rtnetlink.c 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/pci.h>
  40. #include <linux/etherdevice.h>
  41. #include <asm/uaccess.h>
  42. #include <linux/inet.h>
  43. #include <linux/netdevice.h>
  44. #include <net/switchdev.h>
  45. #include <net/ip.h>
  46. #include <net/protocol.h>
  47. #include <net/arp.h>
  48. #include <net/route.h>
  49. #include <net/udp.h>
  50. #include <net/tcp.h>
  51. #include <net/sock.h>
  52. #include <net/pkt_sched.h>
  53. #include <net/fib_rules.h>
  54. #include <net/rtnetlink.h>
  55. #include <net/net_namespace.h>
  56. struct rtnl_link {
  57. rtnl_doit_func doit;
  58. rtnl_dumpit_func dumpit;
  59. rtnl_calcit_func calcit;
  60. };
  61. static DEFINE_MUTEX(rtnl_mutex);
  62. void rtnl_lock(void)
  63. {
  64. mutex_lock(&rtnl_mutex);
  65. }
  66. EXPORT_SYMBOL(rtnl_lock);
  67. void __rtnl_unlock(void)
  68. {
  69. mutex_unlock(&rtnl_mutex);
  70. }
  71. void rtnl_unlock(void)
  72. {
  73. /* This fellow will unlock it for us. */
  74. netdev_run_todo();
  75. }
  76. EXPORT_SYMBOL(rtnl_unlock);
  77. int rtnl_trylock(void)
  78. {
  79. return mutex_trylock(&rtnl_mutex);
  80. }
  81. EXPORT_SYMBOL(rtnl_trylock);
  82. int rtnl_is_locked(void)
  83. {
  84. return mutex_is_locked(&rtnl_mutex);
  85. }
  86. EXPORT_SYMBOL(rtnl_is_locked);
  87. #ifdef CONFIG_PROVE_LOCKING
  88. bool lockdep_rtnl_is_held(void)
  89. {
  90. return lockdep_is_held(&rtnl_mutex);
  91. }
  92. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  93. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  94. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  95. static inline int rtm_msgindex(int msgtype)
  96. {
  97. int msgindex = msgtype - RTM_BASE;
  98. /*
  99. * msgindex < 0 implies someone tried to register a netlink
  100. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  101. * the message type has not been added to linux/rtnetlink.h
  102. */
  103. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  104. return msgindex;
  105. }
  106. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  107. {
  108. struct rtnl_link *tab;
  109. if (protocol <= RTNL_FAMILY_MAX)
  110. tab = rtnl_msg_handlers[protocol];
  111. else
  112. tab = NULL;
  113. if (tab == NULL || tab[msgindex].doit == NULL)
  114. tab = rtnl_msg_handlers[PF_UNSPEC];
  115. return tab[msgindex].doit;
  116. }
  117. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  118. {
  119. struct rtnl_link *tab;
  120. if (protocol <= RTNL_FAMILY_MAX)
  121. tab = rtnl_msg_handlers[protocol];
  122. else
  123. tab = NULL;
  124. if (tab == NULL || tab[msgindex].dumpit == NULL)
  125. tab = rtnl_msg_handlers[PF_UNSPEC];
  126. return tab[msgindex].dumpit;
  127. }
  128. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  129. {
  130. struct rtnl_link *tab;
  131. if (protocol <= RTNL_FAMILY_MAX)
  132. tab = rtnl_msg_handlers[protocol];
  133. else
  134. tab = NULL;
  135. if (tab == NULL || tab[msgindex].calcit == NULL)
  136. tab = rtnl_msg_handlers[PF_UNSPEC];
  137. return tab[msgindex].calcit;
  138. }
  139. /**
  140. * __rtnl_register - Register a rtnetlink message type
  141. * @protocol: Protocol family or PF_UNSPEC
  142. * @msgtype: rtnetlink message type
  143. * @doit: Function pointer called for each request message
  144. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  145. * @calcit: Function pointer to calc size of dump message
  146. *
  147. * Registers the specified function pointers (at least one of them has
  148. * to be non-NULL) to be called whenever a request message for the
  149. * specified protocol family and message type is received.
  150. *
  151. * The special protocol family PF_UNSPEC may be used to define fallback
  152. * function pointers for the case when no entry for the specific protocol
  153. * family exists.
  154. *
  155. * Returns 0 on success or a negative error code.
  156. */
  157. int __rtnl_register(int protocol, int msgtype,
  158. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  159. rtnl_calcit_func calcit)
  160. {
  161. struct rtnl_link *tab;
  162. int msgindex;
  163. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  164. msgindex = rtm_msgindex(msgtype);
  165. tab = rtnl_msg_handlers[protocol];
  166. if (tab == NULL) {
  167. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  168. if (tab == NULL)
  169. return -ENOBUFS;
  170. rtnl_msg_handlers[protocol] = tab;
  171. }
  172. if (doit)
  173. tab[msgindex].doit = doit;
  174. if (dumpit)
  175. tab[msgindex].dumpit = dumpit;
  176. if (calcit)
  177. tab[msgindex].calcit = calcit;
  178. return 0;
  179. }
  180. EXPORT_SYMBOL_GPL(__rtnl_register);
  181. /**
  182. * rtnl_register - Register a rtnetlink message type
  183. *
  184. * Identical to __rtnl_register() but panics on failure. This is useful
  185. * as failure of this function is very unlikely, it can only happen due
  186. * to lack of memory when allocating the chain to store all message
  187. * handlers for a protocol. Meant for use in init functions where lack
  188. * of memory implies no sense in continuing.
  189. */
  190. void rtnl_register(int protocol, int msgtype,
  191. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  192. rtnl_calcit_func calcit)
  193. {
  194. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  195. panic("Unable to register rtnetlink message handler, "
  196. "protocol = %d, message type = %d\n",
  197. protocol, msgtype);
  198. }
  199. EXPORT_SYMBOL_GPL(rtnl_register);
  200. /**
  201. * rtnl_unregister - Unregister a rtnetlink message type
  202. * @protocol: Protocol family or PF_UNSPEC
  203. * @msgtype: rtnetlink message type
  204. *
  205. * Returns 0 on success or a negative error code.
  206. */
  207. int rtnl_unregister(int protocol, int msgtype)
  208. {
  209. int msgindex;
  210. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  211. msgindex = rtm_msgindex(msgtype);
  212. if (rtnl_msg_handlers[protocol] == NULL)
  213. return -ENOENT;
  214. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  215. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  216. return 0;
  217. }
  218. EXPORT_SYMBOL_GPL(rtnl_unregister);
  219. /**
  220. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  221. * @protocol : Protocol family or PF_UNSPEC
  222. *
  223. * Identical to calling rtnl_unregster() for all registered message types
  224. * of a certain protocol family.
  225. */
  226. void rtnl_unregister_all(int protocol)
  227. {
  228. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  229. kfree(rtnl_msg_handlers[protocol]);
  230. rtnl_msg_handlers[protocol] = NULL;
  231. }
  232. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  233. static LIST_HEAD(link_ops);
  234. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  235. {
  236. const struct rtnl_link_ops *ops;
  237. list_for_each_entry(ops, &link_ops, list) {
  238. if (!strcmp(ops->kind, kind))
  239. return ops;
  240. }
  241. return NULL;
  242. }
  243. /**
  244. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  245. * @ops: struct rtnl_link_ops * to register
  246. *
  247. * The caller must hold the rtnl_mutex. This function should be used
  248. * by drivers that create devices during module initialization. It
  249. * must be called before registering the devices.
  250. *
  251. * Returns 0 on success or a negative error code.
  252. */
  253. int __rtnl_link_register(struct rtnl_link_ops *ops)
  254. {
  255. if (rtnl_link_ops_get(ops->kind))
  256. return -EEXIST;
  257. /* The check for setup is here because if ops
  258. * does not have that filled up, it is not possible
  259. * to use the ops for creating device. So do not
  260. * fill up dellink as well. That disables rtnl_dellink.
  261. */
  262. if (ops->setup && !ops->dellink)
  263. ops->dellink = unregister_netdevice_queue;
  264. list_add_tail(&ops->list, &link_ops);
  265. return 0;
  266. }
  267. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  268. /**
  269. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  270. * @ops: struct rtnl_link_ops * to register
  271. *
  272. * Returns 0 on success or a negative error code.
  273. */
  274. int rtnl_link_register(struct rtnl_link_ops *ops)
  275. {
  276. int err;
  277. rtnl_lock();
  278. err = __rtnl_link_register(ops);
  279. rtnl_unlock();
  280. return err;
  281. }
  282. EXPORT_SYMBOL_GPL(rtnl_link_register);
  283. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  284. {
  285. struct net_device *dev;
  286. LIST_HEAD(list_kill);
  287. for_each_netdev(net, dev) {
  288. if (dev->rtnl_link_ops == ops)
  289. ops->dellink(dev, &list_kill);
  290. }
  291. unregister_netdevice_many(&list_kill);
  292. }
  293. /**
  294. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  295. * @ops: struct rtnl_link_ops * to unregister
  296. *
  297. * The caller must hold the rtnl_mutex.
  298. */
  299. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  300. {
  301. struct net *net;
  302. for_each_net(net) {
  303. __rtnl_kill_links(net, ops);
  304. }
  305. list_del(&ops->list);
  306. }
  307. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  308. /* Return with the rtnl_lock held when there are no network
  309. * devices unregistering in any network namespace.
  310. */
  311. static void rtnl_lock_unregistering_all(void)
  312. {
  313. struct net *net;
  314. bool unregistering;
  315. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  316. add_wait_queue(&netdev_unregistering_wq, &wait);
  317. for (;;) {
  318. unregistering = false;
  319. rtnl_lock();
  320. for_each_net(net) {
  321. if (net->dev_unreg_count > 0) {
  322. unregistering = true;
  323. break;
  324. }
  325. }
  326. if (!unregistering)
  327. break;
  328. __rtnl_unlock();
  329. wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  330. }
  331. remove_wait_queue(&netdev_unregistering_wq, &wait);
  332. }
  333. /**
  334. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  335. * @ops: struct rtnl_link_ops * to unregister
  336. */
  337. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  338. {
  339. /* Close the race with cleanup_net() */
  340. mutex_lock(&net_mutex);
  341. rtnl_lock_unregistering_all();
  342. __rtnl_link_unregister(ops);
  343. rtnl_unlock();
  344. mutex_unlock(&net_mutex);
  345. }
  346. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  347. static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
  348. {
  349. struct net_device *master_dev;
  350. const struct rtnl_link_ops *ops;
  351. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  352. if (!master_dev)
  353. return 0;
  354. ops = master_dev->rtnl_link_ops;
  355. if (!ops || !ops->get_slave_size)
  356. return 0;
  357. /* IFLA_INFO_SLAVE_DATA + nested data */
  358. return nla_total_size(sizeof(struct nlattr)) +
  359. ops->get_slave_size(master_dev, dev);
  360. }
  361. static size_t rtnl_link_get_size(const struct net_device *dev)
  362. {
  363. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  364. size_t size;
  365. if (!ops)
  366. return 0;
  367. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  368. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  369. if (ops->get_size)
  370. /* IFLA_INFO_DATA + nested data */
  371. size += nla_total_size(sizeof(struct nlattr)) +
  372. ops->get_size(dev);
  373. if (ops->get_xstats_size)
  374. /* IFLA_INFO_XSTATS */
  375. size += nla_total_size(ops->get_xstats_size(dev));
  376. size += rtnl_link_get_slave_info_data_size(dev);
  377. return size;
  378. }
  379. static LIST_HEAD(rtnl_af_ops);
  380. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  381. {
  382. const struct rtnl_af_ops *ops;
  383. list_for_each_entry(ops, &rtnl_af_ops, list) {
  384. if (ops->family == family)
  385. return ops;
  386. }
  387. return NULL;
  388. }
  389. /**
  390. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  391. * @ops: struct rtnl_af_ops * to register
  392. *
  393. * Returns 0 on success or a negative error code.
  394. */
  395. void rtnl_af_register(struct rtnl_af_ops *ops)
  396. {
  397. rtnl_lock();
  398. list_add_tail(&ops->list, &rtnl_af_ops);
  399. rtnl_unlock();
  400. }
  401. EXPORT_SYMBOL_GPL(rtnl_af_register);
  402. /**
  403. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  404. * @ops: struct rtnl_af_ops * to unregister
  405. *
  406. * The caller must hold the rtnl_mutex.
  407. */
  408. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  409. {
  410. list_del(&ops->list);
  411. }
  412. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  413. /**
  414. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  415. * @ops: struct rtnl_af_ops * to unregister
  416. */
  417. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  418. {
  419. rtnl_lock();
  420. __rtnl_af_unregister(ops);
  421. rtnl_unlock();
  422. }
  423. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  424. static size_t rtnl_link_get_af_size(const struct net_device *dev,
  425. u32 ext_filter_mask)
  426. {
  427. struct rtnl_af_ops *af_ops;
  428. size_t size;
  429. /* IFLA_AF_SPEC */
  430. size = nla_total_size(sizeof(struct nlattr));
  431. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  432. if (af_ops->get_link_af_size) {
  433. /* AF_* + nested data */
  434. size += nla_total_size(sizeof(struct nlattr)) +
  435. af_ops->get_link_af_size(dev, ext_filter_mask);
  436. }
  437. }
  438. return size;
  439. }
  440. static bool rtnl_have_link_slave_info(const struct net_device *dev)
  441. {
  442. struct net_device *master_dev;
  443. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  444. if (master_dev && master_dev->rtnl_link_ops)
  445. return true;
  446. return false;
  447. }
  448. static int rtnl_link_slave_info_fill(struct sk_buff *skb,
  449. const struct net_device *dev)
  450. {
  451. struct net_device *master_dev;
  452. const struct rtnl_link_ops *ops;
  453. struct nlattr *slave_data;
  454. int err;
  455. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  456. if (!master_dev)
  457. return 0;
  458. ops = master_dev->rtnl_link_ops;
  459. if (!ops)
  460. return 0;
  461. if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
  462. return -EMSGSIZE;
  463. if (ops->fill_slave_info) {
  464. slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
  465. if (!slave_data)
  466. return -EMSGSIZE;
  467. err = ops->fill_slave_info(skb, master_dev, dev);
  468. if (err < 0)
  469. goto err_cancel_slave_data;
  470. nla_nest_end(skb, slave_data);
  471. }
  472. return 0;
  473. err_cancel_slave_data:
  474. nla_nest_cancel(skb, slave_data);
  475. return err;
  476. }
  477. static int rtnl_link_info_fill(struct sk_buff *skb,
  478. const struct net_device *dev)
  479. {
  480. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  481. struct nlattr *data;
  482. int err;
  483. if (!ops)
  484. return 0;
  485. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  486. return -EMSGSIZE;
  487. if (ops->fill_xstats) {
  488. err = ops->fill_xstats(skb, dev);
  489. if (err < 0)
  490. return err;
  491. }
  492. if (ops->fill_info) {
  493. data = nla_nest_start(skb, IFLA_INFO_DATA);
  494. if (data == NULL)
  495. return -EMSGSIZE;
  496. err = ops->fill_info(skb, dev);
  497. if (err < 0)
  498. goto err_cancel_data;
  499. nla_nest_end(skb, data);
  500. }
  501. return 0;
  502. err_cancel_data:
  503. nla_nest_cancel(skb, data);
  504. return err;
  505. }
  506. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  507. {
  508. struct nlattr *linkinfo;
  509. int err = -EMSGSIZE;
  510. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  511. if (linkinfo == NULL)
  512. goto out;
  513. err = rtnl_link_info_fill(skb, dev);
  514. if (err < 0)
  515. goto err_cancel_link;
  516. err = rtnl_link_slave_info_fill(skb, dev);
  517. if (err < 0)
  518. goto err_cancel_link;
  519. nla_nest_end(skb, linkinfo);
  520. return 0;
  521. err_cancel_link:
  522. nla_nest_cancel(skb, linkinfo);
  523. out:
  524. return err;
  525. }
  526. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  527. {
  528. struct sock *rtnl = net->rtnl;
  529. int err = 0;
  530. NETLINK_CB(skb).dst_group = group;
  531. if (echo)
  532. atomic_inc(&skb->users);
  533. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  534. if (echo)
  535. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  536. return err;
  537. }
  538. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  539. {
  540. struct sock *rtnl = net->rtnl;
  541. return nlmsg_unicast(rtnl, skb, pid);
  542. }
  543. EXPORT_SYMBOL(rtnl_unicast);
  544. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  545. struct nlmsghdr *nlh, gfp_t flags)
  546. {
  547. struct sock *rtnl = net->rtnl;
  548. int report = 0;
  549. if (nlh)
  550. report = nlmsg_report(nlh);
  551. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  552. }
  553. EXPORT_SYMBOL(rtnl_notify);
  554. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  555. {
  556. struct sock *rtnl = net->rtnl;
  557. netlink_set_err(rtnl, 0, group, error);
  558. }
  559. EXPORT_SYMBOL(rtnl_set_sk_err);
  560. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  561. {
  562. struct nlattr *mx;
  563. int i, valid = 0;
  564. mx = nla_nest_start(skb, RTA_METRICS);
  565. if (mx == NULL)
  566. return -ENOBUFS;
  567. for (i = 0; i < RTAX_MAX; i++) {
  568. if (metrics[i]) {
  569. if (i == RTAX_CC_ALGO - 1) {
  570. char tmp[TCP_CA_NAME_MAX], *name;
  571. name = tcp_ca_get_name_by_key(metrics[i], tmp);
  572. if (!name)
  573. continue;
  574. if (nla_put_string(skb, i + 1, name))
  575. goto nla_put_failure;
  576. } else if (i == RTAX_FEATURES - 1) {
  577. u32 user_features = metrics[i] & RTAX_FEATURE_MASK;
  578. BUILD_BUG_ON(RTAX_FEATURE_MASK & DST_FEATURE_MASK);
  579. if (nla_put_u32(skb, i + 1, user_features))
  580. goto nla_put_failure;
  581. } else {
  582. if (nla_put_u32(skb, i + 1, metrics[i]))
  583. goto nla_put_failure;
  584. }
  585. valid++;
  586. }
  587. }
  588. if (!valid) {
  589. nla_nest_cancel(skb, mx);
  590. return 0;
  591. }
  592. return nla_nest_end(skb, mx);
  593. nla_put_failure:
  594. nla_nest_cancel(skb, mx);
  595. return -EMSGSIZE;
  596. }
  597. EXPORT_SYMBOL(rtnetlink_put_metrics);
  598. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  599. long expires, u32 error)
  600. {
  601. struct rta_cacheinfo ci = {
  602. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  603. .rta_used = dst->__use,
  604. .rta_clntref = atomic_read(&(dst->__refcnt)),
  605. .rta_error = error,
  606. .rta_id = id,
  607. };
  608. if (expires) {
  609. unsigned long clock;
  610. clock = jiffies_to_clock_t(abs(expires));
  611. clock = min_t(unsigned long, clock, INT_MAX);
  612. ci.rta_expires = (expires > 0) ? clock : -clock;
  613. }
  614. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  615. }
  616. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  617. static void set_operstate(struct net_device *dev, unsigned char transition)
  618. {
  619. unsigned char operstate = dev->operstate;
  620. switch (transition) {
  621. case IF_OPER_UP:
  622. if ((operstate == IF_OPER_DORMANT ||
  623. operstate == IF_OPER_UNKNOWN) &&
  624. !netif_dormant(dev))
  625. operstate = IF_OPER_UP;
  626. break;
  627. case IF_OPER_DORMANT:
  628. if (operstate == IF_OPER_UP ||
  629. operstate == IF_OPER_UNKNOWN)
  630. operstate = IF_OPER_DORMANT;
  631. break;
  632. }
  633. if (dev->operstate != operstate) {
  634. write_lock_bh(&dev_base_lock);
  635. dev->operstate = operstate;
  636. write_unlock_bh(&dev_base_lock);
  637. netdev_state_change(dev);
  638. }
  639. }
  640. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  641. {
  642. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  643. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  644. }
  645. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  646. const struct ifinfomsg *ifm)
  647. {
  648. unsigned int flags = ifm->ifi_flags;
  649. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  650. if (ifm->ifi_change)
  651. flags = (flags & ifm->ifi_change) |
  652. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  653. return flags;
  654. }
  655. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  656. const struct rtnl_link_stats64 *b)
  657. {
  658. a->rx_packets = b->rx_packets;
  659. a->tx_packets = b->tx_packets;
  660. a->rx_bytes = b->rx_bytes;
  661. a->tx_bytes = b->tx_bytes;
  662. a->rx_errors = b->rx_errors;
  663. a->tx_errors = b->tx_errors;
  664. a->rx_dropped = b->rx_dropped;
  665. a->tx_dropped = b->tx_dropped;
  666. a->multicast = b->multicast;
  667. a->collisions = b->collisions;
  668. a->rx_length_errors = b->rx_length_errors;
  669. a->rx_over_errors = b->rx_over_errors;
  670. a->rx_crc_errors = b->rx_crc_errors;
  671. a->rx_frame_errors = b->rx_frame_errors;
  672. a->rx_fifo_errors = b->rx_fifo_errors;
  673. a->rx_missed_errors = b->rx_missed_errors;
  674. a->tx_aborted_errors = b->tx_aborted_errors;
  675. a->tx_carrier_errors = b->tx_carrier_errors;
  676. a->tx_fifo_errors = b->tx_fifo_errors;
  677. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  678. a->tx_window_errors = b->tx_window_errors;
  679. a->rx_compressed = b->rx_compressed;
  680. a->tx_compressed = b->tx_compressed;
  681. a->rx_nohandler = b->rx_nohandler;
  682. }
  683. /* All VF info */
  684. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  685. u32 ext_filter_mask)
  686. {
  687. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  688. (ext_filter_mask & RTEXT_FILTER_VF)) {
  689. int num_vfs = dev_num_vf(dev->dev.parent);
  690. size_t size = nla_total_size(sizeof(struct nlattr));
  691. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  692. size += num_vfs *
  693. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  694. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  695. nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
  696. nla_total_size(sizeof(struct ifla_vf_rate)) +
  697. nla_total_size(sizeof(struct ifla_vf_link_state)) +
  698. nla_total_size(sizeof(struct ifla_vf_rss_query_en)) +
  699. /* IFLA_VF_STATS_RX_PACKETS */
  700. nla_total_size_64bit(sizeof(__u64)) +
  701. /* IFLA_VF_STATS_TX_PACKETS */
  702. nla_total_size_64bit(sizeof(__u64)) +
  703. /* IFLA_VF_STATS_RX_BYTES */
  704. nla_total_size_64bit(sizeof(__u64)) +
  705. /* IFLA_VF_STATS_TX_BYTES */
  706. nla_total_size_64bit(sizeof(__u64)) +
  707. /* IFLA_VF_STATS_BROADCAST */
  708. nla_total_size_64bit(sizeof(__u64)) +
  709. /* IFLA_VF_STATS_MULTICAST */
  710. nla_total_size_64bit(sizeof(__u64)) +
  711. nla_total_size(sizeof(struct ifla_vf_trust)));
  712. return size;
  713. } else
  714. return 0;
  715. }
  716. static size_t rtnl_port_size(const struct net_device *dev,
  717. u32 ext_filter_mask)
  718. {
  719. size_t port_size = nla_total_size(4) /* PORT_VF */
  720. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  721. + nla_total_size(sizeof(struct ifla_port_vsi))
  722. /* PORT_VSI_TYPE */
  723. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  724. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  725. + nla_total_size(1) /* PROT_VDP_REQUEST */
  726. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  727. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  728. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  729. + port_size;
  730. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  731. + port_size;
  732. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  733. !(ext_filter_mask & RTEXT_FILTER_VF))
  734. return 0;
  735. if (dev_num_vf(dev->dev.parent))
  736. return port_self_size + vf_ports_size +
  737. vf_port_size * dev_num_vf(dev->dev.parent);
  738. else
  739. return port_self_size;
  740. }
  741. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  742. u32 ext_filter_mask)
  743. {
  744. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  745. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  746. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  747. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  748. + nla_total_size_64bit(sizeof(struct rtnl_link_ifmap))
  749. + nla_total_size(sizeof(struct rtnl_link_stats))
  750. + nla_total_size_64bit(sizeof(struct rtnl_link_stats64))
  751. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  752. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  753. + nla_total_size(4) /* IFLA_TXQLEN */
  754. + nla_total_size(4) /* IFLA_WEIGHT */
  755. + nla_total_size(4) /* IFLA_MTU */
  756. + nla_total_size(4) /* IFLA_LINK */
  757. + nla_total_size(4) /* IFLA_MASTER */
  758. + nla_total_size(1) /* IFLA_CARRIER */
  759. + nla_total_size(4) /* IFLA_PROMISCUITY */
  760. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  761. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  762. + nla_total_size(4) /* IFLA_MAX_GSO_SEGS */
  763. + nla_total_size(4) /* IFLA_MAX_GSO_SIZE */
  764. + nla_total_size(1) /* IFLA_OPERSTATE */
  765. + nla_total_size(1) /* IFLA_LINKMODE */
  766. + nla_total_size(4) /* IFLA_CARRIER_CHANGES */
  767. + nla_total_size(4) /* IFLA_LINK_NETNSID */
  768. + nla_total_size(ext_filter_mask
  769. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  770. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  771. + rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  772. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  773. + rtnl_link_get_af_size(dev, ext_filter_mask) /* IFLA_AF_SPEC */
  774. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_PORT_ID */
  775. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_SWITCH_ID */
  776. + nla_total_size(IFNAMSIZ) /* IFLA_PHYS_PORT_NAME */
  777. + nla_total_size(1); /* IFLA_PROTO_DOWN */
  778. }
  779. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  780. {
  781. struct nlattr *vf_ports;
  782. struct nlattr *vf_port;
  783. int vf;
  784. int err;
  785. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  786. if (!vf_ports)
  787. return -EMSGSIZE;
  788. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  789. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  790. if (!vf_port)
  791. goto nla_put_failure;
  792. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  793. goto nla_put_failure;
  794. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  795. if (err == -EMSGSIZE)
  796. goto nla_put_failure;
  797. if (err) {
  798. nla_nest_cancel(skb, vf_port);
  799. continue;
  800. }
  801. nla_nest_end(skb, vf_port);
  802. }
  803. nla_nest_end(skb, vf_ports);
  804. return 0;
  805. nla_put_failure:
  806. nla_nest_cancel(skb, vf_ports);
  807. return -EMSGSIZE;
  808. }
  809. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  810. {
  811. struct nlattr *port_self;
  812. int err;
  813. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  814. if (!port_self)
  815. return -EMSGSIZE;
  816. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  817. if (err) {
  818. nla_nest_cancel(skb, port_self);
  819. return (err == -EMSGSIZE) ? err : 0;
  820. }
  821. nla_nest_end(skb, port_self);
  822. return 0;
  823. }
  824. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
  825. u32 ext_filter_mask)
  826. {
  827. int err;
  828. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  829. !(ext_filter_mask & RTEXT_FILTER_VF))
  830. return 0;
  831. err = rtnl_port_self_fill(skb, dev);
  832. if (err)
  833. return err;
  834. if (dev_num_vf(dev->dev.parent)) {
  835. err = rtnl_vf_ports_fill(skb, dev);
  836. if (err)
  837. return err;
  838. }
  839. return 0;
  840. }
  841. static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
  842. {
  843. int err;
  844. struct netdev_phys_item_id ppid;
  845. err = dev_get_phys_port_id(dev, &ppid);
  846. if (err) {
  847. if (err == -EOPNOTSUPP)
  848. return 0;
  849. return err;
  850. }
  851. if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
  852. return -EMSGSIZE;
  853. return 0;
  854. }
  855. static int rtnl_phys_port_name_fill(struct sk_buff *skb, struct net_device *dev)
  856. {
  857. char name[IFNAMSIZ];
  858. int err;
  859. err = dev_get_phys_port_name(dev, name, sizeof(name));
  860. if (err) {
  861. if (err == -EOPNOTSUPP)
  862. return 0;
  863. return err;
  864. }
  865. if (nla_put(skb, IFLA_PHYS_PORT_NAME, strlen(name), name))
  866. return -EMSGSIZE;
  867. return 0;
  868. }
  869. static int rtnl_phys_switch_id_fill(struct sk_buff *skb, struct net_device *dev)
  870. {
  871. int err;
  872. struct switchdev_attr attr = {
  873. .orig_dev = dev,
  874. .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
  875. .flags = SWITCHDEV_F_NO_RECURSE,
  876. };
  877. err = switchdev_port_attr_get(dev, &attr);
  878. if (err) {
  879. if (err == -EOPNOTSUPP)
  880. return 0;
  881. return err;
  882. }
  883. if (nla_put(skb, IFLA_PHYS_SWITCH_ID, attr.u.ppid.id_len,
  884. attr.u.ppid.id))
  885. return -EMSGSIZE;
  886. return 0;
  887. }
  888. static noinline_for_stack int rtnl_fill_stats(struct sk_buff *skb,
  889. struct net_device *dev)
  890. {
  891. struct rtnl_link_stats64 *sp;
  892. struct nlattr *attr;
  893. attr = nla_reserve_64bit(skb, IFLA_STATS64,
  894. sizeof(struct rtnl_link_stats64), IFLA_PAD);
  895. if (!attr)
  896. return -EMSGSIZE;
  897. sp = nla_data(attr);
  898. dev_get_stats(dev, sp);
  899. attr = nla_reserve(skb, IFLA_STATS,
  900. sizeof(struct rtnl_link_stats));
  901. if (!attr)
  902. return -EMSGSIZE;
  903. copy_rtnl_link_stats(nla_data(attr), sp);
  904. return 0;
  905. }
  906. static noinline_for_stack int rtnl_fill_vfinfo(struct sk_buff *skb,
  907. struct net_device *dev,
  908. int vfs_num,
  909. struct nlattr *vfinfo)
  910. {
  911. struct ifla_vf_rss_query_en vf_rss_query_en;
  912. struct ifla_vf_link_state vf_linkstate;
  913. struct ifla_vf_spoofchk vf_spoofchk;
  914. struct ifla_vf_tx_rate vf_tx_rate;
  915. struct ifla_vf_stats vf_stats;
  916. struct ifla_vf_trust vf_trust;
  917. struct ifla_vf_vlan vf_vlan;
  918. struct ifla_vf_rate vf_rate;
  919. struct nlattr *vf, *vfstats;
  920. struct ifla_vf_mac vf_mac;
  921. struct ifla_vf_info ivi;
  922. /* Not all SR-IOV capable drivers support the
  923. * spoofcheck and "RSS query enable" query. Preset to
  924. * -1 so the user space tool can detect that the driver
  925. * didn't report anything.
  926. */
  927. ivi.spoofchk = -1;
  928. ivi.rss_query_en = -1;
  929. ivi.trusted = -1;
  930. memset(ivi.mac, 0, sizeof(ivi.mac));
  931. /* The default value for VF link state is "auto"
  932. * IFLA_VF_LINK_STATE_AUTO which equals zero
  933. */
  934. ivi.linkstate = 0;
  935. if (dev->netdev_ops->ndo_get_vf_config(dev, vfs_num, &ivi))
  936. return 0;
  937. vf_mac.vf =
  938. vf_vlan.vf =
  939. vf_rate.vf =
  940. vf_tx_rate.vf =
  941. vf_spoofchk.vf =
  942. vf_linkstate.vf =
  943. vf_rss_query_en.vf =
  944. vf_trust.vf = ivi.vf;
  945. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  946. vf_vlan.vlan = ivi.vlan;
  947. vf_vlan.qos = ivi.qos;
  948. vf_tx_rate.rate = ivi.max_tx_rate;
  949. vf_rate.min_tx_rate = ivi.min_tx_rate;
  950. vf_rate.max_tx_rate = ivi.max_tx_rate;
  951. vf_spoofchk.setting = ivi.spoofchk;
  952. vf_linkstate.link_state = ivi.linkstate;
  953. vf_rss_query_en.setting = ivi.rss_query_en;
  954. vf_trust.setting = ivi.trusted;
  955. vf = nla_nest_start(skb, IFLA_VF_INFO);
  956. if (!vf) {
  957. nla_nest_cancel(skb, vfinfo);
  958. return -EMSGSIZE;
  959. }
  960. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  961. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  962. nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
  963. &vf_rate) ||
  964. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  965. &vf_tx_rate) ||
  966. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  967. &vf_spoofchk) ||
  968. nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
  969. &vf_linkstate) ||
  970. nla_put(skb, IFLA_VF_RSS_QUERY_EN,
  971. sizeof(vf_rss_query_en),
  972. &vf_rss_query_en) ||
  973. nla_put(skb, IFLA_VF_TRUST,
  974. sizeof(vf_trust), &vf_trust))
  975. return -EMSGSIZE;
  976. memset(&vf_stats, 0, sizeof(vf_stats));
  977. if (dev->netdev_ops->ndo_get_vf_stats)
  978. dev->netdev_ops->ndo_get_vf_stats(dev, vfs_num,
  979. &vf_stats);
  980. vfstats = nla_nest_start(skb, IFLA_VF_STATS);
  981. if (!vfstats) {
  982. nla_nest_cancel(skb, vf);
  983. nla_nest_cancel(skb, vfinfo);
  984. return -EMSGSIZE;
  985. }
  986. if (nla_put_u64_64bit(skb, IFLA_VF_STATS_RX_PACKETS,
  987. vf_stats.rx_packets, IFLA_VF_STATS_PAD) ||
  988. nla_put_u64_64bit(skb, IFLA_VF_STATS_TX_PACKETS,
  989. vf_stats.tx_packets, IFLA_VF_STATS_PAD) ||
  990. nla_put_u64_64bit(skb, IFLA_VF_STATS_RX_BYTES,
  991. vf_stats.rx_bytes, IFLA_VF_STATS_PAD) ||
  992. nla_put_u64_64bit(skb, IFLA_VF_STATS_TX_BYTES,
  993. vf_stats.tx_bytes, IFLA_VF_STATS_PAD) ||
  994. nla_put_u64_64bit(skb, IFLA_VF_STATS_BROADCAST,
  995. vf_stats.broadcast, IFLA_VF_STATS_PAD) ||
  996. nla_put_u64_64bit(skb, IFLA_VF_STATS_MULTICAST,
  997. vf_stats.multicast, IFLA_VF_STATS_PAD))
  998. return -EMSGSIZE;
  999. nla_nest_end(skb, vfstats);
  1000. nla_nest_end(skb, vf);
  1001. return 0;
  1002. }
  1003. static int rtnl_fill_link_ifmap(struct sk_buff *skb, struct net_device *dev)
  1004. {
  1005. struct rtnl_link_ifmap map = {
  1006. .mem_start = dev->mem_start,
  1007. .mem_end = dev->mem_end,
  1008. .base_addr = dev->base_addr,
  1009. .irq = dev->irq,
  1010. .dma = dev->dma,
  1011. .port = dev->if_port,
  1012. };
  1013. if (nla_put_64bit(skb, IFLA_MAP, sizeof(map), &map, IFLA_PAD))
  1014. return -EMSGSIZE;
  1015. return 0;
  1016. }
  1017. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  1018. int type, u32 pid, u32 seq, u32 change,
  1019. unsigned int flags, u32 ext_filter_mask)
  1020. {
  1021. struct ifinfomsg *ifm;
  1022. struct nlmsghdr *nlh;
  1023. struct nlattr *af_spec;
  1024. struct rtnl_af_ops *af_ops;
  1025. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1026. ASSERT_RTNL();
  1027. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  1028. if (nlh == NULL)
  1029. return -EMSGSIZE;
  1030. ifm = nlmsg_data(nlh);
  1031. ifm->ifi_family = AF_UNSPEC;
  1032. ifm->__ifi_pad = 0;
  1033. ifm->ifi_type = dev->type;
  1034. ifm->ifi_index = dev->ifindex;
  1035. ifm->ifi_flags = dev_get_flags(dev);
  1036. ifm->ifi_change = change;
  1037. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  1038. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  1039. nla_put_u8(skb, IFLA_OPERSTATE,
  1040. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  1041. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  1042. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  1043. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  1044. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  1045. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  1046. nla_put_u32(skb, IFLA_GSO_MAX_SEGS, dev->gso_max_segs) ||
  1047. nla_put_u32(skb, IFLA_GSO_MAX_SIZE, dev->gso_max_size) ||
  1048. #ifdef CONFIG_RPS
  1049. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  1050. #endif
  1051. (dev->ifindex != dev_get_iflink(dev) &&
  1052. nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))) ||
  1053. (upper_dev &&
  1054. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  1055. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  1056. (dev->qdisc &&
  1057. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  1058. (dev->ifalias &&
  1059. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)) ||
  1060. nla_put_u32(skb, IFLA_CARRIER_CHANGES,
  1061. atomic_read(&dev->carrier_changes)) ||
  1062. nla_put_u8(skb, IFLA_PROTO_DOWN, dev->proto_down))
  1063. goto nla_put_failure;
  1064. if (rtnl_fill_link_ifmap(skb, dev))
  1065. goto nla_put_failure;
  1066. if (dev->addr_len) {
  1067. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  1068. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  1069. goto nla_put_failure;
  1070. }
  1071. if (rtnl_phys_port_id_fill(skb, dev))
  1072. goto nla_put_failure;
  1073. if (rtnl_phys_port_name_fill(skb, dev))
  1074. goto nla_put_failure;
  1075. if (rtnl_phys_switch_id_fill(skb, dev))
  1076. goto nla_put_failure;
  1077. if (rtnl_fill_stats(skb, dev))
  1078. goto nla_put_failure;
  1079. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  1080. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  1081. goto nla_put_failure;
  1082. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent &&
  1083. ext_filter_mask & RTEXT_FILTER_VF) {
  1084. int i;
  1085. struct nlattr *vfinfo;
  1086. int num_vfs = dev_num_vf(dev->dev.parent);
  1087. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  1088. if (!vfinfo)
  1089. goto nla_put_failure;
  1090. for (i = 0; i < num_vfs; i++) {
  1091. if (rtnl_fill_vfinfo(skb, dev, i, vfinfo))
  1092. goto nla_put_failure;
  1093. }
  1094. nla_nest_end(skb, vfinfo);
  1095. }
  1096. if (rtnl_port_fill(skb, dev, ext_filter_mask))
  1097. goto nla_put_failure;
  1098. if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
  1099. if (rtnl_link_fill(skb, dev) < 0)
  1100. goto nla_put_failure;
  1101. }
  1102. if (dev->rtnl_link_ops &&
  1103. dev->rtnl_link_ops->get_link_net) {
  1104. struct net *link_net = dev->rtnl_link_ops->get_link_net(dev);
  1105. if (!net_eq(dev_net(dev), link_net)) {
  1106. int id = peernet2id_alloc(dev_net(dev), link_net);
  1107. if (nla_put_s32(skb, IFLA_LINK_NETNSID, id))
  1108. goto nla_put_failure;
  1109. }
  1110. }
  1111. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  1112. goto nla_put_failure;
  1113. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  1114. if (af_ops->fill_link_af) {
  1115. struct nlattr *af;
  1116. int err;
  1117. if (!(af = nla_nest_start(skb, af_ops->family)))
  1118. goto nla_put_failure;
  1119. err = af_ops->fill_link_af(skb, dev, ext_filter_mask);
  1120. /*
  1121. * Caller may return ENODATA to indicate that there
  1122. * was no data to be dumped. This is not an error, it
  1123. * means we should trim the attribute header and
  1124. * continue.
  1125. */
  1126. if (err == -ENODATA)
  1127. nla_nest_cancel(skb, af);
  1128. else if (err < 0)
  1129. goto nla_put_failure;
  1130. nla_nest_end(skb, af);
  1131. }
  1132. }
  1133. nla_nest_end(skb, af_spec);
  1134. nlmsg_end(skb, nlh);
  1135. return 0;
  1136. nla_put_failure:
  1137. nlmsg_cancel(skb, nlh);
  1138. return -EMSGSIZE;
  1139. }
  1140. static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  1141. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  1142. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1143. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1144. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  1145. [IFLA_MTU] = { .type = NLA_U32 },
  1146. [IFLA_LINK] = { .type = NLA_U32 },
  1147. [IFLA_MASTER] = { .type = NLA_U32 },
  1148. [IFLA_CARRIER] = { .type = NLA_U8 },
  1149. [IFLA_TXQLEN] = { .type = NLA_U32 },
  1150. [IFLA_WEIGHT] = { .type = NLA_U32 },
  1151. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  1152. [IFLA_LINKMODE] = { .type = NLA_U8 },
  1153. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  1154. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  1155. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  1156. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  1157. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  1158. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  1159. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  1160. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  1161. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  1162. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  1163. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  1164. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  1165. [IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1166. [IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
  1167. [IFLA_PHYS_SWITCH_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1168. [IFLA_LINK_NETNSID] = { .type = NLA_S32 },
  1169. [IFLA_PROTO_DOWN] = { .type = NLA_U8 },
  1170. };
  1171. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  1172. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  1173. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  1174. [IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
  1175. [IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
  1176. };
  1177. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  1178. [IFLA_VF_MAC] = { .len = sizeof(struct ifla_vf_mac) },
  1179. [IFLA_VF_VLAN] = { .len = sizeof(struct ifla_vf_vlan) },
  1180. [IFLA_VF_TX_RATE] = { .len = sizeof(struct ifla_vf_tx_rate) },
  1181. [IFLA_VF_SPOOFCHK] = { .len = sizeof(struct ifla_vf_spoofchk) },
  1182. [IFLA_VF_RATE] = { .len = sizeof(struct ifla_vf_rate) },
  1183. [IFLA_VF_LINK_STATE] = { .len = sizeof(struct ifla_vf_link_state) },
  1184. [IFLA_VF_RSS_QUERY_EN] = { .len = sizeof(struct ifla_vf_rss_query_en) },
  1185. [IFLA_VF_STATS] = { .type = NLA_NESTED },
  1186. [IFLA_VF_TRUST] = { .len = sizeof(struct ifla_vf_trust) },
  1187. [IFLA_VF_IB_NODE_GUID] = { .len = sizeof(struct ifla_vf_guid) },
  1188. [IFLA_VF_IB_PORT_GUID] = { .len = sizeof(struct ifla_vf_guid) },
  1189. };
  1190. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  1191. [IFLA_PORT_VF] = { .type = NLA_U32 },
  1192. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  1193. .len = PORT_PROFILE_MAX },
  1194. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  1195. .len = sizeof(struct ifla_port_vsi)},
  1196. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  1197. .len = PORT_UUID_MAX },
  1198. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  1199. .len = PORT_UUID_MAX },
  1200. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  1201. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  1202. };
  1203. static const struct rtnl_link_ops *linkinfo_to_kind_ops(const struct nlattr *nla)
  1204. {
  1205. const struct rtnl_link_ops *ops = NULL;
  1206. struct nlattr *linfo[IFLA_INFO_MAX + 1];
  1207. if (nla_parse_nested(linfo, IFLA_INFO_MAX, nla, ifla_info_policy) < 0)
  1208. return NULL;
  1209. if (linfo[IFLA_INFO_KIND]) {
  1210. char kind[MODULE_NAME_LEN];
  1211. nla_strlcpy(kind, linfo[IFLA_INFO_KIND], sizeof(kind));
  1212. ops = rtnl_link_ops_get(kind);
  1213. }
  1214. return ops;
  1215. }
  1216. static bool link_master_filtered(struct net_device *dev, int master_idx)
  1217. {
  1218. struct net_device *master;
  1219. if (!master_idx)
  1220. return false;
  1221. master = netdev_master_upper_dev_get(dev);
  1222. if (!master || master->ifindex != master_idx)
  1223. return true;
  1224. return false;
  1225. }
  1226. static bool link_kind_filtered(const struct net_device *dev,
  1227. const struct rtnl_link_ops *kind_ops)
  1228. {
  1229. if (kind_ops && dev->rtnl_link_ops != kind_ops)
  1230. return true;
  1231. return false;
  1232. }
  1233. static bool link_dump_filtered(struct net_device *dev,
  1234. int master_idx,
  1235. const struct rtnl_link_ops *kind_ops)
  1236. {
  1237. if (link_master_filtered(dev, master_idx) ||
  1238. link_kind_filtered(dev, kind_ops))
  1239. return true;
  1240. return false;
  1241. }
  1242. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  1243. {
  1244. struct net *net = sock_net(skb->sk);
  1245. int h, s_h;
  1246. int idx = 0, s_idx;
  1247. struct net_device *dev;
  1248. struct hlist_head *head;
  1249. struct nlattr *tb[IFLA_MAX+1];
  1250. u32 ext_filter_mask = 0;
  1251. const struct rtnl_link_ops *kind_ops = NULL;
  1252. unsigned int flags = NLM_F_MULTI;
  1253. int master_idx = 0;
  1254. int err;
  1255. int hdrlen;
  1256. s_h = cb->args[0];
  1257. s_idx = cb->args[1];
  1258. cb->seq = net->dev_base_seq;
  1259. /* A hack to preserve kernel<->userspace interface.
  1260. * The correct header is ifinfomsg. It is consistent with rtnl_getlink.
  1261. * However, before Linux v3.9 the code here assumed rtgenmsg and that's
  1262. * what iproute2 < v3.9.0 used.
  1263. * We can detect the old iproute2. Even including the IFLA_EXT_MASK
  1264. * attribute, its netlink message is shorter than struct ifinfomsg.
  1265. */
  1266. hdrlen = nlmsg_len(cb->nlh) < sizeof(struct ifinfomsg) ?
  1267. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1268. if (nlmsg_parse(cb->nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1269. if (tb[IFLA_EXT_MASK])
  1270. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1271. if (tb[IFLA_MASTER])
  1272. master_idx = nla_get_u32(tb[IFLA_MASTER]);
  1273. if (tb[IFLA_LINKINFO])
  1274. kind_ops = linkinfo_to_kind_ops(tb[IFLA_LINKINFO]);
  1275. if (master_idx || kind_ops)
  1276. flags |= NLM_F_DUMP_FILTERED;
  1277. }
  1278. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  1279. idx = 0;
  1280. head = &net->dev_index_head[h];
  1281. hlist_for_each_entry(dev, head, index_hlist) {
  1282. if (link_dump_filtered(dev, master_idx, kind_ops))
  1283. continue;
  1284. if (idx < s_idx)
  1285. goto cont;
  1286. err = rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  1287. NETLINK_CB(cb->skb).portid,
  1288. cb->nlh->nlmsg_seq, 0,
  1289. flags,
  1290. ext_filter_mask);
  1291. /* If we ran out of room on the first message,
  1292. * we're in trouble
  1293. */
  1294. WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
  1295. if (err < 0)
  1296. goto out;
  1297. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  1298. cont:
  1299. idx++;
  1300. }
  1301. }
  1302. out:
  1303. cb->args[1] = idx;
  1304. cb->args[0] = h;
  1305. return skb->len;
  1306. }
  1307. int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len)
  1308. {
  1309. return nla_parse(tb, IFLA_MAX, head, len, ifla_policy);
  1310. }
  1311. EXPORT_SYMBOL(rtnl_nla_parse_ifla);
  1312. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  1313. {
  1314. struct net *net;
  1315. /* Examine the link attributes and figure out which
  1316. * network namespace we are talking about.
  1317. */
  1318. if (tb[IFLA_NET_NS_PID])
  1319. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  1320. else if (tb[IFLA_NET_NS_FD])
  1321. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  1322. else
  1323. net = get_net(src_net);
  1324. return net;
  1325. }
  1326. EXPORT_SYMBOL(rtnl_link_get_net);
  1327. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  1328. {
  1329. if (dev) {
  1330. if (tb[IFLA_ADDRESS] &&
  1331. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1332. return -EINVAL;
  1333. if (tb[IFLA_BROADCAST] &&
  1334. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1335. return -EINVAL;
  1336. }
  1337. if (tb[IFLA_AF_SPEC]) {
  1338. struct nlattr *af;
  1339. int rem, err;
  1340. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1341. const struct rtnl_af_ops *af_ops;
  1342. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1343. return -EAFNOSUPPORT;
  1344. if (!af_ops->set_link_af)
  1345. return -EOPNOTSUPP;
  1346. if (af_ops->validate_link_af) {
  1347. err = af_ops->validate_link_af(dev, af);
  1348. if (err < 0)
  1349. return err;
  1350. }
  1351. }
  1352. }
  1353. return 0;
  1354. }
  1355. static int handle_infiniband_guid(struct net_device *dev, struct ifla_vf_guid *ivt,
  1356. int guid_type)
  1357. {
  1358. const struct net_device_ops *ops = dev->netdev_ops;
  1359. return ops->ndo_set_vf_guid(dev, ivt->vf, ivt->guid, guid_type);
  1360. }
  1361. static int handle_vf_guid(struct net_device *dev, struct ifla_vf_guid *ivt, int guid_type)
  1362. {
  1363. if (dev->type != ARPHRD_INFINIBAND)
  1364. return -EOPNOTSUPP;
  1365. return handle_infiniband_guid(dev, ivt, guid_type);
  1366. }
  1367. static int do_setvfinfo(struct net_device *dev, struct nlattr **tb)
  1368. {
  1369. const struct net_device_ops *ops = dev->netdev_ops;
  1370. int err = -EINVAL;
  1371. if (tb[IFLA_VF_MAC]) {
  1372. struct ifla_vf_mac *ivm = nla_data(tb[IFLA_VF_MAC]);
  1373. err = -EOPNOTSUPP;
  1374. if (ops->ndo_set_vf_mac)
  1375. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1376. ivm->mac);
  1377. if (err < 0)
  1378. return err;
  1379. }
  1380. if (tb[IFLA_VF_VLAN]) {
  1381. struct ifla_vf_vlan *ivv = nla_data(tb[IFLA_VF_VLAN]);
  1382. err = -EOPNOTSUPP;
  1383. if (ops->ndo_set_vf_vlan)
  1384. err = ops->ndo_set_vf_vlan(dev, ivv->vf, ivv->vlan,
  1385. ivv->qos);
  1386. if (err < 0)
  1387. return err;
  1388. }
  1389. if (tb[IFLA_VF_TX_RATE]) {
  1390. struct ifla_vf_tx_rate *ivt = nla_data(tb[IFLA_VF_TX_RATE]);
  1391. struct ifla_vf_info ivf;
  1392. err = -EOPNOTSUPP;
  1393. if (ops->ndo_get_vf_config)
  1394. err = ops->ndo_get_vf_config(dev, ivt->vf, &ivf);
  1395. if (err < 0)
  1396. return err;
  1397. err = -EOPNOTSUPP;
  1398. if (ops->ndo_set_vf_rate)
  1399. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1400. ivf.min_tx_rate,
  1401. ivt->rate);
  1402. if (err < 0)
  1403. return err;
  1404. }
  1405. if (tb[IFLA_VF_RATE]) {
  1406. struct ifla_vf_rate *ivt = nla_data(tb[IFLA_VF_RATE]);
  1407. err = -EOPNOTSUPP;
  1408. if (ops->ndo_set_vf_rate)
  1409. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1410. ivt->min_tx_rate,
  1411. ivt->max_tx_rate);
  1412. if (err < 0)
  1413. return err;
  1414. }
  1415. if (tb[IFLA_VF_SPOOFCHK]) {
  1416. struct ifla_vf_spoofchk *ivs = nla_data(tb[IFLA_VF_SPOOFCHK]);
  1417. err = -EOPNOTSUPP;
  1418. if (ops->ndo_set_vf_spoofchk)
  1419. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1420. ivs->setting);
  1421. if (err < 0)
  1422. return err;
  1423. }
  1424. if (tb[IFLA_VF_LINK_STATE]) {
  1425. struct ifla_vf_link_state *ivl = nla_data(tb[IFLA_VF_LINK_STATE]);
  1426. err = -EOPNOTSUPP;
  1427. if (ops->ndo_set_vf_link_state)
  1428. err = ops->ndo_set_vf_link_state(dev, ivl->vf,
  1429. ivl->link_state);
  1430. if (err < 0)
  1431. return err;
  1432. }
  1433. if (tb[IFLA_VF_RSS_QUERY_EN]) {
  1434. struct ifla_vf_rss_query_en *ivrssq_en;
  1435. err = -EOPNOTSUPP;
  1436. ivrssq_en = nla_data(tb[IFLA_VF_RSS_QUERY_EN]);
  1437. if (ops->ndo_set_vf_rss_query_en)
  1438. err = ops->ndo_set_vf_rss_query_en(dev, ivrssq_en->vf,
  1439. ivrssq_en->setting);
  1440. if (err < 0)
  1441. return err;
  1442. }
  1443. if (tb[IFLA_VF_TRUST]) {
  1444. struct ifla_vf_trust *ivt = nla_data(tb[IFLA_VF_TRUST]);
  1445. err = -EOPNOTSUPP;
  1446. if (ops->ndo_set_vf_trust)
  1447. err = ops->ndo_set_vf_trust(dev, ivt->vf, ivt->setting);
  1448. if (err < 0)
  1449. return err;
  1450. }
  1451. if (tb[IFLA_VF_IB_NODE_GUID]) {
  1452. struct ifla_vf_guid *ivt = nla_data(tb[IFLA_VF_IB_NODE_GUID]);
  1453. if (!ops->ndo_set_vf_guid)
  1454. return -EOPNOTSUPP;
  1455. return handle_vf_guid(dev, ivt, IFLA_VF_IB_NODE_GUID);
  1456. }
  1457. if (tb[IFLA_VF_IB_PORT_GUID]) {
  1458. struct ifla_vf_guid *ivt = nla_data(tb[IFLA_VF_IB_PORT_GUID]);
  1459. if (!ops->ndo_set_vf_guid)
  1460. return -EOPNOTSUPP;
  1461. return handle_vf_guid(dev, ivt, IFLA_VF_IB_PORT_GUID);
  1462. }
  1463. return err;
  1464. }
  1465. static int do_set_master(struct net_device *dev, int ifindex)
  1466. {
  1467. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1468. const struct net_device_ops *ops;
  1469. int err;
  1470. if (upper_dev) {
  1471. if (upper_dev->ifindex == ifindex)
  1472. return 0;
  1473. ops = upper_dev->netdev_ops;
  1474. if (ops->ndo_del_slave) {
  1475. err = ops->ndo_del_slave(upper_dev, dev);
  1476. if (err)
  1477. return err;
  1478. } else {
  1479. return -EOPNOTSUPP;
  1480. }
  1481. }
  1482. if (ifindex) {
  1483. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1484. if (!upper_dev)
  1485. return -EINVAL;
  1486. ops = upper_dev->netdev_ops;
  1487. if (ops->ndo_add_slave) {
  1488. err = ops->ndo_add_slave(upper_dev, dev);
  1489. if (err)
  1490. return err;
  1491. } else {
  1492. return -EOPNOTSUPP;
  1493. }
  1494. }
  1495. return 0;
  1496. }
  1497. #define DO_SETLINK_MODIFIED 0x01
  1498. /* notify flag means notify + modified. */
  1499. #define DO_SETLINK_NOTIFY 0x03
  1500. static int do_setlink(const struct sk_buff *skb,
  1501. struct net_device *dev, struct ifinfomsg *ifm,
  1502. struct nlattr **tb, char *ifname, int status)
  1503. {
  1504. const struct net_device_ops *ops = dev->netdev_ops;
  1505. int err;
  1506. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1507. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1508. if (IS_ERR(net)) {
  1509. err = PTR_ERR(net);
  1510. goto errout;
  1511. }
  1512. if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
  1513. put_net(net);
  1514. err = -EPERM;
  1515. goto errout;
  1516. }
  1517. err = dev_change_net_namespace(dev, net, ifname);
  1518. put_net(net);
  1519. if (err)
  1520. goto errout;
  1521. status |= DO_SETLINK_MODIFIED;
  1522. }
  1523. if (tb[IFLA_MAP]) {
  1524. struct rtnl_link_ifmap *u_map;
  1525. struct ifmap k_map;
  1526. if (!ops->ndo_set_config) {
  1527. err = -EOPNOTSUPP;
  1528. goto errout;
  1529. }
  1530. if (!netif_device_present(dev)) {
  1531. err = -ENODEV;
  1532. goto errout;
  1533. }
  1534. u_map = nla_data(tb[IFLA_MAP]);
  1535. k_map.mem_start = (unsigned long) u_map->mem_start;
  1536. k_map.mem_end = (unsigned long) u_map->mem_end;
  1537. k_map.base_addr = (unsigned short) u_map->base_addr;
  1538. k_map.irq = (unsigned char) u_map->irq;
  1539. k_map.dma = (unsigned char) u_map->dma;
  1540. k_map.port = (unsigned char) u_map->port;
  1541. err = ops->ndo_set_config(dev, &k_map);
  1542. if (err < 0)
  1543. goto errout;
  1544. status |= DO_SETLINK_NOTIFY;
  1545. }
  1546. if (tb[IFLA_ADDRESS]) {
  1547. struct sockaddr *sa;
  1548. int len;
  1549. len = sizeof(sa_family_t) + dev->addr_len;
  1550. sa = kmalloc(len, GFP_KERNEL);
  1551. if (!sa) {
  1552. err = -ENOMEM;
  1553. goto errout;
  1554. }
  1555. sa->sa_family = dev->type;
  1556. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1557. dev->addr_len);
  1558. err = dev_set_mac_address(dev, sa);
  1559. kfree(sa);
  1560. if (err)
  1561. goto errout;
  1562. status |= DO_SETLINK_MODIFIED;
  1563. }
  1564. if (tb[IFLA_MTU]) {
  1565. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1566. if (err < 0)
  1567. goto errout;
  1568. status |= DO_SETLINK_MODIFIED;
  1569. }
  1570. if (tb[IFLA_GROUP]) {
  1571. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1572. status |= DO_SETLINK_NOTIFY;
  1573. }
  1574. /*
  1575. * Interface selected by interface index but interface
  1576. * name provided implies that a name change has been
  1577. * requested.
  1578. */
  1579. if (ifm->ifi_index > 0 && ifname[0]) {
  1580. err = dev_change_name(dev, ifname);
  1581. if (err < 0)
  1582. goto errout;
  1583. status |= DO_SETLINK_MODIFIED;
  1584. }
  1585. if (tb[IFLA_IFALIAS]) {
  1586. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1587. nla_len(tb[IFLA_IFALIAS]));
  1588. if (err < 0)
  1589. goto errout;
  1590. status |= DO_SETLINK_NOTIFY;
  1591. }
  1592. if (tb[IFLA_BROADCAST]) {
  1593. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1594. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1595. }
  1596. if (ifm->ifi_flags || ifm->ifi_change) {
  1597. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1598. if (err < 0)
  1599. goto errout;
  1600. }
  1601. if (tb[IFLA_MASTER]) {
  1602. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1603. if (err)
  1604. goto errout;
  1605. status |= DO_SETLINK_MODIFIED;
  1606. }
  1607. if (tb[IFLA_CARRIER]) {
  1608. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1609. if (err)
  1610. goto errout;
  1611. status |= DO_SETLINK_MODIFIED;
  1612. }
  1613. if (tb[IFLA_TXQLEN]) {
  1614. unsigned long value = nla_get_u32(tb[IFLA_TXQLEN]);
  1615. if (dev->tx_queue_len ^ value)
  1616. status |= DO_SETLINK_NOTIFY;
  1617. dev->tx_queue_len = value;
  1618. }
  1619. if (tb[IFLA_OPERSTATE])
  1620. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1621. if (tb[IFLA_LINKMODE]) {
  1622. unsigned char value = nla_get_u8(tb[IFLA_LINKMODE]);
  1623. write_lock_bh(&dev_base_lock);
  1624. if (dev->link_mode ^ value)
  1625. status |= DO_SETLINK_NOTIFY;
  1626. dev->link_mode = value;
  1627. write_unlock_bh(&dev_base_lock);
  1628. }
  1629. if (tb[IFLA_VFINFO_LIST]) {
  1630. struct nlattr *vfinfo[IFLA_VF_MAX + 1];
  1631. struct nlattr *attr;
  1632. int rem;
  1633. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1634. if (nla_type(attr) != IFLA_VF_INFO ||
  1635. nla_len(attr) < NLA_HDRLEN) {
  1636. err = -EINVAL;
  1637. goto errout;
  1638. }
  1639. err = nla_parse_nested(vfinfo, IFLA_VF_MAX, attr,
  1640. ifla_vf_policy);
  1641. if (err < 0)
  1642. goto errout;
  1643. err = do_setvfinfo(dev, vfinfo);
  1644. if (err < 0)
  1645. goto errout;
  1646. status |= DO_SETLINK_NOTIFY;
  1647. }
  1648. }
  1649. err = 0;
  1650. if (tb[IFLA_VF_PORTS]) {
  1651. struct nlattr *port[IFLA_PORT_MAX+1];
  1652. struct nlattr *attr;
  1653. int vf;
  1654. int rem;
  1655. err = -EOPNOTSUPP;
  1656. if (!ops->ndo_set_vf_port)
  1657. goto errout;
  1658. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1659. if (nla_type(attr) != IFLA_VF_PORT ||
  1660. nla_len(attr) < NLA_HDRLEN) {
  1661. err = -EINVAL;
  1662. goto errout;
  1663. }
  1664. err = nla_parse_nested(port, IFLA_PORT_MAX, attr,
  1665. ifla_port_policy);
  1666. if (err < 0)
  1667. goto errout;
  1668. if (!port[IFLA_PORT_VF]) {
  1669. err = -EOPNOTSUPP;
  1670. goto errout;
  1671. }
  1672. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1673. err = ops->ndo_set_vf_port(dev, vf, port);
  1674. if (err < 0)
  1675. goto errout;
  1676. status |= DO_SETLINK_NOTIFY;
  1677. }
  1678. }
  1679. err = 0;
  1680. if (tb[IFLA_PORT_SELF]) {
  1681. struct nlattr *port[IFLA_PORT_MAX+1];
  1682. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1683. tb[IFLA_PORT_SELF], ifla_port_policy);
  1684. if (err < 0)
  1685. goto errout;
  1686. err = -EOPNOTSUPP;
  1687. if (ops->ndo_set_vf_port)
  1688. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1689. if (err < 0)
  1690. goto errout;
  1691. status |= DO_SETLINK_NOTIFY;
  1692. }
  1693. if (tb[IFLA_AF_SPEC]) {
  1694. struct nlattr *af;
  1695. int rem;
  1696. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1697. const struct rtnl_af_ops *af_ops;
  1698. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1699. BUG();
  1700. err = af_ops->set_link_af(dev, af);
  1701. if (err < 0)
  1702. goto errout;
  1703. status |= DO_SETLINK_NOTIFY;
  1704. }
  1705. }
  1706. err = 0;
  1707. if (tb[IFLA_PROTO_DOWN]) {
  1708. err = dev_change_proto_down(dev,
  1709. nla_get_u8(tb[IFLA_PROTO_DOWN]));
  1710. if (err)
  1711. goto errout;
  1712. status |= DO_SETLINK_NOTIFY;
  1713. }
  1714. errout:
  1715. if (status & DO_SETLINK_MODIFIED) {
  1716. if (status & DO_SETLINK_NOTIFY)
  1717. netdev_state_change(dev);
  1718. if (err < 0)
  1719. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1720. dev->name);
  1721. }
  1722. return err;
  1723. }
  1724. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1725. {
  1726. struct net *net = sock_net(skb->sk);
  1727. struct ifinfomsg *ifm;
  1728. struct net_device *dev;
  1729. int err;
  1730. struct nlattr *tb[IFLA_MAX+1];
  1731. char ifname[IFNAMSIZ];
  1732. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1733. if (err < 0)
  1734. goto errout;
  1735. if (tb[IFLA_IFNAME])
  1736. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1737. else
  1738. ifname[0] = '\0';
  1739. err = -EINVAL;
  1740. ifm = nlmsg_data(nlh);
  1741. if (ifm->ifi_index > 0)
  1742. dev = __dev_get_by_index(net, ifm->ifi_index);
  1743. else if (tb[IFLA_IFNAME])
  1744. dev = __dev_get_by_name(net, ifname);
  1745. else
  1746. goto errout;
  1747. if (dev == NULL) {
  1748. err = -ENODEV;
  1749. goto errout;
  1750. }
  1751. err = validate_linkmsg(dev, tb);
  1752. if (err < 0)
  1753. goto errout;
  1754. err = do_setlink(skb, dev, ifm, tb, ifname, 0);
  1755. errout:
  1756. return err;
  1757. }
  1758. static int rtnl_group_dellink(const struct net *net, int group)
  1759. {
  1760. struct net_device *dev, *aux;
  1761. LIST_HEAD(list_kill);
  1762. bool found = false;
  1763. if (!group)
  1764. return -EPERM;
  1765. for_each_netdev(net, dev) {
  1766. if (dev->group == group) {
  1767. const struct rtnl_link_ops *ops;
  1768. found = true;
  1769. ops = dev->rtnl_link_ops;
  1770. if (!ops || !ops->dellink)
  1771. return -EOPNOTSUPP;
  1772. }
  1773. }
  1774. if (!found)
  1775. return -ENODEV;
  1776. for_each_netdev_safe(net, dev, aux) {
  1777. if (dev->group == group) {
  1778. const struct rtnl_link_ops *ops;
  1779. ops = dev->rtnl_link_ops;
  1780. ops->dellink(dev, &list_kill);
  1781. }
  1782. }
  1783. unregister_netdevice_many(&list_kill);
  1784. return 0;
  1785. }
  1786. int rtnl_delete_link(struct net_device *dev)
  1787. {
  1788. const struct rtnl_link_ops *ops;
  1789. LIST_HEAD(list_kill);
  1790. ops = dev->rtnl_link_ops;
  1791. if (!ops || !ops->dellink)
  1792. return -EOPNOTSUPP;
  1793. ops->dellink(dev, &list_kill);
  1794. unregister_netdevice_many(&list_kill);
  1795. return 0;
  1796. }
  1797. EXPORT_SYMBOL_GPL(rtnl_delete_link);
  1798. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1799. {
  1800. struct net *net = sock_net(skb->sk);
  1801. struct net_device *dev;
  1802. struct ifinfomsg *ifm;
  1803. char ifname[IFNAMSIZ];
  1804. struct nlattr *tb[IFLA_MAX+1];
  1805. int err;
  1806. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1807. if (err < 0)
  1808. return err;
  1809. if (tb[IFLA_IFNAME])
  1810. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1811. ifm = nlmsg_data(nlh);
  1812. if (ifm->ifi_index > 0)
  1813. dev = __dev_get_by_index(net, ifm->ifi_index);
  1814. else if (tb[IFLA_IFNAME])
  1815. dev = __dev_get_by_name(net, ifname);
  1816. else if (tb[IFLA_GROUP])
  1817. return rtnl_group_dellink(net, nla_get_u32(tb[IFLA_GROUP]));
  1818. else
  1819. return -EINVAL;
  1820. if (!dev)
  1821. return -ENODEV;
  1822. return rtnl_delete_link(dev);
  1823. }
  1824. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1825. {
  1826. unsigned int old_flags;
  1827. int err;
  1828. old_flags = dev->flags;
  1829. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1830. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1831. if (err < 0)
  1832. return err;
  1833. }
  1834. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1835. __dev_notify_flags(dev, old_flags, ~0U);
  1836. return 0;
  1837. }
  1838. EXPORT_SYMBOL(rtnl_configure_link);
  1839. struct net_device *rtnl_create_link(struct net *net,
  1840. const char *ifname, unsigned char name_assign_type,
  1841. const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1842. {
  1843. int err;
  1844. struct net_device *dev;
  1845. unsigned int num_tx_queues = 1;
  1846. unsigned int num_rx_queues = 1;
  1847. if (tb[IFLA_NUM_TX_QUEUES])
  1848. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1849. else if (ops->get_num_tx_queues)
  1850. num_tx_queues = ops->get_num_tx_queues();
  1851. if (tb[IFLA_NUM_RX_QUEUES])
  1852. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1853. else if (ops->get_num_rx_queues)
  1854. num_rx_queues = ops->get_num_rx_queues();
  1855. err = -ENOMEM;
  1856. dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
  1857. ops->setup, num_tx_queues, num_rx_queues);
  1858. if (!dev)
  1859. goto err;
  1860. dev_net_set(dev, net);
  1861. dev->rtnl_link_ops = ops;
  1862. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1863. if (tb[IFLA_MTU])
  1864. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1865. if (tb[IFLA_ADDRESS]) {
  1866. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1867. nla_len(tb[IFLA_ADDRESS]));
  1868. dev->addr_assign_type = NET_ADDR_SET;
  1869. }
  1870. if (tb[IFLA_BROADCAST])
  1871. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1872. nla_len(tb[IFLA_BROADCAST]));
  1873. if (tb[IFLA_TXQLEN])
  1874. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1875. if (tb[IFLA_OPERSTATE])
  1876. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1877. if (tb[IFLA_LINKMODE])
  1878. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1879. if (tb[IFLA_GROUP])
  1880. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1881. return dev;
  1882. err:
  1883. return ERR_PTR(err);
  1884. }
  1885. EXPORT_SYMBOL(rtnl_create_link);
  1886. static int rtnl_group_changelink(const struct sk_buff *skb,
  1887. struct net *net, int group,
  1888. struct ifinfomsg *ifm,
  1889. struct nlattr **tb)
  1890. {
  1891. struct net_device *dev, *aux;
  1892. int err;
  1893. for_each_netdev_safe(net, dev, aux) {
  1894. if (dev->group == group) {
  1895. err = do_setlink(skb, dev, ifm, tb, NULL, 0);
  1896. if (err < 0)
  1897. return err;
  1898. }
  1899. }
  1900. return 0;
  1901. }
  1902. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1903. {
  1904. struct net *net = sock_net(skb->sk);
  1905. const struct rtnl_link_ops *ops;
  1906. const struct rtnl_link_ops *m_ops = NULL;
  1907. struct net_device *dev;
  1908. struct net_device *master_dev = NULL;
  1909. struct ifinfomsg *ifm;
  1910. char kind[MODULE_NAME_LEN];
  1911. char ifname[IFNAMSIZ];
  1912. struct nlattr *tb[IFLA_MAX+1];
  1913. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1914. unsigned char name_assign_type = NET_NAME_USER;
  1915. int err;
  1916. #ifdef CONFIG_MODULES
  1917. replay:
  1918. #endif
  1919. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1920. if (err < 0)
  1921. return err;
  1922. if (tb[IFLA_IFNAME])
  1923. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1924. else
  1925. ifname[0] = '\0';
  1926. ifm = nlmsg_data(nlh);
  1927. if (ifm->ifi_index > 0)
  1928. dev = __dev_get_by_index(net, ifm->ifi_index);
  1929. else {
  1930. if (ifname[0])
  1931. dev = __dev_get_by_name(net, ifname);
  1932. else
  1933. dev = NULL;
  1934. }
  1935. if (dev) {
  1936. master_dev = netdev_master_upper_dev_get(dev);
  1937. if (master_dev)
  1938. m_ops = master_dev->rtnl_link_ops;
  1939. }
  1940. err = validate_linkmsg(dev, tb);
  1941. if (err < 0)
  1942. return err;
  1943. if (tb[IFLA_LINKINFO]) {
  1944. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1945. tb[IFLA_LINKINFO], ifla_info_policy);
  1946. if (err < 0)
  1947. return err;
  1948. } else
  1949. memset(linkinfo, 0, sizeof(linkinfo));
  1950. if (linkinfo[IFLA_INFO_KIND]) {
  1951. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1952. ops = rtnl_link_ops_get(kind);
  1953. } else {
  1954. kind[0] = '\0';
  1955. ops = NULL;
  1956. }
  1957. if (1) {
  1958. struct nlattr *attr[ops ? ops->maxtype + 1 : 1];
  1959. struct nlattr *slave_attr[m_ops ? m_ops->slave_maxtype + 1 : 1];
  1960. struct nlattr **data = NULL;
  1961. struct nlattr **slave_data = NULL;
  1962. struct net *dest_net, *link_net = NULL;
  1963. if (ops) {
  1964. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1965. err = nla_parse_nested(attr, ops->maxtype,
  1966. linkinfo[IFLA_INFO_DATA],
  1967. ops->policy);
  1968. if (err < 0)
  1969. return err;
  1970. data = attr;
  1971. }
  1972. if (ops->validate) {
  1973. err = ops->validate(tb, data);
  1974. if (err < 0)
  1975. return err;
  1976. }
  1977. }
  1978. if (m_ops) {
  1979. if (m_ops->slave_maxtype &&
  1980. linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1981. err = nla_parse_nested(slave_attr,
  1982. m_ops->slave_maxtype,
  1983. linkinfo[IFLA_INFO_SLAVE_DATA],
  1984. m_ops->slave_policy);
  1985. if (err < 0)
  1986. return err;
  1987. slave_data = slave_attr;
  1988. }
  1989. if (m_ops->slave_validate) {
  1990. err = m_ops->slave_validate(tb, slave_data);
  1991. if (err < 0)
  1992. return err;
  1993. }
  1994. }
  1995. if (dev) {
  1996. int status = 0;
  1997. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1998. return -EEXIST;
  1999. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  2000. return -EOPNOTSUPP;
  2001. if (linkinfo[IFLA_INFO_DATA]) {
  2002. if (!ops || ops != dev->rtnl_link_ops ||
  2003. !ops->changelink)
  2004. return -EOPNOTSUPP;
  2005. err = ops->changelink(dev, tb, data);
  2006. if (err < 0)
  2007. return err;
  2008. status |= DO_SETLINK_NOTIFY;
  2009. }
  2010. if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
  2011. if (!m_ops || !m_ops->slave_changelink)
  2012. return -EOPNOTSUPP;
  2013. err = m_ops->slave_changelink(master_dev, dev,
  2014. tb, slave_data);
  2015. if (err < 0)
  2016. return err;
  2017. status |= DO_SETLINK_NOTIFY;
  2018. }
  2019. return do_setlink(skb, dev, ifm, tb, ifname, status);
  2020. }
  2021. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  2022. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  2023. return rtnl_group_changelink(skb, net,
  2024. nla_get_u32(tb[IFLA_GROUP]),
  2025. ifm, tb);
  2026. return -ENODEV;
  2027. }
  2028. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  2029. return -EOPNOTSUPP;
  2030. if (!ops) {
  2031. #ifdef CONFIG_MODULES
  2032. if (kind[0]) {
  2033. __rtnl_unlock();
  2034. request_module("rtnl-link-%s", kind);
  2035. rtnl_lock();
  2036. ops = rtnl_link_ops_get(kind);
  2037. if (ops)
  2038. goto replay;
  2039. }
  2040. #endif
  2041. return -EOPNOTSUPP;
  2042. }
  2043. if (!ops->setup)
  2044. return -EOPNOTSUPP;
  2045. if (!ifname[0]) {
  2046. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  2047. name_assign_type = NET_NAME_ENUM;
  2048. }
  2049. dest_net = rtnl_link_get_net(net, tb);
  2050. if (IS_ERR(dest_net))
  2051. return PTR_ERR(dest_net);
  2052. err = -EPERM;
  2053. if (!netlink_ns_capable(skb, dest_net->user_ns, CAP_NET_ADMIN))
  2054. goto out;
  2055. if (tb[IFLA_LINK_NETNSID]) {
  2056. int id = nla_get_s32(tb[IFLA_LINK_NETNSID]);
  2057. link_net = get_net_ns_by_id(dest_net, id);
  2058. if (!link_net) {
  2059. err = -EINVAL;
  2060. goto out;
  2061. }
  2062. err = -EPERM;
  2063. if (!netlink_ns_capable(skb, link_net->user_ns, CAP_NET_ADMIN))
  2064. goto out;
  2065. }
  2066. dev = rtnl_create_link(link_net ? : dest_net, ifname,
  2067. name_assign_type, ops, tb);
  2068. if (IS_ERR(dev)) {
  2069. err = PTR_ERR(dev);
  2070. goto out;
  2071. }
  2072. dev->ifindex = ifm->ifi_index;
  2073. if (ops->newlink) {
  2074. err = ops->newlink(link_net ? : net, dev, tb, data);
  2075. /* Drivers should call free_netdev() in ->destructor
  2076. * and unregister it on failure after registration
  2077. * so that device could be finally freed in rtnl_unlock.
  2078. */
  2079. if (err < 0) {
  2080. /* If device is not registered at all, free it now */
  2081. if (dev->reg_state == NETREG_UNINITIALIZED)
  2082. free_netdev(dev);
  2083. goto out;
  2084. }
  2085. } else {
  2086. err = register_netdevice(dev);
  2087. if (err < 0) {
  2088. free_netdev(dev);
  2089. goto out;
  2090. }
  2091. }
  2092. err = rtnl_configure_link(dev, ifm);
  2093. if (err < 0)
  2094. goto out_unregister;
  2095. if (link_net) {
  2096. err = dev_change_net_namespace(dev, dest_net, ifname);
  2097. if (err < 0)
  2098. goto out_unregister;
  2099. }
  2100. out:
  2101. if (link_net)
  2102. put_net(link_net);
  2103. put_net(dest_net);
  2104. return err;
  2105. out_unregister:
  2106. if (ops->newlink) {
  2107. LIST_HEAD(list_kill);
  2108. ops->dellink(dev, &list_kill);
  2109. unregister_netdevice_many(&list_kill);
  2110. } else {
  2111. unregister_netdevice(dev);
  2112. }
  2113. goto out;
  2114. }
  2115. }
  2116. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
  2117. {
  2118. struct net *net = sock_net(skb->sk);
  2119. struct ifinfomsg *ifm;
  2120. char ifname[IFNAMSIZ];
  2121. struct nlattr *tb[IFLA_MAX+1];
  2122. struct net_device *dev = NULL;
  2123. struct sk_buff *nskb;
  2124. int err;
  2125. u32 ext_filter_mask = 0;
  2126. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  2127. if (err < 0)
  2128. return err;
  2129. if (tb[IFLA_IFNAME])
  2130. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  2131. if (tb[IFLA_EXT_MASK])
  2132. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  2133. ifm = nlmsg_data(nlh);
  2134. if (ifm->ifi_index > 0)
  2135. dev = __dev_get_by_index(net, ifm->ifi_index);
  2136. else if (tb[IFLA_IFNAME])
  2137. dev = __dev_get_by_name(net, ifname);
  2138. else
  2139. return -EINVAL;
  2140. if (dev == NULL)
  2141. return -ENODEV;
  2142. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  2143. if (nskb == NULL)
  2144. return -ENOBUFS;
  2145. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  2146. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  2147. if (err < 0) {
  2148. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  2149. WARN_ON(err == -EMSGSIZE);
  2150. kfree_skb(nskb);
  2151. } else
  2152. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  2153. return err;
  2154. }
  2155. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  2156. {
  2157. struct net *net = sock_net(skb->sk);
  2158. struct net_device *dev;
  2159. struct nlattr *tb[IFLA_MAX+1];
  2160. u32 ext_filter_mask = 0;
  2161. u16 min_ifinfo_dump_size = 0;
  2162. int hdrlen;
  2163. /* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
  2164. hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
  2165. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  2166. if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  2167. if (tb[IFLA_EXT_MASK])
  2168. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  2169. }
  2170. if (!ext_filter_mask)
  2171. return NLMSG_GOODSIZE;
  2172. /*
  2173. * traverse the list of net devices and compute the minimum
  2174. * buffer size based upon the filter mask.
  2175. */
  2176. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  2177. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  2178. if_nlmsg_size(dev,
  2179. ext_filter_mask));
  2180. }
  2181. return min_ifinfo_dump_size;
  2182. }
  2183. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  2184. {
  2185. int idx;
  2186. int s_idx = cb->family;
  2187. if (s_idx == 0)
  2188. s_idx = 1;
  2189. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  2190. int type = cb->nlh->nlmsg_type-RTM_BASE;
  2191. if (idx < s_idx || idx == PF_PACKET)
  2192. continue;
  2193. if (rtnl_msg_handlers[idx] == NULL ||
  2194. rtnl_msg_handlers[idx][type].dumpit == NULL)
  2195. continue;
  2196. if (idx > s_idx) {
  2197. memset(&cb->args[0], 0, sizeof(cb->args));
  2198. cb->prev_seq = 0;
  2199. cb->seq = 0;
  2200. }
  2201. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  2202. break;
  2203. }
  2204. cb->family = idx;
  2205. return skb->len;
  2206. }
  2207. struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev,
  2208. unsigned int change, gfp_t flags)
  2209. {
  2210. struct net *net = dev_net(dev);
  2211. struct sk_buff *skb;
  2212. int err = -ENOBUFS;
  2213. size_t if_info_size;
  2214. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
  2215. if (skb == NULL)
  2216. goto errout;
  2217. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  2218. if (err < 0) {
  2219. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  2220. WARN_ON(err == -EMSGSIZE);
  2221. kfree_skb(skb);
  2222. goto errout;
  2223. }
  2224. return skb;
  2225. errout:
  2226. if (err < 0)
  2227. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2228. return NULL;
  2229. }
  2230. void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags)
  2231. {
  2232. struct net *net = dev_net(dev);
  2233. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
  2234. }
  2235. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
  2236. gfp_t flags)
  2237. {
  2238. struct sk_buff *skb;
  2239. if (dev->reg_state != NETREG_REGISTERED)
  2240. return;
  2241. skb = rtmsg_ifinfo_build_skb(type, dev, change, flags);
  2242. if (skb)
  2243. rtmsg_ifinfo_send(skb, dev, flags);
  2244. }
  2245. EXPORT_SYMBOL(rtmsg_ifinfo);
  2246. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  2247. struct net_device *dev,
  2248. u8 *addr, u16 vid, u32 pid, u32 seq,
  2249. int type, unsigned int flags,
  2250. int nlflags, u16 ndm_state)
  2251. {
  2252. struct nlmsghdr *nlh;
  2253. struct ndmsg *ndm;
  2254. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
  2255. if (!nlh)
  2256. return -EMSGSIZE;
  2257. ndm = nlmsg_data(nlh);
  2258. ndm->ndm_family = AF_BRIDGE;
  2259. ndm->ndm_pad1 = 0;
  2260. ndm->ndm_pad2 = 0;
  2261. ndm->ndm_flags = flags;
  2262. ndm->ndm_type = 0;
  2263. ndm->ndm_ifindex = dev->ifindex;
  2264. ndm->ndm_state = ndm_state;
  2265. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  2266. goto nla_put_failure;
  2267. if (vid)
  2268. if (nla_put(skb, NDA_VLAN, sizeof(u16), &vid))
  2269. goto nla_put_failure;
  2270. nlmsg_end(skb, nlh);
  2271. return 0;
  2272. nla_put_failure:
  2273. nlmsg_cancel(skb, nlh);
  2274. return -EMSGSIZE;
  2275. }
  2276. static inline size_t rtnl_fdb_nlmsg_size(void)
  2277. {
  2278. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  2279. }
  2280. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, u16 vid, int type,
  2281. u16 ndm_state)
  2282. {
  2283. struct net *net = dev_net(dev);
  2284. struct sk_buff *skb;
  2285. int err = -ENOBUFS;
  2286. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  2287. if (!skb)
  2288. goto errout;
  2289. err = nlmsg_populate_fdb_fill(skb, dev, addr, vid,
  2290. 0, 0, type, NTF_SELF, 0, ndm_state);
  2291. if (err < 0) {
  2292. kfree_skb(skb);
  2293. goto errout;
  2294. }
  2295. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  2296. return;
  2297. errout:
  2298. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  2299. }
  2300. /**
  2301. * ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
  2302. */
  2303. int ndo_dflt_fdb_add(struct ndmsg *ndm,
  2304. struct nlattr *tb[],
  2305. struct net_device *dev,
  2306. const unsigned char *addr, u16 vid,
  2307. u16 flags)
  2308. {
  2309. int err = -EINVAL;
  2310. /* If aging addresses are supported device will need to
  2311. * implement its own handler for this.
  2312. */
  2313. if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
  2314. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2315. return err;
  2316. }
  2317. if (vid) {
  2318. pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
  2319. return err;
  2320. }
  2321. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2322. err = dev_uc_add_excl(dev, addr);
  2323. else if (is_multicast_ether_addr(addr))
  2324. err = dev_mc_add_excl(dev, addr);
  2325. /* Only return duplicate errors if NLM_F_EXCL is set */
  2326. if (err == -EEXIST && !(flags & NLM_F_EXCL))
  2327. err = 0;
  2328. return err;
  2329. }
  2330. EXPORT_SYMBOL(ndo_dflt_fdb_add);
  2331. static int fdb_vid_parse(struct nlattr *vlan_attr, u16 *p_vid)
  2332. {
  2333. u16 vid = 0;
  2334. if (vlan_attr) {
  2335. if (nla_len(vlan_attr) != sizeof(u16)) {
  2336. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan\n");
  2337. return -EINVAL;
  2338. }
  2339. vid = nla_get_u16(vlan_attr);
  2340. if (!vid || vid >= VLAN_VID_MASK) {
  2341. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan id %d\n",
  2342. vid);
  2343. return -EINVAL;
  2344. }
  2345. }
  2346. *p_vid = vid;
  2347. return 0;
  2348. }
  2349. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
  2350. {
  2351. struct net *net = sock_net(skb->sk);
  2352. struct ndmsg *ndm;
  2353. struct nlattr *tb[NDA_MAX+1];
  2354. struct net_device *dev;
  2355. u8 *addr;
  2356. u16 vid;
  2357. int err;
  2358. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2359. if (err < 0)
  2360. return err;
  2361. ndm = nlmsg_data(nlh);
  2362. if (ndm->ndm_ifindex == 0) {
  2363. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  2364. return -EINVAL;
  2365. }
  2366. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2367. if (dev == NULL) {
  2368. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  2369. return -ENODEV;
  2370. }
  2371. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2372. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  2373. return -EINVAL;
  2374. }
  2375. addr = nla_data(tb[NDA_LLADDR]);
  2376. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2377. if (err)
  2378. return err;
  2379. err = -EOPNOTSUPP;
  2380. /* Support fdb on master device the net/bridge default case */
  2381. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2382. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2383. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2384. const struct net_device_ops *ops = br_dev->netdev_ops;
  2385. err = ops->ndo_fdb_add(ndm, tb, dev, addr, vid,
  2386. nlh->nlmsg_flags);
  2387. if (err)
  2388. goto out;
  2389. else
  2390. ndm->ndm_flags &= ~NTF_MASTER;
  2391. }
  2392. /* Embedded bridge, macvlan, and any other device support */
  2393. if ((ndm->ndm_flags & NTF_SELF)) {
  2394. if (dev->netdev_ops->ndo_fdb_add)
  2395. err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
  2396. vid,
  2397. nlh->nlmsg_flags);
  2398. else
  2399. err = ndo_dflt_fdb_add(ndm, tb, dev, addr, vid,
  2400. nlh->nlmsg_flags);
  2401. if (!err) {
  2402. rtnl_fdb_notify(dev, addr, vid, RTM_NEWNEIGH,
  2403. ndm->ndm_state);
  2404. ndm->ndm_flags &= ~NTF_SELF;
  2405. }
  2406. }
  2407. out:
  2408. return err;
  2409. }
  2410. /**
  2411. * ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
  2412. */
  2413. int ndo_dflt_fdb_del(struct ndmsg *ndm,
  2414. struct nlattr *tb[],
  2415. struct net_device *dev,
  2416. const unsigned char *addr, u16 vid)
  2417. {
  2418. int err = -EINVAL;
  2419. /* If aging addresses are supported device will need to
  2420. * implement its own handler for this.
  2421. */
  2422. if (!(ndm->ndm_state & NUD_PERMANENT)) {
  2423. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2424. return err;
  2425. }
  2426. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2427. err = dev_uc_del(dev, addr);
  2428. else if (is_multicast_ether_addr(addr))
  2429. err = dev_mc_del(dev, addr);
  2430. return err;
  2431. }
  2432. EXPORT_SYMBOL(ndo_dflt_fdb_del);
  2433. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
  2434. {
  2435. struct net *net = sock_net(skb->sk);
  2436. struct ndmsg *ndm;
  2437. struct nlattr *tb[NDA_MAX+1];
  2438. struct net_device *dev;
  2439. int err = -EINVAL;
  2440. __u8 *addr;
  2441. u16 vid;
  2442. if (!netlink_capable(skb, CAP_NET_ADMIN))
  2443. return -EPERM;
  2444. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2445. if (err < 0)
  2446. return err;
  2447. ndm = nlmsg_data(nlh);
  2448. if (ndm->ndm_ifindex == 0) {
  2449. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  2450. return -EINVAL;
  2451. }
  2452. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2453. if (dev == NULL) {
  2454. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  2455. return -ENODEV;
  2456. }
  2457. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2458. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
  2459. return -EINVAL;
  2460. }
  2461. addr = nla_data(tb[NDA_LLADDR]);
  2462. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2463. if (err)
  2464. return err;
  2465. err = -EOPNOTSUPP;
  2466. /* Support fdb on master device the net/bridge default case */
  2467. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2468. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2469. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2470. const struct net_device_ops *ops = br_dev->netdev_ops;
  2471. if (ops->ndo_fdb_del)
  2472. err = ops->ndo_fdb_del(ndm, tb, dev, addr, vid);
  2473. if (err)
  2474. goto out;
  2475. else
  2476. ndm->ndm_flags &= ~NTF_MASTER;
  2477. }
  2478. /* Embedded bridge, macvlan, and any other device support */
  2479. if (ndm->ndm_flags & NTF_SELF) {
  2480. if (dev->netdev_ops->ndo_fdb_del)
  2481. err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr,
  2482. vid);
  2483. else
  2484. err = ndo_dflt_fdb_del(ndm, tb, dev, addr, vid);
  2485. if (!err) {
  2486. rtnl_fdb_notify(dev, addr, vid, RTM_DELNEIGH,
  2487. ndm->ndm_state);
  2488. ndm->ndm_flags &= ~NTF_SELF;
  2489. }
  2490. }
  2491. out:
  2492. return err;
  2493. }
  2494. static int nlmsg_populate_fdb(struct sk_buff *skb,
  2495. struct netlink_callback *cb,
  2496. struct net_device *dev,
  2497. int *idx,
  2498. struct netdev_hw_addr_list *list)
  2499. {
  2500. struct netdev_hw_addr *ha;
  2501. int err;
  2502. u32 portid, seq;
  2503. portid = NETLINK_CB(cb->skb).portid;
  2504. seq = cb->nlh->nlmsg_seq;
  2505. list_for_each_entry(ha, &list->list, list) {
  2506. if (*idx < cb->args[0])
  2507. goto skip;
  2508. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr, 0,
  2509. portid, seq,
  2510. RTM_NEWNEIGH, NTF_SELF,
  2511. NLM_F_MULTI, NUD_PERMANENT);
  2512. if (err < 0)
  2513. return err;
  2514. skip:
  2515. *idx += 1;
  2516. }
  2517. return 0;
  2518. }
  2519. /**
  2520. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  2521. * @nlh: netlink message header
  2522. * @dev: netdevice
  2523. *
  2524. * Default netdevice operation to dump the existing unicast address list.
  2525. * Returns number of addresses from list put in skb.
  2526. */
  2527. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  2528. struct netlink_callback *cb,
  2529. struct net_device *dev,
  2530. struct net_device *filter_dev,
  2531. int idx)
  2532. {
  2533. int err;
  2534. netif_addr_lock_bh(dev);
  2535. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  2536. if (err)
  2537. goto out;
  2538. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  2539. out:
  2540. netif_addr_unlock_bh(dev);
  2541. cb->args[1] = err;
  2542. return idx;
  2543. }
  2544. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  2545. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  2546. {
  2547. struct net_device *dev;
  2548. struct nlattr *tb[IFLA_MAX+1];
  2549. struct net_device *br_dev = NULL;
  2550. const struct net_device_ops *ops = NULL;
  2551. const struct net_device_ops *cops = NULL;
  2552. struct ifinfomsg *ifm = nlmsg_data(cb->nlh);
  2553. struct net *net = sock_net(skb->sk);
  2554. int brport_idx = 0;
  2555. int br_idx = 0;
  2556. int idx = 0;
  2557. if (nlmsg_parse(cb->nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
  2558. ifla_policy) == 0) {
  2559. if (tb[IFLA_MASTER])
  2560. br_idx = nla_get_u32(tb[IFLA_MASTER]);
  2561. }
  2562. brport_idx = ifm->ifi_index;
  2563. if (br_idx) {
  2564. br_dev = __dev_get_by_index(net, br_idx);
  2565. if (!br_dev)
  2566. return -ENODEV;
  2567. ops = br_dev->netdev_ops;
  2568. }
  2569. cb->args[1] = 0;
  2570. for_each_netdev(net, dev) {
  2571. if (brport_idx && (dev->ifindex != brport_idx))
  2572. continue;
  2573. if (!br_idx) { /* user did not specify a specific bridge */
  2574. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2575. br_dev = netdev_master_upper_dev_get(dev);
  2576. cops = br_dev->netdev_ops;
  2577. }
  2578. } else {
  2579. if (dev != br_dev &&
  2580. !(dev->priv_flags & IFF_BRIDGE_PORT))
  2581. continue;
  2582. if (br_dev != netdev_master_upper_dev_get(dev) &&
  2583. !(dev->priv_flags & IFF_EBRIDGE))
  2584. continue;
  2585. cops = ops;
  2586. }
  2587. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2588. if (cops && cops->ndo_fdb_dump)
  2589. idx = cops->ndo_fdb_dump(skb, cb, br_dev, dev,
  2590. idx);
  2591. }
  2592. if (cb->args[1] == -EMSGSIZE)
  2593. break;
  2594. if (dev->netdev_ops->ndo_fdb_dump)
  2595. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, dev, NULL,
  2596. idx);
  2597. else
  2598. idx = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
  2599. if (cb->args[1] == -EMSGSIZE)
  2600. break;
  2601. cops = NULL;
  2602. }
  2603. cb->args[0] = idx;
  2604. return skb->len;
  2605. }
  2606. static int brport_nla_put_flag(struct sk_buff *skb, u32 flags, u32 mask,
  2607. unsigned int attrnum, unsigned int flag)
  2608. {
  2609. if (mask & flag)
  2610. return nla_put_u8(skb, attrnum, !!(flags & flag));
  2611. return 0;
  2612. }
  2613. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  2614. struct net_device *dev, u16 mode,
  2615. u32 flags, u32 mask, int nlflags,
  2616. u32 filter_mask,
  2617. int (*vlan_fill)(struct sk_buff *skb,
  2618. struct net_device *dev,
  2619. u32 filter_mask))
  2620. {
  2621. struct nlmsghdr *nlh;
  2622. struct ifinfomsg *ifm;
  2623. struct nlattr *br_afspec;
  2624. struct nlattr *protinfo;
  2625. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  2626. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2627. int err = 0;
  2628. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), nlflags);
  2629. if (nlh == NULL)
  2630. return -EMSGSIZE;
  2631. ifm = nlmsg_data(nlh);
  2632. ifm->ifi_family = AF_BRIDGE;
  2633. ifm->__ifi_pad = 0;
  2634. ifm->ifi_type = dev->type;
  2635. ifm->ifi_index = dev->ifindex;
  2636. ifm->ifi_flags = dev_get_flags(dev);
  2637. ifm->ifi_change = 0;
  2638. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  2639. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  2640. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  2641. (br_dev &&
  2642. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  2643. (dev->addr_len &&
  2644. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  2645. (dev->ifindex != dev_get_iflink(dev) &&
  2646. nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))))
  2647. goto nla_put_failure;
  2648. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  2649. if (!br_afspec)
  2650. goto nla_put_failure;
  2651. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF)) {
  2652. nla_nest_cancel(skb, br_afspec);
  2653. goto nla_put_failure;
  2654. }
  2655. if (mode != BRIDGE_MODE_UNDEF) {
  2656. if (nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  2657. nla_nest_cancel(skb, br_afspec);
  2658. goto nla_put_failure;
  2659. }
  2660. }
  2661. if (vlan_fill) {
  2662. err = vlan_fill(skb, dev, filter_mask);
  2663. if (err) {
  2664. nla_nest_cancel(skb, br_afspec);
  2665. goto nla_put_failure;
  2666. }
  2667. }
  2668. nla_nest_end(skb, br_afspec);
  2669. protinfo = nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
  2670. if (!protinfo)
  2671. goto nla_put_failure;
  2672. if (brport_nla_put_flag(skb, flags, mask,
  2673. IFLA_BRPORT_MODE, BR_HAIRPIN_MODE) ||
  2674. brport_nla_put_flag(skb, flags, mask,
  2675. IFLA_BRPORT_GUARD, BR_BPDU_GUARD) ||
  2676. brport_nla_put_flag(skb, flags, mask,
  2677. IFLA_BRPORT_FAST_LEAVE,
  2678. BR_MULTICAST_FAST_LEAVE) ||
  2679. brport_nla_put_flag(skb, flags, mask,
  2680. IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK) ||
  2681. brport_nla_put_flag(skb, flags, mask,
  2682. IFLA_BRPORT_LEARNING, BR_LEARNING) ||
  2683. brport_nla_put_flag(skb, flags, mask,
  2684. IFLA_BRPORT_LEARNING_SYNC, BR_LEARNING_SYNC) ||
  2685. brport_nla_put_flag(skb, flags, mask,
  2686. IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD) ||
  2687. brport_nla_put_flag(skb, flags, mask,
  2688. IFLA_BRPORT_PROXYARP, BR_PROXYARP)) {
  2689. nla_nest_cancel(skb, protinfo);
  2690. goto nla_put_failure;
  2691. }
  2692. nla_nest_end(skb, protinfo);
  2693. nlmsg_end(skb, nlh);
  2694. return 0;
  2695. nla_put_failure:
  2696. nlmsg_cancel(skb, nlh);
  2697. return err ? err : -EMSGSIZE;
  2698. }
  2699. EXPORT_SYMBOL_GPL(ndo_dflt_bridge_getlink);
  2700. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  2701. {
  2702. struct net *net = sock_net(skb->sk);
  2703. struct net_device *dev;
  2704. int idx = 0;
  2705. u32 portid = NETLINK_CB(cb->skb).portid;
  2706. u32 seq = cb->nlh->nlmsg_seq;
  2707. u32 filter_mask = 0;
  2708. int err;
  2709. if (nlmsg_len(cb->nlh) > sizeof(struct ifinfomsg)) {
  2710. struct nlattr *extfilt;
  2711. extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct ifinfomsg),
  2712. IFLA_EXT_MASK);
  2713. if (extfilt) {
  2714. if (nla_len(extfilt) < sizeof(filter_mask))
  2715. return -EINVAL;
  2716. filter_mask = nla_get_u32(extfilt);
  2717. }
  2718. }
  2719. rcu_read_lock();
  2720. for_each_netdev_rcu(net, dev) {
  2721. const struct net_device_ops *ops = dev->netdev_ops;
  2722. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2723. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2724. if (idx >= cb->args[0]) {
  2725. err = br_dev->netdev_ops->ndo_bridge_getlink(
  2726. skb, portid, seq, dev,
  2727. filter_mask, NLM_F_MULTI);
  2728. if (err < 0 && err != -EOPNOTSUPP)
  2729. break;
  2730. }
  2731. idx++;
  2732. }
  2733. if (ops->ndo_bridge_getlink) {
  2734. if (idx >= cb->args[0]) {
  2735. err = ops->ndo_bridge_getlink(skb, portid,
  2736. seq, dev,
  2737. filter_mask,
  2738. NLM_F_MULTI);
  2739. if (err < 0 && err != -EOPNOTSUPP)
  2740. break;
  2741. }
  2742. idx++;
  2743. }
  2744. }
  2745. rcu_read_unlock();
  2746. cb->args[0] = idx;
  2747. return skb->len;
  2748. }
  2749. static inline size_t bridge_nlmsg_size(void)
  2750. {
  2751. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  2752. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  2753. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  2754. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  2755. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2756. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2757. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2758. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2759. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2760. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2761. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2762. }
  2763. static int rtnl_bridge_notify(struct net_device *dev)
  2764. {
  2765. struct net *net = dev_net(dev);
  2766. struct sk_buff *skb;
  2767. int err = -EOPNOTSUPP;
  2768. if (!dev->netdev_ops->ndo_bridge_getlink)
  2769. return 0;
  2770. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2771. if (!skb) {
  2772. err = -ENOMEM;
  2773. goto errout;
  2774. }
  2775. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0, 0);
  2776. if (err < 0)
  2777. goto errout;
  2778. if (!skb->len)
  2779. goto errout;
  2780. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2781. return 0;
  2782. errout:
  2783. WARN_ON(err == -EMSGSIZE);
  2784. kfree_skb(skb);
  2785. if (err)
  2786. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2787. return err;
  2788. }
  2789. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2790. {
  2791. struct net *net = sock_net(skb->sk);
  2792. struct ifinfomsg *ifm;
  2793. struct net_device *dev;
  2794. struct nlattr *br_spec, *attr = NULL;
  2795. int rem, err = -EOPNOTSUPP;
  2796. u16 flags = 0;
  2797. bool have_flags = false;
  2798. if (nlmsg_len(nlh) < sizeof(*ifm))
  2799. return -EINVAL;
  2800. ifm = nlmsg_data(nlh);
  2801. if (ifm->ifi_family != AF_BRIDGE)
  2802. return -EPFNOSUPPORT;
  2803. dev = __dev_get_by_index(net, ifm->ifi_index);
  2804. if (!dev) {
  2805. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2806. return -ENODEV;
  2807. }
  2808. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2809. if (br_spec) {
  2810. nla_for_each_nested(attr, br_spec, rem) {
  2811. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2812. if (nla_len(attr) < sizeof(flags))
  2813. return -EINVAL;
  2814. have_flags = true;
  2815. flags = nla_get_u16(attr);
  2816. break;
  2817. }
  2818. }
  2819. }
  2820. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2821. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2822. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2823. err = -EOPNOTSUPP;
  2824. goto out;
  2825. }
  2826. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh, flags);
  2827. if (err)
  2828. goto out;
  2829. flags &= ~BRIDGE_FLAGS_MASTER;
  2830. }
  2831. if ((flags & BRIDGE_FLAGS_SELF)) {
  2832. if (!dev->netdev_ops->ndo_bridge_setlink)
  2833. err = -EOPNOTSUPP;
  2834. else
  2835. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh,
  2836. flags);
  2837. if (!err) {
  2838. flags &= ~BRIDGE_FLAGS_SELF;
  2839. /* Generate event to notify upper layer of bridge
  2840. * change
  2841. */
  2842. err = rtnl_bridge_notify(dev);
  2843. }
  2844. }
  2845. if (have_flags)
  2846. memcpy(nla_data(attr), &flags, sizeof(flags));
  2847. out:
  2848. return err;
  2849. }
  2850. static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2851. {
  2852. struct net *net = sock_net(skb->sk);
  2853. struct ifinfomsg *ifm;
  2854. struct net_device *dev;
  2855. struct nlattr *br_spec, *attr = NULL;
  2856. int rem, err = -EOPNOTSUPP;
  2857. u16 flags = 0;
  2858. bool have_flags = false;
  2859. if (nlmsg_len(nlh) < sizeof(*ifm))
  2860. return -EINVAL;
  2861. ifm = nlmsg_data(nlh);
  2862. if (ifm->ifi_family != AF_BRIDGE)
  2863. return -EPFNOSUPPORT;
  2864. dev = __dev_get_by_index(net, ifm->ifi_index);
  2865. if (!dev) {
  2866. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2867. return -ENODEV;
  2868. }
  2869. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2870. if (br_spec) {
  2871. nla_for_each_nested(attr, br_spec, rem) {
  2872. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2873. if (nla_len(attr) < sizeof(flags))
  2874. return -EINVAL;
  2875. have_flags = true;
  2876. flags = nla_get_u16(attr);
  2877. break;
  2878. }
  2879. }
  2880. }
  2881. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2882. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2883. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
  2884. err = -EOPNOTSUPP;
  2885. goto out;
  2886. }
  2887. err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh, flags);
  2888. if (err)
  2889. goto out;
  2890. flags &= ~BRIDGE_FLAGS_MASTER;
  2891. }
  2892. if ((flags & BRIDGE_FLAGS_SELF)) {
  2893. if (!dev->netdev_ops->ndo_bridge_dellink)
  2894. err = -EOPNOTSUPP;
  2895. else
  2896. err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh,
  2897. flags);
  2898. if (!err) {
  2899. flags &= ~BRIDGE_FLAGS_SELF;
  2900. /* Generate event to notify upper layer of bridge
  2901. * change
  2902. */
  2903. err = rtnl_bridge_notify(dev);
  2904. }
  2905. }
  2906. if (have_flags)
  2907. memcpy(nla_data(attr), &flags, sizeof(flags));
  2908. out:
  2909. return err;
  2910. }
  2911. static bool stats_attr_valid(unsigned int mask, int attrid, int idxattr)
  2912. {
  2913. return (mask & IFLA_STATS_FILTER_BIT(attrid)) &&
  2914. (!idxattr || idxattr == attrid);
  2915. }
  2916. static int rtnl_fill_statsinfo(struct sk_buff *skb, struct net_device *dev,
  2917. int type, u32 pid, u32 seq, u32 change,
  2918. unsigned int flags, unsigned int filter_mask,
  2919. int *idxattr, int *prividx)
  2920. {
  2921. struct if_stats_msg *ifsm;
  2922. struct nlmsghdr *nlh;
  2923. struct nlattr *attr;
  2924. int s_prividx = *prividx;
  2925. ASSERT_RTNL();
  2926. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifsm), flags);
  2927. if (!nlh)
  2928. return -EMSGSIZE;
  2929. ifsm = nlmsg_data(nlh);
  2930. ifsm->ifindex = dev->ifindex;
  2931. ifsm->filter_mask = filter_mask;
  2932. if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_64, *idxattr)) {
  2933. struct rtnl_link_stats64 *sp;
  2934. attr = nla_reserve_64bit(skb, IFLA_STATS_LINK_64,
  2935. sizeof(struct rtnl_link_stats64),
  2936. IFLA_STATS_UNSPEC);
  2937. if (!attr)
  2938. goto nla_put_failure;
  2939. sp = nla_data(attr);
  2940. dev_get_stats(dev, sp);
  2941. }
  2942. if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_XSTATS, *idxattr)) {
  2943. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  2944. if (ops && ops->fill_linkxstats) {
  2945. int err;
  2946. *idxattr = IFLA_STATS_LINK_XSTATS;
  2947. attr = nla_nest_start(skb,
  2948. IFLA_STATS_LINK_XSTATS);
  2949. if (!attr)
  2950. goto nla_put_failure;
  2951. err = ops->fill_linkxstats(skb, dev, prividx);
  2952. nla_nest_end(skb, attr);
  2953. if (err)
  2954. goto nla_put_failure;
  2955. *idxattr = 0;
  2956. }
  2957. }
  2958. nlmsg_end(skb, nlh);
  2959. return 0;
  2960. nla_put_failure:
  2961. /* not a multi message or no progress mean a real error */
  2962. if (!(flags & NLM_F_MULTI) || s_prividx == *prividx)
  2963. nlmsg_cancel(skb, nlh);
  2964. else
  2965. nlmsg_end(skb, nlh);
  2966. return -EMSGSIZE;
  2967. }
  2968. static const struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = {
  2969. [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) },
  2970. };
  2971. static size_t if_nlmsg_stats_size(const struct net_device *dev,
  2972. u32 filter_mask)
  2973. {
  2974. size_t size = 0;
  2975. if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_64, 0))
  2976. size += nla_total_size_64bit(sizeof(struct rtnl_link_stats64));
  2977. if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_XSTATS, 0)) {
  2978. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  2979. if (ops && ops->get_linkxstats_size) {
  2980. size += nla_total_size(ops->get_linkxstats_size(dev));
  2981. /* for IFLA_STATS_LINK_XSTATS */
  2982. size += nla_total_size(0);
  2983. }
  2984. }
  2985. return size;
  2986. }
  2987. static int rtnl_stats_get(struct sk_buff *skb, struct nlmsghdr *nlh)
  2988. {
  2989. struct net *net = sock_net(skb->sk);
  2990. struct net_device *dev = NULL;
  2991. int idxattr = 0, prividx = 0;
  2992. struct if_stats_msg *ifsm;
  2993. struct sk_buff *nskb;
  2994. u32 filter_mask;
  2995. int err;
  2996. ifsm = nlmsg_data(nlh);
  2997. if (ifsm->ifindex > 0)
  2998. dev = __dev_get_by_index(net, ifsm->ifindex);
  2999. else
  3000. return -EINVAL;
  3001. if (!dev)
  3002. return -ENODEV;
  3003. filter_mask = ifsm->filter_mask;
  3004. if (!filter_mask)
  3005. return -EINVAL;
  3006. nskb = nlmsg_new(if_nlmsg_stats_size(dev, filter_mask), GFP_KERNEL);
  3007. if (!nskb)
  3008. return -ENOBUFS;
  3009. err = rtnl_fill_statsinfo(nskb, dev, RTM_NEWSTATS,
  3010. NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
  3011. 0, filter_mask, &idxattr, &prividx);
  3012. if (err < 0) {
  3013. /* -EMSGSIZE implies BUG in if_nlmsg_stats_size */
  3014. WARN_ON(err == -EMSGSIZE);
  3015. kfree_skb(nskb);
  3016. } else {
  3017. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  3018. }
  3019. return err;
  3020. }
  3021. static int rtnl_stats_dump(struct sk_buff *skb, struct netlink_callback *cb)
  3022. {
  3023. int h, s_h, err, s_idx, s_idxattr, s_prividx;
  3024. struct net *net = sock_net(skb->sk);
  3025. unsigned int flags = NLM_F_MULTI;
  3026. struct if_stats_msg *ifsm;
  3027. struct hlist_head *head;
  3028. struct net_device *dev;
  3029. u32 filter_mask = 0;
  3030. int idx = 0;
  3031. s_h = cb->args[0];
  3032. s_idx = cb->args[1];
  3033. s_idxattr = cb->args[2];
  3034. s_prividx = cb->args[3];
  3035. cb->seq = net->dev_base_seq;
  3036. ifsm = nlmsg_data(cb->nlh);
  3037. filter_mask = ifsm->filter_mask;
  3038. if (!filter_mask)
  3039. return -EINVAL;
  3040. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  3041. idx = 0;
  3042. head = &net->dev_index_head[h];
  3043. hlist_for_each_entry(dev, head, index_hlist) {
  3044. if (idx < s_idx)
  3045. goto cont;
  3046. err = rtnl_fill_statsinfo(skb, dev, RTM_NEWSTATS,
  3047. NETLINK_CB(cb->skb).portid,
  3048. cb->nlh->nlmsg_seq, 0,
  3049. flags, filter_mask,
  3050. &s_idxattr, &s_prividx);
  3051. /* If we ran out of room on the first message,
  3052. * we're in trouble
  3053. */
  3054. WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
  3055. if (err < 0)
  3056. goto out;
  3057. s_prividx = 0;
  3058. s_idxattr = 0;
  3059. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  3060. cont:
  3061. idx++;
  3062. }
  3063. }
  3064. out:
  3065. cb->args[3] = s_prividx;
  3066. cb->args[2] = s_idxattr;
  3067. cb->args[1] = idx;
  3068. cb->args[0] = h;
  3069. return skb->len;
  3070. }
  3071. /* Process one rtnetlink message. */
  3072. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  3073. {
  3074. struct net *net = sock_net(skb->sk);
  3075. rtnl_doit_func doit;
  3076. int kind;
  3077. int family;
  3078. int type;
  3079. int err;
  3080. type = nlh->nlmsg_type;
  3081. if (type > RTM_MAX)
  3082. return -EOPNOTSUPP;
  3083. type -= RTM_BASE;
  3084. /* All the messages must have at least 1 byte length */
  3085. if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
  3086. return 0;
  3087. family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
  3088. kind = type&3;
  3089. if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
  3090. return -EPERM;
  3091. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  3092. struct sock *rtnl;
  3093. rtnl_dumpit_func dumpit;
  3094. rtnl_calcit_func calcit;
  3095. u16 min_dump_alloc = 0;
  3096. dumpit = rtnl_get_dumpit(family, type);
  3097. if (dumpit == NULL)
  3098. return -EOPNOTSUPP;
  3099. calcit = rtnl_get_calcit(family, type);
  3100. if (calcit)
  3101. min_dump_alloc = calcit(skb, nlh);
  3102. __rtnl_unlock();
  3103. rtnl = net->rtnl;
  3104. {
  3105. struct netlink_dump_control c = {
  3106. .dump = dumpit,
  3107. .min_dump_alloc = min_dump_alloc,
  3108. };
  3109. err = netlink_dump_start(rtnl, skb, nlh, &c);
  3110. }
  3111. rtnl_lock();
  3112. return err;
  3113. }
  3114. doit = rtnl_get_doit(family, type);
  3115. if (doit == NULL)
  3116. return -EOPNOTSUPP;
  3117. return doit(skb, nlh);
  3118. }
  3119. static void rtnetlink_rcv(struct sk_buff *skb)
  3120. {
  3121. rtnl_lock();
  3122. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  3123. rtnl_unlock();
  3124. }
  3125. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  3126. {
  3127. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  3128. switch (event) {
  3129. case NETDEV_UP:
  3130. case NETDEV_DOWN:
  3131. case NETDEV_PRE_UP:
  3132. case NETDEV_POST_INIT:
  3133. case NETDEV_REGISTER:
  3134. case NETDEV_CHANGE:
  3135. case NETDEV_PRE_TYPE_CHANGE:
  3136. case NETDEV_GOING_DOWN:
  3137. case NETDEV_UNREGISTER:
  3138. case NETDEV_UNREGISTER_FINAL:
  3139. case NETDEV_RELEASE:
  3140. case NETDEV_JOIN:
  3141. case NETDEV_BONDING_INFO:
  3142. break;
  3143. default:
  3144. rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
  3145. break;
  3146. }
  3147. return NOTIFY_DONE;
  3148. }
  3149. static struct notifier_block rtnetlink_dev_notifier = {
  3150. .notifier_call = rtnetlink_event,
  3151. };
  3152. static int __net_init rtnetlink_net_init(struct net *net)
  3153. {
  3154. struct sock *sk;
  3155. struct netlink_kernel_cfg cfg = {
  3156. .groups = RTNLGRP_MAX,
  3157. .input = rtnetlink_rcv,
  3158. .cb_mutex = &rtnl_mutex,
  3159. .flags = NL_CFG_F_NONROOT_RECV,
  3160. };
  3161. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  3162. if (!sk)
  3163. return -ENOMEM;
  3164. net->rtnl = sk;
  3165. return 0;
  3166. }
  3167. static void __net_exit rtnetlink_net_exit(struct net *net)
  3168. {
  3169. netlink_kernel_release(net->rtnl);
  3170. net->rtnl = NULL;
  3171. }
  3172. static struct pernet_operations rtnetlink_net_ops = {
  3173. .init = rtnetlink_net_init,
  3174. .exit = rtnetlink_net_exit,
  3175. };
  3176. void __init rtnetlink_init(void)
  3177. {
  3178. if (register_pernet_subsys(&rtnetlink_net_ops))
  3179. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  3180. register_netdevice_notifier(&rtnetlink_dev_notifier);
  3181. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  3182. rtnl_dump_ifinfo, rtnl_calcit);
  3183. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  3184. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  3185. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  3186. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  3187. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  3188. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  3189. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  3190. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  3191. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  3192. rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
  3193. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  3194. rtnl_register(PF_UNSPEC, RTM_GETSTATS, rtnl_stats_get, rtnl_stats_dump,
  3195. NULL);
  3196. }