random.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
  5. * Rights Reserved.
  6. *
  7. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  8. *
  9. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  10. * rights reserved.
  11. *
  12. * Redistribution and use in source and binary forms, with or without
  13. * modification, are permitted provided that the following conditions
  14. * are met:
  15. * 1. Redistributions of source code must retain the above copyright
  16. * notice, and the entire permission notice in its entirety,
  17. * including the disclaimer of warranties.
  18. * 2. Redistributions in binary form must reproduce the above copyright
  19. * notice, this list of conditions and the following disclaimer in the
  20. * documentation and/or other materials provided with the distribution.
  21. * 3. The name of the author may not be used to endorse or promote
  22. * products derived from this software without specific prior
  23. * written permission.
  24. *
  25. * ALTERNATIVELY, this product may be distributed under the terms of
  26. * the GNU General Public License, in which case the provisions of the GPL are
  27. * required INSTEAD OF the above restrictions. (This clause is
  28. * necessary due to a potential bad interaction between the GPL and
  29. * the restrictions contained in a BSD-style copyright.)
  30. *
  31. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  35. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42. * DAMAGE.
  43. */
  44. /*
  45. * (now, with legal B.S. out of the way.....)
  46. *
  47. * This routine gathers environmental noise from device drivers, etc.,
  48. * and returns good random numbers, suitable for cryptographic use.
  49. * Besides the obvious cryptographic uses, these numbers are also good
  50. * for seeding TCP sequence numbers, and other places where it is
  51. * desirable to have numbers which are not only random, but hard to
  52. * predict by an attacker.
  53. *
  54. * Theory of operation
  55. * ===================
  56. *
  57. * Computers are very predictable devices. Hence it is extremely hard
  58. * to produce truly random numbers on a computer --- as opposed to
  59. * pseudo-random numbers, which can easily generated by using a
  60. * algorithm. Unfortunately, it is very easy for attackers to guess
  61. * the sequence of pseudo-random number generators, and for some
  62. * applications this is not acceptable. So instead, we must try to
  63. * gather "environmental noise" from the computer's environment, which
  64. * must be hard for outside attackers to observe, and use that to
  65. * generate random numbers. In a Unix environment, this is best done
  66. * from inside the kernel.
  67. *
  68. * Sources of randomness from the environment include inter-keyboard
  69. * timings, inter-interrupt timings from some interrupts, and other
  70. * events which are both (a) non-deterministic and (b) hard for an
  71. * outside observer to measure. Randomness from these sources are
  72. * added to an "entropy pool", which is mixed using a CRC-like function.
  73. * This is not cryptographically strong, but it is adequate assuming
  74. * the randomness is not chosen maliciously, and it is fast enough that
  75. * the overhead of doing it on every interrupt is very reasonable.
  76. * As random bytes are mixed into the entropy pool, the routines keep
  77. * an *estimate* of how many bits of randomness have been stored into
  78. * the random number generator's internal state.
  79. *
  80. * When random bytes are desired, they are obtained by taking the SHA
  81. * hash of the contents of the "entropy pool". The SHA hash avoids
  82. * exposing the internal state of the entropy pool. It is believed to
  83. * be computationally infeasible to derive any useful information
  84. * about the input of SHA from its output. Even if it is possible to
  85. * analyze SHA in some clever way, as long as the amount of data
  86. * returned from the generator is less than the inherent entropy in
  87. * the pool, the output data is totally unpredictable. For this
  88. * reason, the routine decreases its internal estimate of how many
  89. * bits of "true randomness" are contained in the entropy pool as it
  90. * outputs random numbers.
  91. *
  92. * If this estimate goes to zero, the routine can still generate
  93. * random numbers; however, an attacker may (at least in theory) be
  94. * able to infer the future output of the generator from prior
  95. * outputs. This requires successful cryptanalysis of SHA, which is
  96. * not believed to be feasible, but there is a remote possibility.
  97. * Nonetheless, these numbers should be useful for the vast majority
  98. * of purposes.
  99. *
  100. * Exported interfaces ---- output
  101. * ===============================
  102. *
  103. * There are three exported interfaces; the first is one designed to
  104. * be used from within the kernel:
  105. *
  106. * void get_random_bytes(void *buf, int nbytes);
  107. *
  108. * This interface will return the requested number of random bytes,
  109. * and place it in the requested buffer.
  110. *
  111. * The two other interfaces are two character devices /dev/random and
  112. * /dev/urandom. /dev/random is suitable for use when very high
  113. * quality randomness is desired (for example, for key generation or
  114. * one-time pads), as it will only return a maximum of the number of
  115. * bits of randomness (as estimated by the random number generator)
  116. * contained in the entropy pool.
  117. *
  118. * The /dev/urandom device does not have this limit, and will return
  119. * as many bytes as are requested. As more and more random bytes are
  120. * requested without giving time for the entropy pool to recharge,
  121. * this will result in random numbers that are merely cryptographically
  122. * strong. For many applications, however, this is acceptable.
  123. *
  124. * Exported interfaces ---- input
  125. * ==============================
  126. *
  127. * The current exported interfaces for gathering environmental noise
  128. * from the devices are:
  129. *
  130. * void add_device_randomness(const void *buf, unsigned int size);
  131. * void add_input_randomness(unsigned int type, unsigned int code,
  132. * unsigned int value);
  133. * void add_interrupt_randomness(int irq, int irq_flags);
  134. * void add_disk_randomness(struct gendisk *disk);
  135. *
  136. * add_device_randomness() is for adding data to the random pool that
  137. * is likely to differ between two devices (or possibly even per boot).
  138. * This would be things like MAC addresses or serial numbers, or the
  139. * read-out of the RTC. This does *not* add any actual entropy to the
  140. * pool, but it initializes the pool to different values for devices
  141. * that might otherwise be identical and have very little entropy
  142. * available to them (particularly common in the embedded world).
  143. *
  144. * add_input_randomness() uses the input layer interrupt timing, as well as
  145. * the event type information from the hardware.
  146. *
  147. * add_interrupt_randomness() uses the interrupt timing as random
  148. * inputs to the entropy pool. Using the cycle counters and the irq source
  149. * as inputs, it feeds the randomness roughly once a second.
  150. *
  151. * add_disk_randomness() uses what amounts to the seek time of block
  152. * layer request events, on a per-disk_devt basis, as input to the
  153. * entropy pool. Note that high-speed solid state drives with very low
  154. * seek times do not make for good sources of entropy, as their seek
  155. * times are usually fairly consistent.
  156. *
  157. * All of these routines try to estimate how many bits of randomness a
  158. * particular randomness source. They do this by keeping track of the
  159. * first and second order deltas of the event timings.
  160. *
  161. * Ensuring unpredictability at system startup
  162. * ============================================
  163. *
  164. * When any operating system starts up, it will go through a sequence
  165. * of actions that are fairly predictable by an adversary, especially
  166. * if the start-up does not involve interaction with a human operator.
  167. * This reduces the actual number of bits of unpredictability in the
  168. * entropy pool below the value in entropy_count. In order to
  169. * counteract this effect, it helps to carry information in the
  170. * entropy pool across shut-downs and start-ups. To do this, put the
  171. * following lines an appropriate script which is run during the boot
  172. * sequence:
  173. *
  174. * echo "Initializing random number generator..."
  175. * random_seed=/var/run/random-seed
  176. * # Carry a random seed from start-up to start-up
  177. * # Load and then save the whole entropy pool
  178. * if [ -f $random_seed ]; then
  179. * cat $random_seed >/dev/urandom
  180. * else
  181. * touch $random_seed
  182. * fi
  183. * chmod 600 $random_seed
  184. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  185. *
  186. * and the following lines in an appropriate script which is run as
  187. * the system is shutdown:
  188. *
  189. * # Carry a random seed from shut-down to start-up
  190. * # Save the whole entropy pool
  191. * echo "Saving random seed..."
  192. * random_seed=/var/run/random-seed
  193. * touch $random_seed
  194. * chmod 600 $random_seed
  195. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  196. *
  197. * For example, on most modern systems using the System V init
  198. * scripts, such code fragments would be found in
  199. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  200. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  201. *
  202. * Effectively, these commands cause the contents of the entropy pool
  203. * to be saved at shut-down time and reloaded into the entropy pool at
  204. * start-up. (The 'dd' in the addition to the bootup script is to
  205. * make sure that /etc/random-seed is different for every start-up,
  206. * even if the system crashes without executing rc.0.) Even with
  207. * complete knowledge of the start-up activities, predicting the state
  208. * of the entropy pool requires knowledge of the previous history of
  209. * the system.
  210. *
  211. * Configuring the /dev/random driver under Linux
  212. * ==============================================
  213. *
  214. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  215. * the /dev/mem major number (#1). So if your system does not have
  216. * /dev/random and /dev/urandom created already, they can be created
  217. * by using the commands:
  218. *
  219. * mknod /dev/random c 1 8
  220. * mknod /dev/urandom c 1 9
  221. *
  222. * Acknowledgements:
  223. * =================
  224. *
  225. * Ideas for constructing this random number generator were derived
  226. * from Pretty Good Privacy's random number generator, and from private
  227. * discussions with Phil Karn. Colin Plumb provided a faster random
  228. * number generator, which speed up the mixing function of the entropy
  229. * pool, taken from PGPfone. Dale Worley has also contributed many
  230. * useful ideas and suggestions to improve this driver.
  231. *
  232. * Any flaws in the design are solely my responsibility, and should
  233. * not be attributed to the Phil, Colin, or any of authors of PGP.
  234. *
  235. * Further background information on this topic may be obtained from
  236. * RFC 1750, "Randomness Recommendations for Security", by Donald
  237. * Eastlake, Steve Crocker, and Jeff Schiller.
  238. */
  239. #include <linux/utsname.h>
  240. #include <linux/module.h>
  241. #include <linux/kernel.h>
  242. #include <linux/major.h>
  243. #include <linux/string.h>
  244. #include <linux/fcntl.h>
  245. #include <linux/slab.h>
  246. #include <linux/random.h>
  247. #include <linux/poll.h>
  248. #include <linux/init.h>
  249. #include <linux/fs.h>
  250. #include <linux/genhd.h>
  251. #include <linux/interrupt.h>
  252. #include <linux/mm.h>
  253. #include <linux/nodemask.h>
  254. #include <linux/spinlock.h>
  255. #include <linux/kthread.h>
  256. #include <linux/percpu.h>
  257. #include <linux/cryptohash.h>
  258. #include <linux/fips.h>
  259. #include <linux/ptrace.h>
  260. #include <linux/workqueue.h>
  261. #include <linux/irq.h>
  262. #include <linux/ratelimit.h>
  263. #include <linux/syscalls.h>
  264. #include <linux/completion.h>
  265. #include <linux/uuid.h>
  266. #include <crypto/chacha20.h>
  267. #include <asm/processor.h>
  268. #include <linux/uaccess.h>
  269. #include <asm/irq.h>
  270. #include <asm/irq_regs.h>
  271. #include <asm/io.h>
  272. #define CREATE_TRACE_POINTS
  273. #include <trace/events/random.h>
  274. /* #define ADD_INTERRUPT_BENCH */
  275. /*
  276. * Configuration information
  277. */
  278. #define INPUT_POOL_SHIFT 12
  279. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  280. #define OUTPUT_POOL_SHIFT 10
  281. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  282. #define SEC_XFER_SIZE 512
  283. #define EXTRACT_SIZE 10
  284. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  285. /*
  286. * To allow fractional bits to be tracked, the entropy_count field is
  287. * denominated in units of 1/8th bits.
  288. *
  289. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  290. * credit_entropy_bits() needs to be 64 bits wide.
  291. */
  292. #define ENTROPY_SHIFT 3
  293. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  294. /*
  295. * The minimum number of bits of entropy before we wake up a read on
  296. * /dev/random. Should be enough to do a significant reseed.
  297. */
  298. static int random_read_wakeup_bits = 64;
  299. /*
  300. * If the entropy count falls under this number of bits, then we
  301. * should wake up processes which are selecting or polling on write
  302. * access to /dev/random.
  303. */
  304. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  305. /*
  306. * Originally, we used a primitive polynomial of degree .poolwords
  307. * over GF(2). The taps for various sizes are defined below. They
  308. * were chosen to be evenly spaced except for the last tap, which is 1
  309. * to get the twisting happening as fast as possible.
  310. *
  311. * For the purposes of better mixing, we use the CRC-32 polynomial as
  312. * well to make a (modified) twisted Generalized Feedback Shift
  313. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  314. * generators. ACM Transactions on Modeling and Computer Simulation
  315. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  316. * GFSR generators II. ACM Transactions on Modeling and Computer
  317. * Simulation 4:254-266)
  318. *
  319. * Thanks to Colin Plumb for suggesting this.
  320. *
  321. * The mixing operation is much less sensitive than the output hash,
  322. * where we use SHA-1. All that we want of mixing operation is that
  323. * it be a good non-cryptographic hash; i.e. it not produce collisions
  324. * when fed "random" data of the sort we expect to see. As long as
  325. * the pool state differs for different inputs, we have preserved the
  326. * input entropy and done a good job. The fact that an intelligent
  327. * attacker can construct inputs that will produce controlled
  328. * alterations to the pool's state is not important because we don't
  329. * consider such inputs to contribute any randomness. The only
  330. * property we need with respect to them is that the attacker can't
  331. * increase his/her knowledge of the pool's state. Since all
  332. * additions are reversible (knowing the final state and the input,
  333. * you can reconstruct the initial state), if an attacker has any
  334. * uncertainty about the initial state, he/she can only shuffle that
  335. * uncertainty about, but never cause any collisions (which would
  336. * decrease the uncertainty).
  337. *
  338. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  339. * Videau in their paper, "The Linux Pseudorandom Number Generator
  340. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  341. * paper, they point out that we are not using a true Twisted GFSR,
  342. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  343. * is, with only three taps, instead of the six that we are using).
  344. * As a result, the resulting polynomial is neither primitive nor
  345. * irreducible, and hence does not have a maximal period over
  346. * GF(2**32). They suggest a slight change to the generator
  347. * polynomial which improves the resulting TGFSR polynomial to be
  348. * irreducible, which we have made here.
  349. */
  350. static struct poolinfo {
  351. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  352. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  353. int tap1, tap2, tap3, tap4, tap5;
  354. } poolinfo_table[] = {
  355. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  356. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  357. { S(128), 104, 76, 51, 25, 1 },
  358. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  359. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  360. { S(32), 26, 19, 14, 7, 1 },
  361. #if 0
  362. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  363. { S(2048), 1638, 1231, 819, 411, 1 },
  364. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  365. { S(1024), 817, 615, 412, 204, 1 },
  366. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  367. { S(1024), 819, 616, 410, 207, 2 },
  368. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  369. { S(512), 411, 308, 208, 104, 1 },
  370. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  371. { S(512), 409, 307, 206, 102, 2 },
  372. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  373. { S(512), 409, 309, 205, 103, 2 },
  374. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  375. { S(256), 205, 155, 101, 52, 1 },
  376. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  377. { S(128), 103, 78, 51, 27, 2 },
  378. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  379. { S(64), 52, 39, 26, 14, 1 },
  380. #endif
  381. };
  382. /*
  383. * Static global variables
  384. */
  385. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  386. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  387. static struct fasync_struct *fasync;
  388. static DEFINE_SPINLOCK(random_ready_list_lock);
  389. static LIST_HEAD(random_ready_list);
  390. struct crng_state {
  391. __u32 state[16];
  392. unsigned long init_time;
  393. spinlock_t lock;
  394. };
  395. struct crng_state primary_crng = {
  396. .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
  397. };
  398. /*
  399. * crng_init = 0 --> Uninitialized
  400. * 1 --> Initialized
  401. * 2 --> Initialized from input_pool
  402. *
  403. * crng_init is protected by primary_crng->lock, and only increases
  404. * its value (from 0->1->2).
  405. */
  406. static int crng_init = 0;
  407. #define crng_ready() (likely(crng_init > 1))
  408. static int crng_init_cnt = 0;
  409. static unsigned long crng_global_init_time = 0;
  410. #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
  411. static void _extract_crng(struct crng_state *crng,
  412. __u32 out[CHACHA20_BLOCK_WORDS]);
  413. static void _crng_backtrack_protect(struct crng_state *crng,
  414. __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
  415. static void process_random_ready_list(void);
  416. static void _get_random_bytes(void *buf, int nbytes);
  417. static struct ratelimit_state unseeded_warning =
  418. RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
  419. static struct ratelimit_state urandom_warning =
  420. RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
  421. static int ratelimit_disable __read_mostly;
  422. module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
  423. MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
  424. /**********************************************************************
  425. *
  426. * OS independent entropy store. Here are the functions which handle
  427. * storing entropy in an entropy pool.
  428. *
  429. **********************************************************************/
  430. struct entropy_store;
  431. struct entropy_store {
  432. /* read-only data: */
  433. const struct poolinfo *poolinfo;
  434. __u32 *pool;
  435. const char *name;
  436. struct entropy_store *pull;
  437. struct work_struct push_work;
  438. /* read-write data: */
  439. unsigned long last_pulled;
  440. spinlock_t lock;
  441. unsigned short add_ptr;
  442. unsigned short input_rotate;
  443. int entropy_count;
  444. int entropy_total;
  445. unsigned int initialized:1;
  446. unsigned int last_data_init:1;
  447. __u8 last_data[EXTRACT_SIZE];
  448. };
  449. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  450. size_t nbytes, int min, int rsvd);
  451. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  452. size_t nbytes, int fips);
  453. static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
  454. static void push_to_pool(struct work_struct *work);
  455. static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
  456. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
  457. static struct entropy_store input_pool = {
  458. .poolinfo = &poolinfo_table[0],
  459. .name = "input",
  460. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  461. .pool = input_pool_data
  462. };
  463. static struct entropy_store blocking_pool = {
  464. .poolinfo = &poolinfo_table[1],
  465. .name = "blocking",
  466. .pull = &input_pool,
  467. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  468. .pool = blocking_pool_data,
  469. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  470. push_to_pool),
  471. };
  472. static __u32 const twist_table[8] = {
  473. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  474. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  475. /*
  476. * This function adds bytes into the entropy "pool". It does not
  477. * update the entropy estimate. The caller should call
  478. * credit_entropy_bits if this is appropriate.
  479. *
  480. * The pool is stirred with a primitive polynomial of the appropriate
  481. * degree, and then twisted. We twist by three bits at a time because
  482. * it's cheap to do so and helps slightly in the expected case where
  483. * the entropy is concentrated in the low-order bits.
  484. */
  485. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  486. int nbytes)
  487. {
  488. unsigned long i, tap1, tap2, tap3, tap4, tap5;
  489. int input_rotate;
  490. int wordmask = r->poolinfo->poolwords - 1;
  491. const char *bytes = in;
  492. __u32 w;
  493. tap1 = r->poolinfo->tap1;
  494. tap2 = r->poolinfo->tap2;
  495. tap3 = r->poolinfo->tap3;
  496. tap4 = r->poolinfo->tap4;
  497. tap5 = r->poolinfo->tap5;
  498. input_rotate = r->input_rotate;
  499. i = r->add_ptr;
  500. /* mix one byte at a time to simplify size handling and churn faster */
  501. while (nbytes--) {
  502. w = rol32(*bytes++, input_rotate);
  503. i = (i - 1) & wordmask;
  504. /* XOR in the various taps */
  505. w ^= r->pool[i];
  506. w ^= r->pool[(i + tap1) & wordmask];
  507. w ^= r->pool[(i + tap2) & wordmask];
  508. w ^= r->pool[(i + tap3) & wordmask];
  509. w ^= r->pool[(i + tap4) & wordmask];
  510. w ^= r->pool[(i + tap5) & wordmask];
  511. /* Mix the result back in with a twist */
  512. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  513. /*
  514. * Normally, we add 7 bits of rotation to the pool.
  515. * At the beginning of the pool, add an extra 7 bits
  516. * rotation, so that successive passes spread the
  517. * input bits across the pool evenly.
  518. */
  519. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  520. }
  521. r->input_rotate = input_rotate;
  522. r->add_ptr = i;
  523. }
  524. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  525. int nbytes)
  526. {
  527. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  528. _mix_pool_bytes(r, in, nbytes);
  529. }
  530. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  531. int nbytes)
  532. {
  533. unsigned long flags;
  534. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  535. spin_lock_irqsave(&r->lock, flags);
  536. _mix_pool_bytes(r, in, nbytes);
  537. spin_unlock_irqrestore(&r->lock, flags);
  538. }
  539. struct fast_pool {
  540. __u32 pool[4];
  541. unsigned long last;
  542. unsigned short reg_idx;
  543. unsigned char count;
  544. };
  545. /*
  546. * This is a fast mixing routine used by the interrupt randomness
  547. * collector. It's hardcoded for an 128 bit pool and assumes that any
  548. * locks that might be needed are taken by the caller.
  549. */
  550. static void fast_mix(struct fast_pool *f)
  551. {
  552. __u32 a = f->pool[0], b = f->pool[1];
  553. __u32 c = f->pool[2], d = f->pool[3];
  554. a += b; c += d;
  555. b = rol32(b, 6); d = rol32(d, 27);
  556. d ^= a; b ^= c;
  557. a += b; c += d;
  558. b = rol32(b, 16); d = rol32(d, 14);
  559. d ^= a; b ^= c;
  560. a += b; c += d;
  561. b = rol32(b, 6); d = rol32(d, 27);
  562. d ^= a; b ^= c;
  563. a += b; c += d;
  564. b = rol32(b, 16); d = rol32(d, 14);
  565. d ^= a; b ^= c;
  566. f->pool[0] = a; f->pool[1] = b;
  567. f->pool[2] = c; f->pool[3] = d;
  568. f->count++;
  569. }
  570. static void process_random_ready_list(void)
  571. {
  572. unsigned long flags;
  573. struct random_ready_callback *rdy, *tmp;
  574. spin_lock_irqsave(&random_ready_list_lock, flags);
  575. list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
  576. struct module *owner = rdy->owner;
  577. list_del_init(&rdy->list);
  578. rdy->func(rdy);
  579. module_put(owner);
  580. }
  581. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  582. }
  583. /*
  584. * Credit (or debit) the entropy store with n bits of entropy.
  585. * Use credit_entropy_bits_safe() if the value comes from userspace
  586. * or otherwise should be checked for extreme values.
  587. */
  588. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  589. {
  590. int entropy_count, orig;
  591. const int pool_size = r->poolinfo->poolfracbits;
  592. int nfrac = nbits << ENTROPY_SHIFT;
  593. if (!nbits)
  594. return;
  595. retry:
  596. entropy_count = orig = READ_ONCE(r->entropy_count);
  597. if (nfrac < 0) {
  598. /* Debit */
  599. entropy_count += nfrac;
  600. } else {
  601. /*
  602. * Credit: we have to account for the possibility of
  603. * overwriting already present entropy. Even in the
  604. * ideal case of pure Shannon entropy, new contributions
  605. * approach the full value asymptotically:
  606. *
  607. * entropy <- entropy + (pool_size - entropy) *
  608. * (1 - exp(-add_entropy/pool_size))
  609. *
  610. * For add_entropy <= pool_size/2 then
  611. * (1 - exp(-add_entropy/pool_size)) >=
  612. * (add_entropy/pool_size)*0.7869...
  613. * so we can approximate the exponential with
  614. * 3/4*add_entropy/pool_size and still be on the
  615. * safe side by adding at most pool_size/2 at a time.
  616. *
  617. * The use of pool_size-2 in the while statement is to
  618. * prevent rounding artifacts from making the loop
  619. * arbitrarily long; this limits the loop to log2(pool_size)*2
  620. * turns no matter how large nbits is.
  621. */
  622. int pnfrac = nfrac;
  623. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  624. /* The +2 corresponds to the /4 in the denominator */
  625. do {
  626. unsigned int anfrac = min(pnfrac, pool_size/2);
  627. unsigned int add =
  628. ((pool_size - entropy_count)*anfrac*3) >> s;
  629. entropy_count += add;
  630. pnfrac -= anfrac;
  631. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  632. }
  633. if (unlikely(entropy_count < 0)) {
  634. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  635. r->name, entropy_count);
  636. WARN_ON(1);
  637. entropy_count = 0;
  638. } else if (entropy_count > pool_size)
  639. entropy_count = pool_size;
  640. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  641. goto retry;
  642. r->entropy_total += nbits;
  643. if (!r->initialized && r->entropy_total > 128) {
  644. r->initialized = 1;
  645. r->entropy_total = 0;
  646. }
  647. trace_credit_entropy_bits(r->name, nbits,
  648. entropy_count >> ENTROPY_SHIFT,
  649. r->entropy_total, _RET_IP_);
  650. if (r == &input_pool) {
  651. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  652. if (crng_init < 2 && entropy_bits >= 128) {
  653. crng_reseed(&primary_crng, r);
  654. entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
  655. }
  656. /* should we wake readers? */
  657. if (entropy_bits >= random_read_wakeup_bits &&
  658. wq_has_sleeper(&random_read_wait)) {
  659. wake_up_interruptible(&random_read_wait);
  660. kill_fasync(&fasync, SIGIO, POLL_IN);
  661. }
  662. /* If the input pool is getting full, send some
  663. * entropy to the blocking pool until it is 75% full.
  664. */
  665. if (entropy_bits > random_write_wakeup_bits &&
  666. r->initialized &&
  667. r->entropy_total >= 2*random_read_wakeup_bits) {
  668. struct entropy_store *other = &blocking_pool;
  669. if (other->entropy_count <=
  670. 3 * other->poolinfo->poolfracbits / 4) {
  671. schedule_work(&other->push_work);
  672. r->entropy_total = 0;
  673. }
  674. }
  675. }
  676. }
  677. static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  678. {
  679. const int nbits_max = r->poolinfo->poolwords * 32;
  680. if (nbits < 0)
  681. return -EINVAL;
  682. /* Cap the value to avoid overflows */
  683. nbits = min(nbits, nbits_max);
  684. credit_entropy_bits(r, nbits);
  685. return 0;
  686. }
  687. /*********************************************************************
  688. *
  689. * CRNG using CHACHA20
  690. *
  691. *********************************************************************/
  692. #define CRNG_RESEED_INTERVAL (300*HZ)
  693. static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  694. #ifdef CONFIG_NUMA
  695. /*
  696. * Hack to deal with crazy userspace progams when they are all trying
  697. * to access /dev/urandom in parallel. The programs are almost
  698. * certainly doing something terribly wrong, but we'll work around
  699. * their brain damage.
  700. */
  701. static struct crng_state **crng_node_pool __read_mostly;
  702. #endif
  703. static void invalidate_batched_entropy(void);
  704. static void numa_crng_init(void);
  705. static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
  706. static int __init parse_trust_cpu(char *arg)
  707. {
  708. return kstrtobool(arg, &trust_cpu);
  709. }
  710. early_param("random.trust_cpu", parse_trust_cpu);
  711. static void crng_initialize(struct crng_state *crng)
  712. {
  713. int i;
  714. int arch_init = 1;
  715. unsigned long rv;
  716. memcpy(&crng->state[0], "expand 32-byte k", 16);
  717. if (crng == &primary_crng)
  718. _extract_entropy(&input_pool, &crng->state[4],
  719. sizeof(__u32) * 12, 0);
  720. else
  721. _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
  722. for (i = 4; i < 16; i++) {
  723. if (!arch_get_random_seed_long(&rv) &&
  724. !arch_get_random_long(&rv)) {
  725. rv = random_get_entropy();
  726. arch_init = 0;
  727. }
  728. crng->state[i] ^= rv;
  729. }
  730. if (trust_cpu && arch_init && crng == &primary_crng) {
  731. invalidate_batched_entropy();
  732. numa_crng_init();
  733. crng_init = 2;
  734. pr_notice("random: crng done (trusting CPU's manufacturer)\n");
  735. }
  736. crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
  737. }
  738. #ifdef CONFIG_NUMA
  739. static void do_numa_crng_init(struct work_struct *work)
  740. {
  741. int i;
  742. struct crng_state *crng;
  743. struct crng_state **pool;
  744. pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
  745. for_each_online_node(i) {
  746. crng = kmalloc_node(sizeof(struct crng_state),
  747. GFP_KERNEL | __GFP_NOFAIL, i);
  748. spin_lock_init(&crng->lock);
  749. crng_initialize(crng);
  750. pool[i] = crng;
  751. }
  752. mb();
  753. if (cmpxchg(&crng_node_pool, NULL, pool)) {
  754. for_each_node(i)
  755. kfree(pool[i]);
  756. kfree(pool);
  757. }
  758. }
  759. static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
  760. static void numa_crng_init(void)
  761. {
  762. schedule_work(&numa_crng_init_work);
  763. }
  764. #else
  765. static void numa_crng_init(void) {}
  766. #endif
  767. /*
  768. * crng_fast_load() can be called by code in the interrupt service
  769. * path. So we can't afford to dilly-dally.
  770. */
  771. static int crng_fast_load(const char *cp, size_t len)
  772. {
  773. unsigned long flags;
  774. char *p;
  775. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  776. return 0;
  777. if (crng_init != 0) {
  778. spin_unlock_irqrestore(&primary_crng.lock, flags);
  779. return 0;
  780. }
  781. p = (unsigned char *) &primary_crng.state[4];
  782. while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
  783. p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
  784. cp++; crng_init_cnt++; len--;
  785. }
  786. spin_unlock_irqrestore(&primary_crng.lock, flags);
  787. if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
  788. invalidate_batched_entropy();
  789. crng_init = 1;
  790. wake_up_interruptible(&crng_init_wait);
  791. pr_notice("random: fast init done\n");
  792. }
  793. return 1;
  794. }
  795. /*
  796. * crng_slow_load() is called by add_device_randomness, which has two
  797. * attributes. (1) We can't trust the buffer passed to it is
  798. * guaranteed to be unpredictable (so it might not have any entropy at
  799. * all), and (2) it doesn't have the performance constraints of
  800. * crng_fast_load().
  801. *
  802. * So we do something more comprehensive which is guaranteed to touch
  803. * all of the primary_crng's state, and which uses a LFSR with a
  804. * period of 255 as part of the mixing algorithm. Finally, we do
  805. * *not* advance crng_init_cnt since buffer we may get may be something
  806. * like a fixed DMI table (for example), which might very well be
  807. * unique to the machine, but is otherwise unvarying.
  808. */
  809. static int crng_slow_load(const char *cp, size_t len)
  810. {
  811. unsigned long flags;
  812. static unsigned char lfsr = 1;
  813. unsigned char tmp;
  814. unsigned i, max = CHACHA20_KEY_SIZE;
  815. const char * src_buf = cp;
  816. char * dest_buf = (char *) &primary_crng.state[4];
  817. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  818. return 0;
  819. if (crng_init != 0) {
  820. spin_unlock_irqrestore(&primary_crng.lock, flags);
  821. return 0;
  822. }
  823. if (len > max)
  824. max = len;
  825. for (i = 0; i < max ; i++) {
  826. tmp = lfsr;
  827. lfsr >>= 1;
  828. if (tmp & 1)
  829. lfsr ^= 0xE1;
  830. tmp = dest_buf[i % CHACHA20_KEY_SIZE];
  831. dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
  832. lfsr += (tmp << 3) | (tmp >> 5);
  833. }
  834. spin_unlock_irqrestore(&primary_crng.lock, flags);
  835. return 1;
  836. }
  837. static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
  838. {
  839. unsigned long flags;
  840. int i, num;
  841. union {
  842. __u32 block[CHACHA20_BLOCK_WORDS];
  843. __u32 key[8];
  844. } buf;
  845. if (r) {
  846. num = extract_entropy(r, &buf, 32, 16, 0);
  847. if (num == 0)
  848. return;
  849. } else {
  850. _extract_crng(&primary_crng, buf.block);
  851. _crng_backtrack_protect(&primary_crng, buf.block,
  852. CHACHA20_KEY_SIZE);
  853. }
  854. spin_lock_irqsave(&crng->lock, flags);
  855. for (i = 0; i < 8; i++) {
  856. unsigned long rv;
  857. if (!arch_get_random_seed_long(&rv) &&
  858. !arch_get_random_long(&rv))
  859. rv = random_get_entropy();
  860. crng->state[i+4] ^= buf.key[i] ^ rv;
  861. }
  862. memzero_explicit(&buf, sizeof(buf));
  863. crng->init_time = jiffies;
  864. spin_unlock_irqrestore(&crng->lock, flags);
  865. if (crng == &primary_crng && crng_init < 2) {
  866. invalidate_batched_entropy();
  867. numa_crng_init();
  868. crng_init = 2;
  869. process_random_ready_list();
  870. wake_up_interruptible(&crng_init_wait);
  871. pr_notice("random: crng init done\n");
  872. if (unseeded_warning.missed) {
  873. pr_notice("random: %d get_random_xx warning(s) missed "
  874. "due to ratelimiting\n",
  875. unseeded_warning.missed);
  876. unseeded_warning.missed = 0;
  877. }
  878. if (urandom_warning.missed) {
  879. pr_notice("random: %d urandom warning(s) missed "
  880. "due to ratelimiting\n",
  881. urandom_warning.missed);
  882. urandom_warning.missed = 0;
  883. }
  884. }
  885. }
  886. static void _extract_crng(struct crng_state *crng,
  887. __u32 out[CHACHA20_BLOCK_WORDS])
  888. {
  889. unsigned long v, flags;
  890. if (crng_ready() &&
  891. (time_after(crng_global_init_time, crng->init_time) ||
  892. time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
  893. crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
  894. spin_lock_irqsave(&crng->lock, flags);
  895. if (arch_get_random_long(&v))
  896. crng->state[14] ^= v;
  897. chacha20_block(&crng->state[0], out);
  898. if (crng->state[12] == 0)
  899. crng->state[13]++;
  900. spin_unlock_irqrestore(&crng->lock, flags);
  901. }
  902. static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
  903. {
  904. struct crng_state *crng = NULL;
  905. #ifdef CONFIG_NUMA
  906. if (crng_node_pool)
  907. crng = crng_node_pool[numa_node_id()];
  908. if (crng == NULL)
  909. #endif
  910. crng = &primary_crng;
  911. _extract_crng(crng, out);
  912. }
  913. /*
  914. * Use the leftover bytes from the CRNG block output (if there is
  915. * enough) to mutate the CRNG key to provide backtracking protection.
  916. */
  917. static void _crng_backtrack_protect(struct crng_state *crng,
  918. __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
  919. {
  920. unsigned long flags;
  921. __u32 *s, *d;
  922. int i;
  923. used = round_up(used, sizeof(__u32));
  924. if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
  925. extract_crng(tmp);
  926. used = 0;
  927. }
  928. spin_lock_irqsave(&crng->lock, flags);
  929. s = &tmp[used / sizeof(__u32)];
  930. d = &crng->state[4];
  931. for (i=0; i < 8; i++)
  932. *d++ ^= *s++;
  933. spin_unlock_irqrestore(&crng->lock, flags);
  934. }
  935. static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
  936. {
  937. struct crng_state *crng = NULL;
  938. #ifdef CONFIG_NUMA
  939. if (crng_node_pool)
  940. crng = crng_node_pool[numa_node_id()];
  941. if (crng == NULL)
  942. #endif
  943. crng = &primary_crng;
  944. _crng_backtrack_protect(crng, tmp, used);
  945. }
  946. static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
  947. {
  948. ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
  949. __u32 tmp[CHACHA20_BLOCK_WORDS];
  950. int large_request = (nbytes > 256);
  951. while (nbytes) {
  952. if (large_request && need_resched()) {
  953. if (signal_pending(current)) {
  954. if (ret == 0)
  955. ret = -ERESTARTSYS;
  956. break;
  957. }
  958. schedule();
  959. }
  960. extract_crng(tmp);
  961. i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
  962. if (copy_to_user(buf, tmp, i)) {
  963. ret = -EFAULT;
  964. break;
  965. }
  966. nbytes -= i;
  967. buf += i;
  968. ret += i;
  969. }
  970. crng_backtrack_protect(tmp, i);
  971. /* Wipe data just written to memory */
  972. memzero_explicit(tmp, sizeof(tmp));
  973. return ret;
  974. }
  975. /*********************************************************************
  976. *
  977. * Entropy input management
  978. *
  979. *********************************************************************/
  980. /* There is one of these per entropy source */
  981. struct timer_rand_state {
  982. cycles_t last_time;
  983. long last_delta, last_delta2;
  984. };
  985. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  986. /*
  987. * Add device- or boot-specific data to the input pool to help
  988. * initialize it.
  989. *
  990. * None of this adds any entropy; it is meant to avoid the problem of
  991. * the entropy pool having similar initial state across largely
  992. * identical devices.
  993. */
  994. void add_device_randomness(const void *buf, unsigned int size)
  995. {
  996. unsigned long time = random_get_entropy() ^ jiffies;
  997. unsigned long flags;
  998. if (!crng_ready() && size)
  999. crng_slow_load(buf, size);
  1000. trace_add_device_randomness(size, _RET_IP_);
  1001. spin_lock_irqsave(&input_pool.lock, flags);
  1002. _mix_pool_bytes(&input_pool, buf, size);
  1003. _mix_pool_bytes(&input_pool, &time, sizeof(time));
  1004. spin_unlock_irqrestore(&input_pool.lock, flags);
  1005. }
  1006. EXPORT_SYMBOL(add_device_randomness);
  1007. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  1008. /*
  1009. * This function adds entropy to the entropy "pool" by using timing
  1010. * delays. It uses the timer_rand_state structure to make an estimate
  1011. * of how many bits of entropy this call has added to the pool.
  1012. *
  1013. * The number "num" is also added to the pool - it should somehow describe
  1014. * the type of event which just happened. This is currently 0-255 for
  1015. * keyboard scan codes, and 256 upwards for interrupts.
  1016. *
  1017. */
  1018. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  1019. {
  1020. struct entropy_store *r;
  1021. struct {
  1022. long jiffies;
  1023. unsigned cycles;
  1024. unsigned num;
  1025. } sample;
  1026. long delta, delta2, delta3;
  1027. sample.jiffies = jiffies;
  1028. sample.cycles = random_get_entropy();
  1029. sample.num = num;
  1030. r = &input_pool;
  1031. mix_pool_bytes(r, &sample, sizeof(sample));
  1032. /*
  1033. * Calculate number of bits of randomness we probably added.
  1034. * We take into account the first, second and third-order deltas
  1035. * in order to make our estimate.
  1036. */
  1037. delta = sample.jiffies - state->last_time;
  1038. state->last_time = sample.jiffies;
  1039. delta2 = delta - state->last_delta;
  1040. state->last_delta = delta;
  1041. delta3 = delta2 - state->last_delta2;
  1042. state->last_delta2 = delta2;
  1043. if (delta < 0)
  1044. delta = -delta;
  1045. if (delta2 < 0)
  1046. delta2 = -delta2;
  1047. if (delta3 < 0)
  1048. delta3 = -delta3;
  1049. if (delta > delta2)
  1050. delta = delta2;
  1051. if (delta > delta3)
  1052. delta = delta3;
  1053. /*
  1054. * delta is now minimum absolute delta.
  1055. * Round down by 1 bit on general principles,
  1056. * and limit entropy entimate to 12 bits.
  1057. */
  1058. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  1059. }
  1060. void add_input_randomness(unsigned int type, unsigned int code,
  1061. unsigned int value)
  1062. {
  1063. static unsigned char last_value;
  1064. /* ignore autorepeat and the like */
  1065. if (value == last_value)
  1066. return;
  1067. last_value = value;
  1068. add_timer_randomness(&input_timer_state,
  1069. (type << 4) ^ code ^ (code >> 4) ^ value);
  1070. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  1071. }
  1072. EXPORT_SYMBOL_GPL(add_input_randomness);
  1073. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  1074. #ifdef ADD_INTERRUPT_BENCH
  1075. static unsigned long avg_cycles, avg_deviation;
  1076. #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
  1077. #define FIXED_1_2 (1 << (AVG_SHIFT-1))
  1078. static void add_interrupt_bench(cycles_t start)
  1079. {
  1080. long delta = random_get_entropy() - start;
  1081. /* Use a weighted moving average */
  1082. delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
  1083. avg_cycles += delta;
  1084. /* And average deviation */
  1085. delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
  1086. avg_deviation += delta;
  1087. }
  1088. #else
  1089. #define add_interrupt_bench(x)
  1090. #endif
  1091. static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
  1092. {
  1093. __u32 *ptr = (__u32 *) regs;
  1094. unsigned int idx;
  1095. if (regs == NULL)
  1096. return 0;
  1097. idx = READ_ONCE(f->reg_idx);
  1098. if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
  1099. idx = 0;
  1100. ptr += idx++;
  1101. WRITE_ONCE(f->reg_idx, idx);
  1102. return *ptr;
  1103. }
  1104. void add_interrupt_randomness(int irq, int irq_flags)
  1105. {
  1106. struct entropy_store *r;
  1107. struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
  1108. struct pt_regs *regs = get_irq_regs();
  1109. unsigned long now = jiffies;
  1110. cycles_t cycles = random_get_entropy();
  1111. __u32 c_high, j_high;
  1112. __u64 ip;
  1113. unsigned long seed;
  1114. int credit = 0;
  1115. if (cycles == 0)
  1116. cycles = get_reg(fast_pool, regs);
  1117. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  1118. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  1119. fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
  1120. fast_pool->pool[1] ^= now ^ c_high;
  1121. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  1122. fast_pool->pool[2] ^= ip;
  1123. fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
  1124. get_reg(fast_pool, regs);
  1125. fast_mix(fast_pool);
  1126. add_interrupt_bench(cycles);
  1127. if (unlikely(crng_init == 0)) {
  1128. if ((fast_pool->count >= 64) &&
  1129. crng_fast_load((char *) fast_pool->pool,
  1130. sizeof(fast_pool->pool))) {
  1131. fast_pool->count = 0;
  1132. fast_pool->last = now;
  1133. }
  1134. return;
  1135. }
  1136. if ((fast_pool->count < 64) &&
  1137. !time_after(now, fast_pool->last + HZ))
  1138. return;
  1139. r = &input_pool;
  1140. if (!spin_trylock(&r->lock))
  1141. return;
  1142. fast_pool->last = now;
  1143. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
  1144. /*
  1145. * If we have architectural seed generator, produce a seed and
  1146. * add it to the pool. For the sake of paranoia don't let the
  1147. * architectural seed generator dominate the input from the
  1148. * interrupt noise.
  1149. */
  1150. if (arch_get_random_seed_long(&seed)) {
  1151. __mix_pool_bytes(r, &seed, sizeof(seed));
  1152. credit = 1;
  1153. }
  1154. spin_unlock(&r->lock);
  1155. fast_pool->count = 0;
  1156. /* award one bit for the contents of the fast pool */
  1157. credit_entropy_bits(r, credit + 1);
  1158. }
  1159. EXPORT_SYMBOL_GPL(add_interrupt_randomness);
  1160. #ifdef CONFIG_BLOCK
  1161. void add_disk_randomness(struct gendisk *disk)
  1162. {
  1163. if (!disk || !disk->random)
  1164. return;
  1165. /* first major is 1, so we get >= 0x200 here */
  1166. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  1167. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  1168. }
  1169. EXPORT_SYMBOL_GPL(add_disk_randomness);
  1170. #endif
  1171. /*********************************************************************
  1172. *
  1173. * Entropy extraction routines
  1174. *
  1175. *********************************************************************/
  1176. /*
  1177. * This utility inline function is responsible for transferring entropy
  1178. * from the primary pool to the secondary extraction pool. We make
  1179. * sure we pull enough for a 'catastrophic reseed'.
  1180. */
  1181. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  1182. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1183. {
  1184. if (!r->pull ||
  1185. r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
  1186. r->entropy_count > r->poolinfo->poolfracbits)
  1187. return;
  1188. _xfer_secondary_pool(r, nbytes);
  1189. }
  1190. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1191. {
  1192. __u32 tmp[OUTPUT_POOL_WORDS];
  1193. int bytes = nbytes;
  1194. /* pull at least as much as a wakeup */
  1195. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  1196. /* but never more than the buffer size */
  1197. bytes = min_t(int, bytes, sizeof(tmp));
  1198. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  1199. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  1200. bytes = extract_entropy(r->pull, tmp, bytes,
  1201. random_read_wakeup_bits / 8, 0);
  1202. mix_pool_bytes(r, tmp, bytes);
  1203. credit_entropy_bits(r, bytes*8);
  1204. }
  1205. /*
  1206. * Used as a workqueue function so that when the input pool is getting
  1207. * full, we can "spill over" some entropy to the output pools. That
  1208. * way the output pools can store some of the excess entropy instead
  1209. * of letting it go to waste.
  1210. */
  1211. static void push_to_pool(struct work_struct *work)
  1212. {
  1213. struct entropy_store *r = container_of(work, struct entropy_store,
  1214. push_work);
  1215. BUG_ON(!r);
  1216. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  1217. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  1218. r->pull->entropy_count >> ENTROPY_SHIFT);
  1219. }
  1220. /*
  1221. * This function decides how many bytes to actually take from the
  1222. * given pool, and also debits the entropy count accordingly.
  1223. */
  1224. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  1225. int reserved)
  1226. {
  1227. int entropy_count, orig, have_bytes;
  1228. size_t ibytes, nfrac;
  1229. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  1230. /* Can we pull enough? */
  1231. retry:
  1232. entropy_count = orig = READ_ONCE(r->entropy_count);
  1233. ibytes = nbytes;
  1234. /* never pull more than available */
  1235. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  1236. if ((have_bytes -= reserved) < 0)
  1237. have_bytes = 0;
  1238. ibytes = min_t(size_t, ibytes, have_bytes);
  1239. if (ibytes < min)
  1240. ibytes = 0;
  1241. if (unlikely(entropy_count < 0)) {
  1242. pr_warn("random: negative entropy count: pool %s count %d\n",
  1243. r->name, entropy_count);
  1244. WARN_ON(1);
  1245. entropy_count = 0;
  1246. }
  1247. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  1248. if ((size_t) entropy_count > nfrac)
  1249. entropy_count -= nfrac;
  1250. else
  1251. entropy_count = 0;
  1252. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  1253. goto retry;
  1254. trace_debit_entropy(r->name, 8 * ibytes);
  1255. if (ibytes &&
  1256. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  1257. wake_up_interruptible(&random_write_wait);
  1258. kill_fasync(&fasync, SIGIO, POLL_OUT);
  1259. }
  1260. return ibytes;
  1261. }
  1262. /*
  1263. * This function does the actual extraction for extract_entropy and
  1264. * extract_entropy_user.
  1265. *
  1266. * Note: we assume that .poolwords is a multiple of 16 words.
  1267. */
  1268. static void extract_buf(struct entropy_store *r, __u8 *out)
  1269. {
  1270. int i;
  1271. union {
  1272. __u32 w[5];
  1273. unsigned long l[LONGS(20)];
  1274. } hash;
  1275. __u32 workspace[SHA_WORKSPACE_WORDS];
  1276. unsigned long flags;
  1277. /*
  1278. * If we have an architectural hardware random number
  1279. * generator, use it for SHA's initial vector
  1280. */
  1281. sha_init(hash.w);
  1282. for (i = 0; i < LONGS(20); i++) {
  1283. unsigned long v;
  1284. if (!arch_get_random_long(&v))
  1285. break;
  1286. hash.l[i] = v;
  1287. }
  1288. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  1289. spin_lock_irqsave(&r->lock, flags);
  1290. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  1291. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  1292. /*
  1293. * We mix the hash back into the pool to prevent backtracking
  1294. * attacks (where the attacker knows the state of the pool
  1295. * plus the current outputs, and attempts to find previous
  1296. * ouputs), unless the hash function can be inverted. By
  1297. * mixing at least a SHA1 worth of hash data back, we make
  1298. * brute-forcing the feedback as hard as brute-forcing the
  1299. * hash.
  1300. */
  1301. __mix_pool_bytes(r, hash.w, sizeof(hash.w));
  1302. spin_unlock_irqrestore(&r->lock, flags);
  1303. memzero_explicit(workspace, sizeof(workspace));
  1304. /*
  1305. * In case the hash function has some recognizable output
  1306. * pattern, we fold it in half. Thus, we always feed back
  1307. * twice as much data as we output.
  1308. */
  1309. hash.w[0] ^= hash.w[3];
  1310. hash.w[1] ^= hash.w[4];
  1311. hash.w[2] ^= rol32(hash.w[2], 16);
  1312. memcpy(out, &hash, EXTRACT_SIZE);
  1313. memzero_explicit(&hash, sizeof(hash));
  1314. }
  1315. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  1316. size_t nbytes, int fips)
  1317. {
  1318. ssize_t ret = 0, i;
  1319. __u8 tmp[EXTRACT_SIZE];
  1320. unsigned long flags;
  1321. while (nbytes) {
  1322. extract_buf(r, tmp);
  1323. if (fips) {
  1324. spin_lock_irqsave(&r->lock, flags);
  1325. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1326. panic("Hardware RNG duplicated output!\n");
  1327. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1328. spin_unlock_irqrestore(&r->lock, flags);
  1329. }
  1330. i = min_t(int, nbytes, EXTRACT_SIZE);
  1331. memcpy(buf, tmp, i);
  1332. nbytes -= i;
  1333. buf += i;
  1334. ret += i;
  1335. }
  1336. /* Wipe data just returned from memory */
  1337. memzero_explicit(tmp, sizeof(tmp));
  1338. return ret;
  1339. }
  1340. /*
  1341. * This function extracts randomness from the "entropy pool", and
  1342. * returns it in a buffer.
  1343. *
  1344. * The min parameter specifies the minimum amount we can pull before
  1345. * failing to avoid races that defeat catastrophic reseeding while the
  1346. * reserved parameter indicates how much entropy we must leave in the
  1347. * pool after each pull to avoid starving other readers.
  1348. */
  1349. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  1350. size_t nbytes, int min, int reserved)
  1351. {
  1352. __u8 tmp[EXTRACT_SIZE];
  1353. unsigned long flags;
  1354. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  1355. if (fips_enabled) {
  1356. spin_lock_irqsave(&r->lock, flags);
  1357. if (!r->last_data_init) {
  1358. r->last_data_init = 1;
  1359. spin_unlock_irqrestore(&r->lock, flags);
  1360. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1361. ENTROPY_BITS(r), _RET_IP_);
  1362. xfer_secondary_pool(r, EXTRACT_SIZE);
  1363. extract_buf(r, tmp);
  1364. spin_lock_irqsave(&r->lock, flags);
  1365. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1366. }
  1367. spin_unlock_irqrestore(&r->lock, flags);
  1368. }
  1369. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1370. xfer_secondary_pool(r, nbytes);
  1371. nbytes = account(r, nbytes, min, reserved);
  1372. return _extract_entropy(r, buf, nbytes, fips_enabled);
  1373. }
  1374. /*
  1375. * This function extracts randomness from the "entropy pool", and
  1376. * returns it in a userspace buffer.
  1377. */
  1378. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1379. size_t nbytes)
  1380. {
  1381. ssize_t ret = 0, i;
  1382. __u8 tmp[EXTRACT_SIZE];
  1383. int large_request = (nbytes > 256);
  1384. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1385. xfer_secondary_pool(r, nbytes);
  1386. nbytes = account(r, nbytes, 0, 0);
  1387. while (nbytes) {
  1388. if (large_request && need_resched()) {
  1389. if (signal_pending(current)) {
  1390. if (ret == 0)
  1391. ret = -ERESTARTSYS;
  1392. break;
  1393. }
  1394. schedule();
  1395. }
  1396. extract_buf(r, tmp);
  1397. i = min_t(int, nbytes, EXTRACT_SIZE);
  1398. if (copy_to_user(buf, tmp, i)) {
  1399. ret = -EFAULT;
  1400. break;
  1401. }
  1402. nbytes -= i;
  1403. buf += i;
  1404. ret += i;
  1405. }
  1406. /* Wipe data just returned from memory */
  1407. memzero_explicit(tmp, sizeof(tmp));
  1408. return ret;
  1409. }
  1410. #define warn_unseeded_randomness(previous) \
  1411. _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
  1412. static void _warn_unseeded_randomness(const char *func_name, void *caller,
  1413. void **previous)
  1414. {
  1415. #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1416. const bool print_once = false;
  1417. #else
  1418. static bool print_once __read_mostly;
  1419. #endif
  1420. if (print_once ||
  1421. crng_ready() ||
  1422. (previous && (caller == READ_ONCE(*previous))))
  1423. return;
  1424. WRITE_ONCE(*previous, caller);
  1425. #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1426. print_once = true;
  1427. #endif
  1428. if (__ratelimit(&unseeded_warning))
  1429. pr_notice("random: %s called from %pS with crng_init=%d\n",
  1430. func_name, caller, crng_init);
  1431. }
  1432. /*
  1433. * This function is the exported kernel interface. It returns some
  1434. * number of good random numbers, suitable for key generation, seeding
  1435. * TCP sequence numbers, etc. It does not rely on the hardware random
  1436. * number generator. For random bytes direct from the hardware RNG
  1437. * (when available), use get_random_bytes_arch(). In order to ensure
  1438. * that the randomness provided by this function is okay, the function
  1439. * wait_for_random_bytes() should be called and return 0 at least once
  1440. * at any point prior.
  1441. */
  1442. static void _get_random_bytes(void *buf, int nbytes)
  1443. {
  1444. __u32 tmp[CHACHA20_BLOCK_WORDS];
  1445. trace_get_random_bytes(nbytes, _RET_IP_);
  1446. while (nbytes >= CHACHA20_BLOCK_SIZE) {
  1447. extract_crng(buf);
  1448. buf += CHACHA20_BLOCK_SIZE;
  1449. nbytes -= CHACHA20_BLOCK_SIZE;
  1450. }
  1451. if (nbytes > 0) {
  1452. extract_crng(tmp);
  1453. memcpy(buf, tmp, nbytes);
  1454. crng_backtrack_protect(tmp, nbytes);
  1455. } else
  1456. crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
  1457. memzero_explicit(tmp, sizeof(tmp));
  1458. }
  1459. void get_random_bytes(void *buf, int nbytes)
  1460. {
  1461. static void *previous;
  1462. warn_unseeded_randomness(&previous);
  1463. _get_random_bytes(buf, nbytes);
  1464. }
  1465. EXPORT_SYMBOL(get_random_bytes);
  1466. /*
  1467. * Wait for the urandom pool to be seeded and thus guaranteed to supply
  1468. * cryptographically secure random numbers. This applies to: the /dev/urandom
  1469. * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
  1470. * family of functions. Using any of these functions without first calling
  1471. * this function forfeits the guarantee of security.
  1472. *
  1473. * Returns: 0 if the urandom pool has been seeded.
  1474. * -ERESTARTSYS if the function was interrupted by a signal.
  1475. */
  1476. int wait_for_random_bytes(void)
  1477. {
  1478. if (likely(crng_ready()))
  1479. return 0;
  1480. return wait_event_interruptible(crng_init_wait, crng_ready());
  1481. }
  1482. EXPORT_SYMBOL(wait_for_random_bytes);
  1483. /*
  1484. * Returns whether or not the urandom pool has been seeded and thus guaranteed
  1485. * to supply cryptographically secure random numbers. This applies to: the
  1486. * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
  1487. * ,u64,int,long} family of functions.
  1488. *
  1489. * Returns: true if the urandom pool has been seeded.
  1490. * false if the urandom pool has not been seeded.
  1491. */
  1492. bool rng_is_initialized(void)
  1493. {
  1494. return crng_ready();
  1495. }
  1496. EXPORT_SYMBOL(rng_is_initialized);
  1497. /*
  1498. * Add a callback function that will be invoked when the nonblocking
  1499. * pool is initialised.
  1500. *
  1501. * returns: 0 if callback is successfully added
  1502. * -EALREADY if pool is already initialised (callback not called)
  1503. * -ENOENT if module for callback is not alive
  1504. */
  1505. int add_random_ready_callback(struct random_ready_callback *rdy)
  1506. {
  1507. struct module *owner;
  1508. unsigned long flags;
  1509. int err = -EALREADY;
  1510. if (crng_ready())
  1511. return err;
  1512. owner = rdy->owner;
  1513. if (!try_module_get(owner))
  1514. return -ENOENT;
  1515. spin_lock_irqsave(&random_ready_list_lock, flags);
  1516. if (crng_ready())
  1517. goto out;
  1518. owner = NULL;
  1519. list_add(&rdy->list, &random_ready_list);
  1520. err = 0;
  1521. out:
  1522. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1523. module_put(owner);
  1524. return err;
  1525. }
  1526. EXPORT_SYMBOL(add_random_ready_callback);
  1527. /*
  1528. * Delete a previously registered readiness callback function.
  1529. */
  1530. void del_random_ready_callback(struct random_ready_callback *rdy)
  1531. {
  1532. unsigned long flags;
  1533. struct module *owner = NULL;
  1534. spin_lock_irqsave(&random_ready_list_lock, flags);
  1535. if (!list_empty(&rdy->list)) {
  1536. list_del_init(&rdy->list);
  1537. owner = rdy->owner;
  1538. }
  1539. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1540. module_put(owner);
  1541. }
  1542. EXPORT_SYMBOL(del_random_ready_callback);
  1543. /*
  1544. * This function will use the architecture-specific hardware random
  1545. * number generator if it is available. The arch-specific hw RNG will
  1546. * almost certainly be faster than what we can do in software, but it
  1547. * is impossible to verify that it is implemented securely (as
  1548. * opposed, to, say, the AES encryption of a sequence number using a
  1549. * key known by the NSA). So it's useful if we need the speed, but
  1550. * only if we're willing to trust the hardware manufacturer not to
  1551. * have put in a back door.
  1552. *
  1553. * Return number of bytes filled in.
  1554. */
  1555. int __must_check get_random_bytes_arch(void *buf, int nbytes)
  1556. {
  1557. int left = nbytes;
  1558. char *p = buf;
  1559. trace_get_random_bytes_arch(left, _RET_IP_);
  1560. while (left) {
  1561. unsigned long v;
  1562. int chunk = min_t(int, left, sizeof(unsigned long));
  1563. if (!arch_get_random_long(&v))
  1564. break;
  1565. memcpy(p, &v, chunk);
  1566. p += chunk;
  1567. left -= chunk;
  1568. }
  1569. return nbytes - left;
  1570. }
  1571. EXPORT_SYMBOL(get_random_bytes_arch);
  1572. /*
  1573. * init_std_data - initialize pool with system data
  1574. *
  1575. * @r: pool to initialize
  1576. *
  1577. * This function clears the pool's entropy count and mixes some system
  1578. * data into the pool to prepare it for use. The pool is not cleared
  1579. * as that can only decrease the entropy in the pool.
  1580. */
  1581. static void init_std_data(struct entropy_store *r)
  1582. {
  1583. int i;
  1584. ktime_t now = ktime_get_real();
  1585. unsigned long rv;
  1586. r->last_pulled = jiffies;
  1587. mix_pool_bytes(r, &now, sizeof(now));
  1588. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1589. if (!arch_get_random_seed_long(&rv) &&
  1590. !arch_get_random_long(&rv))
  1591. rv = random_get_entropy();
  1592. mix_pool_bytes(r, &rv, sizeof(rv));
  1593. }
  1594. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  1595. }
  1596. /*
  1597. * Note that setup_arch() may call add_device_randomness()
  1598. * long before we get here. This allows seeding of the pools
  1599. * with some platform dependent data very early in the boot
  1600. * process. But it limits our options here. We must use
  1601. * statically allocated structures that already have all
  1602. * initializations complete at compile time. We should also
  1603. * take care not to overwrite the precious per platform data
  1604. * we were given.
  1605. */
  1606. static int rand_initialize(void)
  1607. {
  1608. init_std_data(&input_pool);
  1609. init_std_data(&blocking_pool);
  1610. crng_initialize(&primary_crng);
  1611. crng_global_init_time = jiffies;
  1612. if (ratelimit_disable) {
  1613. urandom_warning.interval = 0;
  1614. unseeded_warning.interval = 0;
  1615. }
  1616. return 0;
  1617. }
  1618. early_initcall(rand_initialize);
  1619. #ifdef CONFIG_BLOCK
  1620. void rand_initialize_disk(struct gendisk *disk)
  1621. {
  1622. struct timer_rand_state *state;
  1623. /*
  1624. * If kzalloc returns null, we just won't use that entropy
  1625. * source.
  1626. */
  1627. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1628. if (state) {
  1629. state->last_time = INITIAL_JIFFIES;
  1630. disk->random = state;
  1631. }
  1632. }
  1633. #endif
  1634. static ssize_t
  1635. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1636. {
  1637. ssize_t n;
  1638. if (nbytes == 0)
  1639. return 0;
  1640. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1641. while (1) {
  1642. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1643. if (n < 0)
  1644. return n;
  1645. trace_random_read(n*8, (nbytes-n)*8,
  1646. ENTROPY_BITS(&blocking_pool),
  1647. ENTROPY_BITS(&input_pool));
  1648. if (n > 0)
  1649. return n;
  1650. /* Pool is (near) empty. Maybe wait and retry. */
  1651. if (nonblock)
  1652. return -EAGAIN;
  1653. wait_event_interruptible(random_read_wait,
  1654. ENTROPY_BITS(&input_pool) >=
  1655. random_read_wakeup_bits);
  1656. if (signal_pending(current))
  1657. return -ERESTARTSYS;
  1658. }
  1659. }
  1660. static ssize_t
  1661. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1662. {
  1663. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1664. }
  1665. static ssize_t
  1666. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1667. {
  1668. unsigned long flags;
  1669. static int maxwarn = 10;
  1670. int ret;
  1671. if (!crng_ready() && maxwarn > 0) {
  1672. maxwarn--;
  1673. if (__ratelimit(&urandom_warning))
  1674. printk(KERN_NOTICE "random: %s: uninitialized "
  1675. "urandom read (%zd bytes read)\n",
  1676. current->comm, nbytes);
  1677. spin_lock_irqsave(&primary_crng.lock, flags);
  1678. crng_init_cnt = 0;
  1679. spin_unlock_irqrestore(&primary_crng.lock, flags);
  1680. }
  1681. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1682. ret = extract_crng_user(buf, nbytes);
  1683. trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
  1684. return ret;
  1685. }
  1686. static __poll_t
  1687. random_poll(struct file *file, poll_table * wait)
  1688. {
  1689. __poll_t mask;
  1690. poll_wait(file, &random_read_wait, wait);
  1691. poll_wait(file, &random_write_wait, wait);
  1692. mask = 0;
  1693. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1694. mask |= EPOLLIN | EPOLLRDNORM;
  1695. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1696. mask |= EPOLLOUT | EPOLLWRNORM;
  1697. return mask;
  1698. }
  1699. static int
  1700. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1701. {
  1702. size_t bytes;
  1703. __u32 t, buf[16];
  1704. const char __user *p = buffer;
  1705. while (count > 0) {
  1706. int b, i = 0;
  1707. bytes = min(count, sizeof(buf));
  1708. if (copy_from_user(&buf, p, bytes))
  1709. return -EFAULT;
  1710. for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
  1711. if (!arch_get_random_int(&t))
  1712. break;
  1713. buf[i] ^= t;
  1714. }
  1715. count -= bytes;
  1716. p += bytes;
  1717. mix_pool_bytes(r, buf, bytes);
  1718. cond_resched();
  1719. }
  1720. return 0;
  1721. }
  1722. static ssize_t random_write(struct file *file, const char __user *buffer,
  1723. size_t count, loff_t *ppos)
  1724. {
  1725. size_t ret;
  1726. ret = write_pool(&input_pool, buffer, count);
  1727. if (ret)
  1728. return ret;
  1729. return (ssize_t)count;
  1730. }
  1731. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1732. {
  1733. int size, ent_count;
  1734. int __user *p = (int __user *)arg;
  1735. int retval;
  1736. switch (cmd) {
  1737. case RNDGETENTCNT:
  1738. /* inherently racy, no point locking */
  1739. ent_count = ENTROPY_BITS(&input_pool);
  1740. if (put_user(ent_count, p))
  1741. return -EFAULT;
  1742. return 0;
  1743. case RNDADDTOENTCNT:
  1744. if (!capable(CAP_SYS_ADMIN))
  1745. return -EPERM;
  1746. if (get_user(ent_count, p))
  1747. return -EFAULT;
  1748. return credit_entropy_bits_safe(&input_pool, ent_count);
  1749. case RNDADDENTROPY:
  1750. if (!capable(CAP_SYS_ADMIN))
  1751. return -EPERM;
  1752. if (get_user(ent_count, p++))
  1753. return -EFAULT;
  1754. if (ent_count < 0)
  1755. return -EINVAL;
  1756. if (get_user(size, p++))
  1757. return -EFAULT;
  1758. retval = write_pool(&input_pool, (const char __user *)p,
  1759. size);
  1760. if (retval < 0)
  1761. return retval;
  1762. return credit_entropy_bits_safe(&input_pool, ent_count);
  1763. case RNDZAPENTCNT:
  1764. case RNDCLEARPOOL:
  1765. /*
  1766. * Clear the entropy pool counters. We no longer clear
  1767. * the entropy pool, as that's silly.
  1768. */
  1769. if (!capable(CAP_SYS_ADMIN))
  1770. return -EPERM;
  1771. input_pool.entropy_count = 0;
  1772. blocking_pool.entropy_count = 0;
  1773. return 0;
  1774. case RNDRESEEDCRNG:
  1775. if (!capable(CAP_SYS_ADMIN))
  1776. return -EPERM;
  1777. if (crng_init < 2)
  1778. return -ENODATA;
  1779. crng_reseed(&primary_crng, NULL);
  1780. crng_global_init_time = jiffies - 1;
  1781. return 0;
  1782. default:
  1783. return -EINVAL;
  1784. }
  1785. }
  1786. static int random_fasync(int fd, struct file *filp, int on)
  1787. {
  1788. return fasync_helper(fd, filp, on, &fasync);
  1789. }
  1790. const struct file_operations random_fops = {
  1791. .read = random_read,
  1792. .write = random_write,
  1793. .poll = random_poll,
  1794. .unlocked_ioctl = random_ioctl,
  1795. .fasync = random_fasync,
  1796. .llseek = noop_llseek,
  1797. };
  1798. const struct file_operations urandom_fops = {
  1799. .read = urandom_read,
  1800. .write = random_write,
  1801. .unlocked_ioctl = random_ioctl,
  1802. .fasync = random_fasync,
  1803. .llseek = noop_llseek,
  1804. };
  1805. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1806. unsigned int, flags)
  1807. {
  1808. int ret;
  1809. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1810. return -EINVAL;
  1811. if (count > INT_MAX)
  1812. count = INT_MAX;
  1813. if (flags & GRND_RANDOM)
  1814. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1815. if (!crng_ready()) {
  1816. if (flags & GRND_NONBLOCK)
  1817. return -EAGAIN;
  1818. ret = wait_for_random_bytes();
  1819. if (unlikely(ret))
  1820. return ret;
  1821. }
  1822. return urandom_read(NULL, buf, count, NULL);
  1823. }
  1824. /********************************************************************
  1825. *
  1826. * Sysctl interface
  1827. *
  1828. ********************************************************************/
  1829. #ifdef CONFIG_SYSCTL
  1830. #include <linux/sysctl.h>
  1831. static int min_read_thresh = 8, min_write_thresh;
  1832. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1833. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1834. static int random_min_urandom_seed = 60;
  1835. static char sysctl_bootid[16];
  1836. /*
  1837. * This function is used to return both the bootid UUID, and random
  1838. * UUID. The difference is in whether table->data is NULL; if it is,
  1839. * then a new UUID is generated and returned to the user.
  1840. *
  1841. * If the user accesses this via the proc interface, the UUID will be
  1842. * returned as an ASCII string in the standard UUID format; if via the
  1843. * sysctl system call, as 16 bytes of binary data.
  1844. */
  1845. static int proc_do_uuid(struct ctl_table *table, int write,
  1846. void __user *buffer, size_t *lenp, loff_t *ppos)
  1847. {
  1848. struct ctl_table fake_table;
  1849. unsigned char buf[64], tmp_uuid[16], *uuid;
  1850. uuid = table->data;
  1851. if (!uuid) {
  1852. uuid = tmp_uuid;
  1853. generate_random_uuid(uuid);
  1854. } else {
  1855. static DEFINE_SPINLOCK(bootid_spinlock);
  1856. spin_lock(&bootid_spinlock);
  1857. if (!uuid[8])
  1858. generate_random_uuid(uuid);
  1859. spin_unlock(&bootid_spinlock);
  1860. }
  1861. sprintf(buf, "%pU", uuid);
  1862. fake_table.data = buf;
  1863. fake_table.maxlen = sizeof(buf);
  1864. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1865. }
  1866. /*
  1867. * Return entropy available scaled to integral bits
  1868. */
  1869. static int proc_do_entropy(struct ctl_table *table, int write,
  1870. void __user *buffer, size_t *lenp, loff_t *ppos)
  1871. {
  1872. struct ctl_table fake_table;
  1873. int entropy_count;
  1874. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1875. fake_table.data = &entropy_count;
  1876. fake_table.maxlen = sizeof(entropy_count);
  1877. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1878. }
  1879. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1880. extern struct ctl_table random_table[];
  1881. struct ctl_table random_table[] = {
  1882. {
  1883. .procname = "poolsize",
  1884. .data = &sysctl_poolsize,
  1885. .maxlen = sizeof(int),
  1886. .mode = 0444,
  1887. .proc_handler = proc_dointvec,
  1888. },
  1889. {
  1890. .procname = "entropy_avail",
  1891. .maxlen = sizeof(int),
  1892. .mode = 0444,
  1893. .proc_handler = proc_do_entropy,
  1894. .data = &input_pool.entropy_count,
  1895. },
  1896. {
  1897. .procname = "read_wakeup_threshold",
  1898. .data = &random_read_wakeup_bits,
  1899. .maxlen = sizeof(int),
  1900. .mode = 0644,
  1901. .proc_handler = proc_dointvec_minmax,
  1902. .extra1 = &min_read_thresh,
  1903. .extra2 = &max_read_thresh,
  1904. },
  1905. {
  1906. .procname = "write_wakeup_threshold",
  1907. .data = &random_write_wakeup_bits,
  1908. .maxlen = sizeof(int),
  1909. .mode = 0644,
  1910. .proc_handler = proc_dointvec_minmax,
  1911. .extra1 = &min_write_thresh,
  1912. .extra2 = &max_write_thresh,
  1913. },
  1914. {
  1915. .procname = "urandom_min_reseed_secs",
  1916. .data = &random_min_urandom_seed,
  1917. .maxlen = sizeof(int),
  1918. .mode = 0644,
  1919. .proc_handler = proc_dointvec,
  1920. },
  1921. {
  1922. .procname = "boot_id",
  1923. .data = &sysctl_bootid,
  1924. .maxlen = 16,
  1925. .mode = 0444,
  1926. .proc_handler = proc_do_uuid,
  1927. },
  1928. {
  1929. .procname = "uuid",
  1930. .maxlen = 16,
  1931. .mode = 0444,
  1932. .proc_handler = proc_do_uuid,
  1933. },
  1934. #ifdef ADD_INTERRUPT_BENCH
  1935. {
  1936. .procname = "add_interrupt_avg_cycles",
  1937. .data = &avg_cycles,
  1938. .maxlen = sizeof(avg_cycles),
  1939. .mode = 0444,
  1940. .proc_handler = proc_doulongvec_minmax,
  1941. },
  1942. {
  1943. .procname = "add_interrupt_avg_deviation",
  1944. .data = &avg_deviation,
  1945. .maxlen = sizeof(avg_deviation),
  1946. .mode = 0444,
  1947. .proc_handler = proc_doulongvec_minmax,
  1948. },
  1949. #endif
  1950. { }
  1951. };
  1952. #endif /* CONFIG_SYSCTL */
  1953. struct batched_entropy {
  1954. union {
  1955. u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
  1956. u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
  1957. };
  1958. unsigned int position;
  1959. spinlock_t batch_lock;
  1960. };
  1961. /*
  1962. * Get a random word for internal kernel use only. The quality of the random
  1963. * number is either as good as RDRAND or as good as /dev/urandom, with the
  1964. * goal of being quite fast and not depleting entropy. In order to ensure
  1965. * that the randomness provided by this function is okay, the function
  1966. * wait_for_random_bytes() should be called and return 0 at least once
  1967. * at any point prior.
  1968. */
  1969. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
  1970. .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
  1971. };
  1972. u64 get_random_u64(void)
  1973. {
  1974. u64 ret;
  1975. unsigned long flags;
  1976. struct batched_entropy *batch;
  1977. static void *previous;
  1978. #if BITS_PER_LONG == 64
  1979. if (arch_get_random_long((unsigned long *)&ret))
  1980. return ret;
  1981. #else
  1982. if (arch_get_random_long((unsigned long *)&ret) &&
  1983. arch_get_random_long((unsigned long *)&ret + 1))
  1984. return ret;
  1985. #endif
  1986. warn_unseeded_randomness(&previous);
  1987. batch = raw_cpu_ptr(&batched_entropy_u64);
  1988. spin_lock_irqsave(&batch->batch_lock, flags);
  1989. if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
  1990. extract_crng((__u32 *)batch->entropy_u64);
  1991. batch->position = 0;
  1992. }
  1993. ret = batch->entropy_u64[batch->position++];
  1994. spin_unlock_irqrestore(&batch->batch_lock, flags);
  1995. return ret;
  1996. }
  1997. EXPORT_SYMBOL(get_random_u64);
  1998. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
  1999. .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
  2000. };
  2001. u32 get_random_u32(void)
  2002. {
  2003. u32 ret;
  2004. unsigned long flags;
  2005. struct batched_entropy *batch;
  2006. static void *previous;
  2007. if (arch_get_random_int(&ret))
  2008. return ret;
  2009. warn_unseeded_randomness(&previous);
  2010. batch = raw_cpu_ptr(&batched_entropy_u32);
  2011. spin_lock_irqsave(&batch->batch_lock, flags);
  2012. if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
  2013. extract_crng(batch->entropy_u32);
  2014. batch->position = 0;
  2015. }
  2016. ret = batch->entropy_u32[batch->position++];
  2017. spin_unlock_irqrestore(&batch->batch_lock, flags);
  2018. return ret;
  2019. }
  2020. EXPORT_SYMBOL(get_random_u32);
  2021. /* It's important to invalidate all potential batched entropy that might
  2022. * be stored before the crng is initialized, which we can do lazily by
  2023. * simply resetting the counter to zero so that it's re-extracted on the
  2024. * next usage. */
  2025. static void invalidate_batched_entropy(void)
  2026. {
  2027. int cpu;
  2028. unsigned long flags;
  2029. for_each_possible_cpu (cpu) {
  2030. struct batched_entropy *batched_entropy;
  2031. batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
  2032. spin_lock_irqsave(&batched_entropy->batch_lock, flags);
  2033. batched_entropy->position = 0;
  2034. spin_unlock(&batched_entropy->batch_lock);
  2035. batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
  2036. spin_lock(&batched_entropy->batch_lock);
  2037. batched_entropy->position = 0;
  2038. spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
  2039. }
  2040. }
  2041. /**
  2042. * randomize_page - Generate a random, page aligned address
  2043. * @start: The smallest acceptable address the caller will take.
  2044. * @range: The size of the area, starting at @start, within which the
  2045. * random address must fall.
  2046. *
  2047. * If @start + @range would overflow, @range is capped.
  2048. *
  2049. * NOTE: Historical use of randomize_range, which this replaces, presumed that
  2050. * @start was already page aligned. We now align it regardless.
  2051. *
  2052. * Return: A page aligned address within [start, start + range). On error,
  2053. * @start is returned.
  2054. */
  2055. unsigned long
  2056. randomize_page(unsigned long start, unsigned long range)
  2057. {
  2058. if (!PAGE_ALIGNED(start)) {
  2059. range -= PAGE_ALIGN(start) - start;
  2060. start = PAGE_ALIGN(start);
  2061. }
  2062. if (start > ULONG_MAX - range)
  2063. range = ULONG_MAX - start;
  2064. range >>= PAGE_SHIFT;
  2065. if (range == 0)
  2066. return start;
  2067. return start + (get_random_long() % range << PAGE_SHIFT);
  2068. }
  2069. /* Interface for in-kernel drivers of true hardware RNGs.
  2070. * Those devices may produce endless random bits and will be throttled
  2071. * when our pool is full.
  2072. */
  2073. void add_hwgenerator_randomness(const char *buffer, size_t count,
  2074. size_t entropy)
  2075. {
  2076. struct entropy_store *poolp = &input_pool;
  2077. if (unlikely(crng_init == 0)) {
  2078. crng_fast_load(buffer, count);
  2079. return;
  2080. }
  2081. /* Suspend writing if we're above the trickle threshold.
  2082. * We'll be woken up again once below random_write_wakeup_thresh,
  2083. * or when the calling thread is about to terminate.
  2084. */
  2085. wait_event_interruptible(random_write_wait, kthread_should_stop() ||
  2086. ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
  2087. mix_pool_bytes(poolp, buffer, count);
  2088. credit_entropy_bits(poolp, entropy);
  2089. }
  2090. EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);