sched.c 193 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <asm/tlb.h>
  69. #include <asm/irq_regs.h>
  70. /*
  71. * Scheduler clock - returns current time in nanosec units.
  72. * This is default implementation.
  73. * Architectures and sub-architectures can override this.
  74. */
  75. unsigned long long __attribute__((weak)) sched_clock(void)
  76. {
  77. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  78. }
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. #ifdef CONFIG_FAIR_GROUP_SCHED
  145. #include <linux/cgroup.h>
  146. struct cfs_rq;
  147. /* task group related information */
  148. struct task_group {
  149. #ifdef CONFIG_FAIR_CGROUP_SCHED
  150. struct cgroup_subsys_state css;
  151. #endif
  152. /* schedulable entities of this group on each cpu */
  153. struct sched_entity **se;
  154. /* runqueue "owned" by this group on each cpu */
  155. struct cfs_rq **cfs_rq;
  156. /*
  157. * shares assigned to a task group governs how much of cpu bandwidth
  158. * is allocated to the group. The more shares a group has, the more is
  159. * the cpu bandwidth allocated to it.
  160. *
  161. * For ex, lets say that there are three task groups, A, B and C which
  162. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  163. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  164. * should be:
  165. *
  166. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  167. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  168. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  169. *
  170. * The weight assigned to a task group's schedulable entities on every
  171. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  172. * group's shares. For ex: lets say that task group A has been
  173. * assigned shares of 1000 and there are two CPUs in a system. Then,
  174. *
  175. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  176. *
  177. * Note: It's not necessary that each of a task's group schedulable
  178. * entity have the same weight on all CPUs. If the group
  179. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  180. * better distribution of weight could be:
  181. *
  182. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  183. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  184. *
  185. * rebalance_shares() is responsible for distributing the shares of a
  186. * task groups like this among the group's schedulable entities across
  187. * cpus.
  188. *
  189. */
  190. unsigned long shares;
  191. struct rcu_head rcu;
  192. };
  193. /* Default task group's sched entity on each cpu */
  194. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  195. /* Default task group's cfs_rq on each cpu */
  196. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  197. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  198. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  199. /* task_group_mutex serializes add/remove of task groups and also changes to
  200. * a task group's cpu shares.
  201. */
  202. static DEFINE_MUTEX(task_group_mutex);
  203. /* doms_cur_mutex serializes access to doms_cur[] array */
  204. static DEFINE_MUTEX(doms_cur_mutex);
  205. #ifdef CONFIG_SMP
  206. /* kernel thread that runs rebalance_shares() periodically */
  207. static struct task_struct *lb_monitor_task;
  208. static int load_balance_monitor(void *unused);
  209. #endif
  210. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  211. /* Default task group.
  212. * Every task in system belong to this group at bootup.
  213. */
  214. struct task_group init_task_group = {
  215. .se = init_sched_entity_p,
  216. .cfs_rq = init_cfs_rq_p,
  217. };
  218. #ifdef CONFIG_FAIR_USER_SCHED
  219. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  220. #else
  221. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  222. #endif
  223. #define MIN_GROUP_SHARES 2
  224. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  225. /* return group to which a task belongs */
  226. static inline struct task_group *task_group(struct task_struct *p)
  227. {
  228. struct task_group *tg;
  229. #ifdef CONFIG_FAIR_USER_SCHED
  230. tg = p->user->tg;
  231. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  232. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  233. struct task_group, css);
  234. #else
  235. tg = &init_task_group;
  236. #endif
  237. return tg;
  238. }
  239. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  240. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  241. {
  242. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  243. p->se.parent = task_group(p)->se[cpu];
  244. }
  245. static inline void lock_task_group_list(void)
  246. {
  247. mutex_lock(&task_group_mutex);
  248. }
  249. static inline void unlock_task_group_list(void)
  250. {
  251. mutex_unlock(&task_group_mutex);
  252. }
  253. static inline void lock_doms_cur(void)
  254. {
  255. mutex_lock(&doms_cur_mutex);
  256. }
  257. static inline void unlock_doms_cur(void)
  258. {
  259. mutex_unlock(&doms_cur_mutex);
  260. }
  261. #else
  262. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  263. static inline void lock_task_group_list(void) { }
  264. static inline void unlock_task_group_list(void) { }
  265. static inline void lock_doms_cur(void) { }
  266. static inline void unlock_doms_cur(void) { }
  267. #endif /* CONFIG_FAIR_GROUP_SCHED */
  268. /* CFS-related fields in a runqueue */
  269. struct cfs_rq {
  270. struct load_weight load;
  271. unsigned long nr_running;
  272. u64 exec_clock;
  273. u64 min_vruntime;
  274. struct rb_root tasks_timeline;
  275. struct rb_node *rb_leftmost;
  276. struct rb_node *rb_load_balance_curr;
  277. /* 'curr' points to currently running entity on this cfs_rq.
  278. * It is set to NULL otherwise (i.e when none are currently running).
  279. */
  280. struct sched_entity *curr;
  281. unsigned long nr_spread_over;
  282. #ifdef CONFIG_FAIR_GROUP_SCHED
  283. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  284. /*
  285. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  286. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  287. * (like users, containers etc.)
  288. *
  289. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  290. * list is used during load balance.
  291. */
  292. struct list_head leaf_cfs_rq_list;
  293. struct task_group *tg; /* group that "owns" this runqueue */
  294. #endif
  295. };
  296. /* Real-Time classes' related field in a runqueue: */
  297. struct rt_rq {
  298. struct rt_prio_array active;
  299. unsigned long rt_nr_running;
  300. #ifdef CONFIG_SMP
  301. unsigned long rt_nr_migratory;
  302. int highest_prio; /* highest queued rt task prio */
  303. int overloaded;
  304. #endif
  305. u64 rt_time;
  306. u64 rt_throttled;
  307. };
  308. #ifdef CONFIG_SMP
  309. /*
  310. * We add the notion of a root-domain which will be used to define per-domain
  311. * variables. Each exclusive cpuset essentially defines an island domain by
  312. * fully partitioning the member cpus from any other cpuset. Whenever a new
  313. * exclusive cpuset is created, we also create and attach a new root-domain
  314. * object.
  315. *
  316. */
  317. struct root_domain {
  318. atomic_t refcount;
  319. cpumask_t span;
  320. cpumask_t online;
  321. /*
  322. * The "RT overload" flag: it gets set if a CPU has more than
  323. * one runnable RT task.
  324. */
  325. cpumask_t rto_mask;
  326. atomic_t rto_count;
  327. };
  328. /*
  329. * By default the system creates a single root-domain with all cpus as
  330. * members (mimicking the global state we have today).
  331. */
  332. static struct root_domain def_root_domain;
  333. #endif
  334. /*
  335. * This is the main, per-CPU runqueue data structure.
  336. *
  337. * Locking rule: those places that want to lock multiple runqueues
  338. * (such as the load balancing or the thread migration code), lock
  339. * acquire operations must be ordered by ascending &runqueue.
  340. */
  341. struct rq {
  342. /* runqueue lock: */
  343. spinlock_t lock;
  344. /*
  345. * nr_running and cpu_load should be in the same cacheline because
  346. * remote CPUs use both these fields when doing load calculation.
  347. */
  348. unsigned long nr_running;
  349. #define CPU_LOAD_IDX_MAX 5
  350. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  351. unsigned char idle_at_tick;
  352. #ifdef CONFIG_NO_HZ
  353. unsigned char in_nohz_recently;
  354. #endif
  355. /* capture load from *all* tasks on this cpu: */
  356. struct load_weight load;
  357. unsigned long nr_load_updates;
  358. u64 nr_switches;
  359. struct cfs_rq cfs;
  360. #ifdef CONFIG_FAIR_GROUP_SCHED
  361. /* list of leaf cfs_rq on this cpu: */
  362. struct list_head leaf_cfs_rq_list;
  363. #endif
  364. struct rt_rq rt;
  365. u64 rt_period_expire;
  366. /*
  367. * This is part of a global counter where only the total sum
  368. * over all CPUs matters. A task can increase this counter on
  369. * one CPU and if it got migrated afterwards it may decrease
  370. * it on another CPU. Always updated under the runqueue lock:
  371. */
  372. unsigned long nr_uninterruptible;
  373. struct task_struct *curr, *idle;
  374. unsigned long next_balance;
  375. struct mm_struct *prev_mm;
  376. u64 clock, prev_clock_raw;
  377. s64 clock_max_delta;
  378. unsigned int clock_warps, clock_overflows;
  379. u64 idle_clock;
  380. unsigned int clock_deep_idle_events;
  381. u64 tick_timestamp;
  382. atomic_t nr_iowait;
  383. #ifdef CONFIG_SMP
  384. struct root_domain *rd;
  385. struct sched_domain *sd;
  386. /* For active balancing */
  387. int active_balance;
  388. int push_cpu;
  389. /* cpu of this runqueue: */
  390. int cpu;
  391. struct task_struct *migration_thread;
  392. struct list_head migration_queue;
  393. #endif
  394. #ifdef CONFIG_SCHED_HRTICK
  395. unsigned long hrtick_flags;
  396. ktime_t hrtick_expire;
  397. struct hrtimer hrtick_timer;
  398. #endif
  399. #ifdef CONFIG_SCHEDSTATS
  400. /* latency stats */
  401. struct sched_info rq_sched_info;
  402. /* sys_sched_yield() stats */
  403. unsigned int yld_exp_empty;
  404. unsigned int yld_act_empty;
  405. unsigned int yld_both_empty;
  406. unsigned int yld_count;
  407. /* schedule() stats */
  408. unsigned int sched_switch;
  409. unsigned int sched_count;
  410. unsigned int sched_goidle;
  411. /* try_to_wake_up() stats */
  412. unsigned int ttwu_count;
  413. unsigned int ttwu_local;
  414. /* BKL stats */
  415. unsigned int bkl_count;
  416. #endif
  417. struct lock_class_key rq_lock_key;
  418. };
  419. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  420. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  421. {
  422. rq->curr->sched_class->check_preempt_curr(rq, p);
  423. }
  424. static inline int cpu_of(struct rq *rq)
  425. {
  426. #ifdef CONFIG_SMP
  427. return rq->cpu;
  428. #else
  429. return 0;
  430. #endif
  431. }
  432. /*
  433. * Update the per-runqueue clock, as finegrained as the platform can give
  434. * us, but without assuming monotonicity, etc.:
  435. */
  436. static void __update_rq_clock(struct rq *rq)
  437. {
  438. u64 prev_raw = rq->prev_clock_raw;
  439. u64 now = sched_clock();
  440. s64 delta = now - prev_raw;
  441. u64 clock = rq->clock;
  442. #ifdef CONFIG_SCHED_DEBUG
  443. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  444. #endif
  445. /*
  446. * Protect against sched_clock() occasionally going backwards:
  447. */
  448. if (unlikely(delta < 0)) {
  449. clock++;
  450. rq->clock_warps++;
  451. } else {
  452. /*
  453. * Catch too large forward jumps too:
  454. */
  455. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  456. if (clock < rq->tick_timestamp + TICK_NSEC)
  457. clock = rq->tick_timestamp + TICK_NSEC;
  458. else
  459. clock++;
  460. rq->clock_overflows++;
  461. } else {
  462. if (unlikely(delta > rq->clock_max_delta))
  463. rq->clock_max_delta = delta;
  464. clock += delta;
  465. }
  466. }
  467. rq->prev_clock_raw = now;
  468. rq->clock = clock;
  469. }
  470. static void update_rq_clock(struct rq *rq)
  471. {
  472. if (likely(smp_processor_id() == cpu_of(rq)))
  473. __update_rq_clock(rq);
  474. }
  475. /*
  476. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  477. * See detach_destroy_domains: synchronize_sched for details.
  478. *
  479. * The domain tree of any CPU may only be accessed from within
  480. * preempt-disabled sections.
  481. */
  482. #define for_each_domain(cpu, __sd) \
  483. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  484. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  485. #define this_rq() (&__get_cpu_var(runqueues))
  486. #define task_rq(p) cpu_rq(task_cpu(p))
  487. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  488. /*
  489. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  490. */
  491. #ifdef CONFIG_SCHED_DEBUG
  492. # define const_debug __read_mostly
  493. #else
  494. # define const_debug static const
  495. #endif
  496. /*
  497. * Debugging: various feature bits
  498. */
  499. enum {
  500. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  501. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  502. SCHED_FEAT_START_DEBIT = 4,
  503. SCHED_FEAT_TREE_AVG = 8,
  504. SCHED_FEAT_APPROX_AVG = 16,
  505. SCHED_FEAT_HRTICK = 32,
  506. SCHED_FEAT_DOUBLE_TICK = 64,
  507. };
  508. const_debug unsigned int sysctl_sched_features =
  509. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  510. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  511. SCHED_FEAT_START_DEBIT * 1 |
  512. SCHED_FEAT_TREE_AVG * 0 |
  513. SCHED_FEAT_APPROX_AVG * 0 |
  514. SCHED_FEAT_HRTICK * 1 |
  515. SCHED_FEAT_DOUBLE_TICK * 0;
  516. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  517. /*
  518. * Number of tasks to iterate in a single balance run.
  519. * Limited because this is done with IRQs disabled.
  520. */
  521. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  522. /*
  523. * period over which we measure -rt task cpu usage in ms.
  524. * default: 1s
  525. */
  526. const_debug unsigned int sysctl_sched_rt_period = 1000;
  527. #define SCHED_RT_FRAC_SHIFT 16
  528. #define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
  529. /*
  530. * ratio of time -rt tasks may consume.
  531. * default: 100%
  532. */
  533. const_debug unsigned int sysctl_sched_rt_ratio = SCHED_RT_FRAC;
  534. /*
  535. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  536. * clock constructed from sched_clock():
  537. */
  538. unsigned long long cpu_clock(int cpu)
  539. {
  540. unsigned long long now;
  541. unsigned long flags;
  542. struct rq *rq;
  543. local_irq_save(flags);
  544. rq = cpu_rq(cpu);
  545. /*
  546. * Only call sched_clock() if the scheduler has already been
  547. * initialized (some code might call cpu_clock() very early):
  548. */
  549. if (rq->idle)
  550. update_rq_clock(rq);
  551. now = rq->clock;
  552. local_irq_restore(flags);
  553. return now;
  554. }
  555. EXPORT_SYMBOL_GPL(cpu_clock);
  556. #ifndef prepare_arch_switch
  557. # define prepare_arch_switch(next) do { } while (0)
  558. #endif
  559. #ifndef finish_arch_switch
  560. # define finish_arch_switch(prev) do { } while (0)
  561. #endif
  562. static inline int task_current(struct rq *rq, struct task_struct *p)
  563. {
  564. return rq->curr == p;
  565. }
  566. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  567. static inline int task_running(struct rq *rq, struct task_struct *p)
  568. {
  569. return task_current(rq, p);
  570. }
  571. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  572. {
  573. }
  574. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  575. {
  576. #ifdef CONFIG_DEBUG_SPINLOCK
  577. /* this is a valid case when another task releases the spinlock */
  578. rq->lock.owner = current;
  579. #endif
  580. /*
  581. * If we are tracking spinlock dependencies then we have to
  582. * fix up the runqueue lock - which gets 'carried over' from
  583. * prev into current:
  584. */
  585. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  586. spin_unlock_irq(&rq->lock);
  587. }
  588. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  589. static inline int task_running(struct rq *rq, struct task_struct *p)
  590. {
  591. #ifdef CONFIG_SMP
  592. return p->oncpu;
  593. #else
  594. return task_current(rq, p);
  595. #endif
  596. }
  597. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  598. {
  599. #ifdef CONFIG_SMP
  600. /*
  601. * We can optimise this out completely for !SMP, because the
  602. * SMP rebalancing from interrupt is the only thing that cares
  603. * here.
  604. */
  605. next->oncpu = 1;
  606. #endif
  607. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  608. spin_unlock_irq(&rq->lock);
  609. #else
  610. spin_unlock(&rq->lock);
  611. #endif
  612. }
  613. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  614. {
  615. #ifdef CONFIG_SMP
  616. /*
  617. * After ->oncpu is cleared, the task can be moved to a different CPU.
  618. * We must ensure this doesn't happen until the switch is completely
  619. * finished.
  620. */
  621. smp_wmb();
  622. prev->oncpu = 0;
  623. #endif
  624. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  625. local_irq_enable();
  626. #endif
  627. }
  628. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  629. /*
  630. * __task_rq_lock - lock the runqueue a given task resides on.
  631. * Must be called interrupts disabled.
  632. */
  633. static inline struct rq *__task_rq_lock(struct task_struct *p)
  634. __acquires(rq->lock)
  635. {
  636. for (;;) {
  637. struct rq *rq = task_rq(p);
  638. spin_lock(&rq->lock);
  639. if (likely(rq == task_rq(p)))
  640. return rq;
  641. spin_unlock(&rq->lock);
  642. }
  643. }
  644. /*
  645. * task_rq_lock - lock the runqueue a given task resides on and disable
  646. * interrupts. Note the ordering: we can safely lookup the task_rq without
  647. * explicitly disabling preemption.
  648. */
  649. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  650. __acquires(rq->lock)
  651. {
  652. struct rq *rq;
  653. for (;;) {
  654. local_irq_save(*flags);
  655. rq = task_rq(p);
  656. spin_lock(&rq->lock);
  657. if (likely(rq == task_rq(p)))
  658. return rq;
  659. spin_unlock_irqrestore(&rq->lock, *flags);
  660. }
  661. }
  662. static void __task_rq_unlock(struct rq *rq)
  663. __releases(rq->lock)
  664. {
  665. spin_unlock(&rq->lock);
  666. }
  667. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  668. __releases(rq->lock)
  669. {
  670. spin_unlock_irqrestore(&rq->lock, *flags);
  671. }
  672. /*
  673. * this_rq_lock - lock this runqueue and disable interrupts.
  674. */
  675. static struct rq *this_rq_lock(void)
  676. __acquires(rq->lock)
  677. {
  678. struct rq *rq;
  679. local_irq_disable();
  680. rq = this_rq();
  681. spin_lock(&rq->lock);
  682. return rq;
  683. }
  684. /*
  685. * We are going deep-idle (irqs are disabled):
  686. */
  687. void sched_clock_idle_sleep_event(void)
  688. {
  689. struct rq *rq = cpu_rq(smp_processor_id());
  690. spin_lock(&rq->lock);
  691. __update_rq_clock(rq);
  692. spin_unlock(&rq->lock);
  693. rq->clock_deep_idle_events++;
  694. }
  695. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  696. /*
  697. * We just idled delta nanoseconds (called with irqs disabled):
  698. */
  699. void sched_clock_idle_wakeup_event(u64 delta_ns)
  700. {
  701. struct rq *rq = cpu_rq(smp_processor_id());
  702. u64 now = sched_clock();
  703. touch_softlockup_watchdog();
  704. rq->idle_clock += delta_ns;
  705. /*
  706. * Override the previous timestamp and ignore all
  707. * sched_clock() deltas that occured while we idled,
  708. * and use the PM-provided delta_ns to advance the
  709. * rq clock:
  710. */
  711. spin_lock(&rq->lock);
  712. rq->prev_clock_raw = now;
  713. rq->clock += delta_ns;
  714. spin_unlock(&rq->lock);
  715. }
  716. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  717. static void __resched_task(struct task_struct *p, int tif_bit);
  718. static inline void resched_task(struct task_struct *p)
  719. {
  720. __resched_task(p, TIF_NEED_RESCHED);
  721. }
  722. #ifdef CONFIG_SCHED_HRTICK
  723. /*
  724. * Use HR-timers to deliver accurate preemption points.
  725. *
  726. * Its all a bit involved since we cannot program an hrt while holding the
  727. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  728. * reschedule event.
  729. *
  730. * When we get rescheduled we reprogram the hrtick_timer outside of the
  731. * rq->lock.
  732. */
  733. static inline void resched_hrt(struct task_struct *p)
  734. {
  735. __resched_task(p, TIF_HRTICK_RESCHED);
  736. }
  737. static inline void resched_rq(struct rq *rq)
  738. {
  739. unsigned long flags;
  740. spin_lock_irqsave(&rq->lock, flags);
  741. resched_task(rq->curr);
  742. spin_unlock_irqrestore(&rq->lock, flags);
  743. }
  744. enum {
  745. HRTICK_SET, /* re-programm hrtick_timer */
  746. HRTICK_RESET, /* not a new slice */
  747. };
  748. /*
  749. * Use hrtick when:
  750. * - enabled by features
  751. * - hrtimer is actually high res
  752. */
  753. static inline int hrtick_enabled(struct rq *rq)
  754. {
  755. if (!sched_feat(HRTICK))
  756. return 0;
  757. return hrtimer_is_hres_active(&rq->hrtick_timer);
  758. }
  759. /*
  760. * Called to set the hrtick timer state.
  761. *
  762. * called with rq->lock held and irqs disabled
  763. */
  764. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  765. {
  766. assert_spin_locked(&rq->lock);
  767. /*
  768. * preempt at: now + delay
  769. */
  770. rq->hrtick_expire =
  771. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  772. /*
  773. * indicate we need to program the timer
  774. */
  775. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  776. if (reset)
  777. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  778. /*
  779. * New slices are called from the schedule path and don't need a
  780. * forced reschedule.
  781. */
  782. if (reset)
  783. resched_hrt(rq->curr);
  784. }
  785. static void hrtick_clear(struct rq *rq)
  786. {
  787. if (hrtimer_active(&rq->hrtick_timer))
  788. hrtimer_cancel(&rq->hrtick_timer);
  789. }
  790. /*
  791. * Update the timer from the possible pending state.
  792. */
  793. static void hrtick_set(struct rq *rq)
  794. {
  795. ktime_t time;
  796. int set, reset;
  797. unsigned long flags;
  798. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  799. spin_lock_irqsave(&rq->lock, flags);
  800. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  801. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  802. time = rq->hrtick_expire;
  803. clear_thread_flag(TIF_HRTICK_RESCHED);
  804. spin_unlock_irqrestore(&rq->lock, flags);
  805. if (set) {
  806. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  807. if (reset && !hrtimer_active(&rq->hrtick_timer))
  808. resched_rq(rq);
  809. } else
  810. hrtick_clear(rq);
  811. }
  812. /*
  813. * High-resolution timer tick.
  814. * Runs from hardirq context with interrupts disabled.
  815. */
  816. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  817. {
  818. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  819. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  820. spin_lock(&rq->lock);
  821. __update_rq_clock(rq);
  822. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  823. spin_unlock(&rq->lock);
  824. return HRTIMER_NORESTART;
  825. }
  826. static inline void init_rq_hrtick(struct rq *rq)
  827. {
  828. rq->hrtick_flags = 0;
  829. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  830. rq->hrtick_timer.function = hrtick;
  831. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  832. }
  833. void hrtick_resched(void)
  834. {
  835. struct rq *rq;
  836. unsigned long flags;
  837. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  838. return;
  839. local_irq_save(flags);
  840. rq = cpu_rq(smp_processor_id());
  841. hrtick_set(rq);
  842. local_irq_restore(flags);
  843. }
  844. #else
  845. static inline void hrtick_clear(struct rq *rq)
  846. {
  847. }
  848. static inline void hrtick_set(struct rq *rq)
  849. {
  850. }
  851. static inline void init_rq_hrtick(struct rq *rq)
  852. {
  853. }
  854. void hrtick_resched(void)
  855. {
  856. }
  857. #endif
  858. /*
  859. * resched_task - mark a task 'to be rescheduled now'.
  860. *
  861. * On UP this means the setting of the need_resched flag, on SMP it
  862. * might also involve a cross-CPU call to trigger the scheduler on
  863. * the target CPU.
  864. */
  865. #ifdef CONFIG_SMP
  866. #ifndef tsk_is_polling
  867. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  868. #endif
  869. static void __resched_task(struct task_struct *p, int tif_bit)
  870. {
  871. int cpu;
  872. assert_spin_locked(&task_rq(p)->lock);
  873. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  874. return;
  875. set_tsk_thread_flag(p, tif_bit);
  876. cpu = task_cpu(p);
  877. if (cpu == smp_processor_id())
  878. return;
  879. /* NEED_RESCHED must be visible before we test polling */
  880. smp_mb();
  881. if (!tsk_is_polling(p))
  882. smp_send_reschedule(cpu);
  883. }
  884. static void resched_cpu(int cpu)
  885. {
  886. struct rq *rq = cpu_rq(cpu);
  887. unsigned long flags;
  888. if (!spin_trylock_irqsave(&rq->lock, flags))
  889. return;
  890. resched_task(cpu_curr(cpu));
  891. spin_unlock_irqrestore(&rq->lock, flags);
  892. }
  893. #else
  894. static void __resched_task(struct task_struct *p, int tif_bit)
  895. {
  896. assert_spin_locked(&task_rq(p)->lock);
  897. set_tsk_thread_flag(p, tif_bit);
  898. }
  899. #endif
  900. #if BITS_PER_LONG == 32
  901. # define WMULT_CONST (~0UL)
  902. #else
  903. # define WMULT_CONST (1UL << 32)
  904. #endif
  905. #define WMULT_SHIFT 32
  906. /*
  907. * Shift right and round:
  908. */
  909. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  910. static unsigned long
  911. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  912. struct load_weight *lw)
  913. {
  914. u64 tmp;
  915. if (unlikely(!lw->inv_weight))
  916. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  917. tmp = (u64)delta_exec * weight;
  918. /*
  919. * Check whether we'd overflow the 64-bit multiplication:
  920. */
  921. if (unlikely(tmp > WMULT_CONST))
  922. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  923. WMULT_SHIFT/2);
  924. else
  925. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  926. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  927. }
  928. static inline unsigned long
  929. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  930. {
  931. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  932. }
  933. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  934. {
  935. lw->weight += inc;
  936. }
  937. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  938. {
  939. lw->weight -= dec;
  940. }
  941. /*
  942. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  943. * of tasks with abnormal "nice" values across CPUs the contribution that
  944. * each task makes to its run queue's load is weighted according to its
  945. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  946. * scaled version of the new time slice allocation that they receive on time
  947. * slice expiry etc.
  948. */
  949. #define WEIGHT_IDLEPRIO 2
  950. #define WMULT_IDLEPRIO (1 << 31)
  951. /*
  952. * Nice levels are multiplicative, with a gentle 10% change for every
  953. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  954. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  955. * that remained on nice 0.
  956. *
  957. * The "10% effect" is relative and cumulative: from _any_ nice level,
  958. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  959. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  960. * If a task goes up by ~10% and another task goes down by ~10% then
  961. * the relative distance between them is ~25%.)
  962. */
  963. static const int prio_to_weight[40] = {
  964. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  965. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  966. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  967. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  968. /* 0 */ 1024, 820, 655, 526, 423,
  969. /* 5 */ 335, 272, 215, 172, 137,
  970. /* 10 */ 110, 87, 70, 56, 45,
  971. /* 15 */ 36, 29, 23, 18, 15,
  972. };
  973. /*
  974. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  975. *
  976. * In cases where the weight does not change often, we can use the
  977. * precalculated inverse to speed up arithmetics by turning divisions
  978. * into multiplications:
  979. */
  980. static const u32 prio_to_wmult[40] = {
  981. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  982. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  983. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  984. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  985. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  986. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  987. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  988. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  989. };
  990. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  991. /*
  992. * runqueue iterator, to support SMP load-balancing between different
  993. * scheduling classes, without having to expose their internal data
  994. * structures to the load-balancing proper:
  995. */
  996. struct rq_iterator {
  997. void *arg;
  998. struct task_struct *(*start)(void *);
  999. struct task_struct *(*next)(void *);
  1000. };
  1001. #ifdef CONFIG_SMP
  1002. static unsigned long
  1003. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1004. unsigned long max_load_move, struct sched_domain *sd,
  1005. enum cpu_idle_type idle, int *all_pinned,
  1006. int *this_best_prio, struct rq_iterator *iterator);
  1007. static int
  1008. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1009. struct sched_domain *sd, enum cpu_idle_type idle,
  1010. struct rq_iterator *iterator);
  1011. #endif
  1012. #ifdef CONFIG_CGROUP_CPUACCT
  1013. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1014. #else
  1015. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1016. #endif
  1017. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1018. {
  1019. update_load_add(&rq->load, load);
  1020. }
  1021. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1022. {
  1023. update_load_sub(&rq->load, load);
  1024. }
  1025. #ifdef CONFIG_SMP
  1026. static unsigned long source_load(int cpu, int type);
  1027. static unsigned long target_load(int cpu, int type);
  1028. static unsigned long cpu_avg_load_per_task(int cpu);
  1029. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1030. #endif /* CONFIG_SMP */
  1031. #include "sched_stats.h"
  1032. #include "sched_idletask.c"
  1033. #include "sched_fair.c"
  1034. #include "sched_rt.c"
  1035. #ifdef CONFIG_SCHED_DEBUG
  1036. # include "sched_debug.c"
  1037. #endif
  1038. #define sched_class_highest (&rt_sched_class)
  1039. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1040. {
  1041. rq->nr_running++;
  1042. }
  1043. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1044. {
  1045. rq->nr_running--;
  1046. }
  1047. static void set_load_weight(struct task_struct *p)
  1048. {
  1049. if (task_has_rt_policy(p)) {
  1050. p->se.load.weight = prio_to_weight[0] * 2;
  1051. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1052. return;
  1053. }
  1054. /*
  1055. * SCHED_IDLE tasks get minimal weight:
  1056. */
  1057. if (p->policy == SCHED_IDLE) {
  1058. p->se.load.weight = WEIGHT_IDLEPRIO;
  1059. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1060. return;
  1061. }
  1062. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1063. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1064. }
  1065. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1066. {
  1067. sched_info_queued(p);
  1068. p->sched_class->enqueue_task(rq, p, wakeup);
  1069. p->se.on_rq = 1;
  1070. }
  1071. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1072. {
  1073. p->sched_class->dequeue_task(rq, p, sleep);
  1074. p->se.on_rq = 0;
  1075. }
  1076. /*
  1077. * __normal_prio - return the priority that is based on the static prio
  1078. */
  1079. static inline int __normal_prio(struct task_struct *p)
  1080. {
  1081. return p->static_prio;
  1082. }
  1083. /*
  1084. * Calculate the expected normal priority: i.e. priority
  1085. * without taking RT-inheritance into account. Might be
  1086. * boosted by interactivity modifiers. Changes upon fork,
  1087. * setprio syscalls, and whenever the interactivity
  1088. * estimator recalculates.
  1089. */
  1090. static inline int normal_prio(struct task_struct *p)
  1091. {
  1092. int prio;
  1093. if (task_has_rt_policy(p))
  1094. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1095. else
  1096. prio = __normal_prio(p);
  1097. return prio;
  1098. }
  1099. /*
  1100. * Calculate the current priority, i.e. the priority
  1101. * taken into account by the scheduler. This value might
  1102. * be boosted by RT tasks, or might be boosted by
  1103. * interactivity modifiers. Will be RT if the task got
  1104. * RT-boosted. If not then it returns p->normal_prio.
  1105. */
  1106. static int effective_prio(struct task_struct *p)
  1107. {
  1108. p->normal_prio = normal_prio(p);
  1109. /*
  1110. * If we are RT tasks or we were boosted to RT priority,
  1111. * keep the priority unchanged. Otherwise, update priority
  1112. * to the normal priority:
  1113. */
  1114. if (!rt_prio(p->prio))
  1115. return p->normal_prio;
  1116. return p->prio;
  1117. }
  1118. /*
  1119. * activate_task - move a task to the runqueue.
  1120. */
  1121. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1122. {
  1123. if (p->state == TASK_UNINTERRUPTIBLE)
  1124. rq->nr_uninterruptible--;
  1125. enqueue_task(rq, p, wakeup);
  1126. inc_nr_running(p, rq);
  1127. }
  1128. /*
  1129. * deactivate_task - remove a task from the runqueue.
  1130. */
  1131. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1132. {
  1133. if (p->state == TASK_UNINTERRUPTIBLE)
  1134. rq->nr_uninterruptible++;
  1135. dequeue_task(rq, p, sleep);
  1136. dec_nr_running(p, rq);
  1137. }
  1138. /**
  1139. * task_curr - is this task currently executing on a CPU?
  1140. * @p: the task in question.
  1141. */
  1142. inline int task_curr(const struct task_struct *p)
  1143. {
  1144. return cpu_curr(task_cpu(p)) == p;
  1145. }
  1146. /* Used instead of source_load when we know the type == 0 */
  1147. unsigned long weighted_cpuload(const int cpu)
  1148. {
  1149. return cpu_rq(cpu)->load.weight;
  1150. }
  1151. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1152. {
  1153. set_task_cfs_rq(p, cpu);
  1154. #ifdef CONFIG_SMP
  1155. /*
  1156. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1157. * successfuly executed on another CPU. We must ensure that updates of
  1158. * per-task data have been completed by this moment.
  1159. */
  1160. smp_wmb();
  1161. task_thread_info(p)->cpu = cpu;
  1162. #endif
  1163. }
  1164. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1165. const struct sched_class *prev_class,
  1166. int oldprio, int running)
  1167. {
  1168. if (prev_class != p->sched_class) {
  1169. if (prev_class->switched_from)
  1170. prev_class->switched_from(rq, p, running);
  1171. p->sched_class->switched_to(rq, p, running);
  1172. } else
  1173. p->sched_class->prio_changed(rq, p, oldprio, running);
  1174. }
  1175. #ifdef CONFIG_SMP
  1176. /*
  1177. * Is this task likely cache-hot:
  1178. */
  1179. static int
  1180. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1181. {
  1182. s64 delta;
  1183. if (p->sched_class != &fair_sched_class)
  1184. return 0;
  1185. if (sysctl_sched_migration_cost == -1)
  1186. return 1;
  1187. if (sysctl_sched_migration_cost == 0)
  1188. return 0;
  1189. delta = now - p->se.exec_start;
  1190. return delta < (s64)sysctl_sched_migration_cost;
  1191. }
  1192. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1193. {
  1194. int old_cpu = task_cpu(p);
  1195. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1196. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1197. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1198. u64 clock_offset;
  1199. clock_offset = old_rq->clock - new_rq->clock;
  1200. #ifdef CONFIG_SCHEDSTATS
  1201. if (p->se.wait_start)
  1202. p->se.wait_start -= clock_offset;
  1203. if (p->se.sleep_start)
  1204. p->se.sleep_start -= clock_offset;
  1205. if (p->se.block_start)
  1206. p->se.block_start -= clock_offset;
  1207. if (old_cpu != new_cpu) {
  1208. schedstat_inc(p, se.nr_migrations);
  1209. if (task_hot(p, old_rq->clock, NULL))
  1210. schedstat_inc(p, se.nr_forced2_migrations);
  1211. }
  1212. #endif
  1213. p->se.vruntime -= old_cfsrq->min_vruntime -
  1214. new_cfsrq->min_vruntime;
  1215. __set_task_cpu(p, new_cpu);
  1216. }
  1217. struct migration_req {
  1218. struct list_head list;
  1219. struct task_struct *task;
  1220. int dest_cpu;
  1221. struct completion done;
  1222. };
  1223. /*
  1224. * The task's runqueue lock must be held.
  1225. * Returns true if you have to wait for migration thread.
  1226. */
  1227. static int
  1228. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1229. {
  1230. struct rq *rq = task_rq(p);
  1231. /*
  1232. * If the task is not on a runqueue (and not running), then
  1233. * it is sufficient to simply update the task's cpu field.
  1234. */
  1235. if (!p->se.on_rq && !task_running(rq, p)) {
  1236. set_task_cpu(p, dest_cpu);
  1237. return 0;
  1238. }
  1239. init_completion(&req->done);
  1240. req->task = p;
  1241. req->dest_cpu = dest_cpu;
  1242. list_add(&req->list, &rq->migration_queue);
  1243. return 1;
  1244. }
  1245. /*
  1246. * wait_task_inactive - wait for a thread to unschedule.
  1247. *
  1248. * The caller must ensure that the task *will* unschedule sometime soon,
  1249. * else this function might spin for a *long* time. This function can't
  1250. * be called with interrupts off, or it may introduce deadlock with
  1251. * smp_call_function() if an IPI is sent by the same process we are
  1252. * waiting to become inactive.
  1253. */
  1254. void wait_task_inactive(struct task_struct *p)
  1255. {
  1256. unsigned long flags;
  1257. int running, on_rq;
  1258. struct rq *rq;
  1259. for (;;) {
  1260. /*
  1261. * We do the initial early heuristics without holding
  1262. * any task-queue locks at all. We'll only try to get
  1263. * the runqueue lock when things look like they will
  1264. * work out!
  1265. */
  1266. rq = task_rq(p);
  1267. /*
  1268. * If the task is actively running on another CPU
  1269. * still, just relax and busy-wait without holding
  1270. * any locks.
  1271. *
  1272. * NOTE! Since we don't hold any locks, it's not
  1273. * even sure that "rq" stays as the right runqueue!
  1274. * But we don't care, since "task_running()" will
  1275. * return false if the runqueue has changed and p
  1276. * is actually now running somewhere else!
  1277. */
  1278. while (task_running(rq, p))
  1279. cpu_relax();
  1280. /*
  1281. * Ok, time to look more closely! We need the rq
  1282. * lock now, to be *sure*. If we're wrong, we'll
  1283. * just go back and repeat.
  1284. */
  1285. rq = task_rq_lock(p, &flags);
  1286. running = task_running(rq, p);
  1287. on_rq = p->se.on_rq;
  1288. task_rq_unlock(rq, &flags);
  1289. /*
  1290. * Was it really running after all now that we
  1291. * checked with the proper locks actually held?
  1292. *
  1293. * Oops. Go back and try again..
  1294. */
  1295. if (unlikely(running)) {
  1296. cpu_relax();
  1297. continue;
  1298. }
  1299. /*
  1300. * It's not enough that it's not actively running,
  1301. * it must be off the runqueue _entirely_, and not
  1302. * preempted!
  1303. *
  1304. * So if it wa still runnable (but just not actively
  1305. * running right now), it's preempted, and we should
  1306. * yield - it could be a while.
  1307. */
  1308. if (unlikely(on_rq)) {
  1309. schedule_timeout_uninterruptible(1);
  1310. continue;
  1311. }
  1312. /*
  1313. * Ahh, all good. It wasn't running, and it wasn't
  1314. * runnable, which means that it will never become
  1315. * running in the future either. We're all done!
  1316. */
  1317. break;
  1318. }
  1319. }
  1320. /***
  1321. * kick_process - kick a running thread to enter/exit the kernel
  1322. * @p: the to-be-kicked thread
  1323. *
  1324. * Cause a process which is running on another CPU to enter
  1325. * kernel-mode, without any delay. (to get signals handled.)
  1326. *
  1327. * NOTE: this function doesnt have to take the runqueue lock,
  1328. * because all it wants to ensure is that the remote task enters
  1329. * the kernel. If the IPI races and the task has been migrated
  1330. * to another CPU then no harm is done and the purpose has been
  1331. * achieved as well.
  1332. */
  1333. void kick_process(struct task_struct *p)
  1334. {
  1335. int cpu;
  1336. preempt_disable();
  1337. cpu = task_cpu(p);
  1338. if ((cpu != smp_processor_id()) && task_curr(p))
  1339. smp_send_reschedule(cpu);
  1340. preempt_enable();
  1341. }
  1342. /*
  1343. * Return a low guess at the load of a migration-source cpu weighted
  1344. * according to the scheduling class and "nice" value.
  1345. *
  1346. * We want to under-estimate the load of migration sources, to
  1347. * balance conservatively.
  1348. */
  1349. static unsigned long source_load(int cpu, int type)
  1350. {
  1351. struct rq *rq = cpu_rq(cpu);
  1352. unsigned long total = weighted_cpuload(cpu);
  1353. if (type == 0)
  1354. return total;
  1355. return min(rq->cpu_load[type-1], total);
  1356. }
  1357. /*
  1358. * Return a high guess at the load of a migration-target cpu weighted
  1359. * according to the scheduling class and "nice" value.
  1360. */
  1361. static unsigned long target_load(int cpu, int type)
  1362. {
  1363. struct rq *rq = cpu_rq(cpu);
  1364. unsigned long total = weighted_cpuload(cpu);
  1365. if (type == 0)
  1366. return total;
  1367. return max(rq->cpu_load[type-1], total);
  1368. }
  1369. /*
  1370. * Return the average load per task on the cpu's run queue
  1371. */
  1372. static unsigned long cpu_avg_load_per_task(int cpu)
  1373. {
  1374. struct rq *rq = cpu_rq(cpu);
  1375. unsigned long total = weighted_cpuload(cpu);
  1376. unsigned long n = rq->nr_running;
  1377. return n ? total / n : SCHED_LOAD_SCALE;
  1378. }
  1379. /*
  1380. * find_idlest_group finds and returns the least busy CPU group within the
  1381. * domain.
  1382. */
  1383. static struct sched_group *
  1384. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1385. {
  1386. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1387. unsigned long min_load = ULONG_MAX, this_load = 0;
  1388. int load_idx = sd->forkexec_idx;
  1389. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1390. do {
  1391. unsigned long load, avg_load;
  1392. int local_group;
  1393. int i;
  1394. /* Skip over this group if it has no CPUs allowed */
  1395. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1396. continue;
  1397. local_group = cpu_isset(this_cpu, group->cpumask);
  1398. /* Tally up the load of all CPUs in the group */
  1399. avg_load = 0;
  1400. for_each_cpu_mask(i, group->cpumask) {
  1401. /* Bias balancing toward cpus of our domain */
  1402. if (local_group)
  1403. load = source_load(i, load_idx);
  1404. else
  1405. load = target_load(i, load_idx);
  1406. avg_load += load;
  1407. }
  1408. /* Adjust by relative CPU power of the group */
  1409. avg_load = sg_div_cpu_power(group,
  1410. avg_load * SCHED_LOAD_SCALE);
  1411. if (local_group) {
  1412. this_load = avg_load;
  1413. this = group;
  1414. } else if (avg_load < min_load) {
  1415. min_load = avg_load;
  1416. idlest = group;
  1417. }
  1418. } while (group = group->next, group != sd->groups);
  1419. if (!idlest || 100*this_load < imbalance*min_load)
  1420. return NULL;
  1421. return idlest;
  1422. }
  1423. /*
  1424. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1425. */
  1426. static int
  1427. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1428. {
  1429. cpumask_t tmp;
  1430. unsigned long load, min_load = ULONG_MAX;
  1431. int idlest = -1;
  1432. int i;
  1433. /* Traverse only the allowed CPUs */
  1434. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1435. for_each_cpu_mask(i, tmp) {
  1436. load = weighted_cpuload(i);
  1437. if (load < min_load || (load == min_load && i == this_cpu)) {
  1438. min_load = load;
  1439. idlest = i;
  1440. }
  1441. }
  1442. return idlest;
  1443. }
  1444. /*
  1445. * sched_balance_self: balance the current task (running on cpu) in domains
  1446. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1447. * SD_BALANCE_EXEC.
  1448. *
  1449. * Balance, ie. select the least loaded group.
  1450. *
  1451. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1452. *
  1453. * preempt must be disabled.
  1454. */
  1455. static int sched_balance_self(int cpu, int flag)
  1456. {
  1457. struct task_struct *t = current;
  1458. struct sched_domain *tmp, *sd = NULL;
  1459. for_each_domain(cpu, tmp) {
  1460. /*
  1461. * If power savings logic is enabled for a domain, stop there.
  1462. */
  1463. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1464. break;
  1465. if (tmp->flags & flag)
  1466. sd = tmp;
  1467. }
  1468. while (sd) {
  1469. cpumask_t span;
  1470. struct sched_group *group;
  1471. int new_cpu, weight;
  1472. if (!(sd->flags & flag)) {
  1473. sd = sd->child;
  1474. continue;
  1475. }
  1476. span = sd->span;
  1477. group = find_idlest_group(sd, t, cpu);
  1478. if (!group) {
  1479. sd = sd->child;
  1480. continue;
  1481. }
  1482. new_cpu = find_idlest_cpu(group, t, cpu);
  1483. if (new_cpu == -1 || new_cpu == cpu) {
  1484. /* Now try balancing at a lower domain level of cpu */
  1485. sd = sd->child;
  1486. continue;
  1487. }
  1488. /* Now try balancing at a lower domain level of new_cpu */
  1489. cpu = new_cpu;
  1490. sd = NULL;
  1491. weight = cpus_weight(span);
  1492. for_each_domain(cpu, tmp) {
  1493. if (weight <= cpus_weight(tmp->span))
  1494. break;
  1495. if (tmp->flags & flag)
  1496. sd = tmp;
  1497. }
  1498. /* while loop will break here if sd == NULL */
  1499. }
  1500. return cpu;
  1501. }
  1502. #endif /* CONFIG_SMP */
  1503. /***
  1504. * try_to_wake_up - wake up a thread
  1505. * @p: the to-be-woken-up thread
  1506. * @state: the mask of task states that can be woken
  1507. * @sync: do a synchronous wakeup?
  1508. *
  1509. * Put it on the run-queue if it's not already there. The "current"
  1510. * thread is always on the run-queue (except when the actual
  1511. * re-schedule is in progress), and as such you're allowed to do
  1512. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1513. * runnable without the overhead of this.
  1514. *
  1515. * returns failure only if the task is already active.
  1516. */
  1517. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1518. {
  1519. int cpu, orig_cpu, this_cpu, success = 0;
  1520. unsigned long flags;
  1521. long old_state;
  1522. struct rq *rq;
  1523. rq = task_rq_lock(p, &flags);
  1524. old_state = p->state;
  1525. if (!(old_state & state))
  1526. goto out;
  1527. if (p->se.on_rq)
  1528. goto out_running;
  1529. cpu = task_cpu(p);
  1530. orig_cpu = cpu;
  1531. this_cpu = smp_processor_id();
  1532. #ifdef CONFIG_SMP
  1533. if (unlikely(task_running(rq, p)))
  1534. goto out_activate;
  1535. cpu = p->sched_class->select_task_rq(p, sync);
  1536. if (cpu != orig_cpu) {
  1537. set_task_cpu(p, cpu);
  1538. task_rq_unlock(rq, &flags);
  1539. /* might preempt at this point */
  1540. rq = task_rq_lock(p, &flags);
  1541. old_state = p->state;
  1542. if (!(old_state & state))
  1543. goto out;
  1544. if (p->se.on_rq)
  1545. goto out_running;
  1546. this_cpu = smp_processor_id();
  1547. cpu = task_cpu(p);
  1548. }
  1549. #ifdef CONFIG_SCHEDSTATS
  1550. schedstat_inc(rq, ttwu_count);
  1551. if (cpu == this_cpu)
  1552. schedstat_inc(rq, ttwu_local);
  1553. else {
  1554. struct sched_domain *sd;
  1555. for_each_domain(this_cpu, sd) {
  1556. if (cpu_isset(cpu, sd->span)) {
  1557. schedstat_inc(sd, ttwu_wake_remote);
  1558. break;
  1559. }
  1560. }
  1561. }
  1562. #endif
  1563. out_activate:
  1564. #endif /* CONFIG_SMP */
  1565. schedstat_inc(p, se.nr_wakeups);
  1566. if (sync)
  1567. schedstat_inc(p, se.nr_wakeups_sync);
  1568. if (orig_cpu != cpu)
  1569. schedstat_inc(p, se.nr_wakeups_migrate);
  1570. if (cpu == this_cpu)
  1571. schedstat_inc(p, se.nr_wakeups_local);
  1572. else
  1573. schedstat_inc(p, se.nr_wakeups_remote);
  1574. update_rq_clock(rq);
  1575. activate_task(rq, p, 1);
  1576. check_preempt_curr(rq, p);
  1577. success = 1;
  1578. out_running:
  1579. p->state = TASK_RUNNING;
  1580. #ifdef CONFIG_SMP
  1581. if (p->sched_class->task_wake_up)
  1582. p->sched_class->task_wake_up(rq, p);
  1583. #endif
  1584. out:
  1585. task_rq_unlock(rq, &flags);
  1586. return success;
  1587. }
  1588. int fastcall wake_up_process(struct task_struct *p)
  1589. {
  1590. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1591. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1592. }
  1593. EXPORT_SYMBOL(wake_up_process);
  1594. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1595. {
  1596. return try_to_wake_up(p, state, 0);
  1597. }
  1598. /*
  1599. * Perform scheduler related setup for a newly forked process p.
  1600. * p is forked by current.
  1601. *
  1602. * __sched_fork() is basic setup used by init_idle() too:
  1603. */
  1604. static void __sched_fork(struct task_struct *p)
  1605. {
  1606. p->se.exec_start = 0;
  1607. p->se.sum_exec_runtime = 0;
  1608. p->se.prev_sum_exec_runtime = 0;
  1609. #ifdef CONFIG_SCHEDSTATS
  1610. p->se.wait_start = 0;
  1611. p->se.sum_sleep_runtime = 0;
  1612. p->se.sleep_start = 0;
  1613. p->se.block_start = 0;
  1614. p->se.sleep_max = 0;
  1615. p->se.block_max = 0;
  1616. p->se.exec_max = 0;
  1617. p->se.slice_max = 0;
  1618. p->se.wait_max = 0;
  1619. #endif
  1620. INIT_LIST_HEAD(&p->rt.run_list);
  1621. p->se.on_rq = 0;
  1622. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1623. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1624. #endif
  1625. /*
  1626. * We mark the process as running here, but have not actually
  1627. * inserted it onto the runqueue yet. This guarantees that
  1628. * nobody will actually run it, and a signal or other external
  1629. * event cannot wake it up and insert it on the runqueue either.
  1630. */
  1631. p->state = TASK_RUNNING;
  1632. }
  1633. /*
  1634. * fork()/clone()-time setup:
  1635. */
  1636. void sched_fork(struct task_struct *p, int clone_flags)
  1637. {
  1638. int cpu = get_cpu();
  1639. __sched_fork(p);
  1640. #ifdef CONFIG_SMP
  1641. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1642. #endif
  1643. set_task_cpu(p, cpu);
  1644. /*
  1645. * Make sure we do not leak PI boosting priority to the child:
  1646. */
  1647. p->prio = current->normal_prio;
  1648. if (!rt_prio(p->prio))
  1649. p->sched_class = &fair_sched_class;
  1650. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1651. if (likely(sched_info_on()))
  1652. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1653. #endif
  1654. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1655. p->oncpu = 0;
  1656. #endif
  1657. #ifdef CONFIG_PREEMPT
  1658. /* Want to start with kernel preemption disabled. */
  1659. task_thread_info(p)->preempt_count = 1;
  1660. #endif
  1661. put_cpu();
  1662. }
  1663. /*
  1664. * wake_up_new_task - wake up a newly created task for the first time.
  1665. *
  1666. * This function will do some initial scheduler statistics housekeeping
  1667. * that must be done for every newly created context, then puts the task
  1668. * on the runqueue and wakes it.
  1669. */
  1670. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1671. {
  1672. unsigned long flags;
  1673. struct rq *rq;
  1674. rq = task_rq_lock(p, &flags);
  1675. BUG_ON(p->state != TASK_RUNNING);
  1676. update_rq_clock(rq);
  1677. p->prio = effective_prio(p);
  1678. if (!p->sched_class->task_new || !current->se.on_rq) {
  1679. activate_task(rq, p, 0);
  1680. } else {
  1681. /*
  1682. * Let the scheduling class do new task startup
  1683. * management (if any):
  1684. */
  1685. p->sched_class->task_new(rq, p);
  1686. inc_nr_running(p, rq);
  1687. }
  1688. check_preempt_curr(rq, p);
  1689. #ifdef CONFIG_SMP
  1690. if (p->sched_class->task_wake_up)
  1691. p->sched_class->task_wake_up(rq, p);
  1692. #endif
  1693. task_rq_unlock(rq, &flags);
  1694. }
  1695. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1696. /**
  1697. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1698. * @notifier: notifier struct to register
  1699. */
  1700. void preempt_notifier_register(struct preempt_notifier *notifier)
  1701. {
  1702. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1703. }
  1704. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1705. /**
  1706. * preempt_notifier_unregister - no longer interested in preemption notifications
  1707. * @notifier: notifier struct to unregister
  1708. *
  1709. * This is safe to call from within a preemption notifier.
  1710. */
  1711. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1712. {
  1713. hlist_del(&notifier->link);
  1714. }
  1715. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1716. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1717. {
  1718. struct preempt_notifier *notifier;
  1719. struct hlist_node *node;
  1720. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1721. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1722. }
  1723. static void
  1724. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1725. struct task_struct *next)
  1726. {
  1727. struct preempt_notifier *notifier;
  1728. struct hlist_node *node;
  1729. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1730. notifier->ops->sched_out(notifier, next);
  1731. }
  1732. #else
  1733. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1734. {
  1735. }
  1736. static void
  1737. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1738. struct task_struct *next)
  1739. {
  1740. }
  1741. #endif
  1742. /**
  1743. * prepare_task_switch - prepare to switch tasks
  1744. * @rq: the runqueue preparing to switch
  1745. * @prev: the current task that is being switched out
  1746. * @next: the task we are going to switch to.
  1747. *
  1748. * This is called with the rq lock held and interrupts off. It must
  1749. * be paired with a subsequent finish_task_switch after the context
  1750. * switch.
  1751. *
  1752. * prepare_task_switch sets up locking and calls architecture specific
  1753. * hooks.
  1754. */
  1755. static inline void
  1756. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1757. struct task_struct *next)
  1758. {
  1759. fire_sched_out_preempt_notifiers(prev, next);
  1760. prepare_lock_switch(rq, next);
  1761. prepare_arch_switch(next);
  1762. }
  1763. /**
  1764. * finish_task_switch - clean up after a task-switch
  1765. * @rq: runqueue associated with task-switch
  1766. * @prev: the thread we just switched away from.
  1767. *
  1768. * finish_task_switch must be called after the context switch, paired
  1769. * with a prepare_task_switch call before the context switch.
  1770. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1771. * and do any other architecture-specific cleanup actions.
  1772. *
  1773. * Note that we may have delayed dropping an mm in context_switch(). If
  1774. * so, we finish that here outside of the runqueue lock. (Doing it
  1775. * with the lock held can cause deadlocks; see schedule() for
  1776. * details.)
  1777. */
  1778. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1779. __releases(rq->lock)
  1780. {
  1781. struct mm_struct *mm = rq->prev_mm;
  1782. long prev_state;
  1783. rq->prev_mm = NULL;
  1784. /*
  1785. * A task struct has one reference for the use as "current".
  1786. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1787. * schedule one last time. The schedule call will never return, and
  1788. * the scheduled task must drop that reference.
  1789. * The test for TASK_DEAD must occur while the runqueue locks are
  1790. * still held, otherwise prev could be scheduled on another cpu, die
  1791. * there before we look at prev->state, and then the reference would
  1792. * be dropped twice.
  1793. * Manfred Spraul <manfred@colorfullife.com>
  1794. */
  1795. prev_state = prev->state;
  1796. finish_arch_switch(prev);
  1797. finish_lock_switch(rq, prev);
  1798. #ifdef CONFIG_SMP
  1799. if (current->sched_class->post_schedule)
  1800. current->sched_class->post_schedule(rq);
  1801. #endif
  1802. fire_sched_in_preempt_notifiers(current);
  1803. if (mm)
  1804. mmdrop(mm);
  1805. if (unlikely(prev_state == TASK_DEAD)) {
  1806. /*
  1807. * Remove function-return probe instances associated with this
  1808. * task and put them back on the free list.
  1809. */
  1810. kprobe_flush_task(prev);
  1811. put_task_struct(prev);
  1812. }
  1813. }
  1814. /**
  1815. * schedule_tail - first thing a freshly forked thread must call.
  1816. * @prev: the thread we just switched away from.
  1817. */
  1818. asmlinkage void schedule_tail(struct task_struct *prev)
  1819. __releases(rq->lock)
  1820. {
  1821. struct rq *rq = this_rq();
  1822. finish_task_switch(rq, prev);
  1823. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1824. /* In this case, finish_task_switch does not reenable preemption */
  1825. preempt_enable();
  1826. #endif
  1827. if (current->set_child_tid)
  1828. put_user(task_pid_vnr(current), current->set_child_tid);
  1829. }
  1830. /*
  1831. * context_switch - switch to the new MM and the new
  1832. * thread's register state.
  1833. */
  1834. static inline void
  1835. context_switch(struct rq *rq, struct task_struct *prev,
  1836. struct task_struct *next)
  1837. {
  1838. struct mm_struct *mm, *oldmm;
  1839. prepare_task_switch(rq, prev, next);
  1840. mm = next->mm;
  1841. oldmm = prev->active_mm;
  1842. /*
  1843. * For paravirt, this is coupled with an exit in switch_to to
  1844. * combine the page table reload and the switch backend into
  1845. * one hypercall.
  1846. */
  1847. arch_enter_lazy_cpu_mode();
  1848. if (unlikely(!mm)) {
  1849. next->active_mm = oldmm;
  1850. atomic_inc(&oldmm->mm_count);
  1851. enter_lazy_tlb(oldmm, next);
  1852. } else
  1853. switch_mm(oldmm, mm, next);
  1854. if (unlikely(!prev->mm)) {
  1855. prev->active_mm = NULL;
  1856. rq->prev_mm = oldmm;
  1857. }
  1858. /*
  1859. * Since the runqueue lock will be released by the next
  1860. * task (which is an invalid locking op but in the case
  1861. * of the scheduler it's an obvious special-case), so we
  1862. * do an early lockdep release here:
  1863. */
  1864. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1865. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1866. #endif
  1867. /* Here we just switch the register state and the stack. */
  1868. switch_to(prev, next, prev);
  1869. barrier();
  1870. /*
  1871. * this_rq must be evaluated again because prev may have moved
  1872. * CPUs since it called schedule(), thus the 'rq' on its stack
  1873. * frame will be invalid.
  1874. */
  1875. finish_task_switch(this_rq(), prev);
  1876. }
  1877. /*
  1878. * nr_running, nr_uninterruptible and nr_context_switches:
  1879. *
  1880. * externally visible scheduler statistics: current number of runnable
  1881. * threads, current number of uninterruptible-sleeping threads, total
  1882. * number of context switches performed since bootup.
  1883. */
  1884. unsigned long nr_running(void)
  1885. {
  1886. unsigned long i, sum = 0;
  1887. for_each_online_cpu(i)
  1888. sum += cpu_rq(i)->nr_running;
  1889. return sum;
  1890. }
  1891. unsigned long nr_uninterruptible(void)
  1892. {
  1893. unsigned long i, sum = 0;
  1894. for_each_possible_cpu(i)
  1895. sum += cpu_rq(i)->nr_uninterruptible;
  1896. /*
  1897. * Since we read the counters lockless, it might be slightly
  1898. * inaccurate. Do not allow it to go below zero though:
  1899. */
  1900. if (unlikely((long)sum < 0))
  1901. sum = 0;
  1902. return sum;
  1903. }
  1904. unsigned long long nr_context_switches(void)
  1905. {
  1906. int i;
  1907. unsigned long long sum = 0;
  1908. for_each_possible_cpu(i)
  1909. sum += cpu_rq(i)->nr_switches;
  1910. return sum;
  1911. }
  1912. unsigned long nr_iowait(void)
  1913. {
  1914. unsigned long i, sum = 0;
  1915. for_each_possible_cpu(i)
  1916. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1917. return sum;
  1918. }
  1919. unsigned long nr_active(void)
  1920. {
  1921. unsigned long i, running = 0, uninterruptible = 0;
  1922. for_each_online_cpu(i) {
  1923. running += cpu_rq(i)->nr_running;
  1924. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1925. }
  1926. if (unlikely((long)uninterruptible < 0))
  1927. uninterruptible = 0;
  1928. return running + uninterruptible;
  1929. }
  1930. /*
  1931. * Update rq->cpu_load[] statistics. This function is usually called every
  1932. * scheduler tick (TICK_NSEC).
  1933. */
  1934. static void update_cpu_load(struct rq *this_rq)
  1935. {
  1936. unsigned long this_load = this_rq->load.weight;
  1937. int i, scale;
  1938. this_rq->nr_load_updates++;
  1939. /* Update our load: */
  1940. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1941. unsigned long old_load, new_load;
  1942. /* scale is effectively 1 << i now, and >> i divides by scale */
  1943. old_load = this_rq->cpu_load[i];
  1944. new_load = this_load;
  1945. /*
  1946. * Round up the averaging division if load is increasing. This
  1947. * prevents us from getting stuck on 9 if the load is 10, for
  1948. * example.
  1949. */
  1950. if (new_load > old_load)
  1951. new_load += scale-1;
  1952. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1953. }
  1954. }
  1955. #ifdef CONFIG_SMP
  1956. /*
  1957. * double_rq_lock - safely lock two runqueues
  1958. *
  1959. * Note this does not disable interrupts like task_rq_lock,
  1960. * you need to do so manually before calling.
  1961. */
  1962. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1963. __acquires(rq1->lock)
  1964. __acquires(rq2->lock)
  1965. {
  1966. BUG_ON(!irqs_disabled());
  1967. if (rq1 == rq2) {
  1968. spin_lock(&rq1->lock);
  1969. __acquire(rq2->lock); /* Fake it out ;) */
  1970. } else {
  1971. if (rq1 < rq2) {
  1972. spin_lock(&rq1->lock);
  1973. spin_lock(&rq2->lock);
  1974. } else {
  1975. spin_lock(&rq2->lock);
  1976. spin_lock(&rq1->lock);
  1977. }
  1978. }
  1979. update_rq_clock(rq1);
  1980. update_rq_clock(rq2);
  1981. }
  1982. /*
  1983. * double_rq_unlock - safely unlock two runqueues
  1984. *
  1985. * Note this does not restore interrupts like task_rq_unlock,
  1986. * you need to do so manually after calling.
  1987. */
  1988. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1989. __releases(rq1->lock)
  1990. __releases(rq2->lock)
  1991. {
  1992. spin_unlock(&rq1->lock);
  1993. if (rq1 != rq2)
  1994. spin_unlock(&rq2->lock);
  1995. else
  1996. __release(rq2->lock);
  1997. }
  1998. /*
  1999. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2000. */
  2001. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2002. __releases(this_rq->lock)
  2003. __acquires(busiest->lock)
  2004. __acquires(this_rq->lock)
  2005. {
  2006. int ret = 0;
  2007. if (unlikely(!irqs_disabled())) {
  2008. /* printk() doesn't work good under rq->lock */
  2009. spin_unlock(&this_rq->lock);
  2010. BUG_ON(1);
  2011. }
  2012. if (unlikely(!spin_trylock(&busiest->lock))) {
  2013. if (busiest < this_rq) {
  2014. spin_unlock(&this_rq->lock);
  2015. spin_lock(&busiest->lock);
  2016. spin_lock(&this_rq->lock);
  2017. ret = 1;
  2018. } else
  2019. spin_lock(&busiest->lock);
  2020. }
  2021. return ret;
  2022. }
  2023. /*
  2024. * If dest_cpu is allowed for this process, migrate the task to it.
  2025. * This is accomplished by forcing the cpu_allowed mask to only
  2026. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2027. * the cpu_allowed mask is restored.
  2028. */
  2029. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2030. {
  2031. struct migration_req req;
  2032. unsigned long flags;
  2033. struct rq *rq;
  2034. rq = task_rq_lock(p, &flags);
  2035. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2036. || unlikely(cpu_is_offline(dest_cpu)))
  2037. goto out;
  2038. /* force the process onto the specified CPU */
  2039. if (migrate_task(p, dest_cpu, &req)) {
  2040. /* Need to wait for migration thread (might exit: take ref). */
  2041. struct task_struct *mt = rq->migration_thread;
  2042. get_task_struct(mt);
  2043. task_rq_unlock(rq, &flags);
  2044. wake_up_process(mt);
  2045. put_task_struct(mt);
  2046. wait_for_completion(&req.done);
  2047. return;
  2048. }
  2049. out:
  2050. task_rq_unlock(rq, &flags);
  2051. }
  2052. /*
  2053. * sched_exec - execve() is a valuable balancing opportunity, because at
  2054. * this point the task has the smallest effective memory and cache footprint.
  2055. */
  2056. void sched_exec(void)
  2057. {
  2058. int new_cpu, this_cpu = get_cpu();
  2059. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2060. put_cpu();
  2061. if (new_cpu != this_cpu)
  2062. sched_migrate_task(current, new_cpu);
  2063. }
  2064. /*
  2065. * pull_task - move a task from a remote runqueue to the local runqueue.
  2066. * Both runqueues must be locked.
  2067. */
  2068. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2069. struct rq *this_rq, int this_cpu)
  2070. {
  2071. deactivate_task(src_rq, p, 0);
  2072. set_task_cpu(p, this_cpu);
  2073. activate_task(this_rq, p, 0);
  2074. /*
  2075. * Note that idle threads have a prio of MAX_PRIO, for this test
  2076. * to be always true for them.
  2077. */
  2078. check_preempt_curr(this_rq, p);
  2079. }
  2080. /*
  2081. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2082. */
  2083. static
  2084. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2085. struct sched_domain *sd, enum cpu_idle_type idle,
  2086. int *all_pinned)
  2087. {
  2088. /*
  2089. * We do not migrate tasks that are:
  2090. * 1) running (obviously), or
  2091. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2092. * 3) are cache-hot on their current CPU.
  2093. */
  2094. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2095. schedstat_inc(p, se.nr_failed_migrations_affine);
  2096. return 0;
  2097. }
  2098. *all_pinned = 0;
  2099. if (task_running(rq, p)) {
  2100. schedstat_inc(p, se.nr_failed_migrations_running);
  2101. return 0;
  2102. }
  2103. /*
  2104. * Aggressive migration if:
  2105. * 1) task is cache cold, or
  2106. * 2) too many balance attempts have failed.
  2107. */
  2108. if (!task_hot(p, rq->clock, sd) ||
  2109. sd->nr_balance_failed > sd->cache_nice_tries) {
  2110. #ifdef CONFIG_SCHEDSTATS
  2111. if (task_hot(p, rq->clock, sd)) {
  2112. schedstat_inc(sd, lb_hot_gained[idle]);
  2113. schedstat_inc(p, se.nr_forced_migrations);
  2114. }
  2115. #endif
  2116. return 1;
  2117. }
  2118. if (task_hot(p, rq->clock, sd)) {
  2119. schedstat_inc(p, se.nr_failed_migrations_hot);
  2120. return 0;
  2121. }
  2122. return 1;
  2123. }
  2124. static unsigned long
  2125. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2126. unsigned long max_load_move, struct sched_domain *sd,
  2127. enum cpu_idle_type idle, int *all_pinned,
  2128. int *this_best_prio, struct rq_iterator *iterator)
  2129. {
  2130. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2131. struct task_struct *p;
  2132. long rem_load_move = max_load_move;
  2133. if (max_load_move == 0)
  2134. goto out;
  2135. pinned = 1;
  2136. /*
  2137. * Start the load-balancing iterator:
  2138. */
  2139. p = iterator->start(iterator->arg);
  2140. next:
  2141. if (!p || loops++ > sysctl_sched_nr_migrate)
  2142. goto out;
  2143. /*
  2144. * To help distribute high priority tasks across CPUs we don't
  2145. * skip a task if it will be the highest priority task (i.e. smallest
  2146. * prio value) on its new queue regardless of its load weight
  2147. */
  2148. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2149. SCHED_LOAD_SCALE_FUZZ;
  2150. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2151. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2152. p = iterator->next(iterator->arg);
  2153. goto next;
  2154. }
  2155. pull_task(busiest, p, this_rq, this_cpu);
  2156. pulled++;
  2157. rem_load_move -= p->se.load.weight;
  2158. /*
  2159. * We only want to steal up to the prescribed amount of weighted load.
  2160. */
  2161. if (rem_load_move > 0) {
  2162. if (p->prio < *this_best_prio)
  2163. *this_best_prio = p->prio;
  2164. p = iterator->next(iterator->arg);
  2165. goto next;
  2166. }
  2167. out:
  2168. /*
  2169. * Right now, this is one of only two places pull_task() is called,
  2170. * so we can safely collect pull_task() stats here rather than
  2171. * inside pull_task().
  2172. */
  2173. schedstat_add(sd, lb_gained[idle], pulled);
  2174. if (all_pinned)
  2175. *all_pinned = pinned;
  2176. return max_load_move - rem_load_move;
  2177. }
  2178. /*
  2179. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2180. * this_rq, as part of a balancing operation within domain "sd".
  2181. * Returns 1 if successful and 0 otherwise.
  2182. *
  2183. * Called with both runqueues locked.
  2184. */
  2185. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2186. unsigned long max_load_move,
  2187. struct sched_domain *sd, enum cpu_idle_type idle,
  2188. int *all_pinned)
  2189. {
  2190. const struct sched_class *class = sched_class_highest;
  2191. unsigned long total_load_moved = 0;
  2192. int this_best_prio = this_rq->curr->prio;
  2193. do {
  2194. total_load_moved +=
  2195. class->load_balance(this_rq, this_cpu, busiest,
  2196. max_load_move - total_load_moved,
  2197. sd, idle, all_pinned, &this_best_prio);
  2198. class = class->next;
  2199. } while (class && max_load_move > total_load_moved);
  2200. return total_load_moved > 0;
  2201. }
  2202. static int
  2203. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2204. struct sched_domain *sd, enum cpu_idle_type idle,
  2205. struct rq_iterator *iterator)
  2206. {
  2207. struct task_struct *p = iterator->start(iterator->arg);
  2208. int pinned = 0;
  2209. while (p) {
  2210. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2211. pull_task(busiest, p, this_rq, this_cpu);
  2212. /*
  2213. * Right now, this is only the second place pull_task()
  2214. * is called, so we can safely collect pull_task()
  2215. * stats here rather than inside pull_task().
  2216. */
  2217. schedstat_inc(sd, lb_gained[idle]);
  2218. return 1;
  2219. }
  2220. p = iterator->next(iterator->arg);
  2221. }
  2222. return 0;
  2223. }
  2224. /*
  2225. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2226. * part of active balancing operations within "domain".
  2227. * Returns 1 if successful and 0 otherwise.
  2228. *
  2229. * Called with both runqueues locked.
  2230. */
  2231. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2232. struct sched_domain *sd, enum cpu_idle_type idle)
  2233. {
  2234. const struct sched_class *class;
  2235. for (class = sched_class_highest; class; class = class->next)
  2236. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2237. return 1;
  2238. return 0;
  2239. }
  2240. /*
  2241. * find_busiest_group finds and returns the busiest CPU group within the
  2242. * domain. It calculates and returns the amount of weighted load which
  2243. * should be moved to restore balance via the imbalance parameter.
  2244. */
  2245. static struct sched_group *
  2246. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2247. unsigned long *imbalance, enum cpu_idle_type idle,
  2248. int *sd_idle, cpumask_t *cpus, int *balance)
  2249. {
  2250. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2251. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2252. unsigned long max_pull;
  2253. unsigned long busiest_load_per_task, busiest_nr_running;
  2254. unsigned long this_load_per_task, this_nr_running;
  2255. int load_idx, group_imb = 0;
  2256. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2257. int power_savings_balance = 1;
  2258. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2259. unsigned long min_nr_running = ULONG_MAX;
  2260. struct sched_group *group_min = NULL, *group_leader = NULL;
  2261. #endif
  2262. max_load = this_load = total_load = total_pwr = 0;
  2263. busiest_load_per_task = busiest_nr_running = 0;
  2264. this_load_per_task = this_nr_running = 0;
  2265. if (idle == CPU_NOT_IDLE)
  2266. load_idx = sd->busy_idx;
  2267. else if (idle == CPU_NEWLY_IDLE)
  2268. load_idx = sd->newidle_idx;
  2269. else
  2270. load_idx = sd->idle_idx;
  2271. do {
  2272. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2273. int local_group;
  2274. int i;
  2275. int __group_imb = 0;
  2276. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2277. unsigned long sum_nr_running, sum_weighted_load;
  2278. local_group = cpu_isset(this_cpu, group->cpumask);
  2279. if (local_group)
  2280. balance_cpu = first_cpu(group->cpumask);
  2281. /* Tally up the load of all CPUs in the group */
  2282. sum_weighted_load = sum_nr_running = avg_load = 0;
  2283. max_cpu_load = 0;
  2284. min_cpu_load = ~0UL;
  2285. for_each_cpu_mask(i, group->cpumask) {
  2286. struct rq *rq;
  2287. if (!cpu_isset(i, *cpus))
  2288. continue;
  2289. rq = cpu_rq(i);
  2290. if (*sd_idle && rq->nr_running)
  2291. *sd_idle = 0;
  2292. /* Bias balancing toward cpus of our domain */
  2293. if (local_group) {
  2294. if (idle_cpu(i) && !first_idle_cpu) {
  2295. first_idle_cpu = 1;
  2296. balance_cpu = i;
  2297. }
  2298. load = target_load(i, load_idx);
  2299. } else {
  2300. load = source_load(i, load_idx);
  2301. if (load > max_cpu_load)
  2302. max_cpu_load = load;
  2303. if (min_cpu_load > load)
  2304. min_cpu_load = load;
  2305. }
  2306. avg_load += load;
  2307. sum_nr_running += rq->nr_running;
  2308. sum_weighted_load += weighted_cpuload(i);
  2309. }
  2310. /*
  2311. * First idle cpu or the first cpu(busiest) in this sched group
  2312. * is eligible for doing load balancing at this and above
  2313. * domains. In the newly idle case, we will allow all the cpu's
  2314. * to do the newly idle load balance.
  2315. */
  2316. if (idle != CPU_NEWLY_IDLE && local_group &&
  2317. balance_cpu != this_cpu && balance) {
  2318. *balance = 0;
  2319. goto ret;
  2320. }
  2321. total_load += avg_load;
  2322. total_pwr += group->__cpu_power;
  2323. /* Adjust by relative CPU power of the group */
  2324. avg_load = sg_div_cpu_power(group,
  2325. avg_load * SCHED_LOAD_SCALE);
  2326. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2327. __group_imb = 1;
  2328. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2329. if (local_group) {
  2330. this_load = avg_load;
  2331. this = group;
  2332. this_nr_running = sum_nr_running;
  2333. this_load_per_task = sum_weighted_load;
  2334. } else if (avg_load > max_load &&
  2335. (sum_nr_running > group_capacity || __group_imb)) {
  2336. max_load = avg_load;
  2337. busiest = group;
  2338. busiest_nr_running = sum_nr_running;
  2339. busiest_load_per_task = sum_weighted_load;
  2340. group_imb = __group_imb;
  2341. }
  2342. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2343. /*
  2344. * Busy processors will not participate in power savings
  2345. * balance.
  2346. */
  2347. if (idle == CPU_NOT_IDLE ||
  2348. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2349. goto group_next;
  2350. /*
  2351. * If the local group is idle or completely loaded
  2352. * no need to do power savings balance at this domain
  2353. */
  2354. if (local_group && (this_nr_running >= group_capacity ||
  2355. !this_nr_running))
  2356. power_savings_balance = 0;
  2357. /*
  2358. * If a group is already running at full capacity or idle,
  2359. * don't include that group in power savings calculations
  2360. */
  2361. if (!power_savings_balance || sum_nr_running >= group_capacity
  2362. || !sum_nr_running)
  2363. goto group_next;
  2364. /*
  2365. * Calculate the group which has the least non-idle load.
  2366. * This is the group from where we need to pick up the load
  2367. * for saving power
  2368. */
  2369. if ((sum_nr_running < min_nr_running) ||
  2370. (sum_nr_running == min_nr_running &&
  2371. first_cpu(group->cpumask) <
  2372. first_cpu(group_min->cpumask))) {
  2373. group_min = group;
  2374. min_nr_running = sum_nr_running;
  2375. min_load_per_task = sum_weighted_load /
  2376. sum_nr_running;
  2377. }
  2378. /*
  2379. * Calculate the group which is almost near its
  2380. * capacity but still has some space to pick up some load
  2381. * from other group and save more power
  2382. */
  2383. if (sum_nr_running <= group_capacity - 1) {
  2384. if (sum_nr_running > leader_nr_running ||
  2385. (sum_nr_running == leader_nr_running &&
  2386. first_cpu(group->cpumask) >
  2387. first_cpu(group_leader->cpumask))) {
  2388. group_leader = group;
  2389. leader_nr_running = sum_nr_running;
  2390. }
  2391. }
  2392. group_next:
  2393. #endif
  2394. group = group->next;
  2395. } while (group != sd->groups);
  2396. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2397. goto out_balanced;
  2398. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2399. if (this_load >= avg_load ||
  2400. 100*max_load <= sd->imbalance_pct*this_load)
  2401. goto out_balanced;
  2402. busiest_load_per_task /= busiest_nr_running;
  2403. if (group_imb)
  2404. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2405. /*
  2406. * We're trying to get all the cpus to the average_load, so we don't
  2407. * want to push ourselves above the average load, nor do we wish to
  2408. * reduce the max loaded cpu below the average load, as either of these
  2409. * actions would just result in more rebalancing later, and ping-pong
  2410. * tasks around. Thus we look for the minimum possible imbalance.
  2411. * Negative imbalances (*we* are more loaded than anyone else) will
  2412. * be counted as no imbalance for these purposes -- we can't fix that
  2413. * by pulling tasks to us. Be careful of negative numbers as they'll
  2414. * appear as very large values with unsigned longs.
  2415. */
  2416. if (max_load <= busiest_load_per_task)
  2417. goto out_balanced;
  2418. /*
  2419. * In the presence of smp nice balancing, certain scenarios can have
  2420. * max load less than avg load(as we skip the groups at or below
  2421. * its cpu_power, while calculating max_load..)
  2422. */
  2423. if (max_load < avg_load) {
  2424. *imbalance = 0;
  2425. goto small_imbalance;
  2426. }
  2427. /* Don't want to pull so many tasks that a group would go idle */
  2428. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2429. /* How much load to actually move to equalise the imbalance */
  2430. *imbalance = min(max_pull * busiest->__cpu_power,
  2431. (avg_load - this_load) * this->__cpu_power)
  2432. / SCHED_LOAD_SCALE;
  2433. /*
  2434. * if *imbalance is less than the average load per runnable task
  2435. * there is no gaurantee that any tasks will be moved so we'll have
  2436. * a think about bumping its value to force at least one task to be
  2437. * moved
  2438. */
  2439. if (*imbalance < busiest_load_per_task) {
  2440. unsigned long tmp, pwr_now, pwr_move;
  2441. unsigned int imbn;
  2442. small_imbalance:
  2443. pwr_move = pwr_now = 0;
  2444. imbn = 2;
  2445. if (this_nr_running) {
  2446. this_load_per_task /= this_nr_running;
  2447. if (busiest_load_per_task > this_load_per_task)
  2448. imbn = 1;
  2449. } else
  2450. this_load_per_task = SCHED_LOAD_SCALE;
  2451. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2452. busiest_load_per_task * imbn) {
  2453. *imbalance = busiest_load_per_task;
  2454. return busiest;
  2455. }
  2456. /*
  2457. * OK, we don't have enough imbalance to justify moving tasks,
  2458. * however we may be able to increase total CPU power used by
  2459. * moving them.
  2460. */
  2461. pwr_now += busiest->__cpu_power *
  2462. min(busiest_load_per_task, max_load);
  2463. pwr_now += this->__cpu_power *
  2464. min(this_load_per_task, this_load);
  2465. pwr_now /= SCHED_LOAD_SCALE;
  2466. /* Amount of load we'd subtract */
  2467. tmp = sg_div_cpu_power(busiest,
  2468. busiest_load_per_task * SCHED_LOAD_SCALE);
  2469. if (max_load > tmp)
  2470. pwr_move += busiest->__cpu_power *
  2471. min(busiest_load_per_task, max_load - tmp);
  2472. /* Amount of load we'd add */
  2473. if (max_load * busiest->__cpu_power <
  2474. busiest_load_per_task * SCHED_LOAD_SCALE)
  2475. tmp = sg_div_cpu_power(this,
  2476. max_load * busiest->__cpu_power);
  2477. else
  2478. tmp = sg_div_cpu_power(this,
  2479. busiest_load_per_task * SCHED_LOAD_SCALE);
  2480. pwr_move += this->__cpu_power *
  2481. min(this_load_per_task, this_load + tmp);
  2482. pwr_move /= SCHED_LOAD_SCALE;
  2483. /* Move if we gain throughput */
  2484. if (pwr_move > pwr_now)
  2485. *imbalance = busiest_load_per_task;
  2486. }
  2487. return busiest;
  2488. out_balanced:
  2489. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2490. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2491. goto ret;
  2492. if (this == group_leader && group_leader != group_min) {
  2493. *imbalance = min_load_per_task;
  2494. return group_min;
  2495. }
  2496. #endif
  2497. ret:
  2498. *imbalance = 0;
  2499. return NULL;
  2500. }
  2501. /*
  2502. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2503. */
  2504. static struct rq *
  2505. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2506. unsigned long imbalance, cpumask_t *cpus)
  2507. {
  2508. struct rq *busiest = NULL, *rq;
  2509. unsigned long max_load = 0;
  2510. int i;
  2511. for_each_cpu_mask(i, group->cpumask) {
  2512. unsigned long wl;
  2513. if (!cpu_isset(i, *cpus))
  2514. continue;
  2515. rq = cpu_rq(i);
  2516. wl = weighted_cpuload(i);
  2517. if (rq->nr_running == 1 && wl > imbalance)
  2518. continue;
  2519. if (wl > max_load) {
  2520. max_load = wl;
  2521. busiest = rq;
  2522. }
  2523. }
  2524. return busiest;
  2525. }
  2526. /*
  2527. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2528. * so long as it is large enough.
  2529. */
  2530. #define MAX_PINNED_INTERVAL 512
  2531. /*
  2532. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2533. * tasks if there is an imbalance.
  2534. */
  2535. static int load_balance(int this_cpu, struct rq *this_rq,
  2536. struct sched_domain *sd, enum cpu_idle_type idle,
  2537. int *balance)
  2538. {
  2539. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2540. struct sched_group *group;
  2541. unsigned long imbalance;
  2542. struct rq *busiest;
  2543. cpumask_t cpus = CPU_MASK_ALL;
  2544. unsigned long flags;
  2545. /*
  2546. * When power savings policy is enabled for the parent domain, idle
  2547. * sibling can pick up load irrespective of busy siblings. In this case,
  2548. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2549. * portraying it as CPU_NOT_IDLE.
  2550. */
  2551. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2552. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2553. sd_idle = 1;
  2554. schedstat_inc(sd, lb_count[idle]);
  2555. redo:
  2556. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2557. &cpus, balance);
  2558. if (*balance == 0)
  2559. goto out_balanced;
  2560. if (!group) {
  2561. schedstat_inc(sd, lb_nobusyg[idle]);
  2562. goto out_balanced;
  2563. }
  2564. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2565. if (!busiest) {
  2566. schedstat_inc(sd, lb_nobusyq[idle]);
  2567. goto out_balanced;
  2568. }
  2569. BUG_ON(busiest == this_rq);
  2570. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2571. ld_moved = 0;
  2572. if (busiest->nr_running > 1) {
  2573. /*
  2574. * Attempt to move tasks. If find_busiest_group has found
  2575. * an imbalance but busiest->nr_running <= 1, the group is
  2576. * still unbalanced. ld_moved simply stays zero, so it is
  2577. * correctly treated as an imbalance.
  2578. */
  2579. local_irq_save(flags);
  2580. double_rq_lock(this_rq, busiest);
  2581. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2582. imbalance, sd, idle, &all_pinned);
  2583. double_rq_unlock(this_rq, busiest);
  2584. local_irq_restore(flags);
  2585. /*
  2586. * some other cpu did the load balance for us.
  2587. */
  2588. if (ld_moved && this_cpu != smp_processor_id())
  2589. resched_cpu(this_cpu);
  2590. /* All tasks on this runqueue were pinned by CPU affinity */
  2591. if (unlikely(all_pinned)) {
  2592. cpu_clear(cpu_of(busiest), cpus);
  2593. if (!cpus_empty(cpus))
  2594. goto redo;
  2595. goto out_balanced;
  2596. }
  2597. }
  2598. if (!ld_moved) {
  2599. schedstat_inc(sd, lb_failed[idle]);
  2600. sd->nr_balance_failed++;
  2601. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2602. spin_lock_irqsave(&busiest->lock, flags);
  2603. /* don't kick the migration_thread, if the curr
  2604. * task on busiest cpu can't be moved to this_cpu
  2605. */
  2606. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2607. spin_unlock_irqrestore(&busiest->lock, flags);
  2608. all_pinned = 1;
  2609. goto out_one_pinned;
  2610. }
  2611. if (!busiest->active_balance) {
  2612. busiest->active_balance = 1;
  2613. busiest->push_cpu = this_cpu;
  2614. active_balance = 1;
  2615. }
  2616. spin_unlock_irqrestore(&busiest->lock, flags);
  2617. if (active_balance)
  2618. wake_up_process(busiest->migration_thread);
  2619. /*
  2620. * We've kicked active balancing, reset the failure
  2621. * counter.
  2622. */
  2623. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2624. }
  2625. } else
  2626. sd->nr_balance_failed = 0;
  2627. if (likely(!active_balance)) {
  2628. /* We were unbalanced, so reset the balancing interval */
  2629. sd->balance_interval = sd->min_interval;
  2630. } else {
  2631. /*
  2632. * If we've begun active balancing, start to back off. This
  2633. * case may not be covered by the all_pinned logic if there
  2634. * is only 1 task on the busy runqueue (because we don't call
  2635. * move_tasks).
  2636. */
  2637. if (sd->balance_interval < sd->max_interval)
  2638. sd->balance_interval *= 2;
  2639. }
  2640. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2641. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2642. return -1;
  2643. return ld_moved;
  2644. out_balanced:
  2645. schedstat_inc(sd, lb_balanced[idle]);
  2646. sd->nr_balance_failed = 0;
  2647. out_one_pinned:
  2648. /* tune up the balancing interval */
  2649. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2650. (sd->balance_interval < sd->max_interval))
  2651. sd->balance_interval *= 2;
  2652. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2653. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2654. return -1;
  2655. return 0;
  2656. }
  2657. /*
  2658. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2659. * tasks if there is an imbalance.
  2660. *
  2661. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2662. * this_rq is locked.
  2663. */
  2664. static int
  2665. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2666. {
  2667. struct sched_group *group;
  2668. struct rq *busiest = NULL;
  2669. unsigned long imbalance;
  2670. int ld_moved = 0;
  2671. int sd_idle = 0;
  2672. int all_pinned = 0;
  2673. cpumask_t cpus = CPU_MASK_ALL;
  2674. /*
  2675. * When power savings policy is enabled for the parent domain, idle
  2676. * sibling can pick up load irrespective of busy siblings. In this case,
  2677. * let the state of idle sibling percolate up as IDLE, instead of
  2678. * portraying it as CPU_NOT_IDLE.
  2679. */
  2680. if (sd->flags & SD_SHARE_CPUPOWER &&
  2681. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2682. sd_idle = 1;
  2683. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2684. redo:
  2685. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2686. &sd_idle, &cpus, NULL);
  2687. if (!group) {
  2688. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2689. goto out_balanced;
  2690. }
  2691. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2692. &cpus);
  2693. if (!busiest) {
  2694. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2695. goto out_balanced;
  2696. }
  2697. BUG_ON(busiest == this_rq);
  2698. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2699. ld_moved = 0;
  2700. if (busiest->nr_running > 1) {
  2701. /* Attempt to move tasks */
  2702. double_lock_balance(this_rq, busiest);
  2703. /* this_rq->clock is already updated */
  2704. update_rq_clock(busiest);
  2705. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2706. imbalance, sd, CPU_NEWLY_IDLE,
  2707. &all_pinned);
  2708. spin_unlock(&busiest->lock);
  2709. if (unlikely(all_pinned)) {
  2710. cpu_clear(cpu_of(busiest), cpus);
  2711. if (!cpus_empty(cpus))
  2712. goto redo;
  2713. }
  2714. }
  2715. if (!ld_moved) {
  2716. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2717. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2718. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2719. return -1;
  2720. } else
  2721. sd->nr_balance_failed = 0;
  2722. return ld_moved;
  2723. out_balanced:
  2724. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2725. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2726. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2727. return -1;
  2728. sd->nr_balance_failed = 0;
  2729. return 0;
  2730. }
  2731. /*
  2732. * idle_balance is called by schedule() if this_cpu is about to become
  2733. * idle. Attempts to pull tasks from other CPUs.
  2734. */
  2735. static void idle_balance(int this_cpu, struct rq *this_rq)
  2736. {
  2737. struct sched_domain *sd;
  2738. int pulled_task = -1;
  2739. unsigned long next_balance = jiffies + HZ;
  2740. for_each_domain(this_cpu, sd) {
  2741. unsigned long interval;
  2742. if (!(sd->flags & SD_LOAD_BALANCE))
  2743. continue;
  2744. if (sd->flags & SD_BALANCE_NEWIDLE)
  2745. /* If we've pulled tasks over stop searching: */
  2746. pulled_task = load_balance_newidle(this_cpu,
  2747. this_rq, sd);
  2748. interval = msecs_to_jiffies(sd->balance_interval);
  2749. if (time_after(next_balance, sd->last_balance + interval))
  2750. next_balance = sd->last_balance + interval;
  2751. if (pulled_task)
  2752. break;
  2753. }
  2754. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2755. /*
  2756. * We are going idle. next_balance may be set based on
  2757. * a busy processor. So reset next_balance.
  2758. */
  2759. this_rq->next_balance = next_balance;
  2760. }
  2761. }
  2762. /*
  2763. * active_load_balance is run by migration threads. It pushes running tasks
  2764. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2765. * running on each physical CPU where possible, and avoids physical /
  2766. * logical imbalances.
  2767. *
  2768. * Called with busiest_rq locked.
  2769. */
  2770. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2771. {
  2772. int target_cpu = busiest_rq->push_cpu;
  2773. struct sched_domain *sd;
  2774. struct rq *target_rq;
  2775. /* Is there any task to move? */
  2776. if (busiest_rq->nr_running <= 1)
  2777. return;
  2778. target_rq = cpu_rq(target_cpu);
  2779. /*
  2780. * This condition is "impossible", if it occurs
  2781. * we need to fix it. Originally reported by
  2782. * Bjorn Helgaas on a 128-cpu setup.
  2783. */
  2784. BUG_ON(busiest_rq == target_rq);
  2785. /* move a task from busiest_rq to target_rq */
  2786. double_lock_balance(busiest_rq, target_rq);
  2787. update_rq_clock(busiest_rq);
  2788. update_rq_clock(target_rq);
  2789. /* Search for an sd spanning us and the target CPU. */
  2790. for_each_domain(target_cpu, sd) {
  2791. if ((sd->flags & SD_LOAD_BALANCE) &&
  2792. cpu_isset(busiest_cpu, sd->span))
  2793. break;
  2794. }
  2795. if (likely(sd)) {
  2796. schedstat_inc(sd, alb_count);
  2797. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2798. sd, CPU_IDLE))
  2799. schedstat_inc(sd, alb_pushed);
  2800. else
  2801. schedstat_inc(sd, alb_failed);
  2802. }
  2803. spin_unlock(&target_rq->lock);
  2804. }
  2805. #ifdef CONFIG_NO_HZ
  2806. static struct {
  2807. atomic_t load_balancer;
  2808. cpumask_t cpu_mask;
  2809. } nohz ____cacheline_aligned = {
  2810. .load_balancer = ATOMIC_INIT(-1),
  2811. .cpu_mask = CPU_MASK_NONE,
  2812. };
  2813. /*
  2814. * This routine will try to nominate the ilb (idle load balancing)
  2815. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2816. * load balancing on behalf of all those cpus. If all the cpus in the system
  2817. * go into this tickless mode, then there will be no ilb owner (as there is
  2818. * no need for one) and all the cpus will sleep till the next wakeup event
  2819. * arrives...
  2820. *
  2821. * For the ilb owner, tick is not stopped. And this tick will be used
  2822. * for idle load balancing. ilb owner will still be part of
  2823. * nohz.cpu_mask..
  2824. *
  2825. * While stopping the tick, this cpu will become the ilb owner if there
  2826. * is no other owner. And will be the owner till that cpu becomes busy
  2827. * or if all cpus in the system stop their ticks at which point
  2828. * there is no need for ilb owner.
  2829. *
  2830. * When the ilb owner becomes busy, it nominates another owner, during the
  2831. * next busy scheduler_tick()
  2832. */
  2833. int select_nohz_load_balancer(int stop_tick)
  2834. {
  2835. int cpu = smp_processor_id();
  2836. if (stop_tick) {
  2837. cpu_set(cpu, nohz.cpu_mask);
  2838. cpu_rq(cpu)->in_nohz_recently = 1;
  2839. /*
  2840. * If we are going offline and still the leader, give up!
  2841. */
  2842. if (cpu_is_offline(cpu) &&
  2843. atomic_read(&nohz.load_balancer) == cpu) {
  2844. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2845. BUG();
  2846. return 0;
  2847. }
  2848. /* time for ilb owner also to sleep */
  2849. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2850. if (atomic_read(&nohz.load_balancer) == cpu)
  2851. atomic_set(&nohz.load_balancer, -1);
  2852. return 0;
  2853. }
  2854. if (atomic_read(&nohz.load_balancer) == -1) {
  2855. /* make me the ilb owner */
  2856. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2857. return 1;
  2858. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2859. return 1;
  2860. } else {
  2861. if (!cpu_isset(cpu, nohz.cpu_mask))
  2862. return 0;
  2863. cpu_clear(cpu, nohz.cpu_mask);
  2864. if (atomic_read(&nohz.load_balancer) == cpu)
  2865. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2866. BUG();
  2867. }
  2868. return 0;
  2869. }
  2870. #endif
  2871. static DEFINE_SPINLOCK(balancing);
  2872. /*
  2873. * It checks each scheduling domain to see if it is due to be balanced,
  2874. * and initiates a balancing operation if so.
  2875. *
  2876. * Balancing parameters are set up in arch_init_sched_domains.
  2877. */
  2878. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2879. {
  2880. int balance = 1;
  2881. struct rq *rq = cpu_rq(cpu);
  2882. unsigned long interval;
  2883. struct sched_domain *sd;
  2884. /* Earliest time when we have to do rebalance again */
  2885. unsigned long next_balance = jiffies + 60*HZ;
  2886. int update_next_balance = 0;
  2887. for_each_domain(cpu, sd) {
  2888. if (!(sd->flags & SD_LOAD_BALANCE))
  2889. continue;
  2890. interval = sd->balance_interval;
  2891. if (idle != CPU_IDLE)
  2892. interval *= sd->busy_factor;
  2893. /* scale ms to jiffies */
  2894. interval = msecs_to_jiffies(interval);
  2895. if (unlikely(!interval))
  2896. interval = 1;
  2897. if (interval > HZ*NR_CPUS/10)
  2898. interval = HZ*NR_CPUS/10;
  2899. if (sd->flags & SD_SERIALIZE) {
  2900. if (!spin_trylock(&balancing))
  2901. goto out;
  2902. }
  2903. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2904. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2905. /*
  2906. * We've pulled tasks over so either we're no
  2907. * longer idle, or one of our SMT siblings is
  2908. * not idle.
  2909. */
  2910. idle = CPU_NOT_IDLE;
  2911. }
  2912. sd->last_balance = jiffies;
  2913. }
  2914. if (sd->flags & SD_SERIALIZE)
  2915. spin_unlock(&balancing);
  2916. out:
  2917. if (time_after(next_balance, sd->last_balance + interval)) {
  2918. next_balance = sd->last_balance + interval;
  2919. update_next_balance = 1;
  2920. }
  2921. /*
  2922. * Stop the load balance at this level. There is another
  2923. * CPU in our sched group which is doing load balancing more
  2924. * actively.
  2925. */
  2926. if (!balance)
  2927. break;
  2928. }
  2929. /*
  2930. * next_balance will be updated only when there is a need.
  2931. * When the cpu is attached to null domain for ex, it will not be
  2932. * updated.
  2933. */
  2934. if (likely(update_next_balance))
  2935. rq->next_balance = next_balance;
  2936. }
  2937. /*
  2938. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2939. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2940. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2941. */
  2942. static void run_rebalance_domains(struct softirq_action *h)
  2943. {
  2944. int this_cpu = smp_processor_id();
  2945. struct rq *this_rq = cpu_rq(this_cpu);
  2946. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2947. CPU_IDLE : CPU_NOT_IDLE;
  2948. rebalance_domains(this_cpu, idle);
  2949. #ifdef CONFIG_NO_HZ
  2950. /*
  2951. * If this cpu is the owner for idle load balancing, then do the
  2952. * balancing on behalf of the other idle cpus whose ticks are
  2953. * stopped.
  2954. */
  2955. if (this_rq->idle_at_tick &&
  2956. atomic_read(&nohz.load_balancer) == this_cpu) {
  2957. cpumask_t cpus = nohz.cpu_mask;
  2958. struct rq *rq;
  2959. int balance_cpu;
  2960. cpu_clear(this_cpu, cpus);
  2961. for_each_cpu_mask(balance_cpu, cpus) {
  2962. /*
  2963. * If this cpu gets work to do, stop the load balancing
  2964. * work being done for other cpus. Next load
  2965. * balancing owner will pick it up.
  2966. */
  2967. if (need_resched())
  2968. break;
  2969. rebalance_domains(balance_cpu, CPU_IDLE);
  2970. rq = cpu_rq(balance_cpu);
  2971. if (time_after(this_rq->next_balance, rq->next_balance))
  2972. this_rq->next_balance = rq->next_balance;
  2973. }
  2974. }
  2975. #endif
  2976. }
  2977. /*
  2978. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2979. *
  2980. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2981. * idle load balancing owner or decide to stop the periodic load balancing,
  2982. * if the whole system is idle.
  2983. */
  2984. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2985. {
  2986. #ifdef CONFIG_NO_HZ
  2987. /*
  2988. * If we were in the nohz mode recently and busy at the current
  2989. * scheduler tick, then check if we need to nominate new idle
  2990. * load balancer.
  2991. */
  2992. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2993. rq->in_nohz_recently = 0;
  2994. if (atomic_read(&nohz.load_balancer) == cpu) {
  2995. cpu_clear(cpu, nohz.cpu_mask);
  2996. atomic_set(&nohz.load_balancer, -1);
  2997. }
  2998. if (atomic_read(&nohz.load_balancer) == -1) {
  2999. /*
  3000. * simple selection for now: Nominate the
  3001. * first cpu in the nohz list to be the next
  3002. * ilb owner.
  3003. *
  3004. * TBD: Traverse the sched domains and nominate
  3005. * the nearest cpu in the nohz.cpu_mask.
  3006. */
  3007. int ilb = first_cpu(nohz.cpu_mask);
  3008. if (ilb != NR_CPUS)
  3009. resched_cpu(ilb);
  3010. }
  3011. }
  3012. /*
  3013. * If this cpu is idle and doing idle load balancing for all the
  3014. * cpus with ticks stopped, is it time for that to stop?
  3015. */
  3016. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3017. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3018. resched_cpu(cpu);
  3019. return;
  3020. }
  3021. /*
  3022. * If this cpu is idle and the idle load balancing is done by
  3023. * someone else, then no need raise the SCHED_SOFTIRQ
  3024. */
  3025. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3026. cpu_isset(cpu, nohz.cpu_mask))
  3027. return;
  3028. #endif
  3029. if (time_after_eq(jiffies, rq->next_balance))
  3030. raise_softirq(SCHED_SOFTIRQ);
  3031. }
  3032. #else /* CONFIG_SMP */
  3033. /*
  3034. * on UP we do not need to balance between CPUs:
  3035. */
  3036. static inline void idle_balance(int cpu, struct rq *rq)
  3037. {
  3038. }
  3039. #endif
  3040. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3041. EXPORT_PER_CPU_SYMBOL(kstat);
  3042. /*
  3043. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3044. * that have not yet been banked in case the task is currently running.
  3045. */
  3046. unsigned long long task_sched_runtime(struct task_struct *p)
  3047. {
  3048. unsigned long flags;
  3049. u64 ns, delta_exec;
  3050. struct rq *rq;
  3051. rq = task_rq_lock(p, &flags);
  3052. ns = p->se.sum_exec_runtime;
  3053. if (task_current(rq, p)) {
  3054. update_rq_clock(rq);
  3055. delta_exec = rq->clock - p->se.exec_start;
  3056. if ((s64)delta_exec > 0)
  3057. ns += delta_exec;
  3058. }
  3059. task_rq_unlock(rq, &flags);
  3060. return ns;
  3061. }
  3062. /*
  3063. * Account user cpu time to a process.
  3064. * @p: the process that the cpu time gets accounted to
  3065. * @cputime: the cpu time spent in user space since the last update
  3066. */
  3067. void account_user_time(struct task_struct *p, cputime_t cputime)
  3068. {
  3069. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3070. cputime64_t tmp;
  3071. p->utime = cputime_add(p->utime, cputime);
  3072. /* Add user time to cpustat. */
  3073. tmp = cputime_to_cputime64(cputime);
  3074. if (TASK_NICE(p) > 0)
  3075. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3076. else
  3077. cpustat->user = cputime64_add(cpustat->user, tmp);
  3078. }
  3079. /*
  3080. * Account guest cpu time to a process.
  3081. * @p: the process that the cpu time gets accounted to
  3082. * @cputime: the cpu time spent in virtual machine since the last update
  3083. */
  3084. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3085. {
  3086. cputime64_t tmp;
  3087. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3088. tmp = cputime_to_cputime64(cputime);
  3089. p->utime = cputime_add(p->utime, cputime);
  3090. p->gtime = cputime_add(p->gtime, cputime);
  3091. cpustat->user = cputime64_add(cpustat->user, tmp);
  3092. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3093. }
  3094. /*
  3095. * Account scaled user cpu time to a process.
  3096. * @p: the process that the cpu time gets accounted to
  3097. * @cputime: the cpu time spent in user space since the last update
  3098. */
  3099. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3100. {
  3101. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3102. }
  3103. /*
  3104. * Account system cpu time to a process.
  3105. * @p: the process that the cpu time gets accounted to
  3106. * @hardirq_offset: the offset to subtract from hardirq_count()
  3107. * @cputime: the cpu time spent in kernel space since the last update
  3108. */
  3109. void account_system_time(struct task_struct *p, int hardirq_offset,
  3110. cputime_t cputime)
  3111. {
  3112. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3113. struct rq *rq = this_rq();
  3114. cputime64_t tmp;
  3115. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3116. return account_guest_time(p, cputime);
  3117. p->stime = cputime_add(p->stime, cputime);
  3118. /* Add system time to cpustat. */
  3119. tmp = cputime_to_cputime64(cputime);
  3120. if (hardirq_count() - hardirq_offset)
  3121. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3122. else if (softirq_count())
  3123. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3124. else if (p != rq->idle)
  3125. cpustat->system = cputime64_add(cpustat->system, tmp);
  3126. else if (atomic_read(&rq->nr_iowait) > 0)
  3127. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3128. else
  3129. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3130. /* Account for system time used */
  3131. acct_update_integrals(p);
  3132. }
  3133. /*
  3134. * Account scaled system cpu time to a process.
  3135. * @p: the process that the cpu time gets accounted to
  3136. * @hardirq_offset: the offset to subtract from hardirq_count()
  3137. * @cputime: the cpu time spent in kernel space since the last update
  3138. */
  3139. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3140. {
  3141. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3142. }
  3143. /*
  3144. * Account for involuntary wait time.
  3145. * @p: the process from which the cpu time has been stolen
  3146. * @steal: the cpu time spent in involuntary wait
  3147. */
  3148. void account_steal_time(struct task_struct *p, cputime_t steal)
  3149. {
  3150. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3151. cputime64_t tmp = cputime_to_cputime64(steal);
  3152. struct rq *rq = this_rq();
  3153. if (p == rq->idle) {
  3154. p->stime = cputime_add(p->stime, steal);
  3155. if (atomic_read(&rq->nr_iowait) > 0)
  3156. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3157. else
  3158. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3159. } else
  3160. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3161. }
  3162. /*
  3163. * This function gets called by the timer code, with HZ frequency.
  3164. * We call it with interrupts disabled.
  3165. *
  3166. * It also gets called by the fork code, when changing the parent's
  3167. * timeslices.
  3168. */
  3169. void scheduler_tick(void)
  3170. {
  3171. int cpu = smp_processor_id();
  3172. struct rq *rq = cpu_rq(cpu);
  3173. struct task_struct *curr = rq->curr;
  3174. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3175. spin_lock(&rq->lock);
  3176. __update_rq_clock(rq);
  3177. /*
  3178. * Let rq->clock advance by at least TICK_NSEC:
  3179. */
  3180. if (unlikely(rq->clock < next_tick))
  3181. rq->clock = next_tick;
  3182. rq->tick_timestamp = rq->clock;
  3183. update_cpu_load(rq);
  3184. curr->sched_class->task_tick(rq, curr, 0);
  3185. update_sched_rt_period(rq);
  3186. spin_unlock(&rq->lock);
  3187. #ifdef CONFIG_SMP
  3188. rq->idle_at_tick = idle_cpu(cpu);
  3189. trigger_load_balance(rq, cpu);
  3190. #endif
  3191. }
  3192. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3193. void fastcall add_preempt_count(int val)
  3194. {
  3195. /*
  3196. * Underflow?
  3197. */
  3198. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3199. return;
  3200. preempt_count() += val;
  3201. /*
  3202. * Spinlock count overflowing soon?
  3203. */
  3204. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3205. PREEMPT_MASK - 10);
  3206. }
  3207. EXPORT_SYMBOL(add_preempt_count);
  3208. void fastcall sub_preempt_count(int val)
  3209. {
  3210. /*
  3211. * Underflow?
  3212. */
  3213. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3214. return;
  3215. /*
  3216. * Is the spinlock portion underflowing?
  3217. */
  3218. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3219. !(preempt_count() & PREEMPT_MASK)))
  3220. return;
  3221. preempt_count() -= val;
  3222. }
  3223. EXPORT_SYMBOL(sub_preempt_count);
  3224. #endif
  3225. /*
  3226. * Print scheduling while atomic bug:
  3227. */
  3228. static noinline void __schedule_bug(struct task_struct *prev)
  3229. {
  3230. struct pt_regs *regs = get_irq_regs();
  3231. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3232. prev->comm, prev->pid, preempt_count());
  3233. debug_show_held_locks(prev);
  3234. if (irqs_disabled())
  3235. print_irqtrace_events(prev);
  3236. if (regs)
  3237. show_regs(regs);
  3238. else
  3239. dump_stack();
  3240. }
  3241. /*
  3242. * Various schedule()-time debugging checks and statistics:
  3243. */
  3244. static inline void schedule_debug(struct task_struct *prev)
  3245. {
  3246. /*
  3247. * Test if we are atomic. Since do_exit() needs to call into
  3248. * schedule() atomically, we ignore that path for now.
  3249. * Otherwise, whine if we are scheduling when we should not be.
  3250. */
  3251. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3252. __schedule_bug(prev);
  3253. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3254. schedstat_inc(this_rq(), sched_count);
  3255. #ifdef CONFIG_SCHEDSTATS
  3256. if (unlikely(prev->lock_depth >= 0)) {
  3257. schedstat_inc(this_rq(), bkl_count);
  3258. schedstat_inc(prev, sched_info.bkl_count);
  3259. }
  3260. #endif
  3261. }
  3262. /*
  3263. * Pick up the highest-prio task:
  3264. */
  3265. static inline struct task_struct *
  3266. pick_next_task(struct rq *rq, struct task_struct *prev)
  3267. {
  3268. const struct sched_class *class;
  3269. struct task_struct *p;
  3270. /*
  3271. * Optimization: we know that if all tasks are in
  3272. * the fair class we can call that function directly:
  3273. */
  3274. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3275. p = fair_sched_class.pick_next_task(rq);
  3276. if (likely(p))
  3277. return p;
  3278. }
  3279. class = sched_class_highest;
  3280. for ( ; ; ) {
  3281. p = class->pick_next_task(rq);
  3282. if (p)
  3283. return p;
  3284. /*
  3285. * Will never be NULL as the idle class always
  3286. * returns a non-NULL p:
  3287. */
  3288. class = class->next;
  3289. }
  3290. }
  3291. /*
  3292. * schedule() is the main scheduler function.
  3293. */
  3294. asmlinkage void __sched schedule(void)
  3295. {
  3296. struct task_struct *prev, *next;
  3297. long *switch_count;
  3298. struct rq *rq;
  3299. int cpu;
  3300. need_resched:
  3301. preempt_disable();
  3302. cpu = smp_processor_id();
  3303. rq = cpu_rq(cpu);
  3304. rcu_qsctr_inc(cpu);
  3305. prev = rq->curr;
  3306. switch_count = &prev->nivcsw;
  3307. release_kernel_lock(prev);
  3308. need_resched_nonpreemptible:
  3309. schedule_debug(prev);
  3310. hrtick_clear(rq);
  3311. /*
  3312. * Do the rq-clock update outside the rq lock:
  3313. */
  3314. local_irq_disable();
  3315. __update_rq_clock(rq);
  3316. spin_lock(&rq->lock);
  3317. clear_tsk_need_resched(prev);
  3318. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3319. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3320. unlikely(signal_pending(prev)))) {
  3321. prev->state = TASK_RUNNING;
  3322. } else {
  3323. deactivate_task(rq, prev, 1);
  3324. }
  3325. switch_count = &prev->nvcsw;
  3326. }
  3327. #ifdef CONFIG_SMP
  3328. if (prev->sched_class->pre_schedule)
  3329. prev->sched_class->pre_schedule(rq, prev);
  3330. #endif
  3331. if (unlikely(!rq->nr_running))
  3332. idle_balance(cpu, rq);
  3333. prev->sched_class->put_prev_task(rq, prev);
  3334. next = pick_next_task(rq, prev);
  3335. sched_info_switch(prev, next);
  3336. if (likely(prev != next)) {
  3337. rq->nr_switches++;
  3338. rq->curr = next;
  3339. ++*switch_count;
  3340. context_switch(rq, prev, next); /* unlocks the rq */
  3341. /*
  3342. * the context switch might have flipped the stack from under
  3343. * us, hence refresh the local variables.
  3344. */
  3345. cpu = smp_processor_id();
  3346. rq = cpu_rq(cpu);
  3347. } else
  3348. spin_unlock_irq(&rq->lock);
  3349. hrtick_set(rq);
  3350. if (unlikely(reacquire_kernel_lock(current) < 0))
  3351. goto need_resched_nonpreemptible;
  3352. preempt_enable_no_resched();
  3353. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3354. goto need_resched;
  3355. }
  3356. EXPORT_SYMBOL(schedule);
  3357. #ifdef CONFIG_PREEMPT
  3358. /*
  3359. * this is the entry point to schedule() from in-kernel preemption
  3360. * off of preempt_enable. Kernel preemptions off return from interrupt
  3361. * occur there and call schedule directly.
  3362. */
  3363. asmlinkage void __sched preempt_schedule(void)
  3364. {
  3365. struct thread_info *ti = current_thread_info();
  3366. #ifdef CONFIG_PREEMPT_BKL
  3367. struct task_struct *task = current;
  3368. int saved_lock_depth;
  3369. #endif
  3370. /*
  3371. * If there is a non-zero preempt_count or interrupts are disabled,
  3372. * we do not want to preempt the current task. Just return..
  3373. */
  3374. if (likely(ti->preempt_count || irqs_disabled()))
  3375. return;
  3376. do {
  3377. add_preempt_count(PREEMPT_ACTIVE);
  3378. /*
  3379. * We keep the big kernel semaphore locked, but we
  3380. * clear ->lock_depth so that schedule() doesnt
  3381. * auto-release the semaphore:
  3382. */
  3383. #ifdef CONFIG_PREEMPT_BKL
  3384. saved_lock_depth = task->lock_depth;
  3385. task->lock_depth = -1;
  3386. #endif
  3387. schedule();
  3388. #ifdef CONFIG_PREEMPT_BKL
  3389. task->lock_depth = saved_lock_depth;
  3390. #endif
  3391. sub_preempt_count(PREEMPT_ACTIVE);
  3392. /*
  3393. * Check again in case we missed a preemption opportunity
  3394. * between schedule and now.
  3395. */
  3396. barrier();
  3397. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3398. }
  3399. EXPORT_SYMBOL(preempt_schedule);
  3400. /*
  3401. * this is the entry point to schedule() from kernel preemption
  3402. * off of irq context.
  3403. * Note, that this is called and return with irqs disabled. This will
  3404. * protect us against recursive calling from irq.
  3405. */
  3406. asmlinkage void __sched preempt_schedule_irq(void)
  3407. {
  3408. struct thread_info *ti = current_thread_info();
  3409. #ifdef CONFIG_PREEMPT_BKL
  3410. struct task_struct *task = current;
  3411. int saved_lock_depth;
  3412. #endif
  3413. /* Catch callers which need to be fixed */
  3414. BUG_ON(ti->preempt_count || !irqs_disabled());
  3415. do {
  3416. add_preempt_count(PREEMPT_ACTIVE);
  3417. /*
  3418. * We keep the big kernel semaphore locked, but we
  3419. * clear ->lock_depth so that schedule() doesnt
  3420. * auto-release the semaphore:
  3421. */
  3422. #ifdef CONFIG_PREEMPT_BKL
  3423. saved_lock_depth = task->lock_depth;
  3424. task->lock_depth = -1;
  3425. #endif
  3426. local_irq_enable();
  3427. schedule();
  3428. local_irq_disable();
  3429. #ifdef CONFIG_PREEMPT_BKL
  3430. task->lock_depth = saved_lock_depth;
  3431. #endif
  3432. sub_preempt_count(PREEMPT_ACTIVE);
  3433. /*
  3434. * Check again in case we missed a preemption opportunity
  3435. * between schedule and now.
  3436. */
  3437. barrier();
  3438. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3439. }
  3440. #endif /* CONFIG_PREEMPT */
  3441. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3442. void *key)
  3443. {
  3444. return try_to_wake_up(curr->private, mode, sync);
  3445. }
  3446. EXPORT_SYMBOL(default_wake_function);
  3447. /*
  3448. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3449. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3450. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3451. *
  3452. * There are circumstances in which we can try to wake a task which has already
  3453. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3454. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3455. */
  3456. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3457. int nr_exclusive, int sync, void *key)
  3458. {
  3459. wait_queue_t *curr, *next;
  3460. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3461. unsigned flags = curr->flags;
  3462. if (curr->func(curr, mode, sync, key) &&
  3463. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3464. break;
  3465. }
  3466. }
  3467. /**
  3468. * __wake_up - wake up threads blocked on a waitqueue.
  3469. * @q: the waitqueue
  3470. * @mode: which threads
  3471. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3472. * @key: is directly passed to the wakeup function
  3473. */
  3474. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3475. int nr_exclusive, void *key)
  3476. {
  3477. unsigned long flags;
  3478. spin_lock_irqsave(&q->lock, flags);
  3479. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3480. spin_unlock_irqrestore(&q->lock, flags);
  3481. }
  3482. EXPORT_SYMBOL(__wake_up);
  3483. /*
  3484. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3485. */
  3486. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3487. {
  3488. __wake_up_common(q, mode, 1, 0, NULL);
  3489. }
  3490. /**
  3491. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3492. * @q: the waitqueue
  3493. * @mode: which threads
  3494. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3495. *
  3496. * The sync wakeup differs that the waker knows that it will schedule
  3497. * away soon, so while the target thread will be woken up, it will not
  3498. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3499. * with each other. This can prevent needless bouncing between CPUs.
  3500. *
  3501. * On UP it can prevent extra preemption.
  3502. */
  3503. void fastcall
  3504. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3505. {
  3506. unsigned long flags;
  3507. int sync = 1;
  3508. if (unlikely(!q))
  3509. return;
  3510. if (unlikely(!nr_exclusive))
  3511. sync = 0;
  3512. spin_lock_irqsave(&q->lock, flags);
  3513. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3514. spin_unlock_irqrestore(&q->lock, flags);
  3515. }
  3516. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3517. void complete(struct completion *x)
  3518. {
  3519. unsigned long flags;
  3520. spin_lock_irqsave(&x->wait.lock, flags);
  3521. x->done++;
  3522. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3523. 1, 0, NULL);
  3524. spin_unlock_irqrestore(&x->wait.lock, flags);
  3525. }
  3526. EXPORT_SYMBOL(complete);
  3527. void complete_all(struct completion *x)
  3528. {
  3529. unsigned long flags;
  3530. spin_lock_irqsave(&x->wait.lock, flags);
  3531. x->done += UINT_MAX/2;
  3532. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3533. 0, 0, NULL);
  3534. spin_unlock_irqrestore(&x->wait.lock, flags);
  3535. }
  3536. EXPORT_SYMBOL(complete_all);
  3537. static inline long __sched
  3538. do_wait_for_common(struct completion *x, long timeout, int state)
  3539. {
  3540. if (!x->done) {
  3541. DECLARE_WAITQUEUE(wait, current);
  3542. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3543. __add_wait_queue_tail(&x->wait, &wait);
  3544. do {
  3545. if (state == TASK_INTERRUPTIBLE &&
  3546. signal_pending(current)) {
  3547. __remove_wait_queue(&x->wait, &wait);
  3548. return -ERESTARTSYS;
  3549. }
  3550. __set_current_state(state);
  3551. spin_unlock_irq(&x->wait.lock);
  3552. timeout = schedule_timeout(timeout);
  3553. spin_lock_irq(&x->wait.lock);
  3554. if (!timeout) {
  3555. __remove_wait_queue(&x->wait, &wait);
  3556. return timeout;
  3557. }
  3558. } while (!x->done);
  3559. __remove_wait_queue(&x->wait, &wait);
  3560. }
  3561. x->done--;
  3562. return timeout;
  3563. }
  3564. static long __sched
  3565. wait_for_common(struct completion *x, long timeout, int state)
  3566. {
  3567. might_sleep();
  3568. spin_lock_irq(&x->wait.lock);
  3569. timeout = do_wait_for_common(x, timeout, state);
  3570. spin_unlock_irq(&x->wait.lock);
  3571. return timeout;
  3572. }
  3573. void __sched wait_for_completion(struct completion *x)
  3574. {
  3575. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3576. }
  3577. EXPORT_SYMBOL(wait_for_completion);
  3578. unsigned long __sched
  3579. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3580. {
  3581. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3582. }
  3583. EXPORT_SYMBOL(wait_for_completion_timeout);
  3584. int __sched wait_for_completion_interruptible(struct completion *x)
  3585. {
  3586. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3587. if (t == -ERESTARTSYS)
  3588. return t;
  3589. return 0;
  3590. }
  3591. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3592. unsigned long __sched
  3593. wait_for_completion_interruptible_timeout(struct completion *x,
  3594. unsigned long timeout)
  3595. {
  3596. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3597. }
  3598. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3599. static long __sched
  3600. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3601. {
  3602. unsigned long flags;
  3603. wait_queue_t wait;
  3604. init_waitqueue_entry(&wait, current);
  3605. __set_current_state(state);
  3606. spin_lock_irqsave(&q->lock, flags);
  3607. __add_wait_queue(q, &wait);
  3608. spin_unlock(&q->lock);
  3609. timeout = schedule_timeout(timeout);
  3610. spin_lock_irq(&q->lock);
  3611. __remove_wait_queue(q, &wait);
  3612. spin_unlock_irqrestore(&q->lock, flags);
  3613. return timeout;
  3614. }
  3615. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3616. {
  3617. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3618. }
  3619. EXPORT_SYMBOL(interruptible_sleep_on);
  3620. long __sched
  3621. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3622. {
  3623. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3624. }
  3625. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3626. void __sched sleep_on(wait_queue_head_t *q)
  3627. {
  3628. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3629. }
  3630. EXPORT_SYMBOL(sleep_on);
  3631. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3632. {
  3633. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3634. }
  3635. EXPORT_SYMBOL(sleep_on_timeout);
  3636. #ifdef CONFIG_RT_MUTEXES
  3637. /*
  3638. * rt_mutex_setprio - set the current priority of a task
  3639. * @p: task
  3640. * @prio: prio value (kernel-internal form)
  3641. *
  3642. * This function changes the 'effective' priority of a task. It does
  3643. * not touch ->normal_prio like __setscheduler().
  3644. *
  3645. * Used by the rt_mutex code to implement priority inheritance logic.
  3646. */
  3647. void rt_mutex_setprio(struct task_struct *p, int prio)
  3648. {
  3649. unsigned long flags;
  3650. int oldprio, on_rq, running;
  3651. struct rq *rq;
  3652. const struct sched_class *prev_class = p->sched_class;
  3653. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3654. rq = task_rq_lock(p, &flags);
  3655. update_rq_clock(rq);
  3656. oldprio = p->prio;
  3657. on_rq = p->se.on_rq;
  3658. running = task_current(rq, p);
  3659. if (on_rq) {
  3660. dequeue_task(rq, p, 0);
  3661. if (running)
  3662. p->sched_class->put_prev_task(rq, p);
  3663. }
  3664. if (rt_prio(prio))
  3665. p->sched_class = &rt_sched_class;
  3666. else
  3667. p->sched_class = &fair_sched_class;
  3668. p->prio = prio;
  3669. if (on_rq) {
  3670. if (running)
  3671. p->sched_class->set_curr_task(rq);
  3672. enqueue_task(rq, p, 0);
  3673. check_class_changed(rq, p, prev_class, oldprio, running);
  3674. }
  3675. task_rq_unlock(rq, &flags);
  3676. }
  3677. #endif
  3678. void set_user_nice(struct task_struct *p, long nice)
  3679. {
  3680. int old_prio, delta, on_rq;
  3681. unsigned long flags;
  3682. struct rq *rq;
  3683. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3684. return;
  3685. /*
  3686. * We have to be careful, if called from sys_setpriority(),
  3687. * the task might be in the middle of scheduling on another CPU.
  3688. */
  3689. rq = task_rq_lock(p, &flags);
  3690. update_rq_clock(rq);
  3691. /*
  3692. * The RT priorities are set via sched_setscheduler(), but we still
  3693. * allow the 'normal' nice value to be set - but as expected
  3694. * it wont have any effect on scheduling until the task is
  3695. * SCHED_FIFO/SCHED_RR:
  3696. */
  3697. if (task_has_rt_policy(p)) {
  3698. p->static_prio = NICE_TO_PRIO(nice);
  3699. goto out_unlock;
  3700. }
  3701. on_rq = p->se.on_rq;
  3702. if (on_rq)
  3703. dequeue_task(rq, p, 0);
  3704. p->static_prio = NICE_TO_PRIO(nice);
  3705. set_load_weight(p);
  3706. old_prio = p->prio;
  3707. p->prio = effective_prio(p);
  3708. delta = p->prio - old_prio;
  3709. if (on_rq) {
  3710. enqueue_task(rq, p, 0);
  3711. /*
  3712. * If the task increased its priority or is running and
  3713. * lowered its priority, then reschedule its CPU:
  3714. */
  3715. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3716. resched_task(rq->curr);
  3717. }
  3718. out_unlock:
  3719. task_rq_unlock(rq, &flags);
  3720. }
  3721. EXPORT_SYMBOL(set_user_nice);
  3722. /*
  3723. * can_nice - check if a task can reduce its nice value
  3724. * @p: task
  3725. * @nice: nice value
  3726. */
  3727. int can_nice(const struct task_struct *p, const int nice)
  3728. {
  3729. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3730. int nice_rlim = 20 - nice;
  3731. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3732. capable(CAP_SYS_NICE));
  3733. }
  3734. #ifdef __ARCH_WANT_SYS_NICE
  3735. /*
  3736. * sys_nice - change the priority of the current process.
  3737. * @increment: priority increment
  3738. *
  3739. * sys_setpriority is a more generic, but much slower function that
  3740. * does similar things.
  3741. */
  3742. asmlinkage long sys_nice(int increment)
  3743. {
  3744. long nice, retval;
  3745. /*
  3746. * Setpriority might change our priority at the same moment.
  3747. * We don't have to worry. Conceptually one call occurs first
  3748. * and we have a single winner.
  3749. */
  3750. if (increment < -40)
  3751. increment = -40;
  3752. if (increment > 40)
  3753. increment = 40;
  3754. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3755. if (nice < -20)
  3756. nice = -20;
  3757. if (nice > 19)
  3758. nice = 19;
  3759. if (increment < 0 && !can_nice(current, nice))
  3760. return -EPERM;
  3761. retval = security_task_setnice(current, nice);
  3762. if (retval)
  3763. return retval;
  3764. set_user_nice(current, nice);
  3765. return 0;
  3766. }
  3767. #endif
  3768. /**
  3769. * task_prio - return the priority value of a given task.
  3770. * @p: the task in question.
  3771. *
  3772. * This is the priority value as seen by users in /proc.
  3773. * RT tasks are offset by -200. Normal tasks are centered
  3774. * around 0, value goes from -16 to +15.
  3775. */
  3776. int task_prio(const struct task_struct *p)
  3777. {
  3778. return p->prio - MAX_RT_PRIO;
  3779. }
  3780. /**
  3781. * task_nice - return the nice value of a given task.
  3782. * @p: the task in question.
  3783. */
  3784. int task_nice(const struct task_struct *p)
  3785. {
  3786. return TASK_NICE(p);
  3787. }
  3788. EXPORT_SYMBOL_GPL(task_nice);
  3789. /**
  3790. * idle_cpu - is a given cpu idle currently?
  3791. * @cpu: the processor in question.
  3792. */
  3793. int idle_cpu(int cpu)
  3794. {
  3795. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3796. }
  3797. /**
  3798. * idle_task - return the idle task for a given cpu.
  3799. * @cpu: the processor in question.
  3800. */
  3801. struct task_struct *idle_task(int cpu)
  3802. {
  3803. return cpu_rq(cpu)->idle;
  3804. }
  3805. /**
  3806. * find_process_by_pid - find a process with a matching PID value.
  3807. * @pid: the pid in question.
  3808. */
  3809. static struct task_struct *find_process_by_pid(pid_t pid)
  3810. {
  3811. return pid ? find_task_by_vpid(pid) : current;
  3812. }
  3813. /* Actually do priority change: must hold rq lock. */
  3814. static void
  3815. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3816. {
  3817. BUG_ON(p->se.on_rq);
  3818. p->policy = policy;
  3819. switch (p->policy) {
  3820. case SCHED_NORMAL:
  3821. case SCHED_BATCH:
  3822. case SCHED_IDLE:
  3823. p->sched_class = &fair_sched_class;
  3824. break;
  3825. case SCHED_FIFO:
  3826. case SCHED_RR:
  3827. p->sched_class = &rt_sched_class;
  3828. break;
  3829. }
  3830. p->rt_priority = prio;
  3831. p->normal_prio = normal_prio(p);
  3832. /* we are holding p->pi_lock already */
  3833. p->prio = rt_mutex_getprio(p);
  3834. set_load_weight(p);
  3835. }
  3836. /**
  3837. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3838. * @p: the task in question.
  3839. * @policy: new policy.
  3840. * @param: structure containing the new RT priority.
  3841. *
  3842. * NOTE that the task may be already dead.
  3843. */
  3844. int sched_setscheduler(struct task_struct *p, int policy,
  3845. struct sched_param *param)
  3846. {
  3847. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3848. unsigned long flags;
  3849. const struct sched_class *prev_class = p->sched_class;
  3850. struct rq *rq;
  3851. /* may grab non-irq protected spin_locks */
  3852. BUG_ON(in_interrupt());
  3853. recheck:
  3854. /* double check policy once rq lock held */
  3855. if (policy < 0)
  3856. policy = oldpolicy = p->policy;
  3857. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3858. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3859. policy != SCHED_IDLE)
  3860. return -EINVAL;
  3861. /*
  3862. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3863. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3864. * SCHED_BATCH and SCHED_IDLE is 0.
  3865. */
  3866. if (param->sched_priority < 0 ||
  3867. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3868. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3869. return -EINVAL;
  3870. if (rt_policy(policy) != (param->sched_priority != 0))
  3871. return -EINVAL;
  3872. /*
  3873. * Allow unprivileged RT tasks to decrease priority:
  3874. */
  3875. if (!capable(CAP_SYS_NICE)) {
  3876. if (rt_policy(policy)) {
  3877. unsigned long rlim_rtprio;
  3878. if (!lock_task_sighand(p, &flags))
  3879. return -ESRCH;
  3880. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3881. unlock_task_sighand(p, &flags);
  3882. /* can't set/change the rt policy */
  3883. if (policy != p->policy && !rlim_rtprio)
  3884. return -EPERM;
  3885. /* can't increase priority */
  3886. if (param->sched_priority > p->rt_priority &&
  3887. param->sched_priority > rlim_rtprio)
  3888. return -EPERM;
  3889. }
  3890. /*
  3891. * Like positive nice levels, dont allow tasks to
  3892. * move out of SCHED_IDLE either:
  3893. */
  3894. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3895. return -EPERM;
  3896. /* can't change other user's priorities */
  3897. if ((current->euid != p->euid) &&
  3898. (current->euid != p->uid))
  3899. return -EPERM;
  3900. }
  3901. retval = security_task_setscheduler(p, policy, param);
  3902. if (retval)
  3903. return retval;
  3904. /*
  3905. * make sure no PI-waiters arrive (or leave) while we are
  3906. * changing the priority of the task:
  3907. */
  3908. spin_lock_irqsave(&p->pi_lock, flags);
  3909. /*
  3910. * To be able to change p->policy safely, the apropriate
  3911. * runqueue lock must be held.
  3912. */
  3913. rq = __task_rq_lock(p);
  3914. /* recheck policy now with rq lock held */
  3915. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3916. policy = oldpolicy = -1;
  3917. __task_rq_unlock(rq);
  3918. spin_unlock_irqrestore(&p->pi_lock, flags);
  3919. goto recheck;
  3920. }
  3921. update_rq_clock(rq);
  3922. on_rq = p->se.on_rq;
  3923. running = task_current(rq, p);
  3924. if (on_rq) {
  3925. deactivate_task(rq, p, 0);
  3926. if (running)
  3927. p->sched_class->put_prev_task(rq, p);
  3928. }
  3929. oldprio = p->prio;
  3930. __setscheduler(rq, p, policy, param->sched_priority);
  3931. if (on_rq) {
  3932. if (running)
  3933. p->sched_class->set_curr_task(rq);
  3934. activate_task(rq, p, 0);
  3935. check_class_changed(rq, p, prev_class, oldprio, running);
  3936. }
  3937. __task_rq_unlock(rq);
  3938. spin_unlock_irqrestore(&p->pi_lock, flags);
  3939. rt_mutex_adjust_pi(p);
  3940. return 0;
  3941. }
  3942. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3943. static int
  3944. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3945. {
  3946. struct sched_param lparam;
  3947. struct task_struct *p;
  3948. int retval;
  3949. if (!param || pid < 0)
  3950. return -EINVAL;
  3951. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3952. return -EFAULT;
  3953. rcu_read_lock();
  3954. retval = -ESRCH;
  3955. p = find_process_by_pid(pid);
  3956. if (p != NULL)
  3957. retval = sched_setscheduler(p, policy, &lparam);
  3958. rcu_read_unlock();
  3959. return retval;
  3960. }
  3961. /**
  3962. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3963. * @pid: the pid in question.
  3964. * @policy: new policy.
  3965. * @param: structure containing the new RT priority.
  3966. */
  3967. asmlinkage long
  3968. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3969. {
  3970. /* negative values for policy are not valid */
  3971. if (policy < 0)
  3972. return -EINVAL;
  3973. return do_sched_setscheduler(pid, policy, param);
  3974. }
  3975. /**
  3976. * sys_sched_setparam - set/change the RT priority of a thread
  3977. * @pid: the pid in question.
  3978. * @param: structure containing the new RT priority.
  3979. */
  3980. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3981. {
  3982. return do_sched_setscheduler(pid, -1, param);
  3983. }
  3984. /**
  3985. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3986. * @pid: the pid in question.
  3987. */
  3988. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3989. {
  3990. struct task_struct *p;
  3991. int retval;
  3992. if (pid < 0)
  3993. return -EINVAL;
  3994. retval = -ESRCH;
  3995. read_lock(&tasklist_lock);
  3996. p = find_process_by_pid(pid);
  3997. if (p) {
  3998. retval = security_task_getscheduler(p);
  3999. if (!retval)
  4000. retval = p->policy;
  4001. }
  4002. read_unlock(&tasklist_lock);
  4003. return retval;
  4004. }
  4005. /**
  4006. * sys_sched_getscheduler - get the RT priority of a thread
  4007. * @pid: the pid in question.
  4008. * @param: structure containing the RT priority.
  4009. */
  4010. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4011. {
  4012. struct sched_param lp;
  4013. struct task_struct *p;
  4014. int retval;
  4015. if (!param || pid < 0)
  4016. return -EINVAL;
  4017. read_lock(&tasklist_lock);
  4018. p = find_process_by_pid(pid);
  4019. retval = -ESRCH;
  4020. if (!p)
  4021. goto out_unlock;
  4022. retval = security_task_getscheduler(p);
  4023. if (retval)
  4024. goto out_unlock;
  4025. lp.sched_priority = p->rt_priority;
  4026. read_unlock(&tasklist_lock);
  4027. /*
  4028. * This one might sleep, we cannot do it with a spinlock held ...
  4029. */
  4030. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4031. return retval;
  4032. out_unlock:
  4033. read_unlock(&tasklist_lock);
  4034. return retval;
  4035. }
  4036. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  4037. {
  4038. cpumask_t cpus_allowed;
  4039. struct task_struct *p;
  4040. int retval;
  4041. get_online_cpus();
  4042. read_lock(&tasklist_lock);
  4043. p = find_process_by_pid(pid);
  4044. if (!p) {
  4045. read_unlock(&tasklist_lock);
  4046. put_online_cpus();
  4047. return -ESRCH;
  4048. }
  4049. /*
  4050. * It is not safe to call set_cpus_allowed with the
  4051. * tasklist_lock held. We will bump the task_struct's
  4052. * usage count and then drop tasklist_lock.
  4053. */
  4054. get_task_struct(p);
  4055. read_unlock(&tasklist_lock);
  4056. retval = -EPERM;
  4057. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4058. !capable(CAP_SYS_NICE))
  4059. goto out_unlock;
  4060. retval = security_task_setscheduler(p, 0, NULL);
  4061. if (retval)
  4062. goto out_unlock;
  4063. cpus_allowed = cpuset_cpus_allowed(p);
  4064. cpus_and(new_mask, new_mask, cpus_allowed);
  4065. again:
  4066. retval = set_cpus_allowed(p, new_mask);
  4067. if (!retval) {
  4068. cpus_allowed = cpuset_cpus_allowed(p);
  4069. if (!cpus_subset(new_mask, cpus_allowed)) {
  4070. /*
  4071. * We must have raced with a concurrent cpuset
  4072. * update. Just reset the cpus_allowed to the
  4073. * cpuset's cpus_allowed
  4074. */
  4075. new_mask = cpus_allowed;
  4076. goto again;
  4077. }
  4078. }
  4079. out_unlock:
  4080. put_task_struct(p);
  4081. put_online_cpus();
  4082. return retval;
  4083. }
  4084. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4085. cpumask_t *new_mask)
  4086. {
  4087. if (len < sizeof(cpumask_t)) {
  4088. memset(new_mask, 0, sizeof(cpumask_t));
  4089. } else if (len > sizeof(cpumask_t)) {
  4090. len = sizeof(cpumask_t);
  4091. }
  4092. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4093. }
  4094. /**
  4095. * sys_sched_setaffinity - set the cpu affinity of a process
  4096. * @pid: pid of the process
  4097. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4098. * @user_mask_ptr: user-space pointer to the new cpu mask
  4099. */
  4100. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4101. unsigned long __user *user_mask_ptr)
  4102. {
  4103. cpumask_t new_mask;
  4104. int retval;
  4105. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4106. if (retval)
  4107. return retval;
  4108. return sched_setaffinity(pid, new_mask);
  4109. }
  4110. /*
  4111. * Represents all cpu's present in the system
  4112. * In systems capable of hotplug, this map could dynamically grow
  4113. * as new cpu's are detected in the system via any platform specific
  4114. * method, such as ACPI for e.g.
  4115. */
  4116. cpumask_t cpu_present_map __read_mostly;
  4117. EXPORT_SYMBOL(cpu_present_map);
  4118. #ifndef CONFIG_SMP
  4119. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4120. EXPORT_SYMBOL(cpu_online_map);
  4121. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4122. EXPORT_SYMBOL(cpu_possible_map);
  4123. #endif
  4124. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4125. {
  4126. struct task_struct *p;
  4127. int retval;
  4128. get_online_cpus();
  4129. read_lock(&tasklist_lock);
  4130. retval = -ESRCH;
  4131. p = find_process_by_pid(pid);
  4132. if (!p)
  4133. goto out_unlock;
  4134. retval = security_task_getscheduler(p);
  4135. if (retval)
  4136. goto out_unlock;
  4137. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4138. out_unlock:
  4139. read_unlock(&tasklist_lock);
  4140. put_online_cpus();
  4141. return retval;
  4142. }
  4143. /**
  4144. * sys_sched_getaffinity - get the cpu affinity of a process
  4145. * @pid: pid of the process
  4146. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4147. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4148. */
  4149. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4150. unsigned long __user *user_mask_ptr)
  4151. {
  4152. int ret;
  4153. cpumask_t mask;
  4154. if (len < sizeof(cpumask_t))
  4155. return -EINVAL;
  4156. ret = sched_getaffinity(pid, &mask);
  4157. if (ret < 0)
  4158. return ret;
  4159. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4160. return -EFAULT;
  4161. return sizeof(cpumask_t);
  4162. }
  4163. /**
  4164. * sys_sched_yield - yield the current processor to other threads.
  4165. *
  4166. * This function yields the current CPU to other tasks. If there are no
  4167. * other threads running on this CPU then this function will return.
  4168. */
  4169. asmlinkage long sys_sched_yield(void)
  4170. {
  4171. struct rq *rq = this_rq_lock();
  4172. schedstat_inc(rq, yld_count);
  4173. current->sched_class->yield_task(rq);
  4174. /*
  4175. * Since we are going to call schedule() anyway, there's
  4176. * no need to preempt or enable interrupts:
  4177. */
  4178. __release(rq->lock);
  4179. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4180. _raw_spin_unlock(&rq->lock);
  4181. preempt_enable_no_resched();
  4182. schedule();
  4183. return 0;
  4184. }
  4185. static void __cond_resched(void)
  4186. {
  4187. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4188. __might_sleep(__FILE__, __LINE__);
  4189. #endif
  4190. /*
  4191. * The BKS might be reacquired before we have dropped
  4192. * PREEMPT_ACTIVE, which could trigger a second
  4193. * cond_resched() call.
  4194. */
  4195. do {
  4196. add_preempt_count(PREEMPT_ACTIVE);
  4197. schedule();
  4198. sub_preempt_count(PREEMPT_ACTIVE);
  4199. } while (need_resched());
  4200. }
  4201. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4202. int __sched _cond_resched(void)
  4203. {
  4204. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4205. system_state == SYSTEM_RUNNING) {
  4206. __cond_resched();
  4207. return 1;
  4208. }
  4209. return 0;
  4210. }
  4211. EXPORT_SYMBOL(_cond_resched);
  4212. #endif
  4213. /*
  4214. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4215. * call schedule, and on return reacquire the lock.
  4216. *
  4217. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4218. * operations here to prevent schedule() from being called twice (once via
  4219. * spin_unlock(), once by hand).
  4220. */
  4221. int cond_resched_lock(spinlock_t *lock)
  4222. {
  4223. int ret = 0;
  4224. if (need_lockbreak(lock)) {
  4225. spin_unlock(lock);
  4226. cpu_relax();
  4227. ret = 1;
  4228. spin_lock(lock);
  4229. }
  4230. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4231. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4232. _raw_spin_unlock(lock);
  4233. preempt_enable_no_resched();
  4234. __cond_resched();
  4235. ret = 1;
  4236. spin_lock(lock);
  4237. }
  4238. return ret;
  4239. }
  4240. EXPORT_SYMBOL(cond_resched_lock);
  4241. int __sched cond_resched_softirq(void)
  4242. {
  4243. BUG_ON(!in_softirq());
  4244. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4245. local_bh_enable();
  4246. __cond_resched();
  4247. local_bh_disable();
  4248. return 1;
  4249. }
  4250. return 0;
  4251. }
  4252. EXPORT_SYMBOL(cond_resched_softirq);
  4253. /**
  4254. * yield - yield the current processor to other threads.
  4255. *
  4256. * This is a shortcut for kernel-space yielding - it marks the
  4257. * thread runnable and calls sys_sched_yield().
  4258. */
  4259. void __sched yield(void)
  4260. {
  4261. set_current_state(TASK_RUNNING);
  4262. sys_sched_yield();
  4263. }
  4264. EXPORT_SYMBOL(yield);
  4265. /*
  4266. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4267. * that process accounting knows that this is a task in IO wait state.
  4268. *
  4269. * But don't do that if it is a deliberate, throttling IO wait (this task
  4270. * has set its backing_dev_info: the queue against which it should throttle)
  4271. */
  4272. void __sched io_schedule(void)
  4273. {
  4274. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4275. delayacct_blkio_start();
  4276. atomic_inc(&rq->nr_iowait);
  4277. schedule();
  4278. atomic_dec(&rq->nr_iowait);
  4279. delayacct_blkio_end();
  4280. }
  4281. EXPORT_SYMBOL(io_schedule);
  4282. long __sched io_schedule_timeout(long timeout)
  4283. {
  4284. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4285. long ret;
  4286. delayacct_blkio_start();
  4287. atomic_inc(&rq->nr_iowait);
  4288. ret = schedule_timeout(timeout);
  4289. atomic_dec(&rq->nr_iowait);
  4290. delayacct_blkio_end();
  4291. return ret;
  4292. }
  4293. /**
  4294. * sys_sched_get_priority_max - return maximum RT priority.
  4295. * @policy: scheduling class.
  4296. *
  4297. * this syscall returns the maximum rt_priority that can be used
  4298. * by a given scheduling class.
  4299. */
  4300. asmlinkage long sys_sched_get_priority_max(int policy)
  4301. {
  4302. int ret = -EINVAL;
  4303. switch (policy) {
  4304. case SCHED_FIFO:
  4305. case SCHED_RR:
  4306. ret = MAX_USER_RT_PRIO-1;
  4307. break;
  4308. case SCHED_NORMAL:
  4309. case SCHED_BATCH:
  4310. case SCHED_IDLE:
  4311. ret = 0;
  4312. break;
  4313. }
  4314. return ret;
  4315. }
  4316. /**
  4317. * sys_sched_get_priority_min - return minimum RT priority.
  4318. * @policy: scheduling class.
  4319. *
  4320. * this syscall returns the minimum rt_priority that can be used
  4321. * by a given scheduling class.
  4322. */
  4323. asmlinkage long sys_sched_get_priority_min(int policy)
  4324. {
  4325. int ret = -EINVAL;
  4326. switch (policy) {
  4327. case SCHED_FIFO:
  4328. case SCHED_RR:
  4329. ret = 1;
  4330. break;
  4331. case SCHED_NORMAL:
  4332. case SCHED_BATCH:
  4333. case SCHED_IDLE:
  4334. ret = 0;
  4335. }
  4336. return ret;
  4337. }
  4338. /**
  4339. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4340. * @pid: pid of the process.
  4341. * @interval: userspace pointer to the timeslice value.
  4342. *
  4343. * this syscall writes the default timeslice value of a given process
  4344. * into the user-space timespec buffer. A value of '0' means infinity.
  4345. */
  4346. asmlinkage
  4347. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4348. {
  4349. struct task_struct *p;
  4350. unsigned int time_slice;
  4351. int retval;
  4352. struct timespec t;
  4353. if (pid < 0)
  4354. return -EINVAL;
  4355. retval = -ESRCH;
  4356. read_lock(&tasklist_lock);
  4357. p = find_process_by_pid(pid);
  4358. if (!p)
  4359. goto out_unlock;
  4360. retval = security_task_getscheduler(p);
  4361. if (retval)
  4362. goto out_unlock;
  4363. /*
  4364. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4365. * tasks that are on an otherwise idle runqueue:
  4366. */
  4367. time_slice = 0;
  4368. if (p->policy == SCHED_RR) {
  4369. time_slice = DEF_TIMESLICE;
  4370. } else {
  4371. struct sched_entity *se = &p->se;
  4372. unsigned long flags;
  4373. struct rq *rq;
  4374. rq = task_rq_lock(p, &flags);
  4375. if (rq->cfs.load.weight)
  4376. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4377. task_rq_unlock(rq, &flags);
  4378. }
  4379. read_unlock(&tasklist_lock);
  4380. jiffies_to_timespec(time_slice, &t);
  4381. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4382. return retval;
  4383. out_unlock:
  4384. read_unlock(&tasklist_lock);
  4385. return retval;
  4386. }
  4387. static const char stat_nam[] = "RSDTtZX";
  4388. void sched_show_task(struct task_struct *p)
  4389. {
  4390. unsigned long free = 0;
  4391. unsigned state;
  4392. state = p->state ? __ffs(p->state) + 1 : 0;
  4393. printk(KERN_INFO "%-13.13s %c", p->comm,
  4394. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4395. #if BITS_PER_LONG == 32
  4396. if (state == TASK_RUNNING)
  4397. printk(KERN_CONT " running ");
  4398. else
  4399. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4400. #else
  4401. if (state == TASK_RUNNING)
  4402. printk(KERN_CONT " running task ");
  4403. else
  4404. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4405. #endif
  4406. #ifdef CONFIG_DEBUG_STACK_USAGE
  4407. {
  4408. unsigned long *n = end_of_stack(p);
  4409. while (!*n)
  4410. n++;
  4411. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4412. }
  4413. #endif
  4414. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4415. task_pid_nr(p), task_pid_nr(p->real_parent));
  4416. if (state != TASK_RUNNING)
  4417. show_stack(p, NULL);
  4418. }
  4419. void show_state_filter(unsigned long state_filter)
  4420. {
  4421. struct task_struct *g, *p;
  4422. #if BITS_PER_LONG == 32
  4423. printk(KERN_INFO
  4424. " task PC stack pid father\n");
  4425. #else
  4426. printk(KERN_INFO
  4427. " task PC stack pid father\n");
  4428. #endif
  4429. read_lock(&tasklist_lock);
  4430. do_each_thread(g, p) {
  4431. /*
  4432. * reset the NMI-timeout, listing all files on a slow
  4433. * console might take alot of time:
  4434. */
  4435. touch_nmi_watchdog();
  4436. if (!state_filter || (p->state & state_filter))
  4437. sched_show_task(p);
  4438. } while_each_thread(g, p);
  4439. touch_all_softlockup_watchdogs();
  4440. #ifdef CONFIG_SCHED_DEBUG
  4441. sysrq_sched_debug_show();
  4442. #endif
  4443. read_unlock(&tasklist_lock);
  4444. /*
  4445. * Only show locks if all tasks are dumped:
  4446. */
  4447. if (state_filter == -1)
  4448. debug_show_all_locks();
  4449. }
  4450. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4451. {
  4452. idle->sched_class = &idle_sched_class;
  4453. }
  4454. /**
  4455. * init_idle - set up an idle thread for a given CPU
  4456. * @idle: task in question
  4457. * @cpu: cpu the idle task belongs to
  4458. *
  4459. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4460. * flag, to make booting more robust.
  4461. */
  4462. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4463. {
  4464. struct rq *rq = cpu_rq(cpu);
  4465. unsigned long flags;
  4466. __sched_fork(idle);
  4467. idle->se.exec_start = sched_clock();
  4468. idle->prio = idle->normal_prio = MAX_PRIO;
  4469. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4470. __set_task_cpu(idle, cpu);
  4471. spin_lock_irqsave(&rq->lock, flags);
  4472. rq->curr = rq->idle = idle;
  4473. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4474. idle->oncpu = 1;
  4475. #endif
  4476. spin_unlock_irqrestore(&rq->lock, flags);
  4477. /* Set the preempt count _outside_ the spinlocks! */
  4478. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4479. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4480. #else
  4481. task_thread_info(idle)->preempt_count = 0;
  4482. #endif
  4483. /*
  4484. * The idle tasks have their own, simple scheduling class:
  4485. */
  4486. idle->sched_class = &idle_sched_class;
  4487. }
  4488. /*
  4489. * In a system that switches off the HZ timer nohz_cpu_mask
  4490. * indicates which cpus entered this state. This is used
  4491. * in the rcu update to wait only for active cpus. For system
  4492. * which do not switch off the HZ timer nohz_cpu_mask should
  4493. * always be CPU_MASK_NONE.
  4494. */
  4495. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4496. /*
  4497. * Increase the granularity value when there are more CPUs,
  4498. * because with more CPUs the 'effective latency' as visible
  4499. * to users decreases. But the relationship is not linear,
  4500. * so pick a second-best guess by going with the log2 of the
  4501. * number of CPUs.
  4502. *
  4503. * This idea comes from the SD scheduler of Con Kolivas:
  4504. */
  4505. static inline void sched_init_granularity(void)
  4506. {
  4507. unsigned int factor = 1 + ilog2(num_online_cpus());
  4508. const unsigned long limit = 200000000;
  4509. sysctl_sched_min_granularity *= factor;
  4510. if (sysctl_sched_min_granularity > limit)
  4511. sysctl_sched_min_granularity = limit;
  4512. sysctl_sched_latency *= factor;
  4513. if (sysctl_sched_latency > limit)
  4514. sysctl_sched_latency = limit;
  4515. sysctl_sched_wakeup_granularity *= factor;
  4516. sysctl_sched_batch_wakeup_granularity *= factor;
  4517. }
  4518. #ifdef CONFIG_SMP
  4519. /*
  4520. * This is how migration works:
  4521. *
  4522. * 1) we queue a struct migration_req structure in the source CPU's
  4523. * runqueue and wake up that CPU's migration thread.
  4524. * 2) we down() the locked semaphore => thread blocks.
  4525. * 3) migration thread wakes up (implicitly it forces the migrated
  4526. * thread off the CPU)
  4527. * 4) it gets the migration request and checks whether the migrated
  4528. * task is still in the wrong runqueue.
  4529. * 5) if it's in the wrong runqueue then the migration thread removes
  4530. * it and puts it into the right queue.
  4531. * 6) migration thread up()s the semaphore.
  4532. * 7) we wake up and the migration is done.
  4533. */
  4534. /*
  4535. * Change a given task's CPU affinity. Migrate the thread to a
  4536. * proper CPU and schedule it away if the CPU it's executing on
  4537. * is removed from the allowed bitmask.
  4538. *
  4539. * NOTE: the caller must have a valid reference to the task, the
  4540. * task must not exit() & deallocate itself prematurely. The
  4541. * call is not atomic; no spinlocks may be held.
  4542. */
  4543. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4544. {
  4545. struct migration_req req;
  4546. unsigned long flags;
  4547. struct rq *rq;
  4548. int ret = 0;
  4549. rq = task_rq_lock(p, &flags);
  4550. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4551. ret = -EINVAL;
  4552. goto out;
  4553. }
  4554. if (p->sched_class->set_cpus_allowed)
  4555. p->sched_class->set_cpus_allowed(p, &new_mask);
  4556. else {
  4557. p->cpus_allowed = new_mask;
  4558. p->nr_cpus_allowed = cpus_weight(new_mask);
  4559. }
  4560. /* Can the task run on the task's current CPU? If so, we're done */
  4561. if (cpu_isset(task_cpu(p), new_mask))
  4562. goto out;
  4563. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4564. /* Need help from migration thread: drop lock and wait. */
  4565. task_rq_unlock(rq, &flags);
  4566. wake_up_process(rq->migration_thread);
  4567. wait_for_completion(&req.done);
  4568. tlb_migrate_finish(p->mm);
  4569. return 0;
  4570. }
  4571. out:
  4572. task_rq_unlock(rq, &flags);
  4573. return ret;
  4574. }
  4575. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4576. /*
  4577. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4578. * this because either it can't run here any more (set_cpus_allowed()
  4579. * away from this CPU, or CPU going down), or because we're
  4580. * attempting to rebalance this task on exec (sched_exec).
  4581. *
  4582. * So we race with normal scheduler movements, but that's OK, as long
  4583. * as the task is no longer on this CPU.
  4584. *
  4585. * Returns non-zero if task was successfully migrated.
  4586. */
  4587. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4588. {
  4589. struct rq *rq_dest, *rq_src;
  4590. int ret = 0, on_rq;
  4591. if (unlikely(cpu_is_offline(dest_cpu)))
  4592. return ret;
  4593. rq_src = cpu_rq(src_cpu);
  4594. rq_dest = cpu_rq(dest_cpu);
  4595. double_rq_lock(rq_src, rq_dest);
  4596. /* Already moved. */
  4597. if (task_cpu(p) != src_cpu)
  4598. goto out;
  4599. /* Affinity changed (again). */
  4600. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4601. goto out;
  4602. on_rq = p->se.on_rq;
  4603. if (on_rq)
  4604. deactivate_task(rq_src, p, 0);
  4605. set_task_cpu(p, dest_cpu);
  4606. if (on_rq) {
  4607. activate_task(rq_dest, p, 0);
  4608. check_preempt_curr(rq_dest, p);
  4609. }
  4610. ret = 1;
  4611. out:
  4612. double_rq_unlock(rq_src, rq_dest);
  4613. return ret;
  4614. }
  4615. /*
  4616. * migration_thread - this is a highprio system thread that performs
  4617. * thread migration by bumping thread off CPU then 'pushing' onto
  4618. * another runqueue.
  4619. */
  4620. static int migration_thread(void *data)
  4621. {
  4622. int cpu = (long)data;
  4623. struct rq *rq;
  4624. rq = cpu_rq(cpu);
  4625. BUG_ON(rq->migration_thread != current);
  4626. set_current_state(TASK_INTERRUPTIBLE);
  4627. while (!kthread_should_stop()) {
  4628. struct migration_req *req;
  4629. struct list_head *head;
  4630. spin_lock_irq(&rq->lock);
  4631. if (cpu_is_offline(cpu)) {
  4632. spin_unlock_irq(&rq->lock);
  4633. goto wait_to_die;
  4634. }
  4635. if (rq->active_balance) {
  4636. active_load_balance(rq, cpu);
  4637. rq->active_balance = 0;
  4638. }
  4639. head = &rq->migration_queue;
  4640. if (list_empty(head)) {
  4641. spin_unlock_irq(&rq->lock);
  4642. schedule();
  4643. set_current_state(TASK_INTERRUPTIBLE);
  4644. continue;
  4645. }
  4646. req = list_entry(head->next, struct migration_req, list);
  4647. list_del_init(head->next);
  4648. spin_unlock(&rq->lock);
  4649. __migrate_task(req->task, cpu, req->dest_cpu);
  4650. local_irq_enable();
  4651. complete(&req->done);
  4652. }
  4653. __set_current_state(TASK_RUNNING);
  4654. return 0;
  4655. wait_to_die:
  4656. /* Wait for kthread_stop */
  4657. set_current_state(TASK_INTERRUPTIBLE);
  4658. while (!kthread_should_stop()) {
  4659. schedule();
  4660. set_current_state(TASK_INTERRUPTIBLE);
  4661. }
  4662. __set_current_state(TASK_RUNNING);
  4663. return 0;
  4664. }
  4665. #ifdef CONFIG_HOTPLUG_CPU
  4666. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4667. {
  4668. int ret;
  4669. local_irq_disable();
  4670. ret = __migrate_task(p, src_cpu, dest_cpu);
  4671. local_irq_enable();
  4672. return ret;
  4673. }
  4674. /*
  4675. * Figure out where task on dead CPU should go, use force if necessary.
  4676. * NOTE: interrupts should be disabled by the caller
  4677. */
  4678. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4679. {
  4680. unsigned long flags;
  4681. cpumask_t mask;
  4682. struct rq *rq;
  4683. int dest_cpu;
  4684. do {
  4685. /* On same node? */
  4686. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4687. cpus_and(mask, mask, p->cpus_allowed);
  4688. dest_cpu = any_online_cpu(mask);
  4689. /* On any allowed CPU? */
  4690. if (dest_cpu == NR_CPUS)
  4691. dest_cpu = any_online_cpu(p->cpus_allowed);
  4692. /* No more Mr. Nice Guy. */
  4693. if (dest_cpu == NR_CPUS) {
  4694. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4695. /*
  4696. * Try to stay on the same cpuset, where the
  4697. * current cpuset may be a subset of all cpus.
  4698. * The cpuset_cpus_allowed_locked() variant of
  4699. * cpuset_cpus_allowed() will not block. It must be
  4700. * called within calls to cpuset_lock/cpuset_unlock.
  4701. */
  4702. rq = task_rq_lock(p, &flags);
  4703. p->cpus_allowed = cpus_allowed;
  4704. dest_cpu = any_online_cpu(p->cpus_allowed);
  4705. task_rq_unlock(rq, &flags);
  4706. /*
  4707. * Don't tell them about moving exiting tasks or
  4708. * kernel threads (both mm NULL), since they never
  4709. * leave kernel.
  4710. */
  4711. if (p->mm && printk_ratelimit()) {
  4712. printk(KERN_INFO "process %d (%s) no "
  4713. "longer affine to cpu%d\n",
  4714. task_pid_nr(p), p->comm, dead_cpu);
  4715. }
  4716. }
  4717. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4718. }
  4719. /*
  4720. * While a dead CPU has no uninterruptible tasks queued at this point,
  4721. * it might still have a nonzero ->nr_uninterruptible counter, because
  4722. * for performance reasons the counter is not stricly tracking tasks to
  4723. * their home CPUs. So we just add the counter to another CPU's counter,
  4724. * to keep the global sum constant after CPU-down:
  4725. */
  4726. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4727. {
  4728. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4729. unsigned long flags;
  4730. local_irq_save(flags);
  4731. double_rq_lock(rq_src, rq_dest);
  4732. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4733. rq_src->nr_uninterruptible = 0;
  4734. double_rq_unlock(rq_src, rq_dest);
  4735. local_irq_restore(flags);
  4736. }
  4737. /* Run through task list and migrate tasks from the dead cpu. */
  4738. static void migrate_live_tasks(int src_cpu)
  4739. {
  4740. struct task_struct *p, *t;
  4741. read_lock(&tasklist_lock);
  4742. do_each_thread(t, p) {
  4743. if (p == current)
  4744. continue;
  4745. if (task_cpu(p) == src_cpu)
  4746. move_task_off_dead_cpu(src_cpu, p);
  4747. } while_each_thread(t, p);
  4748. read_unlock(&tasklist_lock);
  4749. }
  4750. /*
  4751. * Schedules idle task to be the next runnable task on current CPU.
  4752. * It does so by boosting its priority to highest possible.
  4753. * Used by CPU offline code.
  4754. */
  4755. void sched_idle_next(void)
  4756. {
  4757. int this_cpu = smp_processor_id();
  4758. struct rq *rq = cpu_rq(this_cpu);
  4759. struct task_struct *p = rq->idle;
  4760. unsigned long flags;
  4761. /* cpu has to be offline */
  4762. BUG_ON(cpu_online(this_cpu));
  4763. /*
  4764. * Strictly not necessary since rest of the CPUs are stopped by now
  4765. * and interrupts disabled on the current cpu.
  4766. */
  4767. spin_lock_irqsave(&rq->lock, flags);
  4768. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4769. update_rq_clock(rq);
  4770. activate_task(rq, p, 0);
  4771. spin_unlock_irqrestore(&rq->lock, flags);
  4772. }
  4773. /*
  4774. * Ensures that the idle task is using init_mm right before its cpu goes
  4775. * offline.
  4776. */
  4777. void idle_task_exit(void)
  4778. {
  4779. struct mm_struct *mm = current->active_mm;
  4780. BUG_ON(cpu_online(smp_processor_id()));
  4781. if (mm != &init_mm)
  4782. switch_mm(mm, &init_mm, current);
  4783. mmdrop(mm);
  4784. }
  4785. /* called under rq->lock with disabled interrupts */
  4786. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4787. {
  4788. struct rq *rq = cpu_rq(dead_cpu);
  4789. /* Must be exiting, otherwise would be on tasklist. */
  4790. BUG_ON(!p->exit_state);
  4791. /* Cannot have done final schedule yet: would have vanished. */
  4792. BUG_ON(p->state == TASK_DEAD);
  4793. get_task_struct(p);
  4794. /*
  4795. * Drop lock around migration; if someone else moves it,
  4796. * that's OK. No task can be added to this CPU, so iteration is
  4797. * fine.
  4798. */
  4799. spin_unlock_irq(&rq->lock);
  4800. move_task_off_dead_cpu(dead_cpu, p);
  4801. spin_lock_irq(&rq->lock);
  4802. put_task_struct(p);
  4803. }
  4804. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4805. static void migrate_dead_tasks(unsigned int dead_cpu)
  4806. {
  4807. struct rq *rq = cpu_rq(dead_cpu);
  4808. struct task_struct *next;
  4809. for ( ; ; ) {
  4810. if (!rq->nr_running)
  4811. break;
  4812. update_rq_clock(rq);
  4813. next = pick_next_task(rq, rq->curr);
  4814. if (!next)
  4815. break;
  4816. migrate_dead(dead_cpu, next);
  4817. }
  4818. }
  4819. #endif /* CONFIG_HOTPLUG_CPU */
  4820. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4821. static struct ctl_table sd_ctl_dir[] = {
  4822. {
  4823. .procname = "sched_domain",
  4824. .mode = 0555,
  4825. },
  4826. {0, },
  4827. };
  4828. static struct ctl_table sd_ctl_root[] = {
  4829. {
  4830. .ctl_name = CTL_KERN,
  4831. .procname = "kernel",
  4832. .mode = 0555,
  4833. .child = sd_ctl_dir,
  4834. },
  4835. {0, },
  4836. };
  4837. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4838. {
  4839. struct ctl_table *entry =
  4840. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4841. return entry;
  4842. }
  4843. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4844. {
  4845. struct ctl_table *entry;
  4846. /*
  4847. * In the intermediate directories, both the child directory and
  4848. * procname are dynamically allocated and could fail but the mode
  4849. * will always be set. In the lowest directory the names are
  4850. * static strings and all have proc handlers.
  4851. */
  4852. for (entry = *tablep; entry->mode; entry++) {
  4853. if (entry->child)
  4854. sd_free_ctl_entry(&entry->child);
  4855. if (entry->proc_handler == NULL)
  4856. kfree(entry->procname);
  4857. }
  4858. kfree(*tablep);
  4859. *tablep = NULL;
  4860. }
  4861. static void
  4862. set_table_entry(struct ctl_table *entry,
  4863. const char *procname, void *data, int maxlen,
  4864. mode_t mode, proc_handler *proc_handler)
  4865. {
  4866. entry->procname = procname;
  4867. entry->data = data;
  4868. entry->maxlen = maxlen;
  4869. entry->mode = mode;
  4870. entry->proc_handler = proc_handler;
  4871. }
  4872. static struct ctl_table *
  4873. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4874. {
  4875. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4876. if (table == NULL)
  4877. return NULL;
  4878. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4879. sizeof(long), 0644, proc_doulongvec_minmax);
  4880. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4881. sizeof(long), 0644, proc_doulongvec_minmax);
  4882. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4883. sizeof(int), 0644, proc_dointvec_minmax);
  4884. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4885. sizeof(int), 0644, proc_dointvec_minmax);
  4886. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4887. sizeof(int), 0644, proc_dointvec_minmax);
  4888. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4889. sizeof(int), 0644, proc_dointvec_minmax);
  4890. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4891. sizeof(int), 0644, proc_dointvec_minmax);
  4892. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4893. sizeof(int), 0644, proc_dointvec_minmax);
  4894. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4895. sizeof(int), 0644, proc_dointvec_minmax);
  4896. set_table_entry(&table[9], "cache_nice_tries",
  4897. &sd->cache_nice_tries,
  4898. sizeof(int), 0644, proc_dointvec_minmax);
  4899. set_table_entry(&table[10], "flags", &sd->flags,
  4900. sizeof(int), 0644, proc_dointvec_minmax);
  4901. /* &table[11] is terminator */
  4902. return table;
  4903. }
  4904. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4905. {
  4906. struct ctl_table *entry, *table;
  4907. struct sched_domain *sd;
  4908. int domain_num = 0, i;
  4909. char buf[32];
  4910. for_each_domain(cpu, sd)
  4911. domain_num++;
  4912. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4913. if (table == NULL)
  4914. return NULL;
  4915. i = 0;
  4916. for_each_domain(cpu, sd) {
  4917. snprintf(buf, 32, "domain%d", i);
  4918. entry->procname = kstrdup(buf, GFP_KERNEL);
  4919. entry->mode = 0555;
  4920. entry->child = sd_alloc_ctl_domain_table(sd);
  4921. entry++;
  4922. i++;
  4923. }
  4924. return table;
  4925. }
  4926. static struct ctl_table_header *sd_sysctl_header;
  4927. static void register_sched_domain_sysctl(void)
  4928. {
  4929. int i, cpu_num = num_online_cpus();
  4930. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4931. char buf[32];
  4932. WARN_ON(sd_ctl_dir[0].child);
  4933. sd_ctl_dir[0].child = entry;
  4934. if (entry == NULL)
  4935. return;
  4936. for_each_online_cpu(i) {
  4937. snprintf(buf, 32, "cpu%d", i);
  4938. entry->procname = kstrdup(buf, GFP_KERNEL);
  4939. entry->mode = 0555;
  4940. entry->child = sd_alloc_ctl_cpu_table(i);
  4941. entry++;
  4942. }
  4943. WARN_ON(sd_sysctl_header);
  4944. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4945. }
  4946. /* may be called multiple times per register */
  4947. static void unregister_sched_domain_sysctl(void)
  4948. {
  4949. if (sd_sysctl_header)
  4950. unregister_sysctl_table(sd_sysctl_header);
  4951. sd_sysctl_header = NULL;
  4952. if (sd_ctl_dir[0].child)
  4953. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4954. }
  4955. #else
  4956. static void register_sched_domain_sysctl(void)
  4957. {
  4958. }
  4959. static void unregister_sched_domain_sysctl(void)
  4960. {
  4961. }
  4962. #endif
  4963. /*
  4964. * migration_call - callback that gets triggered when a CPU is added.
  4965. * Here we can start up the necessary migration thread for the new CPU.
  4966. */
  4967. static int __cpuinit
  4968. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4969. {
  4970. struct task_struct *p;
  4971. int cpu = (long)hcpu;
  4972. unsigned long flags;
  4973. struct rq *rq;
  4974. switch (action) {
  4975. case CPU_UP_PREPARE:
  4976. case CPU_UP_PREPARE_FROZEN:
  4977. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4978. if (IS_ERR(p))
  4979. return NOTIFY_BAD;
  4980. kthread_bind(p, cpu);
  4981. /* Must be high prio: stop_machine expects to yield to it. */
  4982. rq = task_rq_lock(p, &flags);
  4983. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4984. task_rq_unlock(rq, &flags);
  4985. cpu_rq(cpu)->migration_thread = p;
  4986. break;
  4987. case CPU_ONLINE:
  4988. case CPU_ONLINE_FROZEN:
  4989. /* Strictly unnecessary, as first user will wake it. */
  4990. wake_up_process(cpu_rq(cpu)->migration_thread);
  4991. /* Update our root-domain */
  4992. rq = cpu_rq(cpu);
  4993. spin_lock_irqsave(&rq->lock, flags);
  4994. if (rq->rd) {
  4995. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4996. cpu_set(cpu, rq->rd->online);
  4997. }
  4998. spin_unlock_irqrestore(&rq->lock, flags);
  4999. break;
  5000. #ifdef CONFIG_HOTPLUG_CPU
  5001. case CPU_UP_CANCELED:
  5002. case CPU_UP_CANCELED_FROZEN:
  5003. if (!cpu_rq(cpu)->migration_thread)
  5004. break;
  5005. /* Unbind it from offline cpu so it can run. Fall thru. */
  5006. kthread_bind(cpu_rq(cpu)->migration_thread,
  5007. any_online_cpu(cpu_online_map));
  5008. kthread_stop(cpu_rq(cpu)->migration_thread);
  5009. cpu_rq(cpu)->migration_thread = NULL;
  5010. break;
  5011. case CPU_DEAD:
  5012. case CPU_DEAD_FROZEN:
  5013. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5014. migrate_live_tasks(cpu);
  5015. rq = cpu_rq(cpu);
  5016. kthread_stop(rq->migration_thread);
  5017. rq->migration_thread = NULL;
  5018. /* Idle task back to normal (off runqueue, low prio) */
  5019. spin_lock_irq(&rq->lock);
  5020. update_rq_clock(rq);
  5021. deactivate_task(rq, rq->idle, 0);
  5022. rq->idle->static_prio = MAX_PRIO;
  5023. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5024. rq->idle->sched_class = &idle_sched_class;
  5025. migrate_dead_tasks(cpu);
  5026. spin_unlock_irq(&rq->lock);
  5027. cpuset_unlock();
  5028. migrate_nr_uninterruptible(rq);
  5029. BUG_ON(rq->nr_running != 0);
  5030. /*
  5031. * No need to migrate the tasks: it was best-effort if
  5032. * they didn't take sched_hotcpu_mutex. Just wake up
  5033. * the requestors.
  5034. */
  5035. spin_lock_irq(&rq->lock);
  5036. while (!list_empty(&rq->migration_queue)) {
  5037. struct migration_req *req;
  5038. req = list_entry(rq->migration_queue.next,
  5039. struct migration_req, list);
  5040. list_del_init(&req->list);
  5041. complete(&req->done);
  5042. }
  5043. spin_unlock_irq(&rq->lock);
  5044. break;
  5045. case CPU_DOWN_PREPARE:
  5046. /* Update our root-domain */
  5047. rq = cpu_rq(cpu);
  5048. spin_lock_irqsave(&rq->lock, flags);
  5049. if (rq->rd) {
  5050. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5051. cpu_clear(cpu, rq->rd->online);
  5052. }
  5053. spin_unlock_irqrestore(&rq->lock, flags);
  5054. break;
  5055. #endif
  5056. }
  5057. return NOTIFY_OK;
  5058. }
  5059. /* Register at highest priority so that task migration (migrate_all_tasks)
  5060. * happens before everything else.
  5061. */
  5062. static struct notifier_block __cpuinitdata migration_notifier = {
  5063. .notifier_call = migration_call,
  5064. .priority = 10
  5065. };
  5066. void __init migration_init(void)
  5067. {
  5068. void *cpu = (void *)(long)smp_processor_id();
  5069. int err;
  5070. /* Start one for the boot CPU: */
  5071. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5072. BUG_ON(err == NOTIFY_BAD);
  5073. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5074. register_cpu_notifier(&migration_notifier);
  5075. }
  5076. #endif
  5077. #ifdef CONFIG_SMP
  5078. /* Number of possible processor ids */
  5079. int nr_cpu_ids __read_mostly = NR_CPUS;
  5080. EXPORT_SYMBOL(nr_cpu_ids);
  5081. #ifdef CONFIG_SCHED_DEBUG
  5082. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5083. {
  5084. struct sched_group *group = sd->groups;
  5085. cpumask_t groupmask;
  5086. char str[NR_CPUS];
  5087. cpumask_scnprintf(str, NR_CPUS, sd->span);
  5088. cpus_clear(groupmask);
  5089. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5090. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5091. printk("does not load-balance\n");
  5092. if (sd->parent)
  5093. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5094. " has parent");
  5095. return -1;
  5096. }
  5097. printk(KERN_CONT "span %s\n", str);
  5098. if (!cpu_isset(cpu, sd->span)) {
  5099. printk(KERN_ERR "ERROR: domain->span does not contain "
  5100. "CPU%d\n", cpu);
  5101. }
  5102. if (!cpu_isset(cpu, group->cpumask)) {
  5103. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5104. " CPU%d\n", cpu);
  5105. }
  5106. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5107. do {
  5108. if (!group) {
  5109. printk("\n");
  5110. printk(KERN_ERR "ERROR: group is NULL\n");
  5111. break;
  5112. }
  5113. if (!group->__cpu_power) {
  5114. printk(KERN_CONT "\n");
  5115. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5116. "set\n");
  5117. break;
  5118. }
  5119. if (!cpus_weight(group->cpumask)) {
  5120. printk(KERN_CONT "\n");
  5121. printk(KERN_ERR "ERROR: empty group\n");
  5122. break;
  5123. }
  5124. if (cpus_intersects(groupmask, group->cpumask)) {
  5125. printk(KERN_CONT "\n");
  5126. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5127. break;
  5128. }
  5129. cpus_or(groupmask, groupmask, group->cpumask);
  5130. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  5131. printk(KERN_CONT " %s", str);
  5132. group = group->next;
  5133. } while (group != sd->groups);
  5134. printk(KERN_CONT "\n");
  5135. if (!cpus_equal(sd->span, groupmask))
  5136. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5137. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5138. printk(KERN_ERR "ERROR: parent span is not a superset "
  5139. "of domain->span\n");
  5140. return 0;
  5141. }
  5142. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5143. {
  5144. int level = 0;
  5145. if (!sd) {
  5146. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5147. return;
  5148. }
  5149. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5150. for (;;) {
  5151. if (sched_domain_debug_one(sd, cpu, level))
  5152. break;
  5153. level++;
  5154. sd = sd->parent;
  5155. if (!sd)
  5156. break;
  5157. }
  5158. }
  5159. #else
  5160. # define sched_domain_debug(sd, cpu) do { } while (0)
  5161. #endif
  5162. static int sd_degenerate(struct sched_domain *sd)
  5163. {
  5164. if (cpus_weight(sd->span) == 1)
  5165. return 1;
  5166. /* Following flags need at least 2 groups */
  5167. if (sd->flags & (SD_LOAD_BALANCE |
  5168. SD_BALANCE_NEWIDLE |
  5169. SD_BALANCE_FORK |
  5170. SD_BALANCE_EXEC |
  5171. SD_SHARE_CPUPOWER |
  5172. SD_SHARE_PKG_RESOURCES)) {
  5173. if (sd->groups != sd->groups->next)
  5174. return 0;
  5175. }
  5176. /* Following flags don't use groups */
  5177. if (sd->flags & (SD_WAKE_IDLE |
  5178. SD_WAKE_AFFINE |
  5179. SD_WAKE_BALANCE))
  5180. return 0;
  5181. return 1;
  5182. }
  5183. static int
  5184. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5185. {
  5186. unsigned long cflags = sd->flags, pflags = parent->flags;
  5187. if (sd_degenerate(parent))
  5188. return 1;
  5189. if (!cpus_equal(sd->span, parent->span))
  5190. return 0;
  5191. /* Does parent contain flags not in child? */
  5192. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5193. if (cflags & SD_WAKE_AFFINE)
  5194. pflags &= ~SD_WAKE_BALANCE;
  5195. /* Flags needing groups don't count if only 1 group in parent */
  5196. if (parent->groups == parent->groups->next) {
  5197. pflags &= ~(SD_LOAD_BALANCE |
  5198. SD_BALANCE_NEWIDLE |
  5199. SD_BALANCE_FORK |
  5200. SD_BALANCE_EXEC |
  5201. SD_SHARE_CPUPOWER |
  5202. SD_SHARE_PKG_RESOURCES);
  5203. }
  5204. if (~cflags & pflags)
  5205. return 0;
  5206. return 1;
  5207. }
  5208. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5209. {
  5210. unsigned long flags;
  5211. const struct sched_class *class;
  5212. spin_lock_irqsave(&rq->lock, flags);
  5213. if (rq->rd) {
  5214. struct root_domain *old_rd = rq->rd;
  5215. for (class = sched_class_highest; class; class = class->next) {
  5216. if (class->leave_domain)
  5217. class->leave_domain(rq);
  5218. }
  5219. cpu_clear(rq->cpu, old_rd->span);
  5220. cpu_clear(rq->cpu, old_rd->online);
  5221. if (atomic_dec_and_test(&old_rd->refcount))
  5222. kfree(old_rd);
  5223. }
  5224. atomic_inc(&rd->refcount);
  5225. rq->rd = rd;
  5226. cpu_set(rq->cpu, rd->span);
  5227. if (cpu_isset(rq->cpu, cpu_online_map))
  5228. cpu_set(rq->cpu, rd->online);
  5229. for (class = sched_class_highest; class; class = class->next) {
  5230. if (class->join_domain)
  5231. class->join_domain(rq);
  5232. }
  5233. spin_unlock_irqrestore(&rq->lock, flags);
  5234. }
  5235. static void init_rootdomain(struct root_domain *rd)
  5236. {
  5237. memset(rd, 0, sizeof(*rd));
  5238. cpus_clear(rd->span);
  5239. cpus_clear(rd->online);
  5240. }
  5241. static void init_defrootdomain(void)
  5242. {
  5243. init_rootdomain(&def_root_domain);
  5244. atomic_set(&def_root_domain.refcount, 1);
  5245. }
  5246. static struct root_domain *alloc_rootdomain(void)
  5247. {
  5248. struct root_domain *rd;
  5249. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5250. if (!rd)
  5251. return NULL;
  5252. init_rootdomain(rd);
  5253. return rd;
  5254. }
  5255. /*
  5256. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5257. * hold the hotplug lock.
  5258. */
  5259. static void
  5260. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5261. {
  5262. struct rq *rq = cpu_rq(cpu);
  5263. struct sched_domain *tmp;
  5264. /* Remove the sched domains which do not contribute to scheduling. */
  5265. for (tmp = sd; tmp; tmp = tmp->parent) {
  5266. struct sched_domain *parent = tmp->parent;
  5267. if (!parent)
  5268. break;
  5269. if (sd_parent_degenerate(tmp, parent)) {
  5270. tmp->parent = parent->parent;
  5271. if (parent->parent)
  5272. parent->parent->child = tmp;
  5273. }
  5274. }
  5275. if (sd && sd_degenerate(sd)) {
  5276. sd = sd->parent;
  5277. if (sd)
  5278. sd->child = NULL;
  5279. }
  5280. sched_domain_debug(sd, cpu);
  5281. rq_attach_root(rq, rd);
  5282. rcu_assign_pointer(rq->sd, sd);
  5283. }
  5284. /* cpus with isolated domains */
  5285. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5286. /* Setup the mask of cpus configured for isolated domains */
  5287. static int __init isolated_cpu_setup(char *str)
  5288. {
  5289. int ints[NR_CPUS], i;
  5290. str = get_options(str, ARRAY_SIZE(ints), ints);
  5291. cpus_clear(cpu_isolated_map);
  5292. for (i = 1; i <= ints[0]; i++)
  5293. if (ints[i] < NR_CPUS)
  5294. cpu_set(ints[i], cpu_isolated_map);
  5295. return 1;
  5296. }
  5297. __setup("isolcpus=", isolated_cpu_setup);
  5298. /*
  5299. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5300. * to a function which identifies what group(along with sched group) a CPU
  5301. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5302. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5303. *
  5304. * init_sched_build_groups will build a circular linked list of the groups
  5305. * covered by the given span, and will set each group's ->cpumask correctly,
  5306. * and ->cpu_power to 0.
  5307. */
  5308. static void
  5309. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5310. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5311. struct sched_group **sg))
  5312. {
  5313. struct sched_group *first = NULL, *last = NULL;
  5314. cpumask_t covered = CPU_MASK_NONE;
  5315. int i;
  5316. for_each_cpu_mask(i, span) {
  5317. struct sched_group *sg;
  5318. int group = group_fn(i, cpu_map, &sg);
  5319. int j;
  5320. if (cpu_isset(i, covered))
  5321. continue;
  5322. sg->cpumask = CPU_MASK_NONE;
  5323. sg->__cpu_power = 0;
  5324. for_each_cpu_mask(j, span) {
  5325. if (group_fn(j, cpu_map, NULL) != group)
  5326. continue;
  5327. cpu_set(j, covered);
  5328. cpu_set(j, sg->cpumask);
  5329. }
  5330. if (!first)
  5331. first = sg;
  5332. if (last)
  5333. last->next = sg;
  5334. last = sg;
  5335. }
  5336. last->next = first;
  5337. }
  5338. #define SD_NODES_PER_DOMAIN 16
  5339. #ifdef CONFIG_NUMA
  5340. /**
  5341. * find_next_best_node - find the next node to include in a sched_domain
  5342. * @node: node whose sched_domain we're building
  5343. * @used_nodes: nodes already in the sched_domain
  5344. *
  5345. * Find the next node to include in a given scheduling domain. Simply
  5346. * finds the closest node not already in the @used_nodes map.
  5347. *
  5348. * Should use nodemask_t.
  5349. */
  5350. static int find_next_best_node(int node, unsigned long *used_nodes)
  5351. {
  5352. int i, n, val, min_val, best_node = 0;
  5353. min_val = INT_MAX;
  5354. for (i = 0; i < MAX_NUMNODES; i++) {
  5355. /* Start at @node */
  5356. n = (node + i) % MAX_NUMNODES;
  5357. if (!nr_cpus_node(n))
  5358. continue;
  5359. /* Skip already used nodes */
  5360. if (test_bit(n, used_nodes))
  5361. continue;
  5362. /* Simple min distance search */
  5363. val = node_distance(node, n);
  5364. if (val < min_val) {
  5365. min_val = val;
  5366. best_node = n;
  5367. }
  5368. }
  5369. set_bit(best_node, used_nodes);
  5370. return best_node;
  5371. }
  5372. /**
  5373. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5374. * @node: node whose cpumask we're constructing
  5375. * @size: number of nodes to include in this span
  5376. *
  5377. * Given a node, construct a good cpumask for its sched_domain to span. It
  5378. * should be one that prevents unnecessary balancing, but also spreads tasks
  5379. * out optimally.
  5380. */
  5381. static cpumask_t sched_domain_node_span(int node)
  5382. {
  5383. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5384. cpumask_t span, nodemask;
  5385. int i;
  5386. cpus_clear(span);
  5387. bitmap_zero(used_nodes, MAX_NUMNODES);
  5388. nodemask = node_to_cpumask(node);
  5389. cpus_or(span, span, nodemask);
  5390. set_bit(node, used_nodes);
  5391. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5392. int next_node = find_next_best_node(node, used_nodes);
  5393. nodemask = node_to_cpumask(next_node);
  5394. cpus_or(span, span, nodemask);
  5395. }
  5396. return span;
  5397. }
  5398. #endif
  5399. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5400. /*
  5401. * SMT sched-domains:
  5402. */
  5403. #ifdef CONFIG_SCHED_SMT
  5404. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5405. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5406. static int
  5407. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5408. {
  5409. if (sg)
  5410. *sg = &per_cpu(sched_group_cpus, cpu);
  5411. return cpu;
  5412. }
  5413. #endif
  5414. /*
  5415. * multi-core sched-domains:
  5416. */
  5417. #ifdef CONFIG_SCHED_MC
  5418. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5419. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5420. #endif
  5421. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5422. static int
  5423. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5424. {
  5425. int group;
  5426. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5427. cpus_and(mask, mask, *cpu_map);
  5428. group = first_cpu(mask);
  5429. if (sg)
  5430. *sg = &per_cpu(sched_group_core, group);
  5431. return group;
  5432. }
  5433. #elif defined(CONFIG_SCHED_MC)
  5434. static int
  5435. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5436. {
  5437. if (sg)
  5438. *sg = &per_cpu(sched_group_core, cpu);
  5439. return cpu;
  5440. }
  5441. #endif
  5442. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5443. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5444. static int
  5445. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5446. {
  5447. int group;
  5448. #ifdef CONFIG_SCHED_MC
  5449. cpumask_t mask = cpu_coregroup_map(cpu);
  5450. cpus_and(mask, mask, *cpu_map);
  5451. group = first_cpu(mask);
  5452. #elif defined(CONFIG_SCHED_SMT)
  5453. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5454. cpus_and(mask, mask, *cpu_map);
  5455. group = first_cpu(mask);
  5456. #else
  5457. group = cpu;
  5458. #endif
  5459. if (sg)
  5460. *sg = &per_cpu(sched_group_phys, group);
  5461. return group;
  5462. }
  5463. #ifdef CONFIG_NUMA
  5464. /*
  5465. * The init_sched_build_groups can't handle what we want to do with node
  5466. * groups, so roll our own. Now each node has its own list of groups which
  5467. * gets dynamically allocated.
  5468. */
  5469. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5470. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5471. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5472. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5473. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5474. struct sched_group **sg)
  5475. {
  5476. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5477. int group;
  5478. cpus_and(nodemask, nodemask, *cpu_map);
  5479. group = first_cpu(nodemask);
  5480. if (sg)
  5481. *sg = &per_cpu(sched_group_allnodes, group);
  5482. return group;
  5483. }
  5484. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5485. {
  5486. struct sched_group *sg = group_head;
  5487. int j;
  5488. if (!sg)
  5489. return;
  5490. do {
  5491. for_each_cpu_mask(j, sg->cpumask) {
  5492. struct sched_domain *sd;
  5493. sd = &per_cpu(phys_domains, j);
  5494. if (j != first_cpu(sd->groups->cpumask)) {
  5495. /*
  5496. * Only add "power" once for each
  5497. * physical package.
  5498. */
  5499. continue;
  5500. }
  5501. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5502. }
  5503. sg = sg->next;
  5504. } while (sg != group_head);
  5505. }
  5506. #endif
  5507. #ifdef CONFIG_NUMA
  5508. /* Free memory allocated for various sched_group structures */
  5509. static void free_sched_groups(const cpumask_t *cpu_map)
  5510. {
  5511. int cpu, i;
  5512. for_each_cpu_mask(cpu, *cpu_map) {
  5513. struct sched_group **sched_group_nodes
  5514. = sched_group_nodes_bycpu[cpu];
  5515. if (!sched_group_nodes)
  5516. continue;
  5517. for (i = 0; i < MAX_NUMNODES; i++) {
  5518. cpumask_t nodemask = node_to_cpumask(i);
  5519. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5520. cpus_and(nodemask, nodemask, *cpu_map);
  5521. if (cpus_empty(nodemask))
  5522. continue;
  5523. if (sg == NULL)
  5524. continue;
  5525. sg = sg->next;
  5526. next_sg:
  5527. oldsg = sg;
  5528. sg = sg->next;
  5529. kfree(oldsg);
  5530. if (oldsg != sched_group_nodes[i])
  5531. goto next_sg;
  5532. }
  5533. kfree(sched_group_nodes);
  5534. sched_group_nodes_bycpu[cpu] = NULL;
  5535. }
  5536. }
  5537. #else
  5538. static void free_sched_groups(const cpumask_t *cpu_map)
  5539. {
  5540. }
  5541. #endif
  5542. /*
  5543. * Initialize sched groups cpu_power.
  5544. *
  5545. * cpu_power indicates the capacity of sched group, which is used while
  5546. * distributing the load between different sched groups in a sched domain.
  5547. * Typically cpu_power for all the groups in a sched domain will be same unless
  5548. * there are asymmetries in the topology. If there are asymmetries, group
  5549. * having more cpu_power will pickup more load compared to the group having
  5550. * less cpu_power.
  5551. *
  5552. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5553. * the maximum number of tasks a group can handle in the presence of other idle
  5554. * or lightly loaded groups in the same sched domain.
  5555. */
  5556. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5557. {
  5558. struct sched_domain *child;
  5559. struct sched_group *group;
  5560. WARN_ON(!sd || !sd->groups);
  5561. if (cpu != first_cpu(sd->groups->cpumask))
  5562. return;
  5563. child = sd->child;
  5564. sd->groups->__cpu_power = 0;
  5565. /*
  5566. * For perf policy, if the groups in child domain share resources
  5567. * (for example cores sharing some portions of the cache hierarchy
  5568. * or SMT), then set this domain groups cpu_power such that each group
  5569. * can handle only one task, when there are other idle groups in the
  5570. * same sched domain.
  5571. */
  5572. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5573. (child->flags &
  5574. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5575. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5576. return;
  5577. }
  5578. /*
  5579. * add cpu_power of each child group to this groups cpu_power
  5580. */
  5581. group = child->groups;
  5582. do {
  5583. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5584. group = group->next;
  5585. } while (group != child->groups);
  5586. }
  5587. /*
  5588. * Build sched domains for a given set of cpus and attach the sched domains
  5589. * to the individual cpus
  5590. */
  5591. static int build_sched_domains(const cpumask_t *cpu_map)
  5592. {
  5593. int i;
  5594. struct root_domain *rd;
  5595. #ifdef CONFIG_NUMA
  5596. struct sched_group **sched_group_nodes = NULL;
  5597. int sd_allnodes = 0;
  5598. /*
  5599. * Allocate the per-node list of sched groups
  5600. */
  5601. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5602. GFP_KERNEL);
  5603. if (!sched_group_nodes) {
  5604. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5605. return -ENOMEM;
  5606. }
  5607. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5608. #endif
  5609. rd = alloc_rootdomain();
  5610. if (!rd) {
  5611. printk(KERN_WARNING "Cannot alloc root domain\n");
  5612. return -ENOMEM;
  5613. }
  5614. /*
  5615. * Set up domains for cpus specified by the cpu_map.
  5616. */
  5617. for_each_cpu_mask(i, *cpu_map) {
  5618. struct sched_domain *sd = NULL, *p;
  5619. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5620. cpus_and(nodemask, nodemask, *cpu_map);
  5621. #ifdef CONFIG_NUMA
  5622. if (cpus_weight(*cpu_map) >
  5623. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5624. sd = &per_cpu(allnodes_domains, i);
  5625. *sd = SD_ALLNODES_INIT;
  5626. sd->span = *cpu_map;
  5627. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5628. p = sd;
  5629. sd_allnodes = 1;
  5630. } else
  5631. p = NULL;
  5632. sd = &per_cpu(node_domains, i);
  5633. *sd = SD_NODE_INIT;
  5634. sd->span = sched_domain_node_span(cpu_to_node(i));
  5635. sd->parent = p;
  5636. if (p)
  5637. p->child = sd;
  5638. cpus_and(sd->span, sd->span, *cpu_map);
  5639. #endif
  5640. p = sd;
  5641. sd = &per_cpu(phys_domains, i);
  5642. *sd = SD_CPU_INIT;
  5643. sd->span = nodemask;
  5644. sd->parent = p;
  5645. if (p)
  5646. p->child = sd;
  5647. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5648. #ifdef CONFIG_SCHED_MC
  5649. p = sd;
  5650. sd = &per_cpu(core_domains, i);
  5651. *sd = SD_MC_INIT;
  5652. sd->span = cpu_coregroup_map(i);
  5653. cpus_and(sd->span, sd->span, *cpu_map);
  5654. sd->parent = p;
  5655. p->child = sd;
  5656. cpu_to_core_group(i, cpu_map, &sd->groups);
  5657. #endif
  5658. #ifdef CONFIG_SCHED_SMT
  5659. p = sd;
  5660. sd = &per_cpu(cpu_domains, i);
  5661. *sd = SD_SIBLING_INIT;
  5662. sd->span = per_cpu(cpu_sibling_map, i);
  5663. cpus_and(sd->span, sd->span, *cpu_map);
  5664. sd->parent = p;
  5665. p->child = sd;
  5666. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5667. #endif
  5668. }
  5669. #ifdef CONFIG_SCHED_SMT
  5670. /* Set up CPU (sibling) groups */
  5671. for_each_cpu_mask(i, *cpu_map) {
  5672. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5673. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5674. if (i != first_cpu(this_sibling_map))
  5675. continue;
  5676. init_sched_build_groups(this_sibling_map, cpu_map,
  5677. &cpu_to_cpu_group);
  5678. }
  5679. #endif
  5680. #ifdef CONFIG_SCHED_MC
  5681. /* Set up multi-core groups */
  5682. for_each_cpu_mask(i, *cpu_map) {
  5683. cpumask_t this_core_map = cpu_coregroup_map(i);
  5684. cpus_and(this_core_map, this_core_map, *cpu_map);
  5685. if (i != first_cpu(this_core_map))
  5686. continue;
  5687. init_sched_build_groups(this_core_map, cpu_map,
  5688. &cpu_to_core_group);
  5689. }
  5690. #endif
  5691. /* Set up physical groups */
  5692. for (i = 0; i < MAX_NUMNODES; i++) {
  5693. cpumask_t nodemask = node_to_cpumask(i);
  5694. cpus_and(nodemask, nodemask, *cpu_map);
  5695. if (cpus_empty(nodemask))
  5696. continue;
  5697. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5698. }
  5699. #ifdef CONFIG_NUMA
  5700. /* Set up node groups */
  5701. if (sd_allnodes)
  5702. init_sched_build_groups(*cpu_map, cpu_map,
  5703. &cpu_to_allnodes_group);
  5704. for (i = 0; i < MAX_NUMNODES; i++) {
  5705. /* Set up node groups */
  5706. struct sched_group *sg, *prev;
  5707. cpumask_t nodemask = node_to_cpumask(i);
  5708. cpumask_t domainspan;
  5709. cpumask_t covered = CPU_MASK_NONE;
  5710. int j;
  5711. cpus_and(nodemask, nodemask, *cpu_map);
  5712. if (cpus_empty(nodemask)) {
  5713. sched_group_nodes[i] = NULL;
  5714. continue;
  5715. }
  5716. domainspan = sched_domain_node_span(i);
  5717. cpus_and(domainspan, domainspan, *cpu_map);
  5718. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5719. if (!sg) {
  5720. printk(KERN_WARNING "Can not alloc domain group for "
  5721. "node %d\n", i);
  5722. goto error;
  5723. }
  5724. sched_group_nodes[i] = sg;
  5725. for_each_cpu_mask(j, nodemask) {
  5726. struct sched_domain *sd;
  5727. sd = &per_cpu(node_domains, j);
  5728. sd->groups = sg;
  5729. }
  5730. sg->__cpu_power = 0;
  5731. sg->cpumask = nodemask;
  5732. sg->next = sg;
  5733. cpus_or(covered, covered, nodemask);
  5734. prev = sg;
  5735. for (j = 0; j < MAX_NUMNODES; j++) {
  5736. cpumask_t tmp, notcovered;
  5737. int n = (i + j) % MAX_NUMNODES;
  5738. cpus_complement(notcovered, covered);
  5739. cpus_and(tmp, notcovered, *cpu_map);
  5740. cpus_and(tmp, tmp, domainspan);
  5741. if (cpus_empty(tmp))
  5742. break;
  5743. nodemask = node_to_cpumask(n);
  5744. cpus_and(tmp, tmp, nodemask);
  5745. if (cpus_empty(tmp))
  5746. continue;
  5747. sg = kmalloc_node(sizeof(struct sched_group),
  5748. GFP_KERNEL, i);
  5749. if (!sg) {
  5750. printk(KERN_WARNING
  5751. "Can not alloc domain group for node %d\n", j);
  5752. goto error;
  5753. }
  5754. sg->__cpu_power = 0;
  5755. sg->cpumask = tmp;
  5756. sg->next = prev->next;
  5757. cpus_or(covered, covered, tmp);
  5758. prev->next = sg;
  5759. prev = sg;
  5760. }
  5761. }
  5762. #endif
  5763. /* Calculate CPU power for physical packages and nodes */
  5764. #ifdef CONFIG_SCHED_SMT
  5765. for_each_cpu_mask(i, *cpu_map) {
  5766. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5767. init_sched_groups_power(i, sd);
  5768. }
  5769. #endif
  5770. #ifdef CONFIG_SCHED_MC
  5771. for_each_cpu_mask(i, *cpu_map) {
  5772. struct sched_domain *sd = &per_cpu(core_domains, i);
  5773. init_sched_groups_power(i, sd);
  5774. }
  5775. #endif
  5776. for_each_cpu_mask(i, *cpu_map) {
  5777. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5778. init_sched_groups_power(i, sd);
  5779. }
  5780. #ifdef CONFIG_NUMA
  5781. for (i = 0; i < MAX_NUMNODES; i++)
  5782. init_numa_sched_groups_power(sched_group_nodes[i]);
  5783. if (sd_allnodes) {
  5784. struct sched_group *sg;
  5785. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5786. init_numa_sched_groups_power(sg);
  5787. }
  5788. #endif
  5789. /* Attach the domains */
  5790. for_each_cpu_mask(i, *cpu_map) {
  5791. struct sched_domain *sd;
  5792. #ifdef CONFIG_SCHED_SMT
  5793. sd = &per_cpu(cpu_domains, i);
  5794. #elif defined(CONFIG_SCHED_MC)
  5795. sd = &per_cpu(core_domains, i);
  5796. #else
  5797. sd = &per_cpu(phys_domains, i);
  5798. #endif
  5799. cpu_attach_domain(sd, rd, i);
  5800. }
  5801. return 0;
  5802. #ifdef CONFIG_NUMA
  5803. error:
  5804. free_sched_groups(cpu_map);
  5805. return -ENOMEM;
  5806. #endif
  5807. }
  5808. static cpumask_t *doms_cur; /* current sched domains */
  5809. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5810. /*
  5811. * Special case: If a kmalloc of a doms_cur partition (array of
  5812. * cpumask_t) fails, then fallback to a single sched domain,
  5813. * as determined by the single cpumask_t fallback_doms.
  5814. */
  5815. static cpumask_t fallback_doms;
  5816. /*
  5817. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5818. * For now this just excludes isolated cpus, but could be used to
  5819. * exclude other special cases in the future.
  5820. */
  5821. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5822. {
  5823. int err;
  5824. ndoms_cur = 1;
  5825. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5826. if (!doms_cur)
  5827. doms_cur = &fallback_doms;
  5828. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5829. err = build_sched_domains(doms_cur);
  5830. register_sched_domain_sysctl();
  5831. return err;
  5832. }
  5833. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5834. {
  5835. free_sched_groups(cpu_map);
  5836. }
  5837. /*
  5838. * Detach sched domains from a group of cpus specified in cpu_map
  5839. * These cpus will now be attached to the NULL domain
  5840. */
  5841. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5842. {
  5843. int i;
  5844. unregister_sched_domain_sysctl();
  5845. for_each_cpu_mask(i, *cpu_map)
  5846. cpu_attach_domain(NULL, &def_root_domain, i);
  5847. synchronize_sched();
  5848. arch_destroy_sched_domains(cpu_map);
  5849. }
  5850. /*
  5851. * Partition sched domains as specified by the 'ndoms_new'
  5852. * cpumasks in the array doms_new[] of cpumasks. This compares
  5853. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5854. * It destroys each deleted domain and builds each new domain.
  5855. *
  5856. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5857. * The masks don't intersect (don't overlap.) We should setup one
  5858. * sched domain for each mask. CPUs not in any of the cpumasks will
  5859. * not be load balanced. If the same cpumask appears both in the
  5860. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5861. * it as it is.
  5862. *
  5863. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5864. * ownership of it and will kfree it when done with it. If the caller
  5865. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5866. * and partition_sched_domains() will fallback to the single partition
  5867. * 'fallback_doms'.
  5868. *
  5869. * Call with hotplug lock held
  5870. */
  5871. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5872. {
  5873. int i, j;
  5874. lock_doms_cur();
  5875. /* always unregister in case we don't destroy any domains */
  5876. unregister_sched_domain_sysctl();
  5877. if (doms_new == NULL) {
  5878. ndoms_new = 1;
  5879. doms_new = &fallback_doms;
  5880. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5881. }
  5882. /* Destroy deleted domains */
  5883. for (i = 0; i < ndoms_cur; i++) {
  5884. for (j = 0; j < ndoms_new; j++) {
  5885. if (cpus_equal(doms_cur[i], doms_new[j]))
  5886. goto match1;
  5887. }
  5888. /* no match - a current sched domain not in new doms_new[] */
  5889. detach_destroy_domains(doms_cur + i);
  5890. match1:
  5891. ;
  5892. }
  5893. /* Build new domains */
  5894. for (i = 0; i < ndoms_new; i++) {
  5895. for (j = 0; j < ndoms_cur; j++) {
  5896. if (cpus_equal(doms_new[i], doms_cur[j]))
  5897. goto match2;
  5898. }
  5899. /* no match - add a new doms_new */
  5900. build_sched_domains(doms_new + i);
  5901. match2:
  5902. ;
  5903. }
  5904. /* Remember the new sched domains */
  5905. if (doms_cur != &fallback_doms)
  5906. kfree(doms_cur);
  5907. doms_cur = doms_new;
  5908. ndoms_cur = ndoms_new;
  5909. register_sched_domain_sysctl();
  5910. unlock_doms_cur();
  5911. }
  5912. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5913. static int arch_reinit_sched_domains(void)
  5914. {
  5915. int err;
  5916. get_online_cpus();
  5917. detach_destroy_domains(&cpu_online_map);
  5918. err = arch_init_sched_domains(&cpu_online_map);
  5919. put_online_cpus();
  5920. return err;
  5921. }
  5922. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5923. {
  5924. int ret;
  5925. if (buf[0] != '0' && buf[0] != '1')
  5926. return -EINVAL;
  5927. if (smt)
  5928. sched_smt_power_savings = (buf[0] == '1');
  5929. else
  5930. sched_mc_power_savings = (buf[0] == '1');
  5931. ret = arch_reinit_sched_domains();
  5932. return ret ? ret : count;
  5933. }
  5934. #ifdef CONFIG_SCHED_MC
  5935. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5936. {
  5937. return sprintf(page, "%u\n", sched_mc_power_savings);
  5938. }
  5939. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5940. const char *buf, size_t count)
  5941. {
  5942. return sched_power_savings_store(buf, count, 0);
  5943. }
  5944. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5945. sched_mc_power_savings_store);
  5946. #endif
  5947. #ifdef CONFIG_SCHED_SMT
  5948. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5949. {
  5950. return sprintf(page, "%u\n", sched_smt_power_savings);
  5951. }
  5952. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5953. const char *buf, size_t count)
  5954. {
  5955. return sched_power_savings_store(buf, count, 1);
  5956. }
  5957. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5958. sched_smt_power_savings_store);
  5959. #endif
  5960. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5961. {
  5962. int err = 0;
  5963. #ifdef CONFIG_SCHED_SMT
  5964. if (smt_capable())
  5965. err = sysfs_create_file(&cls->kset.kobj,
  5966. &attr_sched_smt_power_savings.attr);
  5967. #endif
  5968. #ifdef CONFIG_SCHED_MC
  5969. if (!err && mc_capable())
  5970. err = sysfs_create_file(&cls->kset.kobj,
  5971. &attr_sched_mc_power_savings.attr);
  5972. #endif
  5973. return err;
  5974. }
  5975. #endif
  5976. /*
  5977. * Force a reinitialization of the sched domains hierarchy. The domains
  5978. * and groups cannot be updated in place without racing with the balancing
  5979. * code, so we temporarily attach all running cpus to the NULL domain
  5980. * which will prevent rebalancing while the sched domains are recalculated.
  5981. */
  5982. static int update_sched_domains(struct notifier_block *nfb,
  5983. unsigned long action, void *hcpu)
  5984. {
  5985. switch (action) {
  5986. case CPU_UP_PREPARE:
  5987. case CPU_UP_PREPARE_FROZEN:
  5988. case CPU_DOWN_PREPARE:
  5989. case CPU_DOWN_PREPARE_FROZEN:
  5990. detach_destroy_domains(&cpu_online_map);
  5991. return NOTIFY_OK;
  5992. case CPU_UP_CANCELED:
  5993. case CPU_UP_CANCELED_FROZEN:
  5994. case CPU_DOWN_FAILED:
  5995. case CPU_DOWN_FAILED_FROZEN:
  5996. case CPU_ONLINE:
  5997. case CPU_ONLINE_FROZEN:
  5998. case CPU_DEAD:
  5999. case CPU_DEAD_FROZEN:
  6000. /*
  6001. * Fall through and re-initialise the domains.
  6002. */
  6003. break;
  6004. default:
  6005. return NOTIFY_DONE;
  6006. }
  6007. /* The hotplug lock is already held by cpu_up/cpu_down */
  6008. arch_init_sched_domains(&cpu_online_map);
  6009. return NOTIFY_OK;
  6010. }
  6011. void __init sched_init_smp(void)
  6012. {
  6013. cpumask_t non_isolated_cpus;
  6014. get_online_cpus();
  6015. arch_init_sched_domains(&cpu_online_map);
  6016. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6017. if (cpus_empty(non_isolated_cpus))
  6018. cpu_set(smp_processor_id(), non_isolated_cpus);
  6019. put_online_cpus();
  6020. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6021. hotcpu_notifier(update_sched_domains, 0);
  6022. /* Move init over to a non-isolated CPU */
  6023. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6024. BUG();
  6025. sched_init_granularity();
  6026. #ifdef CONFIG_FAIR_GROUP_SCHED
  6027. if (nr_cpu_ids == 1)
  6028. return;
  6029. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  6030. "group_balance");
  6031. if (!IS_ERR(lb_monitor_task)) {
  6032. lb_monitor_task->flags |= PF_NOFREEZE;
  6033. wake_up_process(lb_monitor_task);
  6034. } else {
  6035. printk(KERN_ERR "Could not create load balance monitor thread"
  6036. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  6037. }
  6038. #endif
  6039. }
  6040. #else
  6041. void __init sched_init_smp(void)
  6042. {
  6043. sched_init_granularity();
  6044. }
  6045. #endif /* CONFIG_SMP */
  6046. int in_sched_functions(unsigned long addr)
  6047. {
  6048. return in_lock_functions(addr) ||
  6049. (addr >= (unsigned long)__sched_text_start
  6050. && addr < (unsigned long)__sched_text_end);
  6051. }
  6052. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6053. {
  6054. cfs_rq->tasks_timeline = RB_ROOT;
  6055. #ifdef CONFIG_FAIR_GROUP_SCHED
  6056. cfs_rq->rq = rq;
  6057. #endif
  6058. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6059. }
  6060. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6061. {
  6062. struct rt_prio_array *array;
  6063. int i;
  6064. array = &rt_rq->active;
  6065. for (i = 0; i < MAX_RT_PRIO; i++) {
  6066. INIT_LIST_HEAD(array->queue + i);
  6067. __clear_bit(i, array->bitmap);
  6068. }
  6069. /* delimiter for bitsearch: */
  6070. __set_bit(MAX_RT_PRIO, array->bitmap);
  6071. #ifdef CONFIG_SMP
  6072. rt_rq->rt_nr_migratory = 0;
  6073. rt_rq->highest_prio = MAX_RT_PRIO;
  6074. rt_rq->overloaded = 0;
  6075. #endif
  6076. rt_rq->rt_time = 0;
  6077. rt_rq->rt_throttled = 0;
  6078. }
  6079. void __init sched_init(void)
  6080. {
  6081. int highest_cpu = 0;
  6082. int i, j;
  6083. #ifdef CONFIG_SMP
  6084. init_defrootdomain();
  6085. #endif
  6086. for_each_possible_cpu(i) {
  6087. struct rq *rq;
  6088. rq = cpu_rq(i);
  6089. spin_lock_init(&rq->lock);
  6090. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6091. rq->nr_running = 0;
  6092. rq->clock = 1;
  6093. init_cfs_rq(&rq->cfs, rq);
  6094. #ifdef CONFIG_FAIR_GROUP_SCHED
  6095. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6096. {
  6097. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  6098. struct sched_entity *se =
  6099. &per_cpu(init_sched_entity, i);
  6100. init_cfs_rq_p[i] = cfs_rq;
  6101. init_cfs_rq(cfs_rq, rq);
  6102. cfs_rq->tg = &init_task_group;
  6103. list_add(&cfs_rq->leaf_cfs_rq_list,
  6104. &rq->leaf_cfs_rq_list);
  6105. init_sched_entity_p[i] = se;
  6106. se->cfs_rq = &rq->cfs;
  6107. se->my_q = cfs_rq;
  6108. se->load.weight = init_task_group_load;
  6109. se->load.inv_weight =
  6110. div64_64(1ULL<<32, init_task_group_load);
  6111. se->parent = NULL;
  6112. }
  6113. init_task_group.shares = init_task_group_load;
  6114. #endif
  6115. init_rt_rq(&rq->rt, rq);
  6116. rq->rt_period_expire = 0;
  6117. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6118. rq->cpu_load[j] = 0;
  6119. #ifdef CONFIG_SMP
  6120. rq->sd = NULL;
  6121. rq->rd = NULL;
  6122. rq->active_balance = 0;
  6123. rq->next_balance = jiffies;
  6124. rq->push_cpu = 0;
  6125. rq->cpu = i;
  6126. rq->migration_thread = NULL;
  6127. INIT_LIST_HEAD(&rq->migration_queue);
  6128. rq_attach_root(rq, &def_root_domain);
  6129. #endif
  6130. init_rq_hrtick(rq);
  6131. atomic_set(&rq->nr_iowait, 0);
  6132. highest_cpu = i;
  6133. }
  6134. set_load_weight(&init_task);
  6135. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6136. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6137. #endif
  6138. #ifdef CONFIG_SMP
  6139. nr_cpu_ids = highest_cpu + 1;
  6140. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6141. #endif
  6142. #ifdef CONFIG_RT_MUTEXES
  6143. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6144. #endif
  6145. /*
  6146. * The boot idle thread does lazy MMU switching as well:
  6147. */
  6148. atomic_inc(&init_mm.mm_count);
  6149. enter_lazy_tlb(&init_mm, current);
  6150. /*
  6151. * Make us the idle thread. Technically, schedule() should not be
  6152. * called from this thread, however somewhere below it might be,
  6153. * but because we are the idle thread, we just pick up running again
  6154. * when this runqueue becomes "idle".
  6155. */
  6156. init_idle(current, smp_processor_id());
  6157. /*
  6158. * During early bootup we pretend to be a normal task:
  6159. */
  6160. current->sched_class = &fair_sched_class;
  6161. }
  6162. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6163. void __might_sleep(char *file, int line)
  6164. {
  6165. #ifdef in_atomic
  6166. static unsigned long prev_jiffy; /* ratelimiting */
  6167. if ((in_atomic() || irqs_disabled()) &&
  6168. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6169. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6170. return;
  6171. prev_jiffy = jiffies;
  6172. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6173. " context at %s:%d\n", file, line);
  6174. printk("in_atomic():%d, irqs_disabled():%d\n",
  6175. in_atomic(), irqs_disabled());
  6176. debug_show_held_locks(current);
  6177. if (irqs_disabled())
  6178. print_irqtrace_events(current);
  6179. dump_stack();
  6180. }
  6181. #endif
  6182. }
  6183. EXPORT_SYMBOL(__might_sleep);
  6184. #endif
  6185. #ifdef CONFIG_MAGIC_SYSRQ
  6186. static void normalize_task(struct rq *rq, struct task_struct *p)
  6187. {
  6188. int on_rq;
  6189. update_rq_clock(rq);
  6190. on_rq = p->se.on_rq;
  6191. if (on_rq)
  6192. deactivate_task(rq, p, 0);
  6193. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6194. if (on_rq) {
  6195. activate_task(rq, p, 0);
  6196. resched_task(rq->curr);
  6197. }
  6198. }
  6199. void normalize_rt_tasks(void)
  6200. {
  6201. struct task_struct *g, *p;
  6202. unsigned long flags;
  6203. struct rq *rq;
  6204. read_lock_irq(&tasklist_lock);
  6205. do_each_thread(g, p) {
  6206. /*
  6207. * Only normalize user tasks:
  6208. */
  6209. if (!p->mm)
  6210. continue;
  6211. p->se.exec_start = 0;
  6212. #ifdef CONFIG_SCHEDSTATS
  6213. p->se.wait_start = 0;
  6214. p->se.sleep_start = 0;
  6215. p->se.block_start = 0;
  6216. #endif
  6217. task_rq(p)->clock = 0;
  6218. if (!rt_task(p)) {
  6219. /*
  6220. * Renice negative nice level userspace
  6221. * tasks back to 0:
  6222. */
  6223. if (TASK_NICE(p) < 0 && p->mm)
  6224. set_user_nice(p, 0);
  6225. continue;
  6226. }
  6227. spin_lock_irqsave(&p->pi_lock, flags);
  6228. rq = __task_rq_lock(p);
  6229. normalize_task(rq, p);
  6230. __task_rq_unlock(rq);
  6231. spin_unlock_irqrestore(&p->pi_lock, flags);
  6232. } while_each_thread(g, p);
  6233. read_unlock_irq(&tasklist_lock);
  6234. }
  6235. #endif /* CONFIG_MAGIC_SYSRQ */
  6236. #ifdef CONFIG_IA64
  6237. /*
  6238. * These functions are only useful for the IA64 MCA handling.
  6239. *
  6240. * They can only be called when the whole system has been
  6241. * stopped - every CPU needs to be quiescent, and no scheduling
  6242. * activity can take place. Using them for anything else would
  6243. * be a serious bug, and as a result, they aren't even visible
  6244. * under any other configuration.
  6245. */
  6246. /**
  6247. * curr_task - return the current task for a given cpu.
  6248. * @cpu: the processor in question.
  6249. *
  6250. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6251. */
  6252. struct task_struct *curr_task(int cpu)
  6253. {
  6254. return cpu_curr(cpu);
  6255. }
  6256. /**
  6257. * set_curr_task - set the current task for a given cpu.
  6258. * @cpu: the processor in question.
  6259. * @p: the task pointer to set.
  6260. *
  6261. * Description: This function must only be used when non-maskable interrupts
  6262. * are serviced on a separate stack. It allows the architecture to switch the
  6263. * notion of the current task on a cpu in a non-blocking manner. This function
  6264. * must be called with all CPU's synchronized, and interrupts disabled, the
  6265. * and caller must save the original value of the current task (see
  6266. * curr_task() above) and restore that value before reenabling interrupts and
  6267. * re-starting the system.
  6268. *
  6269. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6270. */
  6271. void set_curr_task(int cpu, struct task_struct *p)
  6272. {
  6273. cpu_curr(cpu) = p;
  6274. }
  6275. #endif
  6276. #ifdef CONFIG_FAIR_GROUP_SCHED
  6277. #ifdef CONFIG_SMP
  6278. /*
  6279. * distribute shares of all task groups among their schedulable entities,
  6280. * to reflect load distribution across cpus.
  6281. */
  6282. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6283. {
  6284. struct cfs_rq *cfs_rq;
  6285. struct rq *rq = cpu_rq(this_cpu);
  6286. cpumask_t sdspan = sd->span;
  6287. int balanced = 1;
  6288. /* Walk thr' all the task groups that we have */
  6289. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6290. int i;
  6291. unsigned long total_load = 0, total_shares;
  6292. struct task_group *tg = cfs_rq->tg;
  6293. /* Gather total task load of this group across cpus */
  6294. for_each_cpu_mask(i, sdspan)
  6295. total_load += tg->cfs_rq[i]->load.weight;
  6296. /* Nothing to do if this group has no load */
  6297. if (!total_load)
  6298. continue;
  6299. /*
  6300. * tg->shares represents the number of cpu shares the task group
  6301. * is eligible to hold on a single cpu. On N cpus, it is
  6302. * eligible to hold (N * tg->shares) number of cpu shares.
  6303. */
  6304. total_shares = tg->shares * cpus_weight(sdspan);
  6305. /*
  6306. * redistribute total_shares across cpus as per the task load
  6307. * distribution.
  6308. */
  6309. for_each_cpu_mask(i, sdspan) {
  6310. unsigned long local_load, local_shares;
  6311. local_load = tg->cfs_rq[i]->load.weight;
  6312. local_shares = (local_load * total_shares) / total_load;
  6313. if (!local_shares)
  6314. local_shares = MIN_GROUP_SHARES;
  6315. if (local_shares == tg->se[i]->load.weight)
  6316. continue;
  6317. spin_lock_irq(&cpu_rq(i)->lock);
  6318. set_se_shares(tg->se[i], local_shares);
  6319. spin_unlock_irq(&cpu_rq(i)->lock);
  6320. balanced = 0;
  6321. }
  6322. }
  6323. return balanced;
  6324. }
  6325. /*
  6326. * How frequently should we rebalance_shares() across cpus?
  6327. *
  6328. * The more frequently we rebalance shares, the more accurate is the fairness
  6329. * of cpu bandwidth distribution between task groups. However higher frequency
  6330. * also implies increased scheduling overhead.
  6331. *
  6332. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6333. * consecutive calls to rebalance_shares() in the same sched domain.
  6334. *
  6335. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6336. * consecutive calls to rebalance_shares() in the same sched domain.
  6337. *
  6338. * These settings allows for the appropriate trade-off between accuracy of
  6339. * fairness and the associated overhead.
  6340. *
  6341. */
  6342. /* default: 8ms, units: milliseconds */
  6343. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6344. /* default: 128ms, units: milliseconds */
  6345. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6346. /* kernel thread that runs rebalance_shares() periodically */
  6347. static int load_balance_monitor(void *unused)
  6348. {
  6349. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6350. struct sched_param schedparm;
  6351. int ret;
  6352. /*
  6353. * We don't want this thread's execution to be limited by the shares
  6354. * assigned to default group (init_task_group). Hence make it run
  6355. * as a SCHED_RR RT task at the lowest priority.
  6356. */
  6357. schedparm.sched_priority = 1;
  6358. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6359. if (ret)
  6360. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6361. " monitor thread (error = %d) \n", ret);
  6362. while (!kthread_should_stop()) {
  6363. int i, cpu, balanced = 1;
  6364. /* Prevent cpus going down or coming up */
  6365. get_online_cpus();
  6366. /* lockout changes to doms_cur[] array */
  6367. lock_doms_cur();
  6368. /*
  6369. * Enter a rcu read-side critical section to safely walk rq->sd
  6370. * chain on various cpus and to walk task group list
  6371. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6372. */
  6373. rcu_read_lock();
  6374. for (i = 0; i < ndoms_cur; i++) {
  6375. cpumask_t cpumap = doms_cur[i];
  6376. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6377. cpu = first_cpu(cpumap);
  6378. /* Find the highest domain at which to balance shares */
  6379. for_each_domain(cpu, sd) {
  6380. if (!(sd->flags & SD_LOAD_BALANCE))
  6381. continue;
  6382. sd_prev = sd;
  6383. }
  6384. sd = sd_prev;
  6385. /* sd == NULL? No load balance reqd in this domain */
  6386. if (!sd)
  6387. continue;
  6388. balanced &= rebalance_shares(sd, cpu);
  6389. }
  6390. rcu_read_unlock();
  6391. unlock_doms_cur();
  6392. put_online_cpus();
  6393. if (!balanced)
  6394. timeout = sysctl_sched_min_bal_int_shares;
  6395. else if (timeout < sysctl_sched_max_bal_int_shares)
  6396. timeout *= 2;
  6397. msleep_interruptible(timeout);
  6398. }
  6399. return 0;
  6400. }
  6401. #endif /* CONFIG_SMP */
  6402. /* allocate runqueue etc for a new task group */
  6403. struct task_group *sched_create_group(void)
  6404. {
  6405. struct task_group *tg;
  6406. struct cfs_rq *cfs_rq;
  6407. struct sched_entity *se;
  6408. struct rq *rq;
  6409. int i;
  6410. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6411. if (!tg)
  6412. return ERR_PTR(-ENOMEM);
  6413. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6414. if (!tg->cfs_rq)
  6415. goto err;
  6416. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6417. if (!tg->se)
  6418. goto err;
  6419. for_each_possible_cpu(i) {
  6420. rq = cpu_rq(i);
  6421. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6422. cpu_to_node(i));
  6423. if (!cfs_rq)
  6424. goto err;
  6425. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6426. cpu_to_node(i));
  6427. if (!se)
  6428. goto err;
  6429. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6430. memset(se, 0, sizeof(struct sched_entity));
  6431. tg->cfs_rq[i] = cfs_rq;
  6432. init_cfs_rq(cfs_rq, rq);
  6433. cfs_rq->tg = tg;
  6434. tg->se[i] = se;
  6435. se->cfs_rq = &rq->cfs;
  6436. se->my_q = cfs_rq;
  6437. se->load.weight = NICE_0_LOAD;
  6438. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6439. se->parent = NULL;
  6440. }
  6441. tg->shares = NICE_0_LOAD;
  6442. lock_task_group_list();
  6443. for_each_possible_cpu(i) {
  6444. rq = cpu_rq(i);
  6445. cfs_rq = tg->cfs_rq[i];
  6446. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6447. }
  6448. unlock_task_group_list();
  6449. return tg;
  6450. err:
  6451. for_each_possible_cpu(i) {
  6452. if (tg->cfs_rq)
  6453. kfree(tg->cfs_rq[i]);
  6454. if (tg->se)
  6455. kfree(tg->se[i]);
  6456. }
  6457. kfree(tg->cfs_rq);
  6458. kfree(tg->se);
  6459. kfree(tg);
  6460. return ERR_PTR(-ENOMEM);
  6461. }
  6462. /* rcu callback to free various structures associated with a task group */
  6463. static void free_sched_group(struct rcu_head *rhp)
  6464. {
  6465. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6466. struct cfs_rq *cfs_rq;
  6467. struct sched_entity *se;
  6468. int i;
  6469. /* now it should be safe to free those cfs_rqs */
  6470. for_each_possible_cpu(i) {
  6471. cfs_rq = tg->cfs_rq[i];
  6472. kfree(cfs_rq);
  6473. se = tg->se[i];
  6474. kfree(se);
  6475. }
  6476. kfree(tg->cfs_rq);
  6477. kfree(tg->se);
  6478. kfree(tg);
  6479. }
  6480. /* Destroy runqueue etc associated with a task group */
  6481. void sched_destroy_group(struct task_group *tg)
  6482. {
  6483. struct cfs_rq *cfs_rq = NULL;
  6484. int i;
  6485. lock_task_group_list();
  6486. for_each_possible_cpu(i) {
  6487. cfs_rq = tg->cfs_rq[i];
  6488. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6489. }
  6490. unlock_task_group_list();
  6491. BUG_ON(!cfs_rq);
  6492. /* wait for possible concurrent references to cfs_rqs complete */
  6493. call_rcu(&tg->rcu, free_sched_group);
  6494. }
  6495. /* change task's runqueue when it moves between groups.
  6496. * The caller of this function should have put the task in its new group
  6497. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6498. * reflect its new group.
  6499. */
  6500. void sched_move_task(struct task_struct *tsk)
  6501. {
  6502. int on_rq, running;
  6503. unsigned long flags;
  6504. struct rq *rq;
  6505. rq = task_rq_lock(tsk, &flags);
  6506. if (tsk->sched_class != &fair_sched_class) {
  6507. set_task_cfs_rq(tsk, task_cpu(tsk));
  6508. goto done;
  6509. }
  6510. update_rq_clock(rq);
  6511. running = task_current(rq, tsk);
  6512. on_rq = tsk->se.on_rq;
  6513. if (on_rq) {
  6514. dequeue_task(rq, tsk, 0);
  6515. if (unlikely(running))
  6516. tsk->sched_class->put_prev_task(rq, tsk);
  6517. }
  6518. set_task_cfs_rq(tsk, task_cpu(tsk));
  6519. if (on_rq) {
  6520. if (unlikely(running))
  6521. tsk->sched_class->set_curr_task(rq);
  6522. enqueue_task(rq, tsk, 0);
  6523. }
  6524. done:
  6525. task_rq_unlock(rq, &flags);
  6526. }
  6527. /* rq->lock to be locked by caller */
  6528. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6529. {
  6530. struct cfs_rq *cfs_rq = se->cfs_rq;
  6531. struct rq *rq = cfs_rq->rq;
  6532. int on_rq;
  6533. if (!shares)
  6534. shares = MIN_GROUP_SHARES;
  6535. on_rq = se->on_rq;
  6536. if (on_rq) {
  6537. dequeue_entity(cfs_rq, se, 0);
  6538. dec_cpu_load(rq, se->load.weight);
  6539. }
  6540. se->load.weight = shares;
  6541. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6542. if (on_rq) {
  6543. enqueue_entity(cfs_rq, se, 0);
  6544. inc_cpu_load(rq, se->load.weight);
  6545. }
  6546. }
  6547. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6548. {
  6549. int i;
  6550. struct cfs_rq *cfs_rq;
  6551. struct rq *rq;
  6552. lock_task_group_list();
  6553. if (tg->shares == shares)
  6554. goto done;
  6555. if (shares < MIN_GROUP_SHARES)
  6556. shares = MIN_GROUP_SHARES;
  6557. /*
  6558. * Prevent any load balance activity (rebalance_shares,
  6559. * load_balance_fair) from referring to this group first,
  6560. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6561. */
  6562. for_each_possible_cpu(i) {
  6563. cfs_rq = tg->cfs_rq[i];
  6564. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6565. }
  6566. /* wait for any ongoing reference to this group to finish */
  6567. synchronize_sched();
  6568. /*
  6569. * Now we are free to modify the group's share on each cpu
  6570. * w/o tripping rebalance_share or load_balance_fair.
  6571. */
  6572. tg->shares = shares;
  6573. for_each_possible_cpu(i) {
  6574. spin_lock_irq(&cpu_rq(i)->lock);
  6575. set_se_shares(tg->se[i], shares);
  6576. spin_unlock_irq(&cpu_rq(i)->lock);
  6577. }
  6578. /*
  6579. * Enable load balance activity on this group, by inserting it back on
  6580. * each cpu's rq->leaf_cfs_rq_list.
  6581. */
  6582. for_each_possible_cpu(i) {
  6583. rq = cpu_rq(i);
  6584. cfs_rq = tg->cfs_rq[i];
  6585. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6586. }
  6587. done:
  6588. unlock_task_group_list();
  6589. return 0;
  6590. }
  6591. unsigned long sched_group_shares(struct task_group *tg)
  6592. {
  6593. return tg->shares;
  6594. }
  6595. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6596. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6597. /* return corresponding task_group object of a cgroup */
  6598. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6599. {
  6600. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6601. struct task_group, css);
  6602. }
  6603. static struct cgroup_subsys_state *
  6604. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6605. {
  6606. struct task_group *tg;
  6607. if (!cgrp->parent) {
  6608. /* This is early initialization for the top cgroup */
  6609. init_task_group.css.cgroup = cgrp;
  6610. return &init_task_group.css;
  6611. }
  6612. /* we support only 1-level deep hierarchical scheduler atm */
  6613. if (cgrp->parent->parent)
  6614. return ERR_PTR(-EINVAL);
  6615. tg = sched_create_group();
  6616. if (IS_ERR(tg))
  6617. return ERR_PTR(-ENOMEM);
  6618. /* Bind the cgroup to task_group object we just created */
  6619. tg->css.cgroup = cgrp;
  6620. return &tg->css;
  6621. }
  6622. static void
  6623. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6624. {
  6625. struct task_group *tg = cgroup_tg(cgrp);
  6626. sched_destroy_group(tg);
  6627. }
  6628. static int
  6629. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6630. struct task_struct *tsk)
  6631. {
  6632. /* We don't support RT-tasks being in separate groups */
  6633. if (tsk->sched_class != &fair_sched_class)
  6634. return -EINVAL;
  6635. return 0;
  6636. }
  6637. static void
  6638. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6639. struct cgroup *old_cont, struct task_struct *tsk)
  6640. {
  6641. sched_move_task(tsk);
  6642. }
  6643. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6644. u64 shareval)
  6645. {
  6646. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6647. }
  6648. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6649. {
  6650. struct task_group *tg = cgroup_tg(cgrp);
  6651. return (u64) tg->shares;
  6652. }
  6653. static struct cftype cpu_files[] = {
  6654. {
  6655. .name = "shares",
  6656. .read_uint = cpu_shares_read_uint,
  6657. .write_uint = cpu_shares_write_uint,
  6658. },
  6659. };
  6660. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6661. {
  6662. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6663. }
  6664. struct cgroup_subsys cpu_cgroup_subsys = {
  6665. .name = "cpu",
  6666. .create = cpu_cgroup_create,
  6667. .destroy = cpu_cgroup_destroy,
  6668. .can_attach = cpu_cgroup_can_attach,
  6669. .attach = cpu_cgroup_attach,
  6670. .populate = cpu_cgroup_populate,
  6671. .subsys_id = cpu_cgroup_subsys_id,
  6672. .early_init = 1,
  6673. };
  6674. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6675. #ifdef CONFIG_CGROUP_CPUACCT
  6676. /*
  6677. * CPU accounting code for task groups.
  6678. *
  6679. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6680. * (balbir@in.ibm.com).
  6681. */
  6682. /* track cpu usage of a group of tasks */
  6683. struct cpuacct {
  6684. struct cgroup_subsys_state css;
  6685. /* cpuusage holds pointer to a u64-type object on every cpu */
  6686. u64 *cpuusage;
  6687. };
  6688. struct cgroup_subsys cpuacct_subsys;
  6689. /* return cpu accounting group corresponding to this container */
  6690. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6691. {
  6692. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6693. struct cpuacct, css);
  6694. }
  6695. /* return cpu accounting group to which this task belongs */
  6696. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6697. {
  6698. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6699. struct cpuacct, css);
  6700. }
  6701. /* create a new cpu accounting group */
  6702. static struct cgroup_subsys_state *cpuacct_create(
  6703. struct cgroup_subsys *ss, struct cgroup *cont)
  6704. {
  6705. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6706. if (!ca)
  6707. return ERR_PTR(-ENOMEM);
  6708. ca->cpuusage = alloc_percpu(u64);
  6709. if (!ca->cpuusage) {
  6710. kfree(ca);
  6711. return ERR_PTR(-ENOMEM);
  6712. }
  6713. return &ca->css;
  6714. }
  6715. /* destroy an existing cpu accounting group */
  6716. static void
  6717. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6718. {
  6719. struct cpuacct *ca = cgroup_ca(cont);
  6720. free_percpu(ca->cpuusage);
  6721. kfree(ca);
  6722. }
  6723. /* return total cpu usage (in nanoseconds) of a group */
  6724. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6725. {
  6726. struct cpuacct *ca = cgroup_ca(cont);
  6727. u64 totalcpuusage = 0;
  6728. int i;
  6729. for_each_possible_cpu(i) {
  6730. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6731. /*
  6732. * Take rq->lock to make 64-bit addition safe on 32-bit
  6733. * platforms.
  6734. */
  6735. spin_lock_irq(&cpu_rq(i)->lock);
  6736. totalcpuusage += *cpuusage;
  6737. spin_unlock_irq(&cpu_rq(i)->lock);
  6738. }
  6739. return totalcpuusage;
  6740. }
  6741. static struct cftype files[] = {
  6742. {
  6743. .name = "usage",
  6744. .read_uint = cpuusage_read,
  6745. },
  6746. };
  6747. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6748. {
  6749. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6750. }
  6751. /*
  6752. * charge this task's execution time to its accounting group.
  6753. *
  6754. * called with rq->lock held.
  6755. */
  6756. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6757. {
  6758. struct cpuacct *ca;
  6759. if (!cpuacct_subsys.active)
  6760. return;
  6761. ca = task_ca(tsk);
  6762. if (ca) {
  6763. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6764. *cpuusage += cputime;
  6765. }
  6766. }
  6767. struct cgroup_subsys cpuacct_subsys = {
  6768. .name = "cpuacct",
  6769. .create = cpuacct_create,
  6770. .destroy = cpuacct_destroy,
  6771. .populate = cpuacct_populate,
  6772. .subsys_id = cpuacct_subsys_id,
  6773. };
  6774. #endif /* CONFIG_CGROUP_CPUACCT */