hibernate.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570
  1. /*:
  2. * Hibernate support specific for ARM64
  3. *
  4. * Derived from work on ARM hibernation support by:
  5. *
  6. * Ubuntu project, hibernation support for mach-dove
  7. * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
  8. * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
  9. * https://lkml.org/lkml/2010/6/18/4
  10. * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
  11. * https://patchwork.kernel.org/patch/96442/
  12. *
  13. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  14. *
  15. * License terms: GNU General Public License (GPL) version 2
  16. */
  17. #define pr_fmt(x) "hibernate: " x
  18. #include <linux/cpu.h>
  19. #include <linux/kvm_host.h>
  20. #include <linux/mm.h>
  21. #include <linux/pm.h>
  22. #include <linux/sched.h>
  23. #include <linux/suspend.h>
  24. #include <linux/utsname.h>
  25. #include <linux/version.h>
  26. #include <asm/barrier.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/cputype.h>
  29. #include <asm/daifflags.h>
  30. #include <asm/irqflags.h>
  31. #include <asm/kexec.h>
  32. #include <asm/memory.h>
  33. #include <asm/mmu_context.h>
  34. #include <asm/pgalloc.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/pgtable-hwdef.h>
  37. #include <asm/sections.h>
  38. #include <asm/smp.h>
  39. #include <asm/smp_plat.h>
  40. #include <asm/suspend.h>
  41. #include <asm/sysreg.h>
  42. #include <asm/virt.h>
  43. /*
  44. * Hibernate core relies on this value being 0 on resume, and marks it
  45. * __nosavedata assuming it will keep the resume kernel's '0' value. This
  46. * doesn't happen with either KASLR.
  47. *
  48. * defined as "__visible int in_suspend __nosavedata" in
  49. * kernel/power/hibernate.c
  50. */
  51. extern int in_suspend;
  52. /* Do we need to reset el2? */
  53. #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
  54. /* temporary el2 vectors in the __hibernate_exit_text section. */
  55. extern char hibernate_el2_vectors[];
  56. /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
  57. extern char __hyp_stub_vectors[];
  58. /*
  59. * The logical cpu number we should resume on, initialised to a non-cpu
  60. * number.
  61. */
  62. static int sleep_cpu = -EINVAL;
  63. /*
  64. * Values that may not change over hibernate/resume. We put the build number
  65. * and date in here so that we guarantee not to resume with a different
  66. * kernel.
  67. */
  68. struct arch_hibernate_hdr_invariants {
  69. char uts_version[__NEW_UTS_LEN + 1];
  70. };
  71. /* These values need to be know across a hibernate/restore. */
  72. static struct arch_hibernate_hdr {
  73. struct arch_hibernate_hdr_invariants invariants;
  74. /* These are needed to find the relocated kernel if built with kaslr */
  75. phys_addr_t ttbr1_el1;
  76. void (*reenter_kernel)(void);
  77. /*
  78. * We need to know where the __hyp_stub_vectors are after restore to
  79. * re-configure el2.
  80. */
  81. phys_addr_t __hyp_stub_vectors;
  82. u64 sleep_cpu_mpidr;
  83. } resume_hdr;
  84. static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
  85. {
  86. memset(i, 0, sizeof(*i));
  87. memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
  88. }
  89. int pfn_is_nosave(unsigned long pfn)
  90. {
  91. unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
  92. unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
  93. return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
  94. crash_is_nosave(pfn);
  95. }
  96. void notrace save_processor_state(void)
  97. {
  98. WARN_ON(num_online_cpus() != 1);
  99. }
  100. void notrace restore_processor_state(void)
  101. {
  102. }
  103. int arch_hibernation_header_save(void *addr, unsigned int max_size)
  104. {
  105. struct arch_hibernate_hdr *hdr = addr;
  106. if (max_size < sizeof(*hdr))
  107. return -EOVERFLOW;
  108. arch_hdr_invariants(&hdr->invariants);
  109. hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir);
  110. hdr->reenter_kernel = _cpu_resume;
  111. /* We can't use __hyp_get_vectors() because kvm may still be loaded */
  112. if (el2_reset_needed())
  113. hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
  114. else
  115. hdr->__hyp_stub_vectors = 0;
  116. /* Save the mpidr of the cpu we called cpu_suspend() on... */
  117. if (sleep_cpu < 0) {
  118. pr_err("Failing to hibernate on an unknown CPU.\n");
  119. return -ENODEV;
  120. }
  121. hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
  122. pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
  123. hdr->sleep_cpu_mpidr);
  124. return 0;
  125. }
  126. EXPORT_SYMBOL(arch_hibernation_header_save);
  127. int arch_hibernation_header_restore(void *addr)
  128. {
  129. int ret;
  130. struct arch_hibernate_hdr_invariants invariants;
  131. struct arch_hibernate_hdr *hdr = addr;
  132. arch_hdr_invariants(&invariants);
  133. if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
  134. pr_crit("Hibernate image not generated by this kernel!\n");
  135. return -EINVAL;
  136. }
  137. sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
  138. pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
  139. hdr->sleep_cpu_mpidr);
  140. if (sleep_cpu < 0) {
  141. pr_crit("Hibernated on a CPU not known to this kernel!\n");
  142. sleep_cpu = -EINVAL;
  143. return -EINVAL;
  144. }
  145. if (!cpu_online(sleep_cpu)) {
  146. pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
  147. ret = cpu_up(sleep_cpu);
  148. if (ret) {
  149. pr_err("Failed to bring hibernate-CPU up!\n");
  150. sleep_cpu = -EINVAL;
  151. return ret;
  152. }
  153. }
  154. resume_hdr = *hdr;
  155. return 0;
  156. }
  157. EXPORT_SYMBOL(arch_hibernation_header_restore);
  158. /*
  159. * Copies length bytes, starting at src_start into an new page,
  160. * perform cache maintentance, then maps it at the specified address low
  161. * address as executable.
  162. *
  163. * This is used by hibernate to copy the code it needs to execute when
  164. * overwriting the kernel text. This function generates a new set of page
  165. * tables, which it loads into ttbr0.
  166. *
  167. * Length is provided as we probably only want 4K of data, even on a 64K
  168. * page system.
  169. */
  170. static int create_safe_exec_page(void *src_start, size_t length,
  171. unsigned long dst_addr,
  172. phys_addr_t *phys_dst_addr,
  173. void *(*allocator)(gfp_t mask),
  174. gfp_t mask)
  175. {
  176. int rc = 0;
  177. pgd_t *pgdp;
  178. pud_t *pudp;
  179. pmd_t *pmdp;
  180. pte_t *ptep;
  181. unsigned long dst = (unsigned long)allocator(mask);
  182. if (!dst) {
  183. rc = -ENOMEM;
  184. goto out;
  185. }
  186. memcpy((void *)dst, src_start, length);
  187. __flush_icache_range(dst, dst + length);
  188. pgdp = pgd_offset_raw(allocator(mask), dst_addr);
  189. if (pgd_none(READ_ONCE(*pgdp))) {
  190. pudp = allocator(mask);
  191. if (!pudp) {
  192. rc = -ENOMEM;
  193. goto out;
  194. }
  195. pgd_populate(&init_mm, pgdp, pudp);
  196. }
  197. pudp = pud_offset(pgdp, dst_addr);
  198. if (pud_none(READ_ONCE(*pudp))) {
  199. pmdp = allocator(mask);
  200. if (!pmdp) {
  201. rc = -ENOMEM;
  202. goto out;
  203. }
  204. pud_populate(&init_mm, pudp, pmdp);
  205. }
  206. pmdp = pmd_offset(pudp, dst_addr);
  207. if (pmd_none(READ_ONCE(*pmdp))) {
  208. ptep = allocator(mask);
  209. if (!ptep) {
  210. rc = -ENOMEM;
  211. goto out;
  212. }
  213. pmd_populate_kernel(&init_mm, pmdp, ptep);
  214. }
  215. ptep = pte_offset_kernel(pmdp, dst_addr);
  216. set_pte(ptep, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC));
  217. /*
  218. * Load our new page tables. A strict BBM approach requires that we
  219. * ensure that TLBs are free of any entries that may overlap with the
  220. * global mappings we are about to install.
  221. *
  222. * For a real hibernate/resume cycle TTBR0 currently points to a zero
  223. * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
  224. * runtime services), while for a userspace-driven test_resume cycle it
  225. * points to userspace page tables (and we must point it at a zero page
  226. * ourselves). Elsewhere we only (un)install the idmap with preemption
  227. * disabled, so T0SZ should be as required regardless.
  228. */
  229. cpu_set_reserved_ttbr0();
  230. local_flush_tlb_all();
  231. write_sysreg(phys_to_ttbr(virt_to_phys(pgdp)), ttbr0_el1);
  232. isb();
  233. *phys_dst_addr = virt_to_phys((void *)dst);
  234. out:
  235. return rc;
  236. }
  237. #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start))
  238. int swsusp_arch_suspend(void)
  239. {
  240. int ret = 0;
  241. unsigned long flags;
  242. struct sleep_stack_data state;
  243. if (cpus_are_stuck_in_kernel()) {
  244. pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
  245. return -EBUSY;
  246. }
  247. flags = local_daif_save();
  248. if (__cpu_suspend_enter(&state)) {
  249. /* make the crash dump kernel image visible/saveable */
  250. crash_prepare_suspend();
  251. sleep_cpu = smp_processor_id();
  252. ret = swsusp_save();
  253. } else {
  254. /* Clean kernel core startup/idle code to PoC*/
  255. dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
  256. dcache_clean_range(__idmap_text_start, __idmap_text_end);
  257. /* Clean kvm setup code to PoC? */
  258. if (el2_reset_needed()) {
  259. dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
  260. dcache_clean_range(__hyp_text_start, __hyp_text_end);
  261. }
  262. /* make the crash dump kernel image protected again */
  263. crash_post_resume();
  264. /*
  265. * Tell the hibernation core that we've just restored
  266. * the memory
  267. */
  268. in_suspend = 0;
  269. sleep_cpu = -EINVAL;
  270. __cpu_suspend_exit();
  271. /*
  272. * Just in case the boot kernel did turn the SSBD
  273. * mitigation off behind our back, let's set the state
  274. * to what we expect it to be.
  275. */
  276. switch (arm64_get_ssbd_state()) {
  277. case ARM64_SSBD_FORCE_ENABLE:
  278. case ARM64_SSBD_KERNEL:
  279. arm64_set_ssbd_mitigation(true);
  280. }
  281. }
  282. local_daif_restore(flags);
  283. return ret;
  284. }
  285. static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
  286. {
  287. pte_t pte = READ_ONCE(*src_ptep);
  288. if (pte_valid(pte)) {
  289. /*
  290. * Resume will overwrite areas that may be marked
  291. * read only (code, rodata). Clear the RDONLY bit from
  292. * the temporary mappings we use during restore.
  293. */
  294. set_pte(dst_ptep, pte_mkwrite(pte));
  295. } else if (debug_pagealloc_enabled() && !pte_none(pte)) {
  296. /*
  297. * debug_pagealloc will removed the PTE_VALID bit if
  298. * the page isn't in use by the resume kernel. It may have
  299. * been in use by the original kernel, in which case we need
  300. * to put it back in our copy to do the restore.
  301. *
  302. * Before marking this entry valid, check the pfn should
  303. * be mapped.
  304. */
  305. BUG_ON(!pfn_valid(pte_pfn(pte)));
  306. set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
  307. }
  308. }
  309. static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
  310. unsigned long end)
  311. {
  312. pte_t *src_ptep;
  313. pte_t *dst_ptep;
  314. unsigned long addr = start;
  315. dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
  316. if (!dst_ptep)
  317. return -ENOMEM;
  318. pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
  319. dst_ptep = pte_offset_kernel(dst_pmdp, start);
  320. src_ptep = pte_offset_kernel(src_pmdp, start);
  321. do {
  322. _copy_pte(dst_ptep, src_ptep, addr);
  323. } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
  324. return 0;
  325. }
  326. static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
  327. unsigned long end)
  328. {
  329. pmd_t *src_pmdp;
  330. pmd_t *dst_pmdp;
  331. unsigned long next;
  332. unsigned long addr = start;
  333. if (pud_none(READ_ONCE(*dst_pudp))) {
  334. dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
  335. if (!dst_pmdp)
  336. return -ENOMEM;
  337. pud_populate(&init_mm, dst_pudp, dst_pmdp);
  338. }
  339. dst_pmdp = pmd_offset(dst_pudp, start);
  340. src_pmdp = pmd_offset(src_pudp, start);
  341. do {
  342. pmd_t pmd = READ_ONCE(*src_pmdp);
  343. next = pmd_addr_end(addr, end);
  344. if (pmd_none(pmd))
  345. continue;
  346. if (pmd_table(pmd)) {
  347. if (copy_pte(dst_pmdp, src_pmdp, addr, next))
  348. return -ENOMEM;
  349. } else {
  350. set_pmd(dst_pmdp,
  351. __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
  352. }
  353. } while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
  354. return 0;
  355. }
  356. static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
  357. unsigned long end)
  358. {
  359. pud_t *dst_pudp;
  360. pud_t *src_pudp;
  361. unsigned long next;
  362. unsigned long addr = start;
  363. if (pgd_none(READ_ONCE(*dst_pgdp))) {
  364. dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
  365. if (!dst_pudp)
  366. return -ENOMEM;
  367. pgd_populate(&init_mm, dst_pgdp, dst_pudp);
  368. }
  369. dst_pudp = pud_offset(dst_pgdp, start);
  370. src_pudp = pud_offset(src_pgdp, start);
  371. do {
  372. pud_t pud = READ_ONCE(*src_pudp);
  373. next = pud_addr_end(addr, end);
  374. if (pud_none(pud))
  375. continue;
  376. if (pud_table(pud)) {
  377. if (copy_pmd(dst_pudp, src_pudp, addr, next))
  378. return -ENOMEM;
  379. } else {
  380. set_pud(dst_pudp,
  381. __pud(pud_val(pud) & ~PMD_SECT_RDONLY));
  382. }
  383. } while (dst_pudp++, src_pudp++, addr = next, addr != end);
  384. return 0;
  385. }
  386. static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
  387. unsigned long end)
  388. {
  389. unsigned long next;
  390. unsigned long addr = start;
  391. pgd_t *src_pgdp = pgd_offset_k(start);
  392. dst_pgdp = pgd_offset_raw(dst_pgdp, start);
  393. do {
  394. next = pgd_addr_end(addr, end);
  395. if (pgd_none(READ_ONCE(*src_pgdp)))
  396. continue;
  397. if (copy_pud(dst_pgdp, src_pgdp, addr, next))
  398. return -ENOMEM;
  399. } while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
  400. return 0;
  401. }
  402. /*
  403. * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
  404. *
  405. * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
  406. * we don't need to free it here.
  407. */
  408. int swsusp_arch_resume(void)
  409. {
  410. int rc = 0;
  411. void *zero_page;
  412. size_t exit_size;
  413. pgd_t *tmp_pg_dir;
  414. phys_addr_t phys_hibernate_exit;
  415. void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
  416. void *, phys_addr_t, phys_addr_t);
  417. /*
  418. * Restoring the memory image will overwrite the ttbr1 page tables.
  419. * Create a second copy of just the linear map, and use this when
  420. * restoring.
  421. */
  422. tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
  423. if (!tmp_pg_dir) {
  424. pr_err("Failed to allocate memory for temporary page tables.\n");
  425. rc = -ENOMEM;
  426. goto out;
  427. }
  428. rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0);
  429. if (rc)
  430. goto out;
  431. /*
  432. * We need a zero page that is zero before & after resume in order to
  433. * to break before make on the ttbr1 page tables.
  434. */
  435. zero_page = (void *)get_safe_page(GFP_ATOMIC);
  436. if (!zero_page) {
  437. pr_err("Failed to allocate zero page.\n");
  438. rc = -ENOMEM;
  439. goto out;
  440. }
  441. /*
  442. * Locate the exit code in the bottom-but-one page, so that *NULL
  443. * still has disastrous affects.
  444. */
  445. hibernate_exit = (void *)PAGE_SIZE;
  446. exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
  447. /*
  448. * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
  449. * a new set of ttbr0 page tables and load them.
  450. */
  451. rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
  452. (unsigned long)hibernate_exit,
  453. &phys_hibernate_exit,
  454. (void *)get_safe_page, GFP_ATOMIC);
  455. if (rc) {
  456. pr_err("Failed to create safe executable page for hibernate_exit code.\n");
  457. goto out;
  458. }
  459. /*
  460. * The hibernate exit text contains a set of el2 vectors, that will
  461. * be executed at el2 with the mmu off in order to reload hyp-stub.
  462. */
  463. __flush_dcache_area(hibernate_exit, exit_size);
  464. /*
  465. * KASLR will cause the el2 vectors to be in a different location in
  466. * the resumed kernel. Load hibernate's temporary copy into el2.
  467. *
  468. * We can skip this step if we booted at EL1, or are running with VHE.
  469. */
  470. if (el2_reset_needed()) {
  471. phys_addr_t el2_vectors = phys_hibernate_exit; /* base */
  472. el2_vectors += hibernate_el2_vectors -
  473. __hibernate_exit_text_start; /* offset */
  474. __hyp_set_vectors(el2_vectors);
  475. }
  476. hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
  477. resume_hdr.reenter_kernel, restore_pblist,
  478. resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
  479. out:
  480. return rc;
  481. }
  482. int hibernate_resume_nonboot_cpu_disable(void)
  483. {
  484. if (sleep_cpu < 0) {
  485. pr_err("Failing to resume from hibernate on an unknown CPU.\n");
  486. return -ENODEV;
  487. }
  488. return freeze_secondary_cpus(sleep_cpu);
  489. }