i915_debugfs.c 117 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. static const char *yesno(int v)
  47. {
  48. return v ? "yes" : "no";
  49. }
  50. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  51. * allocated we need to hook into the minor for release. */
  52. static int
  53. drm_add_fake_info_node(struct drm_minor *minor,
  54. struct dentry *ent,
  55. const void *key)
  56. {
  57. struct drm_info_node *node;
  58. node = kmalloc(sizeof(*node), GFP_KERNEL);
  59. if (node == NULL) {
  60. debugfs_remove(ent);
  61. return -ENOMEM;
  62. }
  63. node->minor = minor;
  64. node->dent = ent;
  65. node->info_ent = (void *) key;
  66. mutex_lock(&minor->debugfs_lock);
  67. list_add(&node->list, &minor->debugfs_list);
  68. mutex_unlock(&minor->debugfs_lock);
  69. return 0;
  70. }
  71. static int i915_capabilities(struct seq_file *m, void *data)
  72. {
  73. struct drm_info_node *node = m->private;
  74. struct drm_device *dev = node->minor->dev;
  75. const struct intel_device_info *info = INTEL_INFO(dev);
  76. seq_printf(m, "gen: %d\n", info->gen);
  77. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  78. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  79. #define SEP_SEMICOLON ;
  80. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  81. #undef PRINT_FLAG
  82. #undef SEP_SEMICOLON
  83. return 0;
  84. }
  85. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. if (i915_gem_obj_is_pinned(obj))
  88. return "p";
  89. else
  90. return " ";
  91. }
  92. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  93. {
  94. switch (obj->tiling_mode) {
  95. default:
  96. case I915_TILING_NONE: return " ";
  97. case I915_TILING_X: return "X";
  98. case I915_TILING_Y: return "Y";
  99. }
  100. }
  101. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  102. {
  103. return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
  104. }
  105. static void
  106. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  107. {
  108. struct i915_vma *vma;
  109. int pin_count = 0;
  110. seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
  111. &obj->base,
  112. get_pin_flag(obj),
  113. get_tiling_flag(obj),
  114. get_global_flag(obj),
  115. obj->base.size / 1024,
  116. obj->base.read_domains,
  117. obj->base.write_domain,
  118. i915_gem_request_get_seqno(obj->last_read_req),
  119. i915_gem_request_get_seqno(obj->last_write_req),
  120. i915_gem_request_get_seqno(obj->last_fenced_req),
  121. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  122. obj->dirty ? " dirty" : "",
  123. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  124. if (obj->base.name)
  125. seq_printf(m, " (name: %d)", obj->base.name);
  126. list_for_each_entry(vma, &obj->vma_list, vma_link)
  127. if (vma->pin_count > 0)
  128. pin_count++;
  129. seq_printf(m, " (pinned x %d)", pin_count);
  130. if (obj->pin_display)
  131. seq_printf(m, " (display)");
  132. if (obj->fence_reg != I915_FENCE_REG_NONE)
  133. seq_printf(m, " (fence: %d)", obj->fence_reg);
  134. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  135. if (!i915_is_ggtt(vma->vm))
  136. seq_puts(m, " (pp");
  137. else
  138. seq_puts(m, " (g");
  139. seq_printf(m, "gtt offset: %08lx, size: %08lx, type: %u)",
  140. vma->node.start, vma->node.size,
  141. vma->ggtt_view.type);
  142. }
  143. if (obj->stolen)
  144. seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
  145. if (obj->pin_mappable || obj->fault_mappable) {
  146. char s[3], *t = s;
  147. if (obj->pin_mappable)
  148. *t++ = 'p';
  149. if (obj->fault_mappable)
  150. *t++ = 'f';
  151. *t = '\0';
  152. seq_printf(m, " (%s mappable)", s);
  153. }
  154. if (obj->last_read_req != NULL)
  155. seq_printf(m, " (%s)",
  156. i915_gem_request_get_ring(obj->last_read_req)->name);
  157. if (obj->frontbuffer_bits)
  158. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  159. }
  160. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  161. {
  162. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  163. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  164. seq_putc(m, ' ');
  165. }
  166. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  167. {
  168. struct drm_info_node *node = m->private;
  169. uintptr_t list = (uintptr_t) node->info_ent->data;
  170. struct list_head *head;
  171. struct drm_device *dev = node->minor->dev;
  172. struct drm_i915_private *dev_priv = dev->dev_private;
  173. struct i915_address_space *vm = &dev_priv->gtt.base;
  174. struct i915_vma *vma;
  175. size_t total_obj_size, total_gtt_size;
  176. int count, ret;
  177. ret = mutex_lock_interruptible(&dev->struct_mutex);
  178. if (ret)
  179. return ret;
  180. /* FIXME: the user of this interface might want more than just GGTT */
  181. switch (list) {
  182. case ACTIVE_LIST:
  183. seq_puts(m, "Active:\n");
  184. head = &vm->active_list;
  185. break;
  186. case INACTIVE_LIST:
  187. seq_puts(m, "Inactive:\n");
  188. head = &vm->inactive_list;
  189. break;
  190. default:
  191. mutex_unlock(&dev->struct_mutex);
  192. return -EINVAL;
  193. }
  194. total_obj_size = total_gtt_size = count = 0;
  195. list_for_each_entry(vma, head, mm_list) {
  196. seq_printf(m, " ");
  197. describe_obj(m, vma->obj);
  198. seq_printf(m, "\n");
  199. total_obj_size += vma->obj->base.size;
  200. total_gtt_size += vma->node.size;
  201. count++;
  202. }
  203. mutex_unlock(&dev->struct_mutex);
  204. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  205. count, total_obj_size, total_gtt_size);
  206. return 0;
  207. }
  208. static int obj_rank_by_stolen(void *priv,
  209. struct list_head *A, struct list_head *B)
  210. {
  211. struct drm_i915_gem_object *a =
  212. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  213. struct drm_i915_gem_object *b =
  214. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  215. return a->stolen->start - b->stolen->start;
  216. }
  217. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  218. {
  219. struct drm_info_node *node = m->private;
  220. struct drm_device *dev = node->minor->dev;
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. struct drm_i915_gem_object *obj;
  223. size_t total_obj_size, total_gtt_size;
  224. LIST_HEAD(stolen);
  225. int count, ret;
  226. ret = mutex_lock_interruptible(&dev->struct_mutex);
  227. if (ret)
  228. return ret;
  229. total_obj_size = total_gtt_size = count = 0;
  230. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  231. if (obj->stolen == NULL)
  232. continue;
  233. list_add(&obj->obj_exec_link, &stolen);
  234. total_obj_size += obj->base.size;
  235. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  236. count++;
  237. }
  238. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  239. if (obj->stolen == NULL)
  240. continue;
  241. list_add(&obj->obj_exec_link, &stolen);
  242. total_obj_size += obj->base.size;
  243. count++;
  244. }
  245. list_sort(NULL, &stolen, obj_rank_by_stolen);
  246. seq_puts(m, "Stolen:\n");
  247. while (!list_empty(&stolen)) {
  248. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  249. seq_puts(m, " ");
  250. describe_obj(m, obj);
  251. seq_putc(m, '\n');
  252. list_del_init(&obj->obj_exec_link);
  253. }
  254. mutex_unlock(&dev->struct_mutex);
  255. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  256. count, total_obj_size, total_gtt_size);
  257. return 0;
  258. }
  259. #define count_objects(list, member) do { \
  260. list_for_each_entry(obj, list, member) { \
  261. size += i915_gem_obj_ggtt_size(obj); \
  262. ++count; \
  263. if (obj->map_and_fenceable) { \
  264. mappable_size += i915_gem_obj_ggtt_size(obj); \
  265. ++mappable_count; \
  266. } \
  267. } \
  268. } while (0)
  269. struct file_stats {
  270. struct drm_i915_file_private *file_priv;
  271. int count;
  272. size_t total, unbound;
  273. size_t global, shared;
  274. size_t active, inactive;
  275. };
  276. static int per_file_stats(int id, void *ptr, void *data)
  277. {
  278. struct drm_i915_gem_object *obj = ptr;
  279. struct file_stats *stats = data;
  280. struct i915_vma *vma;
  281. stats->count++;
  282. stats->total += obj->base.size;
  283. if (obj->base.name || obj->base.dma_buf)
  284. stats->shared += obj->base.size;
  285. if (USES_FULL_PPGTT(obj->base.dev)) {
  286. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  287. struct i915_hw_ppgtt *ppgtt;
  288. if (!drm_mm_node_allocated(&vma->node))
  289. continue;
  290. if (i915_is_ggtt(vma->vm)) {
  291. stats->global += obj->base.size;
  292. continue;
  293. }
  294. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  295. if (ppgtt->file_priv != stats->file_priv)
  296. continue;
  297. if (obj->active) /* XXX per-vma statistic */
  298. stats->active += obj->base.size;
  299. else
  300. stats->inactive += obj->base.size;
  301. return 0;
  302. }
  303. } else {
  304. if (i915_gem_obj_ggtt_bound(obj)) {
  305. stats->global += obj->base.size;
  306. if (obj->active)
  307. stats->active += obj->base.size;
  308. else
  309. stats->inactive += obj->base.size;
  310. return 0;
  311. }
  312. }
  313. if (!list_empty(&obj->global_list))
  314. stats->unbound += obj->base.size;
  315. return 0;
  316. }
  317. #define count_vmas(list, member) do { \
  318. list_for_each_entry(vma, list, member) { \
  319. size += i915_gem_obj_ggtt_size(vma->obj); \
  320. ++count; \
  321. if (vma->obj->map_and_fenceable) { \
  322. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  323. ++mappable_count; \
  324. } \
  325. } \
  326. } while (0)
  327. static int i915_gem_object_info(struct seq_file *m, void* data)
  328. {
  329. struct drm_info_node *node = m->private;
  330. struct drm_device *dev = node->minor->dev;
  331. struct drm_i915_private *dev_priv = dev->dev_private;
  332. u32 count, mappable_count, purgeable_count;
  333. size_t size, mappable_size, purgeable_size;
  334. struct drm_i915_gem_object *obj;
  335. struct i915_address_space *vm = &dev_priv->gtt.base;
  336. struct drm_file *file;
  337. struct i915_vma *vma;
  338. int ret;
  339. ret = mutex_lock_interruptible(&dev->struct_mutex);
  340. if (ret)
  341. return ret;
  342. seq_printf(m, "%u objects, %zu bytes\n",
  343. dev_priv->mm.object_count,
  344. dev_priv->mm.object_memory);
  345. size = count = mappable_size = mappable_count = 0;
  346. count_objects(&dev_priv->mm.bound_list, global_list);
  347. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  348. count, mappable_count, size, mappable_size);
  349. size = count = mappable_size = mappable_count = 0;
  350. count_vmas(&vm->active_list, mm_list);
  351. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  352. count, mappable_count, size, mappable_size);
  353. size = count = mappable_size = mappable_count = 0;
  354. count_vmas(&vm->inactive_list, mm_list);
  355. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  356. count, mappable_count, size, mappable_size);
  357. size = count = purgeable_size = purgeable_count = 0;
  358. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  359. size += obj->base.size, ++count;
  360. if (obj->madv == I915_MADV_DONTNEED)
  361. purgeable_size += obj->base.size, ++purgeable_count;
  362. }
  363. seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
  364. size = count = mappable_size = mappable_count = 0;
  365. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  366. if (obj->fault_mappable) {
  367. size += i915_gem_obj_ggtt_size(obj);
  368. ++count;
  369. }
  370. if (obj->pin_mappable) {
  371. mappable_size += i915_gem_obj_ggtt_size(obj);
  372. ++mappable_count;
  373. }
  374. if (obj->madv == I915_MADV_DONTNEED) {
  375. purgeable_size += obj->base.size;
  376. ++purgeable_count;
  377. }
  378. }
  379. seq_printf(m, "%u purgeable objects, %zu bytes\n",
  380. purgeable_count, purgeable_size);
  381. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  382. mappable_count, mappable_size);
  383. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  384. count, size);
  385. seq_printf(m, "%zu [%lu] gtt total\n",
  386. dev_priv->gtt.base.total,
  387. dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  388. seq_putc(m, '\n');
  389. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  390. struct file_stats stats;
  391. struct task_struct *task;
  392. memset(&stats, 0, sizeof(stats));
  393. stats.file_priv = file->driver_priv;
  394. spin_lock(&file->table_lock);
  395. idr_for_each(&file->object_idr, per_file_stats, &stats);
  396. spin_unlock(&file->table_lock);
  397. /*
  398. * Although we have a valid reference on file->pid, that does
  399. * not guarantee that the task_struct who called get_pid() is
  400. * still alive (e.g. get_pid(current) => fork() => exit()).
  401. * Therefore, we need to protect this ->comm access using RCU.
  402. */
  403. rcu_read_lock();
  404. task = pid_task(file->pid, PIDTYPE_PID);
  405. seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
  406. task ? task->comm : "<unknown>",
  407. stats.count,
  408. stats.total,
  409. stats.active,
  410. stats.inactive,
  411. stats.global,
  412. stats.shared,
  413. stats.unbound);
  414. rcu_read_unlock();
  415. }
  416. mutex_unlock(&dev->struct_mutex);
  417. return 0;
  418. }
  419. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  420. {
  421. struct drm_info_node *node = m->private;
  422. struct drm_device *dev = node->minor->dev;
  423. uintptr_t list = (uintptr_t) node->info_ent->data;
  424. struct drm_i915_private *dev_priv = dev->dev_private;
  425. struct drm_i915_gem_object *obj;
  426. size_t total_obj_size, total_gtt_size;
  427. int count, ret;
  428. ret = mutex_lock_interruptible(&dev->struct_mutex);
  429. if (ret)
  430. return ret;
  431. total_obj_size = total_gtt_size = count = 0;
  432. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  433. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  434. continue;
  435. seq_puts(m, " ");
  436. describe_obj(m, obj);
  437. seq_putc(m, '\n');
  438. total_obj_size += obj->base.size;
  439. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  440. count++;
  441. }
  442. mutex_unlock(&dev->struct_mutex);
  443. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  444. count, total_obj_size, total_gtt_size);
  445. return 0;
  446. }
  447. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  448. {
  449. struct drm_info_node *node = m->private;
  450. struct drm_device *dev = node->minor->dev;
  451. struct drm_i915_private *dev_priv = dev->dev_private;
  452. struct intel_crtc *crtc;
  453. int ret;
  454. ret = mutex_lock_interruptible(&dev->struct_mutex);
  455. if (ret)
  456. return ret;
  457. for_each_intel_crtc(dev, crtc) {
  458. const char pipe = pipe_name(crtc->pipe);
  459. const char plane = plane_name(crtc->plane);
  460. struct intel_unpin_work *work;
  461. spin_lock_irq(&dev->event_lock);
  462. work = crtc->unpin_work;
  463. if (work == NULL) {
  464. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  465. pipe, plane);
  466. } else {
  467. u32 addr;
  468. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  469. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  470. pipe, plane);
  471. } else {
  472. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  473. pipe, plane);
  474. }
  475. if (work->flip_queued_req) {
  476. struct intel_engine_cs *ring =
  477. i915_gem_request_get_ring(work->flip_queued_req);
  478. seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
  479. ring->name,
  480. i915_gem_request_get_seqno(work->flip_queued_req),
  481. dev_priv->next_seqno,
  482. ring->get_seqno(ring, true),
  483. i915_gem_request_completed(work->flip_queued_req, true));
  484. } else
  485. seq_printf(m, "Flip not associated with any ring\n");
  486. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  487. work->flip_queued_vblank,
  488. work->flip_ready_vblank,
  489. drm_vblank_count(dev, crtc->pipe));
  490. if (work->enable_stall_check)
  491. seq_puts(m, "Stall check enabled, ");
  492. else
  493. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  494. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  495. if (INTEL_INFO(dev)->gen >= 4)
  496. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  497. else
  498. addr = I915_READ(DSPADDR(crtc->plane));
  499. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  500. if (work->pending_flip_obj) {
  501. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  502. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  503. }
  504. }
  505. spin_unlock_irq(&dev->event_lock);
  506. }
  507. mutex_unlock(&dev->struct_mutex);
  508. return 0;
  509. }
  510. static int i915_gem_request_info(struct seq_file *m, void *data)
  511. {
  512. struct drm_info_node *node = m->private;
  513. struct drm_device *dev = node->minor->dev;
  514. struct drm_i915_private *dev_priv = dev->dev_private;
  515. struct intel_engine_cs *ring;
  516. struct drm_i915_gem_request *gem_request;
  517. int ret, count, i;
  518. ret = mutex_lock_interruptible(&dev->struct_mutex);
  519. if (ret)
  520. return ret;
  521. count = 0;
  522. for_each_ring(ring, dev_priv, i) {
  523. if (list_empty(&ring->request_list))
  524. continue;
  525. seq_printf(m, "%s requests:\n", ring->name);
  526. list_for_each_entry(gem_request,
  527. &ring->request_list,
  528. list) {
  529. seq_printf(m, " %d @ %d\n",
  530. gem_request->seqno,
  531. (int) (jiffies - gem_request->emitted_jiffies));
  532. }
  533. count++;
  534. }
  535. mutex_unlock(&dev->struct_mutex);
  536. if (count == 0)
  537. seq_puts(m, "No requests\n");
  538. return 0;
  539. }
  540. static void i915_ring_seqno_info(struct seq_file *m,
  541. struct intel_engine_cs *ring)
  542. {
  543. if (ring->get_seqno) {
  544. seq_printf(m, "Current sequence (%s): %u\n",
  545. ring->name, ring->get_seqno(ring, false));
  546. }
  547. }
  548. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  549. {
  550. struct drm_info_node *node = m->private;
  551. struct drm_device *dev = node->minor->dev;
  552. struct drm_i915_private *dev_priv = dev->dev_private;
  553. struct intel_engine_cs *ring;
  554. int ret, i;
  555. ret = mutex_lock_interruptible(&dev->struct_mutex);
  556. if (ret)
  557. return ret;
  558. intel_runtime_pm_get(dev_priv);
  559. for_each_ring(ring, dev_priv, i)
  560. i915_ring_seqno_info(m, ring);
  561. intel_runtime_pm_put(dev_priv);
  562. mutex_unlock(&dev->struct_mutex);
  563. return 0;
  564. }
  565. static int i915_interrupt_info(struct seq_file *m, void *data)
  566. {
  567. struct drm_info_node *node = m->private;
  568. struct drm_device *dev = node->minor->dev;
  569. struct drm_i915_private *dev_priv = dev->dev_private;
  570. struct intel_engine_cs *ring;
  571. int ret, i, pipe;
  572. ret = mutex_lock_interruptible(&dev->struct_mutex);
  573. if (ret)
  574. return ret;
  575. intel_runtime_pm_get(dev_priv);
  576. if (IS_CHERRYVIEW(dev)) {
  577. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  578. I915_READ(GEN8_MASTER_IRQ));
  579. seq_printf(m, "Display IER:\t%08x\n",
  580. I915_READ(VLV_IER));
  581. seq_printf(m, "Display IIR:\t%08x\n",
  582. I915_READ(VLV_IIR));
  583. seq_printf(m, "Display IIR_RW:\t%08x\n",
  584. I915_READ(VLV_IIR_RW));
  585. seq_printf(m, "Display IMR:\t%08x\n",
  586. I915_READ(VLV_IMR));
  587. for_each_pipe(dev_priv, pipe)
  588. seq_printf(m, "Pipe %c stat:\t%08x\n",
  589. pipe_name(pipe),
  590. I915_READ(PIPESTAT(pipe)));
  591. seq_printf(m, "Port hotplug:\t%08x\n",
  592. I915_READ(PORT_HOTPLUG_EN));
  593. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  594. I915_READ(VLV_DPFLIPSTAT));
  595. seq_printf(m, "DPINVGTT:\t%08x\n",
  596. I915_READ(DPINVGTT));
  597. for (i = 0; i < 4; i++) {
  598. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  599. i, I915_READ(GEN8_GT_IMR(i)));
  600. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  601. i, I915_READ(GEN8_GT_IIR(i)));
  602. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  603. i, I915_READ(GEN8_GT_IER(i)));
  604. }
  605. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  606. I915_READ(GEN8_PCU_IMR));
  607. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  608. I915_READ(GEN8_PCU_IIR));
  609. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  610. I915_READ(GEN8_PCU_IER));
  611. } else if (INTEL_INFO(dev)->gen >= 8) {
  612. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  613. I915_READ(GEN8_MASTER_IRQ));
  614. for (i = 0; i < 4; i++) {
  615. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  616. i, I915_READ(GEN8_GT_IMR(i)));
  617. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  618. i, I915_READ(GEN8_GT_IIR(i)));
  619. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  620. i, I915_READ(GEN8_GT_IER(i)));
  621. }
  622. for_each_pipe(dev_priv, pipe) {
  623. if (!intel_display_power_is_enabled(dev_priv,
  624. POWER_DOMAIN_PIPE(pipe))) {
  625. seq_printf(m, "Pipe %c power disabled\n",
  626. pipe_name(pipe));
  627. continue;
  628. }
  629. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  630. pipe_name(pipe),
  631. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  632. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  633. pipe_name(pipe),
  634. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  635. seq_printf(m, "Pipe %c IER:\t%08x\n",
  636. pipe_name(pipe),
  637. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  638. }
  639. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  640. I915_READ(GEN8_DE_PORT_IMR));
  641. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  642. I915_READ(GEN8_DE_PORT_IIR));
  643. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  644. I915_READ(GEN8_DE_PORT_IER));
  645. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  646. I915_READ(GEN8_DE_MISC_IMR));
  647. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  648. I915_READ(GEN8_DE_MISC_IIR));
  649. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  650. I915_READ(GEN8_DE_MISC_IER));
  651. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  652. I915_READ(GEN8_PCU_IMR));
  653. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  654. I915_READ(GEN8_PCU_IIR));
  655. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  656. I915_READ(GEN8_PCU_IER));
  657. } else if (IS_VALLEYVIEW(dev)) {
  658. seq_printf(m, "Display IER:\t%08x\n",
  659. I915_READ(VLV_IER));
  660. seq_printf(m, "Display IIR:\t%08x\n",
  661. I915_READ(VLV_IIR));
  662. seq_printf(m, "Display IIR_RW:\t%08x\n",
  663. I915_READ(VLV_IIR_RW));
  664. seq_printf(m, "Display IMR:\t%08x\n",
  665. I915_READ(VLV_IMR));
  666. for_each_pipe(dev_priv, pipe)
  667. seq_printf(m, "Pipe %c stat:\t%08x\n",
  668. pipe_name(pipe),
  669. I915_READ(PIPESTAT(pipe)));
  670. seq_printf(m, "Master IER:\t%08x\n",
  671. I915_READ(VLV_MASTER_IER));
  672. seq_printf(m, "Render IER:\t%08x\n",
  673. I915_READ(GTIER));
  674. seq_printf(m, "Render IIR:\t%08x\n",
  675. I915_READ(GTIIR));
  676. seq_printf(m, "Render IMR:\t%08x\n",
  677. I915_READ(GTIMR));
  678. seq_printf(m, "PM IER:\t\t%08x\n",
  679. I915_READ(GEN6_PMIER));
  680. seq_printf(m, "PM IIR:\t\t%08x\n",
  681. I915_READ(GEN6_PMIIR));
  682. seq_printf(m, "PM IMR:\t\t%08x\n",
  683. I915_READ(GEN6_PMIMR));
  684. seq_printf(m, "Port hotplug:\t%08x\n",
  685. I915_READ(PORT_HOTPLUG_EN));
  686. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  687. I915_READ(VLV_DPFLIPSTAT));
  688. seq_printf(m, "DPINVGTT:\t%08x\n",
  689. I915_READ(DPINVGTT));
  690. } else if (!HAS_PCH_SPLIT(dev)) {
  691. seq_printf(m, "Interrupt enable: %08x\n",
  692. I915_READ(IER));
  693. seq_printf(m, "Interrupt identity: %08x\n",
  694. I915_READ(IIR));
  695. seq_printf(m, "Interrupt mask: %08x\n",
  696. I915_READ(IMR));
  697. for_each_pipe(dev_priv, pipe)
  698. seq_printf(m, "Pipe %c stat: %08x\n",
  699. pipe_name(pipe),
  700. I915_READ(PIPESTAT(pipe)));
  701. } else {
  702. seq_printf(m, "North Display Interrupt enable: %08x\n",
  703. I915_READ(DEIER));
  704. seq_printf(m, "North Display Interrupt identity: %08x\n",
  705. I915_READ(DEIIR));
  706. seq_printf(m, "North Display Interrupt mask: %08x\n",
  707. I915_READ(DEIMR));
  708. seq_printf(m, "South Display Interrupt enable: %08x\n",
  709. I915_READ(SDEIER));
  710. seq_printf(m, "South Display Interrupt identity: %08x\n",
  711. I915_READ(SDEIIR));
  712. seq_printf(m, "South Display Interrupt mask: %08x\n",
  713. I915_READ(SDEIMR));
  714. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  715. I915_READ(GTIER));
  716. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  717. I915_READ(GTIIR));
  718. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  719. I915_READ(GTIMR));
  720. }
  721. for_each_ring(ring, dev_priv, i) {
  722. if (INTEL_INFO(dev)->gen >= 6) {
  723. seq_printf(m,
  724. "Graphics Interrupt mask (%s): %08x\n",
  725. ring->name, I915_READ_IMR(ring));
  726. }
  727. i915_ring_seqno_info(m, ring);
  728. }
  729. intel_runtime_pm_put(dev_priv);
  730. mutex_unlock(&dev->struct_mutex);
  731. return 0;
  732. }
  733. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  734. {
  735. struct drm_info_node *node = m->private;
  736. struct drm_device *dev = node->minor->dev;
  737. struct drm_i915_private *dev_priv = dev->dev_private;
  738. int i, ret;
  739. ret = mutex_lock_interruptible(&dev->struct_mutex);
  740. if (ret)
  741. return ret;
  742. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  743. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  744. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  745. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  746. seq_printf(m, "Fence %d, pin count = %d, object = ",
  747. i, dev_priv->fence_regs[i].pin_count);
  748. if (obj == NULL)
  749. seq_puts(m, "unused");
  750. else
  751. describe_obj(m, obj);
  752. seq_putc(m, '\n');
  753. }
  754. mutex_unlock(&dev->struct_mutex);
  755. return 0;
  756. }
  757. static int i915_hws_info(struct seq_file *m, void *data)
  758. {
  759. struct drm_info_node *node = m->private;
  760. struct drm_device *dev = node->minor->dev;
  761. struct drm_i915_private *dev_priv = dev->dev_private;
  762. struct intel_engine_cs *ring;
  763. const u32 *hws;
  764. int i;
  765. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  766. hws = ring->status_page.page_addr;
  767. if (hws == NULL)
  768. return 0;
  769. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  770. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  771. i * 4,
  772. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  773. }
  774. return 0;
  775. }
  776. static ssize_t
  777. i915_error_state_write(struct file *filp,
  778. const char __user *ubuf,
  779. size_t cnt,
  780. loff_t *ppos)
  781. {
  782. struct i915_error_state_file_priv *error_priv = filp->private_data;
  783. struct drm_device *dev = error_priv->dev;
  784. int ret;
  785. DRM_DEBUG_DRIVER("Resetting error state\n");
  786. ret = mutex_lock_interruptible(&dev->struct_mutex);
  787. if (ret)
  788. return ret;
  789. i915_destroy_error_state(dev);
  790. mutex_unlock(&dev->struct_mutex);
  791. return cnt;
  792. }
  793. static int i915_error_state_open(struct inode *inode, struct file *file)
  794. {
  795. struct drm_device *dev = inode->i_private;
  796. struct i915_error_state_file_priv *error_priv;
  797. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  798. if (!error_priv)
  799. return -ENOMEM;
  800. error_priv->dev = dev;
  801. i915_error_state_get(dev, error_priv);
  802. file->private_data = error_priv;
  803. return 0;
  804. }
  805. static int i915_error_state_release(struct inode *inode, struct file *file)
  806. {
  807. struct i915_error_state_file_priv *error_priv = file->private_data;
  808. i915_error_state_put(error_priv);
  809. kfree(error_priv);
  810. return 0;
  811. }
  812. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  813. size_t count, loff_t *pos)
  814. {
  815. struct i915_error_state_file_priv *error_priv = file->private_data;
  816. struct drm_i915_error_state_buf error_str;
  817. loff_t tmp_pos = 0;
  818. ssize_t ret_count = 0;
  819. int ret;
  820. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  821. if (ret)
  822. return ret;
  823. ret = i915_error_state_to_str(&error_str, error_priv);
  824. if (ret)
  825. goto out;
  826. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  827. error_str.buf,
  828. error_str.bytes);
  829. if (ret_count < 0)
  830. ret = ret_count;
  831. else
  832. *pos = error_str.start + ret_count;
  833. out:
  834. i915_error_state_buf_release(&error_str);
  835. return ret ?: ret_count;
  836. }
  837. static const struct file_operations i915_error_state_fops = {
  838. .owner = THIS_MODULE,
  839. .open = i915_error_state_open,
  840. .read = i915_error_state_read,
  841. .write = i915_error_state_write,
  842. .llseek = default_llseek,
  843. .release = i915_error_state_release,
  844. };
  845. static int
  846. i915_next_seqno_get(void *data, u64 *val)
  847. {
  848. struct drm_device *dev = data;
  849. struct drm_i915_private *dev_priv = dev->dev_private;
  850. int ret;
  851. ret = mutex_lock_interruptible(&dev->struct_mutex);
  852. if (ret)
  853. return ret;
  854. *val = dev_priv->next_seqno;
  855. mutex_unlock(&dev->struct_mutex);
  856. return 0;
  857. }
  858. static int
  859. i915_next_seqno_set(void *data, u64 val)
  860. {
  861. struct drm_device *dev = data;
  862. int ret;
  863. ret = mutex_lock_interruptible(&dev->struct_mutex);
  864. if (ret)
  865. return ret;
  866. ret = i915_gem_set_seqno(dev, val);
  867. mutex_unlock(&dev->struct_mutex);
  868. return ret;
  869. }
  870. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  871. i915_next_seqno_get, i915_next_seqno_set,
  872. "0x%llx\n");
  873. static int i915_frequency_info(struct seq_file *m, void *unused)
  874. {
  875. struct drm_info_node *node = m->private;
  876. struct drm_device *dev = node->minor->dev;
  877. struct drm_i915_private *dev_priv = dev->dev_private;
  878. int ret = 0;
  879. intel_runtime_pm_get(dev_priv);
  880. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  881. if (IS_GEN5(dev)) {
  882. u16 rgvswctl = I915_READ16(MEMSWCTL);
  883. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  884. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  885. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  886. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  887. MEMSTAT_VID_SHIFT);
  888. seq_printf(m, "Current P-state: %d\n",
  889. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  890. } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
  891. IS_BROADWELL(dev)) {
  892. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  893. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  894. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  895. u32 rpmodectl, rpinclimit, rpdeclimit;
  896. u32 rpstat, cagf, reqf;
  897. u32 rpupei, rpcurup, rpprevup;
  898. u32 rpdownei, rpcurdown, rpprevdown;
  899. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  900. int max_freq;
  901. /* RPSTAT1 is in the GT power well */
  902. ret = mutex_lock_interruptible(&dev->struct_mutex);
  903. if (ret)
  904. goto out;
  905. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  906. reqf = I915_READ(GEN6_RPNSWREQ);
  907. reqf &= ~GEN6_TURBO_DISABLE;
  908. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  909. reqf >>= 24;
  910. else
  911. reqf >>= 25;
  912. reqf *= GT_FREQUENCY_MULTIPLIER;
  913. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  914. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  915. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  916. rpstat = I915_READ(GEN6_RPSTAT1);
  917. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  918. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  919. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  920. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  921. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  922. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  923. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  924. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  925. else
  926. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  927. cagf *= GT_FREQUENCY_MULTIPLIER;
  928. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  929. mutex_unlock(&dev->struct_mutex);
  930. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  931. pm_ier = I915_READ(GEN6_PMIER);
  932. pm_imr = I915_READ(GEN6_PMIMR);
  933. pm_isr = I915_READ(GEN6_PMISR);
  934. pm_iir = I915_READ(GEN6_PMIIR);
  935. pm_mask = I915_READ(GEN6_PMINTRMSK);
  936. } else {
  937. pm_ier = I915_READ(GEN8_GT_IER(2));
  938. pm_imr = I915_READ(GEN8_GT_IMR(2));
  939. pm_isr = I915_READ(GEN8_GT_ISR(2));
  940. pm_iir = I915_READ(GEN8_GT_IIR(2));
  941. pm_mask = I915_READ(GEN6_PMINTRMSK);
  942. }
  943. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  944. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  945. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  946. seq_printf(m, "Render p-state ratio: %d\n",
  947. (gt_perf_status & 0xff00) >> 8);
  948. seq_printf(m, "Render p-state VID: %d\n",
  949. gt_perf_status & 0xff);
  950. seq_printf(m, "Render p-state limit: %d\n",
  951. rp_state_limits & 0xff);
  952. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  953. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  954. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  955. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  956. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  957. seq_printf(m, "CAGF: %dMHz\n", cagf);
  958. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  959. GEN6_CURICONT_MASK);
  960. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  961. GEN6_CURBSYTAVG_MASK);
  962. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  963. GEN6_CURBSYTAVG_MASK);
  964. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  965. GEN6_CURIAVG_MASK);
  966. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  967. GEN6_CURBSYTAVG_MASK);
  968. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  969. GEN6_CURBSYTAVG_MASK);
  970. max_freq = (rp_state_cap & 0xff0000) >> 16;
  971. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  972. max_freq * GT_FREQUENCY_MULTIPLIER);
  973. max_freq = (rp_state_cap & 0xff00) >> 8;
  974. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  975. max_freq * GT_FREQUENCY_MULTIPLIER);
  976. max_freq = rp_state_cap & 0xff;
  977. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  978. max_freq * GT_FREQUENCY_MULTIPLIER);
  979. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  980. dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
  981. } else if (IS_VALLEYVIEW(dev)) {
  982. u32 freq_sts;
  983. mutex_lock(&dev_priv->rps.hw_lock);
  984. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  985. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  986. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  987. seq_printf(m, "max GPU freq: %d MHz\n",
  988. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  989. seq_printf(m, "min GPU freq: %d MHz\n",
  990. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  991. seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
  992. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  993. seq_printf(m, "current GPU freq: %d MHz\n",
  994. vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  995. mutex_unlock(&dev_priv->rps.hw_lock);
  996. } else {
  997. seq_puts(m, "no P-state info available\n");
  998. }
  999. out:
  1000. intel_runtime_pm_put(dev_priv);
  1001. return ret;
  1002. }
  1003. static int ironlake_drpc_info(struct seq_file *m)
  1004. {
  1005. struct drm_info_node *node = m->private;
  1006. struct drm_device *dev = node->minor->dev;
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. u32 rgvmodectl, rstdbyctl;
  1009. u16 crstandvid;
  1010. int ret;
  1011. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1012. if (ret)
  1013. return ret;
  1014. intel_runtime_pm_get(dev_priv);
  1015. rgvmodectl = I915_READ(MEMMODECTL);
  1016. rstdbyctl = I915_READ(RSTDBYCTL);
  1017. crstandvid = I915_READ16(CRSTANDVID);
  1018. intel_runtime_pm_put(dev_priv);
  1019. mutex_unlock(&dev->struct_mutex);
  1020. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  1021. "yes" : "no");
  1022. seq_printf(m, "Boost freq: %d\n",
  1023. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1024. MEMMODE_BOOST_FREQ_SHIFT);
  1025. seq_printf(m, "HW control enabled: %s\n",
  1026. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  1027. seq_printf(m, "SW control enabled: %s\n",
  1028. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  1029. seq_printf(m, "Gated voltage change: %s\n",
  1030. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  1031. seq_printf(m, "Starting frequency: P%d\n",
  1032. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1033. seq_printf(m, "Max P-state: P%d\n",
  1034. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1035. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1036. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1037. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1038. seq_printf(m, "Render standby enabled: %s\n",
  1039. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  1040. seq_puts(m, "Current RS state: ");
  1041. switch (rstdbyctl & RSX_STATUS_MASK) {
  1042. case RSX_STATUS_ON:
  1043. seq_puts(m, "on\n");
  1044. break;
  1045. case RSX_STATUS_RC1:
  1046. seq_puts(m, "RC1\n");
  1047. break;
  1048. case RSX_STATUS_RC1E:
  1049. seq_puts(m, "RC1E\n");
  1050. break;
  1051. case RSX_STATUS_RS1:
  1052. seq_puts(m, "RS1\n");
  1053. break;
  1054. case RSX_STATUS_RS2:
  1055. seq_puts(m, "RS2 (RC6)\n");
  1056. break;
  1057. case RSX_STATUS_RS3:
  1058. seq_puts(m, "RC3 (RC6+)\n");
  1059. break;
  1060. default:
  1061. seq_puts(m, "unknown\n");
  1062. break;
  1063. }
  1064. return 0;
  1065. }
  1066. static int vlv_drpc_info(struct seq_file *m)
  1067. {
  1068. struct drm_info_node *node = m->private;
  1069. struct drm_device *dev = node->minor->dev;
  1070. struct drm_i915_private *dev_priv = dev->dev_private;
  1071. u32 rpmodectl1, rcctl1, pw_status;
  1072. unsigned fw_rendercount = 0, fw_mediacount = 0;
  1073. intel_runtime_pm_get(dev_priv);
  1074. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1075. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1076. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1077. intel_runtime_pm_put(dev_priv);
  1078. seq_printf(m, "Video Turbo Mode: %s\n",
  1079. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1080. seq_printf(m, "Turbo enabled: %s\n",
  1081. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1082. seq_printf(m, "HW control enabled: %s\n",
  1083. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1084. seq_printf(m, "SW control enabled: %s\n",
  1085. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1086. GEN6_RP_MEDIA_SW_MODE));
  1087. seq_printf(m, "RC6 Enabled: %s\n",
  1088. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1089. GEN6_RC_CTL_EI_MODE(1))));
  1090. seq_printf(m, "Render Power Well: %s\n",
  1091. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1092. seq_printf(m, "Media Power Well: %s\n",
  1093. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1094. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1095. I915_READ(VLV_GT_RENDER_RC6));
  1096. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1097. I915_READ(VLV_GT_MEDIA_RC6));
  1098. spin_lock_irq(&dev_priv->uncore.lock);
  1099. fw_rendercount = dev_priv->uncore.fw_rendercount;
  1100. fw_mediacount = dev_priv->uncore.fw_mediacount;
  1101. spin_unlock_irq(&dev_priv->uncore.lock);
  1102. seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
  1103. seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
  1104. return 0;
  1105. }
  1106. static int gen6_drpc_info(struct seq_file *m)
  1107. {
  1108. struct drm_info_node *node = m->private;
  1109. struct drm_device *dev = node->minor->dev;
  1110. struct drm_i915_private *dev_priv = dev->dev_private;
  1111. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1112. unsigned forcewake_count;
  1113. int count = 0, ret;
  1114. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1115. if (ret)
  1116. return ret;
  1117. intel_runtime_pm_get(dev_priv);
  1118. spin_lock_irq(&dev_priv->uncore.lock);
  1119. forcewake_count = dev_priv->uncore.forcewake_count;
  1120. spin_unlock_irq(&dev_priv->uncore.lock);
  1121. if (forcewake_count) {
  1122. seq_puts(m, "RC information inaccurate because somebody "
  1123. "holds a forcewake reference \n");
  1124. } else {
  1125. /* NB: we cannot use forcewake, else we read the wrong values */
  1126. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1127. udelay(10);
  1128. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1129. }
  1130. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  1131. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1132. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1133. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1134. mutex_unlock(&dev->struct_mutex);
  1135. mutex_lock(&dev_priv->rps.hw_lock);
  1136. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1137. mutex_unlock(&dev_priv->rps.hw_lock);
  1138. intel_runtime_pm_put(dev_priv);
  1139. seq_printf(m, "Video Turbo Mode: %s\n",
  1140. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1141. seq_printf(m, "HW control enabled: %s\n",
  1142. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1143. seq_printf(m, "SW control enabled: %s\n",
  1144. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1145. GEN6_RP_MEDIA_SW_MODE));
  1146. seq_printf(m, "RC1e Enabled: %s\n",
  1147. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1148. seq_printf(m, "RC6 Enabled: %s\n",
  1149. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1150. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1151. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1152. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1153. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1154. seq_puts(m, "Current RC state: ");
  1155. switch (gt_core_status & GEN6_RCn_MASK) {
  1156. case GEN6_RC0:
  1157. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1158. seq_puts(m, "Core Power Down\n");
  1159. else
  1160. seq_puts(m, "on\n");
  1161. break;
  1162. case GEN6_RC3:
  1163. seq_puts(m, "RC3\n");
  1164. break;
  1165. case GEN6_RC6:
  1166. seq_puts(m, "RC6\n");
  1167. break;
  1168. case GEN6_RC7:
  1169. seq_puts(m, "RC7\n");
  1170. break;
  1171. default:
  1172. seq_puts(m, "Unknown\n");
  1173. break;
  1174. }
  1175. seq_printf(m, "Core Power Down: %s\n",
  1176. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1177. /* Not exactly sure what this is */
  1178. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1179. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1180. seq_printf(m, "RC6 residency since boot: %u\n",
  1181. I915_READ(GEN6_GT_GFX_RC6));
  1182. seq_printf(m, "RC6+ residency since boot: %u\n",
  1183. I915_READ(GEN6_GT_GFX_RC6p));
  1184. seq_printf(m, "RC6++ residency since boot: %u\n",
  1185. I915_READ(GEN6_GT_GFX_RC6pp));
  1186. seq_printf(m, "RC6 voltage: %dmV\n",
  1187. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1188. seq_printf(m, "RC6+ voltage: %dmV\n",
  1189. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1190. seq_printf(m, "RC6++ voltage: %dmV\n",
  1191. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1192. return 0;
  1193. }
  1194. static int i915_drpc_info(struct seq_file *m, void *unused)
  1195. {
  1196. struct drm_info_node *node = m->private;
  1197. struct drm_device *dev = node->minor->dev;
  1198. if (IS_VALLEYVIEW(dev))
  1199. return vlv_drpc_info(m);
  1200. else if (INTEL_INFO(dev)->gen >= 6)
  1201. return gen6_drpc_info(m);
  1202. else
  1203. return ironlake_drpc_info(m);
  1204. }
  1205. static int i915_fbc_status(struct seq_file *m, void *unused)
  1206. {
  1207. struct drm_info_node *node = m->private;
  1208. struct drm_device *dev = node->minor->dev;
  1209. struct drm_i915_private *dev_priv = dev->dev_private;
  1210. if (!HAS_FBC(dev)) {
  1211. seq_puts(m, "FBC unsupported on this chipset\n");
  1212. return 0;
  1213. }
  1214. intel_runtime_pm_get(dev_priv);
  1215. if (intel_fbc_enabled(dev)) {
  1216. seq_puts(m, "FBC enabled\n");
  1217. } else {
  1218. seq_puts(m, "FBC disabled: ");
  1219. switch (dev_priv->fbc.no_fbc_reason) {
  1220. case FBC_OK:
  1221. seq_puts(m, "FBC actived, but currently disabled in hardware");
  1222. break;
  1223. case FBC_UNSUPPORTED:
  1224. seq_puts(m, "unsupported by this chipset");
  1225. break;
  1226. case FBC_NO_OUTPUT:
  1227. seq_puts(m, "no outputs");
  1228. break;
  1229. case FBC_STOLEN_TOO_SMALL:
  1230. seq_puts(m, "not enough stolen memory");
  1231. break;
  1232. case FBC_UNSUPPORTED_MODE:
  1233. seq_puts(m, "mode not supported");
  1234. break;
  1235. case FBC_MODE_TOO_LARGE:
  1236. seq_puts(m, "mode too large");
  1237. break;
  1238. case FBC_BAD_PLANE:
  1239. seq_puts(m, "FBC unsupported on plane");
  1240. break;
  1241. case FBC_NOT_TILED:
  1242. seq_puts(m, "scanout buffer not tiled");
  1243. break;
  1244. case FBC_MULTIPLE_PIPES:
  1245. seq_puts(m, "multiple pipes are enabled");
  1246. break;
  1247. case FBC_MODULE_PARAM:
  1248. seq_puts(m, "disabled per module param (default off)");
  1249. break;
  1250. case FBC_CHIP_DEFAULT:
  1251. seq_puts(m, "disabled per chip default");
  1252. break;
  1253. default:
  1254. seq_puts(m, "unknown reason");
  1255. }
  1256. seq_putc(m, '\n');
  1257. }
  1258. intel_runtime_pm_put(dev_priv);
  1259. return 0;
  1260. }
  1261. static int i915_fbc_fc_get(void *data, u64 *val)
  1262. {
  1263. struct drm_device *dev = data;
  1264. struct drm_i915_private *dev_priv = dev->dev_private;
  1265. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1266. return -ENODEV;
  1267. drm_modeset_lock_all(dev);
  1268. *val = dev_priv->fbc.false_color;
  1269. drm_modeset_unlock_all(dev);
  1270. return 0;
  1271. }
  1272. static int i915_fbc_fc_set(void *data, u64 val)
  1273. {
  1274. struct drm_device *dev = data;
  1275. struct drm_i915_private *dev_priv = dev->dev_private;
  1276. u32 reg;
  1277. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1278. return -ENODEV;
  1279. drm_modeset_lock_all(dev);
  1280. reg = I915_READ(ILK_DPFC_CONTROL);
  1281. dev_priv->fbc.false_color = val;
  1282. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1283. (reg | FBC_CTL_FALSE_COLOR) :
  1284. (reg & ~FBC_CTL_FALSE_COLOR));
  1285. drm_modeset_unlock_all(dev);
  1286. return 0;
  1287. }
  1288. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1289. i915_fbc_fc_get, i915_fbc_fc_set,
  1290. "%llu\n");
  1291. static int i915_ips_status(struct seq_file *m, void *unused)
  1292. {
  1293. struct drm_info_node *node = m->private;
  1294. struct drm_device *dev = node->minor->dev;
  1295. struct drm_i915_private *dev_priv = dev->dev_private;
  1296. if (!HAS_IPS(dev)) {
  1297. seq_puts(m, "not supported\n");
  1298. return 0;
  1299. }
  1300. intel_runtime_pm_get(dev_priv);
  1301. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1302. yesno(i915.enable_ips));
  1303. if (INTEL_INFO(dev)->gen >= 8) {
  1304. seq_puts(m, "Currently: unknown\n");
  1305. } else {
  1306. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1307. seq_puts(m, "Currently: enabled\n");
  1308. else
  1309. seq_puts(m, "Currently: disabled\n");
  1310. }
  1311. intel_runtime_pm_put(dev_priv);
  1312. return 0;
  1313. }
  1314. static int i915_sr_status(struct seq_file *m, void *unused)
  1315. {
  1316. struct drm_info_node *node = m->private;
  1317. struct drm_device *dev = node->minor->dev;
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. bool sr_enabled = false;
  1320. intel_runtime_pm_get(dev_priv);
  1321. if (HAS_PCH_SPLIT(dev))
  1322. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1323. else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
  1324. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1325. else if (IS_I915GM(dev))
  1326. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1327. else if (IS_PINEVIEW(dev))
  1328. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1329. intel_runtime_pm_put(dev_priv);
  1330. seq_printf(m, "self-refresh: %s\n",
  1331. sr_enabled ? "enabled" : "disabled");
  1332. return 0;
  1333. }
  1334. static int i915_emon_status(struct seq_file *m, void *unused)
  1335. {
  1336. struct drm_info_node *node = m->private;
  1337. struct drm_device *dev = node->minor->dev;
  1338. struct drm_i915_private *dev_priv = dev->dev_private;
  1339. unsigned long temp, chipset, gfx;
  1340. int ret;
  1341. if (!IS_GEN5(dev))
  1342. return -ENODEV;
  1343. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1344. if (ret)
  1345. return ret;
  1346. temp = i915_mch_val(dev_priv);
  1347. chipset = i915_chipset_val(dev_priv);
  1348. gfx = i915_gfx_val(dev_priv);
  1349. mutex_unlock(&dev->struct_mutex);
  1350. seq_printf(m, "GMCH temp: %ld\n", temp);
  1351. seq_printf(m, "Chipset power: %ld\n", chipset);
  1352. seq_printf(m, "GFX power: %ld\n", gfx);
  1353. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1354. return 0;
  1355. }
  1356. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1357. {
  1358. struct drm_info_node *node = m->private;
  1359. struct drm_device *dev = node->minor->dev;
  1360. struct drm_i915_private *dev_priv = dev->dev_private;
  1361. int ret = 0;
  1362. int gpu_freq, ia_freq;
  1363. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1364. seq_puts(m, "unsupported on this chipset\n");
  1365. return 0;
  1366. }
  1367. intel_runtime_pm_get(dev_priv);
  1368. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1369. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1370. if (ret)
  1371. goto out;
  1372. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1373. for (gpu_freq = dev_priv->rps.min_freq_softlimit;
  1374. gpu_freq <= dev_priv->rps.max_freq_softlimit;
  1375. gpu_freq++) {
  1376. ia_freq = gpu_freq;
  1377. sandybridge_pcode_read(dev_priv,
  1378. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1379. &ia_freq);
  1380. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1381. gpu_freq * GT_FREQUENCY_MULTIPLIER,
  1382. ((ia_freq >> 0) & 0xff) * 100,
  1383. ((ia_freq >> 8) & 0xff) * 100);
  1384. }
  1385. mutex_unlock(&dev_priv->rps.hw_lock);
  1386. out:
  1387. intel_runtime_pm_put(dev_priv);
  1388. return ret;
  1389. }
  1390. static int i915_opregion(struct seq_file *m, void *unused)
  1391. {
  1392. struct drm_info_node *node = m->private;
  1393. struct drm_device *dev = node->minor->dev;
  1394. struct drm_i915_private *dev_priv = dev->dev_private;
  1395. struct intel_opregion *opregion = &dev_priv->opregion;
  1396. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1397. int ret;
  1398. if (data == NULL)
  1399. return -ENOMEM;
  1400. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1401. if (ret)
  1402. goto out;
  1403. if (opregion->header) {
  1404. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1405. seq_write(m, data, OPREGION_SIZE);
  1406. }
  1407. mutex_unlock(&dev->struct_mutex);
  1408. out:
  1409. kfree(data);
  1410. return 0;
  1411. }
  1412. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1413. {
  1414. struct drm_info_node *node = m->private;
  1415. struct drm_device *dev = node->minor->dev;
  1416. struct intel_fbdev *ifbdev = NULL;
  1417. struct intel_framebuffer *fb;
  1418. #ifdef CONFIG_DRM_I915_FBDEV
  1419. struct drm_i915_private *dev_priv = dev->dev_private;
  1420. ifbdev = dev_priv->fbdev;
  1421. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1422. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
  1423. fb->base.width,
  1424. fb->base.height,
  1425. fb->base.depth,
  1426. fb->base.bits_per_pixel,
  1427. atomic_read(&fb->base.refcount.refcount));
  1428. describe_obj(m, fb->obj);
  1429. seq_putc(m, '\n');
  1430. #endif
  1431. mutex_lock(&dev->mode_config.fb_lock);
  1432. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1433. if (ifbdev && &fb->base == ifbdev->helper.fb)
  1434. continue;
  1435. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
  1436. fb->base.width,
  1437. fb->base.height,
  1438. fb->base.depth,
  1439. fb->base.bits_per_pixel,
  1440. atomic_read(&fb->base.refcount.refcount));
  1441. describe_obj(m, fb->obj);
  1442. seq_putc(m, '\n');
  1443. }
  1444. mutex_unlock(&dev->mode_config.fb_lock);
  1445. return 0;
  1446. }
  1447. static void describe_ctx_ringbuf(struct seq_file *m,
  1448. struct intel_ringbuffer *ringbuf)
  1449. {
  1450. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1451. ringbuf->space, ringbuf->head, ringbuf->tail,
  1452. ringbuf->last_retired_head);
  1453. }
  1454. static int i915_context_status(struct seq_file *m, void *unused)
  1455. {
  1456. struct drm_info_node *node = m->private;
  1457. struct drm_device *dev = node->minor->dev;
  1458. struct drm_i915_private *dev_priv = dev->dev_private;
  1459. struct intel_engine_cs *ring;
  1460. struct intel_context *ctx;
  1461. int ret, i;
  1462. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1463. if (ret)
  1464. return ret;
  1465. if (dev_priv->ips.pwrctx) {
  1466. seq_puts(m, "power context ");
  1467. describe_obj(m, dev_priv->ips.pwrctx);
  1468. seq_putc(m, '\n');
  1469. }
  1470. if (dev_priv->ips.renderctx) {
  1471. seq_puts(m, "render context ");
  1472. describe_obj(m, dev_priv->ips.renderctx);
  1473. seq_putc(m, '\n');
  1474. }
  1475. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1476. if (!i915.enable_execlists &&
  1477. ctx->legacy_hw_ctx.rcs_state == NULL)
  1478. continue;
  1479. seq_puts(m, "HW context ");
  1480. describe_ctx(m, ctx);
  1481. for_each_ring(ring, dev_priv, i) {
  1482. if (ring->default_context == ctx)
  1483. seq_printf(m, "(default context %s) ",
  1484. ring->name);
  1485. }
  1486. if (i915.enable_execlists) {
  1487. seq_putc(m, '\n');
  1488. for_each_ring(ring, dev_priv, i) {
  1489. struct drm_i915_gem_object *ctx_obj =
  1490. ctx->engine[i].state;
  1491. struct intel_ringbuffer *ringbuf =
  1492. ctx->engine[i].ringbuf;
  1493. seq_printf(m, "%s: ", ring->name);
  1494. if (ctx_obj)
  1495. describe_obj(m, ctx_obj);
  1496. if (ringbuf)
  1497. describe_ctx_ringbuf(m, ringbuf);
  1498. seq_putc(m, '\n');
  1499. }
  1500. } else {
  1501. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1502. }
  1503. seq_putc(m, '\n');
  1504. }
  1505. mutex_unlock(&dev->struct_mutex);
  1506. return 0;
  1507. }
  1508. static void i915_dump_lrc_obj(struct seq_file *m,
  1509. struct intel_engine_cs *ring,
  1510. struct drm_i915_gem_object *ctx_obj)
  1511. {
  1512. struct page *page;
  1513. uint32_t *reg_state;
  1514. int j;
  1515. unsigned long ggtt_offset = 0;
  1516. if (ctx_obj == NULL) {
  1517. seq_printf(m, "Context on %s with no gem object\n",
  1518. ring->name);
  1519. return;
  1520. }
  1521. seq_printf(m, "CONTEXT: %s %u\n", ring->name,
  1522. intel_execlists_ctx_id(ctx_obj));
  1523. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1524. seq_puts(m, "\tNot bound in GGTT\n");
  1525. else
  1526. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1527. if (i915_gem_object_get_pages(ctx_obj)) {
  1528. seq_puts(m, "\tFailed to get pages for context object\n");
  1529. return;
  1530. }
  1531. page = i915_gem_object_get_page(ctx_obj, 1);
  1532. if (!WARN_ON(page == NULL)) {
  1533. reg_state = kmap_atomic(page);
  1534. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1535. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1536. ggtt_offset + 4096 + (j * 4),
  1537. reg_state[j], reg_state[j + 1],
  1538. reg_state[j + 2], reg_state[j + 3]);
  1539. }
  1540. kunmap_atomic(reg_state);
  1541. }
  1542. seq_putc(m, '\n');
  1543. }
  1544. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1545. {
  1546. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1547. struct drm_device *dev = node->minor->dev;
  1548. struct drm_i915_private *dev_priv = dev->dev_private;
  1549. struct intel_engine_cs *ring;
  1550. struct intel_context *ctx;
  1551. int ret, i;
  1552. if (!i915.enable_execlists) {
  1553. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1554. return 0;
  1555. }
  1556. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1557. if (ret)
  1558. return ret;
  1559. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1560. for_each_ring(ring, dev_priv, i) {
  1561. if (ring->default_context != ctx)
  1562. i915_dump_lrc_obj(m, ring,
  1563. ctx->engine[i].state);
  1564. }
  1565. }
  1566. mutex_unlock(&dev->struct_mutex);
  1567. return 0;
  1568. }
  1569. static int i915_execlists(struct seq_file *m, void *data)
  1570. {
  1571. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1572. struct drm_device *dev = node->minor->dev;
  1573. struct drm_i915_private *dev_priv = dev->dev_private;
  1574. struct intel_engine_cs *ring;
  1575. u32 status_pointer;
  1576. u8 read_pointer;
  1577. u8 write_pointer;
  1578. u32 status;
  1579. u32 ctx_id;
  1580. struct list_head *cursor;
  1581. int ring_id, i;
  1582. int ret;
  1583. if (!i915.enable_execlists) {
  1584. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1585. return 0;
  1586. }
  1587. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1588. if (ret)
  1589. return ret;
  1590. intel_runtime_pm_get(dev_priv);
  1591. for_each_ring(ring, dev_priv, ring_id) {
  1592. struct intel_ctx_submit_request *head_req = NULL;
  1593. int count = 0;
  1594. unsigned long flags;
  1595. seq_printf(m, "%s\n", ring->name);
  1596. status = I915_READ(RING_EXECLIST_STATUS(ring));
  1597. ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
  1598. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1599. status, ctx_id);
  1600. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
  1601. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1602. read_pointer = ring->next_context_status_buffer;
  1603. write_pointer = status_pointer & 0x07;
  1604. if (read_pointer > write_pointer)
  1605. write_pointer += 6;
  1606. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1607. read_pointer, write_pointer);
  1608. for (i = 0; i < 6; i++) {
  1609. status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
  1610. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
  1611. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1612. i, status, ctx_id);
  1613. }
  1614. spin_lock_irqsave(&ring->execlist_lock, flags);
  1615. list_for_each(cursor, &ring->execlist_queue)
  1616. count++;
  1617. head_req = list_first_entry_or_null(&ring->execlist_queue,
  1618. struct intel_ctx_submit_request, execlist_link);
  1619. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  1620. seq_printf(m, "\t%d requests in queue\n", count);
  1621. if (head_req) {
  1622. struct drm_i915_gem_object *ctx_obj;
  1623. ctx_obj = head_req->ctx->engine[ring_id].state;
  1624. seq_printf(m, "\tHead request id: %u\n",
  1625. intel_execlists_ctx_id(ctx_obj));
  1626. seq_printf(m, "\tHead request tail: %u\n",
  1627. head_req->tail);
  1628. }
  1629. seq_putc(m, '\n');
  1630. }
  1631. intel_runtime_pm_put(dev_priv);
  1632. mutex_unlock(&dev->struct_mutex);
  1633. return 0;
  1634. }
  1635. static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
  1636. {
  1637. struct drm_info_node *node = m->private;
  1638. struct drm_device *dev = node->minor->dev;
  1639. struct drm_i915_private *dev_priv = dev->dev_private;
  1640. unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
  1641. spin_lock_irq(&dev_priv->uncore.lock);
  1642. if (IS_VALLEYVIEW(dev)) {
  1643. fw_rendercount = dev_priv->uncore.fw_rendercount;
  1644. fw_mediacount = dev_priv->uncore.fw_mediacount;
  1645. } else
  1646. forcewake_count = dev_priv->uncore.forcewake_count;
  1647. spin_unlock_irq(&dev_priv->uncore.lock);
  1648. if (IS_VALLEYVIEW(dev)) {
  1649. seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
  1650. seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
  1651. } else
  1652. seq_printf(m, "forcewake count = %u\n", forcewake_count);
  1653. return 0;
  1654. }
  1655. static const char *swizzle_string(unsigned swizzle)
  1656. {
  1657. switch (swizzle) {
  1658. case I915_BIT_6_SWIZZLE_NONE:
  1659. return "none";
  1660. case I915_BIT_6_SWIZZLE_9:
  1661. return "bit9";
  1662. case I915_BIT_6_SWIZZLE_9_10:
  1663. return "bit9/bit10";
  1664. case I915_BIT_6_SWIZZLE_9_11:
  1665. return "bit9/bit11";
  1666. case I915_BIT_6_SWIZZLE_9_10_11:
  1667. return "bit9/bit10/bit11";
  1668. case I915_BIT_6_SWIZZLE_9_17:
  1669. return "bit9/bit17";
  1670. case I915_BIT_6_SWIZZLE_9_10_17:
  1671. return "bit9/bit10/bit17";
  1672. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1673. return "unknown";
  1674. }
  1675. return "bug";
  1676. }
  1677. static int i915_swizzle_info(struct seq_file *m, void *data)
  1678. {
  1679. struct drm_info_node *node = m->private;
  1680. struct drm_device *dev = node->minor->dev;
  1681. struct drm_i915_private *dev_priv = dev->dev_private;
  1682. int ret;
  1683. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1684. if (ret)
  1685. return ret;
  1686. intel_runtime_pm_get(dev_priv);
  1687. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1688. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1689. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1690. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1691. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1692. seq_printf(m, "DDC = 0x%08x\n",
  1693. I915_READ(DCC));
  1694. seq_printf(m, "DDC2 = 0x%08x\n",
  1695. I915_READ(DCC2));
  1696. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1697. I915_READ16(C0DRB3));
  1698. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1699. I915_READ16(C1DRB3));
  1700. } else if (INTEL_INFO(dev)->gen >= 6) {
  1701. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1702. I915_READ(MAD_DIMM_C0));
  1703. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1704. I915_READ(MAD_DIMM_C1));
  1705. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1706. I915_READ(MAD_DIMM_C2));
  1707. seq_printf(m, "TILECTL = 0x%08x\n",
  1708. I915_READ(TILECTL));
  1709. if (INTEL_INFO(dev)->gen >= 8)
  1710. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1711. I915_READ(GAMTARBMODE));
  1712. else
  1713. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1714. I915_READ(ARB_MODE));
  1715. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1716. I915_READ(DISP_ARB_CTL));
  1717. }
  1718. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1719. seq_puts(m, "L-shaped memory detected\n");
  1720. intel_runtime_pm_put(dev_priv);
  1721. mutex_unlock(&dev->struct_mutex);
  1722. return 0;
  1723. }
  1724. static int per_file_ctx(int id, void *ptr, void *data)
  1725. {
  1726. struct intel_context *ctx = ptr;
  1727. struct seq_file *m = data;
  1728. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1729. if (!ppgtt) {
  1730. seq_printf(m, " no ppgtt for context %d\n",
  1731. ctx->user_handle);
  1732. return 0;
  1733. }
  1734. if (i915_gem_context_is_default(ctx))
  1735. seq_puts(m, " default context:\n");
  1736. else
  1737. seq_printf(m, " context %d:\n", ctx->user_handle);
  1738. ppgtt->debug_dump(ppgtt, m);
  1739. return 0;
  1740. }
  1741. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1742. {
  1743. struct drm_i915_private *dev_priv = dev->dev_private;
  1744. struct intel_engine_cs *ring;
  1745. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1746. int unused, i;
  1747. if (!ppgtt)
  1748. return;
  1749. seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
  1750. seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
  1751. for_each_ring(ring, dev_priv, unused) {
  1752. seq_printf(m, "%s\n", ring->name);
  1753. for (i = 0; i < 4; i++) {
  1754. u32 offset = 0x270 + i * 8;
  1755. u64 pdp = I915_READ(ring->mmio_base + offset + 4);
  1756. pdp <<= 32;
  1757. pdp |= I915_READ(ring->mmio_base + offset);
  1758. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1759. }
  1760. }
  1761. }
  1762. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1763. {
  1764. struct drm_i915_private *dev_priv = dev->dev_private;
  1765. struct intel_engine_cs *ring;
  1766. struct drm_file *file;
  1767. int i;
  1768. if (INTEL_INFO(dev)->gen == 6)
  1769. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1770. for_each_ring(ring, dev_priv, i) {
  1771. seq_printf(m, "%s\n", ring->name);
  1772. if (INTEL_INFO(dev)->gen == 7)
  1773. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1774. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1775. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1776. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1777. }
  1778. if (dev_priv->mm.aliasing_ppgtt) {
  1779. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1780. seq_puts(m, "aliasing PPGTT:\n");
  1781. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
  1782. ppgtt->debug_dump(ppgtt, m);
  1783. }
  1784. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1785. struct drm_i915_file_private *file_priv = file->driver_priv;
  1786. seq_printf(m, "proc: %s\n",
  1787. get_pid_task(file->pid, PIDTYPE_PID)->comm);
  1788. idr_for_each(&file_priv->context_idr, per_file_ctx, m);
  1789. }
  1790. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1791. }
  1792. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1793. {
  1794. struct drm_info_node *node = m->private;
  1795. struct drm_device *dev = node->minor->dev;
  1796. struct drm_i915_private *dev_priv = dev->dev_private;
  1797. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1798. if (ret)
  1799. return ret;
  1800. intel_runtime_pm_get(dev_priv);
  1801. if (INTEL_INFO(dev)->gen >= 8)
  1802. gen8_ppgtt_info(m, dev);
  1803. else if (INTEL_INFO(dev)->gen >= 6)
  1804. gen6_ppgtt_info(m, dev);
  1805. intel_runtime_pm_put(dev_priv);
  1806. mutex_unlock(&dev->struct_mutex);
  1807. return 0;
  1808. }
  1809. static int i915_llc(struct seq_file *m, void *data)
  1810. {
  1811. struct drm_info_node *node = m->private;
  1812. struct drm_device *dev = node->minor->dev;
  1813. struct drm_i915_private *dev_priv = dev->dev_private;
  1814. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  1815. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  1816. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  1817. return 0;
  1818. }
  1819. static int i915_edp_psr_status(struct seq_file *m, void *data)
  1820. {
  1821. struct drm_info_node *node = m->private;
  1822. struct drm_device *dev = node->minor->dev;
  1823. struct drm_i915_private *dev_priv = dev->dev_private;
  1824. u32 psrperf = 0;
  1825. u32 stat[3];
  1826. enum pipe pipe;
  1827. bool enabled = false;
  1828. intel_runtime_pm_get(dev_priv);
  1829. mutex_lock(&dev_priv->psr.lock);
  1830. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  1831. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  1832. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  1833. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  1834. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  1835. dev_priv->psr.busy_frontbuffer_bits);
  1836. seq_printf(m, "Re-enable work scheduled: %s\n",
  1837. yesno(work_busy(&dev_priv->psr.work.work)));
  1838. if (HAS_PSR(dev)) {
  1839. if (HAS_DDI(dev))
  1840. enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1841. else {
  1842. for_each_pipe(dev_priv, pipe) {
  1843. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  1844. VLV_EDP_PSR_CURR_STATE_MASK;
  1845. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  1846. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  1847. enabled = true;
  1848. }
  1849. }
  1850. }
  1851. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  1852. if (!HAS_DDI(dev))
  1853. for_each_pipe(dev_priv, pipe) {
  1854. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  1855. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  1856. seq_printf(m, " pipe %c", pipe_name(pipe));
  1857. }
  1858. seq_puts(m, "\n");
  1859. /* CHV PSR has no kind of performance counter */
  1860. if (HAS_PSR(dev) && HAS_DDI(dev)) {
  1861. psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
  1862. EDP_PSR_PERF_CNT_MASK;
  1863. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  1864. }
  1865. mutex_unlock(&dev_priv->psr.lock);
  1866. intel_runtime_pm_put(dev_priv);
  1867. return 0;
  1868. }
  1869. static int i915_sink_crc(struct seq_file *m, void *data)
  1870. {
  1871. struct drm_info_node *node = m->private;
  1872. struct drm_device *dev = node->minor->dev;
  1873. struct intel_encoder *encoder;
  1874. struct intel_connector *connector;
  1875. struct intel_dp *intel_dp = NULL;
  1876. int ret;
  1877. u8 crc[6];
  1878. drm_modeset_lock_all(dev);
  1879. list_for_each_entry(connector, &dev->mode_config.connector_list,
  1880. base.head) {
  1881. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  1882. continue;
  1883. if (!connector->base.encoder)
  1884. continue;
  1885. encoder = to_intel_encoder(connector->base.encoder);
  1886. if (encoder->type != INTEL_OUTPUT_EDP)
  1887. continue;
  1888. intel_dp = enc_to_intel_dp(&encoder->base);
  1889. ret = intel_dp_sink_crc(intel_dp, crc);
  1890. if (ret)
  1891. goto out;
  1892. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  1893. crc[0], crc[1], crc[2],
  1894. crc[3], crc[4], crc[5]);
  1895. goto out;
  1896. }
  1897. ret = -ENODEV;
  1898. out:
  1899. drm_modeset_unlock_all(dev);
  1900. return ret;
  1901. }
  1902. static int i915_energy_uJ(struct seq_file *m, void *data)
  1903. {
  1904. struct drm_info_node *node = m->private;
  1905. struct drm_device *dev = node->minor->dev;
  1906. struct drm_i915_private *dev_priv = dev->dev_private;
  1907. u64 power;
  1908. u32 units;
  1909. if (INTEL_INFO(dev)->gen < 6)
  1910. return -ENODEV;
  1911. intel_runtime_pm_get(dev_priv);
  1912. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  1913. power = (power & 0x1f00) >> 8;
  1914. units = 1000000 / (1 << power); /* convert to uJ */
  1915. power = I915_READ(MCH_SECP_NRG_STTS);
  1916. power *= units;
  1917. intel_runtime_pm_put(dev_priv);
  1918. seq_printf(m, "%llu", (long long unsigned)power);
  1919. return 0;
  1920. }
  1921. static int i915_pc8_status(struct seq_file *m, void *unused)
  1922. {
  1923. struct drm_info_node *node = m->private;
  1924. struct drm_device *dev = node->minor->dev;
  1925. struct drm_i915_private *dev_priv = dev->dev_private;
  1926. if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  1927. seq_puts(m, "not supported\n");
  1928. return 0;
  1929. }
  1930. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  1931. seq_printf(m, "IRQs disabled: %s\n",
  1932. yesno(!intel_irqs_enabled(dev_priv)));
  1933. return 0;
  1934. }
  1935. static const char *power_domain_str(enum intel_display_power_domain domain)
  1936. {
  1937. switch (domain) {
  1938. case POWER_DOMAIN_PIPE_A:
  1939. return "PIPE_A";
  1940. case POWER_DOMAIN_PIPE_B:
  1941. return "PIPE_B";
  1942. case POWER_DOMAIN_PIPE_C:
  1943. return "PIPE_C";
  1944. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  1945. return "PIPE_A_PANEL_FITTER";
  1946. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  1947. return "PIPE_B_PANEL_FITTER";
  1948. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  1949. return "PIPE_C_PANEL_FITTER";
  1950. case POWER_DOMAIN_TRANSCODER_A:
  1951. return "TRANSCODER_A";
  1952. case POWER_DOMAIN_TRANSCODER_B:
  1953. return "TRANSCODER_B";
  1954. case POWER_DOMAIN_TRANSCODER_C:
  1955. return "TRANSCODER_C";
  1956. case POWER_DOMAIN_TRANSCODER_EDP:
  1957. return "TRANSCODER_EDP";
  1958. case POWER_DOMAIN_PORT_DDI_A_2_LANES:
  1959. return "PORT_DDI_A_2_LANES";
  1960. case POWER_DOMAIN_PORT_DDI_A_4_LANES:
  1961. return "PORT_DDI_A_4_LANES";
  1962. case POWER_DOMAIN_PORT_DDI_B_2_LANES:
  1963. return "PORT_DDI_B_2_LANES";
  1964. case POWER_DOMAIN_PORT_DDI_B_4_LANES:
  1965. return "PORT_DDI_B_4_LANES";
  1966. case POWER_DOMAIN_PORT_DDI_C_2_LANES:
  1967. return "PORT_DDI_C_2_LANES";
  1968. case POWER_DOMAIN_PORT_DDI_C_4_LANES:
  1969. return "PORT_DDI_C_4_LANES";
  1970. case POWER_DOMAIN_PORT_DDI_D_2_LANES:
  1971. return "PORT_DDI_D_2_LANES";
  1972. case POWER_DOMAIN_PORT_DDI_D_4_LANES:
  1973. return "PORT_DDI_D_4_LANES";
  1974. case POWER_DOMAIN_PORT_DSI:
  1975. return "PORT_DSI";
  1976. case POWER_DOMAIN_PORT_CRT:
  1977. return "PORT_CRT";
  1978. case POWER_DOMAIN_PORT_OTHER:
  1979. return "PORT_OTHER";
  1980. case POWER_DOMAIN_VGA:
  1981. return "VGA";
  1982. case POWER_DOMAIN_AUDIO:
  1983. return "AUDIO";
  1984. case POWER_DOMAIN_PLLS:
  1985. return "PLLS";
  1986. case POWER_DOMAIN_INIT:
  1987. return "INIT";
  1988. default:
  1989. MISSING_CASE(domain);
  1990. return "?";
  1991. }
  1992. }
  1993. static int i915_power_domain_info(struct seq_file *m, void *unused)
  1994. {
  1995. struct drm_info_node *node = m->private;
  1996. struct drm_device *dev = node->minor->dev;
  1997. struct drm_i915_private *dev_priv = dev->dev_private;
  1998. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  1999. int i;
  2000. mutex_lock(&power_domains->lock);
  2001. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2002. for (i = 0; i < power_domains->power_well_count; i++) {
  2003. struct i915_power_well *power_well;
  2004. enum intel_display_power_domain power_domain;
  2005. power_well = &power_domains->power_wells[i];
  2006. seq_printf(m, "%-25s %d\n", power_well->name,
  2007. power_well->count);
  2008. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2009. power_domain++) {
  2010. if (!(BIT(power_domain) & power_well->domains))
  2011. continue;
  2012. seq_printf(m, " %-23s %d\n",
  2013. power_domain_str(power_domain),
  2014. power_domains->domain_use_count[power_domain]);
  2015. }
  2016. }
  2017. mutex_unlock(&power_domains->lock);
  2018. return 0;
  2019. }
  2020. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2021. struct drm_display_mode *mode)
  2022. {
  2023. int i;
  2024. for (i = 0; i < tabs; i++)
  2025. seq_putc(m, '\t');
  2026. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2027. mode->base.id, mode->name,
  2028. mode->vrefresh, mode->clock,
  2029. mode->hdisplay, mode->hsync_start,
  2030. mode->hsync_end, mode->htotal,
  2031. mode->vdisplay, mode->vsync_start,
  2032. mode->vsync_end, mode->vtotal,
  2033. mode->type, mode->flags);
  2034. }
  2035. static void intel_encoder_info(struct seq_file *m,
  2036. struct intel_crtc *intel_crtc,
  2037. struct intel_encoder *intel_encoder)
  2038. {
  2039. struct drm_info_node *node = m->private;
  2040. struct drm_device *dev = node->minor->dev;
  2041. struct drm_crtc *crtc = &intel_crtc->base;
  2042. struct intel_connector *intel_connector;
  2043. struct drm_encoder *encoder;
  2044. encoder = &intel_encoder->base;
  2045. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2046. encoder->base.id, encoder->name);
  2047. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2048. struct drm_connector *connector = &intel_connector->base;
  2049. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2050. connector->base.id,
  2051. connector->name,
  2052. drm_get_connector_status_name(connector->status));
  2053. if (connector->status == connector_status_connected) {
  2054. struct drm_display_mode *mode = &crtc->mode;
  2055. seq_printf(m, ", mode:\n");
  2056. intel_seq_print_mode(m, 2, mode);
  2057. } else {
  2058. seq_putc(m, '\n');
  2059. }
  2060. }
  2061. }
  2062. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2063. {
  2064. struct drm_info_node *node = m->private;
  2065. struct drm_device *dev = node->minor->dev;
  2066. struct drm_crtc *crtc = &intel_crtc->base;
  2067. struct intel_encoder *intel_encoder;
  2068. if (crtc->primary->fb)
  2069. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2070. crtc->primary->fb->base.id, crtc->x, crtc->y,
  2071. crtc->primary->fb->width, crtc->primary->fb->height);
  2072. else
  2073. seq_puts(m, "\tprimary plane disabled\n");
  2074. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2075. intel_encoder_info(m, intel_crtc, intel_encoder);
  2076. }
  2077. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2078. {
  2079. struct drm_display_mode *mode = panel->fixed_mode;
  2080. seq_printf(m, "\tfixed mode:\n");
  2081. intel_seq_print_mode(m, 2, mode);
  2082. }
  2083. static void intel_dp_info(struct seq_file *m,
  2084. struct intel_connector *intel_connector)
  2085. {
  2086. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2087. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2088. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2089. seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
  2090. "no");
  2091. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2092. intel_panel_info(m, &intel_connector->panel);
  2093. }
  2094. static void intel_hdmi_info(struct seq_file *m,
  2095. struct intel_connector *intel_connector)
  2096. {
  2097. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2098. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2099. seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
  2100. "no");
  2101. }
  2102. static void intel_lvds_info(struct seq_file *m,
  2103. struct intel_connector *intel_connector)
  2104. {
  2105. intel_panel_info(m, &intel_connector->panel);
  2106. }
  2107. static void intel_connector_info(struct seq_file *m,
  2108. struct drm_connector *connector)
  2109. {
  2110. struct intel_connector *intel_connector = to_intel_connector(connector);
  2111. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2112. struct drm_display_mode *mode;
  2113. seq_printf(m, "connector %d: type %s, status: %s\n",
  2114. connector->base.id, connector->name,
  2115. drm_get_connector_status_name(connector->status));
  2116. if (connector->status == connector_status_connected) {
  2117. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2118. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2119. connector->display_info.width_mm,
  2120. connector->display_info.height_mm);
  2121. seq_printf(m, "\tsubpixel order: %s\n",
  2122. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2123. seq_printf(m, "\tCEA rev: %d\n",
  2124. connector->display_info.cea_rev);
  2125. }
  2126. if (intel_encoder) {
  2127. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2128. intel_encoder->type == INTEL_OUTPUT_EDP)
  2129. intel_dp_info(m, intel_connector);
  2130. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2131. intel_hdmi_info(m, intel_connector);
  2132. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2133. intel_lvds_info(m, intel_connector);
  2134. }
  2135. seq_printf(m, "\tmodes:\n");
  2136. list_for_each_entry(mode, &connector->modes, head)
  2137. intel_seq_print_mode(m, 2, mode);
  2138. }
  2139. static bool cursor_active(struct drm_device *dev, int pipe)
  2140. {
  2141. struct drm_i915_private *dev_priv = dev->dev_private;
  2142. u32 state;
  2143. if (IS_845G(dev) || IS_I865G(dev))
  2144. state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  2145. else
  2146. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2147. return state;
  2148. }
  2149. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2150. {
  2151. struct drm_i915_private *dev_priv = dev->dev_private;
  2152. u32 pos;
  2153. pos = I915_READ(CURPOS(pipe));
  2154. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2155. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2156. *x = -*x;
  2157. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2158. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2159. *y = -*y;
  2160. return cursor_active(dev, pipe);
  2161. }
  2162. static int i915_display_info(struct seq_file *m, void *unused)
  2163. {
  2164. struct drm_info_node *node = m->private;
  2165. struct drm_device *dev = node->minor->dev;
  2166. struct drm_i915_private *dev_priv = dev->dev_private;
  2167. struct intel_crtc *crtc;
  2168. struct drm_connector *connector;
  2169. intel_runtime_pm_get(dev_priv);
  2170. drm_modeset_lock_all(dev);
  2171. seq_printf(m, "CRTC info\n");
  2172. seq_printf(m, "---------\n");
  2173. for_each_intel_crtc(dev, crtc) {
  2174. bool active;
  2175. int x, y;
  2176. seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
  2177. crtc->base.base.id, pipe_name(crtc->pipe),
  2178. yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
  2179. if (crtc->active) {
  2180. intel_crtc_info(m, crtc);
  2181. active = cursor_position(dev, crtc->pipe, &x, &y);
  2182. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2183. yesno(crtc->cursor_base),
  2184. x, y, crtc->cursor_width, crtc->cursor_height,
  2185. crtc->cursor_addr, yesno(active));
  2186. }
  2187. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2188. yesno(!crtc->cpu_fifo_underrun_disabled),
  2189. yesno(!crtc->pch_fifo_underrun_disabled));
  2190. }
  2191. seq_printf(m, "\n");
  2192. seq_printf(m, "Connector info\n");
  2193. seq_printf(m, "--------------\n");
  2194. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2195. intel_connector_info(m, connector);
  2196. }
  2197. drm_modeset_unlock_all(dev);
  2198. intel_runtime_pm_put(dev_priv);
  2199. return 0;
  2200. }
  2201. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2202. {
  2203. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2204. struct drm_device *dev = node->minor->dev;
  2205. struct drm_i915_private *dev_priv = dev->dev_private;
  2206. struct intel_engine_cs *ring;
  2207. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2208. int i, j, ret;
  2209. if (!i915_semaphore_is_enabled(dev)) {
  2210. seq_puts(m, "Semaphores are disabled\n");
  2211. return 0;
  2212. }
  2213. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2214. if (ret)
  2215. return ret;
  2216. intel_runtime_pm_get(dev_priv);
  2217. if (IS_BROADWELL(dev)) {
  2218. struct page *page;
  2219. uint64_t *seqno;
  2220. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2221. seqno = (uint64_t *)kmap_atomic(page);
  2222. for_each_ring(ring, dev_priv, i) {
  2223. uint64_t offset;
  2224. seq_printf(m, "%s\n", ring->name);
  2225. seq_puts(m, " Last signal:");
  2226. for (j = 0; j < num_rings; j++) {
  2227. offset = i * I915_NUM_RINGS + j;
  2228. seq_printf(m, "0x%08llx (0x%02llx) ",
  2229. seqno[offset], offset * 8);
  2230. }
  2231. seq_putc(m, '\n');
  2232. seq_puts(m, " Last wait: ");
  2233. for (j = 0; j < num_rings; j++) {
  2234. offset = i + (j * I915_NUM_RINGS);
  2235. seq_printf(m, "0x%08llx (0x%02llx) ",
  2236. seqno[offset], offset * 8);
  2237. }
  2238. seq_putc(m, '\n');
  2239. }
  2240. kunmap_atomic(seqno);
  2241. } else {
  2242. seq_puts(m, " Last signal:");
  2243. for_each_ring(ring, dev_priv, i)
  2244. for (j = 0; j < num_rings; j++)
  2245. seq_printf(m, "0x%08x\n",
  2246. I915_READ(ring->semaphore.mbox.signal[j]));
  2247. seq_putc(m, '\n');
  2248. }
  2249. seq_puts(m, "\nSync seqno:\n");
  2250. for_each_ring(ring, dev_priv, i) {
  2251. for (j = 0; j < num_rings; j++) {
  2252. seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
  2253. }
  2254. seq_putc(m, '\n');
  2255. }
  2256. seq_putc(m, '\n');
  2257. intel_runtime_pm_put(dev_priv);
  2258. mutex_unlock(&dev->struct_mutex);
  2259. return 0;
  2260. }
  2261. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2262. {
  2263. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2264. struct drm_device *dev = node->minor->dev;
  2265. struct drm_i915_private *dev_priv = dev->dev_private;
  2266. int i;
  2267. drm_modeset_lock_all(dev);
  2268. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2269. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2270. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2271. seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
  2272. pll->config.crtc_mask, pll->active, yesno(pll->on));
  2273. seq_printf(m, " tracked hardware state:\n");
  2274. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2275. seq_printf(m, " dpll_md: 0x%08x\n",
  2276. pll->config.hw_state.dpll_md);
  2277. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2278. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2279. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2280. }
  2281. drm_modeset_unlock_all(dev);
  2282. return 0;
  2283. }
  2284. static int i915_wa_registers(struct seq_file *m, void *unused)
  2285. {
  2286. int i;
  2287. int ret;
  2288. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2289. struct drm_device *dev = node->minor->dev;
  2290. struct drm_i915_private *dev_priv = dev->dev_private;
  2291. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2292. if (ret)
  2293. return ret;
  2294. intel_runtime_pm_get(dev_priv);
  2295. seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
  2296. for (i = 0; i < dev_priv->workarounds.count; ++i) {
  2297. u32 addr, mask, value, read;
  2298. bool ok;
  2299. addr = dev_priv->workarounds.reg[i].addr;
  2300. mask = dev_priv->workarounds.reg[i].mask;
  2301. value = dev_priv->workarounds.reg[i].value;
  2302. read = I915_READ(addr);
  2303. ok = (value & mask) == (read & mask);
  2304. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2305. addr, value, mask, read, ok ? "OK" : "FAIL");
  2306. }
  2307. intel_runtime_pm_put(dev_priv);
  2308. mutex_unlock(&dev->struct_mutex);
  2309. return 0;
  2310. }
  2311. static int i915_ddb_info(struct seq_file *m, void *unused)
  2312. {
  2313. struct drm_info_node *node = m->private;
  2314. struct drm_device *dev = node->minor->dev;
  2315. struct drm_i915_private *dev_priv = dev->dev_private;
  2316. struct skl_ddb_allocation *ddb;
  2317. struct skl_ddb_entry *entry;
  2318. enum pipe pipe;
  2319. int plane;
  2320. if (INTEL_INFO(dev)->gen < 9)
  2321. return 0;
  2322. drm_modeset_lock_all(dev);
  2323. ddb = &dev_priv->wm.skl_hw.ddb;
  2324. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2325. for_each_pipe(dev_priv, pipe) {
  2326. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2327. for_each_plane(pipe, plane) {
  2328. entry = &ddb->plane[pipe][plane];
  2329. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2330. entry->start, entry->end,
  2331. skl_ddb_entry_size(entry));
  2332. }
  2333. entry = &ddb->cursor[pipe];
  2334. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2335. entry->end, skl_ddb_entry_size(entry));
  2336. }
  2337. drm_modeset_unlock_all(dev);
  2338. return 0;
  2339. }
  2340. struct pipe_crc_info {
  2341. const char *name;
  2342. struct drm_device *dev;
  2343. enum pipe pipe;
  2344. };
  2345. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2346. {
  2347. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2348. struct drm_device *dev = node->minor->dev;
  2349. struct drm_encoder *encoder;
  2350. struct intel_encoder *intel_encoder;
  2351. struct intel_digital_port *intel_dig_port;
  2352. drm_modeset_lock_all(dev);
  2353. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2354. intel_encoder = to_intel_encoder(encoder);
  2355. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2356. continue;
  2357. intel_dig_port = enc_to_dig_port(encoder);
  2358. if (!intel_dig_port->dp.can_mst)
  2359. continue;
  2360. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2361. }
  2362. drm_modeset_unlock_all(dev);
  2363. return 0;
  2364. }
  2365. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2366. {
  2367. struct pipe_crc_info *info = inode->i_private;
  2368. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2369. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2370. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2371. return -ENODEV;
  2372. spin_lock_irq(&pipe_crc->lock);
  2373. if (pipe_crc->opened) {
  2374. spin_unlock_irq(&pipe_crc->lock);
  2375. return -EBUSY; /* already open */
  2376. }
  2377. pipe_crc->opened = true;
  2378. filep->private_data = inode->i_private;
  2379. spin_unlock_irq(&pipe_crc->lock);
  2380. return 0;
  2381. }
  2382. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2383. {
  2384. struct pipe_crc_info *info = inode->i_private;
  2385. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2386. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2387. spin_lock_irq(&pipe_crc->lock);
  2388. pipe_crc->opened = false;
  2389. spin_unlock_irq(&pipe_crc->lock);
  2390. return 0;
  2391. }
  2392. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2393. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2394. /* account for \'0' */
  2395. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2396. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2397. {
  2398. assert_spin_locked(&pipe_crc->lock);
  2399. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2400. INTEL_PIPE_CRC_ENTRIES_NR);
  2401. }
  2402. static ssize_t
  2403. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2404. loff_t *pos)
  2405. {
  2406. struct pipe_crc_info *info = filep->private_data;
  2407. struct drm_device *dev = info->dev;
  2408. struct drm_i915_private *dev_priv = dev->dev_private;
  2409. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2410. char buf[PIPE_CRC_BUFFER_LEN];
  2411. int n_entries;
  2412. ssize_t bytes_read;
  2413. /*
  2414. * Don't allow user space to provide buffers not big enough to hold
  2415. * a line of data.
  2416. */
  2417. if (count < PIPE_CRC_LINE_LEN)
  2418. return -EINVAL;
  2419. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2420. return 0;
  2421. /* nothing to read */
  2422. spin_lock_irq(&pipe_crc->lock);
  2423. while (pipe_crc_data_count(pipe_crc) == 0) {
  2424. int ret;
  2425. if (filep->f_flags & O_NONBLOCK) {
  2426. spin_unlock_irq(&pipe_crc->lock);
  2427. return -EAGAIN;
  2428. }
  2429. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2430. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2431. if (ret) {
  2432. spin_unlock_irq(&pipe_crc->lock);
  2433. return ret;
  2434. }
  2435. }
  2436. /* We now have one or more entries to read */
  2437. n_entries = count / PIPE_CRC_LINE_LEN;
  2438. bytes_read = 0;
  2439. while (n_entries > 0) {
  2440. struct intel_pipe_crc_entry *entry =
  2441. &pipe_crc->entries[pipe_crc->tail];
  2442. int ret;
  2443. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2444. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  2445. break;
  2446. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2447. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2448. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2449. "%8u %8x %8x %8x %8x %8x\n",
  2450. entry->frame, entry->crc[0],
  2451. entry->crc[1], entry->crc[2],
  2452. entry->crc[3], entry->crc[4]);
  2453. spin_unlock_irq(&pipe_crc->lock);
  2454. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  2455. if (ret == PIPE_CRC_LINE_LEN)
  2456. return -EFAULT;
  2457. user_buf += PIPE_CRC_LINE_LEN;
  2458. n_entries--;
  2459. spin_lock_irq(&pipe_crc->lock);
  2460. }
  2461. spin_unlock_irq(&pipe_crc->lock);
  2462. return bytes_read;
  2463. }
  2464. static const struct file_operations i915_pipe_crc_fops = {
  2465. .owner = THIS_MODULE,
  2466. .open = i915_pipe_crc_open,
  2467. .read = i915_pipe_crc_read,
  2468. .release = i915_pipe_crc_release,
  2469. };
  2470. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2471. {
  2472. .name = "i915_pipe_A_crc",
  2473. .pipe = PIPE_A,
  2474. },
  2475. {
  2476. .name = "i915_pipe_B_crc",
  2477. .pipe = PIPE_B,
  2478. },
  2479. {
  2480. .name = "i915_pipe_C_crc",
  2481. .pipe = PIPE_C,
  2482. },
  2483. };
  2484. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  2485. enum pipe pipe)
  2486. {
  2487. struct drm_device *dev = minor->dev;
  2488. struct dentry *ent;
  2489. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  2490. info->dev = dev;
  2491. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  2492. &i915_pipe_crc_fops);
  2493. if (!ent)
  2494. return -ENOMEM;
  2495. return drm_add_fake_info_node(minor, ent, info);
  2496. }
  2497. static const char * const pipe_crc_sources[] = {
  2498. "none",
  2499. "plane1",
  2500. "plane2",
  2501. "pf",
  2502. "pipe",
  2503. "TV",
  2504. "DP-B",
  2505. "DP-C",
  2506. "DP-D",
  2507. "auto",
  2508. };
  2509. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  2510. {
  2511. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  2512. return pipe_crc_sources[source];
  2513. }
  2514. static int display_crc_ctl_show(struct seq_file *m, void *data)
  2515. {
  2516. struct drm_device *dev = m->private;
  2517. struct drm_i915_private *dev_priv = dev->dev_private;
  2518. int i;
  2519. for (i = 0; i < I915_MAX_PIPES; i++)
  2520. seq_printf(m, "%c %s\n", pipe_name(i),
  2521. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  2522. return 0;
  2523. }
  2524. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  2525. {
  2526. struct drm_device *dev = inode->i_private;
  2527. return single_open(file, display_crc_ctl_show, dev);
  2528. }
  2529. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2530. uint32_t *val)
  2531. {
  2532. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2533. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2534. switch (*source) {
  2535. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2536. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  2537. break;
  2538. case INTEL_PIPE_CRC_SOURCE_NONE:
  2539. *val = 0;
  2540. break;
  2541. default:
  2542. return -EINVAL;
  2543. }
  2544. return 0;
  2545. }
  2546. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  2547. enum intel_pipe_crc_source *source)
  2548. {
  2549. struct intel_encoder *encoder;
  2550. struct intel_crtc *crtc;
  2551. struct intel_digital_port *dig_port;
  2552. int ret = 0;
  2553. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2554. drm_modeset_lock_all(dev);
  2555. for_each_intel_encoder(dev, encoder) {
  2556. if (!encoder->base.crtc)
  2557. continue;
  2558. crtc = to_intel_crtc(encoder->base.crtc);
  2559. if (crtc->pipe != pipe)
  2560. continue;
  2561. switch (encoder->type) {
  2562. case INTEL_OUTPUT_TVOUT:
  2563. *source = INTEL_PIPE_CRC_SOURCE_TV;
  2564. break;
  2565. case INTEL_OUTPUT_DISPLAYPORT:
  2566. case INTEL_OUTPUT_EDP:
  2567. dig_port = enc_to_dig_port(&encoder->base);
  2568. switch (dig_port->port) {
  2569. case PORT_B:
  2570. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  2571. break;
  2572. case PORT_C:
  2573. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  2574. break;
  2575. case PORT_D:
  2576. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  2577. break;
  2578. default:
  2579. WARN(1, "nonexisting DP port %c\n",
  2580. port_name(dig_port->port));
  2581. break;
  2582. }
  2583. break;
  2584. default:
  2585. break;
  2586. }
  2587. }
  2588. drm_modeset_unlock_all(dev);
  2589. return ret;
  2590. }
  2591. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  2592. enum pipe pipe,
  2593. enum intel_pipe_crc_source *source,
  2594. uint32_t *val)
  2595. {
  2596. struct drm_i915_private *dev_priv = dev->dev_private;
  2597. bool need_stable_symbols = false;
  2598. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2599. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2600. if (ret)
  2601. return ret;
  2602. }
  2603. switch (*source) {
  2604. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2605. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  2606. break;
  2607. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2608. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  2609. need_stable_symbols = true;
  2610. break;
  2611. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2612. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  2613. need_stable_symbols = true;
  2614. break;
  2615. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2616. if (!IS_CHERRYVIEW(dev))
  2617. return -EINVAL;
  2618. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  2619. need_stable_symbols = true;
  2620. break;
  2621. case INTEL_PIPE_CRC_SOURCE_NONE:
  2622. *val = 0;
  2623. break;
  2624. default:
  2625. return -EINVAL;
  2626. }
  2627. /*
  2628. * When the pipe CRC tap point is after the transcoders we need
  2629. * to tweak symbol-level features to produce a deterministic series of
  2630. * symbols for a given frame. We need to reset those features only once
  2631. * a frame (instead of every nth symbol):
  2632. * - DC-balance: used to ensure a better clock recovery from the data
  2633. * link (SDVO)
  2634. * - DisplayPort scrambling: used for EMI reduction
  2635. */
  2636. if (need_stable_symbols) {
  2637. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2638. tmp |= DC_BALANCE_RESET_VLV;
  2639. switch (pipe) {
  2640. case PIPE_A:
  2641. tmp |= PIPE_A_SCRAMBLE_RESET;
  2642. break;
  2643. case PIPE_B:
  2644. tmp |= PIPE_B_SCRAMBLE_RESET;
  2645. break;
  2646. case PIPE_C:
  2647. tmp |= PIPE_C_SCRAMBLE_RESET;
  2648. break;
  2649. default:
  2650. return -EINVAL;
  2651. }
  2652. I915_WRITE(PORT_DFT2_G4X, tmp);
  2653. }
  2654. return 0;
  2655. }
  2656. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  2657. enum pipe pipe,
  2658. enum intel_pipe_crc_source *source,
  2659. uint32_t *val)
  2660. {
  2661. struct drm_i915_private *dev_priv = dev->dev_private;
  2662. bool need_stable_symbols = false;
  2663. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2664. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2665. if (ret)
  2666. return ret;
  2667. }
  2668. switch (*source) {
  2669. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2670. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  2671. break;
  2672. case INTEL_PIPE_CRC_SOURCE_TV:
  2673. if (!SUPPORTS_TV(dev))
  2674. return -EINVAL;
  2675. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  2676. break;
  2677. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2678. if (!IS_G4X(dev))
  2679. return -EINVAL;
  2680. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  2681. need_stable_symbols = true;
  2682. break;
  2683. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2684. if (!IS_G4X(dev))
  2685. return -EINVAL;
  2686. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  2687. need_stable_symbols = true;
  2688. break;
  2689. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2690. if (!IS_G4X(dev))
  2691. return -EINVAL;
  2692. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  2693. need_stable_symbols = true;
  2694. break;
  2695. case INTEL_PIPE_CRC_SOURCE_NONE:
  2696. *val = 0;
  2697. break;
  2698. default:
  2699. return -EINVAL;
  2700. }
  2701. /*
  2702. * When the pipe CRC tap point is after the transcoders we need
  2703. * to tweak symbol-level features to produce a deterministic series of
  2704. * symbols for a given frame. We need to reset those features only once
  2705. * a frame (instead of every nth symbol):
  2706. * - DC-balance: used to ensure a better clock recovery from the data
  2707. * link (SDVO)
  2708. * - DisplayPort scrambling: used for EMI reduction
  2709. */
  2710. if (need_stable_symbols) {
  2711. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2712. WARN_ON(!IS_G4X(dev));
  2713. I915_WRITE(PORT_DFT_I9XX,
  2714. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  2715. if (pipe == PIPE_A)
  2716. tmp |= PIPE_A_SCRAMBLE_RESET;
  2717. else
  2718. tmp |= PIPE_B_SCRAMBLE_RESET;
  2719. I915_WRITE(PORT_DFT2_G4X, tmp);
  2720. }
  2721. return 0;
  2722. }
  2723. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  2724. enum pipe pipe)
  2725. {
  2726. struct drm_i915_private *dev_priv = dev->dev_private;
  2727. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2728. switch (pipe) {
  2729. case PIPE_A:
  2730. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2731. break;
  2732. case PIPE_B:
  2733. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2734. break;
  2735. case PIPE_C:
  2736. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  2737. break;
  2738. default:
  2739. return;
  2740. }
  2741. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  2742. tmp &= ~DC_BALANCE_RESET_VLV;
  2743. I915_WRITE(PORT_DFT2_G4X, tmp);
  2744. }
  2745. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  2746. enum pipe pipe)
  2747. {
  2748. struct drm_i915_private *dev_priv = dev->dev_private;
  2749. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2750. if (pipe == PIPE_A)
  2751. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2752. else
  2753. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2754. I915_WRITE(PORT_DFT2_G4X, tmp);
  2755. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  2756. I915_WRITE(PORT_DFT_I9XX,
  2757. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  2758. }
  2759. }
  2760. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2761. uint32_t *val)
  2762. {
  2763. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2764. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2765. switch (*source) {
  2766. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2767. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  2768. break;
  2769. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2770. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  2771. break;
  2772. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2773. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  2774. break;
  2775. case INTEL_PIPE_CRC_SOURCE_NONE:
  2776. *val = 0;
  2777. break;
  2778. default:
  2779. return -EINVAL;
  2780. }
  2781. return 0;
  2782. }
  2783. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
  2784. {
  2785. struct drm_i915_private *dev_priv = dev->dev_private;
  2786. struct intel_crtc *crtc =
  2787. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  2788. drm_modeset_lock_all(dev);
  2789. /*
  2790. * If we use the eDP transcoder we need to make sure that we don't
  2791. * bypass the pfit, since otherwise the pipe CRC source won't work. Only
  2792. * relevant on hsw with pipe A when using the always-on power well
  2793. * routing.
  2794. */
  2795. if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
  2796. !crtc->config.pch_pfit.enabled) {
  2797. crtc->config.pch_pfit.force_thru = true;
  2798. intel_display_power_get(dev_priv,
  2799. POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
  2800. dev_priv->display.crtc_disable(&crtc->base);
  2801. dev_priv->display.crtc_enable(&crtc->base);
  2802. }
  2803. drm_modeset_unlock_all(dev);
  2804. }
  2805. static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
  2806. {
  2807. struct drm_i915_private *dev_priv = dev->dev_private;
  2808. struct intel_crtc *crtc =
  2809. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  2810. drm_modeset_lock_all(dev);
  2811. /*
  2812. * If we use the eDP transcoder we need to make sure that we don't
  2813. * bypass the pfit, since otherwise the pipe CRC source won't work. Only
  2814. * relevant on hsw with pipe A when using the always-on power well
  2815. * routing.
  2816. */
  2817. if (crtc->config.pch_pfit.force_thru) {
  2818. crtc->config.pch_pfit.force_thru = false;
  2819. dev_priv->display.crtc_disable(&crtc->base);
  2820. dev_priv->display.crtc_enable(&crtc->base);
  2821. intel_display_power_put(dev_priv,
  2822. POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
  2823. }
  2824. drm_modeset_unlock_all(dev);
  2825. }
  2826. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  2827. enum pipe pipe,
  2828. enum intel_pipe_crc_source *source,
  2829. uint32_t *val)
  2830. {
  2831. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2832. *source = INTEL_PIPE_CRC_SOURCE_PF;
  2833. switch (*source) {
  2834. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2835. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  2836. break;
  2837. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2838. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  2839. break;
  2840. case INTEL_PIPE_CRC_SOURCE_PF:
  2841. if (IS_HASWELL(dev) && pipe == PIPE_A)
  2842. hsw_trans_edp_pipe_A_crc_wa(dev);
  2843. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  2844. break;
  2845. case INTEL_PIPE_CRC_SOURCE_NONE:
  2846. *val = 0;
  2847. break;
  2848. default:
  2849. return -EINVAL;
  2850. }
  2851. return 0;
  2852. }
  2853. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  2854. enum intel_pipe_crc_source source)
  2855. {
  2856. struct drm_i915_private *dev_priv = dev->dev_private;
  2857. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  2858. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  2859. pipe));
  2860. u32 val = 0; /* shut up gcc */
  2861. int ret;
  2862. if (pipe_crc->source == source)
  2863. return 0;
  2864. /* forbid changing the source without going back to 'none' */
  2865. if (pipe_crc->source && source)
  2866. return -EINVAL;
  2867. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
  2868. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  2869. return -EIO;
  2870. }
  2871. if (IS_GEN2(dev))
  2872. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  2873. else if (INTEL_INFO(dev)->gen < 5)
  2874. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2875. else if (IS_VALLEYVIEW(dev))
  2876. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2877. else if (IS_GEN5(dev) || IS_GEN6(dev))
  2878. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  2879. else
  2880. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2881. if (ret != 0)
  2882. return ret;
  2883. /* none -> real source transition */
  2884. if (source) {
  2885. struct intel_pipe_crc_entry *entries;
  2886. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  2887. pipe_name(pipe), pipe_crc_source_name(source));
  2888. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  2889. sizeof(pipe_crc->entries[0]),
  2890. GFP_KERNEL);
  2891. if (!entries)
  2892. return -ENOMEM;
  2893. /*
  2894. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  2895. * enabled and disabled dynamically based on package C states,
  2896. * user space can't make reliable use of the CRCs, so let's just
  2897. * completely disable it.
  2898. */
  2899. hsw_disable_ips(crtc);
  2900. spin_lock_irq(&pipe_crc->lock);
  2901. kfree(pipe_crc->entries);
  2902. pipe_crc->entries = entries;
  2903. pipe_crc->head = 0;
  2904. pipe_crc->tail = 0;
  2905. spin_unlock_irq(&pipe_crc->lock);
  2906. }
  2907. pipe_crc->source = source;
  2908. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  2909. POSTING_READ(PIPE_CRC_CTL(pipe));
  2910. /* real source -> none transition */
  2911. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  2912. struct intel_pipe_crc_entry *entries;
  2913. struct intel_crtc *crtc =
  2914. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  2915. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  2916. pipe_name(pipe));
  2917. drm_modeset_lock(&crtc->base.mutex, NULL);
  2918. if (crtc->active)
  2919. intel_wait_for_vblank(dev, pipe);
  2920. drm_modeset_unlock(&crtc->base.mutex);
  2921. spin_lock_irq(&pipe_crc->lock);
  2922. entries = pipe_crc->entries;
  2923. pipe_crc->entries = NULL;
  2924. pipe_crc->head = 0;
  2925. pipe_crc->tail = 0;
  2926. spin_unlock_irq(&pipe_crc->lock);
  2927. kfree(entries);
  2928. if (IS_G4X(dev))
  2929. g4x_undo_pipe_scramble_reset(dev, pipe);
  2930. else if (IS_VALLEYVIEW(dev))
  2931. vlv_undo_pipe_scramble_reset(dev, pipe);
  2932. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  2933. hsw_undo_trans_edp_pipe_A_crc_wa(dev);
  2934. hsw_enable_ips(crtc);
  2935. }
  2936. return 0;
  2937. }
  2938. /*
  2939. * Parse pipe CRC command strings:
  2940. * command: wsp* object wsp+ name wsp+ source wsp*
  2941. * object: 'pipe'
  2942. * name: (A | B | C)
  2943. * source: (none | plane1 | plane2 | pf)
  2944. * wsp: (#0x20 | #0x9 | #0xA)+
  2945. *
  2946. * eg.:
  2947. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  2948. * "pipe A none" -> Stop CRC
  2949. */
  2950. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  2951. {
  2952. int n_words = 0;
  2953. while (*buf) {
  2954. char *end;
  2955. /* skip leading white space */
  2956. buf = skip_spaces(buf);
  2957. if (!*buf)
  2958. break; /* end of buffer */
  2959. /* find end of word */
  2960. for (end = buf; *end && !isspace(*end); end++)
  2961. ;
  2962. if (n_words == max_words) {
  2963. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  2964. max_words);
  2965. return -EINVAL; /* ran out of words[] before bytes */
  2966. }
  2967. if (*end)
  2968. *end++ = '\0';
  2969. words[n_words++] = buf;
  2970. buf = end;
  2971. }
  2972. return n_words;
  2973. }
  2974. enum intel_pipe_crc_object {
  2975. PIPE_CRC_OBJECT_PIPE,
  2976. };
  2977. static const char * const pipe_crc_objects[] = {
  2978. "pipe",
  2979. };
  2980. static int
  2981. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  2982. {
  2983. int i;
  2984. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  2985. if (!strcmp(buf, pipe_crc_objects[i])) {
  2986. *o = i;
  2987. return 0;
  2988. }
  2989. return -EINVAL;
  2990. }
  2991. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  2992. {
  2993. const char name = buf[0];
  2994. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  2995. return -EINVAL;
  2996. *pipe = name - 'A';
  2997. return 0;
  2998. }
  2999. static int
  3000. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3001. {
  3002. int i;
  3003. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3004. if (!strcmp(buf, pipe_crc_sources[i])) {
  3005. *s = i;
  3006. return 0;
  3007. }
  3008. return -EINVAL;
  3009. }
  3010. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3011. {
  3012. #define N_WORDS 3
  3013. int n_words;
  3014. char *words[N_WORDS];
  3015. enum pipe pipe;
  3016. enum intel_pipe_crc_object object;
  3017. enum intel_pipe_crc_source source;
  3018. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3019. if (n_words != N_WORDS) {
  3020. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3021. N_WORDS);
  3022. return -EINVAL;
  3023. }
  3024. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3025. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3026. return -EINVAL;
  3027. }
  3028. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3029. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3030. return -EINVAL;
  3031. }
  3032. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3033. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3034. return -EINVAL;
  3035. }
  3036. return pipe_crc_set_source(dev, pipe, source);
  3037. }
  3038. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3039. size_t len, loff_t *offp)
  3040. {
  3041. struct seq_file *m = file->private_data;
  3042. struct drm_device *dev = m->private;
  3043. char *tmpbuf;
  3044. int ret;
  3045. if (len == 0)
  3046. return 0;
  3047. if (len > PAGE_SIZE - 1) {
  3048. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3049. PAGE_SIZE);
  3050. return -E2BIG;
  3051. }
  3052. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3053. if (!tmpbuf)
  3054. return -ENOMEM;
  3055. if (copy_from_user(tmpbuf, ubuf, len)) {
  3056. ret = -EFAULT;
  3057. goto out;
  3058. }
  3059. tmpbuf[len] = '\0';
  3060. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3061. out:
  3062. kfree(tmpbuf);
  3063. if (ret < 0)
  3064. return ret;
  3065. *offp += len;
  3066. return len;
  3067. }
  3068. static const struct file_operations i915_display_crc_ctl_fops = {
  3069. .owner = THIS_MODULE,
  3070. .open = display_crc_ctl_open,
  3071. .read = seq_read,
  3072. .llseek = seq_lseek,
  3073. .release = single_release,
  3074. .write = display_crc_ctl_write
  3075. };
  3076. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3077. {
  3078. struct drm_device *dev = m->private;
  3079. int num_levels = ilk_wm_max_level(dev) + 1;
  3080. int level;
  3081. drm_modeset_lock_all(dev);
  3082. for (level = 0; level < num_levels; level++) {
  3083. unsigned int latency = wm[level];
  3084. /*
  3085. * - WM1+ latency values in 0.5us units
  3086. * - latencies are in us on gen9
  3087. */
  3088. if (INTEL_INFO(dev)->gen >= 9)
  3089. latency *= 10;
  3090. else if (level > 0)
  3091. latency *= 5;
  3092. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3093. level, wm[level], latency / 10, latency % 10);
  3094. }
  3095. drm_modeset_unlock_all(dev);
  3096. }
  3097. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3098. {
  3099. struct drm_device *dev = m->private;
  3100. struct drm_i915_private *dev_priv = dev->dev_private;
  3101. const uint16_t *latencies;
  3102. if (INTEL_INFO(dev)->gen >= 9)
  3103. latencies = dev_priv->wm.skl_latency;
  3104. else
  3105. latencies = to_i915(dev)->wm.pri_latency;
  3106. wm_latency_show(m, latencies);
  3107. return 0;
  3108. }
  3109. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3110. {
  3111. struct drm_device *dev = m->private;
  3112. struct drm_i915_private *dev_priv = dev->dev_private;
  3113. const uint16_t *latencies;
  3114. if (INTEL_INFO(dev)->gen >= 9)
  3115. latencies = dev_priv->wm.skl_latency;
  3116. else
  3117. latencies = to_i915(dev)->wm.spr_latency;
  3118. wm_latency_show(m, latencies);
  3119. return 0;
  3120. }
  3121. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3122. {
  3123. struct drm_device *dev = m->private;
  3124. struct drm_i915_private *dev_priv = dev->dev_private;
  3125. const uint16_t *latencies;
  3126. if (INTEL_INFO(dev)->gen >= 9)
  3127. latencies = dev_priv->wm.skl_latency;
  3128. else
  3129. latencies = to_i915(dev)->wm.cur_latency;
  3130. wm_latency_show(m, latencies);
  3131. return 0;
  3132. }
  3133. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3134. {
  3135. struct drm_device *dev = inode->i_private;
  3136. if (HAS_GMCH_DISPLAY(dev))
  3137. return -ENODEV;
  3138. return single_open(file, pri_wm_latency_show, dev);
  3139. }
  3140. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3141. {
  3142. struct drm_device *dev = inode->i_private;
  3143. if (HAS_GMCH_DISPLAY(dev))
  3144. return -ENODEV;
  3145. return single_open(file, spr_wm_latency_show, dev);
  3146. }
  3147. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3148. {
  3149. struct drm_device *dev = inode->i_private;
  3150. if (HAS_GMCH_DISPLAY(dev))
  3151. return -ENODEV;
  3152. return single_open(file, cur_wm_latency_show, dev);
  3153. }
  3154. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3155. size_t len, loff_t *offp, uint16_t wm[8])
  3156. {
  3157. struct seq_file *m = file->private_data;
  3158. struct drm_device *dev = m->private;
  3159. uint16_t new[8] = { 0 };
  3160. int num_levels = ilk_wm_max_level(dev) + 1;
  3161. int level;
  3162. int ret;
  3163. char tmp[32];
  3164. if (len >= sizeof(tmp))
  3165. return -EINVAL;
  3166. if (copy_from_user(tmp, ubuf, len))
  3167. return -EFAULT;
  3168. tmp[len] = '\0';
  3169. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3170. &new[0], &new[1], &new[2], &new[3],
  3171. &new[4], &new[5], &new[6], &new[7]);
  3172. if (ret != num_levels)
  3173. return -EINVAL;
  3174. drm_modeset_lock_all(dev);
  3175. for (level = 0; level < num_levels; level++)
  3176. wm[level] = new[level];
  3177. drm_modeset_unlock_all(dev);
  3178. return len;
  3179. }
  3180. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3181. size_t len, loff_t *offp)
  3182. {
  3183. struct seq_file *m = file->private_data;
  3184. struct drm_device *dev = m->private;
  3185. struct drm_i915_private *dev_priv = dev->dev_private;
  3186. uint16_t *latencies;
  3187. if (INTEL_INFO(dev)->gen >= 9)
  3188. latencies = dev_priv->wm.skl_latency;
  3189. else
  3190. latencies = to_i915(dev)->wm.pri_latency;
  3191. return wm_latency_write(file, ubuf, len, offp, latencies);
  3192. }
  3193. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3194. size_t len, loff_t *offp)
  3195. {
  3196. struct seq_file *m = file->private_data;
  3197. struct drm_device *dev = m->private;
  3198. struct drm_i915_private *dev_priv = dev->dev_private;
  3199. uint16_t *latencies;
  3200. if (INTEL_INFO(dev)->gen >= 9)
  3201. latencies = dev_priv->wm.skl_latency;
  3202. else
  3203. latencies = to_i915(dev)->wm.spr_latency;
  3204. return wm_latency_write(file, ubuf, len, offp, latencies);
  3205. }
  3206. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3207. size_t len, loff_t *offp)
  3208. {
  3209. struct seq_file *m = file->private_data;
  3210. struct drm_device *dev = m->private;
  3211. struct drm_i915_private *dev_priv = dev->dev_private;
  3212. uint16_t *latencies;
  3213. if (INTEL_INFO(dev)->gen >= 9)
  3214. latencies = dev_priv->wm.skl_latency;
  3215. else
  3216. latencies = to_i915(dev)->wm.cur_latency;
  3217. return wm_latency_write(file, ubuf, len, offp, latencies);
  3218. }
  3219. static const struct file_operations i915_pri_wm_latency_fops = {
  3220. .owner = THIS_MODULE,
  3221. .open = pri_wm_latency_open,
  3222. .read = seq_read,
  3223. .llseek = seq_lseek,
  3224. .release = single_release,
  3225. .write = pri_wm_latency_write
  3226. };
  3227. static const struct file_operations i915_spr_wm_latency_fops = {
  3228. .owner = THIS_MODULE,
  3229. .open = spr_wm_latency_open,
  3230. .read = seq_read,
  3231. .llseek = seq_lseek,
  3232. .release = single_release,
  3233. .write = spr_wm_latency_write
  3234. };
  3235. static const struct file_operations i915_cur_wm_latency_fops = {
  3236. .owner = THIS_MODULE,
  3237. .open = cur_wm_latency_open,
  3238. .read = seq_read,
  3239. .llseek = seq_lseek,
  3240. .release = single_release,
  3241. .write = cur_wm_latency_write
  3242. };
  3243. static int
  3244. i915_wedged_get(void *data, u64 *val)
  3245. {
  3246. struct drm_device *dev = data;
  3247. struct drm_i915_private *dev_priv = dev->dev_private;
  3248. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  3249. return 0;
  3250. }
  3251. static int
  3252. i915_wedged_set(void *data, u64 val)
  3253. {
  3254. struct drm_device *dev = data;
  3255. struct drm_i915_private *dev_priv = dev->dev_private;
  3256. intel_runtime_pm_get(dev_priv);
  3257. i915_handle_error(dev, val,
  3258. "Manually setting wedged to %llu", val);
  3259. intel_runtime_pm_put(dev_priv);
  3260. return 0;
  3261. }
  3262. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3263. i915_wedged_get, i915_wedged_set,
  3264. "%llu\n");
  3265. static int
  3266. i915_ring_stop_get(void *data, u64 *val)
  3267. {
  3268. struct drm_device *dev = data;
  3269. struct drm_i915_private *dev_priv = dev->dev_private;
  3270. *val = dev_priv->gpu_error.stop_rings;
  3271. return 0;
  3272. }
  3273. static int
  3274. i915_ring_stop_set(void *data, u64 val)
  3275. {
  3276. struct drm_device *dev = data;
  3277. struct drm_i915_private *dev_priv = dev->dev_private;
  3278. int ret;
  3279. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  3280. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3281. if (ret)
  3282. return ret;
  3283. dev_priv->gpu_error.stop_rings = val;
  3284. mutex_unlock(&dev->struct_mutex);
  3285. return 0;
  3286. }
  3287. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  3288. i915_ring_stop_get, i915_ring_stop_set,
  3289. "0x%08llx\n");
  3290. static int
  3291. i915_ring_missed_irq_get(void *data, u64 *val)
  3292. {
  3293. struct drm_device *dev = data;
  3294. struct drm_i915_private *dev_priv = dev->dev_private;
  3295. *val = dev_priv->gpu_error.missed_irq_rings;
  3296. return 0;
  3297. }
  3298. static int
  3299. i915_ring_missed_irq_set(void *data, u64 val)
  3300. {
  3301. struct drm_device *dev = data;
  3302. struct drm_i915_private *dev_priv = dev->dev_private;
  3303. int ret;
  3304. /* Lock against concurrent debugfs callers */
  3305. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3306. if (ret)
  3307. return ret;
  3308. dev_priv->gpu_error.missed_irq_rings = val;
  3309. mutex_unlock(&dev->struct_mutex);
  3310. return 0;
  3311. }
  3312. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3313. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3314. "0x%08llx\n");
  3315. static int
  3316. i915_ring_test_irq_get(void *data, u64 *val)
  3317. {
  3318. struct drm_device *dev = data;
  3319. struct drm_i915_private *dev_priv = dev->dev_private;
  3320. *val = dev_priv->gpu_error.test_irq_rings;
  3321. return 0;
  3322. }
  3323. static int
  3324. i915_ring_test_irq_set(void *data, u64 val)
  3325. {
  3326. struct drm_device *dev = data;
  3327. struct drm_i915_private *dev_priv = dev->dev_private;
  3328. int ret;
  3329. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3330. /* Lock against concurrent debugfs callers */
  3331. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3332. if (ret)
  3333. return ret;
  3334. dev_priv->gpu_error.test_irq_rings = val;
  3335. mutex_unlock(&dev->struct_mutex);
  3336. return 0;
  3337. }
  3338. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3339. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3340. "0x%08llx\n");
  3341. #define DROP_UNBOUND 0x1
  3342. #define DROP_BOUND 0x2
  3343. #define DROP_RETIRE 0x4
  3344. #define DROP_ACTIVE 0x8
  3345. #define DROP_ALL (DROP_UNBOUND | \
  3346. DROP_BOUND | \
  3347. DROP_RETIRE | \
  3348. DROP_ACTIVE)
  3349. static int
  3350. i915_drop_caches_get(void *data, u64 *val)
  3351. {
  3352. *val = DROP_ALL;
  3353. return 0;
  3354. }
  3355. static int
  3356. i915_drop_caches_set(void *data, u64 val)
  3357. {
  3358. struct drm_device *dev = data;
  3359. struct drm_i915_private *dev_priv = dev->dev_private;
  3360. int ret;
  3361. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3362. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3363. * on ioctls on -EAGAIN. */
  3364. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3365. if (ret)
  3366. return ret;
  3367. if (val & DROP_ACTIVE) {
  3368. ret = i915_gpu_idle(dev);
  3369. if (ret)
  3370. goto unlock;
  3371. }
  3372. if (val & (DROP_RETIRE | DROP_ACTIVE))
  3373. i915_gem_retire_requests(dev);
  3374. if (val & DROP_BOUND)
  3375. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3376. if (val & DROP_UNBOUND)
  3377. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3378. unlock:
  3379. mutex_unlock(&dev->struct_mutex);
  3380. return ret;
  3381. }
  3382. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3383. i915_drop_caches_get, i915_drop_caches_set,
  3384. "0x%08llx\n");
  3385. static int
  3386. i915_max_freq_get(void *data, u64 *val)
  3387. {
  3388. struct drm_device *dev = data;
  3389. struct drm_i915_private *dev_priv = dev->dev_private;
  3390. int ret;
  3391. if (INTEL_INFO(dev)->gen < 6)
  3392. return -ENODEV;
  3393. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3394. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3395. if (ret)
  3396. return ret;
  3397. if (IS_VALLEYVIEW(dev))
  3398. *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3399. else
  3400. *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  3401. mutex_unlock(&dev_priv->rps.hw_lock);
  3402. return 0;
  3403. }
  3404. static int
  3405. i915_max_freq_set(void *data, u64 val)
  3406. {
  3407. struct drm_device *dev = data;
  3408. struct drm_i915_private *dev_priv = dev->dev_private;
  3409. u32 rp_state_cap, hw_max, hw_min;
  3410. int ret;
  3411. if (INTEL_INFO(dev)->gen < 6)
  3412. return -ENODEV;
  3413. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3414. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3415. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3416. if (ret)
  3417. return ret;
  3418. /*
  3419. * Turbo will still be enabled, but won't go above the set value.
  3420. */
  3421. if (IS_VALLEYVIEW(dev)) {
  3422. val = vlv_freq_opcode(dev_priv, val);
  3423. hw_max = dev_priv->rps.max_freq;
  3424. hw_min = dev_priv->rps.min_freq;
  3425. } else {
  3426. do_div(val, GT_FREQUENCY_MULTIPLIER);
  3427. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3428. hw_max = dev_priv->rps.max_freq;
  3429. hw_min = (rp_state_cap >> 16) & 0xff;
  3430. }
  3431. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3432. mutex_unlock(&dev_priv->rps.hw_lock);
  3433. return -EINVAL;
  3434. }
  3435. dev_priv->rps.max_freq_softlimit = val;
  3436. if (IS_VALLEYVIEW(dev))
  3437. valleyview_set_rps(dev, val);
  3438. else
  3439. gen6_set_rps(dev, val);
  3440. mutex_unlock(&dev_priv->rps.hw_lock);
  3441. return 0;
  3442. }
  3443. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3444. i915_max_freq_get, i915_max_freq_set,
  3445. "%llu\n");
  3446. static int
  3447. i915_min_freq_get(void *data, u64 *val)
  3448. {
  3449. struct drm_device *dev = data;
  3450. struct drm_i915_private *dev_priv = dev->dev_private;
  3451. int ret;
  3452. if (INTEL_INFO(dev)->gen < 6)
  3453. return -ENODEV;
  3454. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3455. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3456. if (ret)
  3457. return ret;
  3458. if (IS_VALLEYVIEW(dev))
  3459. *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3460. else
  3461. *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  3462. mutex_unlock(&dev_priv->rps.hw_lock);
  3463. return 0;
  3464. }
  3465. static int
  3466. i915_min_freq_set(void *data, u64 val)
  3467. {
  3468. struct drm_device *dev = data;
  3469. struct drm_i915_private *dev_priv = dev->dev_private;
  3470. u32 rp_state_cap, hw_max, hw_min;
  3471. int ret;
  3472. if (INTEL_INFO(dev)->gen < 6)
  3473. return -ENODEV;
  3474. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3475. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3476. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3477. if (ret)
  3478. return ret;
  3479. /*
  3480. * Turbo will still be enabled, but won't go below the set value.
  3481. */
  3482. if (IS_VALLEYVIEW(dev)) {
  3483. val = vlv_freq_opcode(dev_priv, val);
  3484. hw_max = dev_priv->rps.max_freq;
  3485. hw_min = dev_priv->rps.min_freq;
  3486. } else {
  3487. do_div(val, GT_FREQUENCY_MULTIPLIER);
  3488. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3489. hw_max = dev_priv->rps.max_freq;
  3490. hw_min = (rp_state_cap >> 16) & 0xff;
  3491. }
  3492. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3493. mutex_unlock(&dev_priv->rps.hw_lock);
  3494. return -EINVAL;
  3495. }
  3496. dev_priv->rps.min_freq_softlimit = val;
  3497. if (IS_VALLEYVIEW(dev))
  3498. valleyview_set_rps(dev, val);
  3499. else
  3500. gen6_set_rps(dev, val);
  3501. mutex_unlock(&dev_priv->rps.hw_lock);
  3502. return 0;
  3503. }
  3504. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3505. i915_min_freq_get, i915_min_freq_set,
  3506. "%llu\n");
  3507. static int
  3508. i915_cache_sharing_get(void *data, u64 *val)
  3509. {
  3510. struct drm_device *dev = data;
  3511. struct drm_i915_private *dev_priv = dev->dev_private;
  3512. u32 snpcr;
  3513. int ret;
  3514. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3515. return -ENODEV;
  3516. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3517. if (ret)
  3518. return ret;
  3519. intel_runtime_pm_get(dev_priv);
  3520. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3521. intel_runtime_pm_put(dev_priv);
  3522. mutex_unlock(&dev_priv->dev->struct_mutex);
  3523. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3524. return 0;
  3525. }
  3526. static int
  3527. i915_cache_sharing_set(void *data, u64 val)
  3528. {
  3529. struct drm_device *dev = data;
  3530. struct drm_i915_private *dev_priv = dev->dev_private;
  3531. u32 snpcr;
  3532. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3533. return -ENODEV;
  3534. if (val > 3)
  3535. return -EINVAL;
  3536. intel_runtime_pm_get(dev_priv);
  3537. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3538. /* Update the cache sharing policy here as well */
  3539. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3540. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3541. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3542. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3543. intel_runtime_pm_put(dev_priv);
  3544. return 0;
  3545. }
  3546. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3547. i915_cache_sharing_get, i915_cache_sharing_set,
  3548. "%llu\n");
  3549. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3550. {
  3551. struct drm_device *dev = inode->i_private;
  3552. struct drm_i915_private *dev_priv = dev->dev_private;
  3553. if (INTEL_INFO(dev)->gen < 6)
  3554. return 0;
  3555. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3556. return 0;
  3557. }
  3558. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3559. {
  3560. struct drm_device *dev = inode->i_private;
  3561. struct drm_i915_private *dev_priv = dev->dev_private;
  3562. if (INTEL_INFO(dev)->gen < 6)
  3563. return 0;
  3564. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3565. return 0;
  3566. }
  3567. static const struct file_operations i915_forcewake_fops = {
  3568. .owner = THIS_MODULE,
  3569. .open = i915_forcewake_open,
  3570. .release = i915_forcewake_release,
  3571. };
  3572. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  3573. {
  3574. struct drm_device *dev = minor->dev;
  3575. struct dentry *ent;
  3576. ent = debugfs_create_file("i915_forcewake_user",
  3577. S_IRUSR,
  3578. root, dev,
  3579. &i915_forcewake_fops);
  3580. if (!ent)
  3581. return -ENOMEM;
  3582. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  3583. }
  3584. static int i915_debugfs_create(struct dentry *root,
  3585. struct drm_minor *minor,
  3586. const char *name,
  3587. const struct file_operations *fops)
  3588. {
  3589. struct drm_device *dev = minor->dev;
  3590. struct dentry *ent;
  3591. ent = debugfs_create_file(name,
  3592. S_IRUGO | S_IWUSR,
  3593. root, dev,
  3594. fops);
  3595. if (!ent)
  3596. return -ENOMEM;
  3597. return drm_add_fake_info_node(minor, ent, fops);
  3598. }
  3599. static const struct drm_info_list i915_debugfs_list[] = {
  3600. {"i915_capabilities", i915_capabilities, 0},
  3601. {"i915_gem_objects", i915_gem_object_info, 0},
  3602. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3603. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  3604. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  3605. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  3606. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3607. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  3608. {"i915_gem_request", i915_gem_request_info, 0},
  3609. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3610. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3611. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3612. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  3613. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  3614. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  3615. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  3616. {"i915_frequency_info", i915_frequency_info, 0},
  3617. {"i915_drpc_info", i915_drpc_info, 0},
  3618. {"i915_emon_status", i915_emon_status, 0},
  3619. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3620. {"i915_fbc_status", i915_fbc_status, 0},
  3621. {"i915_ips_status", i915_ips_status, 0},
  3622. {"i915_sr_status", i915_sr_status, 0},
  3623. {"i915_opregion", i915_opregion, 0},
  3624. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3625. {"i915_context_status", i915_context_status, 0},
  3626. {"i915_dump_lrc", i915_dump_lrc, 0},
  3627. {"i915_execlists", i915_execlists, 0},
  3628. {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
  3629. {"i915_swizzle_info", i915_swizzle_info, 0},
  3630. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3631. {"i915_llc", i915_llc, 0},
  3632. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3633. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3634. {"i915_energy_uJ", i915_energy_uJ, 0},
  3635. {"i915_pc8_status", i915_pc8_status, 0},
  3636. {"i915_power_domain_info", i915_power_domain_info, 0},
  3637. {"i915_display_info", i915_display_info, 0},
  3638. {"i915_semaphore_status", i915_semaphore_status, 0},
  3639. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3640. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3641. {"i915_wa_registers", i915_wa_registers, 0},
  3642. {"i915_ddb_info", i915_ddb_info, 0},
  3643. };
  3644. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3645. static const struct i915_debugfs_files {
  3646. const char *name;
  3647. const struct file_operations *fops;
  3648. } i915_debugfs_files[] = {
  3649. {"i915_wedged", &i915_wedged_fops},
  3650. {"i915_max_freq", &i915_max_freq_fops},
  3651. {"i915_min_freq", &i915_min_freq_fops},
  3652. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3653. {"i915_ring_stop", &i915_ring_stop_fops},
  3654. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3655. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3656. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3657. {"i915_error_state", &i915_error_state_fops},
  3658. {"i915_next_seqno", &i915_next_seqno_fops},
  3659. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3660. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3661. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3662. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3663. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  3664. };
  3665. void intel_display_crc_init(struct drm_device *dev)
  3666. {
  3667. struct drm_i915_private *dev_priv = dev->dev_private;
  3668. enum pipe pipe;
  3669. for_each_pipe(dev_priv, pipe) {
  3670. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3671. pipe_crc->opened = false;
  3672. spin_lock_init(&pipe_crc->lock);
  3673. init_waitqueue_head(&pipe_crc->wq);
  3674. }
  3675. }
  3676. int i915_debugfs_init(struct drm_minor *minor)
  3677. {
  3678. int ret, i;
  3679. ret = i915_forcewake_create(minor->debugfs_root, minor);
  3680. if (ret)
  3681. return ret;
  3682. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3683. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  3684. if (ret)
  3685. return ret;
  3686. }
  3687. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3688. ret = i915_debugfs_create(minor->debugfs_root, minor,
  3689. i915_debugfs_files[i].name,
  3690. i915_debugfs_files[i].fops);
  3691. if (ret)
  3692. return ret;
  3693. }
  3694. return drm_debugfs_create_files(i915_debugfs_list,
  3695. I915_DEBUGFS_ENTRIES,
  3696. minor->debugfs_root, minor);
  3697. }
  3698. void i915_debugfs_cleanup(struct drm_minor *minor)
  3699. {
  3700. int i;
  3701. drm_debugfs_remove_files(i915_debugfs_list,
  3702. I915_DEBUGFS_ENTRIES, minor);
  3703. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  3704. 1, minor);
  3705. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3706. struct drm_info_list *info_list =
  3707. (struct drm_info_list *)&i915_pipe_crc_data[i];
  3708. drm_debugfs_remove_files(info_list, 1, minor);
  3709. }
  3710. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3711. struct drm_info_list *info_list =
  3712. (struct drm_info_list *) i915_debugfs_files[i].fops;
  3713. drm_debugfs_remove_files(info_list, 1, minor);
  3714. }
  3715. }