core.c 189 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. #ifdef smp_mb__before_atomic
  89. void __smp_mb__before_atomic(void)
  90. {
  91. smp_mb__before_atomic();
  92. }
  93. EXPORT_SYMBOL(__smp_mb__before_atomic);
  94. #endif
  95. #ifdef smp_mb__after_atomic
  96. void __smp_mb__after_atomic(void)
  97. {
  98. smp_mb__after_atomic();
  99. }
  100. EXPORT_SYMBOL(__smp_mb__after_atomic);
  101. #endif
  102. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  103. {
  104. unsigned long delta;
  105. ktime_t soft, hard, now;
  106. for (;;) {
  107. if (hrtimer_active(period_timer))
  108. break;
  109. now = hrtimer_cb_get_time(period_timer);
  110. hrtimer_forward(period_timer, now, period);
  111. soft = hrtimer_get_softexpires(period_timer);
  112. hard = hrtimer_get_expires(period_timer);
  113. delta = ktime_to_ns(ktime_sub(hard, soft));
  114. __hrtimer_start_range_ns(period_timer, soft, delta,
  115. HRTIMER_MODE_ABS_PINNED, 0);
  116. }
  117. }
  118. DEFINE_MUTEX(sched_domains_mutex);
  119. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  120. static void update_rq_clock_task(struct rq *rq, s64 delta);
  121. void update_rq_clock(struct rq *rq)
  122. {
  123. s64 delta;
  124. if (rq->skip_clock_update > 0)
  125. return;
  126. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  127. rq->clock += delta;
  128. update_rq_clock_task(rq, delta);
  129. }
  130. /*
  131. * Debugging: various feature bits
  132. */
  133. #define SCHED_FEAT(name, enabled) \
  134. (1UL << __SCHED_FEAT_##name) * enabled |
  135. const_debug unsigned int sysctl_sched_features =
  136. #include "features.h"
  137. 0;
  138. #undef SCHED_FEAT
  139. #ifdef CONFIG_SCHED_DEBUG
  140. #define SCHED_FEAT(name, enabled) \
  141. #name ,
  142. static const char * const sched_feat_names[] = {
  143. #include "features.h"
  144. };
  145. #undef SCHED_FEAT
  146. static int sched_feat_show(struct seq_file *m, void *v)
  147. {
  148. int i;
  149. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  150. if (!(sysctl_sched_features & (1UL << i)))
  151. seq_puts(m, "NO_");
  152. seq_printf(m, "%s ", sched_feat_names[i]);
  153. }
  154. seq_puts(m, "\n");
  155. return 0;
  156. }
  157. #ifdef HAVE_JUMP_LABEL
  158. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  159. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  160. #define SCHED_FEAT(name, enabled) \
  161. jump_label_key__##enabled ,
  162. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  163. #include "features.h"
  164. };
  165. #undef SCHED_FEAT
  166. static void sched_feat_disable(int i)
  167. {
  168. if (static_key_enabled(&sched_feat_keys[i]))
  169. static_key_slow_dec(&sched_feat_keys[i]);
  170. }
  171. static void sched_feat_enable(int i)
  172. {
  173. if (!static_key_enabled(&sched_feat_keys[i]))
  174. static_key_slow_inc(&sched_feat_keys[i]);
  175. }
  176. #else
  177. static void sched_feat_disable(int i) { };
  178. static void sched_feat_enable(int i) { };
  179. #endif /* HAVE_JUMP_LABEL */
  180. static int sched_feat_set(char *cmp)
  181. {
  182. int i;
  183. int neg = 0;
  184. if (strncmp(cmp, "NO_", 3) == 0) {
  185. neg = 1;
  186. cmp += 3;
  187. }
  188. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  189. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  190. if (neg) {
  191. sysctl_sched_features &= ~(1UL << i);
  192. sched_feat_disable(i);
  193. } else {
  194. sysctl_sched_features |= (1UL << i);
  195. sched_feat_enable(i);
  196. }
  197. break;
  198. }
  199. }
  200. return i;
  201. }
  202. static ssize_t
  203. sched_feat_write(struct file *filp, const char __user *ubuf,
  204. size_t cnt, loff_t *ppos)
  205. {
  206. char buf[64];
  207. char *cmp;
  208. int i;
  209. if (cnt > 63)
  210. cnt = 63;
  211. if (copy_from_user(&buf, ubuf, cnt))
  212. return -EFAULT;
  213. buf[cnt] = 0;
  214. cmp = strstrip(buf);
  215. i = sched_feat_set(cmp);
  216. if (i == __SCHED_FEAT_NR)
  217. return -EINVAL;
  218. *ppos += cnt;
  219. return cnt;
  220. }
  221. static int sched_feat_open(struct inode *inode, struct file *filp)
  222. {
  223. return single_open(filp, sched_feat_show, NULL);
  224. }
  225. static const struct file_operations sched_feat_fops = {
  226. .open = sched_feat_open,
  227. .write = sched_feat_write,
  228. .read = seq_read,
  229. .llseek = seq_lseek,
  230. .release = single_release,
  231. };
  232. static __init int sched_init_debug(void)
  233. {
  234. debugfs_create_file("sched_features", 0644, NULL, NULL,
  235. &sched_feat_fops);
  236. return 0;
  237. }
  238. late_initcall(sched_init_debug);
  239. #endif /* CONFIG_SCHED_DEBUG */
  240. /*
  241. * Number of tasks to iterate in a single balance run.
  242. * Limited because this is done with IRQs disabled.
  243. */
  244. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  245. /*
  246. * period over which we average the RT time consumption, measured
  247. * in ms.
  248. *
  249. * default: 1s
  250. */
  251. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  252. /*
  253. * period over which we measure -rt task cpu usage in us.
  254. * default: 1s
  255. */
  256. unsigned int sysctl_sched_rt_period = 1000000;
  257. __read_mostly int scheduler_running;
  258. /*
  259. * part of the period that we allow rt tasks to run in us.
  260. * default: 0.95s
  261. */
  262. int sysctl_sched_rt_runtime = 950000;
  263. /*
  264. * __task_rq_lock - lock the rq @p resides on.
  265. */
  266. static inline struct rq *__task_rq_lock(struct task_struct *p)
  267. __acquires(rq->lock)
  268. {
  269. struct rq *rq;
  270. lockdep_assert_held(&p->pi_lock);
  271. for (;;) {
  272. rq = task_rq(p);
  273. raw_spin_lock(&rq->lock);
  274. if (likely(rq == task_rq(p)))
  275. return rq;
  276. raw_spin_unlock(&rq->lock);
  277. }
  278. }
  279. /*
  280. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  281. */
  282. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  283. __acquires(p->pi_lock)
  284. __acquires(rq->lock)
  285. {
  286. struct rq *rq;
  287. for (;;) {
  288. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  289. rq = task_rq(p);
  290. raw_spin_lock(&rq->lock);
  291. if (likely(rq == task_rq(p)))
  292. return rq;
  293. raw_spin_unlock(&rq->lock);
  294. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  295. }
  296. }
  297. static void __task_rq_unlock(struct rq *rq)
  298. __releases(rq->lock)
  299. {
  300. raw_spin_unlock(&rq->lock);
  301. }
  302. static inline void
  303. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  304. __releases(rq->lock)
  305. __releases(p->pi_lock)
  306. {
  307. raw_spin_unlock(&rq->lock);
  308. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  309. }
  310. /*
  311. * this_rq_lock - lock this runqueue and disable interrupts.
  312. */
  313. static struct rq *this_rq_lock(void)
  314. __acquires(rq->lock)
  315. {
  316. struct rq *rq;
  317. local_irq_disable();
  318. rq = this_rq();
  319. raw_spin_lock(&rq->lock);
  320. return rq;
  321. }
  322. #ifdef CONFIG_SCHED_HRTICK
  323. /*
  324. * Use HR-timers to deliver accurate preemption points.
  325. */
  326. static void hrtick_clear(struct rq *rq)
  327. {
  328. if (hrtimer_active(&rq->hrtick_timer))
  329. hrtimer_cancel(&rq->hrtick_timer);
  330. }
  331. /*
  332. * High-resolution timer tick.
  333. * Runs from hardirq context with interrupts disabled.
  334. */
  335. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  336. {
  337. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. raw_spin_lock(&rq->lock);
  340. update_rq_clock(rq);
  341. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  342. raw_spin_unlock(&rq->lock);
  343. return HRTIMER_NORESTART;
  344. }
  345. #ifdef CONFIG_SMP
  346. static int __hrtick_restart(struct rq *rq)
  347. {
  348. struct hrtimer *timer = &rq->hrtick_timer;
  349. ktime_t time = hrtimer_get_softexpires(timer);
  350. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  351. }
  352. /*
  353. * called from hardirq (IPI) context
  354. */
  355. static void __hrtick_start(void *arg)
  356. {
  357. struct rq *rq = arg;
  358. raw_spin_lock(&rq->lock);
  359. __hrtick_restart(rq);
  360. rq->hrtick_csd_pending = 0;
  361. raw_spin_unlock(&rq->lock);
  362. }
  363. /*
  364. * Called to set the hrtick timer state.
  365. *
  366. * called with rq->lock held and irqs disabled
  367. */
  368. void hrtick_start(struct rq *rq, u64 delay)
  369. {
  370. struct hrtimer *timer = &rq->hrtick_timer;
  371. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  372. hrtimer_set_expires(timer, time);
  373. if (rq == this_rq()) {
  374. __hrtick_restart(rq);
  375. } else if (!rq->hrtick_csd_pending) {
  376. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  377. rq->hrtick_csd_pending = 1;
  378. }
  379. }
  380. static int
  381. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  382. {
  383. int cpu = (int)(long)hcpu;
  384. switch (action) {
  385. case CPU_UP_CANCELED:
  386. case CPU_UP_CANCELED_FROZEN:
  387. case CPU_DOWN_PREPARE:
  388. case CPU_DOWN_PREPARE_FROZEN:
  389. case CPU_DEAD:
  390. case CPU_DEAD_FROZEN:
  391. hrtick_clear(cpu_rq(cpu));
  392. return NOTIFY_OK;
  393. }
  394. return NOTIFY_DONE;
  395. }
  396. static __init void init_hrtick(void)
  397. {
  398. hotcpu_notifier(hotplug_hrtick, 0);
  399. }
  400. #else
  401. /*
  402. * Called to set the hrtick timer state.
  403. *
  404. * called with rq->lock held and irqs disabled
  405. */
  406. void hrtick_start(struct rq *rq, u64 delay)
  407. {
  408. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  409. HRTIMER_MODE_REL_PINNED, 0);
  410. }
  411. static inline void init_hrtick(void)
  412. {
  413. }
  414. #endif /* CONFIG_SMP */
  415. static void init_rq_hrtick(struct rq *rq)
  416. {
  417. #ifdef CONFIG_SMP
  418. rq->hrtick_csd_pending = 0;
  419. rq->hrtick_csd.flags = 0;
  420. rq->hrtick_csd.func = __hrtick_start;
  421. rq->hrtick_csd.info = rq;
  422. #endif
  423. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  424. rq->hrtick_timer.function = hrtick;
  425. }
  426. #else /* CONFIG_SCHED_HRTICK */
  427. static inline void hrtick_clear(struct rq *rq)
  428. {
  429. }
  430. static inline void init_rq_hrtick(struct rq *rq)
  431. {
  432. }
  433. static inline void init_hrtick(void)
  434. {
  435. }
  436. #endif /* CONFIG_SCHED_HRTICK */
  437. /*
  438. * resched_task - mark a task 'to be rescheduled now'.
  439. *
  440. * On UP this means the setting of the need_resched flag, on SMP it
  441. * might also involve a cross-CPU call to trigger the scheduler on
  442. * the target CPU.
  443. */
  444. void resched_task(struct task_struct *p)
  445. {
  446. int cpu;
  447. lockdep_assert_held(&task_rq(p)->lock);
  448. if (test_tsk_need_resched(p))
  449. return;
  450. set_tsk_need_resched(p);
  451. cpu = task_cpu(p);
  452. if (cpu == smp_processor_id()) {
  453. set_preempt_need_resched();
  454. return;
  455. }
  456. /* NEED_RESCHED must be visible before we test polling */
  457. smp_mb();
  458. if (!tsk_is_polling(p))
  459. smp_send_reschedule(cpu);
  460. }
  461. void resched_cpu(int cpu)
  462. {
  463. struct rq *rq = cpu_rq(cpu);
  464. unsigned long flags;
  465. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  466. return;
  467. resched_task(cpu_curr(cpu));
  468. raw_spin_unlock_irqrestore(&rq->lock, flags);
  469. }
  470. #ifdef CONFIG_SMP
  471. #ifdef CONFIG_NO_HZ_COMMON
  472. /*
  473. * In the semi idle case, use the nearest busy cpu for migrating timers
  474. * from an idle cpu. This is good for power-savings.
  475. *
  476. * We don't do similar optimization for completely idle system, as
  477. * selecting an idle cpu will add more delays to the timers than intended
  478. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  479. */
  480. int get_nohz_timer_target(int pinned)
  481. {
  482. int cpu = smp_processor_id();
  483. int i;
  484. struct sched_domain *sd;
  485. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  486. return cpu;
  487. rcu_read_lock();
  488. for_each_domain(cpu, sd) {
  489. for_each_cpu(i, sched_domain_span(sd)) {
  490. if (!idle_cpu(i)) {
  491. cpu = i;
  492. goto unlock;
  493. }
  494. }
  495. }
  496. unlock:
  497. rcu_read_unlock();
  498. return cpu;
  499. }
  500. /*
  501. * When add_timer_on() enqueues a timer into the timer wheel of an
  502. * idle CPU then this timer might expire before the next timer event
  503. * which is scheduled to wake up that CPU. In case of a completely
  504. * idle system the next event might even be infinite time into the
  505. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  506. * leaves the inner idle loop so the newly added timer is taken into
  507. * account when the CPU goes back to idle and evaluates the timer
  508. * wheel for the next timer event.
  509. */
  510. static void wake_up_idle_cpu(int cpu)
  511. {
  512. struct rq *rq = cpu_rq(cpu);
  513. if (cpu == smp_processor_id())
  514. return;
  515. /*
  516. * This is safe, as this function is called with the timer
  517. * wheel base lock of (cpu) held. When the CPU is on the way
  518. * to idle and has not yet set rq->curr to idle then it will
  519. * be serialized on the timer wheel base lock and take the new
  520. * timer into account automatically.
  521. */
  522. if (rq->curr != rq->idle)
  523. return;
  524. /*
  525. * We can set TIF_RESCHED on the idle task of the other CPU
  526. * lockless. The worst case is that the other CPU runs the
  527. * idle task through an additional NOOP schedule()
  528. */
  529. set_tsk_need_resched(rq->idle);
  530. /* NEED_RESCHED must be visible before we test polling */
  531. smp_mb();
  532. if (!tsk_is_polling(rq->idle))
  533. smp_send_reschedule(cpu);
  534. }
  535. static bool wake_up_full_nohz_cpu(int cpu)
  536. {
  537. if (tick_nohz_full_cpu(cpu)) {
  538. if (cpu != smp_processor_id() ||
  539. tick_nohz_tick_stopped())
  540. smp_send_reschedule(cpu);
  541. return true;
  542. }
  543. return false;
  544. }
  545. void wake_up_nohz_cpu(int cpu)
  546. {
  547. if (!wake_up_full_nohz_cpu(cpu))
  548. wake_up_idle_cpu(cpu);
  549. }
  550. static inline bool got_nohz_idle_kick(void)
  551. {
  552. int cpu = smp_processor_id();
  553. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  554. return false;
  555. if (idle_cpu(cpu) && !need_resched())
  556. return true;
  557. /*
  558. * We can't run Idle Load Balance on this CPU for this time so we
  559. * cancel it and clear NOHZ_BALANCE_KICK
  560. */
  561. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  562. return false;
  563. }
  564. #else /* CONFIG_NO_HZ_COMMON */
  565. static inline bool got_nohz_idle_kick(void)
  566. {
  567. return false;
  568. }
  569. #endif /* CONFIG_NO_HZ_COMMON */
  570. #ifdef CONFIG_NO_HZ_FULL
  571. bool sched_can_stop_tick(void)
  572. {
  573. struct rq *rq;
  574. rq = this_rq();
  575. /* Make sure rq->nr_running update is visible after the IPI */
  576. smp_rmb();
  577. /* More than one running task need preemption */
  578. if (rq->nr_running > 1)
  579. return false;
  580. return true;
  581. }
  582. #endif /* CONFIG_NO_HZ_FULL */
  583. void sched_avg_update(struct rq *rq)
  584. {
  585. s64 period = sched_avg_period();
  586. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  587. /*
  588. * Inline assembly required to prevent the compiler
  589. * optimising this loop into a divmod call.
  590. * See __iter_div_u64_rem() for another example of this.
  591. */
  592. asm("" : "+rm" (rq->age_stamp));
  593. rq->age_stamp += period;
  594. rq->rt_avg /= 2;
  595. }
  596. }
  597. #endif /* CONFIG_SMP */
  598. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  599. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  600. /*
  601. * Iterate task_group tree rooted at *from, calling @down when first entering a
  602. * node and @up when leaving it for the final time.
  603. *
  604. * Caller must hold rcu_lock or sufficient equivalent.
  605. */
  606. int walk_tg_tree_from(struct task_group *from,
  607. tg_visitor down, tg_visitor up, void *data)
  608. {
  609. struct task_group *parent, *child;
  610. int ret;
  611. parent = from;
  612. down:
  613. ret = (*down)(parent, data);
  614. if (ret)
  615. goto out;
  616. list_for_each_entry_rcu(child, &parent->children, siblings) {
  617. parent = child;
  618. goto down;
  619. up:
  620. continue;
  621. }
  622. ret = (*up)(parent, data);
  623. if (ret || parent == from)
  624. goto out;
  625. child = parent;
  626. parent = parent->parent;
  627. if (parent)
  628. goto up;
  629. out:
  630. return ret;
  631. }
  632. int tg_nop(struct task_group *tg, void *data)
  633. {
  634. return 0;
  635. }
  636. #endif
  637. static void set_load_weight(struct task_struct *p)
  638. {
  639. int prio = p->static_prio - MAX_RT_PRIO;
  640. struct load_weight *load = &p->se.load;
  641. /*
  642. * SCHED_IDLE tasks get minimal weight:
  643. */
  644. if (p->policy == SCHED_IDLE) {
  645. load->weight = scale_load(WEIGHT_IDLEPRIO);
  646. load->inv_weight = WMULT_IDLEPRIO;
  647. return;
  648. }
  649. load->weight = scale_load(prio_to_weight[prio]);
  650. load->inv_weight = prio_to_wmult[prio];
  651. }
  652. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  653. {
  654. update_rq_clock(rq);
  655. sched_info_queued(rq, p);
  656. p->sched_class->enqueue_task(rq, p, flags);
  657. }
  658. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  659. {
  660. update_rq_clock(rq);
  661. sched_info_dequeued(rq, p);
  662. p->sched_class->dequeue_task(rq, p, flags);
  663. }
  664. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  665. {
  666. if (task_contributes_to_load(p))
  667. rq->nr_uninterruptible--;
  668. enqueue_task(rq, p, flags);
  669. }
  670. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  671. {
  672. if (task_contributes_to_load(p))
  673. rq->nr_uninterruptible++;
  674. dequeue_task(rq, p, flags);
  675. }
  676. static void update_rq_clock_task(struct rq *rq, s64 delta)
  677. {
  678. /*
  679. * In theory, the compile should just see 0 here, and optimize out the call
  680. * to sched_rt_avg_update. But I don't trust it...
  681. */
  682. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  683. s64 steal = 0, irq_delta = 0;
  684. #endif
  685. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  686. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  687. /*
  688. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  689. * this case when a previous update_rq_clock() happened inside a
  690. * {soft,}irq region.
  691. *
  692. * When this happens, we stop ->clock_task and only update the
  693. * prev_irq_time stamp to account for the part that fit, so that a next
  694. * update will consume the rest. This ensures ->clock_task is
  695. * monotonic.
  696. *
  697. * It does however cause some slight miss-attribution of {soft,}irq
  698. * time, a more accurate solution would be to update the irq_time using
  699. * the current rq->clock timestamp, except that would require using
  700. * atomic ops.
  701. */
  702. if (irq_delta > delta)
  703. irq_delta = delta;
  704. rq->prev_irq_time += irq_delta;
  705. delta -= irq_delta;
  706. #endif
  707. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  708. if (static_key_false((&paravirt_steal_rq_enabled))) {
  709. steal = paravirt_steal_clock(cpu_of(rq));
  710. steal -= rq->prev_steal_time_rq;
  711. if (unlikely(steal > delta))
  712. steal = delta;
  713. rq->prev_steal_time_rq += steal;
  714. delta -= steal;
  715. }
  716. #endif
  717. rq->clock_task += delta;
  718. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  719. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  720. sched_rt_avg_update(rq, irq_delta + steal);
  721. #endif
  722. }
  723. void sched_set_stop_task(int cpu, struct task_struct *stop)
  724. {
  725. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  726. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  727. if (stop) {
  728. /*
  729. * Make it appear like a SCHED_FIFO task, its something
  730. * userspace knows about and won't get confused about.
  731. *
  732. * Also, it will make PI more or less work without too
  733. * much confusion -- but then, stop work should not
  734. * rely on PI working anyway.
  735. */
  736. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  737. stop->sched_class = &stop_sched_class;
  738. }
  739. cpu_rq(cpu)->stop = stop;
  740. if (old_stop) {
  741. /*
  742. * Reset it back to a normal scheduling class so that
  743. * it can die in pieces.
  744. */
  745. old_stop->sched_class = &rt_sched_class;
  746. }
  747. }
  748. /*
  749. * __normal_prio - return the priority that is based on the static prio
  750. */
  751. static inline int __normal_prio(struct task_struct *p)
  752. {
  753. return p->static_prio;
  754. }
  755. /*
  756. * Calculate the expected normal priority: i.e. priority
  757. * without taking RT-inheritance into account. Might be
  758. * boosted by interactivity modifiers. Changes upon fork,
  759. * setprio syscalls, and whenever the interactivity
  760. * estimator recalculates.
  761. */
  762. static inline int normal_prio(struct task_struct *p)
  763. {
  764. int prio;
  765. if (task_has_dl_policy(p))
  766. prio = MAX_DL_PRIO-1;
  767. else if (task_has_rt_policy(p))
  768. prio = MAX_RT_PRIO-1 - p->rt_priority;
  769. else
  770. prio = __normal_prio(p);
  771. return prio;
  772. }
  773. /*
  774. * Calculate the current priority, i.e. the priority
  775. * taken into account by the scheduler. This value might
  776. * be boosted by RT tasks, or might be boosted by
  777. * interactivity modifiers. Will be RT if the task got
  778. * RT-boosted. If not then it returns p->normal_prio.
  779. */
  780. static int effective_prio(struct task_struct *p)
  781. {
  782. p->normal_prio = normal_prio(p);
  783. /*
  784. * If we are RT tasks or we were boosted to RT priority,
  785. * keep the priority unchanged. Otherwise, update priority
  786. * to the normal priority:
  787. */
  788. if (!rt_prio(p->prio))
  789. return p->normal_prio;
  790. return p->prio;
  791. }
  792. /**
  793. * task_curr - is this task currently executing on a CPU?
  794. * @p: the task in question.
  795. *
  796. * Return: 1 if the task is currently executing. 0 otherwise.
  797. */
  798. inline int task_curr(const struct task_struct *p)
  799. {
  800. return cpu_curr(task_cpu(p)) == p;
  801. }
  802. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  803. const struct sched_class *prev_class,
  804. int oldprio)
  805. {
  806. if (prev_class != p->sched_class) {
  807. if (prev_class->switched_from)
  808. prev_class->switched_from(rq, p);
  809. p->sched_class->switched_to(rq, p);
  810. } else if (oldprio != p->prio || dl_task(p))
  811. p->sched_class->prio_changed(rq, p, oldprio);
  812. }
  813. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  814. {
  815. const struct sched_class *class;
  816. if (p->sched_class == rq->curr->sched_class) {
  817. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  818. } else {
  819. for_each_class(class) {
  820. if (class == rq->curr->sched_class)
  821. break;
  822. if (class == p->sched_class) {
  823. resched_task(rq->curr);
  824. break;
  825. }
  826. }
  827. }
  828. /*
  829. * A queue event has occurred, and we're going to schedule. In
  830. * this case, we can save a useless back to back clock update.
  831. */
  832. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  833. rq->skip_clock_update = 1;
  834. }
  835. #ifdef CONFIG_SMP
  836. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  837. {
  838. #ifdef CONFIG_SCHED_DEBUG
  839. /*
  840. * We should never call set_task_cpu() on a blocked task,
  841. * ttwu() will sort out the placement.
  842. */
  843. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  844. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  845. #ifdef CONFIG_LOCKDEP
  846. /*
  847. * The caller should hold either p->pi_lock or rq->lock, when changing
  848. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  849. *
  850. * sched_move_task() holds both and thus holding either pins the cgroup,
  851. * see task_group().
  852. *
  853. * Furthermore, all task_rq users should acquire both locks, see
  854. * task_rq_lock().
  855. */
  856. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  857. lockdep_is_held(&task_rq(p)->lock)));
  858. #endif
  859. #endif
  860. trace_sched_migrate_task(p, new_cpu);
  861. if (task_cpu(p) != new_cpu) {
  862. if (p->sched_class->migrate_task_rq)
  863. p->sched_class->migrate_task_rq(p, new_cpu);
  864. p->se.nr_migrations++;
  865. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  866. }
  867. __set_task_cpu(p, new_cpu);
  868. }
  869. static void __migrate_swap_task(struct task_struct *p, int cpu)
  870. {
  871. if (p->on_rq) {
  872. struct rq *src_rq, *dst_rq;
  873. src_rq = task_rq(p);
  874. dst_rq = cpu_rq(cpu);
  875. deactivate_task(src_rq, p, 0);
  876. set_task_cpu(p, cpu);
  877. activate_task(dst_rq, p, 0);
  878. check_preempt_curr(dst_rq, p, 0);
  879. } else {
  880. /*
  881. * Task isn't running anymore; make it appear like we migrated
  882. * it before it went to sleep. This means on wakeup we make the
  883. * previous cpu our targer instead of where it really is.
  884. */
  885. p->wake_cpu = cpu;
  886. }
  887. }
  888. struct migration_swap_arg {
  889. struct task_struct *src_task, *dst_task;
  890. int src_cpu, dst_cpu;
  891. };
  892. static int migrate_swap_stop(void *data)
  893. {
  894. struct migration_swap_arg *arg = data;
  895. struct rq *src_rq, *dst_rq;
  896. int ret = -EAGAIN;
  897. src_rq = cpu_rq(arg->src_cpu);
  898. dst_rq = cpu_rq(arg->dst_cpu);
  899. double_raw_lock(&arg->src_task->pi_lock,
  900. &arg->dst_task->pi_lock);
  901. double_rq_lock(src_rq, dst_rq);
  902. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  903. goto unlock;
  904. if (task_cpu(arg->src_task) != arg->src_cpu)
  905. goto unlock;
  906. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  907. goto unlock;
  908. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  909. goto unlock;
  910. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  911. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  912. ret = 0;
  913. unlock:
  914. double_rq_unlock(src_rq, dst_rq);
  915. raw_spin_unlock(&arg->dst_task->pi_lock);
  916. raw_spin_unlock(&arg->src_task->pi_lock);
  917. return ret;
  918. }
  919. /*
  920. * Cross migrate two tasks
  921. */
  922. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  923. {
  924. struct migration_swap_arg arg;
  925. int ret = -EINVAL;
  926. arg = (struct migration_swap_arg){
  927. .src_task = cur,
  928. .src_cpu = task_cpu(cur),
  929. .dst_task = p,
  930. .dst_cpu = task_cpu(p),
  931. };
  932. if (arg.src_cpu == arg.dst_cpu)
  933. goto out;
  934. /*
  935. * These three tests are all lockless; this is OK since all of them
  936. * will be re-checked with proper locks held further down the line.
  937. */
  938. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  939. goto out;
  940. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  941. goto out;
  942. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  943. goto out;
  944. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  945. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  946. out:
  947. return ret;
  948. }
  949. struct migration_arg {
  950. struct task_struct *task;
  951. int dest_cpu;
  952. };
  953. static int migration_cpu_stop(void *data);
  954. /*
  955. * wait_task_inactive - wait for a thread to unschedule.
  956. *
  957. * If @match_state is nonzero, it's the @p->state value just checked and
  958. * not expected to change. If it changes, i.e. @p might have woken up,
  959. * then return zero. When we succeed in waiting for @p to be off its CPU,
  960. * we return a positive number (its total switch count). If a second call
  961. * a short while later returns the same number, the caller can be sure that
  962. * @p has remained unscheduled the whole time.
  963. *
  964. * The caller must ensure that the task *will* unschedule sometime soon,
  965. * else this function might spin for a *long* time. This function can't
  966. * be called with interrupts off, or it may introduce deadlock with
  967. * smp_call_function() if an IPI is sent by the same process we are
  968. * waiting to become inactive.
  969. */
  970. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  971. {
  972. unsigned long flags;
  973. int running, on_rq;
  974. unsigned long ncsw;
  975. struct rq *rq;
  976. for (;;) {
  977. /*
  978. * We do the initial early heuristics without holding
  979. * any task-queue locks at all. We'll only try to get
  980. * the runqueue lock when things look like they will
  981. * work out!
  982. */
  983. rq = task_rq(p);
  984. /*
  985. * If the task is actively running on another CPU
  986. * still, just relax and busy-wait without holding
  987. * any locks.
  988. *
  989. * NOTE! Since we don't hold any locks, it's not
  990. * even sure that "rq" stays as the right runqueue!
  991. * But we don't care, since "task_running()" will
  992. * return false if the runqueue has changed and p
  993. * is actually now running somewhere else!
  994. */
  995. while (task_running(rq, p)) {
  996. if (match_state && unlikely(p->state != match_state))
  997. return 0;
  998. cpu_relax();
  999. }
  1000. /*
  1001. * Ok, time to look more closely! We need the rq
  1002. * lock now, to be *sure*. If we're wrong, we'll
  1003. * just go back and repeat.
  1004. */
  1005. rq = task_rq_lock(p, &flags);
  1006. trace_sched_wait_task(p);
  1007. running = task_running(rq, p);
  1008. on_rq = p->on_rq;
  1009. ncsw = 0;
  1010. if (!match_state || p->state == match_state)
  1011. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1012. task_rq_unlock(rq, p, &flags);
  1013. /*
  1014. * If it changed from the expected state, bail out now.
  1015. */
  1016. if (unlikely(!ncsw))
  1017. break;
  1018. /*
  1019. * Was it really running after all now that we
  1020. * checked with the proper locks actually held?
  1021. *
  1022. * Oops. Go back and try again..
  1023. */
  1024. if (unlikely(running)) {
  1025. cpu_relax();
  1026. continue;
  1027. }
  1028. /*
  1029. * It's not enough that it's not actively running,
  1030. * it must be off the runqueue _entirely_, and not
  1031. * preempted!
  1032. *
  1033. * So if it was still runnable (but just not actively
  1034. * running right now), it's preempted, and we should
  1035. * yield - it could be a while.
  1036. */
  1037. if (unlikely(on_rq)) {
  1038. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1039. set_current_state(TASK_UNINTERRUPTIBLE);
  1040. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1041. continue;
  1042. }
  1043. /*
  1044. * Ahh, all good. It wasn't running, and it wasn't
  1045. * runnable, which means that it will never become
  1046. * running in the future either. We're all done!
  1047. */
  1048. break;
  1049. }
  1050. return ncsw;
  1051. }
  1052. /***
  1053. * kick_process - kick a running thread to enter/exit the kernel
  1054. * @p: the to-be-kicked thread
  1055. *
  1056. * Cause a process which is running on another CPU to enter
  1057. * kernel-mode, without any delay. (to get signals handled.)
  1058. *
  1059. * NOTE: this function doesn't have to take the runqueue lock,
  1060. * because all it wants to ensure is that the remote task enters
  1061. * the kernel. If the IPI races and the task has been migrated
  1062. * to another CPU then no harm is done and the purpose has been
  1063. * achieved as well.
  1064. */
  1065. void kick_process(struct task_struct *p)
  1066. {
  1067. int cpu;
  1068. preempt_disable();
  1069. cpu = task_cpu(p);
  1070. if ((cpu != smp_processor_id()) && task_curr(p))
  1071. smp_send_reschedule(cpu);
  1072. preempt_enable();
  1073. }
  1074. EXPORT_SYMBOL_GPL(kick_process);
  1075. #endif /* CONFIG_SMP */
  1076. #ifdef CONFIG_SMP
  1077. /*
  1078. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1079. */
  1080. static int select_fallback_rq(int cpu, struct task_struct *p)
  1081. {
  1082. int nid = cpu_to_node(cpu);
  1083. const struct cpumask *nodemask = NULL;
  1084. enum { cpuset, possible, fail } state = cpuset;
  1085. int dest_cpu;
  1086. /*
  1087. * If the node that the cpu is on has been offlined, cpu_to_node()
  1088. * will return -1. There is no cpu on the node, and we should
  1089. * select the cpu on the other node.
  1090. */
  1091. if (nid != -1) {
  1092. nodemask = cpumask_of_node(nid);
  1093. /* Look for allowed, online CPU in same node. */
  1094. for_each_cpu(dest_cpu, nodemask) {
  1095. if (!cpu_online(dest_cpu))
  1096. continue;
  1097. if (!cpu_active(dest_cpu))
  1098. continue;
  1099. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1100. return dest_cpu;
  1101. }
  1102. }
  1103. for (;;) {
  1104. /* Any allowed, online CPU? */
  1105. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1106. if (!cpu_online(dest_cpu))
  1107. continue;
  1108. if (!cpu_active(dest_cpu))
  1109. continue;
  1110. goto out;
  1111. }
  1112. switch (state) {
  1113. case cpuset:
  1114. /* No more Mr. Nice Guy. */
  1115. cpuset_cpus_allowed_fallback(p);
  1116. state = possible;
  1117. break;
  1118. case possible:
  1119. do_set_cpus_allowed(p, cpu_possible_mask);
  1120. state = fail;
  1121. break;
  1122. case fail:
  1123. BUG();
  1124. break;
  1125. }
  1126. }
  1127. out:
  1128. if (state != cpuset) {
  1129. /*
  1130. * Don't tell them about moving exiting tasks or
  1131. * kernel threads (both mm NULL), since they never
  1132. * leave kernel.
  1133. */
  1134. if (p->mm && printk_ratelimit()) {
  1135. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1136. task_pid_nr(p), p->comm, cpu);
  1137. }
  1138. }
  1139. return dest_cpu;
  1140. }
  1141. /*
  1142. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1143. */
  1144. static inline
  1145. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1146. {
  1147. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1148. /*
  1149. * In order not to call set_task_cpu() on a blocking task we need
  1150. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1151. * cpu.
  1152. *
  1153. * Since this is common to all placement strategies, this lives here.
  1154. *
  1155. * [ this allows ->select_task() to simply return task_cpu(p) and
  1156. * not worry about this generic constraint ]
  1157. */
  1158. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1159. !cpu_online(cpu)))
  1160. cpu = select_fallback_rq(task_cpu(p), p);
  1161. return cpu;
  1162. }
  1163. static void update_avg(u64 *avg, u64 sample)
  1164. {
  1165. s64 diff = sample - *avg;
  1166. *avg += diff >> 3;
  1167. }
  1168. #endif
  1169. static void
  1170. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1171. {
  1172. #ifdef CONFIG_SCHEDSTATS
  1173. struct rq *rq = this_rq();
  1174. #ifdef CONFIG_SMP
  1175. int this_cpu = smp_processor_id();
  1176. if (cpu == this_cpu) {
  1177. schedstat_inc(rq, ttwu_local);
  1178. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1179. } else {
  1180. struct sched_domain *sd;
  1181. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1182. rcu_read_lock();
  1183. for_each_domain(this_cpu, sd) {
  1184. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1185. schedstat_inc(sd, ttwu_wake_remote);
  1186. break;
  1187. }
  1188. }
  1189. rcu_read_unlock();
  1190. }
  1191. if (wake_flags & WF_MIGRATED)
  1192. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1193. #endif /* CONFIG_SMP */
  1194. schedstat_inc(rq, ttwu_count);
  1195. schedstat_inc(p, se.statistics.nr_wakeups);
  1196. if (wake_flags & WF_SYNC)
  1197. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1198. #endif /* CONFIG_SCHEDSTATS */
  1199. }
  1200. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1201. {
  1202. activate_task(rq, p, en_flags);
  1203. p->on_rq = 1;
  1204. /* if a worker is waking up, notify workqueue */
  1205. if (p->flags & PF_WQ_WORKER)
  1206. wq_worker_waking_up(p, cpu_of(rq));
  1207. }
  1208. /*
  1209. * Mark the task runnable and perform wakeup-preemption.
  1210. */
  1211. static void
  1212. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1213. {
  1214. check_preempt_curr(rq, p, wake_flags);
  1215. trace_sched_wakeup(p, true);
  1216. p->state = TASK_RUNNING;
  1217. #ifdef CONFIG_SMP
  1218. if (p->sched_class->task_woken)
  1219. p->sched_class->task_woken(rq, p);
  1220. if (rq->idle_stamp) {
  1221. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1222. u64 max = 2*rq->max_idle_balance_cost;
  1223. update_avg(&rq->avg_idle, delta);
  1224. if (rq->avg_idle > max)
  1225. rq->avg_idle = max;
  1226. rq->idle_stamp = 0;
  1227. }
  1228. #endif
  1229. }
  1230. static void
  1231. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1232. {
  1233. #ifdef CONFIG_SMP
  1234. if (p->sched_contributes_to_load)
  1235. rq->nr_uninterruptible--;
  1236. #endif
  1237. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1238. ttwu_do_wakeup(rq, p, wake_flags);
  1239. }
  1240. /*
  1241. * Called in case the task @p isn't fully descheduled from its runqueue,
  1242. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1243. * since all we need to do is flip p->state to TASK_RUNNING, since
  1244. * the task is still ->on_rq.
  1245. */
  1246. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1247. {
  1248. struct rq *rq;
  1249. int ret = 0;
  1250. rq = __task_rq_lock(p);
  1251. if (p->on_rq) {
  1252. /* check_preempt_curr() may use rq clock */
  1253. update_rq_clock(rq);
  1254. ttwu_do_wakeup(rq, p, wake_flags);
  1255. ret = 1;
  1256. }
  1257. __task_rq_unlock(rq);
  1258. return ret;
  1259. }
  1260. #ifdef CONFIG_SMP
  1261. static void sched_ttwu_pending(void)
  1262. {
  1263. struct rq *rq = this_rq();
  1264. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1265. struct task_struct *p;
  1266. raw_spin_lock(&rq->lock);
  1267. while (llist) {
  1268. p = llist_entry(llist, struct task_struct, wake_entry);
  1269. llist = llist_next(llist);
  1270. ttwu_do_activate(rq, p, 0);
  1271. }
  1272. raw_spin_unlock(&rq->lock);
  1273. }
  1274. void scheduler_ipi(void)
  1275. {
  1276. /*
  1277. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1278. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1279. * this IPI.
  1280. */
  1281. preempt_fold_need_resched();
  1282. if (llist_empty(&this_rq()->wake_list)
  1283. && !tick_nohz_full_cpu(smp_processor_id())
  1284. && !got_nohz_idle_kick())
  1285. return;
  1286. /*
  1287. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1288. * traditionally all their work was done from the interrupt return
  1289. * path. Now that we actually do some work, we need to make sure
  1290. * we do call them.
  1291. *
  1292. * Some archs already do call them, luckily irq_enter/exit nest
  1293. * properly.
  1294. *
  1295. * Arguably we should visit all archs and update all handlers,
  1296. * however a fair share of IPIs are still resched only so this would
  1297. * somewhat pessimize the simple resched case.
  1298. */
  1299. irq_enter();
  1300. tick_nohz_full_check();
  1301. sched_ttwu_pending();
  1302. /*
  1303. * Check if someone kicked us for doing the nohz idle load balance.
  1304. */
  1305. if (unlikely(got_nohz_idle_kick())) {
  1306. this_rq()->idle_balance = 1;
  1307. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1308. }
  1309. irq_exit();
  1310. }
  1311. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1312. {
  1313. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1314. smp_send_reschedule(cpu);
  1315. }
  1316. bool cpus_share_cache(int this_cpu, int that_cpu)
  1317. {
  1318. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1319. }
  1320. #endif /* CONFIG_SMP */
  1321. static void ttwu_queue(struct task_struct *p, int cpu)
  1322. {
  1323. struct rq *rq = cpu_rq(cpu);
  1324. #if defined(CONFIG_SMP)
  1325. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1326. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1327. ttwu_queue_remote(p, cpu);
  1328. return;
  1329. }
  1330. #endif
  1331. raw_spin_lock(&rq->lock);
  1332. ttwu_do_activate(rq, p, 0);
  1333. raw_spin_unlock(&rq->lock);
  1334. }
  1335. /**
  1336. * try_to_wake_up - wake up a thread
  1337. * @p: the thread to be awakened
  1338. * @state: the mask of task states that can be woken
  1339. * @wake_flags: wake modifier flags (WF_*)
  1340. *
  1341. * Put it on the run-queue if it's not already there. The "current"
  1342. * thread is always on the run-queue (except when the actual
  1343. * re-schedule is in progress), and as such you're allowed to do
  1344. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1345. * runnable without the overhead of this.
  1346. *
  1347. * Return: %true if @p was woken up, %false if it was already running.
  1348. * or @state didn't match @p's state.
  1349. */
  1350. static int
  1351. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1352. {
  1353. unsigned long flags;
  1354. int cpu, success = 0;
  1355. /*
  1356. * If we are going to wake up a thread waiting for CONDITION we
  1357. * need to ensure that CONDITION=1 done by the caller can not be
  1358. * reordered with p->state check below. This pairs with mb() in
  1359. * set_current_state() the waiting thread does.
  1360. */
  1361. smp_mb__before_spinlock();
  1362. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1363. if (!(p->state & state))
  1364. goto out;
  1365. success = 1; /* we're going to change ->state */
  1366. cpu = task_cpu(p);
  1367. if (p->on_rq && ttwu_remote(p, wake_flags))
  1368. goto stat;
  1369. #ifdef CONFIG_SMP
  1370. /*
  1371. * If the owning (remote) cpu is still in the middle of schedule() with
  1372. * this task as prev, wait until its done referencing the task.
  1373. */
  1374. while (p->on_cpu)
  1375. cpu_relax();
  1376. /*
  1377. * Pairs with the smp_wmb() in finish_lock_switch().
  1378. */
  1379. smp_rmb();
  1380. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1381. p->state = TASK_WAKING;
  1382. if (p->sched_class->task_waking)
  1383. p->sched_class->task_waking(p);
  1384. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1385. if (task_cpu(p) != cpu) {
  1386. wake_flags |= WF_MIGRATED;
  1387. set_task_cpu(p, cpu);
  1388. }
  1389. #endif /* CONFIG_SMP */
  1390. ttwu_queue(p, cpu);
  1391. stat:
  1392. ttwu_stat(p, cpu, wake_flags);
  1393. out:
  1394. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1395. return success;
  1396. }
  1397. /**
  1398. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1399. * @p: the thread to be awakened
  1400. *
  1401. * Put @p on the run-queue if it's not already there. The caller must
  1402. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1403. * the current task.
  1404. */
  1405. static void try_to_wake_up_local(struct task_struct *p)
  1406. {
  1407. struct rq *rq = task_rq(p);
  1408. if (WARN_ON_ONCE(rq != this_rq()) ||
  1409. WARN_ON_ONCE(p == current))
  1410. return;
  1411. lockdep_assert_held(&rq->lock);
  1412. if (!raw_spin_trylock(&p->pi_lock)) {
  1413. raw_spin_unlock(&rq->lock);
  1414. raw_spin_lock(&p->pi_lock);
  1415. raw_spin_lock(&rq->lock);
  1416. }
  1417. if (!(p->state & TASK_NORMAL))
  1418. goto out;
  1419. if (!p->on_rq)
  1420. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1421. ttwu_do_wakeup(rq, p, 0);
  1422. ttwu_stat(p, smp_processor_id(), 0);
  1423. out:
  1424. raw_spin_unlock(&p->pi_lock);
  1425. }
  1426. /**
  1427. * wake_up_process - Wake up a specific process
  1428. * @p: The process to be woken up.
  1429. *
  1430. * Attempt to wake up the nominated process and move it to the set of runnable
  1431. * processes.
  1432. *
  1433. * Return: 1 if the process was woken up, 0 if it was already running.
  1434. *
  1435. * It may be assumed that this function implies a write memory barrier before
  1436. * changing the task state if and only if any tasks are woken up.
  1437. */
  1438. int wake_up_process(struct task_struct *p)
  1439. {
  1440. WARN_ON(task_is_stopped_or_traced(p));
  1441. return try_to_wake_up(p, TASK_NORMAL, 0);
  1442. }
  1443. EXPORT_SYMBOL(wake_up_process);
  1444. int wake_up_state(struct task_struct *p, unsigned int state)
  1445. {
  1446. return try_to_wake_up(p, state, 0);
  1447. }
  1448. /*
  1449. * Perform scheduler related setup for a newly forked process p.
  1450. * p is forked by current.
  1451. *
  1452. * __sched_fork() is basic setup used by init_idle() too:
  1453. */
  1454. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1455. {
  1456. p->on_rq = 0;
  1457. p->se.on_rq = 0;
  1458. p->se.exec_start = 0;
  1459. p->se.sum_exec_runtime = 0;
  1460. p->se.prev_sum_exec_runtime = 0;
  1461. p->se.nr_migrations = 0;
  1462. p->se.vruntime = 0;
  1463. INIT_LIST_HEAD(&p->se.group_node);
  1464. #ifdef CONFIG_SCHEDSTATS
  1465. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1466. #endif
  1467. RB_CLEAR_NODE(&p->dl.rb_node);
  1468. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1469. p->dl.dl_runtime = p->dl.runtime = 0;
  1470. p->dl.dl_deadline = p->dl.deadline = 0;
  1471. p->dl.dl_period = 0;
  1472. p->dl.flags = 0;
  1473. INIT_LIST_HEAD(&p->rt.run_list);
  1474. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1475. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1476. #endif
  1477. #ifdef CONFIG_NUMA_BALANCING
  1478. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1479. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1480. p->mm->numa_scan_seq = 0;
  1481. }
  1482. if (clone_flags & CLONE_VM)
  1483. p->numa_preferred_nid = current->numa_preferred_nid;
  1484. else
  1485. p->numa_preferred_nid = -1;
  1486. p->node_stamp = 0ULL;
  1487. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1488. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1489. p->numa_work.next = &p->numa_work;
  1490. p->numa_faults_memory = NULL;
  1491. p->numa_faults_buffer_memory = NULL;
  1492. p->last_task_numa_placement = 0;
  1493. p->last_sum_exec_runtime = 0;
  1494. INIT_LIST_HEAD(&p->numa_entry);
  1495. p->numa_group = NULL;
  1496. #endif /* CONFIG_NUMA_BALANCING */
  1497. }
  1498. #ifdef CONFIG_NUMA_BALANCING
  1499. #ifdef CONFIG_SCHED_DEBUG
  1500. void set_numabalancing_state(bool enabled)
  1501. {
  1502. if (enabled)
  1503. sched_feat_set("NUMA");
  1504. else
  1505. sched_feat_set("NO_NUMA");
  1506. }
  1507. #else
  1508. __read_mostly bool numabalancing_enabled;
  1509. void set_numabalancing_state(bool enabled)
  1510. {
  1511. numabalancing_enabled = enabled;
  1512. }
  1513. #endif /* CONFIG_SCHED_DEBUG */
  1514. #ifdef CONFIG_PROC_SYSCTL
  1515. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1516. void __user *buffer, size_t *lenp, loff_t *ppos)
  1517. {
  1518. struct ctl_table t;
  1519. int err;
  1520. int state = numabalancing_enabled;
  1521. if (write && !capable(CAP_SYS_ADMIN))
  1522. return -EPERM;
  1523. t = *table;
  1524. t.data = &state;
  1525. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1526. if (err < 0)
  1527. return err;
  1528. if (write)
  1529. set_numabalancing_state(state);
  1530. return err;
  1531. }
  1532. #endif
  1533. #endif
  1534. /*
  1535. * fork()/clone()-time setup:
  1536. */
  1537. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1538. {
  1539. unsigned long flags;
  1540. int cpu = get_cpu();
  1541. __sched_fork(clone_flags, p);
  1542. /*
  1543. * We mark the process as running here. This guarantees that
  1544. * nobody will actually run it, and a signal or other external
  1545. * event cannot wake it up and insert it on the runqueue either.
  1546. */
  1547. p->state = TASK_RUNNING;
  1548. /*
  1549. * Make sure we do not leak PI boosting priority to the child.
  1550. */
  1551. p->prio = current->normal_prio;
  1552. /*
  1553. * Revert to default priority/policy on fork if requested.
  1554. */
  1555. if (unlikely(p->sched_reset_on_fork)) {
  1556. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1557. p->policy = SCHED_NORMAL;
  1558. p->static_prio = NICE_TO_PRIO(0);
  1559. p->rt_priority = 0;
  1560. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1561. p->static_prio = NICE_TO_PRIO(0);
  1562. p->prio = p->normal_prio = __normal_prio(p);
  1563. set_load_weight(p);
  1564. /*
  1565. * We don't need the reset flag anymore after the fork. It has
  1566. * fulfilled its duty:
  1567. */
  1568. p->sched_reset_on_fork = 0;
  1569. }
  1570. if (dl_prio(p->prio)) {
  1571. put_cpu();
  1572. return -EAGAIN;
  1573. } else if (rt_prio(p->prio)) {
  1574. p->sched_class = &rt_sched_class;
  1575. } else {
  1576. p->sched_class = &fair_sched_class;
  1577. }
  1578. if (p->sched_class->task_fork)
  1579. p->sched_class->task_fork(p);
  1580. /*
  1581. * The child is not yet in the pid-hash so no cgroup attach races,
  1582. * and the cgroup is pinned to this child due to cgroup_fork()
  1583. * is ran before sched_fork().
  1584. *
  1585. * Silence PROVE_RCU.
  1586. */
  1587. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1588. set_task_cpu(p, cpu);
  1589. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1590. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1591. if (likely(sched_info_on()))
  1592. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1593. #endif
  1594. #if defined(CONFIG_SMP)
  1595. p->on_cpu = 0;
  1596. #endif
  1597. init_task_preempt_count(p);
  1598. #ifdef CONFIG_SMP
  1599. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1600. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1601. #endif
  1602. put_cpu();
  1603. return 0;
  1604. }
  1605. unsigned long to_ratio(u64 period, u64 runtime)
  1606. {
  1607. if (runtime == RUNTIME_INF)
  1608. return 1ULL << 20;
  1609. /*
  1610. * Doing this here saves a lot of checks in all
  1611. * the calling paths, and returning zero seems
  1612. * safe for them anyway.
  1613. */
  1614. if (period == 0)
  1615. return 0;
  1616. return div64_u64(runtime << 20, period);
  1617. }
  1618. #ifdef CONFIG_SMP
  1619. inline struct dl_bw *dl_bw_of(int i)
  1620. {
  1621. return &cpu_rq(i)->rd->dl_bw;
  1622. }
  1623. static inline int dl_bw_cpus(int i)
  1624. {
  1625. struct root_domain *rd = cpu_rq(i)->rd;
  1626. int cpus = 0;
  1627. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1628. cpus++;
  1629. return cpus;
  1630. }
  1631. #else
  1632. inline struct dl_bw *dl_bw_of(int i)
  1633. {
  1634. return &cpu_rq(i)->dl.dl_bw;
  1635. }
  1636. static inline int dl_bw_cpus(int i)
  1637. {
  1638. return 1;
  1639. }
  1640. #endif
  1641. static inline
  1642. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1643. {
  1644. dl_b->total_bw -= tsk_bw;
  1645. }
  1646. static inline
  1647. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1648. {
  1649. dl_b->total_bw += tsk_bw;
  1650. }
  1651. static inline
  1652. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1653. {
  1654. return dl_b->bw != -1 &&
  1655. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1656. }
  1657. /*
  1658. * We must be sure that accepting a new task (or allowing changing the
  1659. * parameters of an existing one) is consistent with the bandwidth
  1660. * constraints. If yes, this function also accordingly updates the currently
  1661. * allocated bandwidth to reflect the new situation.
  1662. *
  1663. * This function is called while holding p's rq->lock.
  1664. */
  1665. static int dl_overflow(struct task_struct *p, int policy,
  1666. const struct sched_attr *attr)
  1667. {
  1668. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1669. u64 period = attr->sched_period ?: attr->sched_deadline;
  1670. u64 runtime = attr->sched_runtime;
  1671. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1672. int cpus, err = -1;
  1673. if (new_bw == p->dl.dl_bw)
  1674. return 0;
  1675. /*
  1676. * Either if a task, enters, leave, or stays -deadline but changes
  1677. * its parameters, we may need to update accordingly the total
  1678. * allocated bandwidth of the container.
  1679. */
  1680. raw_spin_lock(&dl_b->lock);
  1681. cpus = dl_bw_cpus(task_cpu(p));
  1682. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1683. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1684. __dl_add(dl_b, new_bw);
  1685. err = 0;
  1686. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1687. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1688. __dl_clear(dl_b, p->dl.dl_bw);
  1689. __dl_add(dl_b, new_bw);
  1690. err = 0;
  1691. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1692. __dl_clear(dl_b, p->dl.dl_bw);
  1693. err = 0;
  1694. }
  1695. raw_spin_unlock(&dl_b->lock);
  1696. return err;
  1697. }
  1698. extern void init_dl_bw(struct dl_bw *dl_b);
  1699. /*
  1700. * wake_up_new_task - wake up a newly created task for the first time.
  1701. *
  1702. * This function will do some initial scheduler statistics housekeeping
  1703. * that must be done for every newly created context, then puts the task
  1704. * on the runqueue and wakes it.
  1705. */
  1706. void wake_up_new_task(struct task_struct *p)
  1707. {
  1708. unsigned long flags;
  1709. struct rq *rq;
  1710. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1711. #ifdef CONFIG_SMP
  1712. /*
  1713. * Fork balancing, do it here and not earlier because:
  1714. * - cpus_allowed can change in the fork path
  1715. * - any previously selected cpu might disappear through hotplug
  1716. */
  1717. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1718. #endif
  1719. /* Initialize new task's runnable average */
  1720. init_task_runnable_average(p);
  1721. rq = __task_rq_lock(p);
  1722. activate_task(rq, p, 0);
  1723. p->on_rq = 1;
  1724. trace_sched_wakeup_new(p, true);
  1725. check_preempt_curr(rq, p, WF_FORK);
  1726. #ifdef CONFIG_SMP
  1727. if (p->sched_class->task_woken)
  1728. p->sched_class->task_woken(rq, p);
  1729. #endif
  1730. task_rq_unlock(rq, p, &flags);
  1731. }
  1732. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1733. /**
  1734. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1735. * @notifier: notifier struct to register
  1736. */
  1737. void preempt_notifier_register(struct preempt_notifier *notifier)
  1738. {
  1739. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1740. }
  1741. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1742. /**
  1743. * preempt_notifier_unregister - no longer interested in preemption notifications
  1744. * @notifier: notifier struct to unregister
  1745. *
  1746. * This is safe to call from within a preemption notifier.
  1747. */
  1748. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1749. {
  1750. hlist_del(&notifier->link);
  1751. }
  1752. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1753. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1754. {
  1755. struct preempt_notifier *notifier;
  1756. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1757. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1758. }
  1759. static void
  1760. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1761. struct task_struct *next)
  1762. {
  1763. struct preempt_notifier *notifier;
  1764. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1765. notifier->ops->sched_out(notifier, next);
  1766. }
  1767. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1768. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1769. {
  1770. }
  1771. static void
  1772. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1773. struct task_struct *next)
  1774. {
  1775. }
  1776. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1777. /**
  1778. * prepare_task_switch - prepare to switch tasks
  1779. * @rq: the runqueue preparing to switch
  1780. * @prev: the current task that is being switched out
  1781. * @next: the task we are going to switch to.
  1782. *
  1783. * This is called with the rq lock held and interrupts off. It must
  1784. * be paired with a subsequent finish_task_switch after the context
  1785. * switch.
  1786. *
  1787. * prepare_task_switch sets up locking and calls architecture specific
  1788. * hooks.
  1789. */
  1790. static inline void
  1791. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1792. struct task_struct *next)
  1793. {
  1794. trace_sched_switch(prev, next);
  1795. sched_info_switch(rq, prev, next);
  1796. perf_event_task_sched_out(prev, next);
  1797. fire_sched_out_preempt_notifiers(prev, next);
  1798. prepare_lock_switch(rq, next);
  1799. prepare_arch_switch(next);
  1800. }
  1801. /**
  1802. * finish_task_switch - clean up after a task-switch
  1803. * @rq: runqueue associated with task-switch
  1804. * @prev: the thread we just switched away from.
  1805. *
  1806. * finish_task_switch must be called after the context switch, paired
  1807. * with a prepare_task_switch call before the context switch.
  1808. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1809. * and do any other architecture-specific cleanup actions.
  1810. *
  1811. * Note that we may have delayed dropping an mm in context_switch(). If
  1812. * so, we finish that here outside of the runqueue lock. (Doing it
  1813. * with the lock held can cause deadlocks; see schedule() for
  1814. * details.)
  1815. */
  1816. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1817. __releases(rq->lock)
  1818. {
  1819. struct mm_struct *mm = rq->prev_mm;
  1820. long prev_state;
  1821. rq->prev_mm = NULL;
  1822. /*
  1823. * A task struct has one reference for the use as "current".
  1824. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1825. * schedule one last time. The schedule call will never return, and
  1826. * the scheduled task must drop that reference.
  1827. * The test for TASK_DEAD must occur while the runqueue locks are
  1828. * still held, otherwise prev could be scheduled on another cpu, die
  1829. * there before we look at prev->state, and then the reference would
  1830. * be dropped twice.
  1831. * Manfred Spraul <manfred@colorfullife.com>
  1832. */
  1833. prev_state = prev->state;
  1834. vtime_task_switch(prev);
  1835. finish_arch_switch(prev);
  1836. perf_event_task_sched_in(prev, current);
  1837. finish_lock_switch(rq, prev);
  1838. finish_arch_post_lock_switch();
  1839. fire_sched_in_preempt_notifiers(current);
  1840. if (mm)
  1841. mmdrop(mm);
  1842. if (unlikely(prev_state == TASK_DEAD)) {
  1843. if (prev->sched_class->task_dead)
  1844. prev->sched_class->task_dead(prev);
  1845. /*
  1846. * Remove function-return probe instances associated with this
  1847. * task and put them back on the free list.
  1848. */
  1849. kprobe_flush_task(prev);
  1850. put_task_struct(prev);
  1851. }
  1852. tick_nohz_task_switch(current);
  1853. }
  1854. #ifdef CONFIG_SMP
  1855. /* rq->lock is NOT held, but preemption is disabled */
  1856. static inline void post_schedule(struct rq *rq)
  1857. {
  1858. if (rq->post_schedule) {
  1859. unsigned long flags;
  1860. raw_spin_lock_irqsave(&rq->lock, flags);
  1861. if (rq->curr->sched_class->post_schedule)
  1862. rq->curr->sched_class->post_schedule(rq);
  1863. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1864. rq->post_schedule = 0;
  1865. }
  1866. }
  1867. #else
  1868. static inline void post_schedule(struct rq *rq)
  1869. {
  1870. }
  1871. #endif
  1872. /**
  1873. * schedule_tail - first thing a freshly forked thread must call.
  1874. * @prev: the thread we just switched away from.
  1875. */
  1876. asmlinkage void schedule_tail(struct task_struct *prev)
  1877. __releases(rq->lock)
  1878. {
  1879. struct rq *rq = this_rq();
  1880. finish_task_switch(rq, prev);
  1881. /*
  1882. * FIXME: do we need to worry about rq being invalidated by the
  1883. * task_switch?
  1884. */
  1885. post_schedule(rq);
  1886. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1887. /* In this case, finish_task_switch does not reenable preemption */
  1888. preempt_enable();
  1889. #endif
  1890. if (current->set_child_tid)
  1891. put_user(task_pid_vnr(current), current->set_child_tid);
  1892. }
  1893. /*
  1894. * context_switch - switch to the new MM and the new
  1895. * thread's register state.
  1896. */
  1897. static inline void
  1898. context_switch(struct rq *rq, struct task_struct *prev,
  1899. struct task_struct *next)
  1900. {
  1901. struct mm_struct *mm, *oldmm;
  1902. prepare_task_switch(rq, prev, next);
  1903. mm = next->mm;
  1904. oldmm = prev->active_mm;
  1905. /*
  1906. * For paravirt, this is coupled with an exit in switch_to to
  1907. * combine the page table reload and the switch backend into
  1908. * one hypercall.
  1909. */
  1910. arch_start_context_switch(prev);
  1911. if (!mm) {
  1912. next->active_mm = oldmm;
  1913. atomic_inc(&oldmm->mm_count);
  1914. enter_lazy_tlb(oldmm, next);
  1915. } else
  1916. switch_mm(oldmm, mm, next);
  1917. if (!prev->mm) {
  1918. prev->active_mm = NULL;
  1919. rq->prev_mm = oldmm;
  1920. }
  1921. /*
  1922. * Since the runqueue lock will be released by the next
  1923. * task (which is an invalid locking op but in the case
  1924. * of the scheduler it's an obvious special-case), so we
  1925. * do an early lockdep release here:
  1926. */
  1927. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1928. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1929. #endif
  1930. context_tracking_task_switch(prev, next);
  1931. /* Here we just switch the register state and the stack. */
  1932. switch_to(prev, next, prev);
  1933. barrier();
  1934. /*
  1935. * this_rq must be evaluated again because prev may have moved
  1936. * CPUs since it called schedule(), thus the 'rq' on its stack
  1937. * frame will be invalid.
  1938. */
  1939. finish_task_switch(this_rq(), prev);
  1940. }
  1941. /*
  1942. * nr_running and nr_context_switches:
  1943. *
  1944. * externally visible scheduler statistics: current number of runnable
  1945. * threads, total number of context switches performed since bootup.
  1946. */
  1947. unsigned long nr_running(void)
  1948. {
  1949. unsigned long i, sum = 0;
  1950. for_each_online_cpu(i)
  1951. sum += cpu_rq(i)->nr_running;
  1952. return sum;
  1953. }
  1954. unsigned long long nr_context_switches(void)
  1955. {
  1956. int i;
  1957. unsigned long long sum = 0;
  1958. for_each_possible_cpu(i)
  1959. sum += cpu_rq(i)->nr_switches;
  1960. return sum;
  1961. }
  1962. unsigned long nr_iowait(void)
  1963. {
  1964. unsigned long i, sum = 0;
  1965. for_each_possible_cpu(i)
  1966. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1967. return sum;
  1968. }
  1969. unsigned long nr_iowait_cpu(int cpu)
  1970. {
  1971. struct rq *this = cpu_rq(cpu);
  1972. return atomic_read(&this->nr_iowait);
  1973. }
  1974. #ifdef CONFIG_SMP
  1975. /*
  1976. * sched_exec - execve() is a valuable balancing opportunity, because at
  1977. * this point the task has the smallest effective memory and cache footprint.
  1978. */
  1979. void sched_exec(void)
  1980. {
  1981. struct task_struct *p = current;
  1982. unsigned long flags;
  1983. int dest_cpu;
  1984. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1985. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  1986. if (dest_cpu == smp_processor_id())
  1987. goto unlock;
  1988. if (likely(cpu_active(dest_cpu))) {
  1989. struct migration_arg arg = { p, dest_cpu };
  1990. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1991. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1992. return;
  1993. }
  1994. unlock:
  1995. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1996. }
  1997. #endif
  1998. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1999. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2000. EXPORT_PER_CPU_SYMBOL(kstat);
  2001. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2002. /*
  2003. * Return any ns on the sched_clock that have not yet been accounted in
  2004. * @p in case that task is currently running.
  2005. *
  2006. * Called with task_rq_lock() held on @rq.
  2007. */
  2008. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2009. {
  2010. u64 ns = 0;
  2011. if (task_current(rq, p)) {
  2012. update_rq_clock(rq);
  2013. ns = rq_clock_task(rq) - p->se.exec_start;
  2014. if ((s64)ns < 0)
  2015. ns = 0;
  2016. }
  2017. return ns;
  2018. }
  2019. unsigned long long task_delta_exec(struct task_struct *p)
  2020. {
  2021. unsigned long flags;
  2022. struct rq *rq;
  2023. u64 ns = 0;
  2024. rq = task_rq_lock(p, &flags);
  2025. ns = do_task_delta_exec(p, rq);
  2026. task_rq_unlock(rq, p, &flags);
  2027. return ns;
  2028. }
  2029. /*
  2030. * Return accounted runtime for the task.
  2031. * In case the task is currently running, return the runtime plus current's
  2032. * pending runtime that have not been accounted yet.
  2033. */
  2034. unsigned long long task_sched_runtime(struct task_struct *p)
  2035. {
  2036. unsigned long flags;
  2037. struct rq *rq;
  2038. u64 ns = 0;
  2039. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2040. /*
  2041. * 64-bit doesn't need locks to atomically read a 64bit value.
  2042. * So we have a optimization chance when the task's delta_exec is 0.
  2043. * Reading ->on_cpu is racy, but this is ok.
  2044. *
  2045. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2046. * If we race with it entering cpu, unaccounted time is 0. This is
  2047. * indistinguishable from the read occurring a few cycles earlier.
  2048. */
  2049. if (!p->on_cpu)
  2050. return p->se.sum_exec_runtime;
  2051. #endif
  2052. rq = task_rq_lock(p, &flags);
  2053. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2054. task_rq_unlock(rq, p, &flags);
  2055. return ns;
  2056. }
  2057. /*
  2058. * This function gets called by the timer code, with HZ frequency.
  2059. * We call it with interrupts disabled.
  2060. */
  2061. void scheduler_tick(void)
  2062. {
  2063. int cpu = smp_processor_id();
  2064. struct rq *rq = cpu_rq(cpu);
  2065. struct task_struct *curr = rq->curr;
  2066. sched_clock_tick();
  2067. raw_spin_lock(&rq->lock);
  2068. update_rq_clock(rq);
  2069. curr->sched_class->task_tick(rq, curr, 0);
  2070. update_cpu_load_active(rq);
  2071. raw_spin_unlock(&rq->lock);
  2072. perf_event_task_tick();
  2073. #ifdef CONFIG_SMP
  2074. rq->idle_balance = idle_cpu(cpu);
  2075. trigger_load_balance(rq);
  2076. #endif
  2077. rq_last_tick_reset(rq);
  2078. }
  2079. #ifdef CONFIG_NO_HZ_FULL
  2080. /**
  2081. * scheduler_tick_max_deferment
  2082. *
  2083. * Keep at least one tick per second when a single
  2084. * active task is running because the scheduler doesn't
  2085. * yet completely support full dynticks environment.
  2086. *
  2087. * This makes sure that uptime, CFS vruntime, load
  2088. * balancing, etc... continue to move forward, even
  2089. * with a very low granularity.
  2090. *
  2091. * Return: Maximum deferment in nanoseconds.
  2092. */
  2093. u64 scheduler_tick_max_deferment(void)
  2094. {
  2095. struct rq *rq = this_rq();
  2096. unsigned long next, now = ACCESS_ONCE(jiffies);
  2097. next = rq->last_sched_tick + HZ;
  2098. if (time_before_eq(next, now))
  2099. return 0;
  2100. return jiffies_to_nsecs(next - now);
  2101. }
  2102. #endif
  2103. notrace unsigned long get_parent_ip(unsigned long addr)
  2104. {
  2105. if (in_lock_functions(addr)) {
  2106. addr = CALLER_ADDR2;
  2107. if (in_lock_functions(addr))
  2108. addr = CALLER_ADDR3;
  2109. }
  2110. return addr;
  2111. }
  2112. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2113. defined(CONFIG_PREEMPT_TRACER))
  2114. void __kprobes preempt_count_add(int val)
  2115. {
  2116. #ifdef CONFIG_DEBUG_PREEMPT
  2117. /*
  2118. * Underflow?
  2119. */
  2120. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2121. return;
  2122. #endif
  2123. __preempt_count_add(val);
  2124. #ifdef CONFIG_DEBUG_PREEMPT
  2125. /*
  2126. * Spinlock count overflowing soon?
  2127. */
  2128. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2129. PREEMPT_MASK - 10);
  2130. #endif
  2131. if (preempt_count() == val) {
  2132. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2133. #ifdef CONFIG_DEBUG_PREEMPT
  2134. current->preempt_disable_ip = ip;
  2135. #endif
  2136. trace_preempt_off(CALLER_ADDR0, ip);
  2137. }
  2138. }
  2139. EXPORT_SYMBOL(preempt_count_add);
  2140. void __kprobes preempt_count_sub(int val)
  2141. {
  2142. #ifdef CONFIG_DEBUG_PREEMPT
  2143. /*
  2144. * Underflow?
  2145. */
  2146. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2147. return;
  2148. /*
  2149. * Is the spinlock portion underflowing?
  2150. */
  2151. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2152. !(preempt_count() & PREEMPT_MASK)))
  2153. return;
  2154. #endif
  2155. if (preempt_count() == val)
  2156. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2157. __preempt_count_sub(val);
  2158. }
  2159. EXPORT_SYMBOL(preempt_count_sub);
  2160. #endif
  2161. /*
  2162. * Print scheduling while atomic bug:
  2163. */
  2164. static noinline void __schedule_bug(struct task_struct *prev)
  2165. {
  2166. if (oops_in_progress)
  2167. return;
  2168. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2169. prev->comm, prev->pid, preempt_count());
  2170. debug_show_held_locks(prev);
  2171. print_modules();
  2172. if (irqs_disabled())
  2173. print_irqtrace_events(prev);
  2174. #ifdef CONFIG_DEBUG_PREEMPT
  2175. if (in_atomic_preempt_off()) {
  2176. pr_err("Preemption disabled at:");
  2177. print_ip_sym(current->preempt_disable_ip);
  2178. pr_cont("\n");
  2179. }
  2180. #endif
  2181. dump_stack();
  2182. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2183. }
  2184. /*
  2185. * Various schedule()-time debugging checks and statistics:
  2186. */
  2187. static inline void schedule_debug(struct task_struct *prev)
  2188. {
  2189. /*
  2190. * Test if we are atomic. Since do_exit() needs to call into
  2191. * schedule() atomically, we ignore that path. Otherwise whine
  2192. * if we are scheduling when we should not.
  2193. */
  2194. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2195. __schedule_bug(prev);
  2196. rcu_sleep_check();
  2197. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2198. schedstat_inc(this_rq(), sched_count);
  2199. }
  2200. /*
  2201. * Pick up the highest-prio task:
  2202. */
  2203. static inline struct task_struct *
  2204. pick_next_task(struct rq *rq, struct task_struct *prev)
  2205. {
  2206. const struct sched_class *class = &fair_sched_class;
  2207. struct task_struct *p;
  2208. /*
  2209. * Optimization: we know that if all tasks are in
  2210. * the fair class we can call that function directly:
  2211. */
  2212. if (likely(prev->sched_class == class &&
  2213. rq->nr_running == rq->cfs.h_nr_running)) {
  2214. p = fair_sched_class.pick_next_task(rq, prev);
  2215. if (likely(p && p != RETRY_TASK))
  2216. return p;
  2217. }
  2218. again:
  2219. for_each_class(class) {
  2220. p = class->pick_next_task(rq, prev);
  2221. if (p) {
  2222. if (unlikely(p == RETRY_TASK))
  2223. goto again;
  2224. return p;
  2225. }
  2226. }
  2227. BUG(); /* the idle class will always have a runnable task */
  2228. }
  2229. /*
  2230. * __schedule() is the main scheduler function.
  2231. *
  2232. * The main means of driving the scheduler and thus entering this function are:
  2233. *
  2234. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2235. *
  2236. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2237. * paths. For example, see arch/x86/entry_64.S.
  2238. *
  2239. * To drive preemption between tasks, the scheduler sets the flag in timer
  2240. * interrupt handler scheduler_tick().
  2241. *
  2242. * 3. Wakeups don't really cause entry into schedule(). They add a
  2243. * task to the run-queue and that's it.
  2244. *
  2245. * Now, if the new task added to the run-queue preempts the current
  2246. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2247. * called on the nearest possible occasion:
  2248. *
  2249. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2250. *
  2251. * - in syscall or exception context, at the next outmost
  2252. * preempt_enable(). (this might be as soon as the wake_up()'s
  2253. * spin_unlock()!)
  2254. *
  2255. * - in IRQ context, return from interrupt-handler to
  2256. * preemptible context
  2257. *
  2258. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2259. * then at the next:
  2260. *
  2261. * - cond_resched() call
  2262. * - explicit schedule() call
  2263. * - return from syscall or exception to user-space
  2264. * - return from interrupt-handler to user-space
  2265. */
  2266. static void __sched __schedule(void)
  2267. {
  2268. struct task_struct *prev, *next;
  2269. unsigned long *switch_count;
  2270. struct rq *rq;
  2271. int cpu;
  2272. need_resched:
  2273. preempt_disable();
  2274. cpu = smp_processor_id();
  2275. rq = cpu_rq(cpu);
  2276. rcu_note_context_switch(cpu);
  2277. prev = rq->curr;
  2278. schedule_debug(prev);
  2279. if (sched_feat(HRTICK))
  2280. hrtick_clear(rq);
  2281. /*
  2282. * Make sure that signal_pending_state()->signal_pending() below
  2283. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2284. * done by the caller to avoid the race with signal_wake_up().
  2285. */
  2286. smp_mb__before_spinlock();
  2287. raw_spin_lock_irq(&rq->lock);
  2288. switch_count = &prev->nivcsw;
  2289. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2290. if (unlikely(signal_pending_state(prev->state, prev))) {
  2291. prev->state = TASK_RUNNING;
  2292. } else {
  2293. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2294. prev->on_rq = 0;
  2295. /*
  2296. * If a worker went to sleep, notify and ask workqueue
  2297. * whether it wants to wake up a task to maintain
  2298. * concurrency.
  2299. */
  2300. if (prev->flags & PF_WQ_WORKER) {
  2301. struct task_struct *to_wakeup;
  2302. to_wakeup = wq_worker_sleeping(prev, cpu);
  2303. if (to_wakeup)
  2304. try_to_wake_up_local(to_wakeup);
  2305. }
  2306. }
  2307. switch_count = &prev->nvcsw;
  2308. }
  2309. if (prev->on_rq || rq->skip_clock_update < 0)
  2310. update_rq_clock(rq);
  2311. next = pick_next_task(rq, prev);
  2312. clear_tsk_need_resched(prev);
  2313. clear_preempt_need_resched();
  2314. rq->skip_clock_update = 0;
  2315. if (likely(prev != next)) {
  2316. rq->nr_switches++;
  2317. rq->curr = next;
  2318. ++*switch_count;
  2319. context_switch(rq, prev, next); /* unlocks the rq */
  2320. /*
  2321. * The context switch have flipped the stack from under us
  2322. * and restored the local variables which were saved when
  2323. * this task called schedule() in the past. prev == current
  2324. * is still correct, but it can be moved to another cpu/rq.
  2325. */
  2326. cpu = smp_processor_id();
  2327. rq = cpu_rq(cpu);
  2328. } else
  2329. raw_spin_unlock_irq(&rq->lock);
  2330. post_schedule(rq);
  2331. sched_preempt_enable_no_resched();
  2332. if (need_resched())
  2333. goto need_resched;
  2334. }
  2335. static inline void sched_submit_work(struct task_struct *tsk)
  2336. {
  2337. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2338. return;
  2339. /*
  2340. * If we are going to sleep and we have plugged IO queued,
  2341. * make sure to submit it to avoid deadlocks.
  2342. */
  2343. if (blk_needs_flush_plug(tsk))
  2344. blk_schedule_flush_plug(tsk);
  2345. }
  2346. asmlinkage void __sched schedule(void)
  2347. {
  2348. struct task_struct *tsk = current;
  2349. sched_submit_work(tsk);
  2350. __schedule();
  2351. }
  2352. EXPORT_SYMBOL(schedule);
  2353. #ifdef CONFIG_CONTEXT_TRACKING
  2354. asmlinkage void __sched schedule_user(void)
  2355. {
  2356. /*
  2357. * If we come here after a random call to set_need_resched(),
  2358. * or we have been woken up remotely but the IPI has not yet arrived,
  2359. * we haven't yet exited the RCU idle mode. Do it here manually until
  2360. * we find a better solution.
  2361. */
  2362. user_exit();
  2363. schedule();
  2364. user_enter();
  2365. }
  2366. #endif
  2367. /**
  2368. * schedule_preempt_disabled - called with preemption disabled
  2369. *
  2370. * Returns with preemption disabled. Note: preempt_count must be 1
  2371. */
  2372. void __sched schedule_preempt_disabled(void)
  2373. {
  2374. sched_preempt_enable_no_resched();
  2375. schedule();
  2376. preempt_disable();
  2377. }
  2378. #ifdef CONFIG_PREEMPT
  2379. /*
  2380. * this is the entry point to schedule() from in-kernel preemption
  2381. * off of preempt_enable. Kernel preemptions off return from interrupt
  2382. * occur there and call schedule directly.
  2383. */
  2384. asmlinkage void __sched notrace preempt_schedule(void)
  2385. {
  2386. /*
  2387. * If there is a non-zero preempt_count or interrupts are disabled,
  2388. * we do not want to preempt the current task. Just return..
  2389. */
  2390. if (likely(!preemptible()))
  2391. return;
  2392. do {
  2393. __preempt_count_add(PREEMPT_ACTIVE);
  2394. __schedule();
  2395. __preempt_count_sub(PREEMPT_ACTIVE);
  2396. /*
  2397. * Check again in case we missed a preemption opportunity
  2398. * between schedule and now.
  2399. */
  2400. barrier();
  2401. } while (need_resched());
  2402. }
  2403. EXPORT_SYMBOL(preempt_schedule);
  2404. #endif /* CONFIG_PREEMPT */
  2405. /*
  2406. * this is the entry point to schedule() from kernel preemption
  2407. * off of irq context.
  2408. * Note, that this is called and return with irqs disabled. This will
  2409. * protect us against recursive calling from irq.
  2410. */
  2411. asmlinkage void __sched preempt_schedule_irq(void)
  2412. {
  2413. enum ctx_state prev_state;
  2414. /* Catch callers which need to be fixed */
  2415. BUG_ON(preempt_count() || !irqs_disabled());
  2416. prev_state = exception_enter();
  2417. do {
  2418. __preempt_count_add(PREEMPT_ACTIVE);
  2419. local_irq_enable();
  2420. __schedule();
  2421. local_irq_disable();
  2422. __preempt_count_sub(PREEMPT_ACTIVE);
  2423. /*
  2424. * Check again in case we missed a preemption opportunity
  2425. * between schedule and now.
  2426. */
  2427. barrier();
  2428. } while (need_resched());
  2429. exception_exit(prev_state);
  2430. }
  2431. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2432. void *key)
  2433. {
  2434. return try_to_wake_up(curr->private, mode, wake_flags);
  2435. }
  2436. EXPORT_SYMBOL(default_wake_function);
  2437. #ifdef CONFIG_RT_MUTEXES
  2438. /*
  2439. * rt_mutex_setprio - set the current priority of a task
  2440. * @p: task
  2441. * @prio: prio value (kernel-internal form)
  2442. *
  2443. * This function changes the 'effective' priority of a task. It does
  2444. * not touch ->normal_prio like __setscheduler().
  2445. *
  2446. * Used by the rt_mutex code to implement priority inheritance
  2447. * logic. Call site only calls if the priority of the task changed.
  2448. */
  2449. void rt_mutex_setprio(struct task_struct *p, int prio)
  2450. {
  2451. int oldprio, on_rq, running, enqueue_flag = 0;
  2452. struct rq *rq;
  2453. const struct sched_class *prev_class;
  2454. BUG_ON(prio > MAX_PRIO);
  2455. rq = __task_rq_lock(p);
  2456. /*
  2457. * Idle task boosting is a nono in general. There is one
  2458. * exception, when PREEMPT_RT and NOHZ is active:
  2459. *
  2460. * The idle task calls get_next_timer_interrupt() and holds
  2461. * the timer wheel base->lock on the CPU and another CPU wants
  2462. * to access the timer (probably to cancel it). We can safely
  2463. * ignore the boosting request, as the idle CPU runs this code
  2464. * with interrupts disabled and will complete the lock
  2465. * protected section without being interrupted. So there is no
  2466. * real need to boost.
  2467. */
  2468. if (unlikely(p == rq->idle)) {
  2469. WARN_ON(p != rq->curr);
  2470. WARN_ON(p->pi_blocked_on);
  2471. goto out_unlock;
  2472. }
  2473. trace_sched_pi_setprio(p, prio);
  2474. p->pi_top_task = rt_mutex_get_top_task(p);
  2475. oldprio = p->prio;
  2476. prev_class = p->sched_class;
  2477. on_rq = p->on_rq;
  2478. running = task_current(rq, p);
  2479. if (on_rq)
  2480. dequeue_task(rq, p, 0);
  2481. if (running)
  2482. p->sched_class->put_prev_task(rq, p);
  2483. /*
  2484. * Boosting condition are:
  2485. * 1. -rt task is running and holds mutex A
  2486. * --> -dl task blocks on mutex A
  2487. *
  2488. * 2. -dl task is running and holds mutex A
  2489. * --> -dl task blocks on mutex A and could preempt the
  2490. * running task
  2491. */
  2492. if (dl_prio(prio)) {
  2493. if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
  2494. dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
  2495. p->dl.dl_boosted = 1;
  2496. p->dl.dl_throttled = 0;
  2497. enqueue_flag = ENQUEUE_REPLENISH;
  2498. } else
  2499. p->dl.dl_boosted = 0;
  2500. p->sched_class = &dl_sched_class;
  2501. } else if (rt_prio(prio)) {
  2502. if (dl_prio(oldprio))
  2503. p->dl.dl_boosted = 0;
  2504. if (oldprio < prio)
  2505. enqueue_flag = ENQUEUE_HEAD;
  2506. p->sched_class = &rt_sched_class;
  2507. } else {
  2508. if (dl_prio(oldprio))
  2509. p->dl.dl_boosted = 0;
  2510. p->sched_class = &fair_sched_class;
  2511. }
  2512. p->prio = prio;
  2513. if (running)
  2514. p->sched_class->set_curr_task(rq);
  2515. if (on_rq)
  2516. enqueue_task(rq, p, enqueue_flag);
  2517. check_class_changed(rq, p, prev_class, oldprio);
  2518. out_unlock:
  2519. __task_rq_unlock(rq);
  2520. }
  2521. #endif
  2522. void set_user_nice(struct task_struct *p, long nice)
  2523. {
  2524. int old_prio, delta, on_rq;
  2525. unsigned long flags;
  2526. struct rq *rq;
  2527. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2528. return;
  2529. /*
  2530. * We have to be careful, if called from sys_setpriority(),
  2531. * the task might be in the middle of scheduling on another CPU.
  2532. */
  2533. rq = task_rq_lock(p, &flags);
  2534. /*
  2535. * The RT priorities are set via sched_setscheduler(), but we still
  2536. * allow the 'normal' nice value to be set - but as expected
  2537. * it wont have any effect on scheduling until the task is
  2538. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2539. */
  2540. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2541. p->static_prio = NICE_TO_PRIO(nice);
  2542. goto out_unlock;
  2543. }
  2544. on_rq = p->on_rq;
  2545. if (on_rq)
  2546. dequeue_task(rq, p, 0);
  2547. p->static_prio = NICE_TO_PRIO(nice);
  2548. set_load_weight(p);
  2549. old_prio = p->prio;
  2550. p->prio = effective_prio(p);
  2551. delta = p->prio - old_prio;
  2552. if (on_rq) {
  2553. enqueue_task(rq, p, 0);
  2554. /*
  2555. * If the task increased its priority or is running and
  2556. * lowered its priority, then reschedule its CPU:
  2557. */
  2558. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2559. resched_task(rq->curr);
  2560. }
  2561. out_unlock:
  2562. task_rq_unlock(rq, p, &flags);
  2563. }
  2564. EXPORT_SYMBOL(set_user_nice);
  2565. /*
  2566. * can_nice - check if a task can reduce its nice value
  2567. * @p: task
  2568. * @nice: nice value
  2569. */
  2570. int can_nice(const struct task_struct *p, const int nice)
  2571. {
  2572. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2573. int nice_rlim = 20 - nice;
  2574. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2575. capable(CAP_SYS_NICE));
  2576. }
  2577. #ifdef __ARCH_WANT_SYS_NICE
  2578. /*
  2579. * sys_nice - change the priority of the current process.
  2580. * @increment: priority increment
  2581. *
  2582. * sys_setpriority is a more generic, but much slower function that
  2583. * does similar things.
  2584. */
  2585. SYSCALL_DEFINE1(nice, int, increment)
  2586. {
  2587. long nice, retval;
  2588. /*
  2589. * Setpriority might change our priority at the same moment.
  2590. * We don't have to worry. Conceptually one call occurs first
  2591. * and we have a single winner.
  2592. */
  2593. if (increment < -40)
  2594. increment = -40;
  2595. if (increment > 40)
  2596. increment = 40;
  2597. nice = task_nice(current) + increment;
  2598. if (nice < MIN_NICE)
  2599. nice = MIN_NICE;
  2600. if (nice > MAX_NICE)
  2601. nice = MAX_NICE;
  2602. if (increment < 0 && !can_nice(current, nice))
  2603. return -EPERM;
  2604. retval = security_task_setnice(current, nice);
  2605. if (retval)
  2606. return retval;
  2607. set_user_nice(current, nice);
  2608. return 0;
  2609. }
  2610. #endif
  2611. /**
  2612. * task_prio - return the priority value of a given task.
  2613. * @p: the task in question.
  2614. *
  2615. * Return: The priority value as seen by users in /proc.
  2616. * RT tasks are offset by -200. Normal tasks are centered
  2617. * around 0, value goes from -16 to +15.
  2618. */
  2619. int task_prio(const struct task_struct *p)
  2620. {
  2621. return p->prio - MAX_RT_PRIO;
  2622. }
  2623. /**
  2624. * idle_cpu - is a given cpu idle currently?
  2625. * @cpu: the processor in question.
  2626. *
  2627. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2628. */
  2629. int idle_cpu(int cpu)
  2630. {
  2631. struct rq *rq = cpu_rq(cpu);
  2632. if (rq->curr != rq->idle)
  2633. return 0;
  2634. if (rq->nr_running)
  2635. return 0;
  2636. #ifdef CONFIG_SMP
  2637. if (!llist_empty(&rq->wake_list))
  2638. return 0;
  2639. #endif
  2640. return 1;
  2641. }
  2642. /**
  2643. * idle_task - return the idle task for a given cpu.
  2644. * @cpu: the processor in question.
  2645. *
  2646. * Return: The idle task for the cpu @cpu.
  2647. */
  2648. struct task_struct *idle_task(int cpu)
  2649. {
  2650. return cpu_rq(cpu)->idle;
  2651. }
  2652. /**
  2653. * find_process_by_pid - find a process with a matching PID value.
  2654. * @pid: the pid in question.
  2655. *
  2656. * The task of @pid, if found. %NULL otherwise.
  2657. */
  2658. static struct task_struct *find_process_by_pid(pid_t pid)
  2659. {
  2660. return pid ? find_task_by_vpid(pid) : current;
  2661. }
  2662. /*
  2663. * This function initializes the sched_dl_entity of a newly becoming
  2664. * SCHED_DEADLINE task.
  2665. *
  2666. * Only the static values are considered here, the actual runtime and the
  2667. * absolute deadline will be properly calculated when the task is enqueued
  2668. * for the first time with its new policy.
  2669. */
  2670. static void
  2671. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2672. {
  2673. struct sched_dl_entity *dl_se = &p->dl;
  2674. init_dl_task_timer(dl_se);
  2675. dl_se->dl_runtime = attr->sched_runtime;
  2676. dl_se->dl_deadline = attr->sched_deadline;
  2677. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2678. dl_se->flags = attr->sched_flags;
  2679. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2680. dl_se->dl_throttled = 0;
  2681. dl_se->dl_new = 1;
  2682. }
  2683. static void __setscheduler_params(struct task_struct *p,
  2684. const struct sched_attr *attr)
  2685. {
  2686. int policy = attr->sched_policy;
  2687. if (policy == -1) /* setparam */
  2688. policy = p->policy;
  2689. p->policy = policy;
  2690. if (dl_policy(policy))
  2691. __setparam_dl(p, attr);
  2692. else if (fair_policy(policy))
  2693. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2694. /*
  2695. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2696. * !rt_policy. Always setting this ensures that things like
  2697. * getparam()/getattr() don't report silly values for !rt tasks.
  2698. */
  2699. p->rt_priority = attr->sched_priority;
  2700. p->normal_prio = normal_prio(p);
  2701. set_load_weight(p);
  2702. }
  2703. /* Actually do priority change: must hold pi & rq lock. */
  2704. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2705. const struct sched_attr *attr)
  2706. {
  2707. __setscheduler_params(p, attr);
  2708. /*
  2709. * If we get here, there was no pi waiters boosting the
  2710. * task. It is safe to use the normal prio.
  2711. */
  2712. p->prio = normal_prio(p);
  2713. if (dl_prio(p->prio))
  2714. p->sched_class = &dl_sched_class;
  2715. else if (rt_prio(p->prio))
  2716. p->sched_class = &rt_sched_class;
  2717. else
  2718. p->sched_class = &fair_sched_class;
  2719. }
  2720. static void
  2721. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2722. {
  2723. struct sched_dl_entity *dl_se = &p->dl;
  2724. attr->sched_priority = p->rt_priority;
  2725. attr->sched_runtime = dl_se->dl_runtime;
  2726. attr->sched_deadline = dl_se->dl_deadline;
  2727. attr->sched_period = dl_se->dl_period;
  2728. attr->sched_flags = dl_se->flags;
  2729. }
  2730. /*
  2731. * This function validates the new parameters of a -deadline task.
  2732. * We ask for the deadline not being zero, and greater or equal
  2733. * than the runtime, as well as the period of being zero or
  2734. * greater than deadline. Furthermore, we have to be sure that
  2735. * user parameters are above the internal resolution (1us); we
  2736. * check sched_runtime only since it is always the smaller one.
  2737. */
  2738. static bool
  2739. __checkparam_dl(const struct sched_attr *attr)
  2740. {
  2741. return attr && attr->sched_deadline != 0 &&
  2742. (attr->sched_period == 0 ||
  2743. (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
  2744. (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
  2745. attr->sched_runtime >= (2 << (DL_SCALE - 1));
  2746. }
  2747. /*
  2748. * check the target process has a UID that matches the current process's
  2749. */
  2750. static bool check_same_owner(struct task_struct *p)
  2751. {
  2752. const struct cred *cred = current_cred(), *pcred;
  2753. bool match;
  2754. rcu_read_lock();
  2755. pcred = __task_cred(p);
  2756. match = (uid_eq(cred->euid, pcred->euid) ||
  2757. uid_eq(cred->euid, pcred->uid));
  2758. rcu_read_unlock();
  2759. return match;
  2760. }
  2761. static int __sched_setscheduler(struct task_struct *p,
  2762. const struct sched_attr *attr,
  2763. bool user)
  2764. {
  2765. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2766. MAX_RT_PRIO - 1 - attr->sched_priority;
  2767. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2768. int policy = attr->sched_policy;
  2769. unsigned long flags;
  2770. const struct sched_class *prev_class;
  2771. struct rq *rq;
  2772. int reset_on_fork;
  2773. /* may grab non-irq protected spin_locks */
  2774. BUG_ON(in_interrupt());
  2775. recheck:
  2776. /* double check policy once rq lock held */
  2777. if (policy < 0) {
  2778. reset_on_fork = p->sched_reset_on_fork;
  2779. policy = oldpolicy = p->policy;
  2780. } else {
  2781. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2782. if (policy != SCHED_DEADLINE &&
  2783. policy != SCHED_FIFO && policy != SCHED_RR &&
  2784. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2785. policy != SCHED_IDLE)
  2786. return -EINVAL;
  2787. }
  2788. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2789. return -EINVAL;
  2790. /*
  2791. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2792. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2793. * SCHED_BATCH and SCHED_IDLE is 0.
  2794. */
  2795. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2796. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2797. return -EINVAL;
  2798. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2799. (rt_policy(policy) != (attr->sched_priority != 0)))
  2800. return -EINVAL;
  2801. /*
  2802. * Allow unprivileged RT tasks to decrease priority:
  2803. */
  2804. if (user && !capable(CAP_SYS_NICE)) {
  2805. if (fair_policy(policy)) {
  2806. if (attr->sched_nice < task_nice(p) &&
  2807. !can_nice(p, attr->sched_nice))
  2808. return -EPERM;
  2809. }
  2810. if (rt_policy(policy)) {
  2811. unsigned long rlim_rtprio =
  2812. task_rlimit(p, RLIMIT_RTPRIO);
  2813. /* can't set/change the rt policy */
  2814. if (policy != p->policy && !rlim_rtprio)
  2815. return -EPERM;
  2816. /* can't increase priority */
  2817. if (attr->sched_priority > p->rt_priority &&
  2818. attr->sched_priority > rlim_rtprio)
  2819. return -EPERM;
  2820. }
  2821. /*
  2822. * Can't set/change SCHED_DEADLINE policy at all for now
  2823. * (safest behavior); in the future we would like to allow
  2824. * unprivileged DL tasks to increase their relative deadline
  2825. * or reduce their runtime (both ways reducing utilization)
  2826. */
  2827. if (dl_policy(policy))
  2828. return -EPERM;
  2829. /*
  2830. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2831. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2832. */
  2833. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2834. if (!can_nice(p, task_nice(p)))
  2835. return -EPERM;
  2836. }
  2837. /* can't change other user's priorities */
  2838. if (!check_same_owner(p))
  2839. return -EPERM;
  2840. /* Normal users shall not reset the sched_reset_on_fork flag */
  2841. if (p->sched_reset_on_fork && !reset_on_fork)
  2842. return -EPERM;
  2843. }
  2844. if (user) {
  2845. retval = security_task_setscheduler(p);
  2846. if (retval)
  2847. return retval;
  2848. }
  2849. /*
  2850. * make sure no PI-waiters arrive (or leave) while we are
  2851. * changing the priority of the task:
  2852. *
  2853. * To be able to change p->policy safely, the appropriate
  2854. * runqueue lock must be held.
  2855. */
  2856. rq = task_rq_lock(p, &flags);
  2857. /*
  2858. * Changing the policy of the stop threads its a very bad idea
  2859. */
  2860. if (p == rq->stop) {
  2861. task_rq_unlock(rq, p, &flags);
  2862. return -EINVAL;
  2863. }
  2864. /*
  2865. * If not changing anything there's no need to proceed further,
  2866. * but store a possible modification of reset_on_fork.
  2867. */
  2868. if (unlikely(policy == p->policy)) {
  2869. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  2870. goto change;
  2871. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  2872. goto change;
  2873. if (dl_policy(policy))
  2874. goto change;
  2875. p->sched_reset_on_fork = reset_on_fork;
  2876. task_rq_unlock(rq, p, &flags);
  2877. return 0;
  2878. }
  2879. change:
  2880. if (user) {
  2881. #ifdef CONFIG_RT_GROUP_SCHED
  2882. /*
  2883. * Do not allow realtime tasks into groups that have no runtime
  2884. * assigned.
  2885. */
  2886. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2887. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2888. !task_group_is_autogroup(task_group(p))) {
  2889. task_rq_unlock(rq, p, &flags);
  2890. return -EPERM;
  2891. }
  2892. #endif
  2893. #ifdef CONFIG_SMP
  2894. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  2895. cpumask_t *span = rq->rd->span;
  2896. /*
  2897. * Don't allow tasks with an affinity mask smaller than
  2898. * the entire root_domain to become SCHED_DEADLINE. We
  2899. * will also fail if there's no bandwidth available.
  2900. */
  2901. if (!cpumask_subset(span, &p->cpus_allowed) ||
  2902. rq->rd->dl_bw.bw == 0) {
  2903. task_rq_unlock(rq, p, &flags);
  2904. return -EPERM;
  2905. }
  2906. }
  2907. #endif
  2908. }
  2909. /* recheck policy now with rq lock held */
  2910. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2911. policy = oldpolicy = -1;
  2912. task_rq_unlock(rq, p, &flags);
  2913. goto recheck;
  2914. }
  2915. /*
  2916. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  2917. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  2918. * is available.
  2919. */
  2920. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  2921. task_rq_unlock(rq, p, &flags);
  2922. return -EBUSY;
  2923. }
  2924. p->sched_reset_on_fork = reset_on_fork;
  2925. oldprio = p->prio;
  2926. /*
  2927. * Special case for priority boosted tasks.
  2928. *
  2929. * If the new priority is lower or equal (user space view)
  2930. * than the current (boosted) priority, we just store the new
  2931. * normal parameters and do not touch the scheduler class and
  2932. * the runqueue. This will be done when the task deboost
  2933. * itself.
  2934. */
  2935. if (rt_mutex_check_prio(p, newprio)) {
  2936. __setscheduler_params(p, attr);
  2937. task_rq_unlock(rq, p, &flags);
  2938. return 0;
  2939. }
  2940. on_rq = p->on_rq;
  2941. running = task_current(rq, p);
  2942. if (on_rq)
  2943. dequeue_task(rq, p, 0);
  2944. if (running)
  2945. p->sched_class->put_prev_task(rq, p);
  2946. prev_class = p->sched_class;
  2947. __setscheduler(rq, p, attr);
  2948. if (running)
  2949. p->sched_class->set_curr_task(rq);
  2950. if (on_rq) {
  2951. /*
  2952. * We enqueue to tail when the priority of a task is
  2953. * increased (user space view).
  2954. */
  2955. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  2956. }
  2957. check_class_changed(rq, p, prev_class, oldprio);
  2958. task_rq_unlock(rq, p, &flags);
  2959. rt_mutex_adjust_pi(p);
  2960. return 0;
  2961. }
  2962. static int _sched_setscheduler(struct task_struct *p, int policy,
  2963. const struct sched_param *param, bool check)
  2964. {
  2965. struct sched_attr attr = {
  2966. .sched_policy = policy,
  2967. .sched_priority = param->sched_priority,
  2968. .sched_nice = PRIO_TO_NICE(p->static_prio),
  2969. };
  2970. /*
  2971. * Fixup the legacy SCHED_RESET_ON_FORK hack
  2972. */
  2973. if (policy & SCHED_RESET_ON_FORK) {
  2974. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  2975. policy &= ~SCHED_RESET_ON_FORK;
  2976. attr.sched_policy = policy;
  2977. }
  2978. return __sched_setscheduler(p, &attr, check);
  2979. }
  2980. /**
  2981. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2982. * @p: the task in question.
  2983. * @policy: new policy.
  2984. * @param: structure containing the new RT priority.
  2985. *
  2986. * Return: 0 on success. An error code otherwise.
  2987. *
  2988. * NOTE that the task may be already dead.
  2989. */
  2990. int sched_setscheduler(struct task_struct *p, int policy,
  2991. const struct sched_param *param)
  2992. {
  2993. return _sched_setscheduler(p, policy, param, true);
  2994. }
  2995. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2996. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  2997. {
  2998. return __sched_setscheduler(p, attr, true);
  2999. }
  3000. EXPORT_SYMBOL_GPL(sched_setattr);
  3001. /**
  3002. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3003. * @p: the task in question.
  3004. * @policy: new policy.
  3005. * @param: structure containing the new RT priority.
  3006. *
  3007. * Just like sched_setscheduler, only don't bother checking if the
  3008. * current context has permission. For example, this is needed in
  3009. * stop_machine(): we create temporary high priority worker threads,
  3010. * but our caller might not have that capability.
  3011. *
  3012. * Return: 0 on success. An error code otherwise.
  3013. */
  3014. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3015. const struct sched_param *param)
  3016. {
  3017. return _sched_setscheduler(p, policy, param, false);
  3018. }
  3019. static int
  3020. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3021. {
  3022. struct sched_param lparam;
  3023. struct task_struct *p;
  3024. int retval;
  3025. if (!param || pid < 0)
  3026. return -EINVAL;
  3027. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3028. return -EFAULT;
  3029. rcu_read_lock();
  3030. retval = -ESRCH;
  3031. p = find_process_by_pid(pid);
  3032. if (p != NULL)
  3033. retval = sched_setscheduler(p, policy, &lparam);
  3034. rcu_read_unlock();
  3035. return retval;
  3036. }
  3037. /*
  3038. * Mimics kernel/events/core.c perf_copy_attr().
  3039. */
  3040. static int sched_copy_attr(struct sched_attr __user *uattr,
  3041. struct sched_attr *attr)
  3042. {
  3043. u32 size;
  3044. int ret;
  3045. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3046. return -EFAULT;
  3047. /*
  3048. * zero the full structure, so that a short copy will be nice.
  3049. */
  3050. memset(attr, 0, sizeof(*attr));
  3051. ret = get_user(size, &uattr->size);
  3052. if (ret)
  3053. return ret;
  3054. if (size > PAGE_SIZE) /* silly large */
  3055. goto err_size;
  3056. if (!size) /* abi compat */
  3057. size = SCHED_ATTR_SIZE_VER0;
  3058. if (size < SCHED_ATTR_SIZE_VER0)
  3059. goto err_size;
  3060. /*
  3061. * If we're handed a bigger struct than we know of,
  3062. * ensure all the unknown bits are 0 - i.e. new
  3063. * user-space does not rely on any kernel feature
  3064. * extensions we dont know about yet.
  3065. */
  3066. if (size > sizeof(*attr)) {
  3067. unsigned char __user *addr;
  3068. unsigned char __user *end;
  3069. unsigned char val;
  3070. addr = (void __user *)uattr + sizeof(*attr);
  3071. end = (void __user *)uattr + size;
  3072. for (; addr < end; addr++) {
  3073. ret = get_user(val, addr);
  3074. if (ret)
  3075. return ret;
  3076. if (val)
  3077. goto err_size;
  3078. }
  3079. size = sizeof(*attr);
  3080. }
  3081. ret = copy_from_user(attr, uattr, size);
  3082. if (ret)
  3083. return -EFAULT;
  3084. /*
  3085. * XXX: do we want to be lenient like existing syscalls; or do we want
  3086. * to be strict and return an error on out-of-bounds values?
  3087. */
  3088. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3089. out:
  3090. return ret;
  3091. err_size:
  3092. put_user(sizeof(*attr), &uattr->size);
  3093. ret = -E2BIG;
  3094. goto out;
  3095. }
  3096. /**
  3097. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3098. * @pid: the pid in question.
  3099. * @policy: new policy.
  3100. * @param: structure containing the new RT priority.
  3101. *
  3102. * Return: 0 on success. An error code otherwise.
  3103. */
  3104. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3105. struct sched_param __user *, param)
  3106. {
  3107. /* negative values for policy are not valid */
  3108. if (policy < 0)
  3109. return -EINVAL;
  3110. return do_sched_setscheduler(pid, policy, param);
  3111. }
  3112. /**
  3113. * sys_sched_setparam - set/change the RT priority of a thread
  3114. * @pid: the pid in question.
  3115. * @param: structure containing the new RT priority.
  3116. *
  3117. * Return: 0 on success. An error code otherwise.
  3118. */
  3119. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3120. {
  3121. return do_sched_setscheduler(pid, -1, param);
  3122. }
  3123. /**
  3124. * sys_sched_setattr - same as above, but with extended sched_attr
  3125. * @pid: the pid in question.
  3126. * @uattr: structure containing the extended parameters.
  3127. */
  3128. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3129. unsigned int, flags)
  3130. {
  3131. struct sched_attr attr;
  3132. struct task_struct *p;
  3133. int retval;
  3134. if (!uattr || pid < 0 || flags)
  3135. return -EINVAL;
  3136. if (sched_copy_attr(uattr, &attr))
  3137. return -EFAULT;
  3138. rcu_read_lock();
  3139. retval = -ESRCH;
  3140. p = find_process_by_pid(pid);
  3141. if (p != NULL)
  3142. retval = sched_setattr(p, &attr);
  3143. rcu_read_unlock();
  3144. return retval;
  3145. }
  3146. /**
  3147. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3148. * @pid: the pid in question.
  3149. *
  3150. * Return: On success, the policy of the thread. Otherwise, a negative error
  3151. * code.
  3152. */
  3153. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3154. {
  3155. struct task_struct *p;
  3156. int retval;
  3157. if (pid < 0)
  3158. return -EINVAL;
  3159. retval = -ESRCH;
  3160. rcu_read_lock();
  3161. p = find_process_by_pid(pid);
  3162. if (p) {
  3163. retval = security_task_getscheduler(p);
  3164. if (!retval)
  3165. retval = p->policy
  3166. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3167. }
  3168. rcu_read_unlock();
  3169. return retval;
  3170. }
  3171. /**
  3172. * sys_sched_getparam - get the RT priority of a thread
  3173. * @pid: the pid in question.
  3174. * @param: structure containing the RT priority.
  3175. *
  3176. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3177. * code.
  3178. */
  3179. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3180. {
  3181. struct sched_param lp;
  3182. struct task_struct *p;
  3183. int retval;
  3184. if (!param || pid < 0)
  3185. return -EINVAL;
  3186. rcu_read_lock();
  3187. p = find_process_by_pid(pid);
  3188. retval = -ESRCH;
  3189. if (!p)
  3190. goto out_unlock;
  3191. retval = security_task_getscheduler(p);
  3192. if (retval)
  3193. goto out_unlock;
  3194. if (task_has_dl_policy(p)) {
  3195. retval = -EINVAL;
  3196. goto out_unlock;
  3197. }
  3198. lp.sched_priority = p->rt_priority;
  3199. rcu_read_unlock();
  3200. /*
  3201. * This one might sleep, we cannot do it with a spinlock held ...
  3202. */
  3203. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3204. return retval;
  3205. out_unlock:
  3206. rcu_read_unlock();
  3207. return retval;
  3208. }
  3209. static int sched_read_attr(struct sched_attr __user *uattr,
  3210. struct sched_attr *attr,
  3211. unsigned int usize)
  3212. {
  3213. int ret;
  3214. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3215. return -EFAULT;
  3216. /*
  3217. * If we're handed a smaller struct than we know of,
  3218. * ensure all the unknown bits are 0 - i.e. old
  3219. * user-space does not get uncomplete information.
  3220. */
  3221. if (usize < sizeof(*attr)) {
  3222. unsigned char *addr;
  3223. unsigned char *end;
  3224. addr = (void *)attr + usize;
  3225. end = (void *)attr + sizeof(*attr);
  3226. for (; addr < end; addr++) {
  3227. if (*addr)
  3228. goto err_size;
  3229. }
  3230. attr->size = usize;
  3231. }
  3232. ret = copy_to_user(uattr, attr, attr->size);
  3233. if (ret)
  3234. return -EFAULT;
  3235. out:
  3236. return ret;
  3237. err_size:
  3238. ret = -E2BIG;
  3239. goto out;
  3240. }
  3241. /**
  3242. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3243. * @pid: the pid in question.
  3244. * @uattr: structure containing the extended parameters.
  3245. * @size: sizeof(attr) for fwd/bwd comp.
  3246. */
  3247. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3248. unsigned int, size, unsigned int, flags)
  3249. {
  3250. struct sched_attr attr = {
  3251. .size = sizeof(struct sched_attr),
  3252. };
  3253. struct task_struct *p;
  3254. int retval;
  3255. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3256. size < SCHED_ATTR_SIZE_VER0 || flags)
  3257. return -EINVAL;
  3258. rcu_read_lock();
  3259. p = find_process_by_pid(pid);
  3260. retval = -ESRCH;
  3261. if (!p)
  3262. goto out_unlock;
  3263. retval = security_task_getscheduler(p);
  3264. if (retval)
  3265. goto out_unlock;
  3266. attr.sched_policy = p->policy;
  3267. if (p->sched_reset_on_fork)
  3268. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3269. if (task_has_dl_policy(p))
  3270. __getparam_dl(p, &attr);
  3271. else if (task_has_rt_policy(p))
  3272. attr.sched_priority = p->rt_priority;
  3273. else
  3274. attr.sched_nice = task_nice(p);
  3275. rcu_read_unlock();
  3276. retval = sched_read_attr(uattr, &attr, size);
  3277. return retval;
  3278. out_unlock:
  3279. rcu_read_unlock();
  3280. return retval;
  3281. }
  3282. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3283. {
  3284. cpumask_var_t cpus_allowed, new_mask;
  3285. struct task_struct *p;
  3286. int retval;
  3287. rcu_read_lock();
  3288. p = find_process_by_pid(pid);
  3289. if (!p) {
  3290. rcu_read_unlock();
  3291. return -ESRCH;
  3292. }
  3293. /* Prevent p going away */
  3294. get_task_struct(p);
  3295. rcu_read_unlock();
  3296. if (p->flags & PF_NO_SETAFFINITY) {
  3297. retval = -EINVAL;
  3298. goto out_put_task;
  3299. }
  3300. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3301. retval = -ENOMEM;
  3302. goto out_put_task;
  3303. }
  3304. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3305. retval = -ENOMEM;
  3306. goto out_free_cpus_allowed;
  3307. }
  3308. retval = -EPERM;
  3309. if (!check_same_owner(p)) {
  3310. rcu_read_lock();
  3311. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3312. rcu_read_unlock();
  3313. goto out_unlock;
  3314. }
  3315. rcu_read_unlock();
  3316. }
  3317. retval = security_task_setscheduler(p);
  3318. if (retval)
  3319. goto out_unlock;
  3320. cpuset_cpus_allowed(p, cpus_allowed);
  3321. cpumask_and(new_mask, in_mask, cpus_allowed);
  3322. /*
  3323. * Since bandwidth control happens on root_domain basis,
  3324. * if admission test is enabled, we only admit -deadline
  3325. * tasks allowed to run on all the CPUs in the task's
  3326. * root_domain.
  3327. */
  3328. #ifdef CONFIG_SMP
  3329. if (task_has_dl_policy(p)) {
  3330. const struct cpumask *span = task_rq(p)->rd->span;
  3331. if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
  3332. retval = -EBUSY;
  3333. goto out_unlock;
  3334. }
  3335. }
  3336. #endif
  3337. again:
  3338. retval = set_cpus_allowed_ptr(p, new_mask);
  3339. if (!retval) {
  3340. cpuset_cpus_allowed(p, cpus_allowed);
  3341. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3342. /*
  3343. * We must have raced with a concurrent cpuset
  3344. * update. Just reset the cpus_allowed to the
  3345. * cpuset's cpus_allowed
  3346. */
  3347. cpumask_copy(new_mask, cpus_allowed);
  3348. goto again;
  3349. }
  3350. }
  3351. out_unlock:
  3352. free_cpumask_var(new_mask);
  3353. out_free_cpus_allowed:
  3354. free_cpumask_var(cpus_allowed);
  3355. out_put_task:
  3356. put_task_struct(p);
  3357. return retval;
  3358. }
  3359. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3360. struct cpumask *new_mask)
  3361. {
  3362. if (len < cpumask_size())
  3363. cpumask_clear(new_mask);
  3364. else if (len > cpumask_size())
  3365. len = cpumask_size();
  3366. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3367. }
  3368. /**
  3369. * sys_sched_setaffinity - set the cpu affinity of a process
  3370. * @pid: pid of the process
  3371. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3372. * @user_mask_ptr: user-space pointer to the new cpu mask
  3373. *
  3374. * Return: 0 on success. An error code otherwise.
  3375. */
  3376. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3377. unsigned long __user *, user_mask_ptr)
  3378. {
  3379. cpumask_var_t new_mask;
  3380. int retval;
  3381. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3382. return -ENOMEM;
  3383. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3384. if (retval == 0)
  3385. retval = sched_setaffinity(pid, new_mask);
  3386. free_cpumask_var(new_mask);
  3387. return retval;
  3388. }
  3389. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3390. {
  3391. struct task_struct *p;
  3392. unsigned long flags;
  3393. int retval;
  3394. rcu_read_lock();
  3395. retval = -ESRCH;
  3396. p = find_process_by_pid(pid);
  3397. if (!p)
  3398. goto out_unlock;
  3399. retval = security_task_getscheduler(p);
  3400. if (retval)
  3401. goto out_unlock;
  3402. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3403. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3404. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3405. out_unlock:
  3406. rcu_read_unlock();
  3407. return retval;
  3408. }
  3409. /**
  3410. * sys_sched_getaffinity - get the cpu affinity of a process
  3411. * @pid: pid of the process
  3412. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3413. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3414. *
  3415. * Return: 0 on success. An error code otherwise.
  3416. */
  3417. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3418. unsigned long __user *, user_mask_ptr)
  3419. {
  3420. int ret;
  3421. cpumask_var_t mask;
  3422. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3423. return -EINVAL;
  3424. if (len & (sizeof(unsigned long)-1))
  3425. return -EINVAL;
  3426. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3427. return -ENOMEM;
  3428. ret = sched_getaffinity(pid, mask);
  3429. if (ret == 0) {
  3430. size_t retlen = min_t(size_t, len, cpumask_size());
  3431. if (copy_to_user(user_mask_ptr, mask, retlen))
  3432. ret = -EFAULT;
  3433. else
  3434. ret = retlen;
  3435. }
  3436. free_cpumask_var(mask);
  3437. return ret;
  3438. }
  3439. /**
  3440. * sys_sched_yield - yield the current processor to other threads.
  3441. *
  3442. * This function yields the current CPU to other tasks. If there are no
  3443. * other threads running on this CPU then this function will return.
  3444. *
  3445. * Return: 0.
  3446. */
  3447. SYSCALL_DEFINE0(sched_yield)
  3448. {
  3449. struct rq *rq = this_rq_lock();
  3450. schedstat_inc(rq, yld_count);
  3451. current->sched_class->yield_task(rq);
  3452. /*
  3453. * Since we are going to call schedule() anyway, there's
  3454. * no need to preempt or enable interrupts:
  3455. */
  3456. __release(rq->lock);
  3457. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3458. do_raw_spin_unlock(&rq->lock);
  3459. sched_preempt_enable_no_resched();
  3460. schedule();
  3461. return 0;
  3462. }
  3463. static void __cond_resched(void)
  3464. {
  3465. __preempt_count_add(PREEMPT_ACTIVE);
  3466. __schedule();
  3467. __preempt_count_sub(PREEMPT_ACTIVE);
  3468. }
  3469. int __sched _cond_resched(void)
  3470. {
  3471. if (should_resched()) {
  3472. __cond_resched();
  3473. return 1;
  3474. }
  3475. return 0;
  3476. }
  3477. EXPORT_SYMBOL(_cond_resched);
  3478. /*
  3479. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3480. * call schedule, and on return reacquire the lock.
  3481. *
  3482. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3483. * operations here to prevent schedule() from being called twice (once via
  3484. * spin_unlock(), once by hand).
  3485. */
  3486. int __cond_resched_lock(spinlock_t *lock)
  3487. {
  3488. int resched = should_resched();
  3489. int ret = 0;
  3490. lockdep_assert_held(lock);
  3491. if (spin_needbreak(lock) || resched) {
  3492. spin_unlock(lock);
  3493. if (resched)
  3494. __cond_resched();
  3495. else
  3496. cpu_relax();
  3497. ret = 1;
  3498. spin_lock(lock);
  3499. }
  3500. return ret;
  3501. }
  3502. EXPORT_SYMBOL(__cond_resched_lock);
  3503. int __sched __cond_resched_softirq(void)
  3504. {
  3505. BUG_ON(!in_softirq());
  3506. if (should_resched()) {
  3507. local_bh_enable();
  3508. __cond_resched();
  3509. local_bh_disable();
  3510. return 1;
  3511. }
  3512. return 0;
  3513. }
  3514. EXPORT_SYMBOL(__cond_resched_softirq);
  3515. /**
  3516. * yield - yield the current processor to other threads.
  3517. *
  3518. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3519. *
  3520. * The scheduler is at all times free to pick the calling task as the most
  3521. * eligible task to run, if removing the yield() call from your code breaks
  3522. * it, its already broken.
  3523. *
  3524. * Typical broken usage is:
  3525. *
  3526. * while (!event)
  3527. * yield();
  3528. *
  3529. * where one assumes that yield() will let 'the other' process run that will
  3530. * make event true. If the current task is a SCHED_FIFO task that will never
  3531. * happen. Never use yield() as a progress guarantee!!
  3532. *
  3533. * If you want to use yield() to wait for something, use wait_event().
  3534. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3535. * If you still want to use yield(), do not!
  3536. */
  3537. void __sched yield(void)
  3538. {
  3539. set_current_state(TASK_RUNNING);
  3540. sys_sched_yield();
  3541. }
  3542. EXPORT_SYMBOL(yield);
  3543. /**
  3544. * yield_to - yield the current processor to another thread in
  3545. * your thread group, or accelerate that thread toward the
  3546. * processor it's on.
  3547. * @p: target task
  3548. * @preempt: whether task preemption is allowed or not
  3549. *
  3550. * It's the caller's job to ensure that the target task struct
  3551. * can't go away on us before we can do any checks.
  3552. *
  3553. * Return:
  3554. * true (>0) if we indeed boosted the target task.
  3555. * false (0) if we failed to boost the target.
  3556. * -ESRCH if there's no task to yield to.
  3557. */
  3558. bool __sched yield_to(struct task_struct *p, bool preempt)
  3559. {
  3560. struct task_struct *curr = current;
  3561. struct rq *rq, *p_rq;
  3562. unsigned long flags;
  3563. int yielded = 0;
  3564. local_irq_save(flags);
  3565. rq = this_rq();
  3566. again:
  3567. p_rq = task_rq(p);
  3568. /*
  3569. * If we're the only runnable task on the rq and target rq also
  3570. * has only one task, there's absolutely no point in yielding.
  3571. */
  3572. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3573. yielded = -ESRCH;
  3574. goto out_irq;
  3575. }
  3576. double_rq_lock(rq, p_rq);
  3577. if (task_rq(p) != p_rq) {
  3578. double_rq_unlock(rq, p_rq);
  3579. goto again;
  3580. }
  3581. if (!curr->sched_class->yield_to_task)
  3582. goto out_unlock;
  3583. if (curr->sched_class != p->sched_class)
  3584. goto out_unlock;
  3585. if (task_running(p_rq, p) || p->state)
  3586. goto out_unlock;
  3587. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3588. if (yielded) {
  3589. schedstat_inc(rq, yld_count);
  3590. /*
  3591. * Make p's CPU reschedule; pick_next_entity takes care of
  3592. * fairness.
  3593. */
  3594. if (preempt && rq != p_rq)
  3595. resched_task(p_rq->curr);
  3596. }
  3597. out_unlock:
  3598. double_rq_unlock(rq, p_rq);
  3599. out_irq:
  3600. local_irq_restore(flags);
  3601. if (yielded > 0)
  3602. schedule();
  3603. return yielded;
  3604. }
  3605. EXPORT_SYMBOL_GPL(yield_to);
  3606. /*
  3607. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3608. * that process accounting knows that this is a task in IO wait state.
  3609. */
  3610. void __sched io_schedule(void)
  3611. {
  3612. struct rq *rq = raw_rq();
  3613. delayacct_blkio_start();
  3614. atomic_inc(&rq->nr_iowait);
  3615. blk_flush_plug(current);
  3616. current->in_iowait = 1;
  3617. schedule();
  3618. current->in_iowait = 0;
  3619. atomic_dec(&rq->nr_iowait);
  3620. delayacct_blkio_end();
  3621. }
  3622. EXPORT_SYMBOL(io_schedule);
  3623. long __sched io_schedule_timeout(long timeout)
  3624. {
  3625. struct rq *rq = raw_rq();
  3626. long ret;
  3627. delayacct_blkio_start();
  3628. atomic_inc(&rq->nr_iowait);
  3629. blk_flush_plug(current);
  3630. current->in_iowait = 1;
  3631. ret = schedule_timeout(timeout);
  3632. current->in_iowait = 0;
  3633. atomic_dec(&rq->nr_iowait);
  3634. delayacct_blkio_end();
  3635. return ret;
  3636. }
  3637. /**
  3638. * sys_sched_get_priority_max - return maximum RT priority.
  3639. * @policy: scheduling class.
  3640. *
  3641. * Return: On success, this syscall returns the maximum
  3642. * rt_priority that can be used by a given scheduling class.
  3643. * On failure, a negative error code is returned.
  3644. */
  3645. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3646. {
  3647. int ret = -EINVAL;
  3648. switch (policy) {
  3649. case SCHED_FIFO:
  3650. case SCHED_RR:
  3651. ret = MAX_USER_RT_PRIO-1;
  3652. break;
  3653. case SCHED_DEADLINE:
  3654. case SCHED_NORMAL:
  3655. case SCHED_BATCH:
  3656. case SCHED_IDLE:
  3657. ret = 0;
  3658. break;
  3659. }
  3660. return ret;
  3661. }
  3662. /**
  3663. * sys_sched_get_priority_min - return minimum RT priority.
  3664. * @policy: scheduling class.
  3665. *
  3666. * Return: On success, this syscall returns the minimum
  3667. * rt_priority that can be used by a given scheduling class.
  3668. * On failure, a negative error code is returned.
  3669. */
  3670. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3671. {
  3672. int ret = -EINVAL;
  3673. switch (policy) {
  3674. case SCHED_FIFO:
  3675. case SCHED_RR:
  3676. ret = 1;
  3677. break;
  3678. case SCHED_DEADLINE:
  3679. case SCHED_NORMAL:
  3680. case SCHED_BATCH:
  3681. case SCHED_IDLE:
  3682. ret = 0;
  3683. }
  3684. return ret;
  3685. }
  3686. /**
  3687. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3688. * @pid: pid of the process.
  3689. * @interval: userspace pointer to the timeslice value.
  3690. *
  3691. * this syscall writes the default timeslice value of a given process
  3692. * into the user-space timespec buffer. A value of '0' means infinity.
  3693. *
  3694. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3695. * an error code.
  3696. */
  3697. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3698. struct timespec __user *, interval)
  3699. {
  3700. struct task_struct *p;
  3701. unsigned int time_slice;
  3702. unsigned long flags;
  3703. struct rq *rq;
  3704. int retval;
  3705. struct timespec t;
  3706. if (pid < 0)
  3707. return -EINVAL;
  3708. retval = -ESRCH;
  3709. rcu_read_lock();
  3710. p = find_process_by_pid(pid);
  3711. if (!p)
  3712. goto out_unlock;
  3713. retval = security_task_getscheduler(p);
  3714. if (retval)
  3715. goto out_unlock;
  3716. rq = task_rq_lock(p, &flags);
  3717. time_slice = 0;
  3718. if (p->sched_class->get_rr_interval)
  3719. time_slice = p->sched_class->get_rr_interval(rq, p);
  3720. task_rq_unlock(rq, p, &flags);
  3721. rcu_read_unlock();
  3722. jiffies_to_timespec(time_slice, &t);
  3723. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3724. return retval;
  3725. out_unlock:
  3726. rcu_read_unlock();
  3727. return retval;
  3728. }
  3729. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3730. void sched_show_task(struct task_struct *p)
  3731. {
  3732. unsigned long free = 0;
  3733. int ppid;
  3734. unsigned state;
  3735. state = p->state ? __ffs(p->state) + 1 : 0;
  3736. printk(KERN_INFO "%-15.15s %c", p->comm,
  3737. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3738. #if BITS_PER_LONG == 32
  3739. if (state == TASK_RUNNING)
  3740. printk(KERN_CONT " running ");
  3741. else
  3742. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3743. #else
  3744. if (state == TASK_RUNNING)
  3745. printk(KERN_CONT " running task ");
  3746. else
  3747. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3748. #endif
  3749. #ifdef CONFIG_DEBUG_STACK_USAGE
  3750. free = stack_not_used(p);
  3751. #endif
  3752. rcu_read_lock();
  3753. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3754. rcu_read_unlock();
  3755. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3756. task_pid_nr(p), ppid,
  3757. (unsigned long)task_thread_info(p)->flags);
  3758. print_worker_info(KERN_INFO, p);
  3759. show_stack(p, NULL);
  3760. }
  3761. void show_state_filter(unsigned long state_filter)
  3762. {
  3763. struct task_struct *g, *p;
  3764. #if BITS_PER_LONG == 32
  3765. printk(KERN_INFO
  3766. " task PC stack pid father\n");
  3767. #else
  3768. printk(KERN_INFO
  3769. " task PC stack pid father\n");
  3770. #endif
  3771. rcu_read_lock();
  3772. do_each_thread(g, p) {
  3773. /*
  3774. * reset the NMI-timeout, listing all files on a slow
  3775. * console might take a lot of time:
  3776. */
  3777. touch_nmi_watchdog();
  3778. if (!state_filter || (p->state & state_filter))
  3779. sched_show_task(p);
  3780. } while_each_thread(g, p);
  3781. touch_all_softlockup_watchdogs();
  3782. #ifdef CONFIG_SCHED_DEBUG
  3783. sysrq_sched_debug_show();
  3784. #endif
  3785. rcu_read_unlock();
  3786. /*
  3787. * Only show locks if all tasks are dumped:
  3788. */
  3789. if (!state_filter)
  3790. debug_show_all_locks();
  3791. }
  3792. void init_idle_bootup_task(struct task_struct *idle)
  3793. {
  3794. idle->sched_class = &idle_sched_class;
  3795. }
  3796. /**
  3797. * init_idle - set up an idle thread for a given CPU
  3798. * @idle: task in question
  3799. * @cpu: cpu the idle task belongs to
  3800. *
  3801. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3802. * flag, to make booting more robust.
  3803. */
  3804. void init_idle(struct task_struct *idle, int cpu)
  3805. {
  3806. struct rq *rq = cpu_rq(cpu);
  3807. unsigned long flags;
  3808. raw_spin_lock_irqsave(&rq->lock, flags);
  3809. __sched_fork(0, idle);
  3810. idle->state = TASK_RUNNING;
  3811. idle->se.exec_start = sched_clock();
  3812. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3813. /*
  3814. * We're having a chicken and egg problem, even though we are
  3815. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3816. * lockdep check in task_group() will fail.
  3817. *
  3818. * Similar case to sched_fork(). / Alternatively we could
  3819. * use task_rq_lock() here and obtain the other rq->lock.
  3820. *
  3821. * Silence PROVE_RCU
  3822. */
  3823. rcu_read_lock();
  3824. __set_task_cpu(idle, cpu);
  3825. rcu_read_unlock();
  3826. rq->curr = rq->idle = idle;
  3827. idle->on_rq = 1;
  3828. #if defined(CONFIG_SMP)
  3829. idle->on_cpu = 1;
  3830. #endif
  3831. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3832. /* Set the preempt count _outside_ the spinlocks! */
  3833. init_idle_preempt_count(idle, cpu);
  3834. /*
  3835. * The idle tasks have their own, simple scheduling class:
  3836. */
  3837. idle->sched_class = &idle_sched_class;
  3838. ftrace_graph_init_idle_task(idle, cpu);
  3839. vtime_init_idle(idle, cpu);
  3840. #if defined(CONFIG_SMP)
  3841. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3842. #endif
  3843. }
  3844. #ifdef CONFIG_SMP
  3845. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3846. {
  3847. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3848. p->sched_class->set_cpus_allowed(p, new_mask);
  3849. cpumask_copy(&p->cpus_allowed, new_mask);
  3850. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3851. }
  3852. /*
  3853. * This is how migration works:
  3854. *
  3855. * 1) we invoke migration_cpu_stop() on the target CPU using
  3856. * stop_one_cpu().
  3857. * 2) stopper starts to run (implicitly forcing the migrated thread
  3858. * off the CPU)
  3859. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3860. * 4) if it's in the wrong runqueue then the migration thread removes
  3861. * it and puts it into the right queue.
  3862. * 5) stopper completes and stop_one_cpu() returns and the migration
  3863. * is done.
  3864. */
  3865. /*
  3866. * Change a given task's CPU affinity. Migrate the thread to a
  3867. * proper CPU and schedule it away if the CPU it's executing on
  3868. * is removed from the allowed bitmask.
  3869. *
  3870. * NOTE: the caller must have a valid reference to the task, the
  3871. * task must not exit() & deallocate itself prematurely. The
  3872. * call is not atomic; no spinlocks may be held.
  3873. */
  3874. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3875. {
  3876. unsigned long flags;
  3877. struct rq *rq;
  3878. unsigned int dest_cpu;
  3879. int ret = 0;
  3880. rq = task_rq_lock(p, &flags);
  3881. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3882. goto out;
  3883. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3884. ret = -EINVAL;
  3885. goto out;
  3886. }
  3887. do_set_cpus_allowed(p, new_mask);
  3888. /* Can the task run on the task's current CPU? If so, we're done */
  3889. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3890. goto out;
  3891. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3892. if (p->on_rq) {
  3893. struct migration_arg arg = { p, dest_cpu };
  3894. /* Need help from migration thread: drop lock and wait. */
  3895. task_rq_unlock(rq, p, &flags);
  3896. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3897. tlb_migrate_finish(p->mm);
  3898. return 0;
  3899. }
  3900. out:
  3901. task_rq_unlock(rq, p, &flags);
  3902. return ret;
  3903. }
  3904. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3905. /*
  3906. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3907. * this because either it can't run here any more (set_cpus_allowed()
  3908. * away from this CPU, or CPU going down), or because we're
  3909. * attempting to rebalance this task on exec (sched_exec).
  3910. *
  3911. * So we race with normal scheduler movements, but that's OK, as long
  3912. * as the task is no longer on this CPU.
  3913. *
  3914. * Returns non-zero if task was successfully migrated.
  3915. */
  3916. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3917. {
  3918. struct rq *rq_dest, *rq_src;
  3919. int ret = 0;
  3920. if (unlikely(!cpu_active(dest_cpu)))
  3921. return ret;
  3922. rq_src = cpu_rq(src_cpu);
  3923. rq_dest = cpu_rq(dest_cpu);
  3924. raw_spin_lock(&p->pi_lock);
  3925. double_rq_lock(rq_src, rq_dest);
  3926. /* Already moved. */
  3927. if (task_cpu(p) != src_cpu)
  3928. goto done;
  3929. /* Affinity changed (again). */
  3930. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3931. goto fail;
  3932. /*
  3933. * If we're not on a rq, the next wake-up will ensure we're
  3934. * placed properly.
  3935. */
  3936. if (p->on_rq) {
  3937. dequeue_task(rq_src, p, 0);
  3938. set_task_cpu(p, dest_cpu);
  3939. enqueue_task(rq_dest, p, 0);
  3940. check_preempt_curr(rq_dest, p, 0);
  3941. }
  3942. done:
  3943. ret = 1;
  3944. fail:
  3945. double_rq_unlock(rq_src, rq_dest);
  3946. raw_spin_unlock(&p->pi_lock);
  3947. return ret;
  3948. }
  3949. #ifdef CONFIG_NUMA_BALANCING
  3950. /* Migrate current task p to target_cpu */
  3951. int migrate_task_to(struct task_struct *p, int target_cpu)
  3952. {
  3953. struct migration_arg arg = { p, target_cpu };
  3954. int curr_cpu = task_cpu(p);
  3955. if (curr_cpu == target_cpu)
  3956. return 0;
  3957. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3958. return -EINVAL;
  3959. /* TODO: This is not properly updating schedstats */
  3960. trace_sched_move_numa(p, curr_cpu, target_cpu);
  3961. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3962. }
  3963. /*
  3964. * Requeue a task on a given node and accurately track the number of NUMA
  3965. * tasks on the runqueues
  3966. */
  3967. void sched_setnuma(struct task_struct *p, int nid)
  3968. {
  3969. struct rq *rq;
  3970. unsigned long flags;
  3971. bool on_rq, running;
  3972. rq = task_rq_lock(p, &flags);
  3973. on_rq = p->on_rq;
  3974. running = task_current(rq, p);
  3975. if (on_rq)
  3976. dequeue_task(rq, p, 0);
  3977. if (running)
  3978. p->sched_class->put_prev_task(rq, p);
  3979. p->numa_preferred_nid = nid;
  3980. if (running)
  3981. p->sched_class->set_curr_task(rq);
  3982. if (on_rq)
  3983. enqueue_task(rq, p, 0);
  3984. task_rq_unlock(rq, p, &flags);
  3985. }
  3986. #endif
  3987. /*
  3988. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3989. * and performs thread migration by bumping thread off CPU then
  3990. * 'pushing' onto another runqueue.
  3991. */
  3992. static int migration_cpu_stop(void *data)
  3993. {
  3994. struct migration_arg *arg = data;
  3995. /*
  3996. * The original target cpu might have gone down and we might
  3997. * be on another cpu but it doesn't matter.
  3998. */
  3999. local_irq_disable();
  4000. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4001. local_irq_enable();
  4002. return 0;
  4003. }
  4004. #ifdef CONFIG_HOTPLUG_CPU
  4005. /*
  4006. * Ensures that the idle task is using init_mm right before its cpu goes
  4007. * offline.
  4008. */
  4009. void idle_task_exit(void)
  4010. {
  4011. struct mm_struct *mm = current->active_mm;
  4012. BUG_ON(cpu_online(smp_processor_id()));
  4013. if (mm != &init_mm) {
  4014. switch_mm(mm, &init_mm, current);
  4015. finish_arch_post_lock_switch();
  4016. }
  4017. mmdrop(mm);
  4018. }
  4019. /*
  4020. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4021. * we might have. Assumes we're called after migrate_tasks() so that the
  4022. * nr_active count is stable.
  4023. *
  4024. * Also see the comment "Global load-average calculations".
  4025. */
  4026. static void calc_load_migrate(struct rq *rq)
  4027. {
  4028. long delta = calc_load_fold_active(rq);
  4029. if (delta)
  4030. atomic_long_add(delta, &calc_load_tasks);
  4031. }
  4032. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4033. {
  4034. }
  4035. static const struct sched_class fake_sched_class = {
  4036. .put_prev_task = put_prev_task_fake,
  4037. };
  4038. static struct task_struct fake_task = {
  4039. /*
  4040. * Avoid pull_{rt,dl}_task()
  4041. */
  4042. .prio = MAX_PRIO + 1,
  4043. .sched_class = &fake_sched_class,
  4044. };
  4045. /*
  4046. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4047. * try_to_wake_up()->select_task_rq().
  4048. *
  4049. * Called with rq->lock held even though we'er in stop_machine() and
  4050. * there's no concurrency possible, we hold the required locks anyway
  4051. * because of lock validation efforts.
  4052. */
  4053. static void migrate_tasks(unsigned int dead_cpu)
  4054. {
  4055. struct rq *rq = cpu_rq(dead_cpu);
  4056. struct task_struct *next, *stop = rq->stop;
  4057. int dest_cpu;
  4058. /*
  4059. * Fudge the rq selection such that the below task selection loop
  4060. * doesn't get stuck on the currently eligible stop task.
  4061. *
  4062. * We're currently inside stop_machine() and the rq is either stuck
  4063. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4064. * either way we should never end up calling schedule() until we're
  4065. * done here.
  4066. */
  4067. rq->stop = NULL;
  4068. /*
  4069. * put_prev_task() and pick_next_task() sched
  4070. * class method both need to have an up-to-date
  4071. * value of rq->clock[_task]
  4072. */
  4073. update_rq_clock(rq);
  4074. for ( ; ; ) {
  4075. /*
  4076. * There's this thread running, bail when that's the only
  4077. * remaining thread.
  4078. */
  4079. if (rq->nr_running == 1)
  4080. break;
  4081. next = pick_next_task(rq, &fake_task);
  4082. BUG_ON(!next);
  4083. next->sched_class->put_prev_task(rq, next);
  4084. /* Find suitable destination for @next, with force if needed. */
  4085. dest_cpu = select_fallback_rq(dead_cpu, next);
  4086. raw_spin_unlock(&rq->lock);
  4087. __migrate_task(next, dead_cpu, dest_cpu);
  4088. raw_spin_lock(&rq->lock);
  4089. }
  4090. rq->stop = stop;
  4091. }
  4092. #endif /* CONFIG_HOTPLUG_CPU */
  4093. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4094. static struct ctl_table sd_ctl_dir[] = {
  4095. {
  4096. .procname = "sched_domain",
  4097. .mode = 0555,
  4098. },
  4099. {}
  4100. };
  4101. static struct ctl_table sd_ctl_root[] = {
  4102. {
  4103. .procname = "kernel",
  4104. .mode = 0555,
  4105. .child = sd_ctl_dir,
  4106. },
  4107. {}
  4108. };
  4109. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4110. {
  4111. struct ctl_table *entry =
  4112. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4113. return entry;
  4114. }
  4115. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4116. {
  4117. struct ctl_table *entry;
  4118. /*
  4119. * In the intermediate directories, both the child directory and
  4120. * procname are dynamically allocated and could fail but the mode
  4121. * will always be set. In the lowest directory the names are
  4122. * static strings and all have proc handlers.
  4123. */
  4124. for (entry = *tablep; entry->mode; entry++) {
  4125. if (entry->child)
  4126. sd_free_ctl_entry(&entry->child);
  4127. if (entry->proc_handler == NULL)
  4128. kfree(entry->procname);
  4129. }
  4130. kfree(*tablep);
  4131. *tablep = NULL;
  4132. }
  4133. static int min_load_idx = 0;
  4134. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4135. static void
  4136. set_table_entry(struct ctl_table *entry,
  4137. const char *procname, void *data, int maxlen,
  4138. umode_t mode, proc_handler *proc_handler,
  4139. bool load_idx)
  4140. {
  4141. entry->procname = procname;
  4142. entry->data = data;
  4143. entry->maxlen = maxlen;
  4144. entry->mode = mode;
  4145. entry->proc_handler = proc_handler;
  4146. if (load_idx) {
  4147. entry->extra1 = &min_load_idx;
  4148. entry->extra2 = &max_load_idx;
  4149. }
  4150. }
  4151. static struct ctl_table *
  4152. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4153. {
  4154. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4155. if (table == NULL)
  4156. return NULL;
  4157. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4158. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4159. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4160. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4161. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4162. sizeof(int), 0644, proc_dointvec_minmax, true);
  4163. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4164. sizeof(int), 0644, proc_dointvec_minmax, true);
  4165. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4166. sizeof(int), 0644, proc_dointvec_minmax, true);
  4167. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4168. sizeof(int), 0644, proc_dointvec_minmax, true);
  4169. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4170. sizeof(int), 0644, proc_dointvec_minmax, true);
  4171. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4172. sizeof(int), 0644, proc_dointvec_minmax, false);
  4173. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4174. sizeof(int), 0644, proc_dointvec_minmax, false);
  4175. set_table_entry(&table[9], "cache_nice_tries",
  4176. &sd->cache_nice_tries,
  4177. sizeof(int), 0644, proc_dointvec_minmax, false);
  4178. set_table_entry(&table[10], "flags", &sd->flags,
  4179. sizeof(int), 0644, proc_dointvec_minmax, false);
  4180. set_table_entry(&table[11], "max_newidle_lb_cost",
  4181. &sd->max_newidle_lb_cost,
  4182. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4183. set_table_entry(&table[12], "name", sd->name,
  4184. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4185. /* &table[13] is terminator */
  4186. return table;
  4187. }
  4188. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4189. {
  4190. struct ctl_table *entry, *table;
  4191. struct sched_domain *sd;
  4192. int domain_num = 0, i;
  4193. char buf[32];
  4194. for_each_domain(cpu, sd)
  4195. domain_num++;
  4196. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4197. if (table == NULL)
  4198. return NULL;
  4199. i = 0;
  4200. for_each_domain(cpu, sd) {
  4201. snprintf(buf, 32, "domain%d", i);
  4202. entry->procname = kstrdup(buf, GFP_KERNEL);
  4203. entry->mode = 0555;
  4204. entry->child = sd_alloc_ctl_domain_table(sd);
  4205. entry++;
  4206. i++;
  4207. }
  4208. return table;
  4209. }
  4210. static struct ctl_table_header *sd_sysctl_header;
  4211. static void register_sched_domain_sysctl(void)
  4212. {
  4213. int i, cpu_num = num_possible_cpus();
  4214. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4215. char buf[32];
  4216. WARN_ON(sd_ctl_dir[0].child);
  4217. sd_ctl_dir[0].child = entry;
  4218. if (entry == NULL)
  4219. return;
  4220. for_each_possible_cpu(i) {
  4221. snprintf(buf, 32, "cpu%d", i);
  4222. entry->procname = kstrdup(buf, GFP_KERNEL);
  4223. entry->mode = 0555;
  4224. entry->child = sd_alloc_ctl_cpu_table(i);
  4225. entry++;
  4226. }
  4227. WARN_ON(sd_sysctl_header);
  4228. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4229. }
  4230. /* may be called multiple times per register */
  4231. static void unregister_sched_domain_sysctl(void)
  4232. {
  4233. if (sd_sysctl_header)
  4234. unregister_sysctl_table(sd_sysctl_header);
  4235. sd_sysctl_header = NULL;
  4236. if (sd_ctl_dir[0].child)
  4237. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4238. }
  4239. #else
  4240. static void register_sched_domain_sysctl(void)
  4241. {
  4242. }
  4243. static void unregister_sched_domain_sysctl(void)
  4244. {
  4245. }
  4246. #endif
  4247. static void set_rq_online(struct rq *rq)
  4248. {
  4249. if (!rq->online) {
  4250. const struct sched_class *class;
  4251. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4252. rq->online = 1;
  4253. for_each_class(class) {
  4254. if (class->rq_online)
  4255. class->rq_online(rq);
  4256. }
  4257. }
  4258. }
  4259. static void set_rq_offline(struct rq *rq)
  4260. {
  4261. if (rq->online) {
  4262. const struct sched_class *class;
  4263. for_each_class(class) {
  4264. if (class->rq_offline)
  4265. class->rq_offline(rq);
  4266. }
  4267. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4268. rq->online = 0;
  4269. }
  4270. }
  4271. /*
  4272. * migration_call - callback that gets triggered when a CPU is added.
  4273. * Here we can start up the necessary migration thread for the new CPU.
  4274. */
  4275. static int
  4276. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4277. {
  4278. int cpu = (long)hcpu;
  4279. unsigned long flags;
  4280. struct rq *rq = cpu_rq(cpu);
  4281. switch (action & ~CPU_TASKS_FROZEN) {
  4282. case CPU_UP_PREPARE:
  4283. rq->calc_load_update = calc_load_update;
  4284. break;
  4285. case CPU_ONLINE:
  4286. /* Update our root-domain */
  4287. raw_spin_lock_irqsave(&rq->lock, flags);
  4288. if (rq->rd) {
  4289. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4290. set_rq_online(rq);
  4291. }
  4292. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4293. break;
  4294. #ifdef CONFIG_HOTPLUG_CPU
  4295. case CPU_DYING:
  4296. sched_ttwu_pending();
  4297. /* Update our root-domain */
  4298. raw_spin_lock_irqsave(&rq->lock, flags);
  4299. if (rq->rd) {
  4300. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4301. set_rq_offline(rq);
  4302. }
  4303. migrate_tasks(cpu);
  4304. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4305. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4306. break;
  4307. case CPU_DEAD:
  4308. calc_load_migrate(rq);
  4309. break;
  4310. #endif
  4311. }
  4312. update_max_interval();
  4313. return NOTIFY_OK;
  4314. }
  4315. /*
  4316. * Register at high priority so that task migration (migrate_all_tasks)
  4317. * happens before everything else. This has to be lower priority than
  4318. * the notifier in the perf_event subsystem, though.
  4319. */
  4320. static struct notifier_block migration_notifier = {
  4321. .notifier_call = migration_call,
  4322. .priority = CPU_PRI_MIGRATION,
  4323. };
  4324. static int sched_cpu_active(struct notifier_block *nfb,
  4325. unsigned long action, void *hcpu)
  4326. {
  4327. switch (action & ~CPU_TASKS_FROZEN) {
  4328. case CPU_STARTING:
  4329. case CPU_DOWN_FAILED:
  4330. set_cpu_active((long)hcpu, true);
  4331. return NOTIFY_OK;
  4332. default:
  4333. return NOTIFY_DONE;
  4334. }
  4335. }
  4336. static int sched_cpu_inactive(struct notifier_block *nfb,
  4337. unsigned long action, void *hcpu)
  4338. {
  4339. unsigned long flags;
  4340. long cpu = (long)hcpu;
  4341. switch (action & ~CPU_TASKS_FROZEN) {
  4342. case CPU_DOWN_PREPARE:
  4343. set_cpu_active(cpu, false);
  4344. /* explicitly allow suspend */
  4345. if (!(action & CPU_TASKS_FROZEN)) {
  4346. struct dl_bw *dl_b = dl_bw_of(cpu);
  4347. bool overflow;
  4348. int cpus;
  4349. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4350. cpus = dl_bw_cpus(cpu);
  4351. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4352. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4353. if (overflow)
  4354. return notifier_from_errno(-EBUSY);
  4355. }
  4356. return NOTIFY_OK;
  4357. }
  4358. return NOTIFY_DONE;
  4359. }
  4360. static int __init migration_init(void)
  4361. {
  4362. void *cpu = (void *)(long)smp_processor_id();
  4363. int err;
  4364. /* Initialize migration for the boot CPU */
  4365. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4366. BUG_ON(err == NOTIFY_BAD);
  4367. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4368. register_cpu_notifier(&migration_notifier);
  4369. /* Register cpu active notifiers */
  4370. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4371. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4372. return 0;
  4373. }
  4374. early_initcall(migration_init);
  4375. #endif
  4376. #ifdef CONFIG_SMP
  4377. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4378. #ifdef CONFIG_SCHED_DEBUG
  4379. static __read_mostly int sched_debug_enabled;
  4380. static int __init sched_debug_setup(char *str)
  4381. {
  4382. sched_debug_enabled = 1;
  4383. return 0;
  4384. }
  4385. early_param("sched_debug", sched_debug_setup);
  4386. static inline bool sched_debug(void)
  4387. {
  4388. return sched_debug_enabled;
  4389. }
  4390. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4391. struct cpumask *groupmask)
  4392. {
  4393. struct sched_group *group = sd->groups;
  4394. char str[256];
  4395. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4396. cpumask_clear(groupmask);
  4397. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4398. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4399. printk("does not load-balance\n");
  4400. if (sd->parent)
  4401. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4402. " has parent");
  4403. return -1;
  4404. }
  4405. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4406. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4407. printk(KERN_ERR "ERROR: domain->span does not contain "
  4408. "CPU%d\n", cpu);
  4409. }
  4410. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4411. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4412. " CPU%d\n", cpu);
  4413. }
  4414. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4415. do {
  4416. if (!group) {
  4417. printk("\n");
  4418. printk(KERN_ERR "ERROR: group is NULL\n");
  4419. break;
  4420. }
  4421. /*
  4422. * Even though we initialize ->power to something semi-sane,
  4423. * we leave power_orig unset. This allows us to detect if
  4424. * domain iteration is still funny without causing /0 traps.
  4425. */
  4426. if (!group->sgp->power_orig) {
  4427. printk(KERN_CONT "\n");
  4428. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4429. "set\n");
  4430. break;
  4431. }
  4432. if (!cpumask_weight(sched_group_cpus(group))) {
  4433. printk(KERN_CONT "\n");
  4434. printk(KERN_ERR "ERROR: empty group\n");
  4435. break;
  4436. }
  4437. if (!(sd->flags & SD_OVERLAP) &&
  4438. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4439. printk(KERN_CONT "\n");
  4440. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4441. break;
  4442. }
  4443. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4444. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4445. printk(KERN_CONT " %s", str);
  4446. if (group->sgp->power != SCHED_POWER_SCALE) {
  4447. printk(KERN_CONT " (cpu_power = %d)",
  4448. group->sgp->power);
  4449. }
  4450. group = group->next;
  4451. } while (group != sd->groups);
  4452. printk(KERN_CONT "\n");
  4453. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4454. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4455. if (sd->parent &&
  4456. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4457. printk(KERN_ERR "ERROR: parent span is not a superset "
  4458. "of domain->span\n");
  4459. return 0;
  4460. }
  4461. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4462. {
  4463. int level = 0;
  4464. if (!sched_debug_enabled)
  4465. return;
  4466. if (!sd) {
  4467. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4468. return;
  4469. }
  4470. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4471. for (;;) {
  4472. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4473. break;
  4474. level++;
  4475. sd = sd->parent;
  4476. if (!sd)
  4477. break;
  4478. }
  4479. }
  4480. #else /* !CONFIG_SCHED_DEBUG */
  4481. # define sched_domain_debug(sd, cpu) do { } while (0)
  4482. static inline bool sched_debug(void)
  4483. {
  4484. return false;
  4485. }
  4486. #endif /* CONFIG_SCHED_DEBUG */
  4487. static int sd_degenerate(struct sched_domain *sd)
  4488. {
  4489. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4490. return 1;
  4491. /* Following flags need at least 2 groups */
  4492. if (sd->flags & (SD_LOAD_BALANCE |
  4493. SD_BALANCE_NEWIDLE |
  4494. SD_BALANCE_FORK |
  4495. SD_BALANCE_EXEC |
  4496. SD_SHARE_CPUPOWER |
  4497. SD_SHARE_PKG_RESOURCES)) {
  4498. if (sd->groups != sd->groups->next)
  4499. return 0;
  4500. }
  4501. /* Following flags don't use groups */
  4502. if (sd->flags & (SD_WAKE_AFFINE))
  4503. return 0;
  4504. return 1;
  4505. }
  4506. static int
  4507. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4508. {
  4509. unsigned long cflags = sd->flags, pflags = parent->flags;
  4510. if (sd_degenerate(parent))
  4511. return 1;
  4512. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4513. return 0;
  4514. /* Flags needing groups don't count if only 1 group in parent */
  4515. if (parent->groups == parent->groups->next) {
  4516. pflags &= ~(SD_LOAD_BALANCE |
  4517. SD_BALANCE_NEWIDLE |
  4518. SD_BALANCE_FORK |
  4519. SD_BALANCE_EXEC |
  4520. SD_SHARE_CPUPOWER |
  4521. SD_SHARE_PKG_RESOURCES |
  4522. SD_PREFER_SIBLING);
  4523. if (nr_node_ids == 1)
  4524. pflags &= ~SD_SERIALIZE;
  4525. }
  4526. if (~cflags & pflags)
  4527. return 0;
  4528. return 1;
  4529. }
  4530. static void free_rootdomain(struct rcu_head *rcu)
  4531. {
  4532. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4533. cpupri_cleanup(&rd->cpupri);
  4534. cpudl_cleanup(&rd->cpudl);
  4535. free_cpumask_var(rd->dlo_mask);
  4536. free_cpumask_var(rd->rto_mask);
  4537. free_cpumask_var(rd->online);
  4538. free_cpumask_var(rd->span);
  4539. kfree(rd);
  4540. }
  4541. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4542. {
  4543. struct root_domain *old_rd = NULL;
  4544. unsigned long flags;
  4545. raw_spin_lock_irqsave(&rq->lock, flags);
  4546. if (rq->rd) {
  4547. old_rd = rq->rd;
  4548. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4549. set_rq_offline(rq);
  4550. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4551. /*
  4552. * If we dont want to free the old_rd yet then
  4553. * set old_rd to NULL to skip the freeing later
  4554. * in this function:
  4555. */
  4556. if (!atomic_dec_and_test(&old_rd->refcount))
  4557. old_rd = NULL;
  4558. }
  4559. atomic_inc(&rd->refcount);
  4560. rq->rd = rd;
  4561. cpumask_set_cpu(rq->cpu, rd->span);
  4562. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4563. set_rq_online(rq);
  4564. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4565. if (old_rd)
  4566. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4567. }
  4568. static int init_rootdomain(struct root_domain *rd)
  4569. {
  4570. memset(rd, 0, sizeof(*rd));
  4571. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4572. goto out;
  4573. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4574. goto free_span;
  4575. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4576. goto free_online;
  4577. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4578. goto free_dlo_mask;
  4579. init_dl_bw(&rd->dl_bw);
  4580. if (cpudl_init(&rd->cpudl) != 0)
  4581. goto free_dlo_mask;
  4582. if (cpupri_init(&rd->cpupri) != 0)
  4583. goto free_rto_mask;
  4584. return 0;
  4585. free_rto_mask:
  4586. free_cpumask_var(rd->rto_mask);
  4587. free_dlo_mask:
  4588. free_cpumask_var(rd->dlo_mask);
  4589. free_online:
  4590. free_cpumask_var(rd->online);
  4591. free_span:
  4592. free_cpumask_var(rd->span);
  4593. out:
  4594. return -ENOMEM;
  4595. }
  4596. /*
  4597. * By default the system creates a single root-domain with all cpus as
  4598. * members (mimicking the global state we have today).
  4599. */
  4600. struct root_domain def_root_domain;
  4601. static void init_defrootdomain(void)
  4602. {
  4603. init_rootdomain(&def_root_domain);
  4604. atomic_set(&def_root_domain.refcount, 1);
  4605. }
  4606. static struct root_domain *alloc_rootdomain(void)
  4607. {
  4608. struct root_domain *rd;
  4609. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4610. if (!rd)
  4611. return NULL;
  4612. if (init_rootdomain(rd) != 0) {
  4613. kfree(rd);
  4614. return NULL;
  4615. }
  4616. return rd;
  4617. }
  4618. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4619. {
  4620. struct sched_group *tmp, *first;
  4621. if (!sg)
  4622. return;
  4623. first = sg;
  4624. do {
  4625. tmp = sg->next;
  4626. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4627. kfree(sg->sgp);
  4628. kfree(sg);
  4629. sg = tmp;
  4630. } while (sg != first);
  4631. }
  4632. static void free_sched_domain(struct rcu_head *rcu)
  4633. {
  4634. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4635. /*
  4636. * If its an overlapping domain it has private groups, iterate and
  4637. * nuke them all.
  4638. */
  4639. if (sd->flags & SD_OVERLAP) {
  4640. free_sched_groups(sd->groups, 1);
  4641. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4642. kfree(sd->groups->sgp);
  4643. kfree(sd->groups);
  4644. }
  4645. kfree(sd);
  4646. }
  4647. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4648. {
  4649. call_rcu(&sd->rcu, free_sched_domain);
  4650. }
  4651. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4652. {
  4653. for (; sd; sd = sd->parent)
  4654. destroy_sched_domain(sd, cpu);
  4655. }
  4656. /*
  4657. * Keep a special pointer to the highest sched_domain that has
  4658. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4659. * allows us to avoid some pointer chasing select_idle_sibling().
  4660. *
  4661. * Also keep a unique ID per domain (we use the first cpu number in
  4662. * the cpumask of the domain), this allows us to quickly tell if
  4663. * two cpus are in the same cache domain, see cpus_share_cache().
  4664. */
  4665. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4666. DEFINE_PER_CPU(int, sd_llc_size);
  4667. DEFINE_PER_CPU(int, sd_llc_id);
  4668. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4669. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4670. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4671. static void update_top_cache_domain(int cpu)
  4672. {
  4673. struct sched_domain *sd;
  4674. struct sched_domain *busy_sd = NULL;
  4675. int id = cpu;
  4676. int size = 1;
  4677. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4678. if (sd) {
  4679. id = cpumask_first(sched_domain_span(sd));
  4680. size = cpumask_weight(sched_domain_span(sd));
  4681. busy_sd = sd->parent; /* sd_busy */
  4682. }
  4683. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4684. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4685. per_cpu(sd_llc_size, cpu) = size;
  4686. per_cpu(sd_llc_id, cpu) = id;
  4687. sd = lowest_flag_domain(cpu, SD_NUMA);
  4688. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4689. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4690. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4691. }
  4692. /*
  4693. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4694. * hold the hotplug lock.
  4695. */
  4696. static void
  4697. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4698. {
  4699. struct rq *rq = cpu_rq(cpu);
  4700. struct sched_domain *tmp;
  4701. /* Remove the sched domains which do not contribute to scheduling. */
  4702. for (tmp = sd; tmp; ) {
  4703. struct sched_domain *parent = tmp->parent;
  4704. if (!parent)
  4705. break;
  4706. if (sd_parent_degenerate(tmp, parent)) {
  4707. tmp->parent = parent->parent;
  4708. if (parent->parent)
  4709. parent->parent->child = tmp;
  4710. /*
  4711. * Transfer SD_PREFER_SIBLING down in case of a
  4712. * degenerate parent; the spans match for this
  4713. * so the property transfers.
  4714. */
  4715. if (parent->flags & SD_PREFER_SIBLING)
  4716. tmp->flags |= SD_PREFER_SIBLING;
  4717. destroy_sched_domain(parent, cpu);
  4718. } else
  4719. tmp = tmp->parent;
  4720. }
  4721. if (sd && sd_degenerate(sd)) {
  4722. tmp = sd;
  4723. sd = sd->parent;
  4724. destroy_sched_domain(tmp, cpu);
  4725. if (sd)
  4726. sd->child = NULL;
  4727. }
  4728. sched_domain_debug(sd, cpu);
  4729. rq_attach_root(rq, rd);
  4730. tmp = rq->sd;
  4731. rcu_assign_pointer(rq->sd, sd);
  4732. destroy_sched_domains(tmp, cpu);
  4733. update_top_cache_domain(cpu);
  4734. }
  4735. /* cpus with isolated domains */
  4736. static cpumask_var_t cpu_isolated_map;
  4737. /* Setup the mask of cpus configured for isolated domains */
  4738. static int __init isolated_cpu_setup(char *str)
  4739. {
  4740. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4741. cpulist_parse(str, cpu_isolated_map);
  4742. return 1;
  4743. }
  4744. __setup("isolcpus=", isolated_cpu_setup);
  4745. static const struct cpumask *cpu_cpu_mask(int cpu)
  4746. {
  4747. return cpumask_of_node(cpu_to_node(cpu));
  4748. }
  4749. struct sd_data {
  4750. struct sched_domain **__percpu sd;
  4751. struct sched_group **__percpu sg;
  4752. struct sched_group_power **__percpu sgp;
  4753. };
  4754. struct s_data {
  4755. struct sched_domain ** __percpu sd;
  4756. struct root_domain *rd;
  4757. };
  4758. enum s_alloc {
  4759. sa_rootdomain,
  4760. sa_sd,
  4761. sa_sd_storage,
  4762. sa_none,
  4763. };
  4764. struct sched_domain_topology_level;
  4765. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4766. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4767. #define SDTL_OVERLAP 0x01
  4768. struct sched_domain_topology_level {
  4769. sched_domain_init_f init;
  4770. sched_domain_mask_f mask;
  4771. int flags;
  4772. int numa_level;
  4773. struct sd_data data;
  4774. };
  4775. /*
  4776. * Build an iteration mask that can exclude certain CPUs from the upwards
  4777. * domain traversal.
  4778. *
  4779. * Asymmetric node setups can result in situations where the domain tree is of
  4780. * unequal depth, make sure to skip domains that already cover the entire
  4781. * range.
  4782. *
  4783. * In that case build_sched_domains() will have terminated the iteration early
  4784. * and our sibling sd spans will be empty. Domains should always include the
  4785. * cpu they're built on, so check that.
  4786. *
  4787. */
  4788. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4789. {
  4790. const struct cpumask *span = sched_domain_span(sd);
  4791. struct sd_data *sdd = sd->private;
  4792. struct sched_domain *sibling;
  4793. int i;
  4794. for_each_cpu(i, span) {
  4795. sibling = *per_cpu_ptr(sdd->sd, i);
  4796. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4797. continue;
  4798. cpumask_set_cpu(i, sched_group_mask(sg));
  4799. }
  4800. }
  4801. /*
  4802. * Return the canonical balance cpu for this group, this is the first cpu
  4803. * of this group that's also in the iteration mask.
  4804. */
  4805. int group_balance_cpu(struct sched_group *sg)
  4806. {
  4807. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4808. }
  4809. static int
  4810. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4811. {
  4812. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4813. const struct cpumask *span = sched_domain_span(sd);
  4814. struct cpumask *covered = sched_domains_tmpmask;
  4815. struct sd_data *sdd = sd->private;
  4816. struct sched_domain *child;
  4817. int i;
  4818. cpumask_clear(covered);
  4819. for_each_cpu(i, span) {
  4820. struct cpumask *sg_span;
  4821. if (cpumask_test_cpu(i, covered))
  4822. continue;
  4823. child = *per_cpu_ptr(sdd->sd, i);
  4824. /* See the comment near build_group_mask(). */
  4825. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4826. continue;
  4827. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4828. GFP_KERNEL, cpu_to_node(cpu));
  4829. if (!sg)
  4830. goto fail;
  4831. sg_span = sched_group_cpus(sg);
  4832. if (child->child) {
  4833. child = child->child;
  4834. cpumask_copy(sg_span, sched_domain_span(child));
  4835. } else
  4836. cpumask_set_cpu(i, sg_span);
  4837. cpumask_or(covered, covered, sg_span);
  4838. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4839. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4840. build_group_mask(sd, sg);
  4841. /*
  4842. * Initialize sgp->power such that even if we mess up the
  4843. * domains and no possible iteration will get us here, we won't
  4844. * die on a /0 trap.
  4845. */
  4846. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4847. sg->sgp->power_orig = sg->sgp->power;
  4848. /*
  4849. * Make sure the first group of this domain contains the
  4850. * canonical balance cpu. Otherwise the sched_domain iteration
  4851. * breaks. See update_sg_lb_stats().
  4852. */
  4853. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4854. group_balance_cpu(sg) == cpu)
  4855. groups = sg;
  4856. if (!first)
  4857. first = sg;
  4858. if (last)
  4859. last->next = sg;
  4860. last = sg;
  4861. last->next = first;
  4862. }
  4863. sd->groups = groups;
  4864. return 0;
  4865. fail:
  4866. free_sched_groups(first, 0);
  4867. return -ENOMEM;
  4868. }
  4869. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4870. {
  4871. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4872. struct sched_domain *child = sd->child;
  4873. if (child)
  4874. cpu = cpumask_first(sched_domain_span(child));
  4875. if (sg) {
  4876. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4877. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4878. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4879. }
  4880. return cpu;
  4881. }
  4882. /*
  4883. * build_sched_groups will build a circular linked list of the groups
  4884. * covered by the given span, and will set each group's ->cpumask correctly,
  4885. * and ->cpu_power to 0.
  4886. *
  4887. * Assumes the sched_domain tree is fully constructed
  4888. */
  4889. static int
  4890. build_sched_groups(struct sched_domain *sd, int cpu)
  4891. {
  4892. struct sched_group *first = NULL, *last = NULL;
  4893. struct sd_data *sdd = sd->private;
  4894. const struct cpumask *span = sched_domain_span(sd);
  4895. struct cpumask *covered;
  4896. int i;
  4897. get_group(cpu, sdd, &sd->groups);
  4898. atomic_inc(&sd->groups->ref);
  4899. if (cpu != cpumask_first(span))
  4900. return 0;
  4901. lockdep_assert_held(&sched_domains_mutex);
  4902. covered = sched_domains_tmpmask;
  4903. cpumask_clear(covered);
  4904. for_each_cpu(i, span) {
  4905. struct sched_group *sg;
  4906. int group, j;
  4907. if (cpumask_test_cpu(i, covered))
  4908. continue;
  4909. group = get_group(i, sdd, &sg);
  4910. cpumask_clear(sched_group_cpus(sg));
  4911. sg->sgp->power = 0;
  4912. cpumask_setall(sched_group_mask(sg));
  4913. for_each_cpu(j, span) {
  4914. if (get_group(j, sdd, NULL) != group)
  4915. continue;
  4916. cpumask_set_cpu(j, covered);
  4917. cpumask_set_cpu(j, sched_group_cpus(sg));
  4918. }
  4919. if (!first)
  4920. first = sg;
  4921. if (last)
  4922. last->next = sg;
  4923. last = sg;
  4924. }
  4925. last->next = first;
  4926. return 0;
  4927. }
  4928. /*
  4929. * Initialize sched groups cpu_power.
  4930. *
  4931. * cpu_power indicates the capacity of sched group, which is used while
  4932. * distributing the load between different sched groups in a sched domain.
  4933. * Typically cpu_power for all the groups in a sched domain will be same unless
  4934. * there are asymmetries in the topology. If there are asymmetries, group
  4935. * having more cpu_power will pickup more load compared to the group having
  4936. * less cpu_power.
  4937. */
  4938. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4939. {
  4940. struct sched_group *sg = sd->groups;
  4941. WARN_ON(!sg);
  4942. do {
  4943. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4944. sg = sg->next;
  4945. } while (sg != sd->groups);
  4946. if (cpu != group_balance_cpu(sg))
  4947. return;
  4948. update_group_power(sd, cpu);
  4949. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4950. }
  4951. int __weak arch_sd_sibling_asym_packing(void)
  4952. {
  4953. return 0*SD_ASYM_PACKING;
  4954. }
  4955. /*
  4956. * Initializers for schedule domains
  4957. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4958. */
  4959. #ifdef CONFIG_SCHED_DEBUG
  4960. # define SD_INIT_NAME(sd, type) sd->name = #type
  4961. #else
  4962. # define SD_INIT_NAME(sd, type) do { } while (0)
  4963. #endif
  4964. #define SD_INIT_FUNC(type) \
  4965. static noinline struct sched_domain * \
  4966. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4967. { \
  4968. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4969. *sd = SD_##type##_INIT; \
  4970. SD_INIT_NAME(sd, type); \
  4971. sd->private = &tl->data; \
  4972. return sd; \
  4973. }
  4974. SD_INIT_FUNC(CPU)
  4975. #ifdef CONFIG_SCHED_SMT
  4976. SD_INIT_FUNC(SIBLING)
  4977. #endif
  4978. #ifdef CONFIG_SCHED_MC
  4979. SD_INIT_FUNC(MC)
  4980. #endif
  4981. #ifdef CONFIG_SCHED_BOOK
  4982. SD_INIT_FUNC(BOOK)
  4983. #endif
  4984. static int default_relax_domain_level = -1;
  4985. int sched_domain_level_max;
  4986. static int __init setup_relax_domain_level(char *str)
  4987. {
  4988. if (kstrtoint(str, 0, &default_relax_domain_level))
  4989. pr_warn("Unable to set relax_domain_level\n");
  4990. return 1;
  4991. }
  4992. __setup("relax_domain_level=", setup_relax_domain_level);
  4993. static void set_domain_attribute(struct sched_domain *sd,
  4994. struct sched_domain_attr *attr)
  4995. {
  4996. int request;
  4997. if (!attr || attr->relax_domain_level < 0) {
  4998. if (default_relax_domain_level < 0)
  4999. return;
  5000. else
  5001. request = default_relax_domain_level;
  5002. } else
  5003. request = attr->relax_domain_level;
  5004. if (request < sd->level) {
  5005. /* turn off idle balance on this domain */
  5006. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5007. } else {
  5008. /* turn on idle balance on this domain */
  5009. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5010. }
  5011. }
  5012. static void __sdt_free(const struct cpumask *cpu_map);
  5013. static int __sdt_alloc(const struct cpumask *cpu_map);
  5014. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5015. const struct cpumask *cpu_map)
  5016. {
  5017. switch (what) {
  5018. case sa_rootdomain:
  5019. if (!atomic_read(&d->rd->refcount))
  5020. free_rootdomain(&d->rd->rcu); /* fall through */
  5021. case sa_sd:
  5022. free_percpu(d->sd); /* fall through */
  5023. case sa_sd_storage:
  5024. __sdt_free(cpu_map); /* fall through */
  5025. case sa_none:
  5026. break;
  5027. }
  5028. }
  5029. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5030. const struct cpumask *cpu_map)
  5031. {
  5032. memset(d, 0, sizeof(*d));
  5033. if (__sdt_alloc(cpu_map))
  5034. return sa_sd_storage;
  5035. d->sd = alloc_percpu(struct sched_domain *);
  5036. if (!d->sd)
  5037. return sa_sd_storage;
  5038. d->rd = alloc_rootdomain();
  5039. if (!d->rd)
  5040. return sa_sd;
  5041. return sa_rootdomain;
  5042. }
  5043. /*
  5044. * NULL the sd_data elements we've used to build the sched_domain and
  5045. * sched_group structure so that the subsequent __free_domain_allocs()
  5046. * will not free the data we're using.
  5047. */
  5048. static void claim_allocations(int cpu, struct sched_domain *sd)
  5049. {
  5050. struct sd_data *sdd = sd->private;
  5051. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5052. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5053. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5054. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5055. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5056. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5057. }
  5058. #ifdef CONFIG_SCHED_SMT
  5059. static const struct cpumask *cpu_smt_mask(int cpu)
  5060. {
  5061. return topology_thread_cpumask(cpu);
  5062. }
  5063. #endif
  5064. /*
  5065. * Topology list, bottom-up.
  5066. */
  5067. static struct sched_domain_topology_level default_topology[] = {
  5068. #ifdef CONFIG_SCHED_SMT
  5069. { sd_init_SIBLING, cpu_smt_mask, },
  5070. #endif
  5071. #ifdef CONFIG_SCHED_MC
  5072. { sd_init_MC, cpu_coregroup_mask, },
  5073. #endif
  5074. #ifdef CONFIG_SCHED_BOOK
  5075. { sd_init_BOOK, cpu_book_mask, },
  5076. #endif
  5077. { sd_init_CPU, cpu_cpu_mask, },
  5078. { NULL, },
  5079. };
  5080. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5081. #define for_each_sd_topology(tl) \
  5082. for (tl = sched_domain_topology; tl->init; tl++)
  5083. #ifdef CONFIG_NUMA
  5084. static int sched_domains_numa_levels;
  5085. static int *sched_domains_numa_distance;
  5086. static struct cpumask ***sched_domains_numa_masks;
  5087. static int sched_domains_curr_level;
  5088. static inline int sd_local_flags(int level)
  5089. {
  5090. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5091. return 0;
  5092. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5093. }
  5094. static struct sched_domain *
  5095. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5096. {
  5097. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5098. int level = tl->numa_level;
  5099. int sd_weight = cpumask_weight(
  5100. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5101. *sd = (struct sched_domain){
  5102. .min_interval = sd_weight,
  5103. .max_interval = 2*sd_weight,
  5104. .busy_factor = 32,
  5105. .imbalance_pct = 125,
  5106. .cache_nice_tries = 2,
  5107. .busy_idx = 3,
  5108. .idle_idx = 2,
  5109. .newidle_idx = 0,
  5110. .wake_idx = 0,
  5111. .forkexec_idx = 0,
  5112. .flags = 1*SD_LOAD_BALANCE
  5113. | 1*SD_BALANCE_NEWIDLE
  5114. | 0*SD_BALANCE_EXEC
  5115. | 0*SD_BALANCE_FORK
  5116. | 0*SD_BALANCE_WAKE
  5117. | 0*SD_WAKE_AFFINE
  5118. | 0*SD_SHARE_CPUPOWER
  5119. | 0*SD_SHARE_PKG_RESOURCES
  5120. | 1*SD_SERIALIZE
  5121. | 0*SD_PREFER_SIBLING
  5122. | 1*SD_NUMA
  5123. | sd_local_flags(level)
  5124. ,
  5125. .last_balance = jiffies,
  5126. .balance_interval = sd_weight,
  5127. };
  5128. SD_INIT_NAME(sd, NUMA);
  5129. sd->private = &tl->data;
  5130. /*
  5131. * Ugly hack to pass state to sd_numa_mask()...
  5132. */
  5133. sched_domains_curr_level = tl->numa_level;
  5134. return sd;
  5135. }
  5136. static const struct cpumask *sd_numa_mask(int cpu)
  5137. {
  5138. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5139. }
  5140. static void sched_numa_warn(const char *str)
  5141. {
  5142. static int done = false;
  5143. int i,j;
  5144. if (done)
  5145. return;
  5146. done = true;
  5147. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5148. for (i = 0; i < nr_node_ids; i++) {
  5149. printk(KERN_WARNING " ");
  5150. for (j = 0; j < nr_node_ids; j++)
  5151. printk(KERN_CONT "%02d ", node_distance(i,j));
  5152. printk(KERN_CONT "\n");
  5153. }
  5154. printk(KERN_WARNING "\n");
  5155. }
  5156. static bool find_numa_distance(int distance)
  5157. {
  5158. int i;
  5159. if (distance == node_distance(0, 0))
  5160. return true;
  5161. for (i = 0; i < sched_domains_numa_levels; i++) {
  5162. if (sched_domains_numa_distance[i] == distance)
  5163. return true;
  5164. }
  5165. return false;
  5166. }
  5167. static void sched_init_numa(void)
  5168. {
  5169. int next_distance, curr_distance = node_distance(0, 0);
  5170. struct sched_domain_topology_level *tl;
  5171. int level = 0;
  5172. int i, j, k;
  5173. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5174. if (!sched_domains_numa_distance)
  5175. return;
  5176. /*
  5177. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5178. * unique distances in the node_distance() table.
  5179. *
  5180. * Assumes node_distance(0,j) includes all distances in
  5181. * node_distance(i,j) in order to avoid cubic time.
  5182. */
  5183. next_distance = curr_distance;
  5184. for (i = 0; i < nr_node_ids; i++) {
  5185. for (j = 0; j < nr_node_ids; j++) {
  5186. for (k = 0; k < nr_node_ids; k++) {
  5187. int distance = node_distance(i, k);
  5188. if (distance > curr_distance &&
  5189. (distance < next_distance ||
  5190. next_distance == curr_distance))
  5191. next_distance = distance;
  5192. /*
  5193. * While not a strong assumption it would be nice to know
  5194. * about cases where if node A is connected to B, B is not
  5195. * equally connected to A.
  5196. */
  5197. if (sched_debug() && node_distance(k, i) != distance)
  5198. sched_numa_warn("Node-distance not symmetric");
  5199. if (sched_debug() && i && !find_numa_distance(distance))
  5200. sched_numa_warn("Node-0 not representative");
  5201. }
  5202. if (next_distance != curr_distance) {
  5203. sched_domains_numa_distance[level++] = next_distance;
  5204. sched_domains_numa_levels = level;
  5205. curr_distance = next_distance;
  5206. } else break;
  5207. }
  5208. /*
  5209. * In case of sched_debug() we verify the above assumption.
  5210. */
  5211. if (!sched_debug())
  5212. break;
  5213. }
  5214. /*
  5215. * 'level' contains the number of unique distances, excluding the
  5216. * identity distance node_distance(i,i).
  5217. *
  5218. * The sched_domains_numa_distance[] array includes the actual distance
  5219. * numbers.
  5220. */
  5221. /*
  5222. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5223. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5224. * the array will contain less then 'level' members. This could be
  5225. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5226. * in other functions.
  5227. *
  5228. * We reset it to 'level' at the end of this function.
  5229. */
  5230. sched_domains_numa_levels = 0;
  5231. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5232. if (!sched_domains_numa_masks)
  5233. return;
  5234. /*
  5235. * Now for each level, construct a mask per node which contains all
  5236. * cpus of nodes that are that many hops away from us.
  5237. */
  5238. for (i = 0; i < level; i++) {
  5239. sched_domains_numa_masks[i] =
  5240. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5241. if (!sched_domains_numa_masks[i])
  5242. return;
  5243. for (j = 0; j < nr_node_ids; j++) {
  5244. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5245. if (!mask)
  5246. return;
  5247. sched_domains_numa_masks[i][j] = mask;
  5248. for (k = 0; k < nr_node_ids; k++) {
  5249. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5250. continue;
  5251. cpumask_or(mask, mask, cpumask_of_node(k));
  5252. }
  5253. }
  5254. }
  5255. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5256. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5257. if (!tl)
  5258. return;
  5259. /*
  5260. * Copy the default topology bits..
  5261. */
  5262. for (i = 0; default_topology[i].init; i++)
  5263. tl[i] = default_topology[i];
  5264. /*
  5265. * .. and append 'j' levels of NUMA goodness.
  5266. */
  5267. for (j = 0; j < level; i++, j++) {
  5268. tl[i] = (struct sched_domain_topology_level){
  5269. .init = sd_numa_init,
  5270. .mask = sd_numa_mask,
  5271. .flags = SDTL_OVERLAP,
  5272. .numa_level = j,
  5273. };
  5274. }
  5275. sched_domain_topology = tl;
  5276. sched_domains_numa_levels = level;
  5277. }
  5278. static void sched_domains_numa_masks_set(int cpu)
  5279. {
  5280. int i, j;
  5281. int node = cpu_to_node(cpu);
  5282. for (i = 0; i < sched_domains_numa_levels; i++) {
  5283. for (j = 0; j < nr_node_ids; j++) {
  5284. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5285. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5286. }
  5287. }
  5288. }
  5289. static void sched_domains_numa_masks_clear(int cpu)
  5290. {
  5291. int i, j;
  5292. for (i = 0; i < sched_domains_numa_levels; i++) {
  5293. for (j = 0; j < nr_node_ids; j++)
  5294. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5295. }
  5296. }
  5297. /*
  5298. * Update sched_domains_numa_masks[level][node] array when new cpus
  5299. * are onlined.
  5300. */
  5301. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5302. unsigned long action,
  5303. void *hcpu)
  5304. {
  5305. int cpu = (long)hcpu;
  5306. switch (action & ~CPU_TASKS_FROZEN) {
  5307. case CPU_ONLINE:
  5308. sched_domains_numa_masks_set(cpu);
  5309. break;
  5310. case CPU_DEAD:
  5311. sched_domains_numa_masks_clear(cpu);
  5312. break;
  5313. default:
  5314. return NOTIFY_DONE;
  5315. }
  5316. return NOTIFY_OK;
  5317. }
  5318. #else
  5319. static inline void sched_init_numa(void)
  5320. {
  5321. }
  5322. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5323. unsigned long action,
  5324. void *hcpu)
  5325. {
  5326. return 0;
  5327. }
  5328. #endif /* CONFIG_NUMA */
  5329. static int __sdt_alloc(const struct cpumask *cpu_map)
  5330. {
  5331. struct sched_domain_topology_level *tl;
  5332. int j;
  5333. for_each_sd_topology(tl) {
  5334. struct sd_data *sdd = &tl->data;
  5335. sdd->sd = alloc_percpu(struct sched_domain *);
  5336. if (!sdd->sd)
  5337. return -ENOMEM;
  5338. sdd->sg = alloc_percpu(struct sched_group *);
  5339. if (!sdd->sg)
  5340. return -ENOMEM;
  5341. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5342. if (!sdd->sgp)
  5343. return -ENOMEM;
  5344. for_each_cpu(j, cpu_map) {
  5345. struct sched_domain *sd;
  5346. struct sched_group *sg;
  5347. struct sched_group_power *sgp;
  5348. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5349. GFP_KERNEL, cpu_to_node(j));
  5350. if (!sd)
  5351. return -ENOMEM;
  5352. *per_cpu_ptr(sdd->sd, j) = sd;
  5353. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5354. GFP_KERNEL, cpu_to_node(j));
  5355. if (!sg)
  5356. return -ENOMEM;
  5357. sg->next = sg;
  5358. *per_cpu_ptr(sdd->sg, j) = sg;
  5359. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5360. GFP_KERNEL, cpu_to_node(j));
  5361. if (!sgp)
  5362. return -ENOMEM;
  5363. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5364. }
  5365. }
  5366. return 0;
  5367. }
  5368. static void __sdt_free(const struct cpumask *cpu_map)
  5369. {
  5370. struct sched_domain_topology_level *tl;
  5371. int j;
  5372. for_each_sd_topology(tl) {
  5373. struct sd_data *sdd = &tl->data;
  5374. for_each_cpu(j, cpu_map) {
  5375. struct sched_domain *sd;
  5376. if (sdd->sd) {
  5377. sd = *per_cpu_ptr(sdd->sd, j);
  5378. if (sd && (sd->flags & SD_OVERLAP))
  5379. free_sched_groups(sd->groups, 0);
  5380. kfree(*per_cpu_ptr(sdd->sd, j));
  5381. }
  5382. if (sdd->sg)
  5383. kfree(*per_cpu_ptr(sdd->sg, j));
  5384. if (sdd->sgp)
  5385. kfree(*per_cpu_ptr(sdd->sgp, j));
  5386. }
  5387. free_percpu(sdd->sd);
  5388. sdd->sd = NULL;
  5389. free_percpu(sdd->sg);
  5390. sdd->sg = NULL;
  5391. free_percpu(sdd->sgp);
  5392. sdd->sgp = NULL;
  5393. }
  5394. }
  5395. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5396. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5397. struct sched_domain *child, int cpu)
  5398. {
  5399. struct sched_domain *sd = tl->init(tl, cpu);
  5400. if (!sd)
  5401. return child;
  5402. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5403. if (child) {
  5404. sd->level = child->level + 1;
  5405. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5406. child->parent = sd;
  5407. sd->child = child;
  5408. }
  5409. set_domain_attribute(sd, attr);
  5410. return sd;
  5411. }
  5412. /*
  5413. * Build sched domains for a given set of cpus and attach the sched domains
  5414. * to the individual cpus
  5415. */
  5416. static int build_sched_domains(const struct cpumask *cpu_map,
  5417. struct sched_domain_attr *attr)
  5418. {
  5419. enum s_alloc alloc_state;
  5420. struct sched_domain *sd;
  5421. struct s_data d;
  5422. int i, ret = -ENOMEM;
  5423. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5424. if (alloc_state != sa_rootdomain)
  5425. goto error;
  5426. /* Set up domains for cpus specified by the cpu_map. */
  5427. for_each_cpu(i, cpu_map) {
  5428. struct sched_domain_topology_level *tl;
  5429. sd = NULL;
  5430. for_each_sd_topology(tl) {
  5431. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5432. if (tl == sched_domain_topology)
  5433. *per_cpu_ptr(d.sd, i) = sd;
  5434. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5435. sd->flags |= SD_OVERLAP;
  5436. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5437. break;
  5438. }
  5439. }
  5440. /* Build the groups for the domains */
  5441. for_each_cpu(i, cpu_map) {
  5442. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5443. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5444. if (sd->flags & SD_OVERLAP) {
  5445. if (build_overlap_sched_groups(sd, i))
  5446. goto error;
  5447. } else {
  5448. if (build_sched_groups(sd, i))
  5449. goto error;
  5450. }
  5451. }
  5452. }
  5453. /* Calculate CPU power for physical packages and nodes */
  5454. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5455. if (!cpumask_test_cpu(i, cpu_map))
  5456. continue;
  5457. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5458. claim_allocations(i, sd);
  5459. init_sched_groups_power(i, sd);
  5460. }
  5461. }
  5462. /* Attach the domains */
  5463. rcu_read_lock();
  5464. for_each_cpu(i, cpu_map) {
  5465. sd = *per_cpu_ptr(d.sd, i);
  5466. cpu_attach_domain(sd, d.rd, i);
  5467. }
  5468. rcu_read_unlock();
  5469. ret = 0;
  5470. error:
  5471. __free_domain_allocs(&d, alloc_state, cpu_map);
  5472. return ret;
  5473. }
  5474. static cpumask_var_t *doms_cur; /* current sched domains */
  5475. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5476. static struct sched_domain_attr *dattr_cur;
  5477. /* attribues of custom domains in 'doms_cur' */
  5478. /*
  5479. * Special case: If a kmalloc of a doms_cur partition (array of
  5480. * cpumask) fails, then fallback to a single sched domain,
  5481. * as determined by the single cpumask fallback_doms.
  5482. */
  5483. static cpumask_var_t fallback_doms;
  5484. /*
  5485. * arch_update_cpu_topology lets virtualized architectures update the
  5486. * cpu core maps. It is supposed to return 1 if the topology changed
  5487. * or 0 if it stayed the same.
  5488. */
  5489. int __weak arch_update_cpu_topology(void)
  5490. {
  5491. return 0;
  5492. }
  5493. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5494. {
  5495. int i;
  5496. cpumask_var_t *doms;
  5497. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5498. if (!doms)
  5499. return NULL;
  5500. for (i = 0; i < ndoms; i++) {
  5501. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5502. free_sched_domains(doms, i);
  5503. return NULL;
  5504. }
  5505. }
  5506. return doms;
  5507. }
  5508. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5509. {
  5510. unsigned int i;
  5511. for (i = 0; i < ndoms; i++)
  5512. free_cpumask_var(doms[i]);
  5513. kfree(doms);
  5514. }
  5515. /*
  5516. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5517. * For now this just excludes isolated cpus, but could be used to
  5518. * exclude other special cases in the future.
  5519. */
  5520. static int init_sched_domains(const struct cpumask *cpu_map)
  5521. {
  5522. int err;
  5523. arch_update_cpu_topology();
  5524. ndoms_cur = 1;
  5525. doms_cur = alloc_sched_domains(ndoms_cur);
  5526. if (!doms_cur)
  5527. doms_cur = &fallback_doms;
  5528. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5529. err = build_sched_domains(doms_cur[0], NULL);
  5530. register_sched_domain_sysctl();
  5531. return err;
  5532. }
  5533. /*
  5534. * Detach sched domains from a group of cpus specified in cpu_map
  5535. * These cpus will now be attached to the NULL domain
  5536. */
  5537. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5538. {
  5539. int i;
  5540. rcu_read_lock();
  5541. for_each_cpu(i, cpu_map)
  5542. cpu_attach_domain(NULL, &def_root_domain, i);
  5543. rcu_read_unlock();
  5544. }
  5545. /* handle null as "default" */
  5546. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5547. struct sched_domain_attr *new, int idx_new)
  5548. {
  5549. struct sched_domain_attr tmp;
  5550. /* fast path */
  5551. if (!new && !cur)
  5552. return 1;
  5553. tmp = SD_ATTR_INIT;
  5554. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5555. new ? (new + idx_new) : &tmp,
  5556. sizeof(struct sched_domain_attr));
  5557. }
  5558. /*
  5559. * Partition sched domains as specified by the 'ndoms_new'
  5560. * cpumasks in the array doms_new[] of cpumasks. This compares
  5561. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5562. * It destroys each deleted domain and builds each new domain.
  5563. *
  5564. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5565. * The masks don't intersect (don't overlap.) We should setup one
  5566. * sched domain for each mask. CPUs not in any of the cpumasks will
  5567. * not be load balanced. If the same cpumask appears both in the
  5568. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5569. * it as it is.
  5570. *
  5571. * The passed in 'doms_new' should be allocated using
  5572. * alloc_sched_domains. This routine takes ownership of it and will
  5573. * free_sched_domains it when done with it. If the caller failed the
  5574. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5575. * and partition_sched_domains() will fallback to the single partition
  5576. * 'fallback_doms', it also forces the domains to be rebuilt.
  5577. *
  5578. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5579. * ndoms_new == 0 is a special case for destroying existing domains,
  5580. * and it will not create the default domain.
  5581. *
  5582. * Call with hotplug lock held
  5583. */
  5584. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5585. struct sched_domain_attr *dattr_new)
  5586. {
  5587. int i, j, n;
  5588. int new_topology;
  5589. mutex_lock(&sched_domains_mutex);
  5590. /* always unregister in case we don't destroy any domains */
  5591. unregister_sched_domain_sysctl();
  5592. /* Let architecture update cpu core mappings. */
  5593. new_topology = arch_update_cpu_topology();
  5594. n = doms_new ? ndoms_new : 0;
  5595. /* Destroy deleted domains */
  5596. for (i = 0; i < ndoms_cur; i++) {
  5597. for (j = 0; j < n && !new_topology; j++) {
  5598. if (cpumask_equal(doms_cur[i], doms_new[j])
  5599. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5600. goto match1;
  5601. }
  5602. /* no match - a current sched domain not in new doms_new[] */
  5603. detach_destroy_domains(doms_cur[i]);
  5604. match1:
  5605. ;
  5606. }
  5607. n = ndoms_cur;
  5608. if (doms_new == NULL) {
  5609. n = 0;
  5610. doms_new = &fallback_doms;
  5611. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5612. WARN_ON_ONCE(dattr_new);
  5613. }
  5614. /* Build new domains */
  5615. for (i = 0; i < ndoms_new; i++) {
  5616. for (j = 0; j < n && !new_topology; j++) {
  5617. if (cpumask_equal(doms_new[i], doms_cur[j])
  5618. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5619. goto match2;
  5620. }
  5621. /* no match - add a new doms_new */
  5622. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5623. match2:
  5624. ;
  5625. }
  5626. /* Remember the new sched domains */
  5627. if (doms_cur != &fallback_doms)
  5628. free_sched_domains(doms_cur, ndoms_cur);
  5629. kfree(dattr_cur); /* kfree(NULL) is safe */
  5630. doms_cur = doms_new;
  5631. dattr_cur = dattr_new;
  5632. ndoms_cur = ndoms_new;
  5633. register_sched_domain_sysctl();
  5634. mutex_unlock(&sched_domains_mutex);
  5635. }
  5636. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5637. /*
  5638. * Update cpusets according to cpu_active mask. If cpusets are
  5639. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5640. * around partition_sched_domains().
  5641. *
  5642. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5643. * want to restore it back to its original state upon resume anyway.
  5644. */
  5645. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5646. void *hcpu)
  5647. {
  5648. switch (action) {
  5649. case CPU_ONLINE_FROZEN:
  5650. case CPU_DOWN_FAILED_FROZEN:
  5651. /*
  5652. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5653. * resume sequence. As long as this is not the last online
  5654. * operation in the resume sequence, just build a single sched
  5655. * domain, ignoring cpusets.
  5656. */
  5657. num_cpus_frozen--;
  5658. if (likely(num_cpus_frozen)) {
  5659. partition_sched_domains(1, NULL, NULL);
  5660. break;
  5661. }
  5662. /*
  5663. * This is the last CPU online operation. So fall through and
  5664. * restore the original sched domains by considering the
  5665. * cpuset configurations.
  5666. */
  5667. case CPU_ONLINE:
  5668. case CPU_DOWN_FAILED:
  5669. cpuset_update_active_cpus(true);
  5670. break;
  5671. default:
  5672. return NOTIFY_DONE;
  5673. }
  5674. return NOTIFY_OK;
  5675. }
  5676. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5677. void *hcpu)
  5678. {
  5679. switch (action) {
  5680. case CPU_DOWN_PREPARE:
  5681. cpuset_update_active_cpus(false);
  5682. break;
  5683. case CPU_DOWN_PREPARE_FROZEN:
  5684. num_cpus_frozen++;
  5685. partition_sched_domains(1, NULL, NULL);
  5686. break;
  5687. default:
  5688. return NOTIFY_DONE;
  5689. }
  5690. return NOTIFY_OK;
  5691. }
  5692. void __init sched_init_smp(void)
  5693. {
  5694. cpumask_var_t non_isolated_cpus;
  5695. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5696. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5697. sched_init_numa();
  5698. /*
  5699. * There's no userspace yet to cause hotplug operations; hence all the
  5700. * cpu masks are stable and all blatant races in the below code cannot
  5701. * happen.
  5702. */
  5703. mutex_lock(&sched_domains_mutex);
  5704. init_sched_domains(cpu_active_mask);
  5705. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5706. if (cpumask_empty(non_isolated_cpus))
  5707. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5708. mutex_unlock(&sched_domains_mutex);
  5709. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5710. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5711. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5712. init_hrtick();
  5713. /* Move init over to a non-isolated CPU */
  5714. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5715. BUG();
  5716. sched_init_granularity();
  5717. free_cpumask_var(non_isolated_cpus);
  5718. init_sched_rt_class();
  5719. init_sched_dl_class();
  5720. }
  5721. #else
  5722. void __init sched_init_smp(void)
  5723. {
  5724. sched_init_granularity();
  5725. }
  5726. #endif /* CONFIG_SMP */
  5727. const_debug unsigned int sysctl_timer_migration = 1;
  5728. int in_sched_functions(unsigned long addr)
  5729. {
  5730. return in_lock_functions(addr) ||
  5731. (addr >= (unsigned long)__sched_text_start
  5732. && addr < (unsigned long)__sched_text_end);
  5733. }
  5734. #ifdef CONFIG_CGROUP_SCHED
  5735. /*
  5736. * Default task group.
  5737. * Every task in system belongs to this group at bootup.
  5738. */
  5739. struct task_group root_task_group;
  5740. LIST_HEAD(task_groups);
  5741. #endif
  5742. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5743. void __init sched_init(void)
  5744. {
  5745. int i, j;
  5746. unsigned long alloc_size = 0, ptr;
  5747. #ifdef CONFIG_FAIR_GROUP_SCHED
  5748. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5749. #endif
  5750. #ifdef CONFIG_RT_GROUP_SCHED
  5751. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5752. #endif
  5753. #ifdef CONFIG_CPUMASK_OFFSTACK
  5754. alloc_size += num_possible_cpus() * cpumask_size();
  5755. #endif
  5756. if (alloc_size) {
  5757. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5758. #ifdef CONFIG_FAIR_GROUP_SCHED
  5759. root_task_group.se = (struct sched_entity **)ptr;
  5760. ptr += nr_cpu_ids * sizeof(void **);
  5761. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5762. ptr += nr_cpu_ids * sizeof(void **);
  5763. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5764. #ifdef CONFIG_RT_GROUP_SCHED
  5765. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5766. ptr += nr_cpu_ids * sizeof(void **);
  5767. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5768. ptr += nr_cpu_ids * sizeof(void **);
  5769. #endif /* CONFIG_RT_GROUP_SCHED */
  5770. #ifdef CONFIG_CPUMASK_OFFSTACK
  5771. for_each_possible_cpu(i) {
  5772. per_cpu(load_balance_mask, i) = (void *)ptr;
  5773. ptr += cpumask_size();
  5774. }
  5775. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5776. }
  5777. init_rt_bandwidth(&def_rt_bandwidth,
  5778. global_rt_period(), global_rt_runtime());
  5779. init_dl_bandwidth(&def_dl_bandwidth,
  5780. global_rt_period(), global_rt_runtime());
  5781. #ifdef CONFIG_SMP
  5782. init_defrootdomain();
  5783. #endif
  5784. #ifdef CONFIG_RT_GROUP_SCHED
  5785. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5786. global_rt_period(), global_rt_runtime());
  5787. #endif /* CONFIG_RT_GROUP_SCHED */
  5788. #ifdef CONFIG_CGROUP_SCHED
  5789. list_add(&root_task_group.list, &task_groups);
  5790. INIT_LIST_HEAD(&root_task_group.children);
  5791. INIT_LIST_HEAD(&root_task_group.siblings);
  5792. autogroup_init(&init_task);
  5793. #endif /* CONFIG_CGROUP_SCHED */
  5794. for_each_possible_cpu(i) {
  5795. struct rq *rq;
  5796. rq = cpu_rq(i);
  5797. raw_spin_lock_init(&rq->lock);
  5798. rq->nr_running = 0;
  5799. rq->calc_load_active = 0;
  5800. rq->calc_load_update = jiffies + LOAD_FREQ;
  5801. init_cfs_rq(&rq->cfs);
  5802. init_rt_rq(&rq->rt, rq);
  5803. init_dl_rq(&rq->dl, rq);
  5804. #ifdef CONFIG_FAIR_GROUP_SCHED
  5805. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5806. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5807. /*
  5808. * How much cpu bandwidth does root_task_group get?
  5809. *
  5810. * In case of task-groups formed thr' the cgroup filesystem, it
  5811. * gets 100% of the cpu resources in the system. This overall
  5812. * system cpu resource is divided among the tasks of
  5813. * root_task_group and its child task-groups in a fair manner,
  5814. * based on each entity's (task or task-group's) weight
  5815. * (se->load.weight).
  5816. *
  5817. * In other words, if root_task_group has 10 tasks of weight
  5818. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5819. * then A0's share of the cpu resource is:
  5820. *
  5821. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5822. *
  5823. * We achieve this by letting root_task_group's tasks sit
  5824. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5825. */
  5826. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5827. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5828. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5829. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5830. #ifdef CONFIG_RT_GROUP_SCHED
  5831. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5832. #endif
  5833. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5834. rq->cpu_load[j] = 0;
  5835. rq->last_load_update_tick = jiffies;
  5836. #ifdef CONFIG_SMP
  5837. rq->sd = NULL;
  5838. rq->rd = NULL;
  5839. rq->cpu_power = SCHED_POWER_SCALE;
  5840. rq->post_schedule = 0;
  5841. rq->active_balance = 0;
  5842. rq->next_balance = jiffies;
  5843. rq->push_cpu = 0;
  5844. rq->cpu = i;
  5845. rq->online = 0;
  5846. rq->idle_stamp = 0;
  5847. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5848. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5849. INIT_LIST_HEAD(&rq->cfs_tasks);
  5850. rq_attach_root(rq, &def_root_domain);
  5851. #ifdef CONFIG_NO_HZ_COMMON
  5852. rq->nohz_flags = 0;
  5853. #endif
  5854. #ifdef CONFIG_NO_HZ_FULL
  5855. rq->last_sched_tick = 0;
  5856. #endif
  5857. #endif
  5858. init_rq_hrtick(rq);
  5859. atomic_set(&rq->nr_iowait, 0);
  5860. }
  5861. set_load_weight(&init_task);
  5862. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5863. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5864. #endif
  5865. /*
  5866. * The boot idle thread does lazy MMU switching as well:
  5867. */
  5868. atomic_inc(&init_mm.mm_count);
  5869. enter_lazy_tlb(&init_mm, current);
  5870. /*
  5871. * Make us the idle thread. Technically, schedule() should not be
  5872. * called from this thread, however somewhere below it might be,
  5873. * but because we are the idle thread, we just pick up running again
  5874. * when this runqueue becomes "idle".
  5875. */
  5876. init_idle(current, smp_processor_id());
  5877. calc_load_update = jiffies + LOAD_FREQ;
  5878. /*
  5879. * During early bootup we pretend to be a normal task:
  5880. */
  5881. current->sched_class = &fair_sched_class;
  5882. #ifdef CONFIG_SMP
  5883. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5884. /* May be allocated at isolcpus cmdline parse time */
  5885. if (cpu_isolated_map == NULL)
  5886. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5887. idle_thread_set_boot_cpu();
  5888. #endif
  5889. init_sched_fair_class();
  5890. scheduler_running = 1;
  5891. }
  5892. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5893. static inline int preempt_count_equals(int preempt_offset)
  5894. {
  5895. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5896. return (nested == preempt_offset);
  5897. }
  5898. void __might_sleep(const char *file, int line, int preempt_offset)
  5899. {
  5900. static unsigned long prev_jiffy; /* ratelimiting */
  5901. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5902. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  5903. !is_idle_task(current)) ||
  5904. system_state != SYSTEM_RUNNING || oops_in_progress)
  5905. return;
  5906. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5907. return;
  5908. prev_jiffy = jiffies;
  5909. printk(KERN_ERR
  5910. "BUG: sleeping function called from invalid context at %s:%d\n",
  5911. file, line);
  5912. printk(KERN_ERR
  5913. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5914. in_atomic(), irqs_disabled(),
  5915. current->pid, current->comm);
  5916. debug_show_held_locks(current);
  5917. if (irqs_disabled())
  5918. print_irqtrace_events(current);
  5919. #ifdef CONFIG_DEBUG_PREEMPT
  5920. if (!preempt_count_equals(preempt_offset)) {
  5921. pr_err("Preemption disabled at:");
  5922. print_ip_sym(current->preempt_disable_ip);
  5923. pr_cont("\n");
  5924. }
  5925. #endif
  5926. dump_stack();
  5927. }
  5928. EXPORT_SYMBOL(__might_sleep);
  5929. #endif
  5930. #ifdef CONFIG_MAGIC_SYSRQ
  5931. static void normalize_task(struct rq *rq, struct task_struct *p)
  5932. {
  5933. const struct sched_class *prev_class = p->sched_class;
  5934. struct sched_attr attr = {
  5935. .sched_policy = SCHED_NORMAL,
  5936. };
  5937. int old_prio = p->prio;
  5938. int on_rq;
  5939. on_rq = p->on_rq;
  5940. if (on_rq)
  5941. dequeue_task(rq, p, 0);
  5942. __setscheduler(rq, p, &attr);
  5943. if (on_rq) {
  5944. enqueue_task(rq, p, 0);
  5945. resched_task(rq->curr);
  5946. }
  5947. check_class_changed(rq, p, prev_class, old_prio);
  5948. }
  5949. void normalize_rt_tasks(void)
  5950. {
  5951. struct task_struct *g, *p;
  5952. unsigned long flags;
  5953. struct rq *rq;
  5954. read_lock_irqsave(&tasklist_lock, flags);
  5955. do_each_thread(g, p) {
  5956. /*
  5957. * Only normalize user tasks:
  5958. */
  5959. if (!p->mm)
  5960. continue;
  5961. p->se.exec_start = 0;
  5962. #ifdef CONFIG_SCHEDSTATS
  5963. p->se.statistics.wait_start = 0;
  5964. p->se.statistics.sleep_start = 0;
  5965. p->se.statistics.block_start = 0;
  5966. #endif
  5967. if (!dl_task(p) && !rt_task(p)) {
  5968. /*
  5969. * Renice negative nice level userspace
  5970. * tasks back to 0:
  5971. */
  5972. if (task_nice(p) < 0 && p->mm)
  5973. set_user_nice(p, 0);
  5974. continue;
  5975. }
  5976. raw_spin_lock(&p->pi_lock);
  5977. rq = __task_rq_lock(p);
  5978. normalize_task(rq, p);
  5979. __task_rq_unlock(rq);
  5980. raw_spin_unlock(&p->pi_lock);
  5981. } while_each_thread(g, p);
  5982. read_unlock_irqrestore(&tasklist_lock, flags);
  5983. }
  5984. #endif /* CONFIG_MAGIC_SYSRQ */
  5985. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5986. /*
  5987. * These functions are only useful for the IA64 MCA handling, or kdb.
  5988. *
  5989. * They can only be called when the whole system has been
  5990. * stopped - every CPU needs to be quiescent, and no scheduling
  5991. * activity can take place. Using them for anything else would
  5992. * be a serious bug, and as a result, they aren't even visible
  5993. * under any other configuration.
  5994. */
  5995. /**
  5996. * curr_task - return the current task for a given cpu.
  5997. * @cpu: the processor in question.
  5998. *
  5999. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6000. *
  6001. * Return: The current task for @cpu.
  6002. */
  6003. struct task_struct *curr_task(int cpu)
  6004. {
  6005. return cpu_curr(cpu);
  6006. }
  6007. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6008. #ifdef CONFIG_IA64
  6009. /**
  6010. * set_curr_task - set the current task for a given cpu.
  6011. * @cpu: the processor in question.
  6012. * @p: the task pointer to set.
  6013. *
  6014. * Description: This function must only be used when non-maskable interrupts
  6015. * are serviced on a separate stack. It allows the architecture to switch the
  6016. * notion of the current task on a cpu in a non-blocking manner. This function
  6017. * must be called with all CPU's synchronized, and interrupts disabled, the
  6018. * and caller must save the original value of the current task (see
  6019. * curr_task() above) and restore that value before reenabling interrupts and
  6020. * re-starting the system.
  6021. *
  6022. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6023. */
  6024. void set_curr_task(int cpu, struct task_struct *p)
  6025. {
  6026. cpu_curr(cpu) = p;
  6027. }
  6028. #endif
  6029. #ifdef CONFIG_CGROUP_SCHED
  6030. /* task_group_lock serializes the addition/removal of task groups */
  6031. static DEFINE_SPINLOCK(task_group_lock);
  6032. static void free_sched_group(struct task_group *tg)
  6033. {
  6034. free_fair_sched_group(tg);
  6035. free_rt_sched_group(tg);
  6036. autogroup_free(tg);
  6037. kfree(tg);
  6038. }
  6039. /* allocate runqueue etc for a new task group */
  6040. struct task_group *sched_create_group(struct task_group *parent)
  6041. {
  6042. struct task_group *tg;
  6043. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6044. if (!tg)
  6045. return ERR_PTR(-ENOMEM);
  6046. if (!alloc_fair_sched_group(tg, parent))
  6047. goto err;
  6048. if (!alloc_rt_sched_group(tg, parent))
  6049. goto err;
  6050. return tg;
  6051. err:
  6052. free_sched_group(tg);
  6053. return ERR_PTR(-ENOMEM);
  6054. }
  6055. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6056. {
  6057. unsigned long flags;
  6058. spin_lock_irqsave(&task_group_lock, flags);
  6059. list_add_rcu(&tg->list, &task_groups);
  6060. WARN_ON(!parent); /* root should already exist */
  6061. tg->parent = parent;
  6062. INIT_LIST_HEAD(&tg->children);
  6063. list_add_rcu(&tg->siblings, &parent->children);
  6064. spin_unlock_irqrestore(&task_group_lock, flags);
  6065. }
  6066. /* rcu callback to free various structures associated with a task group */
  6067. static void free_sched_group_rcu(struct rcu_head *rhp)
  6068. {
  6069. /* now it should be safe to free those cfs_rqs */
  6070. free_sched_group(container_of(rhp, struct task_group, rcu));
  6071. }
  6072. /* Destroy runqueue etc associated with a task group */
  6073. void sched_destroy_group(struct task_group *tg)
  6074. {
  6075. /* wait for possible concurrent references to cfs_rqs complete */
  6076. call_rcu(&tg->rcu, free_sched_group_rcu);
  6077. }
  6078. void sched_offline_group(struct task_group *tg)
  6079. {
  6080. unsigned long flags;
  6081. int i;
  6082. /* end participation in shares distribution */
  6083. for_each_possible_cpu(i)
  6084. unregister_fair_sched_group(tg, i);
  6085. spin_lock_irqsave(&task_group_lock, flags);
  6086. list_del_rcu(&tg->list);
  6087. list_del_rcu(&tg->siblings);
  6088. spin_unlock_irqrestore(&task_group_lock, flags);
  6089. }
  6090. /* change task's runqueue when it moves between groups.
  6091. * The caller of this function should have put the task in its new group
  6092. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6093. * reflect its new group.
  6094. */
  6095. void sched_move_task(struct task_struct *tsk)
  6096. {
  6097. struct task_group *tg;
  6098. int on_rq, running;
  6099. unsigned long flags;
  6100. struct rq *rq;
  6101. rq = task_rq_lock(tsk, &flags);
  6102. running = task_current(rq, tsk);
  6103. on_rq = tsk->on_rq;
  6104. if (on_rq)
  6105. dequeue_task(rq, tsk, 0);
  6106. if (unlikely(running))
  6107. tsk->sched_class->put_prev_task(rq, tsk);
  6108. tg = container_of(task_css_check(tsk, cpu_cgrp_id,
  6109. lockdep_is_held(&tsk->sighand->siglock)),
  6110. struct task_group, css);
  6111. tg = autogroup_task_group(tsk, tg);
  6112. tsk->sched_task_group = tg;
  6113. #ifdef CONFIG_FAIR_GROUP_SCHED
  6114. if (tsk->sched_class->task_move_group)
  6115. tsk->sched_class->task_move_group(tsk, on_rq);
  6116. else
  6117. #endif
  6118. set_task_rq(tsk, task_cpu(tsk));
  6119. if (unlikely(running))
  6120. tsk->sched_class->set_curr_task(rq);
  6121. if (on_rq)
  6122. enqueue_task(rq, tsk, 0);
  6123. task_rq_unlock(rq, tsk, &flags);
  6124. }
  6125. #endif /* CONFIG_CGROUP_SCHED */
  6126. #ifdef CONFIG_RT_GROUP_SCHED
  6127. /*
  6128. * Ensure that the real time constraints are schedulable.
  6129. */
  6130. static DEFINE_MUTEX(rt_constraints_mutex);
  6131. /* Must be called with tasklist_lock held */
  6132. static inline int tg_has_rt_tasks(struct task_group *tg)
  6133. {
  6134. struct task_struct *g, *p;
  6135. do_each_thread(g, p) {
  6136. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6137. return 1;
  6138. } while_each_thread(g, p);
  6139. return 0;
  6140. }
  6141. struct rt_schedulable_data {
  6142. struct task_group *tg;
  6143. u64 rt_period;
  6144. u64 rt_runtime;
  6145. };
  6146. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6147. {
  6148. struct rt_schedulable_data *d = data;
  6149. struct task_group *child;
  6150. unsigned long total, sum = 0;
  6151. u64 period, runtime;
  6152. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6153. runtime = tg->rt_bandwidth.rt_runtime;
  6154. if (tg == d->tg) {
  6155. period = d->rt_period;
  6156. runtime = d->rt_runtime;
  6157. }
  6158. /*
  6159. * Cannot have more runtime than the period.
  6160. */
  6161. if (runtime > period && runtime != RUNTIME_INF)
  6162. return -EINVAL;
  6163. /*
  6164. * Ensure we don't starve existing RT tasks.
  6165. */
  6166. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6167. return -EBUSY;
  6168. total = to_ratio(period, runtime);
  6169. /*
  6170. * Nobody can have more than the global setting allows.
  6171. */
  6172. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6173. return -EINVAL;
  6174. /*
  6175. * The sum of our children's runtime should not exceed our own.
  6176. */
  6177. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6178. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6179. runtime = child->rt_bandwidth.rt_runtime;
  6180. if (child == d->tg) {
  6181. period = d->rt_period;
  6182. runtime = d->rt_runtime;
  6183. }
  6184. sum += to_ratio(period, runtime);
  6185. }
  6186. if (sum > total)
  6187. return -EINVAL;
  6188. return 0;
  6189. }
  6190. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6191. {
  6192. int ret;
  6193. struct rt_schedulable_data data = {
  6194. .tg = tg,
  6195. .rt_period = period,
  6196. .rt_runtime = runtime,
  6197. };
  6198. rcu_read_lock();
  6199. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6200. rcu_read_unlock();
  6201. return ret;
  6202. }
  6203. static int tg_set_rt_bandwidth(struct task_group *tg,
  6204. u64 rt_period, u64 rt_runtime)
  6205. {
  6206. int i, err = 0;
  6207. mutex_lock(&rt_constraints_mutex);
  6208. read_lock(&tasklist_lock);
  6209. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6210. if (err)
  6211. goto unlock;
  6212. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6213. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6214. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6215. for_each_possible_cpu(i) {
  6216. struct rt_rq *rt_rq = tg->rt_rq[i];
  6217. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6218. rt_rq->rt_runtime = rt_runtime;
  6219. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6220. }
  6221. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6222. unlock:
  6223. read_unlock(&tasklist_lock);
  6224. mutex_unlock(&rt_constraints_mutex);
  6225. return err;
  6226. }
  6227. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6228. {
  6229. u64 rt_runtime, rt_period;
  6230. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6231. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6232. if (rt_runtime_us < 0)
  6233. rt_runtime = RUNTIME_INF;
  6234. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6235. }
  6236. static long sched_group_rt_runtime(struct task_group *tg)
  6237. {
  6238. u64 rt_runtime_us;
  6239. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6240. return -1;
  6241. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6242. do_div(rt_runtime_us, NSEC_PER_USEC);
  6243. return rt_runtime_us;
  6244. }
  6245. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6246. {
  6247. u64 rt_runtime, rt_period;
  6248. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6249. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6250. if (rt_period == 0)
  6251. return -EINVAL;
  6252. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6253. }
  6254. static long sched_group_rt_period(struct task_group *tg)
  6255. {
  6256. u64 rt_period_us;
  6257. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6258. do_div(rt_period_us, NSEC_PER_USEC);
  6259. return rt_period_us;
  6260. }
  6261. #endif /* CONFIG_RT_GROUP_SCHED */
  6262. #ifdef CONFIG_RT_GROUP_SCHED
  6263. static int sched_rt_global_constraints(void)
  6264. {
  6265. int ret = 0;
  6266. mutex_lock(&rt_constraints_mutex);
  6267. read_lock(&tasklist_lock);
  6268. ret = __rt_schedulable(NULL, 0, 0);
  6269. read_unlock(&tasklist_lock);
  6270. mutex_unlock(&rt_constraints_mutex);
  6271. return ret;
  6272. }
  6273. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6274. {
  6275. /* Don't accept realtime tasks when there is no way for them to run */
  6276. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6277. return 0;
  6278. return 1;
  6279. }
  6280. #else /* !CONFIG_RT_GROUP_SCHED */
  6281. static int sched_rt_global_constraints(void)
  6282. {
  6283. unsigned long flags;
  6284. int i, ret = 0;
  6285. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6286. for_each_possible_cpu(i) {
  6287. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6288. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6289. rt_rq->rt_runtime = global_rt_runtime();
  6290. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6291. }
  6292. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6293. return ret;
  6294. }
  6295. #endif /* CONFIG_RT_GROUP_SCHED */
  6296. static int sched_dl_global_constraints(void)
  6297. {
  6298. u64 runtime = global_rt_runtime();
  6299. u64 period = global_rt_period();
  6300. u64 new_bw = to_ratio(period, runtime);
  6301. int cpu, ret = 0;
  6302. unsigned long flags;
  6303. /*
  6304. * Here we want to check the bandwidth not being set to some
  6305. * value smaller than the currently allocated bandwidth in
  6306. * any of the root_domains.
  6307. *
  6308. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6309. * cycling on root_domains... Discussion on different/better
  6310. * solutions is welcome!
  6311. */
  6312. for_each_possible_cpu(cpu) {
  6313. struct dl_bw *dl_b = dl_bw_of(cpu);
  6314. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6315. if (new_bw < dl_b->total_bw)
  6316. ret = -EBUSY;
  6317. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6318. if (ret)
  6319. break;
  6320. }
  6321. return ret;
  6322. }
  6323. static void sched_dl_do_global(void)
  6324. {
  6325. u64 new_bw = -1;
  6326. int cpu;
  6327. unsigned long flags;
  6328. def_dl_bandwidth.dl_period = global_rt_period();
  6329. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6330. if (global_rt_runtime() != RUNTIME_INF)
  6331. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6332. /*
  6333. * FIXME: As above...
  6334. */
  6335. for_each_possible_cpu(cpu) {
  6336. struct dl_bw *dl_b = dl_bw_of(cpu);
  6337. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6338. dl_b->bw = new_bw;
  6339. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6340. }
  6341. }
  6342. static int sched_rt_global_validate(void)
  6343. {
  6344. if (sysctl_sched_rt_period <= 0)
  6345. return -EINVAL;
  6346. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6347. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6348. return -EINVAL;
  6349. return 0;
  6350. }
  6351. static void sched_rt_do_global(void)
  6352. {
  6353. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6354. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6355. }
  6356. int sched_rt_handler(struct ctl_table *table, int write,
  6357. void __user *buffer, size_t *lenp,
  6358. loff_t *ppos)
  6359. {
  6360. int old_period, old_runtime;
  6361. static DEFINE_MUTEX(mutex);
  6362. int ret;
  6363. mutex_lock(&mutex);
  6364. old_period = sysctl_sched_rt_period;
  6365. old_runtime = sysctl_sched_rt_runtime;
  6366. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6367. if (!ret && write) {
  6368. ret = sched_rt_global_validate();
  6369. if (ret)
  6370. goto undo;
  6371. ret = sched_rt_global_constraints();
  6372. if (ret)
  6373. goto undo;
  6374. ret = sched_dl_global_constraints();
  6375. if (ret)
  6376. goto undo;
  6377. sched_rt_do_global();
  6378. sched_dl_do_global();
  6379. }
  6380. if (0) {
  6381. undo:
  6382. sysctl_sched_rt_period = old_period;
  6383. sysctl_sched_rt_runtime = old_runtime;
  6384. }
  6385. mutex_unlock(&mutex);
  6386. return ret;
  6387. }
  6388. int sched_rr_handler(struct ctl_table *table, int write,
  6389. void __user *buffer, size_t *lenp,
  6390. loff_t *ppos)
  6391. {
  6392. int ret;
  6393. static DEFINE_MUTEX(mutex);
  6394. mutex_lock(&mutex);
  6395. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6396. /* make sure that internally we keep jiffies */
  6397. /* also, writing zero resets timeslice to default */
  6398. if (!ret && write) {
  6399. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6400. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6401. }
  6402. mutex_unlock(&mutex);
  6403. return ret;
  6404. }
  6405. #ifdef CONFIG_CGROUP_SCHED
  6406. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6407. {
  6408. return css ? container_of(css, struct task_group, css) : NULL;
  6409. }
  6410. static struct cgroup_subsys_state *
  6411. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6412. {
  6413. struct task_group *parent = css_tg(parent_css);
  6414. struct task_group *tg;
  6415. if (!parent) {
  6416. /* This is early initialization for the top cgroup */
  6417. return &root_task_group.css;
  6418. }
  6419. tg = sched_create_group(parent);
  6420. if (IS_ERR(tg))
  6421. return ERR_PTR(-ENOMEM);
  6422. return &tg->css;
  6423. }
  6424. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6425. {
  6426. struct task_group *tg = css_tg(css);
  6427. struct task_group *parent = css_tg(css_parent(css));
  6428. if (parent)
  6429. sched_online_group(tg, parent);
  6430. return 0;
  6431. }
  6432. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6433. {
  6434. struct task_group *tg = css_tg(css);
  6435. sched_destroy_group(tg);
  6436. }
  6437. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6438. {
  6439. struct task_group *tg = css_tg(css);
  6440. sched_offline_group(tg);
  6441. }
  6442. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6443. struct cgroup_taskset *tset)
  6444. {
  6445. struct task_struct *task;
  6446. cgroup_taskset_for_each(task, tset) {
  6447. #ifdef CONFIG_RT_GROUP_SCHED
  6448. if (!sched_rt_can_attach(css_tg(css), task))
  6449. return -EINVAL;
  6450. #else
  6451. /* We don't support RT-tasks being in separate groups */
  6452. if (task->sched_class != &fair_sched_class)
  6453. return -EINVAL;
  6454. #endif
  6455. }
  6456. return 0;
  6457. }
  6458. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6459. struct cgroup_taskset *tset)
  6460. {
  6461. struct task_struct *task;
  6462. cgroup_taskset_for_each(task, tset)
  6463. sched_move_task(task);
  6464. }
  6465. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6466. struct cgroup_subsys_state *old_css,
  6467. struct task_struct *task)
  6468. {
  6469. /*
  6470. * cgroup_exit() is called in the copy_process() failure path.
  6471. * Ignore this case since the task hasn't ran yet, this avoids
  6472. * trying to poke a half freed task state from generic code.
  6473. */
  6474. if (!(task->flags & PF_EXITING))
  6475. return;
  6476. sched_move_task(task);
  6477. }
  6478. #ifdef CONFIG_FAIR_GROUP_SCHED
  6479. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6480. struct cftype *cftype, u64 shareval)
  6481. {
  6482. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6483. }
  6484. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6485. struct cftype *cft)
  6486. {
  6487. struct task_group *tg = css_tg(css);
  6488. return (u64) scale_load_down(tg->shares);
  6489. }
  6490. #ifdef CONFIG_CFS_BANDWIDTH
  6491. static DEFINE_MUTEX(cfs_constraints_mutex);
  6492. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6493. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6494. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6495. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6496. {
  6497. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6498. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6499. if (tg == &root_task_group)
  6500. return -EINVAL;
  6501. /*
  6502. * Ensure we have at some amount of bandwidth every period. This is
  6503. * to prevent reaching a state of large arrears when throttled via
  6504. * entity_tick() resulting in prolonged exit starvation.
  6505. */
  6506. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6507. return -EINVAL;
  6508. /*
  6509. * Likewise, bound things on the otherside by preventing insane quota
  6510. * periods. This also allows us to normalize in computing quota
  6511. * feasibility.
  6512. */
  6513. if (period > max_cfs_quota_period)
  6514. return -EINVAL;
  6515. mutex_lock(&cfs_constraints_mutex);
  6516. ret = __cfs_schedulable(tg, period, quota);
  6517. if (ret)
  6518. goto out_unlock;
  6519. runtime_enabled = quota != RUNTIME_INF;
  6520. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6521. /*
  6522. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6523. * before making related changes, and on->off must occur afterwards
  6524. */
  6525. if (runtime_enabled && !runtime_was_enabled)
  6526. cfs_bandwidth_usage_inc();
  6527. raw_spin_lock_irq(&cfs_b->lock);
  6528. cfs_b->period = ns_to_ktime(period);
  6529. cfs_b->quota = quota;
  6530. __refill_cfs_bandwidth_runtime(cfs_b);
  6531. /* restart the period timer (if active) to handle new period expiry */
  6532. if (runtime_enabled && cfs_b->timer_active) {
  6533. /* force a reprogram */
  6534. cfs_b->timer_active = 0;
  6535. __start_cfs_bandwidth(cfs_b);
  6536. }
  6537. raw_spin_unlock_irq(&cfs_b->lock);
  6538. for_each_possible_cpu(i) {
  6539. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6540. struct rq *rq = cfs_rq->rq;
  6541. raw_spin_lock_irq(&rq->lock);
  6542. cfs_rq->runtime_enabled = runtime_enabled;
  6543. cfs_rq->runtime_remaining = 0;
  6544. if (cfs_rq->throttled)
  6545. unthrottle_cfs_rq(cfs_rq);
  6546. raw_spin_unlock_irq(&rq->lock);
  6547. }
  6548. if (runtime_was_enabled && !runtime_enabled)
  6549. cfs_bandwidth_usage_dec();
  6550. out_unlock:
  6551. mutex_unlock(&cfs_constraints_mutex);
  6552. return ret;
  6553. }
  6554. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6555. {
  6556. u64 quota, period;
  6557. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6558. if (cfs_quota_us < 0)
  6559. quota = RUNTIME_INF;
  6560. else
  6561. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6562. return tg_set_cfs_bandwidth(tg, period, quota);
  6563. }
  6564. long tg_get_cfs_quota(struct task_group *tg)
  6565. {
  6566. u64 quota_us;
  6567. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6568. return -1;
  6569. quota_us = tg->cfs_bandwidth.quota;
  6570. do_div(quota_us, NSEC_PER_USEC);
  6571. return quota_us;
  6572. }
  6573. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6574. {
  6575. u64 quota, period;
  6576. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6577. quota = tg->cfs_bandwidth.quota;
  6578. return tg_set_cfs_bandwidth(tg, period, quota);
  6579. }
  6580. long tg_get_cfs_period(struct task_group *tg)
  6581. {
  6582. u64 cfs_period_us;
  6583. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6584. do_div(cfs_period_us, NSEC_PER_USEC);
  6585. return cfs_period_us;
  6586. }
  6587. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6588. struct cftype *cft)
  6589. {
  6590. return tg_get_cfs_quota(css_tg(css));
  6591. }
  6592. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6593. struct cftype *cftype, s64 cfs_quota_us)
  6594. {
  6595. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6596. }
  6597. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6598. struct cftype *cft)
  6599. {
  6600. return tg_get_cfs_period(css_tg(css));
  6601. }
  6602. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6603. struct cftype *cftype, u64 cfs_period_us)
  6604. {
  6605. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6606. }
  6607. struct cfs_schedulable_data {
  6608. struct task_group *tg;
  6609. u64 period, quota;
  6610. };
  6611. /*
  6612. * normalize group quota/period to be quota/max_period
  6613. * note: units are usecs
  6614. */
  6615. static u64 normalize_cfs_quota(struct task_group *tg,
  6616. struct cfs_schedulable_data *d)
  6617. {
  6618. u64 quota, period;
  6619. if (tg == d->tg) {
  6620. period = d->period;
  6621. quota = d->quota;
  6622. } else {
  6623. period = tg_get_cfs_period(tg);
  6624. quota = tg_get_cfs_quota(tg);
  6625. }
  6626. /* note: these should typically be equivalent */
  6627. if (quota == RUNTIME_INF || quota == -1)
  6628. return RUNTIME_INF;
  6629. return to_ratio(period, quota);
  6630. }
  6631. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6632. {
  6633. struct cfs_schedulable_data *d = data;
  6634. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6635. s64 quota = 0, parent_quota = -1;
  6636. if (!tg->parent) {
  6637. quota = RUNTIME_INF;
  6638. } else {
  6639. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6640. quota = normalize_cfs_quota(tg, d);
  6641. parent_quota = parent_b->hierarchal_quota;
  6642. /*
  6643. * ensure max(child_quota) <= parent_quota, inherit when no
  6644. * limit is set
  6645. */
  6646. if (quota == RUNTIME_INF)
  6647. quota = parent_quota;
  6648. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6649. return -EINVAL;
  6650. }
  6651. cfs_b->hierarchal_quota = quota;
  6652. return 0;
  6653. }
  6654. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6655. {
  6656. int ret;
  6657. struct cfs_schedulable_data data = {
  6658. .tg = tg,
  6659. .period = period,
  6660. .quota = quota,
  6661. };
  6662. if (quota != RUNTIME_INF) {
  6663. do_div(data.period, NSEC_PER_USEC);
  6664. do_div(data.quota, NSEC_PER_USEC);
  6665. }
  6666. rcu_read_lock();
  6667. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6668. rcu_read_unlock();
  6669. return ret;
  6670. }
  6671. static int cpu_stats_show(struct seq_file *sf, void *v)
  6672. {
  6673. struct task_group *tg = css_tg(seq_css(sf));
  6674. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6675. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6676. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6677. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6678. return 0;
  6679. }
  6680. #endif /* CONFIG_CFS_BANDWIDTH */
  6681. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6682. #ifdef CONFIG_RT_GROUP_SCHED
  6683. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6684. struct cftype *cft, s64 val)
  6685. {
  6686. return sched_group_set_rt_runtime(css_tg(css), val);
  6687. }
  6688. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6689. struct cftype *cft)
  6690. {
  6691. return sched_group_rt_runtime(css_tg(css));
  6692. }
  6693. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6694. struct cftype *cftype, u64 rt_period_us)
  6695. {
  6696. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6697. }
  6698. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6699. struct cftype *cft)
  6700. {
  6701. return sched_group_rt_period(css_tg(css));
  6702. }
  6703. #endif /* CONFIG_RT_GROUP_SCHED */
  6704. static struct cftype cpu_files[] = {
  6705. #ifdef CONFIG_FAIR_GROUP_SCHED
  6706. {
  6707. .name = "shares",
  6708. .read_u64 = cpu_shares_read_u64,
  6709. .write_u64 = cpu_shares_write_u64,
  6710. },
  6711. #endif
  6712. #ifdef CONFIG_CFS_BANDWIDTH
  6713. {
  6714. .name = "cfs_quota_us",
  6715. .read_s64 = cpu_cfs_quota_read_s64,
  6716. .write_s64 = cpu_cfs_quota_write_s64,
  6717. },
  6718. {
  6719. .name = "cfs_period_us",
  6720. .read_u64 = cpu_cfs_period_read_u64,
  6721. .write_u64 = cpu_cfs_period_write_u64,
  6722. },
  6723. {
  6724. .name = "stat",
  6725. .seq_show = cpu_stats_show,
  6726. },
  6727. #endif
  6728. #ifdef CONFIG_RT_GROUP_SCHED
  6729. {
  6730. .name = "rt_runtime_us",
  6731. .read_s64 = cpu_rt_runtime_read,
  6732. .write_s64 = cpu_rt_runtime_write,
  6733. },
  6734. {
  6735. .name = "rt_period_us",
  6736. .read_u64 = cpu_rt_period_read_uint,
  6737. .write_u64 = cpu_rt_period_write_uint,
  6738. },
  6739. #endif
  6740. { } /* terminate */
  6741. };
  6742. struct cgroup_subsys cpu_cgrp_subsys = {
  6743. .css_alloc = cpu_cgroup_css_alloc,
  6744. .css_free = cpu_cgroup_css_free,
  6745. .css_online = cpu_cgroup_css_online,
  6746. .css_offline = cpu_cgroup_css_offline,
  6747. .can_attach = cpu_cgroup_can_attach,
  6748. .attach = cpu_cgroup_attach,
  6749. .exit = cpu_cgroup_exit,
  6750. .base_cftypes = cpu_files,
  6751. .early_init = 1,
  6752. };
  6753. #endif /* CONFIG_CGROUP_SCHED */
  6754. void dump_cpu_task(int cpu)
  6755. {
  6756. pr_info("Task dump for CPU %d:\n", cpu);
  6757. sched_show_task(cpu_curr(cpu));
  6758. }