hugetlbpage.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. /*
  2. * IA-32 Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  5. */
  6. #include <linux/init.h>
  7. #include <linux/fs.h>
  8. #include <linux/mm.h>
  9. #include <linux/sched/mm.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/err.h>
  13. #include <linux/sysctl.h>
  14. #include <asm/mman.h>
  15. #include <asm/tlb.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/pgalloc.h>
  18. #if 0 /* This is just for testing */
  19. struct page *
  20. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  21. {
  22. unsigned long start = address;
  23. int length = 1;
  24. int nr;
  25. struct page *page;
  26. struct vm_area_struct *vma;
  27. vma = find_vma(mm, addr);
  28. if (!vma || !is_vm_hugetlb_page(vma))
  29. return ERR_PTR(-EINVAL);
  30. pte = huge_pte_offset(mm, address);
  31. /* hugetlb should be locked, and hence, prefaulted */
  32. WARN_ON(!pte || pte_none(*pte));
  33. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  34. WARN_ON(!PageHead(page));
  35. return page;
  36. }
  37. int pmd_huge(pmd_t pmd)
  38. {
  39. return 0;
  40. }
  41. int pud_huge(pud_t pud)
  42. {
  43. return 0;
  44. }
  45. #else
  46. /*
  47. * pmd_huge() returns 1 if @pmd is hugetlb related entry, that is normal
  48. * hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry.
  49. * Otherwise, returns 0.
  50. */
  51. int pmd_huge(pmd_t pmd)
  52. {
  53. return !pmd_none(pmd) &&
  54. (pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
  55. }
  56. int pud_huge(pud_t pud)
  57. {
  58. return !!(pud_val(pud) & _PAGE_PSE);
  59. }
  60. #endif
  61. #ifdef CONFIG_HUGETLB_PAGE
  62. static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
  63. unsigned long addr, unsigned long len,
  64. unsigned long pgoff, unsigned long flags)
  65. {
  66. struct hstate *h = hstate_file(file);
  67. struct vm_unmapped_area_info info;
  68. info.flags = 0;
  69. info.length = len;
  70. info.low_limit = current->mm->mmap_legacy_base;
  71. info.high_limit = TASK_SIZE;
  72. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  73. info.align_offset = 0;
  74. return vm_unmapped_area(&info);
  75. }
  76. static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
  77. unsigned long addr0, unsigned long len,
  78. unsigned long pgoff, unsigned long flags)
  79. {
  80. struct hstate *h = hstate_file(file);
  81. struct vm_unmapped_area_info info;
  82. unsigned long addr;
  83. info.flags = VM_UNMAPPED_AREA_TOPDOWN;
  84. info.length = len;
  85. info.low_limit = PAGE_SIZE;
  86. info.high_limit = current->mm->mmap_base;
  87. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  88. info.align_offset = 0;
  89. addr = vm_unmapped_area(&info);
  90. /*
  91. * A failed mmap() very likely causes application failure,
  92. * so fall back to the bottom-up function here. This scenario
  93. * can happen with large stack limits and large mmap()
  94. * allocations.
  95. */
  96. if (addr & ~PAGE_MASK) {
  97. VM_BUG_ON(addr != -ENOMEM);
  98. info.flags = 0;
  99. info.low_limit = TASK_UNMAPPED_BASE;
  100. info.high_limit = TASK_SIZE;
  101. addr = vm_unmapped_area(&info);
  102. }
  103. return addr;
  104. }
  105. unsigned long
  106. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  107. unsigned long len, unsigned long pgoff, unsigned long flags)
  108. {
  109. struct hstate *h = hstate_file(file);
  110. struct mm_struct *mm = current->mm;
  111. struct vm_area_struct *vma;
  112. if (len & ~huge_page_mask(h))
  113. return -EINVAL;
  114. if (len > TASK_SIZE)
  115. return -ENOMEM;
  116. if (flags & MAP_FIXED) {
  117. if (prepare_hugepage_range(file, addr, len))
  118. return -EINVAL;
  119. return addr;
  120. }
  121. if (addr) {
  122. addr = ALIGN(addr, huge_page_size(h));
  123. vma = find_vma(mm, addr);
  124. if (TASK_SIZE - len >= addr &&
  125. (!vma || addr + len <= vma->vm_start))
  126. return addr;
  127. }
  128. if (mm->get_unmapped_area == arch_get_unmapped_area)
  129. return hugetlb_get_unmapped_area_bottomup(file, addr, len,
  130. pgoff, flags);
  131. else
  132. return hugetlb_get_unmapped_area_topdown(file, addr, len,
  133. pgoff, flags);
  134. }
  135. #endif /* CONFIG_HUGETLB_PAGE */
  136. #ifdef CONFIG_X86_64
  137. static __init int setup_hugepagesz(char *opt)
  138. {
  139. unsigned long ps = memparse(opt, &opt);
  140. if (ps == PMD_SIZE) {
  141. hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
  142. } else if (ps == PUD_SIZE && boot_cpu_has(X86_FEATURE_GBPAGES)) {
  143. hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
  144. } else {
  145. hugetlb_bad_size();
  146. printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
  147. ps >> 20);
  148. return 0;
  149. }
  150. return 1;
  151. }
  152. __setup("hugepagesz=", setup_hugepagesz);
  153. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  154. static __init int gigantic_pages_init(void)
  155. {
  156. /* With compaction or CMA we can allocate gigantic pages at runtime */
  157. if (boot_cpu_has(X86_FEATURE_GBPAGES) && !size_to_hstate(1UL << PUD_SHIFT))
  158. hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
  159. return 0;
  160. }
  161. arch_initcall(gigantic_pages_init);
  162. #endif
  163. #endif