sb)
  3053. free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
  3054. if (ic->internal_hash)
  3055. crypto_free_shash(ic->internal_hash);
  3056. free_alg(&ic->internal_hash_alg);
  3057. if (ic->journal_crypt)
  3058. crypto_free_skcipher(ic->journal_crypt);
  3059. free_alg(&ic->journal_crypt_alg);
  3060. if (ic->journal_mac)
  3061. crypto_free_shash(ic->journal_mac);
  3062. free_alg(&ic->journal_mac_alg);
  3063. kfree(ic);
  3064. }
  3065. static struct target_type integrity_target = {
  3066. .name = "integrity",
  3067. .version = {1, 2, 0},
  3068. .module = THIS_MODULE,
  3069. .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
  3070. .ctr = dm_integrity_ctr,
  3071. .dtr = dm_integrity_dtr,
  3072. .map = dm_integrity_map,
  3073. .postsuspend = dm_integrity_postsuspend,
  3074. .resume = dm_integrity_resume,
  3075. .status = dm_integrity_status,
  3076. .iterate_devices = dm_integrity_iterate_devices,
  3077. .io_hints = dm_integrity_io_hints,
  3078. };
  3079. int __init dm_integrity_init(void)
  3080. {
  3081. int r;
  3082. journal_io_cache = kmem_cache_create("integrity_journal_io",
  3083. sizeof(struct journal_io), 0, 0, NULL);
  3084. if (!journal_io_cache) {
  3085. DMERR("can't allocate journal io cache");
  3086. return -ENOMEM;
  3087. }
  3088. r = dm_register_target(&integrity_target);
  3089. if (r < 0)
  3090. DMERR("register failed %d", r);
  3091. return r;
  3092. }
  3093. void dm_integrity_exit(void)
  3094. {
  3095. dm_unregister_target(&integrity_target);
  3096. kmem_cache_destroy(journal_io_cache);
  3097. }
  3098. module_init(dm_integrity_init);
  3099. module_exit(dm_integrity_exit);
  3100. MODULE_AUTHOR("Milan Broz");
  3101. MODULE_AUTHOR("Mikulas Patocka");
  3102. MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
  3103. MODULE_LICENSE("GPL");