amd_iommu.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <jroedel@suse.de>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/acpi.h>
  22. #include <linux/amba/bus.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/pci-ats.h>
  25. #include <linux/bitmap.h>
  26. #include <linux/slab.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/dma-direct.h>
  31. #include <linux/iommu-helper.h>
  32. #include <linux/iommu.h>
  33. #include <linux/delay.h>
  34. #include <linux/amd-iommu.h>
  35. #include <linux/notifier.h>
  36. #include <linux/export.h>
  37. #include <linux/irq.h>
  38. #include <linux/msi.h>
  39. #include <linux/dma-contiguous.h>
  40. #include <linux/irqdomain.h>
  41. #include <linux/percpu.h>
  42. #include <linux/iova.h>
  43. #include <asm/irq_remapping.h>
  44. #include <asm/io_apic.h>
  45. #include <asm/apic.h>
  46. #include <asm/hw_irq.h>
  47. #include <asm/msidef.h>
  48. #include <asm/proto.h>
  49. #include <asm/iommu.h>
  50. #include <asm/gart.h>
  51. #include <asm/dma.h>
  52. #include "amd_iommu_proto.h"
  53. #include "amd_iommu_types.h"
  54. #include "irq_remapping.h"
  55. #define AMD_IOMMU_MAPPING_ERROR 0
  56. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  57. #define LOOP_TIMEOUT 100000
  58. /* IO virtual address start page frame number */
  59. #define IOVA_START_PFN (1)
  60. #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
  61. /* Reserved IOVA ranges */
  62. #define MSI_RANGE_START (0xfee00000)
  63. #define MSI_RANGE_END (0xfeefffff)
  64. #define HT_RANGE_START (0xfd00000000ULL)
  65. #define HT_RANGE_END (0xffffffffffULL)
  66. /*
  67. * This bitmap is used to advertise the page sizes our hardware support
  68. * to the IOMMU core, which will then use this information to split
  69. * physically contiguous memory regions it is mapping into page sizes
  70. * that we support.
  71. *
  72. * 512GB Pages are not supported due to a hardware bug
  73. */
  74. #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
  75. static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
  76. static DEFINE_SPINLOCK(pd_bitmap_lock);
  77. /* List of all available dev_data structures */
  78. static LLIST_HEAD(dev_data_list);
  79. LIST_HEAD(ioapic_map);
  80. LIST_HEAD(hpet_map);
  81. LIST_HEAD(acpihid_map);
  82. /*
  83. * Domain for untranslated devices - only allocated
  84. * if iommu=pt passed on kernel cmd line.
  85. */
  86. const struct iommu_ops amd_iommu_ops;
  87. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  88. int amd_iommu_max_glx_val = -1;
  89. static const struct dma_map_ops amd_iommu_dma_ops;
  90. /*
  91. * general struct to manage commands send to an IOMMU
  92. */
  93. struct iommu_cmd {
  94. u32 data[4];
  95. };
  96. struct kmem_cache *amd_iommu_irq_cache;
  97. static void update_domain(struct protection_domain *domain);
  98. static int protection_domain_init(struct protection_domain *domain);
  99. static void detach_device(struct device *dev);
  100. static void iova_domain_flush_tlb(struct iova_domain *iovad);
  101. /*
  102. * Data container for a dma_ops specific protection domain
  103. */
  104. struct dma_ops_domain {
  105. /* generic protection domain information */
  106. struct protection_domain domain;
  107. /* IOVA RB-Tree */
  108. struct iova_domain iovad;
  109. };
  110. static struct iova_domain reserved_iova_ranges;
  111. static struct lock_class_key reserved_rbtree_key;
  112. /****************************************************************************
  113. *
  114. * Helper functions
  115. *
  116. ****************************************************************************/
  117. static inline int match_hid_uid(struct device *dev,
  118. struct acpihid_map_entry *entry)
  119. {
  120. const char *hid, *uid;
  121. hid = acpi_device_hid(ACPI_COMPANION(dev));
  122. uid = acpi_device_uid(ACPI_COMPANION(dev));
  123. if (!hid || !(*hid))
  124. return -ENODEV;
  125. if (!uid || !(*uid))
  126. return strcmp(hid, entry->hid);
  127. if (!(*entry->uid))
  128. return strcmp(hid, entry->hid);
  129. return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
  130. }
  131. static inline u16 get_pci_device_id(struct device *dev)
  132. {
  133. struct pci_dev *pdev = to_pci_dev(dev);
  134. return PCI_DEVID(pdev->bus->number, pdev->devfn);
  135. }
  136. static inline int get_acpihid_device_id(struct device *dev,
  137. struct acpihid_map_entry **entry)
  138. {
  139. struct acpihid_map_entry *p;
  140. list_for_each_entry(p, &acpihid_map, list) {
  141. if (!match_hid_uid(dev, p)) {
  142. if (entry)
  143. *entry = p;
  144. return p->devid;
  145. }
  146. }
  147. return -EINVAL;
  148. }
  149. static inline int get_device_id(struct device *dev)
  150. {
  151. int devid;
  152. if (dev_is_pci(dev))
  153. devid = get_pci_device_id(dev);
  154. else
  155. devid = get_acpihid_device_id(dev, NULL);
  156. return devid;
  157. }
  158. static struct protection_domain *to_pdomain(struct iommu_domain *dom)
  159. {
  160. return container_of(dom, struct protection_domain, domain);
  161. }
  162. static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
  163. {
  164. BUG_ON(domain->flags != PD_DMA_OPS_MASK);
  165. return container_of(domain, struct dma_ops_domain, domain);
  166. }
  167. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  168. {
  169. struct iommu_dev_data *dev_data;
  170. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  171. if (!dev_data)
  172. return NULL;
  173. dev_data->devid = devid;
  174. ratelimit_default_init(&dev_data->rs);
  175. llist_add(&dev_data->dev_data_list, &dev_data_list);
  176. return dev_data;
  177. }
  178. static struct iommu_dev_data *search_dev_data(u16 devid)
  179. {
  180. struct iommu_dev_data *dev_data;
  181. struct llist_node *node;
  182. if (llist_empty(&dev_data_list))
  183. return NULL;
  184. node = dev_data_list.first;
  185. llist_for_each_entry(dev_data, node, dev_data_list) {
  186. if (dev_data->devid == devid)
  187. return dev_data;
  188. }
  189. return NULL;
  190. }
  191. static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
  192. {
  193. *(u16 *)data = alias;
  194. return 0;
  195. }
  196. static u16 get_alias(struct device *dev)
  197. {
  198. struct pci_dev *pdev = to_pci_dev(dev);
  199. u16 devid, ivrs_alias, pci_alias;
  200. /* The callers make sure that get_device_id() does not fail here */
  201. devid = get_device_id(dev);
  202. /* For ACPI HID devices, we simply return the devid as such */
  203. if (!dev_is_pci(dev))
  204. return devid;
  205. ivrs_alias = amd_iommu_alias_table[devid];
  206. pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
  207. if (ivrs_alias == pci_alias)
  208. return ivrs_alias;
  209. /*
  210. * DMA alias showdown
  211. *
  212. * The IVRS is fairly reliable in telling us about aliases, but it
  213. * can't know about every screwy device. If we don't have an IVRS
  214. * reported alias, use the PCI reported alias. In that case we may
  215. * still need to initialize the rlookup and dev_table entries if the
  216. * alias is to a non-existent device.
  217. */
  218. if (ivrs_alias == devid) {
  219. if (!amd_iommu_rlookup_table[pci_alias]) {
  220. amd_iommu_rlookup_table[pci_alias] =
  221. amd_iommu_rlookup_table[devid];
  222. memcpy(amd_iommu_dev_table[pci_alias].data,
  223. amd_iommu_dev_table[devid].data,
  224. sizeof(amd_iommu_dev_table[pci_alias].data));
  225. }
  226. return pci_alias;
  227. }
  228. pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
  229. "for device %s[%04x:%04x], kernel reported alias "
  230. "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
  231. PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
  232. PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
  233. PCI_FUNC(pci_alias));
  234. /*
  235. * If we don't have a PCI DMA alias and the IVRS alias is on the same
  236. * bus, then the IVRS table may know about a quirk that we don't.
  237. */
  238. if (pci_alias == devid &&
  239. PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
  240. pci_add_dma_alias(pdev, ivrs_alias & 0xff);
  241. pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
  242. PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
  243. dev_name(dev));
  244. }
  245. return ivrs_alias;
  246. }
  247. static struct iommu_dev_data *find_dev_data(u16 devid)
  248. {
  249. struct iommu_dev_data *dev_data;
  250. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  251. dev_data = search_dev_data(devid);
  252. if (dev_data == NULL) {
  253. dev_data = alloc_dev_data(devid);
  254. if (!dev_data)
  255. return NULL;
  256. if (translation_pre_enabled(iommu))
  257. dev_data->defer_attach = true;
  258. }
  259. return dev_data;
  260. }
  261. struct iommu_dev_data *get_dev_data(struct device *dev)
  262. {
  263. return dev->archdata.iommu;
  264. }
  265. EXPORT_SYMBOL(get_dev_data);
  266. /*
  267. * Find or create an IOMMU group for a acpihid device.
  268. */
  269. static struct iommu_group *acpihid_device_group(struct device *dev)
  270. {
  271. struct acpihid_map_entry *p, *entry = NULL;
  272. int devid;
  273. devid = get_acpihid_device_id(dev, &entry);
  274. if (devid < 0)
  275. return ERR_PTR(devid);
  276. list_for_each_entry(p, &acpihid_map, list) {
  277. if ((devid == p->devid) && p->group)
  278. entry->group = p->group;
  279. }
  280. if (!entry->group)
  281. entry->group = generic_device_group(dev);
  282. else
  283. iommu_group_ref_get(entry->group);
  284. return entry->group;
  285. }
  286. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  287. {
  288. static const int caps[] = {
  289. PCI_EXT_CAP_ID_ATS,
  290. PCI_EXT_CAP_ID_PRI,
  291. PCI_EXT_CAP_ID_PASID,
  292. };
  293. int i, pos;
  294. if (pci_ats_disabled())
  295. return false;
  296. for (i = 0; i < 3; ++i) {
  297. pos = pci_find_ext_capability(pdev, caps[i]);
  298. if (pos == 0)
  299. return false;
  300. }
  301. return true;
  302. }
  303. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  304. {
  305. struct iommu_dev_data *dev_data;
  306. dev_data = get_dev_data(&pdev->dev);
  307. return dev_data->errata & (1 << erratum) ? true : false;
  308. }
  309. /*
  310. * This function checks if the driver got a valid device from the caller to
  311. * avoid dereferencing invalid pointers.
  312. */
  313. static bool check_device(struct device *dev)
  314. {
  315. int devid;
  316. if (!dev || !dev->dma_mask)
  317. return false;
  318. devid = get_device_id(dev);
  319. if (devid < 0)
  320. return false;
  321. /* Out of our scope? */
  322. if (devid > amd_iommu_last_bdf)
  323. return false;
  324. if (amd_iommu_rlookup_table[devid] == NULL)
  325. return false;
  326. return true;
  327. }
  328. static void init_iommu_group(struct device *dev)
  329. {
  330. struct iommu_group *group;
  331. group = iommu_group_get_for_dev(dev);
  332. if (IS_ERR(group))
  333. return;
  334. iommu_group_put(group);
  335. }
  336. static int iommu_init_device(struct device *dev)
  337. {
  338. struct iommu_dev_data *dev_data;
  339. struct amd_iommu *iommu;
  340. int devid;
  341. if (dev->archdata.iommu)
  342. return 0;
  343. devid = get_device_id(dev);
  344. if (devid < 0)
  345. return devid;
  346. iommu = amd_iommu_rlookup_table[devid];
  347. dev_data = find_dev_data(devid);
  348. if (!dev_data)
  349. return -ENOMEM;
  350. dev_data->alias = get_alias(dev);
  351. /*
  352. * By default we use passthrough mode for IOMMUv2 capable device.
  353. * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
  354. * invalid address), we ignore the capability for the device so
  355. * it'll be forced to go into translation mode.
  356. */
  357. if ((iommu_pass_through || !amd_iommu_force_isolation) &&
  358. dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
  359. struct amd_iommu *iommu;
  360. iommu = amd_iommu_rlookup_table[dev_data->devid];
  361. dev_data->iommu_v2 = iommu->is_iommu_v2;
  362. }
  363. dev->archdata.iommu = dev_data;
  364. iommu_device_link(&iommu->iommu, dev);
  365. return 0;
  366. }
  367. static void iommu_ignore_device(struct device *dev)
  368. {
  369. u16 alias;
  370. int devid;
  371. devid = get_device_id(dev);
  372. if (devid < 0)
  373. return;
  374. alias = get_alias(dev);
  375. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  376. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  377. amd_iommu_rlookup_table[devid] = NULL;
  378. amd_iommu_rlookup_table[alias] = NULL;
  379. }
  380. static void iommu_uninit_device(struct device *dev)
  381. {
  382. struct iommu_dev_data *dev_data;
  383. struct amd_iommu *iommu;
  384. int devid;
  385. devid = get_device_id(dev);
  386. if (devid < 0)
  387. return;
  388. iommu = amd_iommu_rlookup_table[devid];
  389. dev_data = search_dev_data(devid);
  390. if (!dev_data)
  391. return;
  392. if (dev_data->domain)
  393. detach_device(dev);
  394. iommu_device_unlink(&iommu->iommu, dev);
  395. iommu_group_remove_device(dev);
  396. /* Remove dma-ops */
  397. dev->dma_ops = NULL;
  398. /*
  399. * We keep dev_data around for unplugged devices and reuse it when the
  400. * device is re-plugged - not doing so would introduce a ton of races.
  401. */
  402. }
  403. /****************************************************************************
  404. *
  405. * Interrupt handling functions
  406. *
  407. ****************************************************************************/
  408. static void dump_dte_entry(u16 devid)
  409. {
  410. int i;
  411. for (i = 0; i < 4; ++i)
  412. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  413. amd_iommu_dev_table[devid].data[i]);
  414. }
  415. static void dump_command(unsigned long phys_addr)
  416. {
  417. struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
  418. int i;
  419. for (i = 0; i < 4; ++i)
  420. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  421. }
  422. static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
  423. u64 address, int flags)
  424. {
  425. struct iommu_dev_data *dev_data = NULL;
  426. struct pci_dev *pdev;
  427. pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
  428. devid & 0xff);
  429. if (pdev)
  430. dev_data = get_dev_data(&pdev->dev);
  431. if (dev_data && __ratelimit(&dev_data->rs)) {
  432. dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  433. domain_id, address, flags);
  434. } else if (printk_ratelimit()) {
  435. pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  436. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  437. domain_id, address, flags);
  438. }
  439. if (pdev)
  440. pci_dev_put(pdev);
  441. }
  442. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  443. {
  444. struct device *dev = iommu->iommu.dev;
  445. int type, devid, pasid, flags, tag;
  446. volatile u32 *event = __evt;
  447. int count = 0;
  448. u64 address;
  449. retry:
  450. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  451. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  452. pasid = PPR_PASID(*(u64 *)&event[0]);
  453. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  454. address = (u64)(((u64)event[3]) << 32) | event[2];
  455. if (type == 0) {
  456. /* Did we hit the erratum? */
  457. if (++count == LOOP_TIMEOUT) {
  458. pr_err("AMD-Vi: No event written to event log\n");
  459. return;
  460. }
  461. udelay(1);
  462. goto retry;
  463. }
  464. if (type == EVENT_TYPE_IO_FAULT) {
  465. amd_iommu_report_page_fault(devid, pasid, address, flags);
  466. return;
  467. } else {
  468. dev_err(dev, "AMD-Vi: Event logged [");
  469. }
  470. switch (type) {
  471. case EVENT_TYPE_ILL_DEV:
  472. dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
  473. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  474. pasid, address, flags);
  475. dump_dte_entry(devid);
  476. break;
  477. case EVENT_TYPE_DEV_TAB_ERR:
  478. dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  479. "address=0x%016llx flags=0x%04x]\n",
  480. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  481. address, flags);
  482. break;
  483. case EVENT_TYPE_PAGE_TAB_ERR:
  484. dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  485. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  486. pasid, address, flags);
  487. break;
  488. case EVENT_TYPE_ILL_CMD:
  489. dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  490. dump_command(address);
  491. break;
  492. case EVENT_TYPE_CMD_HARD_ERR:
  493. dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
  494. address, flags);
  495. break;
  496. case EVENT_TYPE_IOTLB_INV_TO:
  497. dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
  498. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  499. address);
  500. break;
  501. case EVENT_TYPE_INV_DEV_REQ:
  502. dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
  503. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  504. pasid, address, flags);
  505. break;
  506. case EVENT_TYPE_INV_PPR_REQ:
  507. pasid = ((event[0] >> 16) & 0xFFFF)
  508. | ((event[1] << 6) & 0xF0000);
  509. tag = event[1] & 0x03FF;
  510. dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
  511. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  512. pasid, address, flags);
  513. break;
  514. default:
  515. dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
  516. event[0], event[1], event[2], event[3]);
  517. }
  518. memset(__evt, 0, 4 * sizeof(u32));
  519. }
  520. static void iommu_poll_events(struct amd_iommu *iommu)
  521. {
  522. u32 head, tail;
  523. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  524. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  525. while (head != tail) {
  526. iommu_print_event(iommu, iommu->evt_buf + head);
  527. head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
  528. }
  529. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  530. }
  531. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  532. {
  533. struct amd_iommu_fault fault;
  534. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  535. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  536. return;
  537. }
  538. fault.address = raw[1];
  539. fault.pasid = PPR_PASID(raw[0]);
  540. fault.device_id = PPR_DEVID(raw[0]);
  541. fault.tag = PPR_TAG(raw[0]);
  542. fault.flags = PPR_FLAGS(raw[0]);
  543. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  544. }
  545. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  546. {
  547. u32 head, tail;
  548. if (iommu->ppr_log == NULL)
  549. return;
  550. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  551. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  552. while (head != tail) {
  553. volatile u64 *raw;
  554. u64 entry[2];
  555. int i;
  556. raw = (u64 *)(iommu->ppr_log + head);
  557. /*
  558. * Hardware bug: Interrupt may arrive before the entry is
  559. * written to memory. If this happens we need to wait for the
  560. * entry to arrive.
  561. */
  562. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  563. if (PPR_REQ_TYPE(raw[0]) != 0)
  564. break;
  565. udelay(1);
  566. }
  567. /* Avoid memcpy function-call overhead */
  568. entry[0] = raw[0];
  569. entry[1] = raw[1];
  570. /*
  571. * To detect the hardware bug we need to clear the entry
  572. * back to zero.
  573. */
  574. raw[0] = raw[1] = 0UL;
  575. /* Update head pointer of hardware ring-buffer */
  576. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  577. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  578. /* Handle PPR entry */
  579. iommu_handle_ppr_entry(iommu, entry);
  580. /* Refresh ring-buffer information */
  581. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  582. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  583. }
  584. }
  585. #ifdef CONFIG_IRQ_REMAP
  586. static int (*iommu_ga_log_notifier)(u32);
  587. int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
  588. {
  589. iommu_ga_log_notifier = notifier;
  590. return 0;
  591. }
  592. EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
  593. static void iommu_poll_ga_log(struct amd_iommu *iommu)
  594. {
  595. u32 head, tail, cnt = 0;
  596. if (iommu->ga_log == NULL)
  597. return;
  598. head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  599. tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
  600. while (head != tail) {
  601. volatile u64 *raw;
  602. u64 log_entry;
  603. raw = (u64 *)(iommu->ga_log + head);
  604. cnt++;
  605. /* Avoid memcpy function-call overhead */
  606. log_entry = *raw;
  607. /* Update head pointer of hardware ring-buffer */
  608. head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
  609. writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  610. /* Handle GA entry */
  611. switch (GA_REQ_TYPE(log_entry)) {
  612. case GA_GUEST_NR:
  613. if (!iommu_ga_log_notifier)
  614. break;
  615. pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
  616. __func__, GA_DEVID(log_entry),
  617. GA_TAG(log_entry));
  618. if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
  619. pr_err("AMD-Vi: GA log notifier failed.\n");
  620. break;
  621. default:
  622. break;
  623. }
  624. }
  625. }
  626. #endif /* CONFIG_IRQ_REMAP */
  627. #define AMD_IOMMU_INT_MASK \
  628. (MMIO_STATUS_EVT_INT_MASK | \
  629. MMIO_STATUS_PPR_INT_MASK | \
  630. MMIO_STATUS_GALOG_INT_MASK)
  631. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  632. {
  633. struct amd_iommu *iommu = (struct amd_iommu *) data;
  634. u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  635. while (status & AMD_IOMMU_INT_MASK) {
  636. /* Enable EVT and PPR and GA interrupts again */
  637. writel(AMD_IOMMU_INT_MASK,
  638. iommu->mmio_base + MMIO_STATUS_OFFSET);
  639. if (status & MMIO_STATUS_EVT_INT_MASK) {
  640. pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
  641. iommu_poll_events(iommu);
  642. }
  643. if (status & MMIO_STATUS_PPR_INT_MASK) {
  644. pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
  645. iommu_poll_ppr_log(iommu);
  646. }
  647. #ifdef CONFIG_IRQ_REMAP
  648. if (status & MMIO_STATUS_GALOG_INT_MASK) {
  649. pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
  650. iommu_poll_ga_log(iommu);
  651. }
  652. #endif
  653. /*
  654. * Hardware bug: ERBT1312
  655. * When re-enabling interrupt (by writing 1
  656. * to clear the bit), the hardware might also try to set
  657. * the interrupt bit in the event status register.
  658. * In this scenario, the bit will be set, and disable
  659. * subsequent interrupts.
  660. *
  661. * Workaround: The IOMMU driver should read back the
  662. * status register and check if the interrupt bits are cleared.
  663. * If not, driver will need to go through the interrupt handler
  664. * again and re-clear the bits
  665. */
  666. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  667. }
  668. return IRQ_HANDLED;
  669. }
  670. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  671. {
  672. return IRQ_WAKE_THREAD;
  673. }
  674. /****************************************************************************
  675. *
  676. * IOMMU command queuing functions
  677. *
  678. ****************************************************************************/
  679. static int wait_on_sem(volatile u64 *sem)
  680. {
  681. int i = 0;
  682. while (*sem == 0 && i < LOOP_TIMEOUT) {
  683. udelay(1);
  684. i += 1;
  685. }
  686. if (i == LOOP_TIMEOUT) {
  687. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  688. return -EIO;
  689. }
  690. return 0;
  691. }
  692. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  693. struct iommu_cmd *cmd)
  694. {
  695. u8 *target;
  696. target = iommu->cmd_buf + iommu->cmd_buf_tail;
  697. iommu->cmd_buf_tail += sizeof(*cmd);
  698. iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
  699. /* Copy command to buffer */
  700. memcpy(target, cmd, sizeof(*cmd));
  701. /* Tell the IOMMU about it */
  702. writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  703. }
  704. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  705. {
  706. u64 paddr = iommu_virt_to_phys((void *)address);
  707. WARN_ON(address & 0x7ULL);
  708. memset(cmd, 0, sizeof(*cmd));
  709. cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
  710. cmd->data[1] = upper_32_bits(paddr);
  711. cmd->data[2] = 1;
  712. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  713. }
  714. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  715. {
  716. memset(cmd, 0, sizeof(*cmd));
  717. cmd->data[0] = devid;
  718. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  719. }
  720. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  721. size_t size, u16 domid, int pde)
  722. {
  723. u64 pages;
  724. bool s;
  725. pages = iommu_num_pages(address, size, PAGE_SIZE);
  726. s = false;
  727. if (pages > 1) {
  728. /*
  729. * If we have to flush more than one page, flush all
  730. * TLB entries for this domain
  731. */
  732. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  733. s = true;
  734. }
  735. address &= PAGE_MASK;
  736. memset(cmd, 0, sizeof(*cmd));
  737. cmd->data[1] |= domid;
  738. cmd->data[2] = lower_32_bits(address);
  739. cmd->data[3] = upper_32_bits(address);
  740. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  741. if (s) /* size bit - we flush more than one 4kb page */
  742. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  743. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  744. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  745. }
  746. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  747. u64 address, size_t size)
  748. {
  749. u64 pages;
  750. bool s;
  751. pages = iommu_num_pages(address, size, PAGE_SIZE);
  752. s = false;
  753. if (pages > 1) {
  754. /*
  755. * If we have to flush more than one page, flush all
  756. * TLB entries for this domain
  757. */
  758. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  759. s = true;
  760. }
  761. address &= PAGE_MASK;
  762. memset(cmd, 0, sizeof(*cmd));
  763. cmd->data[0] = devid;
  764. cmd->data[0] |= (qdep & 0xff) << 24;
  765. cmd->data[1] = devid;
  766. cmd->data[2] = lower_32_bits(address);
  767. cmd->data[3] = upper_32_bits(address);
  768. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  769. if (s)
  770. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  771. }
  772. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  773. u64 address, bool size)
  774. {
  775. memset(cmd, 0, sizeof(*cmd));
  776. address &= ~(0xfffULL);
  777. cmd->data[0] = pasid;
  778. cmd->data[1] = domid;
  779. cmd->data[2] = lower_32_bits(address);
  780. cmd->data[3] = upper_32_bits(address);
  781. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  782. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  783. if (size)
  784. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  785. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  786. }
  787. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  788. int qdep, u64 address, bool size)
  789. {
  790. memset(cmd, 0, sizeof(*cmd));
  791. address &= ~(0xfffULL);
  792. cmd->data[0] = devid;
  793. cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
  794. cmd->data[0] |= (qdep & 0xff) << 24;
  795. cmd->data[1] = devid;
  796. cmd->data[1] |= (pasid & 0xff) << 16;
  797. cmd->data[2] = lower_32_bits(address);
  798. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  799. cmd->data[3] = upper_32_bits(address);
  800. if (size)
  801. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  802. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  803. }
  804. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  805. int status, int tag, bool gn)
  806. {
  807. memset(cmd, 0, sizeof(*cmd));
  808. cmd->data[0] = devid;
  809. if (gn) {
  810. cmd->data[1] = pasid;
  811. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  812. }
  813. cmd->data[3] = tag & 0x1ff;
  814. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  815. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  816. }
  817. static void build_inv_all(struct iommu_cmd *cmd)
  818. {
  819. memset(cmd, 0, sizeof(*cmd));
  820. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  821. }
  822. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  823. {
  824. memset(cmd, 0, sizeof(*cmd));
  825. cmd->data[0] = devid;
  826. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  827. }
  828. /*
  829. * Writes the command to the IOMMUs command buffer and informs the
  830. * hardware about the new command.
  831. */
  832. static int __iommu_queue_command_sync(struct amd_iommu *iommu,
  833. struct iommu_cmd *cmd,
  834. bool sync)
  835. {
  836. unsigned int count = 0;
  837. u32 left, next_tail;
  838. next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
  839. again:
  840. left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
  841. if (left <= 0x20) {
  842. /* Skip udelay() the first time around */
  843. if (count++) {
  844. if (count == LOOP_TIMEOUT) {
  845. pr_err("AMD-Vi: Command buffer timeout\n");
  846. return -EIO;
  847. }
  848. udelay(1);
  849. }
  850. /* Update head and recheck remaining space */
  851. iommu->cmd_buf_head = readl(iommu->mmio_base +
  852. MMIO_CMD_HEAD_OFFSET);
  853. goto again;
  854. }
  855. copy_cmd_to_buffer(iommu, cmd);
  856. /* Do we need to make sure all commands are processed? */
  857. iommu->need_sync = sync;
  858. return 0;
  859. }
  860. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  861. struct iommu_cmd *cmd,
  862. bool sync)
  863. {
  864. unsigned long flags;
  865. int ret;
  866. raw_spin_lock_irqsave(&iommu->lock, flags);
  867. ret = __iommu_queue_command_sync(iommu, cmd, sync);
  868. raw_spin_unlock_irqrestore(&iommu->lock, flags);
  869. return ret;
  870. }
  871. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  872. {
  873. return iommu_queue_command_sync(iommu, cmd, true);
  874. }
  875. /*
  876. * This function queues a completion wait command into the command
  877. * buffer of an IOMMU
  878. */
  879. static int iommu_completion_wait(struct amd_iommu *iommu)
  880. {
  881. struct iommu_cmd cmd;
  882. unsigned long flags;
  883. int ret;
  884. if (!iommu->need_sync)
  885. return 0;
  886. build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
  887. raw_spin_lock_irqsave(&iommu->lock, flags);
  888. iommu->cmd_sem = 0;
  889. ret = __iommu_queue_command_sync(iommu, &cmd, false);
  890. if (ret)
  891. goto out_unlock;
  892. ret = wait_on_sem(&iommu->cmd_sem);
  893. out_unlock:
  894. raw_spin_unlock_irqrestore(&iommu->lock, flags);
  895. return ret;
  896. }
  897. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  898. {
  899. struct iommu_cmd cmd;
  900. build_inv_dte(&cmd, devid);
  901. return iommu_queue_command(iommu, &cmd);
  902. }
  903. static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
  904. {
  905. u32 devid;
  906. for (devid = 0; devid <= 0xffff; ++devid)
  907. iommu_flush_dte(iommu, devid);
  908. iommu_completion_wait(iommu);
  909. }
  910. /*
  911. * This function uses heavy locking and may disable irqs for some time. But
  912. * this is no issue because it is only called during resume.
  913. */
  914. static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
  915. {
  916. u32 dom_id;
  917. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  918. struct iommu_cmd cmd;
  919. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  920. dom_id, 1);
  921. iommu_queue_command(iommu, &cmd);
  922. }
  923. iommu_completion_wait(iommu);
  924. }
  925. static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
  926. {
  927. struct iommu_cmd cmd;
  928. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  929. dom_id, 1);
  930. iommu_queue_command(iommu, &cmd);
  931. iommu_completion_wait(iommu);
  932. }
  933. static void amd_iommu_flush_all(struct amd_iommu *iommu)
  934. {
  935. struct iommu_cmd cmd;
  936. build_inv_all(&cmd);
  937. iommu_queue_command(iommu, &cmd);
  938. iommu_completion_wait(iommu);
  939. }
  940. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  941. {
  942. struct iommu_cmd cmd;
  943. build_inv_irt(&cmd, devid);
  944. iommu_queue_command(iommu, &cmd);
  945. }
  946. static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
  947. {
  948. u32 devid;
  949. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  950. iommu_flush_irt(iommu, devid);
  951. iommu_completion_wait(iommu);
  952. }
  953. void iommu_flush_all_caches(struct amd_iommu *iommu)
  954. {
  955. if (iommu_feature(iommu, FEATURE_IA)) {
  956. amd_iommu_flush_all(iommu);
  957. } else {
  958. amd_iommu_flush_dte_all(iommu);
  959. amd_iommu_flush_irt_all(iommu);
  960. amd_iommu_flush_tlb_all(iommu);
  961. }
  962. }
  963. /*
  964. * Command send function for flushing on-device TLB
  965. */
  966. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  967. u64 address, size_t size)
  968. {
  969. struct amd_iommu *iommu;
  970. struct iommu_cmd cmd;
  971. int qdep;
  972. qdep = dev_data->ats.qdep;
  973. iommu = amd_iommu_rlookup_table[dev_data->devid];
  974. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  975. return iommu_queue_command(iommu, &cmd);
  976. }
  977. /*
  978. * Command send function for invalidating a device table entry
  979. */
  980. static int device_flush_dte(struct iommu_dev_data *dev_data)
  981. {
  982. struct amd_iommu *iommu;
  983. u16 alias;
  984. int ret;
  985. iommu = amd_iommu_rlookup_table[dev_data->devid];
  986. alias = dev_data->alias;
  987. ret = iommu_flush_dte(iommu, dev_data->devid);
  988. if (!ret && alias != dev_data->devid)
  989. ret = iommu_flush_dte(iommu, alias);
  990. if (ret)
  991. return ret;
  992. if (dev_data->ats.enabled)
  993. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  994. return ret;
  995. }
  996. /*
  997. * TLB invalidation function which is called from the mapping functions.
  998. * It invalidates a single PTE if the range to flush is within a single
  999. * page. Otherwise it flushes the whole TLB of the IOMMU.
  1000. */
  1001. static void __domain_flush_pages(struct protection_domain *domain,
  1002. u64 address, size_t size, int pde)
  1003. {
  1004. struct iommu_dev_data *dev_data;
  1005. struct iommu_cmd cmd;
  1006. int ret = 0, i;
  1007. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  1008. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  1009. if (!domain->dev_iommu[i])
  1010. continue;
  1011. /*
  1012. * Devices of this domain are behind this IOMMU
  1013. * We need a TLB flush
  1014. */
  1015. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  1016. }
  1017. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1018. if (!dev_data->ats.enabled)
  1019. continue;
  1020. ret |= device_flush_iotlb(dev_data, address, size);
  1021. }
  1022. WARN_ON(ret);
  1023. }
  1024. static void domain_flush_pages(struct protection_domain *domain,
  1025. u64 address, size_t size)
  1026. {
  1027. __domain_flush_pages(domain, address, size, 0);
  1028. }
  1029. /* Flush the whole IO/TLB for a given protection domain */
  1030. static void domain_flush_tlb(struct protection_domain *domain)
  1031. {
  1032. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  1033. }
  1034. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  1035. static void domain_flush_tlb_pde(struct protection_domain *domain)
  1036. {
  1037. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  1038. }
  1039. static void domain_flush_complete(struct protection_domain *domain)
  1040. {
  1041. int i;
  1042. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  1043. if (domain && !domain->dev_iommu[i])
  1044. continue;
  1045. /*
  1046. * Devices of this domain are behind this IOMMU
  1047. * We need to wait for completion of all commands.
  1048. */
  1049. iommu_completion_wait(amd_iommus[i]);
  1050. }
  1051. }
  1052. /*
  1053. * This function flushes the DTEs for all devices in domain
  1054. */
  1055. static void domain_flush_devices(struct protection_domain *domain)
  1056. {
  1057. struct iommu_dev_data *dev_data;
  1058. list_for_each_entry(dev_data, &domain->dev_list, list)
  1059. device_flush_dte(dev_data);
  1060. }
  1061. /****************************************************************************
  1062. *
  1063. * The functions below are used the create the page table mappings for
  1064. * unity mapped regions.
  1065. *
  1066. ****************************************************************************/
  1067. /*
  1068. * This function is used to add another level to an IO page table. Adding
  1069. * another level increases the size of the address space by 9 bits to a size up
  1070. * to 64 bits.
  1071. */
  1072. static void increase_address_space(struct protection_domain *domain,
  1073. gfp_t gfp)
  1074. {
  1075. unsigned long flags;
  1076. u64 *pte;
  1077. spin_lock_irqsave(&domain->lock, flags);
  1078. if (WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
  1079. /* address space already 64 bit large */
  1080. goto out;
  1081. pte = (void *)get_zeroed_page(gfp);
  1082. if (!pte)
  1083. goto out;
  1084. *pte = PM_LEVEL_PDE(domain->mode,
  1085. iommu_virt_to_phys(domain->pt_root));
  1086. domain->pt_root = pte;
  1087. domain->mode += 1;
  1088. domain->updated = true;
  1089. out:
  1090. spin_unlock_irqrestore(&domain->lock, flags);
  1091. return;
  1092. }
  1093. static u64 *alloc_pte(struct protection_domain *domain,
  1094. unsigned long address,
  1095. unsigned long page_size,
  1096. u64 **pte_page,
  1097. gfp_t gfp)
  1098. {
  1099. int level, end_lvl;
  1100. u64 *pte, *page;
  1101. BUG_ON(!is_power_of_2(page_size));
  1102. while (address > PM_LEVEL_SIZE(domain->mode))
  1103. increase_address_space(domain, gfp);
  1104. level = domain->mode - 1;
  1105. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1106. address = PAGE_SIZE_ALIGN(address, page_size);
  1107. end_lvl = PAGE_SIZE_LEVEL(page_size);
  1108. while (level > end_lvl) {
  1109. u64 __pte, __npte;
  1110. __pte = *pte;
  1111. if (!IOMMU_PTE_PRESENT(__pte)) {
  1112. page = (u64 *)get_zeroed_page(gfp);
  1113. if (!page)
  1114. return NULL;
  1115. __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
  1116. /* pte could have been changed somewhere. */
  1117. if (cmpxchg64(pte, __pte, __npte) != __pte) {
  1118. free_page((unsigned long)page);
  1119. continue;
  1120. }
  1121. }
  1122. /* No level skipping support yet */
  1123. if (PM_PTE_LEVEL(*pte) != level)
  1124. return NULL;
  1125. level -= 1;
  1126. pte = IOMMU_PTE_PAGE(*pte);
  1127. if (pte_page && level == end_lvl)
  1128. *pte_page = pte;
  1129. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1130. }
  1131. return pte;
  1132. }
  1133. /*
  1134. * This function checks if there is a PTE for a given dma address. If
  1135. * there is one, it returns the pointer to it.
  1136. */
  1137. static u64 *fetch_pte(struct protection_domain *domain,
  1138. unsigned long address,
  1139. unsigned long *page_size)
  1140. {
  1141. int level;
  1142. u64 *pte;
  1143. *page_size = 0;
  1144. if (address > PM_LEVEL_SIZE(domain->mode))
  1145. return NULL;
  1146. level = domain->mode - 1;
  1147. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1148. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1149. while (level > 0) {
  1150. /* Not Present */
  1151. if (!IOMMU_PTE_PRESENT(*pte))
  1152. return NULL;
  1153. /* Large PTE */
  1154. if (PM_PTE_LEVEL(*pte) == 7 ||
  1155. PM_PTE_LEVEL(*pte) == 0)
  1156. break;
  1157. /* No level skipping support yet */
  1158. if (PM_PTE_LEVEL(*pte) != level)
  1159. return NULL;
  1160. level -= 1;
  1161. /* Walk to the next level */
  1162. pte = IOMMU_PTE_PAGE(*pte);
  1163. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1164. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1165. }
  1166. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1167. unsigned long pte_mask;
  1168. /*
  1169. * If we have a series of large PTEs, make
  1170. * sure to return a pointer to the first one.
  1171. */
  1172. *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
  1173. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1174. pte = (u64 *)(((unsigned long)pte) & pte_mask);
  1175. }
  1176. return pte;
  1177. }
  1178. /*
  1179. * Generic mapping functions. It maps a physical address into a DMA
  1180. * address space. It allocates the page table pages if necessary.
  1181. * In the future it can be extended to a generic mapping function
  1182. * supporting all features of AMD IOMMU page tables like level skipping
  1183. * and full 64 bit address spaces.
  1184. */
  1185. static int iommu_map_page(struct protection_domain *dom,
  1186. unsigned long bus_addr,
  1187. unsigned long phys_addr,
  1188. unsigned long page_size,
  1189. int prot,
  1190. gfp_t gfp)
  1191. {
  1192. u64 __pte, *pte;
  1193. int i, count;
  1194. BUG_ON(!IS_ALIGNED(bus_addr, page_size));
  1195. BUG_ON(!IS_ALIGNED(phys_addr, page_size));
  1196. if (!(prot & IOMMU_PROT_MASK))
  1197. return -EINVAL;
  1198. count = PAGE_SIZE_PTE_COUNT(page_size);
  1199. pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
  1200. if (!pte)
  1201. return -ENOMEM;
  1202. for (i = 0; i < count; ++i)
  1203. if (IOMMU_PTE_PRESENT(pte[i]))
  1204. return -EBUSY;
  1205. if (count > 1) {
  1206. __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
  1207. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
  1208. } else
  1209. __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
  1210. if (prot & IOMMU_PROT_IR)
  1211. __pte |= IOMMU_PTE_IR;
  1212. if (prot & IOMMU_PROT_IW)
  1213. __pte |= IOMMU_PTE_IW;
  1214. for (i = 0; i < count; ++i)
  1215. pte[i] = __pte;
  1216. update_domain(dom);
  1217. return 0;
  1218. }
  1219. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1220. unsigned long bus_addr,
  1221. unsigned long page_size)
  1222. {
  1223. unsigned long long unmapped;
  1224. unsigned long unmap_size;
  1225. u64 *pte;
  1226. BUG_ON(!is_power_of_2(page_size));
  1227. unmapped = 0;
  1228. while (unmapped < page_size) {
  1229. pte = fetch_pte(dom, bus_addr, &unmap_size);
  1230. if (pte) {
  1231. int i, count;
  1232. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1233. for (i = 0; i < count; i++)
  1234. pte[i] = 0ULL;
  1235. }
  1236. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1237. unmapped += unmap_size;
  1238. }
  1239. BUG_ON(unmapped && !is_power_of_2(unmapped));
  1240. return unmapped;
  1241. }
  1242. /****************************************************************************
  1243. *
  1244. * The next functions belong to the address allocator for the dma_ops
  1245. * interface functions.
  1246. *
  1247. ****************************************************************************/
  1248. static unsigned long dma_ops_alloc_iova(struct device *dev,
  1249. struct dma_ops_domain *dma_dom,
  1250. unsigned int pages, u64 dma_mask)
  1251. {
  1252. unsigned long pfn = 0;
  1253. pages = __roundup_pow_of_two(pages);
  1254. if (dma_mask > DMA_BIT_MASK(32))
  1255. pfn = alloc_iova_fast(&dma_dom->iovad, pages,
  1256. IOVA_PFN(DMA_BIT_MASK(32)), false);
  1257. if (!pfn)
  1258. pfn = alloc_iova_fast(&dma_dom->iovad, pages,
  1259. IOVA_PFN(dma_mask), true);
  1260. return (pfn << PAGE_SHIFT);
  1261. }
  1262. static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
  1263. unsigned long address,
  1264. unsigned int pages)
  1265. {
  1266. pages = __roundup_pow_of_two(pages);
  1267. address >>= PAGE_SHIFT;
  1268. free_iova_fast(&dma_dom->iovad, address, pages);
  1269. }
  1270. /****************************************************************************
  1271. *
  1272. * The next functions belong to the domain allocation. A domain is
  1273. * allocated for every IOMMU as the default domain. If device isolation
  1274. * is enabled, every device get its own domain. The most important thing
  1275. * about domains is the page table mapping the DMA address space they
  1276. * contain.
  1277. *
  1278. ****************************************************************************/
  1279. /*
  1280. * This function adds a protection domain to the global protection domain list
  1281. */
  1282. static void add_domain_to_list(struct protection_domain *domain)
  1283. {
  1284. unsigned long flags;
  1285. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1286. list_add(&domain->list, &amd_iommu_pd_list);
  1287. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1288. }
  1289. /*
  1290. * This function removes a protection domain to the global
  1291. * protection domain list
  1292. */
  1293. static void del_domain_from_list(struct protection_domain *domain)
  1294. {
  1295. unsigned long flags;
  1296. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1297. list_del(&domain->list);
  1298. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1299. }
  1300. static u16 domain_id_alloc(void)
  1301. {
  1302. int id;
  1303. spin_lock(&pd_bitmap_lock);
  1304. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1305. BUG_ON(id == 0);
  1306. if (id > 0 && id < MAX_DOMAIN_ID)
  1307. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1308. else
  1309. id = 0;
  1310. spin_unlock(&pd_bitmap_lock);
  1311. return id;
  1312. }
  1313. static void domain_id_free(int id)
  1314. {
  1315. spin_lock(&pd_bitmap_lock);
  1316. if (id > 0 && id < MAX_DOMAIN_ID)
  1317. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1318. spin_unlock(&pd_bitmap_lock);
  1319. }
  1320. #define DEFINE_FREE_PT_FN(LVL, FN) \
  1321. static void free_pt_##LVL (unsigned long __pt) \
  1322. { \
  1323. unsigned long p; \
  1324. u64 *pt; \
  1325. int i; \
  1326. \
  1327. pt = (u64 *)__pt; \
  1328. \
  1329. for (i = 0; i < 512; ++i) { \
  1330. /* PTE present? */ \
  1331. if (!IOMMU_PTE_PRESENT(pt[i])) \
  1332. continue; \
  1333. \
  1334. /* Large PTE? */ \
  1335. if (PM_PTE_LEVEL(pt[i]) == 0 || \
  1336. PM_PTE_LEVEL(pt[i]) == 7) \
  1337. continue; \
  1338. \
  1339. p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
  1340. FN(p); \
  1341. } \
  1342. free_page((unsigned long)pt); \
  1343. }
  1344. DEFINE_FREE_PT_FN(l2, free_page)
  1345. DEFINE_FREE_PT_FN(l3, free_pt_l2)
  1346. DEFINE_FREE_PT_FN(l4, free_pt_l3)
  1347. DEFINE_FREE_PT_FN(l5, free_pt_l4)
  1348. DEFINE_FREE_PT_FN(l6, free_pt_l5)
  1349. static void free_pagetable(struct protection_domain *domain)
  1350. {
  1351. unsigned long root = (unsigned long)domain->pt_root;
  1352. switch (domain->mode) {
  1353. case PAGE_MODE_NONE:
  1354. break;
  1355. case PAGE_MODE_1_LEVEL:
  1356. free_page(root);
  1357. break;
  1358. case PAGE_MODE_2_LEVEL:
  1359. free_pt_l2(root);
  1360. break;
  1361. case PAGE_MODE_3_LEVEL:
  1362. free_pt_l3(root);
  1363. break;
  1364. case PAGE_MODE_4_LEVEL:
  1365. free_pt_l4(root);
  1366. break;
  1367. case PAGE_MODE_5_LEVEL:
  1368. free_pt_l5(root);
  1369. break;
  1370. case PAGE_MODE_6_LEVEL:
  1371. free_pt_l6(root);
  1372. break;
  1373. default:
  1374. BUG();
  1375. }
  1376. }
  1377. static void free_gcr3_tbl_level1(u64 *tbl)
  1378. {
  1379. u64 *ptr;
  1380. int i;
  1381. for (i = 0; i < 512; ++i) {
  1382. if (!(tbl[i] & GCR3_VALID))
  1383. continue;
  1384. ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
  1385. free_page((unsigned long)ptr);
  1386. }
  1387. }
  1388. static void free_gcr3_tbl_level2(u64 *tbl)
  1389. {
  1390. u64 *ptr;
  1391. int i;
  1392. for (i = 0; i < 512; ++i) {
  1393. if (!(tbl[i] & GCR3_VALID))
  1394. continue;
  1395. ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
  1396. free_gcr3_tbl_level1(ptr);
  1397. }
  1398. }
  1399. static void free_gcr3_table(struct protection_domain *domain)
  1400. {
  1401. if (domain->glx == 2)
  1402. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1403. else if (domain->glx == 1)
  1404. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1405. else
  1406. BUG_ON(domain->glx != 0);
  1407. free_page((unsigned long)domain->gcr3_tbl);
  1408. }
  1409. static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
  1410. {
  1411. domain_flush_tlb(&dom->domain);
  1412. domain_flush_complete(&dom->domain);
  1413. }
  1414. static void iova_domain_flush_tlb(struct iova_domain *iovad)
  1415. {
  1416. struct dma_ops_domain *dom;
  1417. dom = container_of(iovad, struct dma_ops_domain, iovad);
  1418. dma_ops_domain_flush_tlb(dom);
  1419. }
  1420. /*
  1421. * Free a domain, only used if something went wrong in the
  1422. * allocation path and we need to free an already allocated page table
  1423. */
  1424. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1425. {
  1426. if (!dom)
  1427. return;
  1428. del_domain_from_list(&dom->domain);
  1429. put_iova_domain(&dom->iovad);
  1430. free_pagetable(&dom->domain);
  1431. if (dom->domain.id)
  1432. domain_id_free(dom->domain.id);
  1433. kfree(dom);
  1434. }
  1435. /*
  1436. * Allocates a new protection domain usable for the dma_ops functions.
  1437. * It also initializes the page table and the address allocator data
  1438. * structures required for the dma_ops interface
  1439. */
  1440. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1441. {
  1442. struct dma_ops_domain *dma_dom;
  1443. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1444. if (!dma_dom)
  1445. return NULL;
  1446. if (protection_domain_init(&dma_dom->domain))
  1447. goto free_dma_dom;
  1448. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  1449. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1450. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1451. if (!dma_dom->domain.pt_root)
  1452. goto free_dma_dom;
  1453. init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
  1454. if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
  1455. goto free_dma_dom;
  1456. /* Initialize reserved ranges */
  1457. copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
  1458. add_domain_to_list(&dma_dom->domain);
  1459. return dma_dom;
  1460. free_dma_dom:
  1461. dma_ops_domain_free(dma_dom);
  1462. return NULL;
  1463. }
  1464. /*
  1465. * little helper function to check whether a given protection domain is a
  1466. * dma_ops domain
  1467. */
  1468. static bool dma_ops_domain(struct protection_domain *domain)
  1469. {
  1470. return domain->flags & PD_DMA_OPS_MASK;
  1471. }
  1472. static void set_dte_entry(u16 devid, struct protection_domain *domain,
  1473. bool ats, bool ppr)
  1474. {
  1475. u64 pte_root = 0;
  1476. u64 flags = 0;
  1477. u32 old_domid;
  1478. if (domain->mode != PAGE_MODE_NONE)
  1479. pte_root = iommu_virt_to_phys(domain->pt_root);
  1480. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1481. << DEV_ENTRY_MODE_SHIFT;
  1482. pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
  1483. flags = amd_iommu_dev_table[devid].data[1];
  1484. if (ats)
  1485. flags |= DTE_FLAG_IOTLB;
  1486. if (ppr) {
  1487. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  1488. if (iommu_feature(iommu, FEATURE_EPHSUP))
  1489. pte_root |= 1ULL << DEV_ENTRY_PPR;
  1490. }
  1491. if (domain->flags & PD_IOMMUV2_MASK) {
  1492. u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
  1493. u64 glx = domain->glx;
  1494. u64 tmp;
  1495. pte_root |= DTE_FLAG_GV;
  1496. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1497. /* First mask out possible old values for GCR3 table */
  1498. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1499. flags &= ~tmp;
  1500. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1501. flags &= ~tmp;
  1502. /* Encode GCR3 table into DTE */
  1503. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1504. pte_root |= tmp;
  1505. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1506. flags |= tmp;
  1507. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1508. flags |= tmp;
  1509. }
  1510. flags &= ~DEV_DOMID_MASK;
  1511. flags |= domain->id;
  1512. old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
  1513. amd_iommu_dev_table[devid].data[1] = flags;
  1514. amd_iommu_dev_table[devid].data[0] = pte_root;
  1515. /*
  1516. * A kdump kernel might be replacing a domain ID that was copied from
  1517. * the previous kernel--if so, it needs to flush the translation cache
  1518. * entries for the old domain ID that is being overwritten
  1519. */
  1520. if (old_domid) {
  1521. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  1522. amd_iommu_flush_tlb_domid(iommu, old_domid);
  1523. }
  1524. }
  1525. static void clear_dte_entry(u16 devid)
  1526. {
  1527. /* remove entry from the device table seen by the hardware */
  1528. amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
  1529. amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
  1530. amd_iommu_apply_erratum_63(devid);
  1531. }
  1532. static void do_attach(struct iommu_dev_data *dev_data,
  1533. struct protection_domain *domain)
  1534. {
  1535. struct amd_iommu *iommu;
  1536. u16 alias;
  1537. bool ats;
  1538. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1539. alias = dev_data->alias;
  1540. ats = dev_data->ats.enabled;
  1541. /* Update data structures */
  1542. dev_data->domain = domain;
  1543. list_add(&dev_data->list, &domain->dev_list);
  1544. /* Do reference counting */
  1545. domain->dev_iommu[iommu->index] += 1;
  1546. domain->dev_cnt += 1;
  1547. /* Update device table */
  1548. set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
  1549. if (alias != dev_data->devid)
  1550. set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
  1551. device_flush_dte(dev_data);
  1552. }
  1553. static void do_detach(struct iommu_dev_data *dev_data)
  1554. {
  1555. struct protection_domain *domain = dev_data->domain;
  1556. struct amd_iommu *iommu;
  1557. u16 alias;
  1558. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1559. alias = dev_data->alias;
  1560. /* Update data structures */
  1561. dev_data->domain = NULL;
  1562. list_del(&dev_data->list);
  1563. clear_dte_entry(dev_data->devid);
  1564. if (alias != dev_data->devid)
  1565. clear_dte_entry(alias);
  1566. /* Flush the DTE entry */
  1567. device_flush_dte(dev_data);
  1568. /* Flush IOTLB */
  1569. domain_flush_tlb_pde(domain);
  1570. /* Wait for the flushes to finish */
  1571. domain_flush_complete(domain);
  1572. /* decrease reference counters - needs to happen after the flushes */
  1573. domain->dev_iommu[iommu->index] -= 1;
  1574. domain->dev_cnt -= 1;
  1575. }
  1576. /*
  1577. * If a device is not yet associated with a domain, this function makes the
  1578. * device visible in the domain
  1579. */
  1580. static int __attach_device(struct iommu_dev_data *dev_data,
  1581. struct protection_domain *domain)
  1582. {
  1583. int ret;
  1584. /* lock domain */
  1585. spin_lock(&domain->lock);
  1586. ret = -EBUSY;
  1587. if (dev_data->domain != NULL)
  1588. goto out_unlock;
  1589. /* Attach alias group root */
  1590. do_attach(dev_data, domain);
  1591. ret = 0;
  1592. out_unlock:
  1593. /* ready */
  1594. spin_unlock(&domain->lock);
  1595. return ret;
  1596. }
  1597. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1598. {
  1599. pci_disable_ats(pdev);
  1600. pci_disable_pri(pdev);
  1601. pci_disable_pasid(pdev);
  1602. }
  1603. /* FIXME: Change generic reset-function to do the same */
  1604. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1605. {
  1606. u16 control;
  1607. int pos;
  1608. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1609. if (!pos)
  1610. return -EINVAL;
  1611. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1612. control |= PCI_PRI_CTRL_RESET;
  1613. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1614. return 0;
  1615. }
  1616. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1617. {
  1618. bool reset_enable;
  1619. int reqs, ret;
  1620. /* FIXME: Hardcode number of outstanding requests for now */
  1621. reqs = 32;
  1622. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1623. reqs = 1;
  1624. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1625. /* Only allow access to user-accessible pages */
  1626. ret = pci_enable_pasid(pdev, 0);
  1627. if (ret)
  1628. goto out_err;
  1629. /* First reset the PRI state of the device */
  1630. ret = pci_reset_pri(pdev);
  1631. if (ret)
  1632. goto out_err;
  1633. /* Enable PRI */
  1634. ret = pci_enable_pri(pdev, reqs);
  1635. if (ret)
  1636. goto out_err;
  1637. if (reset_enable) {
  1638. ret = pri_reset_while_enabled(pdev);
  1639. if (ret)
  1640. goto out_err;
  1641. }
  1642. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1643. if (ret)
  1644. goto out_err;
  1645. return 0;
  1646. out_err:
  1647. pci_disable_pri(pdev);
  1648. pci_disable_pasid(pdev);
  1649. return ret;
  1650. }
  1651. /* FIXME: Move this to PCI code */
  1652. #define PCI_PRI_TLP_OFF (1 << 15)
  1653. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1654. {
  1655. u16 status;
  1656. int pos;
  1657. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1658. if (!pos)
  1659. return false;
  1660. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1661. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1662. }
  1663. /*
  1664. * If a device is not yet associated with a domain, this function makes the
  1665. * device visible in the domain
  1666. */
  1667. static int attach_device(struct device *dev,
  1668. struct protection_domain *domain)
  1669. {
  1670. struct pci_dev *pdev;
  1671. struct iommu_dev_data *dev_data;
  1672. unsigned long flags;
  1673. int ret;
  1674. dev_data = get_dev_data(dev);
  1675. if (!dev_is_pci(dev))
  1676. goto skip_ats_check;
  1677. pdev = to_pci_dev(dev);
  1678. if (domain->flags & PD_IOMMUV2_MASK) {
  1679. if (!dev_data->passthrough)
  1680. return -EINVAL;
  1681. if (dev_data->iommu_v2) {
  1682. if (pdev_iommuv2_enable(pdev) != 0)
  1683. return -EINVAL;
  1684. dev_data->ats.enabled = true;
  1685. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1686. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1687. }
  1688. } else if (amd_iommu_iotlb_sup &&
  1689. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1690. dev_data->ats.enabled = true;
  1691. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1692. }
  1693. skip_ats_check:
  1694. spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1695. ret = __attach_device(dev_data, domain);
  1696. spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1697. /*
  1698. * We might boot into a crash-kernel here. The crashed kernel
  1699. * left the caches in the IOMMU dirty. So we have to flush
  1700. * here to evict all dirty stuff.
  1701. */
  1702. domain_flush_tlb_pde(domain);
  1703. return ret;
  1704. }
  1705. /*
  1706. * Removes a device from a protection domain (unlocked)
  1707. */
  1708. static void __detach_device(struct iommu_dev_data *dev_data)
  1709. {
  1710. struct protection_domain *domain;
  1711. domain = dev_data->domain;
  1712. spin_lock(&domain->lock);
  1713. do_detach(dev_data);
  1714. spin_unlock(&domain->lock);
  1715. }
  1716. /*
  1717. * Removes a device from a protection domain (with devtable_lock held)
  1718. */
  1719. static void detach_device(struct device *dev)
  1720. {
  1721. struct protection_domain *domain;
  1722. struct iommu_dev_data *dev_data;
  1723. unsigned long flags;
  1724. dev_data = get_dev_data(dev);
  1725. domain = dev_data->domain;
  1726. /*
  1727. * First check if the device is still attached. It might already
  1728. * be detached from its domain because the generic
  1729. * iommu_detach_group code detached it and we try again here in
  1730. * our alias handling.
  1731. */
  1732. if (WARN_ON(!dev_data->domain))
  1733. return;
  1734. /* lock device table */
  1735. spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1736. __detach_device(dev_data);
  1737. spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1738. if (!dev_is_pci(dev))
  1739. return;
  1740. if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
  1741. pdev_iommuv2_disable(to_pci_dev(dev));
  1742. else if (dev_data->ats.enabled)
  1743. pci_disable_ats(to_pci_dev(dev));
  1744. dev_data->ats.enabled = false;
  1745. }
  1746. static int amd_iommu_add_device(struct device *dev)
  1747. {
  1748. struct iommu_dev_data *dev_data;
  1749. struct iommu_domain *domain;
  1750. struct amd_iommu *iommu;
  1751. int ret, devid;
  1752. if (!check_device(dev) || get_dev_data(dev))
  1753. return 0;
  1754. devid = get_device_id(dev);
  1755. if (devid < 0)
  1756. return devid;
  1757. iommu = amd_iommu_rlookup_table[devid];
  1758. ret = iommu_init_device(dev);
  1759. if (ret) {
  1760. if (ret != -ENOTSUPP)
  1761. pr_err("Failed to initialize device %s - trying to proceed anyway\n",
  1762. dev_name(dev));
  1763. iommu_ignore_device(dev);
  1764. dev->dma_ops = &dma_direct_ops;
  1765. goto out;
  1766. }
  1767. init_iommu_group(dev);
  1768. dev_data = get_dev_data(dev);
  1769. BUG_ON(!dev_data);
  1770. if (iommu_pass_through || dev_data->iommu_v2)
  1771. iommu_request_dm_for_dev(dev);
  1772. /* Domains are initialized for this device - have a look what we ended up with */
  1773. domain = iommu_get_domain_for_dev(dev);
  1774. if (domain->type == IOMMU_DOMAIN_IDENTITY)
  1775. dev_data->passthrough = true;
  1776. else
  1777. dev->dma_ops = &amd_iommu_dma_ops;
  1778. out:
  1779. iommu_completion_wait(iommu);
  1780. return 0;
  1781. }
  1782. static void amd_iommu_remove_device(struct device *dev)
  1783. {
  1784. struct amd_iommu *iommu;
  1785. int devid;
  1786. if (!check_device(dev))
  1787. return;
  1788. devid = get_device_id(dev);
  1789. if (devid < 0)
  1790. return;
  1791. iommu = amd_iommu_rlookup_table[devid];
  1792. iommu_uninit_device(dev);
  1793. iommu_completion_wait(iommu);
  1794. }
  1795. static struct iommu_group *amd_iommu_device_group(struct device *dev)
  1796. {
  1797. if (dev_is_pci(dev))
  1798. return pci_device_group(dev);
  1799. return acpihid_device_group(dev);
  1800. }
  1801. /*****************************************************************************
  1802. *
  1803. * The next functions belong to the dma_ops mapping/unmapping code.
  1804. *
  1805. *****************************************************************************/
  1806. /*
  1807. * In the dma_ops path we only have the struct device. This function
  1808. * finds the corresponding IOMMU, the protection domain and the
  1809. * requestor id for a given device.
  1810. * If the device is not yet associated with a domain this is also done
  1811. * in this function.
  1812. */
  1813. static struct protection_domain *get_domain(struct device *dev)
  1814. {
  1815. struct protection_domain *domain;
  1816. struct iommu_domain *io_domain;
  1817. if (!check_device(dev))
  1818. return ERR_PTR(-EINVAL);
  1819. domain = get_dev_data(dev)->domain;
  1820. if (domain == NULL && get_dev_data(dev)->defer_attach) {
  1821. get_dev_data(dev)->defer_attach = false;
  1822. io_domain = iommu_get_domain_for_dev(dev);
  1823. domain = to_pdomain(io_domain);
  1824. attach_device(dev, domain);
  1825. }
  1826. if (domain == NULL)
  1827. return ERR_PTR(-EBUSY);
  1828. if (!dma_ops_domain(domain))
  1829. return ERR_PTR(-EBUSY);
  1830. return domain;
  1831. }
  1832. static void update_device_table(struct protection_domain *domain)
  1833. {
  1834. struct iommu_dev_data *dev_data;
  1835. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1836. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
  1837. dev_data->iommu_v2);
  1838. if (dev_data->devid == dev_data->alias)
  1839. continue;
  1840. /* There is an alias, update device table entry for it */
  1841. set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
  1842. dev_data->iommu_v2);
  1843. }
  1844. }
  1845. static void update_domain(struct protection_domain *domain)
  1846. {
  1847. if (!domain->updated)
  1848. return;
  1849. update_device_table(domain);
  1850. domain_flush_devices(domain);
  1851. domain_flush_tlb_pde(domain);
  1852. domain->updated = false;
  1853. }
  1854. static int dir2prot(enum dma_data_direction direction)
  1855. {
  1856. if (direction == DMA_TO_DEVICE)
  1857. return IOMMU_PROT_IR;
  1858. else if (direction == DMA_FROM_DEVICE)
  1859. return IOMMU_PROT_IW;
  1860. else if (direction == DMA_BIDIRECTIONAL)
  1861. return IOMMU_PROT_IW | IOMMU_PROT_IR;
  1862. else
  1863. return 0;
  1864. }
  1865. /*
  1866. * This function contains common code for mapping of a physically
  1867. * contiguous memory region into DMA address space. It is used by all
  1868. * mapping functions provided with this IOMMU driver.
  1869. * Must be called with the domain lock held.
  1870. */
  1871. static dma_addr_t __map_single(struct device *dev,
  1872. struct dma_ops_domain *dma_dom,
  1873. phys_addr_t paddr,
  1874. size_t size,
  1875. enum dma_data_direction direction,
  1876. u64 dma_mask)
  1877. {
  1878. dma_addr_t offset = paddr & ~PAGE_MASK;
  1879. dma_addr_t address, start, ret;
  1880. unsigned int pages;
  1881. int prot = 0;
  1882. int i;
  1883. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1884. paddr &= PAGE_MASK;
  1885. address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
  1886. if (address == AMD_IOMMU_MAPPING_ERROR)
  1887. goto out;
  1888. prot = dir2prot(direction);
  1889. start = address;
  1890. for (i = 0; i < pages; ++i) {
  1891. ret = iommu_map_page(&dma_dom->domain, start, paddr,
  1892. PAGE_SIZE, prot, GFP_ATOMIC);
  1893. if (ret)
  1894. goto out_unmap;
  1895. paddr += PAGE_SIZE;
  1896. start += PAGE_SIZE;
  1897. }
  1898. address += offset;
  1899. if (unlikely(amd_iommu_np_cache)) {
  1900. domain_flush_pages(&dma_dom->domain, address, size);
  1901. domain_flush_complete(&dma_dom->domain);
  1902. }
  1903. out:
  1904. return address;
  1905. out_unmap:
  1906. for (--i; i >= 0; --i) {
  1907. start -= PAGE_SIZE;
  1908. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1909. }
  1910. domain_flush_tlb(&dma_dom->domain);
  1911. domain_flush_complete(&dma_dom->domain);
  1912. dma_ops_free_iova(dma_dom, address, pages);
  1913. return AMD_IOMMU_MAPPING_ERROR;
  1914. }
  1915. /*
  1916. * Does the reverse of the __map_single function. Must be called with
  1917. * the domain lock held too
  1918. */
  1919. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1920. dma_addr_t dma_addr,
  1921. size_t size,
  1922. int dir)
  1923. {
  1924. dma_addr_t i, start;
  1925. unsigned int pages;
  1926. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1927. dma_addr &= PAGE_MASK;
  1928. start = dma_addr;
  1929. for (i = 0; i < pages; ++i) {
  1930. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1931. start += PAGE_SIZE;
  1932. }
  1933. if (amd_iommu_unmap_flush) {
  1934. domain_flush_tlb(&dma_dom->domain);
  1935. domain_flush_complete(&dma_dom->domain);
  1936. dma_ops_free_iova(dma_dom, dma_addr, pages);
  1937. } else {
  1938. pages = __roundup_pow_of_two(pages);
  1939. queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
  1940. }
  1941. }
  1942. /*
  1943. * The exported map_single function for dma_ops.
  1944. */
  1945. static dma_addr_t map_page(struct device *dev, struct page *page,
  1946. unsigned long offset, size_t size,
  1947. enum dma_data_direction dir,
  1948. unsigned long attrs)
  1949. {
  1950. phys_addr_t paddr = page_to_phys(page) + offset;
  1951. struct protection_domain *domain;
  1952. struct dma_ops_domain *dma_dom;
  1953. u64 dma_mask;
  1954. domain = get_domain(dev);
  1955. if (PTR_ERR(domain) == -EINVAL)
  1956. return (dma_addr_t)paddr;
  1957. else if (IS_ERR(domain))
  1958. return AMD_IOMMU_MAPPING_ERROR;
  1959. dma_mask = *dev->dma_mask;
  1960. dma_dom = to_dma_ops_domain(domain);
  1961. return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
  1962. }
  1963. /*
  1964. * The exported unmap_single function for dma_ops.
  1965. */
  1966. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1967. enum dma_data_direction dir, unsigned long attrs)
  1968. {
  1969. struct protection_domain *domain;
  1970. struct dma_ops_domain *dma_dom;
  1971. domain = get_domain(dev);
  1972. if (IS_ERR(domain))
  1973. return;
  1974. dma_dom = to_dma_ops_domain(domain);
  1975. __unmap_single(dma_dom, dma_addr, size, dir);
  1976. }
  1977. static int sg_num_pages(struct device *dev,
  1978. struct scatterlist *sglist,
  1979. int nelems)
  1980. {
  1981. unsigned long mask, boundary_size;
  1982. struct scatterlist *s;
  1983. int i, npages = 0;
  1984. mask = dma_get_seg_boundary(dev);
  1985. boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
  1986. 1UL << (BITS_PER_LONG - PAGE_SHIFT);
  1987. for_each_sg(sglist, s, nelems, i) {
  1988. int p, n;
  1989. s->dma_address = npages << PAGE_SHIFT;
  1990. p = npages % boundary_size;
  1991. n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  1992. if (p + n > boundary_size)
  1993. npages += boundary_size - p;
  1994. npages += n;
  1995. }
  1996. return npages;
  1997. }
  1998. /*
  1999. * The exported map_sg function for dma_ops (handles scatter-gather
  2000. * lists).
  2001. */
  2002. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2003. int nelems, enum dma_data_direction direction,
  2004. unsigned long attrs)
  2005. {
  2006. int mapped_pages = 0, npages = 0, prot = 0, i;
  2007. struct protection_domain *domain;
  2008. struct dma_ops_domain *dma_dom;
  2009. struct scatterlist *s;
  2010. unsigned long address;
  2011. u64 dma_mask;
  2012. domain = get_domain(dev);
  2013. if (IS_ERR(domain))
  2014. return 0;
  2015. dma_dom = to_dma_ops_domain(domain);
  2016. dma_mask = *dev->dma_mask;
  2017. npages = sg_num_pages(dev, sglist, nelems);
  2018. address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
  2019. if (address == AMD_IOMMU_MAPPING_ERROR)
  2020. goto out_err;
  2021. prot = dir2prot(direction);
  2022. /* Map all sg entries */
  2023. for_each_sg(sglist, s, nelems, i) {
  2024. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  2025. for (j = 0; j < pages; ++j) {
  2026. unsigned long bus_addr, phys_addr;
  2027. int ret;
  2028. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2029. phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
  2030. ret = iommu_map_page(domain, bus_addr, phys_addr,
  2031. PAGE_SIZE, prot,
  2032. GFP_ATOMIC | __GFP_NOWARN);
  2033. if (ret)
  2034. goto out_unmap;
  2035. mapped_pages += 1;
  2036. }
  2037. }
  2038. /* Everything is mapped - write the right values into s->dma_address */
  2039. for_each_sg(sglist, s, nelems, i) {
  2040. /*
  2041. * Add in the remaining piece of the scatter-gather offset that
  2042. * was masked out when we were determining the physical address
  2043. * via (sg_phys(s) & PAGE_MASK) earlier.
  2044. */
  2045. s->dma_address += address + (s->offset & ~PAGE_MASK);
  2046. s->dma_length = s->length;
  2047. }
  2048. return nelems;
  2049. out_unmap:
  2050. pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
  2051. dev_name(dev), npages);
  2052. for_each_sg(sglist, s, nelems, i) {
  2053. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  2054. for (j = 0; j < pages; ++j) {
  2055. unsigned long bus_addr;
  2056. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2057. iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
  2058. if (--mapped_pages == 0)
  2059. goto out_free_iova;
  2060. }
  2061. }
  2062. out_free_iova:
  2063. free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
  2064. out_err:
  2065. return 0;
  2066. }
  2067. /*
  2068. * The exported map_sg function for dma_ops (handles scatter-gather
  2069. * lists).
  2070. */
  2071. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2072. int nelems, enum dma_data_direction dir,
  2073. unsigned long attrs)
  2074. {
  2075. struct protection_domain *domain;
  2076. struct dma_ops_domain *dma_dom;
  2077. unsigned long startaddr;
  2078. int npages = 2;
  2079. domain = get_domain(dev);
  2080. if (IS_ERR(domain))
  2081. return;
  2082. startaddr = sg_dma_address(sglist) & PAGE_MASK;
  2083. dma_dom = to_dma_ops_domain(domain);
  2084. npages = sg_num_pages(dev, sglist, nelems);
  2085. __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
  2086. }
  2087. /*
  2088. * The exported alloc_coherent function for dma_ops.
  2089. */
  2090. static void *alloc_coherent(struct device *dev, size_t size,
  2091. dma_addr_t *dma_addr, gfp_t flag,
  2092. unsigned long attrs)
  2093. {
  2094. u64 dma_mask = dev->coherent_dma_mask;
  2095. struct protection_domain *domain;
  2096. struct dma_ops_domain *dma_dom;
  2097. struct page *page;
  2098. domain = get_domain(dev);
  2099. if (PTR_ERR(domain) == -EINVAL) {
  2100. page = alloc_pages(flag, get_order(size));
  2101. *dma_addr = page_to_phys(page);
  2102. return page_address(page);
  2103. } else if (IS_ERR(domain))
  2104. return NULL;
  2105. dma_dom = to_dma_ops_domain(domain);
  2106. size = PAGE_ALIGN(size);
  2107. dma_mask = dev->coherent_dma_mask;
  2108. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2109. flag |= __GFP_ZERO;
  2110. page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
  2111. if (!page) {
  2112. if (!gfpflags_allow_blocking(flag))
  2113. return NULL;
  2114. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  2115. get_order(size), flag & __GFP_NOWARN);
  2116. if (!page)
  2117. return NULL;
  2118. }
  2119. if (!dma_mask)
  2120. dma_mask = *dev->dma_mask;
  2121. *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
  2122. size, DMA_BIDIRECTIONAL, dma_mask);
  2123. if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
  2124. goto out_free;
  2125. return page_address(page);
  2126. out_free:
  2127. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2128. __free_pages(page, get_order(size));
  2129. return NULL;
  2130. }
  2131. /*
  2132. * The exported free_coherent function for dma_ops.
  2133. */
  2134. static void free_coherent(struct device *dev, size_t size,
  2135. void *virt_addr, dma_addr_t dma_addr,
  2136. unsigned long attrs)
  2137. {
  2138. struct protection_domain *domain;
  2139. struct dma_ops_domain *dma_dom;
  2140. struct page *page;
  2141. page = virt_to_page(virt_addr);
  2142. size = PAGE_ALIGN(size);
  2143. domain = get_domain(dev);
  2144. if (IS_ERR(domain))
  2145. goto free_mem;
  2146. dma_dom = to_dma_ops_domain(domain);
  2147. __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
  2148. free_mem:
  2149. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2150. __free_pages(page, get_order(size));
  2151. }
  2152. /*
  2153. * This function is called by the DMA layer to find out if we can handle a
  2154. * particular device. It is part of the dma_ops.
  2155. */
  2156. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2157. {
  2158. if (!dma_direct_supported(dev, mask))
  2159. return 0;
  2160. return check_device(dev);
  2161. }
  2162. static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
  2163. {
  2164. return dma_addr == AMD_IOMMU_MAPPING_ERROR;
  2165. }
  2166. static const struct dma_map_ops amd_iommu_dma_ops = {
  2167. .alloc = alloc_coherent,
  2168. .free = free_coherent,
  2169. .map_page = map_page,
  2170. .unmap_page = unmap_page,
  2171. .map_sg = map_sg,
  2172. .unmap_sg = unmap_sg,
  2173. .dma_supported = amd_iommu_dma_supported,
  2174. .mapping_error = amd_iommu_mapping_error,
  2175. };
  2176. static int init_reserved_iova_ranges(void)
  2177. {
  2178. struct pci_dev *pdev = NULL;
  2179. struct iova *val;
  2180. init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
  2181. lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
  2182. &reserved_rbtree_key);
  2183. /* MSI memory range */
  2184. val = reserve_iova(&reserved_iova_ranges,
  2185. IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
  2186. if (!val) {
  2187. pr_err("Reserving MSI range failed\n");
  2188. return -ENOMEM;
  2189. }
  2190. /* HT memory range */
  2191. val = reserve_iova(&reserved_iova_ranges,
  2192. IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
  2193. if (!val) {
  2194. pr_err("Reserving HT range failed\n");
  2195. return -ENOMEM;
  2196. }
  2197. /*
  2198. * Memory used for PCI resources
  2199. * FIXME: Check whether we can reserve the PCI-hole completly
  2200. */
  2201. for_each_pci_dev(pdev) {
  2202. int i;
  2203. for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
  2204. struct resource *r = &pdev->resource[i];
  2205. if (!(r->flags & IORESOURCE_MEM))
  2206. continue;
  2207. val = reserve_iova(&reserved_iova_ranges,
  2208. IOVA_PFN(r->start),
  2209. IOVA_PFN(r->end));
  2210. if (!val) {
  2211. pr_err("Reserve pci-resource range failed\n");
  2212. return -ENOMEM;
  2213. }
  2214. }
  2215. }
  2216. return 0;
  2217. }
  2218. int __init amd_iommu_init_api(void)
  2219. {
  2220. int ret, err = 0;
  2221. ret = iova_cache_get();
  2222. if (ret)
  2223. return ret;
  2224. ret = init_reserved_iova_ranges();
  2225. if (ret)
  2226. return ret;
  2227. err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2228. if (err)
  2229. return err;
  2230. #ifdef CONFIG_ARM_AMBA
  2231. err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
  2232. if (err)
  2233. return err;
  2234. #endif
  2235. err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
  2236. if (err)
  2237. return err;
  2238. return 0;
  2239. }
  2240. int __init amd_iommu_init_dma_ops(void)
  2241. {
  2242. swiotlb = (iommu_pass_through || sme_me_mask) ? 1 : 0;
  2243. iommu_detected = 1;
  2244. /*
  2245. * In case we don't initialize SWIOTLB (actually the common case
  2246. * when AMD IOMMU is enabled and SME is not active), make sure there
  2247. * are global dma_ops set as a fall-back for devices not handled by
  2248. * this driver (for example non-PCI devices). When SME is active,
  2249. * make sure that swiotlb variable remains set so the global dma_ops
  2250. * continue to be SWIOTLB.
  2251. */
  2252. if (!swiotlb)
  2253. dma_ops = &dma_direct_ops;
  2254. if (amd_iommu_unmap_flush)
  2255. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2256. else
  2257. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2258. return 0;
  2259. }
  2260. /*****************************************************************************
  2261. *
  2262. * The following functions belong to the exported interface of AMD IOMMU
  2263. *
  2264. * This interface allows access to lower level functions of the IOMMU
  2265. * like protection domain handling and assignement of devices to domains
  2266. * which is not possible with the dma_ops interface.
  2267. *
  2268. *****************************************************************************/
  2269. static void cleanup_domain(struct protection_domain *domain)
  2270. {
  2271. struct iommu_dev_data *entry;
  2272. unsigned long flags;
  2273. spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2274. while (!list_empty(&domain->dev_list)) {
  2275. entry = list_first_entry(&domain->dev_list,
  2276. struct iommu_dev_data, list);
  2277. BUG_ON(!entry->domain);
  2278. __detach_device(entry);
  2279. }
  2280. spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2281. }
  2282. static void protection_domain_free(struct protection_domain *domain)
  2283. {
  2284. if (!domain)
  2285. return;
  2286. del_domain_from_list(domain);
  2287. if (domain->id)
  2288. domain_id_free(domain->id);
  2289. kfree(domain);
  2290. }
  2291. static int protection_domain_init(struct protection_domain *domain)
  2292. {
  2293. spin_lock_init(&domain->lock);
  2294. mutex_init(&domain->api_lock);
  2295. domain->id = domain_id_alloc();
  2296. if (!domain->id)
  2297. return -ENOMEM;
  2298. INIT_LIST_HEAD(&domain->dev_list);
  2299. return 0;
  2300. }
  2301. static struct protection_domain *protection_domain_alloc(void)
  2302. {
  2303. struct protection_domain *domain;
  2304. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2305. if (!domain)
  2306. return NULL;
  2307. if (protection_domain_init(domain))
  2308. goto out_err;
  2309. add_domain_to_list(domain);
  2310. return domain;
  2311. out_err:
  2312. kfree(domain);
  2313. return NULL;
  2314. }
  2315. static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
  2316. {
  2317. struct protection_domain *pdomain;
  2318. struct dma_ops_domain *dma_domain;
  2319. switch (type) {
  2320. case IOMMU_DOMAIN_UNMANAGED:
  2321. pdomain = protection_domain_alloc();
  2322. if (!pdomain)
  2323. return NULL;
  2324. pdomain->mode = PAGE_MODE_3_LEVEL;
  2325. pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2326. if (!pdomain->pt_root) {
  2327. protection_domain_free(pdomain);
  2328. return NULL;
  2329. }
  2330. pdomain->domain.geometry.aperture_start = 0;
  2331. pdomain->domain.geometry.aperture_end = ~0ULL;
  2332. pdomain->domain.geometry.force_aperture = true;
  2333. break;
  2334. case IOMMU_DOMAIN_DMA:
  2335. dma_domain = dma_ops_domain_alloc();
  2336. if (!dma_domain) {
  2337. pr_err("AMD-Vi: Failed to allocate\n");
  2338. return NULL;
  2339. }
  2340. pdomain = &dma_domain->domain;
  2341. break;
  2342. case IOMMU_DOMAIN_IDENTITY:
  2343. pdomain = protection_domain_alloc();
  2344. if (!pdomain)
  2345. return NULL;
  2346. pdomain->mode = PAGE_MODE_NONE;
  2347. break;
  2348. default:
  2349. return NULL;
  2350. }
  2351. return &pdomain->domain;
  2352. }
  2353. static void amd_iommu_domain_free(struct iommu_domain *dom)
  2354. {
  2355. struct protection_domain *domain;
  2356. struct dma_ops_domain *dma_dom;
  2357. domain = to_pdomain(dom);
  2358. if (domain->dev_cnt > 0)
  2359. cleanup_domain(domain);
  2360. BUG_ON(domain->dev_cnt != 0);
  2361. if (!dom)
  2362. return;
  2363. switch (dom->type) {
  2364. case IOMMU_DOMAIN_DMA:
  2365. /* Now release the domain */
  2366. dma_dom = to_dma_ops_domain(domain);
  2367. dma_ops_domain_free(dma_dom);
  2368. break;
  2369. default:
  2370. if (domain->mode != PAGE_MODE_NONE)
  2371. free_pagetable(domain);
  2372. if (domain->flags & PD_IOMMUV2_MASK)
  2373. free_gcr3_table(domain);
  2374. protection_domain_free(domain);
  2375. break;
  2376. }
  2377. }
  2378. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2379. struct device *dev)
  2380. {
  2381. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2382. struct amd_iommu *iommu;
  2383. int devid;
  2384. if (!check_device(dev))
  2385. return;
  2386. devid = get_device_id(dev);
  2387. if (devid < 0)
  2388. return;
  2389. if (dev_data->domain != NULL)
  2390. detach_device(dev);
  2391. iommu = amd_iommu_rlookup_table[devid];
  2392. if (!iommu)
  2393. return;
  2394. #ifdef CONFIG_IRQ_REMAP
  2395. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
  2396. (dom->type == IOMMU_DOMAIN_UNMANAGED))
  2397. dev_data->use_vapic = 0;
  2398. #endif
  2399. iommu_completion_wait(iommu);
  2400. }
  2401. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2402. struct device *dev)
  2403. {
  2404. struct protection_domain *domain = to_pdomain(dom);
  2405. struct iommu_dev_data *dev_data;
  2406. struct amd_iommu *iommu;
  2407. int ret;
  2408. if (!check_device(dev))
  2409. return -EINVAL;
  2410. dev_data = dev->archdata.iommu;
  2411. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2412. if (!iommu)
  2413. return -EINVAL;
  2414. if (dev_data->domain)
  2415. detach_device(dev);
  2416. ret = attach_device(dev, domain);
  2417. #ifdef CONFIG_IRQ_REMAP
  2418. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  2419. if (dom->type == IOMMU_DOMAIN_UNMANAGED)
  2420. dev_data->use_vapic = 1;
  2421. else
  2422. dev_data->use_vapic = 0;
  2423. }
  2424. #endif
  2425. iommu_completion_wait(iommu);
  2426. return ret;
  2427. }
  2428. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2429. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2430. {
  2431. struct protection_domain *domain = to_pdomain(dom);
  2432. int prot = 0;
  2433. int ret;
  2434. if (domain->mode == PAGE_MODE_NONE)
  2435. return -EINVAL;
  2436. if (iommu_prot & IOMMU_READ)
  2437. prot |= IOMMU_PROT_IR;
  2438. if (iommu_prot & IOMMU_WRITE)
  2439. prot |= IOMMU_PROT_IW;
  2440. mutex_lock(&domain->api_lock);
  2441. ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
  2442. mutex_unlock(&domain->api_lock);
  2443. return ret;
  2444. }
  2445. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2446. size_t page_size)
  2447. {
  2448. struct protection_domain *domain = to_pdomain(dom);
  2449. size_t unmap_size;
  2450. if (domain->mode == PAGE_MODE_NONE)
  2451. return 0;
  2452. mutex_lock(&domain->api_lock);
  2453. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2454. mutex_unlock(&domain->api_lock);
  2455. return unmap_size;
  2456. }
  2457. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2458. dma_addr_t iova)
  2459. {
  2460. struct protection_domain *domain = to_pdomain(dom);
  2461. unsigned long offset_mask, pte_pgsize;
  2462. u64 *pte, __pte;
  2463. if (domain->mode == PAGE_MODE_NONE)
  2464. return iova;
  2465. pte = fetch_pte(domain, iova, &pte_pgsize);
  2466. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2467. return 0;
  2468. offset_mask = pte_pgsize - 1;
  2469. __pte = __sme_clr(*pte & PM_ADDR_MASK);
  2470. return (__pte & ~offset_mask) | (iova & offset_mask);
  2471. }
  2472. static bool amd_iommu_capable(enum iommu_cap cap)
  2473. {
  2474. switch (cap) {
  2475. case IOMMU_CAP_CACHE_COHERENCY:
  2476. return true;
  2477. case IOMMU_CAP_INTR_REMAP:
  2478. return (irq_remapping_enabled == 1);
  2479. case IOMMU_CAP_NOEXEC:
  2480. return false;
  2481. }
  2482. return false;
  2483. }
  2484. static void amd_iommu_get_resv_regions(struct device *dev,
  2485. struct list_head *head)
  2486. {
  2487. struct iommu_resv_region *region;
  2488. struct unity_map_entry *entry;
  2489. int devid;
  2490. devid = get_device_id(dev);
  2491. if (devid < 0)
  2492. return;
  2493. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  2494. int type, prot = 0;
  2495. size_t length;
  2496. if (devid < entry->devid_start || devid > entry->devid_end)
  2497. continue;
  2498. type = IOMMU_RESV_DIRECT;
  2499. length = entry->address_end - entry->address_start;
  2500. if (entry->prot & IOMMU_PROT_IR)
  2501. prot |= IOMMU_READ;
  2502. if (entry->prot & IOMMU_PROT_IW)
  2503. prot |= IOMMU_WRITE;
  2504. if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
  2505. /* Exclusion range */
  2506. type = IOMMU_RESV_RESERVED;
  2507. region = iommu_alloc_resv_region(entry->address_start,
  2508. length, prot, type);
  2509. if (!region) {
  2510. pr_err("Out of memory allocating dm-regions for %s\n",
  2511. dev_name(dev));
  2512. return;
  2513. }
  2514. list_add_tail(&region->list, head);
  2515. }
  2516. region = iommu_alloc_resv_region(MSI_RANGE_START,
  2517. MSI_RANGE_END - MSI_RANGE_START + 1,
  2518. 0, IOMMU_RESV_MSI);
  2519. if (!region)
  2520. return;
  2521. list_add_tail(&region->list, head);
  2522. region = iommu_alloc_resv_region(HT_RANGE_START,
  2523. HT_RANGE_END - HT_RANGE_START + 1,
  2524. 0, IOMMU_RESV_RESERVED);
  2525. if (!region)
  2526. return;
  2527. list_add_tail(&region->list, head);
  2528. }
  2529. static void amd_iommu_put_resv_regions(struct device *dev,
  2530. struct list_head *head)
  2531. {
  2532. struct iommu_resv_region *entry, *next;
  2533. list_for_each_entry_safe(entry, next, head, list)
  2534. kfree(entry);
  2535. }
  2536. static void amd_iommu_apply_resv_region(struct device *dev,
  2537. struct iommu_domain *domain,
  2538. struct iommu_resv_region *region)
  2539. {
  2540. struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
  2541. unsigned long start, end;
  2542. start = IOVA_PFN(region->start);
  2543. end = IOVA_PFN(region->start + region->length - 1);
  2544. WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
  2545. }
  2546. static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
  2547. struct device *dev)
  2548. {
  2549. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2550. return dev_data->defer_attach;
  2551. }
  2552. static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
  2553. {
  2554. struct protection_domain *dom = to_pdomain(domain);
  2555. domain_flush_tlb_pde(dom);
  2556. domain_flush_complete(dom);
  2557. }
  2558. static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
  2559. unsigned long iova, size_t size)
  2560. {
  2561. }
  2562. const struct iommu_ops amd_iommu_ops = {
  2563. .capable = amd_iommu_capable,
  2564. .domain_alloc = amd_iommu_domain_alloc,
  2565. .domain_free = amd_iommu_domain_free,
  2566. .attach_dev = amd_iommu_attach_device,
  2567. .detach_dev = amd_iommu_detach_device,
  2568. .map = amd_iommu_map,
  2569. .unmap = amd_iommu_unmap,
  2570. .iova_to_phys = amd_iommu_iova_to_phys,
  2571. .add_device = amd_iommu_add_device,
  2572. .remove_device = amd_iommu_remove_device,
  2573. .device_group = amd_iommu_device_group,
  2574. .get_resv_regions = amd_iommu_get_resv_regions,
  2575. .put_resv_regions = amd_iommu_put_resv_regions,
  2576. .apply_resv_region = amd_iommu_apply_resv_region,
  2577. .is_attach_deferred = amd_iommu_is_attach_deferred,
  2578. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2579. .flush_iotlb_all = amd_iommu_flush_iotlb_all,
  2580. .iotlb_range_add = amd_iommu_iotlb_range_add,
  2581. .iotlb_sync = amd_iommu_flush_iotlb_all,
  2582. };
  2583. /*****************************************************************************
  2584. *
  2585. * The next functions do a basic initialization of IOMMU for pass through
  2586. * mode
  2587. *
  2588. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2589. * DMA-API translation.
  2590. *
  2591. *****************************************************************************/
  2592. /* IOMMUv2 specific functions */
  2593. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2594. {
  2595. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2596. }
  2597. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2598. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2599. {
  2600. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2601. }
  2602. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2603. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2604. {
  2605. struct protection_domain *domain = to_pdomain(dom);
  2606. unsigned long flags;
  2607. spin_lock_irqsave(&domain->lock, flags);
  2608. /* Update data structure */
  2609. domain->mode = PAGE_MODE_NONE;
  2610. domain->updated = true;
  2611. /* Make changes visible to IOMMUs */
  2612. update_domain(domain);
  2613. /* Page-table is not visible to IOMMU anymore, so free it */
  2614. free_pagetable(domain);
  2615. spin_unlock_irqrestore(&domain->lock, flags);
  2616. }
  2617. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2618. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2619. {
  2620. struct protection_domain *domain = to_pdomain(dom);
  2621. unsigned long flags;
  2622. int levels, ret;
  2623. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2624. return -EINVAL;
  2625. /* Number of GCR3 table levels required */
  2626. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2627. levels += 1;
  2628. if (levels > amd_iommu_max_glx_val)
  2629. return -EINVAL;
  2630. spin_lock_irqsave(&domain->lock, flags);
  2631. /*
  2632. * Save us all sanity checks whether devices already in the
  2633. * domain support IOMMUv2. Just force that the domain has no
  2634. * devices attached when it is switched into IOMMUv2 mode.
  2635. */
  2636. ret = -EBUSY;
  2637. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2638. goto out;
  2639. ret = -ENOMEM;
  2640. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2641. if (domain->gcr3_tbl == NULL)
  2642. goto out;
  2643. domain->glx = levels;
  2644. domain->flags |= PD_IOMMUV2_MASK;
  2645. domain->updated = true;
  2646. update_domain(domain);
  2647. ret = 0;
  2648. out:
  2649. spin_unlock_irqrestore(&domain->lock, flags);
  2650. return ret;
  2651. }
  2652. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2653. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2654. u64 address, bool size)
  2655. {
  2656. struct iommu_dev_data *dev_data;
  2657. struct iommu_cmd cmd;
  2658. int i, ret;
  2659. if (!(domain->flags & PD_IOMMUV2_MASK))
  2660. return -EINVAL;
  2661. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2662. /*
  2663. * IOMMU TLB needs to be flushed before Device TLB to
  2664. * prevent device TLB refill from IOMMU TLB
  2665. */
  2666. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  2667. if (domain->dev_iommu[i] == 0)
  2668. continue;
  2669. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2670. if (ret != 0)
  2671. goto out;
  2672. }
  2673. /* Wait until IOMMU TLB flushes are complete */
  2674. domain_flush_complete(domain);
  2675. /* Now flush device TLBs */
  2676. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2677. struct amd_iommu *iommu;
  2678. int qdep;
  2679. /*
  2680. There might be non-IOMMUv2 capable devices in an IOMMUv2
  2681. * domain.
  2682. */
  2683. if (!dev_data->ats.enabled)
  2684. continue;
  2685. qdep = dev_data->ats.qdep;
  2686. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2687. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2688. qdep, address, size);
  2689. ret = iommu_queue_command(iommu, &cmd);
  2690. if (ret != 0)
  2691. goto out;
  2692. }
  2693. /* Wait until all device TLBs are flushed */
  2694. domain_flush_complete(domain);
  2695. ret = 0;
  2696. out:
  2697. return ret;
  2698. }
  2699. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2700. u64 address)
  2701. {
  2702. return __flush_pasid(domain, pasid, address, false);
  2703. }
  2704. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2705. u64 address)
  2706. {
  2707. struct protection_domain *domain = to_pdomain(dom);
  2708. unsigned long flags;
  2709. int ret;
  2710. spin_lock_irqsave(&domain->lock, flags);
  2711. ret = __amd_iommu_flush_page(domain, pasid, address);
  2712. spin_unlock_irqrestore(&domain->lock, flags);
  2713. return ret;
  2714. }
  2715. EXPORT_SYMBOL(amd_iommu_flush_page);
  2716. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2717. {
  2718. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2719. true);
  2720. }
  2721. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2722. {
  2723. struct protection_domain *domain = to_pdomain(dom);
  2724. unsigned long flags;
  2725. int ret;
  2726. spin_lock_irqsave(&domain->lock, flags);
  2727. ret = __amd_iommu_flush_tlb(domain, pasid);
  2728. spin_unlock_irqrestore(&domain->lock, flags);
  2729. return ret;
  2730. }
  2731. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2732. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2733. {
  2734. int index;
  2735. u64 *pte;
  2736. while (true) {
  2737. index = (pasid >> (9 * level)) & 0x1ff;
  2738. pte = &root[index];
  2739. if (level == 0)
  2740. break;
  2741. if (!(*pte & GCR3_VALID)) {
  2742. if (!alloc)
  2743. return NULL;
  2744. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2745. if (root == NULL)
  2746. return NULL;
  2747. *pte = iommu_virt_to_phys(root) | GCR3_VALID;
  2748. }
  2749. root = iommu_phys_to_virt(*pte & PAGE_MASK);
  2750. level -= 1;
  2751. }
  2752. return pte;
  2753. }
  2754. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2755. unsigned long cr3)
  2756. {
  2757. u64 *pte;
  2758. if (domain->mode != PAGE_MODE_NONE)
  2759. return -EINVAL;
  2760. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2761. if (pte == NULL)
  2762. return -ENOMEM;
  2763. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2764. return __amd_iommu_flush_tlb(domain, pasid);
  2765. }
  2766. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2767. {
  2768. u64 *pte;
  2769. if (domain->mode != PAGE_MODE_NONE)
  2770. return -EINVAL;
  2771. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2772. if (pte == NULL)
  2773. return 0;
  2774. *pte = 0;
  2775. return __amd_iommu_flush_tlb(domain, pasid);
  2776. }
  2777. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2778. unsigned long cr3)
  2779. {
  2780. struct protection_domain *domain = to_pdomain(dom);
  2781. unsigned long flags;
  2782. int ret;
  2783. spin_lock_irqsave(&domain->lock, flags);
  2784. ret = __set_gcr3(domain, pasid, cr3);
  2785. spin_unlock_irqrestore(&domain->lock, flags);
  2786. return ret;
  2787. }
  2788. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2789. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2790. {
  2791. struct protection_domain *domain = to_pdomain(dom);
  2792. unsigned long flags;
  2793. int ret;
  2794. spin_lock_irqsave(&domain->lock, flags);
  2795. ret = __clear_gcr3(domain, pasid);
  2796. spin_unlock_irqrestore(&domain->lock, flags);
  2797. return ret;
  2798. }
  2799. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2800. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2801. int status, int tag)
  2802. {
  2803. struct iommu_dev_data *dev_data;
  2804. struct amd_iommu *iommu;
  2805. struct iommu_cmd cmd;
  2806. dev_data = get_dev_data(&pdev->dev);
  2807. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2808. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2809. tag, dev_data->pri_tlp);
  2810. return iommu_queue_command(iommu, &cmd);
  2811. }
  2812. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2813. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2814. {
  2815. struct protection_domain *pdomain;
  2816. pdomain = get_domain(&pdev->dev);
  2817. if (IS_ERR(pdomain))
  2818. return NULL;
  2819. /* Only return IOMMUv2 domains */
  2820. if (!(pdomain->flags & PD_IOMMUV2_MASK))
  2821. return NULL;
  2822. return &pdomain->domain;
  2823. }
  2824. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2825. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2826. {
  2827. struct iommu_dev_data *dev_data;
  2828. if (!amd_iommu_v2_supported())
  2829. return;
  2830. dev_data = get_dev_data(&pdev->dev);
  2831. dev_data->errata |= (1 << erratum);
  2832. }
  2833. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2834. int amd_iommu_device_info(struct pci_dev *pdev,
  2835. struct amd_iommu_device_info *info)
  2836. {
  2837. int max_pasids;
  2838. int pos;
  2839. if (pdev == NULL || info == NULL)
  2840. return -EINVAL;
  2841. if (!amd_iommu_v2_supported())
  2842. return -EINVAL;
  2843. memset(info, 0, sizeof(*info));
  2844. if (!pci_ats_disabled()) {
  2845. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2846. if (pos)
  2847. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2848. }
  2849. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2850. if (pos)
  2851. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2852. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2853. if (pos) {
  2854. int features;
  2855. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2856. max_pasids = min(max_pasids, (1 << 20));
  2857. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2858. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2859. features = pci_pasid_features(pdev);
  2860. if (features & PCI_PASID_CAP_EXEC)
  2861. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2862. if (features & PCI_PASID_CAP_PRIV)
  2863. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2864. }
  2865. return 0;
  2866. }
  2867. EXPORT_SYMBOL(amd_iommu_device_info);
  2868. #ifdef CONFIG_IRQ_REMAP
  2869. /*****************************************************************************
  2870. *
  2871. * Interrupt Remapping Implementation
  2872. *
  2873. *****************************************************************************/
  2874. static struct irq_chip amd_ir_chip;
  2875. static DEFINE_SPINLOCK(iommu_table_lock);
  2876. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  2877. {
  2878. u64 dte;
  2879. dte = amd_iommu_dev_table[devid].data[2];
  2880. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  2881. dte |= iommu_virt_to_phys(table->table);
  2882. dte |= DTE_IRQ_REMAP_INTCTL;
  2883. dte |= DTE_IRQ_TABLE_LEN;
  2884. dte |= DTE_IRQ_REMAP_ENABLE;
  2885. amd_iommu_dev_table[devid].data[2] = dte;
  2886. }
  2887. static struct irq_remap_table *get_irq_table(u16 devid)
  2888. {
  2889. struct irq_remap_table *table;
  2890. if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
  2891. "%s: no iommu for devid %x\n", __func__, devid))
  2892. return NULL;
  2893. table = irq_lookup_table[devid];
  2894. if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
  2895. return NULL;
  2896. return table;
  2897. }
  2898. static struct irq_remap_table *__alloc_irq_table(void)
  2899. {
  2900. struct irq_remap_table *table;
  2901. table = kzalloc(sizeof(*table), GFP_KERNEL);
  2902. if (!table)
  2903. return NULL;
  2904. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
  2905. if (!table->table) {
  2906. kfree(table);
  2907. return NULL;
  2908. }
  2909. raw_spin_lock_init(&table->lock);
  2910. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  2911. memset(table->table, 0,
  2912. MAX_IRQS_PER_TABLE * sizeof(u32));
  2913. else
  2914. memset(table->table, 0,
  2915. (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
  2916. return table;
  2917. }
  2918. static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
  2919. struct irq_remap_table *table)
  2920. {
  2921. irq_lookup_table[devid] = table;
  2922. set_dte_irq_entry(devid, table);
  2923. iommu_flush_dte(iommu, devid);
  2924. }
  2925. static struct irq_remap_table *alloc_irq_table(u16 devid)
  2926. {
  2927. struct irq_remap_table *table = NULL;
  2928. struct irq_remap_table *new_table = NULL;
  2929. struct amd_iommu *iommu;
  2930. unsigned long flags;
  2931. u16 alias;
  2932. spin_lock_irqsave(&iommu_table_lock, flags);
  2933. iommu = amd_iommu_rlookup_table[devid];
  2934. if (!iommu)
  2935. goto out_unlock;
  2936. table = irq_lookup_table[devid];
  2937. if (table)
  2938. goto out_unlock;
  2939. alias = amd_iommu_alias_table[devid];
  2940. table = irq_lookup_table[alias];
  2941. if (table) {
  2942. set_remap_table_entry(iommu, devid, table);
  2943. goto out_wait;
  2944. }
  2945. spin_unlock_irqrestore(&iommu_table_lock, flags);
  2946. /* Nothing there yet, allocate new irq remapping table */
  2947. new_table = __alloc_irq_table();
  2948. if (!new_table)
  2949. return NULL;
  2950. spin_lock_irqsave(&iommu_table_lock, flags);
  2951. table = irq_lookup_table[devid];
  2952. if (table)
  2953. goto out_unlock;
  2954. table = irq_lookup_table[alias];
  2955. if (table) {
  2956. set_remap_table_entry(iommu, devid, table);
  2957. goto out_wait;
  2958. }
  2959. table = new_table;
  2960. new_table = NULL;
  2961. set_remap_table_entry(iommu, devid, table);
  2962. if (devid != alias)
  2963. set_remap_table_entry(iommu, alias, table);
  2964. out_wait:
  2965. iommu_completion_wait(iommu);
  2966. out_unlock:
  2967. spin_unlock_irqrestore(&iommu_table_lock, flags);
  2968. if (new_table) {
  2969. kmem_cache_free(amd_iommu_irq_cache, new_table->table);
  2970. kfree(new_table);
  2971. }
  2972. return table;
  2973. }
  2974. static int alloc_irq_index(u16 devid, int count, bool align)
  2975. {
  2976. struct irq_remap_table *table;
  2977. int index, c, alignment = 1;
  2978. unsigned long flags;
  2979. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  2980. if (!iommu)
  2981. return -ENODEV;
  2982. table = alloc_irq_table(devid);
  2983. if (!table)
  2984. return -ENODEV;
  2985. if (align)
  2986. alignment = roundup_pow_of_two(count);
  2987. raw_spin_lock_irqsave(&table->lock, flags);
  2988. /* Scan table for free entries */
  2989. for (index = ALIGN(table->min_index, alignment), c = 0;
  2990. index < MAX_IRQS_PER_TABLE;) {
  2991. if (!iommu->irte_ops->is_allocated(table, index)) {
  2992. c += 1;
  2993. } else {
  2994. c = 0;
  2995. index = ALIGN(index + 1, alignment);
  2996. continue;
  2997. }
  2998. if (c == count) {
  2999. for (; c != 0; --c)
  3000. iommu->irte_ops->set_allocated(table, index - c + 1);
  3001. index -= count - 1;
  3002. goto out;
  3003. }
  3004. index++;
  3005. }
  3006. index = -ENOSPC;
  3007. out:
  3008. raw_spin_unlock_irqrestore(&table->lock, flags);
  3009. return index;
  3010. }
  3011. static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
  3012. struct amd_ir_data *data)
  3013. {
  3014. struct irq_remap_table *table;
  3015. struct amd_iommu *iommu;
  3016. unsigned long flags;
  3017. struct irte_ga *entry;
  3018. iommu = amd_iommu_rlookup_table[devid];
  3019. if (iommu == NULL)
  3020. return -EINVAL;
  3021. table = get_irq_table(devid);
  3022. if (!table)
  3023. return -ENOMEM;
  3024. raw_spin_lock_irqsave(&table->lock, flags);
  3025. entry = (struct irte_ga *)table->table;
  3026. entry = &entry[index];
  3027. entry->lo.fields_remap.valid = 0;
  3028. entry->hi.val = irte->hi.val;
  3029. entry->lo.val = irte->lo.val;
  3030. entry->lo.fields_remap.valid = 1;
  3031. if (data)
  3032. data->ref = entry;
  3033. raw_spin_unlock_irqrestore(&table->lock, flags);
  3034. iommu_flush_irt(iommu, devid);
  3035. iommu_completion_wait(iommu);
  3036. return 0;
  3037. }
  3038. static int modify_irte(u16 devid, int index, union irte *irte)
  3039. {
  3040. struct irq_remap_table *table;
  3041. struct amd_iommu *iommu;
  3042. unsigned long flags;
  3043. iommu = amd_iommu_rlookup_table[devid];
  3044. if (iommu == NULL)
  3045. return -EINVAL;
  3046. table = get_irq_table(devid);
  3047. if (!table)
  3048. return -ENOMEM;
  3049. raw_spin_lock_irqsave(&table->lock, flags);
  3050. table->table[index] = irte->val;
  3051. raw_spin_unlock_irqrestore(&table->lock, flags);
  3052. iommu_flush_irt(iommu, devid);
  3053. iommu_completion_wait(iommu);
  3054. return 0;
  3055. }
  3056. static void free_irte(u16 devid, int index)
  3057. {
  3058. struct irq_remap_table *table;
  3059. struct amd_iommu *iommu;
  3060. unsigned long flags;
  3061. iommu = amd_iommu_rlookup_table[devid];
  3062. if (iommu == NULL)
  3063. return;
  3064. table = get_irq_table(devid);
  3065. if (!table)
  3066. return;
  3067. raw_spin_lock_irqsave(&table->lock, flags);
  3068. iommu->irte_ops->clear_allocated(table, index);
  3069. raw_spin_unlock_irqrestore(&table->lock, flags);
  3070. iommu_flush_irt(iommu, devid);
  3071. iommu_completion_wait(iommu);
  3072. }
  3073. static void irte_prepare(void *entry,
  3074. u32 delivery_mode, u32 dest_mode,
  3075. u8 vector, u32 dest_apicid, int devid)
  3076. {
  3077. union irte *irte = (union irte *) entry;
  3078. irte->val = 0;
  3079. irte->fields.vector = vector;
  3080. irte->fields.int_type = delivery_mode;
  3081. irte->fields.destination = dest_apicid;
  3082. irte->fields.dm = dest_mode;
  3083. irte->fields.valid = 1;
  3084. }
  3085. static void irte_ga_prepare(void *entry,
  3086. u32 delivery_mode, u32 dest_mode,
  3087. u8 vector, u32 dest_apicid, int devid)
  3088. {
  3089. struct irte_ga *irte = (struct irte_ga *) entry;
  3090. irte->lo.val = 0;
  3091. irte->hi.val = 0;
  3092. irte->lo.fields_remap.int_type = delivery_mode;
  3093. irte->lo.fields_remap.dm = dest_mode;
  3094. irte->hi.fields.vector = vector;
  3095. irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
  3096. irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
  3097. irte->lo.fields_remap.valid = 1;
  3098. }
  3099. static void irte_activate(void *entry, u16 devid, u16 index)
  3100. {
  3101. union irte *irte = (union irte *) entry;
  3102. irte->fields.valid = 1;
  3103. modify_irte(devid, index, irte);
  3104. }
  3105. static void irte_ga_activate(void *entry, u16 devid, u16 index)
  3106. {
  3107. struct irte_ga *irte = (struct irte_ga *) entry;
  3108. irte->lo.fields_remap.valid = 1;
  3109. modify_irte_ga(devid, index, irte, NULL);
  3110. }
  3111. static void irte_deactivate(void *entry, u16 devid, u16 index)
  3112. {
  3113. union irte *irte = (union irte *) entry;
  3114. irte->fields.valid = 0;
  3115. modify_irte(devid, index, irte);
  3116. }
  3117. static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
  3118. {
  3119. struct irte_ga *irte = (struct irte_ga *) entry;
  3120. irte->lo.fields_remap.valid = 0;
  3121. modify_irte_ga(devid, index, irte, NULL);
  3122. }
  3123. static void irte_set_affinity(void *entry, u16 devid, u16 index,
  3124. u8 vector, u32 dest_apicid)
  3125. {
  3126. union irte *irte = (union irte *) entry;
  3127. irte->fields.vector = vector;
  3128. irte->fields.destination = dest_apicid;
  3129. modify_irte(devid, index, irte);
  3130. }
  3131. static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
  3132. u8 vector, u32 dest_apicid)
  3133. {
  3134. struct irte_ga *irte = (struct irte_ga *) entry;
  3135. if (!irte->lo.fields_remap.guest_mode) {
  3136. irte->hi.fields.vector = vector;
  3137. irte->lo.fields_remap.destination =
  3138. APICID_TO_IRTE_DEST_LO(dest_apicid);
  3139. irte->hi.fields.destination =
  3140. APICID_TO_IRTE_DEST_HI(dest_apicid);
  3141. modify_irte_ga(devid, index, irte, NULL);
  3142. }
  3143. }
  3144. #define IRTE_ALLOCATED (~1U)
  3145. static void irte_set_allocated(struct irq_remap_table *table, int index)
  3146. {
  3147. table->table[index] = IRTE_ALLOCATED;
  3148. }
  3149. static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
  3150. {
  3151. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3152. struct irte_ga *irte = &ptr[index];
  3153. memset(&irte->lo.val, 0, sizeof(u64));
  3154. memset(&irte->hi.val, 0, sizeof(u64));
  3155. irte->hi.fields.vector = 0xff;
  3156. }
  3157. static bool irte_is_allocated(struct irq_remap_table *table, int index)
  3158. {
  3159. union irte *ptr = (union irte *)table->table;
  3160. union irte *irte = &ptr[index];
  3161. return irte->val != 0;
  3162. }
  3163. static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
  3164. {
  3165. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3166. struct irte_ga *irte = &ptr[index];
  3167. return irte->hi.fields.vector != 0;
  3168. }
  3169. static void irte_clear_allocated(struct irq_remap_table *table, int index)
  3170. {
  3171. table->table[index] = 0;
  3172. }
  3173. static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
  3174. {
  3175. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3176. struct irte_ga *irte = &ptr[index];
  3177. memset(&irte->lo.val, 0, sizeof(u64));
  3178. memset(&irte->hi.val, 0, sizeof(u64));
  3179. }
  3180. static int get_devid(struct irq_alloc_info *info)
  3181. {
  3182. int devid = -1;
  3183. switch (info->type) {
  3184. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3185. devid = get_ioapic_devid(info->ioapic_id);
  3186. break;
  3187. case X86_IRQ_ALLOC_TYPE_HPET:
  3188. devid = get_hpet_devid(info->hpet_id);
  3189. break;
  3190. case X86_IRQ_ALLOC_TYPE_MSI:
  3191. case X86_IRQ_ALLOC_TYPE_MSIX:
  3192. devid = get_device_id(&info->msi_dev->dev);
  3193. break;
  3194. default:
  3195. BUG_ON(1);
  3196. break;
  3197. }
  3198. return devid;
  3199. }
  3200. static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
  3201. {
  3202. struct amd_iommu *iommu;
  3203. int devid;
  3204. if (!info)
  3205. return NULL;
  3206. devid = get_devid(info);
  3207. if (devid >= 0) {
  3208. iommu = amd_iommu_rlookup_table[devid];
  3209. if (iommu)
  3210. return iommu->ir_domain;
  3211. }
  3212. return NULL;
  3213. }
  3214. static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
  3215. {
  3216. struct amd_iommu *iommu;
  3217. int devid;
  3218. if (!info)
  3219. return NULL;
  3220. switch (info->type) {
  3221. case X86_IRQ_ALLOC_TYPE_MSI:
  3222. case X86_IRQ_ALLOC_TYPE_MSIX:
  3223. devid = get_device_id(&info->msi_dev->dev);
  3224. if (devid < 0)
  3225. return NULL;
  3226. iommu = amd_iommu_rlookup_table[devid];
  3227. if (iommu)
  3228. return iommu->msi_domain;
  3229. break;
  3230. default:
  3231. break;
  3232. }
  3233. return NULL;
  3234. }
  3235. struct irq_remap_ops amd_iommu_irq_ops = {
  3236. .prepare = amd_iommu_prepare,
  3237. .enable = amd_iommu_enable,
  3238. .disable = amd_iommu_disable,
  3239. .reenable = amd_iommu_reenable,
  3240. .enable_faulting = amd_iommu_enable_faulting,
  3241. .get_ir_irq_domain = get_ir_irq_domain,
  3242. .get_irq_domain = get_irq_domain,
  3243. };
  3244. static void irq_remapping_prepare_irte(struct amd_ir_data *data,
  3245. struct irq_cfg *irq_cfg,
  3246. struct irq_alloc_info *info,
  3247. int devid, int index, int sub_handle)
  3248. {
  3249. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3250. struct msi_msg *msg = &data->msi_entry;
  3251. struct IO_APIC_route_entry *entry;
  3252. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  3253. if (!iommu)
  3254. return;
  3255. data->irq_2_irte.devid = devid;
  3256. data->irq_2_irte.index = index + sub_handle;
  3257. iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
  3258. apic->irq_dest_mode, irq_cfg->vector,
  3259. irq_cfg->dest_apicid, devid);
  3260. switch (info->type) {
  3261. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3262. /* Setup IOAPIC entry */
  3263. entry = info->ioapic_entry;
  3264. info->ioapic_entry = NULL;
  3265. memset(entry, 0, sizeof(*entry));
  3266. entry->vector = index;
  3267. entry->mask = 0;
  3268. entry->trigger = info->ioapic_trigger;
  3269. entry->polarity = info->ioapic_polarity;
  3270. /* Mask level triggered irqs. */
  3271. if (info->ioapic_trigger)
  3272. entry->mask = 1;
  3273. break;
  3274. case X86_IRQ_ALLOC_TYPE_HPET:
  3275. case X86_IRQ_ALLOC_TYPE_MSI:
  3276. case X86_IRQ_ALLOC_TYPE_MSIX:
  3277. msg->address_hi = MSI_ADDR_BASE_HI;
  3278. msg->address_lo = MSI_ADDR_BASE_LO;
  3279. msg->data = irte_info->index;
  3280. break;
  3281. default:
  3282. BUG_ON(1);
  3283. break;
  3284. }
  3285. }
  3286. struct amd_irte_ops irte_32_ops = {
  3287. .prepare = irte_prepare,
  3288. .activate = irte_activate,
  3289. .deactivate = irte_deactivate,
  3290. .set_affinity = irte_set_affinity,
  3291. .set_allocated = irte_set_allocated,
  3292. .is_allocated = irte_is_allocated,
  3293. .clear_allocated = irte_clear_allocated,
  3294. };
  3295. struct amd_irte_ops irte_128_ops = {
  3296. .prepare = irte_ga_prepare,
  3297. .activate = irte_ga_activate,
  3298. .deactivate = irte_ga_deactivate,
  3299. .set_affinity = irte_ga_set_affinity,
  3300. .set_allocated = irte_ga_set_allocated,
  3301. .is_allocated = irte_ga_is_allocated,
  3302. .clear_allocated = irte_ga_clear_allocated,
  3303. };
  3304. static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
  3305. unsigned int nr_irqs, void *arg)
  3306. {
  3307. struct irq_alloc_info *info = arg;
  3308. struct irq_data *irq_data;
  3309. struct amd_ir_data *data = NULL;
  3310. struct irq_cfg *cfg;
  3311. int i, ret, devid;
  3312. int index;
  3313. if (!info)
  3314. return -EINVAL;
  3315. if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
  3316. info->type != X86_IRQ_ALLOC_TYPE_MSIX)
  3317. return -EINVAL;
  3318. /*
  3319. * With IRQ remapping enabled, don't need contiguous CPU vectors
  3320. * to support multiple MSI interrupts.
  3321. */
  3322. if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
  3323. info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
  3324. devid = get_devid(info);
  3325. if (devid < 0)
  3326. return -EINVAL;
  3327. ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
  3328. if (ret < 0)
  3329. return ret;
  3330. if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
  3331. struct irq_remap_table *table;
  3332. struct amd_iommu *iommu;
  3333. table = alloc_irq_table(devid);
  3334. if (table) {
  3335. if (!table->min_index) {
  3336. /*
  3337. * Keep the first 32 indexes free for IOAPIC
  3338. * interrupts.
  3339. */
  3340. table->min_index = 32;
  3341. iommu = amd_iommu_rlookup_table[devid];
  3342. for (i = 0; i < 32; ++i)
  3343. iommu->irte_ops->set_allocated(table, i);
  3344. }
  3345. WARN_ON(table->min_index != 32);
  3346. index = info->ioapic_pin;
  3347. } else {
  3348. index = -ENOMEM;
  3349. }
  3350. } else {
  3351. bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
  3352. index = alloc_irq_index(devid, nr_irqs, align);
  3353. }
  3354. if (index < 0) {
  3355. pr_warn("Failed to allocate IRTE\n");
  3356. ret = index;
  3357. goto out_free_parent;
  3358. }
  3359. for (i = 0; i < nr_irqs; i++) {
  3360. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3361. cfg = irqd_cfg(irq_data);
  3362. if (!irq_data || !cfg) {
  3363. ret = -EINVAL;
  3364. goto out_free_data;
  3365. }
  3366. ret = -ENOMEM;
  3367. data = kzalloc(sizeof(*data), GFP_KERNEL);
  3368. if (!data)
  3369. goto out_free_data;
  3370. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  3371. data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
  3372. else
  3373. data->entry = kzalloc(sizeof(struct irte_ga),
  3374. GFP_KERNEL);
  3375. if (!data->entry) {
  3376. kfree(data);
  3377. goto out_free_data;
  3378. }
  3379. irq_data->hwirq = (devid << 16) + i;
  3380. irq_data->chip_data = data;
  3381. irq_data->chip = &amd_ir_chip;
  3382. irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
  3383. irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
  3384. }
  3385. return 0;
  3386. out_free_data:
  3387. for (i--; i >= 0; i--) {
  3388. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3389. if (irq_data)
  3390. kfree(irq_data->chip_data);
  3391. }
  3392. for (i = 0; i < nr_irqs; i++)
  3393. free_irte(devid, index + i);
  3394. out_free_parent:
  3395. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3396. return ret;
  3397. }
  3398. static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
  3399. unsigned int nr_irqs)
  3400. {
  3401. struct irq_2_irte *irte_info;
  3402. struct irq_data *irq_data;
  3403. struct amd_ir_data *data;
  3404. int i;
  3405. for (i = 0; i < nr_irqs; i++) {
  3406. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3407. if (irq_data && irq_data->chip_data) {
  3408. data = irq_data->chip_data;
  3409. irte_info = &data->irq_2_irte;
  3410. free_irte(irte_info->devid, irte_info->index);
  3411. kfree(data->entry);
  3412. kfree(data);
  3413. }
  3414. }
  3415. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3416. }
  3417. static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
  3418. struct amd_ir_data *ir_data,
  3419. struct irq_2_irte *irte_info,
  3420. struct irq_cfg *cfg);
  3421. static int irq_remapping_activate(struct irq_domain *domain,
  3422. struct irq_data *irq_data, bool reserve)
  3423. {
  3424. struct amd_ir_data *data = irq_data->chip_data;
  3425. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3426. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3427. struct irq_cfg *cfg = irqd_cfg(irq_data);
  3428. if (!iommu)
  3429. return 0;
  3430. iommu->irte_ops->activate(data->entry, irte_info->devid,
  3431. irte_info->index);
  3432. amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
  3433. return 0;
  3434. }
  3435. static void irq_remapping_deactivate(struct irq_domain *domain,
  3436. struct irq_data *irq_data)
  3437. {
  3438. struct amd_ir_data *data = irq_data->chip_data;
  3439. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3440. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3441. if (iommu)
  3442. iommu->irte_ops->deactivate(data->entry, irte_info->devid,
  3443. irte_info->index);
  3444. }
  3445. static const struct irq_domain_ops amd_ir_domain_ops = {
  3446. .alloc = irq_remapping_alloc,
  3447. .free = irq_remapping_free,
  3448. .activate = irq_remapping_activate,
  3449. .deactivate = irq_remapping_deactivate,
  3450. };
  3451. static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
  3452. {
  3453. struct amd_iommu *iommu;
  3454. struct amd_iommu_pi_data *pi_data = vcpu_info;
  3455. struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
  3456. struct amd_ir_data *ir_data = data->chip_data;
  3457. struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
  3458. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3459. struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
  3460. /* Note:
  3461. * This device has never been set up for guest mode.
  3462. * we should not modify the IRTE
  3463. */
  3464. if (!dev_data || !dev_data->use_vapic)
  3465. return 0;
  3466. pi_data->ir_data = ir_data;
  3467. /* Note:
  3468. * SVM tries to set up for VAPIC mode, but we are in
  3469. * legacy mode. So, we force legacy mode instead.
  3470. */
  3471. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  3472. pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
  3473. __func__);
  3474. pi_data->is_guest_mode = false;
  3475. }
  3476. iommu = amd_iommu_rlookup_table[irte_info->devid];
  3477. if (iommu == NULL)
  3478. return -EINVAL;
  3479. pi_data->prev_ga_tag = ir_data->cached_ga_tag;
  3480. if (pi_data->is_guest_mode) {
  3481. /* Setting */
  3482. irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
  3483. irte->hi.fields.vector = vcpu_pi_info->vector;
  3484. irte->lo.fields_vapic.ga_log_intr = 1;
  3485. irte->lo.fields_vapic.guest_mode = 1;
  3486. irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
  3487. ir_data->cached_ga_tag = pi_data->ga_tag;
  3488. } else {
  3489. /* Un-Setting */
  3490. struct irq_cfg *cfg = irqd_cfg(data);
  3491. irte->hi.val = 0;
  3492. irte->lo.val = 0;
  3493. irte->hi.fields.vector = cfg->vector;
  3494. irte->lo.fields_remap.guest_mode = 0;
  3495. irte->lo.fields_remap.destination =
  3496. APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
  3497. irte->hi.fields.destination =
  3498. APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
  3499. irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
  3500. irte->lo.fields_remap.dm = apic->irq_dest_mode;
  3501. /*
  3502. * This communicates the ga_tag back to the caller
  3503. * so that it can do all the necessary clean up.
  3504. */
  3505. ir_data->cached_ga_tag = 0;
  3506. }
  3507. return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
  3508. }
  3509. static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
  3510. struct amd_ir_data *ir_data,
  3511. struct irq_2_irte *irte_info,
  3512. struct irq_cfg *cfg)
  3513. {
  3514. /*
  3515. * Atomically updates the IRTE with the new destination, vector
  3516. * and flushes the interrupt entry cache.
  3517. */
  3518. iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
  3519. irte_info->index, cfg->vector,
  3520. cfg->dest_apicid);
  3521. }
  3522. static int amd_ir_set_affinity(struct irq_data *data,
  3523. const struct cpumask *mask, bool force)
  3524. {
  3525. struct amd_ir_data *ir_data = data->chip_data;
  3526. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3527. struct irq_cfg *cfg = irqd_cfg(data);
  3528. struct irq_data *parent = data->parent_data;
  3529. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3530. int ret;
  3531. if (!iommu)
  3532. return -ENODEV;
  3533. ret = parent->chip->irq_set_affinity(parent, mask, force);
  3534. if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
  3535. return ret;
  3536. amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
  3537. /*
  3538. * After this point, all the interrupts will start arriving
  3539. * at the new destination. So, time to cleanup the previous
  3540. * vector allocation.
  3541. */
  3542. send_cleanup_vector(cfg);
  3543. return IRQ_SET_MASK_OK_DONE;
  3544. }
  3545. static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
  3546. {
  3547. struct amd_ir_data *ir_data = irq_data->chip_data;
  3548. *msg = ir_data->msi_entry;
  3549. }
  3550. static struct irq_chip amd_ir_chip = {
  3551. .name = "AMD-IR",
  3552. .irq_ack = apic_ack_irq,
  3553. .irq_set_affinity = amd_ir_set_affinity,
  3554. .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
  3555. .irq_compose_msi_msg = ir_compose_msi_msg,
  3556. };
  3557. int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
  3558. {
  3559. struct fwnode_handle *fn;
  3560. fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
  3561. if (!fn)
  3562. return -ENOMEM;
  3563. iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
  3564. irq_domain_free_fwnode(fn);
  3565. if (!iommu->ir_domain)
  3566. return -ENOMEM;
  3567. iommu->ir_domain->parent = arch_get_ir_parent_domain();
  3568. iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
  3569. "AMD-IR-MSI",
  3570. iommu->index);
  3571. return 0;
  3572. }
  3573. int amd_iommu_update_ga(int cpu, bool is_run, void *data)
  3574. {
  3575. unsigned long flags;
  3576. struct amd_iommu *iommu;
  3577. struct irq_remap_table *table;
  3578. struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
  3579. int devid = ir_data->irq_2_irte.devid;
  3580. struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
  3581. struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
  3582. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
  3583. !ref || !entry || !entry->lo.fields_vapic.guest_mode)
  3584. return 0;
  3585. iommu = amd_iommu_rlookup_table[devid];
  3586. if (!iommu)
  3587. return -ENODEV;
  3588. table = get_irq_table(devid);
  3589. if (!table)
  3590. return -ENODEV;
  3591. raw_spin_lock_irqsave(&table->lock, flags);
  3592. if (ref->lo.fields_vapic.guest_mode) {
  3593. if (cpu >= 0) {
  3594. ref->lo.fields_vapic.destination =
  3595. APICID_TO_IRTE_DEST_LO(cpu);
  3596. ref->hi.fields.destination =
  3597. APICID_TO_IRTE_DEST_HI(cpu);
  3598. }
  3599. ref->lo.fields_vapic.is_run = is_run;
  3600. barrier();
  3601. }
  3602. raw_spin_unlock_irqrestore(&table->lock, flags);
  3603. iommu_flush_irt(iommu, devid);
  3604. iommu_completion_wait(iommu);
  3605. return 0;
  3606. }
  3607. EXPORT_SYMBOL(amd_iommu_update_ga);
  3608. #endif