pid.h 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_PID_H
  3. #define _LINUX_PID_H
  4. #include <linux/rculist.h>
  5. enum pid_type
  6. {
  7. PIDTYPE_PID,
  8. PIDTYPE_PGID,
  9. PIDTYPE_SID,
  10. PIDTYPE_MAX,
  11. /* only valid to __task_pid_nr_ns() */
  12. __PIDTYPE_TGID
  13. };
  14. /*
  15. * What is struct pid?
  16. *
  17. * A struct pid is the kernel's internal notion of a process identifier.
  18. * It refers to individual tasks, process groups, and sessions. While
  19. * there are processes attached to it the struct pid lives in a hash
  20. * table, so it and then the processes that it refers to can be found
  21. * quickly from the numeric pid value. The attached processes may be
  22. * quickly accessed by following pointers from struct pid.
  23. *
  24. * Storing pid_t values in the kernel and referring to them later has a
  25. * problem. The process originally with that pid may have exited and the
  26. * pid allocator wrapped, and another process could have come along
  27. * and been assigned that pid.
  28. *
  29. * Referring to user space processes by holding a reference to struct
  30. * task_struct has a problem. When the user space process exits
  31. * the now useless task_struct is still kept. A task_struct plus a
  32. * stack consumes around 10K of low kernel memory. More precisely
  33. * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
  34. * a struct pid is about 64 bytes.
  35. *
  36. * Holding a reference to struct pid solves both of these problems.
  37. * It is small so holding a reference does not consume a lot of
  38. * resources, and since a new struct pid is allocated when the numeric pid
  39. * value is reused (when pids wrap around) we don't mistakenly refer to new
  40. * processes.
  41. */
  42. /*
  43. * struct upid is used to get the id of the struct pid, as it is
  44. * seen in particular namespace. Later the struct pid is found with
  45. * find_pid_ns() using the int nr and struct pid_namespace *ns.
  46. */
  47. struct upid {
  48. int nr;
  49. struct pid_namespace *ns;
  50. };
  51. struct pid
  52. {
  53. atomic_t count;
  54. unsigned int level;
  55. /* lists of tasks that use this pid */
  56. struct hlist_head tasks[PIDTYPE_MAX];
  57. struct rcu_head rcu;
  58. struct upid numbers[1];
  59. };
  60. extern struct pid init_struct_pid;
  61. struct pid_link
  62. {
  63. struct hlist_node node;
  64. struct pid *pid;
  65. };
  66. static inline struct pid *get_pid(struct pid *pid)
  67. {
  68. if (pid)
  69. atomic_inc(&pid->count);
  70. return pid;
  71. }
  72. extern void put_pid(struct pid *pid);
  73. extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
  74. extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
  75. extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
  76. /*
  77. * these helpers must be called with the tasklist_lock write-held.
  78. */
  79. extern void attach_pid(struct task_struct *task, enum pid_type);
  80. extern void detach_pid(struct task_struct *task, enum pid_type);
  81. extern void change_pid(struct task_struct *task, enum pid_type,
  82. struct pid *pid);
  83. extern void transfer_pid(struct task_struct *old, struct task_struct *new,
  84. enum pid_type);
  85. struct pid_namespace;
  86. extern struct pid_namespace init_pid_ns;
  87. /*
  88. * look up a PID in the hash table. Must be called with the tasklist_lock
  89. * or rcu_read_lock() held.
  90. *
  91. * find_pid_ns() finds the pid in the namespace specified
  92. * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
  93. *
  94. * see also find_task_by_vpid() set in include/linux/sched.h
  95. */
  96. extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
  97. extern struct pid *find_vpid(int nr);
  98. /*
  99. * Lookup a PID in the hash table, and return with it's count elevated.
  100. */
  101. extern struct pid *find_get_pid(int nr);
  102. extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
  103. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last);
  104. extern struct pid *alloc_pid(struct pid_namespace *ns);
  105. extern void free_pid(struct pid *pid);
  106. extern void disable_pid_allocation(struct pid_namespace *ns);
  107. /*
  108. * ns_of_pid() returns the pid namespace in which the specified pid was
  109. * allocated.
  110. *
  111. * NOTE:
  112. * ns_of_pid() is expected to be called for a process (task) that has
  113. * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
  114. * is expected to be non-NULL. If @pid is NULL, caller should handle
  115. * the resulting NULL pid-ns.
  116. */
  117. static inline struct pid_namespace *ns_of_pid(struct pid *pid)
  118. {
  119. struct pid_namespace *ns = NULL;
  120. if (pid)
  121. ns = pid->numbers[pid->level].ns;
  122. return ns;
  123. }
  124. /*
  125. * is_child_reaper returns true if the pid is the init process
  126. * of the current namespace. As this one could be checked before
  127. * pid_ns->child_reaper is assigned in copy_process, we check
  128. * with the pid number.
  129. */
  130. static inline bool is_child_reaper(struct pid *pid)
  131. {
  132. return pid->numbers[pid->level].nr == 1;
  133. }
  134. /*
  135. * the helpers to get the pid's id seen from different namespaces
  136. *
  137. * pid_nr() : global id, i.e. the id seen from the init namespace;
  138. * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
  139. * current.
  140. * pid_nr_ns() : id seen from the ns specified.
  141. *
  142. * see also task_xid_nr() etc in include/linux/sched.h
  143. */
  144. static inline pid_t pid_nr(struct pid *pid)
  145. {
  146. pid_t nr = 0;
  147. if (pid)
  148. nr = pid->numbers[0].nr;
  149. return nr;
  150. }
  151. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
  152. pid_t pid_vnr(struct pid *pid);
  153. #define do_each_pid_task(pid, type, task) \
  154. do { \
  155. if ((pid) != NULL) \
  156. hlist_for_each_entry_rcu((task), \
  157. &(pid)->tasks[type], pids[type].node) {
  158. /*
  159. * Both old and new leaders may be attached to
  160. * the same pid in the middle of de_thread().
  161. */
  162. #define while_each_pid_task(pid, type, task) \
  163. if (type == PIDTYPE_PID) \
  164. break; \
  165. } \
  166. } while (0)
  167. #define do_each_pid_thread(pid, type, task) \
  168. do_each_pid_task(pid, type, task) { \
  169. struct task_struct *tg___ = task; \
  170. for_each_thread(tg___, task) {
  171. #define while_each_pid_thread(pid, type, task) \
  172. } \
  173. task = tg___; \
  174. } while_each_pid_task(pid, type, task)
  175. #endif /* _LINUX_PID_H */