huge_memory.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/swapops.h>
  18. #include <linux/dax.h>
  19. #include <linux/kthread.h>
  20. #include <linux/khugepaged.h>
  21. #include <linux/freezer.h>
  22. #include <linux/pfn_t.h>
  23. #include <linux/mman.h>
  24. #include <linux/memremap.h>
  25. #include <linux/pagemap.h>
  26. #include <linux/debugfs.h>
  27. #include <linux/migrate.h>
  28. #include <linux/hashtable.h>
  29. #include <linux/userfaultfd_k.h>
  30. #include <linux/page_idle.h>
  31. #include <asm/tlb.h>
  32. #include <asm/pgalloc.h>
  33. #include "internal.h"
  34. enum scan_result {
  35. SCAN_FAIL,
  36. SCAN_SUCCEED,
  37. SCAN_PMD_NULL,
  38. SCAN_EXCEED_NONE_PTE,
  39. SCAN_PTE_NON_PRESENT,
  40. SCAN_PAGE_RO,
  41. SCAN_NO_REFERENCED_PAGE,
  42. SCAN_PAGE_NULL,
  43. SCAN_SCAN_ABORT,
  44. SCAN_PAGE_COUNT,
  45. SCAN_PAGE_LRU,
  46. SCAN_PAGE_LOCK,
  47. SCAN_PAGE_ANON,
  48. SCAN_PAGE_COMPOUND,
  49. SCAN_ANY_PROCESS,
  50. SCAN_VMA_NULL,
  51. SCAN_VMA_CHECK,
  52. SCAN_ADDRESS_RANGE,
  53. SCAN_SWAP_CACHE_PAGE,
  54. SCAN_DEL_PAGE_LRU,
  55. SCAN_ALLOC_HUGE_PAGE_FAIL,
  56. SCAN_CGROUP_CHARGE_FAIL
  57. };
  58. #define CREATE_TRACE_POINTS
  59. #include <trace/events/huge_memory.h>
  60. /*
  61. * By default transparent hugepage support is disabled in order that avoid
  62. * to risk increase the memory footprint of applications without a guaranteed
  63. * benefit. When transparent hugepage support is enabled, is for all mappings,
  64. * and khugepaged scans all mappings.
  65. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  66. * for all hugepage allocations.
  67. */
  68. unsigned long transparent_hugepage_flags __read_mostly =
  69. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  70. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  71. #endif
  72. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  73. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  74. #endif
  75. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  76. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  77. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  78. /* default scan 8*512 pte (or vmas) every 30 second */
  79. static unsigned int khugepaged_pages_to_scan __read_mostly;
  80. static unsigned int khugepaged_pages_collapsed;
  81. static unsigned int khugepaged_full_scans;
  82. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  83. /* during fragmentation poll the hugepage allocator once every minute */
  84. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  85. static struct task_struct *khugepaged_thread __read_mostly;
  86. static DEFINE_MUTEX(khugepaged_mutex);
  87. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  88. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  89. /*
  90. * default collapse hugepages if there is at least one pte mapped like
  91. * it would have happened if the vma was large enough during page
  92. * fault.
  93. */
  94. static unsigned int khugepaged_max_ptes_none __read_mostly;
  95. static int khugepaged(void *none);
  96. static int khugepaged_slab_init(void);
  97. static void khugepaged_slab_exit(void);
  98. #define MM_SLOTS_HASH_BITS 10
  99. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  100. static struct kmem_cache *mm_slot_cache __read_mostly;
  101. /**
  102. * struct mm_slot - hash lookup from mm to mm_slot
  103. * @hash: hash collision list
  104. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  105. * @mm: the mm that this information is valid for
  106. */
  107. struct mm_slot {
  108. struct hlist_node hash;
  109. struct list_head mm_node;
  110. struct mm_struct *mm;
  111. };
  112. /**
  113. * struct khugepaged_scan - cursor for scanning
  114. * @mm_head: the head of the mm list to scan
  115. * @mm_slot: the current mm_slot we are scanning
  116. * @address: the next address inside that to be scanned
  117. *
  118. * There is only the one khugepaged_scan instance of this cursor structure.
  119. */
  120. struct khugepaged_scan {
  121. struct list_head mm_head;
  122. struct mm_slot *mm_slot;
  123. unsigned long address;
  124. };
  125. static struct khugepaged_scan khugepaged_scan = {
  126. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  127. };
  128. static struct shrinker deferred_split_shrinker;
  129. static void set_recommended_min_free_kbytes(void)
  130. {
  131. struct zone *zone;
  132. int nr_zones = 0;
  133. unsigned long recommended_min;
  134. for_each_populated_zone(zone)
  135. nr_zones++;
  136. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  137. recommended_min = pageblock_nr_pages * nr_zones * 2;
  138. /*
  139. * Make sure that on average at least two pageblocks are almost free
  140. * of another type, one for a migratetype to fall back to and a
  141. * second to avoid subsequent fallbacks of other types There are 3
  142. * MIGRATE_TYPES we care about.
  143. */
  144. recommended_min += pageblock_nr_pages * nr_zones *
  145. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  146. /* don't ever allow to reserve more than 5% of the lowmem */
  147. recommended_min = min(recommended_min,
  148. (unsigned long) nr_free_buffer_pages() / 20);
  149. recommended_min <<= (PAGE_SHIFT-10);
  150. if (recommended_min > min_free_kbytes) {
  151. if (user_min_free_kbytes >= 0)
  152. pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
  153. min_free_kbytes, recommended_min);
  154. min_free_kbytes = recommended_min;
  155. }
  156. setup_per_zone_wmarks();
  157. }
  158. static int start_stop_khugepaged(void)
  159. {
  160. int err = 0;
  161. if (khugepaged_enabled()) {
  162. if (!khugepaged_thread)
  163. khugepaged_thread = kthread_run(khugepaged, NULL,
  164. "khugepaged");
  165. if (IS_ERR(khugepaged_thread)) {
  166. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  167. err = PTR_ERR(khugepaged_thread);
  168. khugepaged_thread = NULL;
  169. goto fail;
  170. }
  171. if (!list_empty(&khugepaged_scan.mm_head))
  172. wake_up_interruptible(&khugepaged_wait);
  173. set_recommended_min_free_kbytes();
  174. } else if (khugepaged_thread) {
  175. kthread_stop(khugepaged_thread);
  176. khugepaged_thread = NULL;
  177. }
  178. fail:
  179. return err;
  180. }
  181. static atomic_t huge_zero_refcount;
  182. struct page *huge_zero_page __read_mostly;
  183. struct page *get_huge_zero_page(void)
  184. {
  185. struct page *zero_page;
  186. retry:
  187. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  188. return READ_ONCE(huge_zero_page);
  189. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  190. HPAGE_PMD_ORDER);
  191. if (!zero_page) {
  192. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  193. return NULL;
  194. }
  195. count_vm_event(THP_ZERO_PAGE_ALLOC);
  196. preempt_disable();
  197. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  198. preempt_enable();
  199. __free_pages(zero_page, compound_order(zero_page));
  200. goto retry;
  201. }
  202. /* We take additional reference here. It will be put back by shrinker */
  203. atomic_set(&huge_zero_refcount, 2);
  204. preempt_enable();
  205. return READ_ONCE(huge_zero_page);
  206. }
  207. void put_huge_zero_page(void)
  208. {
  209. /*
  210. * Counter should never go to zero here. Only shrinker can put
  211. * last reference.
  212. */
  213. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  214. }
  215. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  216. struct shrink_control *sc)
  217. {
  218. /* we can free zero page only if last reference remains */
  219. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  220. }
  221. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  222. struct shrink_control *sc)
  223. {
  224. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  225. struct page *zero_page = xchg(&huge_zero_page, NULL);
  226. BUG_ON(zero_page == NULL);
  227. __free_pages(zero_page, compound_order(zero_page));
  228. return HPAGE_PMD_NR;
  229. }
  230. return 0;
  231. }
  232. static struct shrinker huge_zero_page_shrinker = {
  233. .count_objects = shrink_huge_zero_page_count,
  234. .scan_objects = shrink_huge_zero_page_scan,
  235. .seeks = DEFAULT_SEEKS,
  236. };
  237. #ifdef CONFIG_SYSFS
  238. static ssize_t triple_flag_store(struct kobject *kobj,
  239. struct kobj_attribute *attr,
  240. const char *buf, size_t count,
  241. enum transparent_hugepage_flag enabled,
  242. enum transparent_hugepage_flag deferred,
  243. enum transparent_hugepage_flag req_madv)
  244. {
  245. if (!memcmp("defer", buf,
  246. min(sizeof("defer")-1, count))) {
  247. if (enabled == deferred)
  248. return -EINVAL;
  249. clear_bit(enabled, &transparent_hugepage_flags);
  250. clear_bit(req_madv, &transparent_hugepage_flags);
  251. set_bit(deferred, &transparent_hugepage_flags);
  252. } else if (!memcmp("always", buf,
  253. min(sizeof("always")-1, count))) {
  254. clear_bit(deferred, &transparent_hugepage_flags);
  255. clear_bit(req_madv, &transparent_hugepage_flags);
  256. set_bit(enabled, &transparent_hugepage_flags);
  257. } else if (!memcmp("madvise", buf,
  258. min(sizeof("madvise")-1, count))) {
  259. clear_bit(enabled, &transparent_hugepage_flags);
  260. clear_bit(deferred, &transparent_hugepage_flags);
  261. set_bit(req_madv, &transparent_hugepage_flags);
  262. } else if (!memcmp("never", buf,
  263. min(sizeof("never")-1, count))) {
  264. clear_bit(enabled, &transparent_hugepage_flags);
  265. clear_bit(req_madv, &transparent_hugepage_flags);
  266. clear_bit(deferred, &transparent_hugepage_flags);
  267. } else
  268. return -EINVAL;
  269. return count;
  270. }
  271. static ssize_t enabled_show(struct kobject *kobj,
  272. struct kobj_attribute *attr, char *buf)
  273. {
  274. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  275. return sprintf(buf, "[always] madvise never\n");
  276. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  277. return sprintf(buf, "always [madvise] never\n");
  278. else
  279. return sprintf(buf, "always madvise [never]\n");
  280. }
  281. static ssize_t enabled_store(struct kobject *kobj,
  282. struct kobj_attribute *attr,
  283. const char *buf, size_t count)
  284. {
  285. ssize_t ret;
  286. ret = triple_flag_store(kobj, attr, buf, count,
  287. TRANSPARENT_HUGEPAGE_FLAG,
  288. TRANSPARENT_HUGEPAGE_FLAG,
  289. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  290. if (ret > 0) {
  291. int err;
  292. mutex_lock(&khugepaged_mutex);
  293. err = start_stop_khugepaged();
  294. mutex_unlock(&khugepaged_mutex);
  295. if (err)
  296. ret = err;
  297. }
  298. return ret;
  299. }
  300. static struct kobj_attribute enabled_attr =
  301. __ATTR(enabled, 0644, enabled_show, enabled_store);
  302. static ssize_t single_flag_show(struct kobject *kobj,
  303. struct kobj_attribute *attr, char *buf,
  304. enum transparent_hugepage_flag flag)
  305. {
  306. return sprintf(buf, "%d\n",
  307. !!test_bit(flag, &transparent_hugepage_flags));
  308. }
  309. static ssize_t single_flag_store(struct kobject *kobj,
  310. struct kobj_attribute *attr,
  311. const char *buf, size_t count,
  312. enum transparent_hugepage_flag flag)
  313. {
  314. unsigned long value;
  315. int ret;
  316. ret = kstrtoul(buf, 10, &value);
  317. if (ret < 0)
  318. return ret;
  319. if (value > 1)
  320. return -EINVAL;
  321. if (value)
  322. set_bit(flag, &transparent_hugepage_flags);
  323. else
  324. clear_bit(flag, &transparent_hugepage_flags);
  325. return count;
  326. }
  327. /*
  328. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  329. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  330. * memory just to allocate one more hugepage.
  331. */
  332. static ssize_t defrag_show(struct kobject *kobj,
  333. struct kobj_attribute *attr, char *buf)
  334. {
  335. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  336. return sprintf(buf, "[always] defer madvise never\n");
  337. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  338. return sprintf(buf, "always [defer] madvise never\n");
  339. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  340. return sprintf(buf, "always defer [madvise] never\n");
  341. else
  342. return sprintf(buf, "always defer madvise [never]\n");
  343. }
  344. static ssize_t defrag_store(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. const char *buf, size_t count)
  347. {
  348. return triple_flag_store(kobj, attr, buf, count,
  349. TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  350. TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  351. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  352. }
  353. static struct kobj_attribute defrag_attr =
  354. __ATTR(defrag, 0644, defrag_show, defrag_store);
  355. static ssize_t use_zero_page_show(struct kobject *kobj,
  356. struct kobj_attribute *attr, char *buf)
  357. {
  358. return single_flag_show(kobj, attr, buf,
  359. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  360. }
  361. static ssize_t use_zero_page_store(struct kobject *kobj,
  362. struct kobj_attribute *attr, const char *buf, size_t count)
  363. {
  364. return single_flag_store(kobj, attr, buf, count,
  365. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  366. }
  367. static struct kobj_attribute use_zero_page_attr =
  368. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  369. #ifdef CONFIG_DEBUG_VM
  370. static ssize_t debug_cow_show(struct kobject *kobj,
  371. struct kobj_attribute *attr, char *buf)
  372. {
  373. return single_flag_show(kobj, attr, buf,
  374. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  375. }
  376. static ssize_t debug_cow_store(struct kobject *kobj,
  377. struct kobj_attribute *attr,
  378. const char *buf, size_t count)
  379. {
  380. return single_flag_store(kobj, attr, buf, count,
  381. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  382. }
  383. static struct kobj_attribute debug_cow_attr =
  384. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  385. #endif /* CONFIG_DEBUG_VM */
  386. static struct attribute *hugepage_attr[] = {
  387. &enabled_attr.attr,
  388. &defrag_attr.attr,
  389. &use_zero_page_attr.attr,
  390. #ifdef CONFIG_DEBUG_VM
  391. &debug_cow_attr.attr,
  392. #endif
  393. NULL,
  394. };
  395. static struct attribute_group hugepage_attr_group = {
  396. .attrs = hugepage_attr,
  397. };
  398. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  399. struct kobj_attribute *attr,
  400. char *buf)
  401. {
  402. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  403. }
  404. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. const char *buf, size_t count)
  407. {
  408. unsigned long msecs;
  409. int err;
  410. err = kstrtoul(buf, 10, &msecs);
  411. if (err || msecs > UINT_MAX)
  412. return -EINVAL;
  413. khugepaged_scan_sleep_millisecs = msecs;
  414. wake_up_interruptible(&khugepaged_wait);
  415. return count;
  416. }
  417. static struct kobj_attribute scan_sleep_millisecs_attr =
  418. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  419. scan_sleep_millisecs_store);
  420. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  421. struct kobj_attribute *attr,
  422. char *buf)
  423. {
  424. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  425. }
  426. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  427. struct kobj_attribute *attr,
  428. const char *buf, size_t count)
  429. {
  430. unsigned long msecs;
  431. int err;
  432. err = kstrtoul(buf, 10, &msecs);
  433. if (err || msecs > UINT_MAX)
  434. return -EINVAL;
  435. khugepaged_alloc_sleep_millisecs = msecs;
  436. wake_up_interruptible(&khugepaged_wait);
  437. return count;
  438. }
  439. static struct kobj_attribute alloc_sleep_millisecs_attr =
  440. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  441. alloc_sleep_millisecs_store);
  442. static ssize_t pages_to_scan_show(struct kobject *kobj,
  443. struct kobj_attribute *attr,
  444. char *buf)
  445. {
  446. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  447. }
  448. static ssize_t pages_to_scan_store(struct kobject *kobj,
  449. struct kobj_attribute *attr,
  450. const char *buf, size_t count)
  451. {
  452. int err;
  453. unsigned long pages;
  454. err = kstrtoul(buf, 10, &pages);
  455. if (err || !pages || pages > UINT_MAX)
  456. return -EINVAL;
  457. khugepaged_pages_to_scan = pages;
  458. return count;
  459. }
  460. static struct kobj_attribute pages_to_scan_attr =
  461. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  462. pages_to_scan_store);
  463. static ssize_t pages_collapsed_show(struct kobject *kobj,
  464. struct kobj_attribute *attr,
  465. char *buf)
  466. {
  467. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  468. }
  469. static struct kobj_attribute pages_collapsed_attr =
  470. __ATTR_RO(pages_collapsed);
  471. static ssize_t full_scans_show(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. char *buf)
  474. {
  475. return sprintf(buf, "%u\n", khugepaged_full_scans);
  476. }
  477. static struct kobj_attribute full_scans_attr =
  478. __ATTR_RO(full_scans);
  479. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  480. struct kobj_attribute *attr, char *buf)
  481. {
  482. return single_flag_show(kobj, attr, buf,
  483. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  484. }
  485. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  486. struct kobj_attribute *attr,
  487. const char *buf, size_t count)
  488. {
  489. return single_flag_store(kobj, attr, buf, count,
  490. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  491. }
  492. static struct kobj_attribute khugepaged_defrag_attr =
  493. __ATTR(defrag, 0644, khugepaged_defrag_show,
  494. khugepaged_defrag_store);
  495. /*
  496. * max_ptes_none controls if khugepaged should collapse hugepages over
  497. * any unmapped ptes in turn potentially increasing the memory
  498. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  499. * reduce the available free memory in the system as it
  500. * runs. Increasing max_ptes_none will instead potentially reduce the
  501. * free memory in the system during the khugepaged scan.
  502. */
  503. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  504. struct kobj_attribute *attr,
  505. char *buf)
  506. {
  507. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  508. }
  509. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  510. struct kobj_attribute *attr,
  511. const char *buf, size_t count)
  512. {
  513. int err;
  514. unsigned long max_ptes_none;
  515. err = kstrtoul(buf, 10, &max_ptes_none);
  516. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  517. return -EINVAL;
  518. khugepaged_max_ptes_none = max_ptes_none;
  519. return count;
  520. }
  521. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  522. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  523. khugepaged_max_ptes_none_store);
  524. static struct attribute *khugepaged_attr[] = {
  525. &khugepaged_defrag_attr.attr,
  526. &khugepaged_max_ptes_none_attr.attr,
  527. &pages_to_scan_attr.attr,
  528. &pages_collapsed_attr.attr,
  529. &full_scans_attr.attr,
  530. &scan_sleep_millisecs_attr.attr,
  531. &alloc_sleep_millisecs_attr.attr,
  532. NULL,
  533. };
  534. static struct attribute_group khugepaged_attr_group = {
  535. .attrs = khugepaged_attr,
  536. .name = "khugepaged",
  537. };
  538. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  539. {
  540. int err;
  541. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  542. if (unlikely(!*hugepage_kobj)) {
  543. pr_err("failed to create transparent hugepage kobject\n");
  544. return -ENOMEM;
  545. }
  546. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  547. if (err) {
  548. pr_err("failed to register transparent hugepage group\n");
  549. goto delete_obj;
  550. }
  551. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  552. if (err) {
  553. pr_err("failed to register transparent hugepage group\n");
  554. goto remove_hp_group;
  555. }
  556. return 0;
  557. remove_hp_group:
  558. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  559. delete_obj:
  560. kobject_put(*hugepage_kobj);
  561. return err;
  562. }
  563. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  564. {
  565. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  566. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  567. kobject_put(hugepage_kobj);
  568. }
  569. #else
  570. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  571. {
  572. return 0;
  573. }
  574. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  575. {
  576. }
  577. #endif /* CONFIG_SYSFS */
  578. static int __init hugepage_init(void)
  579. {
  580. int err;
  581. struct kobject *hugepage_kobj;
  582. if (!has_transparent_hugepage()) {
  583. transparent_hugepage_flags = 0;
  584. return -EINVAL;
  585. }
  586. khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
  587. khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
  588. /*
  589. * hugepages can't be allocated by the buddy allocator
  590. */
  591. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  592. /*
  593. * we use page->mapping and page->index in second tail page
  594. * as list_head: assuming THP order >= 2
  595. */
  596. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  597. err = hugepage_init_sysfs(&hugepage_kobj);
  598. if (err)
  599. goto err_sysfs;
  600. err = khugepaged_slab_init();
  601. if (err)
  602. goto err_slab;
  603. err = register_shrinker(&huge_zero_page_shrinker);
  604. if (err)
  605. goto err_hzp_shrinker;
  606. err = register_shrinker(&deferred_split_shrinker);
  607. if (err)
  608. goto err_split_shrinker;
  609. /*
  610. * By default disable transparent hugepages on smaller systems,
  611. * where the extra memory used could hurt more than TLB overhead
  612. * is likely to save. The admin can still enable it through /sys.
  613. */
  614. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  615. transparent_hugepage_flags = 0;
  616. return 0;
  617. }
  618. err = start_stop_khugepaged();
  619. if (err)
  620. goto err_khugepaged;
  621. return 0;
  622. err_khugepaged:
  623. unregister_shrinker(&deferred_split_shrinker);
  624. err_split_shrinker:
  625. unregister_shrinker(&huge_zero_page_shrinker);
  626. err_hzp_shrinker:
  627. khugepaged_slab_exit();
  628. err_slab:
  629. hugepage_exit_sysfs(hugepage_kobj);
  630. err_sysfs:
  631. return err;
  632. }
  633. subsys_initcall(hugepage_init);
  634. static int __init setup_transparent_hugepage(char *str)
  635. {
  636. int ret = 0;
  637. if (!str)
  638. goto out;
  639. if (!strcmp(str, "always")) {
  640. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  641. &transparent_hugepage_flags);
  642. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  643. &transparent_hugepage_flags);
  644. ret = 1;
  645. } else if (!strcmp(str, "madvise")) {
  646. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  647. &transparent_hugepage_flags);
  648. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  649. &transparent_hugepage_flags);
  650. ret = 1;
  651. } else if (!strcmp(str, "never")) {
  652. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  653. &transparent_hugepage_flags);
  654. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  655. &transparent_hugepage_flags);
  656. ret = 1;
  657. }
  658. out:
  659. if (!ret)
  660. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  661. return ret;
  662. }
  663. __setup("transparent_hugepage=", setup_transparent_hugepage);
  664. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  665. {
  666. if (likely(vma->vm_flags & VM_WRITE))
  667. pmd = pmd_mkwrite(pmd);
  668. return pmd;
  669. }
  670. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  671. {
  672. pmd_t entry;
  673. entry = mk_pmd(page, prot);
  674. entry = pmd_mkhuge(entry);
  675. return entry;
  676. }
  677. static inline struct list_head *page_deferred_list(struct page *page)
  678. {
  679. /*
  680. * ->lru in the tail pages is occupied by compound_head.
  681. * Let's use ->mapping + ->index in the second tail page as list_head.
  682. */
  683. return (struct list_head *)&page[2].mapping;
  684. }
  685. void prep_transhuge_page(struct page *page)
  686. {
  687. /*
  688. * we use page->mapping and page->indexlru in second tail page
  689. * as list_head: assuming THP order >= 2
  690. */
  691. INIT_LIST_HEAD(page_deferred_list(page));
  692. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  693. }
  694. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  695. struct vm_area_struct *vma,
  696. unsigned long address, pmd_t *pmd,
  697. struct page *page, gfp_t gfp,
  698. unsigned int flags)
  699. {
  700. struct mem_cgroup *memcg;
  701. pgtable_t pgtable;
  702. spinlock_t *ptl;
  703. unsigned long haddr = address & HPAGE_PMD_MASK;
  704. VM_BUG_ON_PAGE(!PageCompound(page), page);
  705. if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
  706. put_page(page);
  707. count_vm_event(THP_FAULT_FALLBACK);
  708. return VM_FAULT_FALLBACK;
  709. }
  710. pgtable = pte_alloc_one(mm, haddr);
  711. if (unlikely(!pgtable)) {
  712. mem_cgroup_cancel_charge(page, memcg, true);
  713. put_page(page);
  714. return VM_FAULT_OOM;
  715. }
  716. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  717. /*
  718. * The memory barrier inside __SetPageUptodate makes sure that
  719. * clear_huge_page writes become visible before the set_pmd_at()
  720. * write.
  721. */
  722. __SetPageUptodate(page);
  723. ptl = pmd_lock(mm, pmd);
  724. if (unlikely(!pmd_none(*pmd))) {
  725. spin_unlock(ptl);
  726. mem_cgroup_cancel_charge(page, memcg, true);
  727. put_page(page);
  728. pte_free(mm, pgtable);
  729. } else {
  730. pmd_t entry;
  731. /* Deliver the page fault to userland */
  732. if (userfaultfd_missing(vma)) {
  733. int ret;
  734. spin_unlock(ptl);
  735. mem_cgroup_cancel_charge(page, memcg, true);
  736. put_page(page);
  737. pte_free(mm, pgtable);
  738. ret = handle_userfault(vma, address, flags,
  739. VM_UFFD_MISSING);
  740. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  741. return ret;
  742. }
  743. entry = mk_huge_pmd(page, vma->vm_page_prot);
  744. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  745. page_add_new_anon_rmap(page, vma, haddr, true);
  746. mem_cgroup_commit_charge(page, memcg, false, true);
  747. lru_cache_add_active_or_unevictable(page, vma);
  748. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  749. set_pmd_at(mm, haddr, pmd, entry);
  750. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  751. atomic_long_inc(&mm->nr_ptes);
  752. spin_unlock(ptl);
  753. count_vm_event(THP_FAULT_ALLOC);
  754. }
  755. return 0;
  756. }
  757. /*
  758. * If THP is set to always then directly reclaim/compact as necessary
  759. * If set to defer then do no reclaim and defer to khugepaged
  760. * If set to madvise and the VMA is flagged then directly reclaim/compact
  761. */
  762. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  763. {
  764. gfp_t reclaim_flags = 0;
  765. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
  766. (vma->vm_flags & VM_HUGEPAGE))
  767. reclaim_flags = __GFP_DIRECT_RECLAIM;
  768. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  769. reclaim_flags = __GFP_KSWAPD_RECLAIM;
  770. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  771. reclaim_flags = __GFP_DIRECT_RECLAIM;
  772. return GFP_TRANSHUGE | reclaim_flags;
  773. }
  774. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  775. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  776. {
  777. return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
  778. }
  779. /* Caller must hold page table lock. */
  780. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  781. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  782. struct page *zero_page)
  783. {
  784. pmd_t entry;
  785. if (!pmd_none(*pmd))
  786. return false;
  787. entry = mk_pmd(zero_page, vma->vm_page_prot);
  788. entry = pmd_mkhuge(entry);
  789. if (pgtable)
  790. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  791. set_pmd_at(mm, haddr, pmd, entry);
  792. atomic_long_inc(&mm->nr_ptes);
  793. return true;
  794. }
  795. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  796. unsigned long address, pmd_t *pmd,
  797. unsigned int flags)
  798. {
  799. gfp_t gfp;
  800. struct page *page;
  801. unsigned long haddr = address & HPAGE_PMD_MASK;
  802. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  803. return VM_FAULT_FALLBACK;
  804. if (unlikely(anon_vma_prepare(vma)))
  805. return VM_FAULT_OOM;
  806. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  807. return VM_FAULT_OOM;
  808. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  809. transparent_hugepage_use_zero_page()) {
  810. spinlock_t *ptl;
  811. pgtable_t pgtable;
  812. struct page *zero_page;
  813. bool set;
  814. int ret;
  815. pgtable = pte_alloc_one(mm, haddr);
  816. if (unlikely(!pgtable))
  817. return VM_FAULT_OOM;
  818. zero_page = get_huge_zero_page();
  819. if (unlikely(!zero_page)) {
  820. pte_free(mm, pgtable);
  821. count_vm_event(THP_FAULT_FALLBACK);
  822. return VM_FAULT_FALLBACK;
  823. }
  824. ptl = pmd_lock(mm, pmd);
  825. ret = 0;
  826. set = false;
  827. if (pmd_none(*pmd)) {
  828. if (userfaultfd_missing(vma)) {
  829. spin_unlock(ptl);
  830. ret = handle_userfault(vma, address, flags,
  831. VM_UFFD_MISSING);
  832. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  833. } else {
  834. set_huge_zero_page(pgtable, mm, vma,
  835. haddr, pmd,
  836. zero_page);
  837. spin_unlock(ptl);
  838. set = true;
  839. }
  840. } else
  841. spin_unlock(ptl);
  842. if (!set) {
  843. pte_free(mm, pgtable);
  844. put_huge_zero_page();
  845. }
  846. return ret;
  847. }
  848. gfp = alloc_hugepage_direct_gfpmask(vma);
  849. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  850. if (unlikely(!page)) {
  851. count_vm_event(THP_FAULT_FALLBACK);
  852. return VM_FAULT_FALLBACK;
  853. }
  854. prep_transhuge_page(page);
  855. return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
  856. flags);
  857. }
  858. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  859. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  860. {
  861. struct mm_struct *mm = vma->vm_mm;
  862. pmd_t entry;
  863. spinlock_t *ptl;
  864. ptl = pmd_lock(mm, pmd);
  865. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  866. if (pfn_t_devmap(pfn))
  867. entry = pmd_mkdevmap(entry);
  868. if (write) {
  869. entry = pmd_mkyoung(pmd_mkdirty(entry));
  870. entry = maybe_pmd_mkwrite(entry, vma);
  871. }
  872. set_pmd_at(mm, addr, pmd, entry);
  873. update_mmu_cache_pmd(vma, addr, pmd);
  874. spin_unlock(ptl);
  875. }
  876. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  877. pmd_t *pmd, pfn_t pfn, bool write)
  878. {
  879. pgprot_t pgprot = vma->vm_page_prot;
  880. /*
  881. * If we had pmd_special, we could avoid all these restrictions,
  882. * but we need to be consistent with PTEs and architectures that
  883. * can't support a 'special' bit.
  884. */
  885. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  886. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  887. (VM_PFNMAP|VM_MIXEDMAP));
  888. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  889. BUG_ON(!pfn_t_devmap(pfn));
  890. if (addr < vma->vm_start || addr >= vma->vm_end)
  891. return VM_FAULT_SIGBUS;
  892. if (track_pfn_insert(vma, &pgprot, pfn))
  893. return VM_FAULT_SIGBUS;
  894. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  895. return VM_FAULT_NOPAGE;
  896. }
  897. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  898. pmd_t *pmd)
  899. {
  900. pmd_t _pmd;
  901. /*
  902. * We should set the dirty bit only for FOLL_WRITE but for now
  903. * the dirty bit in the pmd is meaningless. And if the dirty
  904. * bit will become meaningful and we'll only set it with
  905. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  906. * set the young bit, instead of the current set_pmd_at.
  907. */
  908. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  909. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  910. pmd, _pmd, 1))
  911. update_mmu_cache_pmd(vma, addr, pmd);
  912. }
  913. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  914. pmd_t *pmd, int flags)
  915. {
  916. unsigned long pfn = pmd_pfn(*pmd);
  917. struct mm_struct *mm = vma->vm_mm;
  918. struct dev_pagemap *pgmap;
  919. struct page *page;
  920. assert_spin_locked(pmd_lockptr(mm, pmd));
  921. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  922. return NULL;
  923. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  924. /* pass */;
  925. else
  926. return NULL;
  927. if (flags & FOLL_TOUCH)
  928. touch_pmd(vma, addr, pmd);
  929. /*
  930. * device mapped pages can only be returned if the
  931. * caller will manage the page reference count.
  932. */
  933. if (!(flags & FOLL_GET))
  934. return ERR_PTR(-EEXIST);
  935. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  936. pgmap = get_dev_pagemap(pfn, NULL);
  937. if (!pgmap)
  938. return ERR_PTR(-EFAULT);
  939. page = pfn_to_page(pfn);
  940. get_page(page);
  941. put_dev_pagemap(pgmap);
  942. return page;
  943. }
  944. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  945. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  946. struct vm_area_struct *vma)
  947. {
  948. spinlock_t *dst_ptl, *src_ptl;
  949. struct page *src_page;
  950. pmd_t pmd;
  951. pgtable_t pgtable = NULL;
  952. int ret;
  953. if (!vma_is_dax(vma)) {
  954. ret = -ENOMEM;
  955. pgtable = pte_alloc_one(dst_mm, addr);
  956. if (unlikely(!pgtable))
  957. goto out;
  958. }
  959. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  960. src_ptl = pmd_lockptr(src_mm, src_pmd);
  961. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  962. ret = -EAGAIN;
  963. pmd = *src_pmd;
  964. if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
  965. pte_free(dst_mm, pgtable);
  966. goto out_unlock;
  967. }
  968. /*
  969. * When page table lock is held, the huge zero pmd should not be
  970. * under splitting since we don't split the page itself, only pmd to
  971. * a page table.
  972. */
  973. if (is_huge_zero_pmd(pmd)) {
  974. struct page *zero_page;
  975. /*
  976. * get_huge_zero_page() will never allocate a new page here,
  977. * since we already have a zero page to copy. It just takes a
  978. * reference.
  979. */
  980. zero_page = get_huge_zero_page();
  981. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  982. zero_page);
  983. ret = 0;
  984. goto out_unlock;
  985. }
  986. if (!vma_is_dax(vma)) {
  987. /* thp accounting separate from pmd_devmap accounting */
  988. src_page = pmd_page(pmd);
  989. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  990. get_page(src_page);
  991. page_dup_rmap(src_page, true);
  992. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  993. atomic_long_inc(&dst_mm->nr_ptes);
  994. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  995. }
  996. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  997. pmd = pmd_mkold(pmd_wrprotect(pmd));
  998. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  999. ret = 0;
  1000. out_unlock:
  1001. spin_unlock(src_ptl);
  1002. spin_unlock(dst_ptl);
  1003. out:
  1004. return ret;
  1005. }
  1006. void huge_pmd_set_accessed(struct mm_struct *mm,
  1007. struct vm_area_struct *vma,
  1008. unsigned long address,
  1009. pmd_t *pmd, pmd_t orig_pmd,
  1010. int dirty)
  1011. {
  1012. spinlock_t *ptl;
  1013. pmd_t entry;
  1014. unsigned long haddr;
  1015. ptl = pmd_lock(mm, pmd);
  1016. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1017. goto unlock;
  1018. entry = pmd_mkyoung(orig_pmd);
  1019. haddr = address & HPAGE_PMD_MASK;
  1020. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  1021. update_mmu_cache_pmd(vma, address, pmd);
  1022. unlock:
  1023. spin_unlock(ptl);
  1024. }
  1025. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  1026. struct vm_area_struct *vma,
  1027. unsigned long address,
  1028. pmd_t *pmd, pmd_t orig_pmd,
  1029. struct page *page,
  1030. unsigned long haddr)
  1031. {
  1032. struct mem_cgroup *memcg;
  1033. spinlock_t *ptl;
  1034. pgtable_t pgtable;
  1035. pmd_t _pmd;
  1036. int ret = 0, i;
  1037. struct page **pages;
  1038. unsigned long mmun_start; /* For mmu_notifiers */
  1039. unsigned long mmun_end; /* For mmu_notifiers */
  1040. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  1041. GFP_KERNEL);
  1042. if (unlikely(!pages)) {
  1043. ret |= VM_FAULT_OOM;
  1044. goto out;
  1045. }
  1046. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1047. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  1048. __GFP_OTHER_NODE,
  1049. vma, address, page_to_nid(page));
  1050. if (unlikely(!pages[i] ||
  1051. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  1052. &memcg, false))) {
  1053. if (pages[i])
  1054. put_page(pages[i]);
  1055. while (--i >= 0) {
  1056. memcg = (void *)page_private(pages[i]);
  1057. set_page_private(pages[i], 0);
  1058. mem_cgroup_cancel_charge(pages[i], memcg,
  1059. false);
  1060. put_page(pages[i]);
  1061. }
  1062. kfree(pages);
  1063. ret |= VM_FAULT_OOM;
  1064. goto out;
  1065. }
  1066. set_page_private(pages[i], (unsigned long)memcg);
  1067. }
  1068. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1069. copy_user_highpage(pages[i], page + i,
  1070. haddr + PAGE_SIZE * i, vma);
  1071. __SetPageUptodate(pages[i]);
  1072. cond_resched();
  1073. }
  1074. mmun_start = haddr;
  1075. mmun_end = haddr + HPAGE_PMD_SIZE;
  1076. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1077. ptl = pmd_lock(mm, pmd);
  1078. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1079. goto out_free_pages;
  1080. VM_BUG_ON_PAGE(!PageHead(page), page);
  1081. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1082. /* leave pmd empty until pte is filled */
  1083. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1084. pmd_populate(mm, &_pmd, pgtable);
  1085. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1086. pte_t *pte, entry;
  1087. entry = mk_pte(pages[i], vma->vm_page_prot);
  1088. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1089. memcg = (void *)page_private(pages[i]);
  1090. set_page_private(pages[i], 0);
  1091. page_add_new_anon_rmap(pages[i], vma, haddr, false);
  1092. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1093. lru_cache_add_active_or_unevictable(pages[i], vma);
  1094. pte = pte_offset_map(&_pmd, haddr);
  1095. VM_BUG_ON(!pte_none(*pte));
  1096. set_pte_at(mm, haddr, pte, entry);
  1097. pte_unmap(pte);
  1098. }
  1099. kfree(pages);
  1100. smp_wmb(); /* make pte visible before pmd */
  1101. pmd_populate(mm, pmd, pgtable);
  1102. page_remove_rmap(page, true);
  1103. spin_unlock(ptl);
  1104. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1105. ret |= VM_FAULT_WRITE;
  1106. put_page(page);
  1107. out:
  1108. return ret;
  1109. out_free_pages:
  1110. spin_unlock(ptl);
  1111. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1112. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1113. memcg = (void *)page_private(pages[i]);
  1114. set_page_private(pages[i], 0);
  1115. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1116. put_page(pages[i]);
  1117. }
  1118. kfree(pages);
  1119. goto out;
  1120. }
  1121. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1122. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  1123. {
  1124. spinlock_t *ptl;
  1125. int ret = 0;
  1126. struct page *page = NULL, *new_page;
  1127. struct mem_cgroup *memcg;
  1128. unsigned long haddr;
  1129. unsigned long mmun_start; /* For mmu_notifiers */
  1130. unsigned long mmun_end; /* For mmu_notifiers */
  1131. gfp_t huge_gfp; /* for allocation and charge */
  1132. ptl = pmd_lockptr(mm, pmd);
  1133. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1134. haddr = address & HPAGE_PMD_MASK;
  1135. if (is_huge_zero_pmd(orig_pmd))
  1136. goto alloc;
  1137. spin_lock(ptl);
  1138. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1139. goto out_unlock;
  1140. page = pmd_page(orig_pmd);
  1141. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1142. /*
  1143. * We can only reuse the page if nobody else maps the huge page or it's
  1144. * part. We can do it by checking page_mapcount() on each sub-page, but
  1145. * it's expensive.
  1146. * The cheaper way is to check page_count() to be equal 1: every
  1147. * mapcount takes page reference reference, so this way we can
  1148. * guarantee, that the PMD is the only mapping.
  1149. * This can give false negative if somebody pinned the page, but that's
  1150. * fine.
  1151. */
  1152. if (page_mapcount(page) == 1 && page_count(page) == 1) {
  1153. pmd_t entry;
  1154. entry = pmd_mkyoung(orig_pmd);
  1155. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1156. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1157. update_mmu_cache_pmd(vma, address, pmd);
  1158. ret |= VM_FAULT_WRITE;
  1159. goto out_unlock;
  1160. }
  1161. get_page(page);
  1162. spin_unlock(ptl);
  1163. alloc:
  1164. if (transparent_hugepage_enabled(vma) &&
  1165. !transparent_hugepage_debug_cow()) {
  1166. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1167. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1168. } else
  1169. new_page = NULL;
  1170. if (likely(new_page)) {
  1171. prep_transhuge_page(new_page);
  1172. } else {
  1173. if (!page) {
  1174. split_huge_pmd(vma, pmd, address);
  1175. ret |= VM_FAULT_FALLBACK;
  1176. } else {
  1177. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1178. pmd, orig_pmd, page, haddr);
  1179. if (ret & VM_FAULT_OOM) {
  1180. split_huge_pmd(vma, pmd, address);
  1181. ret |= VM_FAULT_FALLBACK;
  1182. }
  1183. put_page(page);
  1184. }
  1185. count_vm_event(THP_FAULT_FALLBACK);
  1186. goto out;
  1187. }
  1188. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
  1189. true))) {
  1190. put_page(new_page);
  1191. if (page) {
  1192. split_huge_pmd(vma, pmd, address);
  1193. put_page(page);
  1194. } else
  1195. split_huge_pmd(vma, pmd, address);
  1196. ret |= VM_FAULT_FALLBACK;
  1197. count_vm_event(THP_FAULT_FALLBACK);
  1198. goto out;
  1199. }
  1200. count_vm_event(THP_FAULT_ALLOC);
  1201. if (!page)
  1202. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1203. else
  1204. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1205. __SetPageUptodate(new_page);
  1206. mmun_start = haddr;
  1207. mmun_end = haddr + HPAGE_PMD_SIZE;
  1208. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1209. spin_lock(ptl);
  1210. if (page)
  1211. put_page(page);
  1212. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1213. spin_unlock(ptl);
  1214. mem_cgroup_cancel_charge(new_page, memcg, true);
  1215. put_page(new_page);
  1216. goto out_mn;
  1217. } else {
  1218. pmd_t entry;
  1219. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1220. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1221. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1222. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1223. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1224. lru_cache_add_active_or_unevictable(new_page, vma);
  1225. set_pmd_at(mm, haddr, pmd, entry);
  1226. update_mmu_cache_pmd(vma, address, pmd);
  1227. if (!page) {
  1228. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1229. put_huge_zero_page();
  1230. } else {
  1231. VM_BUG_ON_PAGE(!PageHead(page), page);
  1232. page_remove_rmap(page, true);
  1233. put_page(page);
  1234. }
  1235. ret |= VM_FAULT_WRITE;
  1236. }
  1237. spin_unlock(ptl);
  1238. out_mn:
  1239. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1240. out:
  1241. return ret;
  1242. out_unlock:
  1243. spin_unlock(ptl);
  1244. return ret;
  1245. }
  1246. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1247. unsigned long addr,
  1248. pmd_t *pmd,
  1249. unsigned int flags)
  1250. {
  1251. struct mm_struct *mm = vma->vm_mm;
  1252. struct page *page = NULL;
  1253. assert_spin_locked(pmd_lockptr(mm, pmd));
  1254. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1255. goto out;
  1256. /* Avoid dumping huge zero page */
  1257. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1258. return ERR_PTR(-EFAULT);
  1259. /* Full NUMA hinting faults to serialise migration in fault paths */
  1260. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1261. goto out;
  1262. page = pmd_page(*pmd);
  1263. VM_BUG_ON_PAGE(!PageHead(page), page);
  1264. if (flags & FOLL_TOUCH)
  1265. touch_pmd(vma, addr, pmd);
  1266. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1267. /*
  1268. * We don't mlock() pte-mapped THPs. This way we can avoid
  1269. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1270. *
  1271. * In most cases the pmd is the only mapping of the page as we
  1272. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1273. * writable private mappings in populate_vma_page_range().
  1274. *
  1275. * The only scenario when we have the page shared here is if we
  1276. * mlocking read-only mapping shared over fork(). We skip
  1277. * mlocking such pages.
  1278. */
  1279. if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
  1280. page->mapping && trylock_page(page)) {
  1281. lru_add_drain();
  1282. if (page->mapping)
  1283. mlock_vma_page(page);
  1284. unlock_page(page);
  1285. }
  1286. }
  1287. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1288. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1289. if (flags & FOLL_GET)
  1290. get_page(page);
  1291. out:
  1292. return page;
  1293. }
  1294. /* NUMA hinting page fault entry point for trans huge pmds */
  1295. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1296. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1297. {
  1298. spinlock_t *ptl;
  1299. struct anon_vma *anon_vma = NULL;
  1300. struct page *page;
  1301. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1302. int page_nid = -1, this_nid = numa_node_id();
  1303. int target_nid, last_cpupid = -1;
  1304. bool page_locked;
  1305. bool migrated = false;
  1306. bool was_writable;
  1307. int flags = 0;
  1308. /* A PROT_NONE fault should not end up here */
  1309. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1310. ptl = pmd_lock(mm, pmdp);
  1311. if (unlikely(!pmd_same(pmd, *pmdp)))
  1312. goto out_unlock;
  1313. /*
  1314. * If there are potential migrations, wait for completion and retry
  1315. * without disrupting NUMA hinting information. Do not relock and
  1316. * check_same as the page may no longer be mapped.
  1317. */
  1318. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1319. page = pmd_page(*pmdp);
  1320. spin_unlock(ptl);
  1321. wait_on_page_locked(page);
  1322. goto out;
  1323. }
  1324. page = pmd_page(pmd);
  1325. BUG_ON(is_huge_zero_page(page));
  1326. page_nid = page_to_nid(page);
  1327. last_cpupid = page_cpupid_last(page);
  1328. count_vm_numa_event(NUMA_HINT_FAULTS);
  1329. if (page_nid == this_nid) {
  1330. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1331. flags |= TNF_FAULT_LOCAL;
  1332. }
  1333. /* See similar comment in do_numa_page for explanation */
  1334. if (!(vma->vm_flags & VM_WRITE))
  1335. flags |= TNF_NO_GROUP;
  1336. /*
  1337. * Acquire the page lock to serialise THP migrations but avoid dropping
  1338. * page_table_lock if at all possible
  1339. */
  1340. page_locked = trylock_page(page);
  1341. target_nid = mpol_misplaced(page, vma, haddr);
  1342. if (target_nid == -1) {
  1343. /* If the page was locked, there are no parallel migrations */
  1344. if (page_locked)
  1345. goto clear_pmdnuma;
  1346. }
  1347. /* Migration could have started since the pmd_trans_migrating check */
  1348. if (!page_locked) {
  1349. spin_unlock(ptl);
  1350. wait_on_page_locked(page);
  1351. page_nid = -1;
  1352. goto out;
  1353. }
  1354. /*
  1355. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1356. * to serialises splits
  1357. */
  1358. get_page(page);
  1359. spin_unlock(ptl);
  1360. anon_vma = page_lock_anon_vma_read(page);
  1361. /* Confirm the PMD did not change while page_table_lock was released */
  1362. spin_lock(ptl);
  1363. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1364. unlock_page(page);
  1365. put_page(page);
  1366. page_nid = -1;
  1367. goto out_unlock;
  1368. }
  1369. /* Bail if we fail to protect against THP splits for any reason */
  1370. if (unlikely(!anon_vma)) {
  1371. put_page(page);
  1372. page_nid = -1;
  1373. goto clear_pmdnuma;
  1374. }
  1375. /*
  1376. * Migrate the THP to the requested node, returns with page unlocked
  1377. * and access rights restored.
  1378. */
  1379. spin_unlock(ptl);
  1380. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1381. pmdp, pmd, addr, page, target_nid);
  1382. if (migrated) {
  1383. flags |= TNF_MIGRATED;
  1384. page_nid = target_nid;
  1385. } else
  1386. flags |= TNF_MIGRATE_FAIL;
  1387. goto out;
  1388. clear_pmdnuma:
  1389. BUG_ON(!PageLocked(page));
  1390. was_writable = pmd_write(pmd);
  1391. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1392. pmd = pmd_mkyoung(pmd);
  1393. if (was_writable)
  1394. pmd = pmd_mkwrite(pmd);
  1395. set_pmd_at(mm, haddr, pmdp, pmd);
  1396. update_mmu_cache_pmd(vma, addr, pmdp);
  1397. unlock_page(page);
  1398. out_unlock:
  1399. spin_unlock(ptl);
  1400. out:
  1401. if (anon_vma)
  1402. page_unlock_anon_vma_read(anon_vma);
  1403. if (page_nid != -1)
  1404. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1405. return 0;
  1406. }
  1407. int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1408. pmd_t *pmd, unsigned long addr, unsigned long next)
  1409. {
  1410. spinlock_t *ptl;
  1411. pmd_t orig_pmd;
  1412. struct page *page;
  1413. struct mm_struct *mm = tlb->mm;
  1414. int ret = 0;
  1415. ptl = pmd_trans_huge_lock(pmd, vma);
  1416. if (!ptl)
  1417. goto out_unlocked;
  1418. orig_pmd = *pmd;
  1419. if (is_huge_zero_pmd(orig_pmd)) {
  1420. ret = 1;
  1421. goto out;
  1422. }
  1423. page = pmd_page(orig_pmd);
  1424. /*
  1425. * If other processes are mapping this page, we couldn't discard
  1426. * the page unless they all do MADV_FREE so let's skip the page.
  1427. */
  1428. if (page_mapcount(page) != 1)
  1429. goto out;
  1430. if (!trylock_page(page))
  1431. goto out;
  1432. /*
  1433. * If user want to discard part-pages of THP, split it so MADV_FREE
  1434. * will deactivate only them.
  1435. */
  1436. if (next - addr != HPAGE_PMD_SIZE) {
  1437. get_page(page);
  1438. spin_unlock(ptl);
  1439. if (split_huge_page(page)) {
  1440. put_page(page);
  1441. unlock_page(page);
  1442. goto out_unlocked;
  1443. }
  1444. put_page(page);
  1445. unlock_page(page);
  1446. ret = 1;
  1447. goto out_unlocked;
  1448. }
  1449. if (PageDirty(page))
  1450. ClearPageDirty(page);
  1451. unlock_page(page);
  1452. if (PageActive(page))
  1453. deactivate_page(page);
  1454. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1455. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1456. tlb->fullmm);
  1457. orig_pmd = pmd_mkold(orig_pmd);
  1458. orig_pmd = pmd_mkclean(orig_pmd);
  1459. set_pmd_at(mm, addr, pmd, orig_pmd);
  1460. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1461. }
  1462. ret = 1;
  1463. out:
  1464. spin_unlock(ptl);
  1465. out_unlocked:
  1466. return ret;
  1467. }
  1468. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1469. pmd_t *pmd, unsigned long addr)
  1470. {
  1471. pmd_t orig_pmd;
  1472. spinlock_t *ptl;
  1473. ptl = __pmd_trans_huge_lock(pmd, vma);
  1474. if (!ptl)
  1475. return 0;
  1476. /*
  1477. * For architectures like ppc64 we look at deposited pgtable
  1478. * when calling pmdp_huge_get_and_clear. So do the
  1479. * pgtable_trans_huge_withdraw after finishing pmdp related
  1480. * operations.
  1481. */
  1482. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1483. tlb->fullmm);
  1484. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1485. if (vma_is_dax(vma)) {
  1486. spin_unlock(ptl);
  1487. if (is_huge_zero_pmd(orig_pmd))
  1488. tlb_remove_page(tlb, pmd_page(orig_pmd));
  1489. } else if (is_huge_zero_pmd(orig_pmd)) {
  1490. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1491. atomic_long_dec(&tlb->mm->nr_ptes);
  1492. spin_unlock(ptl);
  1493. tlb_remove_page(tlb, pmd_page(orig_pmd));
  1494. } else {
  1495. struct page *page = pmd_page(orig_pmd);
  1496. page_remove_rmap(page, true);
  1497. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1498. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1499. VM_BUG_ON_PAGE(!PageHead(page), page);
  1500. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1501. atomic_long_dec(&tlb->mm->nr_ptes);
  1502. spin_unlock(ptl);
  1503. tlb_remove_page(tlb, page);
  1504. }
  1505. return 1;
  1506. }
  1507. bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1508. unsigned long old_addr,
  1509. unsigned long new_addr, unsigned long old_end,
  1510. pmd_t *old_pmd, pmd_t *new_pmd)
  1511. {
  1512. spinlock_t *old_ptl, *new_ptl;
  1513. pmd_t pmd;
  1514. struct mm_struct *mm = vma->vm_mm;
  1515. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1516. (new_addr & ~HPAGE_PMD_MASK) ||
  1517. old_end - old_addr < HPAGE_PMD_SIZE ||
  1518. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1519. return false;
  1520. /*
  1521. * The destination pmd shouldn't be established, free_pgtables()
  1522. * should have release it.
  1523. */
  1524. if (WARN_ON(!pmd_none(*new_pmd))) {
  1525. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1526. return false;
  1527. }
  1528. /*
  1529. * We don't have to worry about the ordering of src and dst
  1530. * ptlocks because exclusive mmap_sem prevents deadlock.
  1531. */
  1532. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1533. if (old_ptl) {
  1534. new_ptl = pmd_lockptr(mm, new_pmd);
  1535. if (new_ptl != old_ptl)
  1536. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1537. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1538. VM_BUG_ON(!pmd_none(*new_pmd));
  1539. if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
  1540. vma_is_anonymous(vma)) {
  1541. pgtable_t pgtable;
  1542. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1543. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1544. }
  1545. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1546. if (new_ptl != old_ptl)
  1547. spin_unlock(new_ptl);
  1548. spin_unlock(old_ptl);
  1549. return true;
  1550. }
  1551. return false;
  1552. }
  1553. /*
  1554. * Returns
  1555. * - 0 if PMD could not be locked
  1556. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1557. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1558. */
  1559. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1560. unsigned long addr, pgprot_t newprot, int prot_numa)
  1561. {
  1562. struct mm_struct *mm = vma->vm_mm;
  1563. spinlock_t *ptl;
  1564. int ret = 0;
  1565. ptl = __pmd_trans_huge_lock(pmd, vma);
  1566. if (ptl) {
  1567. pmd_t entry;
  1568. bool preserve_write = prot_numa && pmd_write(*pmd);
  1569. ret = 1;
  1570. /*
  1571. * Avoid trapping faults against the zero page. The read-only
  1572. * data is likely to be read-cached on the local CPU and
  1573. * local/remote hits to the zero page are not interesting.
  1574. */
  1575. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1576. spin_unlock(ptl);
  1577. return ret;
  1578. }
  1579. if (!prot_numa || !pmd_protnone(*pmd)) {
  1580. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1581. entry = pmd_modify(entry, newprot);
  1582. if (preserve_write)
  1583. entry = pmd_mkwrite(entry);
  1584. ret = HPAGE_PMD_NR;
  1585. set_pmd_at(mm, addr, pmd, entry);
  1586. BUG_ON(!preserve_write && pmd_write(entry));
  1587. }
  1588. spin_unlock(ptl);
  1589. }
  1590. return ret;
  1591. }
  1592. /*
  1593. * Returns true if a given pmd maps a thp, false otherwise.
  1594. *
  1595. * Note that if it returns true, this routine returns without unlocking page
  1596. * table lock. So callers must unlock it.
  1597. */
  1598. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1599. {
  1600. spinlock_t *ptl;
  1601. ptl = pmd_lock(vma->vm_mm, pmd);
  1602. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1603. return ptl;
  1604. spin_unlock(ptl);
  1605. return NULL;
  1606. }
  1607. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1608. int hugepage_madvise(struct vm_area_struct *vma,
  1609. unsigned long *vm_flags, int advice)
  1610. {
  1611. switch (advice) {
  1612. case MADV_HUGEPAGE:
  1613. #ifdef CONFIG_S390
  1614. /*
  1615. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1616. * can't handle this properly after s390_enable_sie, so we simply
  1617. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1618. */
  1619. if (mm_has_pgste(vma->vm_mm))
  1620. return 0;
  1621. #endif
  1622. /*
  1623. * Be somewhat over-protective like KSM for now!
  1624. */
  1625. if (*vm_flags & VM_NO_THP)
  1626. return -EINVAL;
  1627. *vm_flags &= ~VM_NOHUGEPAGE;
  1628. *vm_flags |= VM_HUGEPAGE;
  1629. /*
  1630. * If the vma become good for khugepaged to scan,
  1631. * register it here without waiting a page fault that
  1632. * may not happen any time soon.
  1633. */
  1634. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1635. return -ENOMEM;
  1636. break;
  1637. case MADV_NOHUGEPAGE:
  1638. /*
  1639. * Be somewhat over-protective like KSM for now!
  1640. */
  1641. if (*vm_flags & VM_NO_THP)
  1642. return -EINVAL;
  1643. *vm_flags &= ~VM_HUGEPAGE;
  1644. *vm_flags |= VM_NOHUGEPAGE;
  1645. /*
  1646. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1647. * this vma even if we leave the mm registered in khugepaged if
  1648. * it got registered before VM_NOHUGEPAGE was set.
  1649. */
  1650. break;
  1651. }
  1652. return 0;
  1653. }
  1654. static int __init khugepaged_slab_init(void)
  1655. {
  1656. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1657. sizeof(struct mm_slot),
  1658. __alignof__(struct mm_slot), 0, NULL);
  1659. if (!mm_slot_cache)
  1660. return -ENOMEM;
  1661. return 0;
  1662. }
  1663. static void __init khugepaged_slab_exit(void)
  1664. {
  1665. kmem_cache_destroy(mm_slot_cache);
  1666. }
  1667. static inline struct mm_slot *alloc_mm_slot(void)
  1668. {
  1669. if (!mm_slot_cache) /* initialization failed */
  1670. return NULL;
  1671. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1672. }
  1673. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1674. {
  1675. kmem_cache_free(mm_slot_cache, mm_slot);
  1676. }
  1677. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1678. {
  1679. struct mm_slot *mm_slot;
  1680. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1681. if (mm == mm_slot->mm)
  1682. return mm_slot;
  1683. return NULL;
  1684. }
  1685. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1686. struct mm_slot *mm_slot)
  1687. {
  1688. mm_slot->mm = mm;
  1689. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1690. }
  1691. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1692. {
  1693. return atomic_read(&mm->mm_users) == 0;
  1694. }
  1695. int __khugepaged_enter(struct mm_struct *mm)
  1696. {
  1697. struct mm_slot *mm_slot;
  1698. int wakeup;
  1699. mm_slot = alloc_mm_slot();
  1700. if (!mm_slot)
  1701. return -ENOMEM;
  1702. /* __khugepaged_exit() must not run from under us */
  1703. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1704. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1705. free_mm_slot(mm_slot);
  1706. return 0;
  1707. }
  1708. spin_lock(&khugepaged_mm_lock);
  1709. insert_to_mm_slots_hash(mm, mm_slot);
  1710. /*
  1711. * Insert just behind the scanning cursor, to let the area settle
  1712. * down a little.
  1713. */
  1714. wakeup = list_empty(&khugepaged_scan.mm_head);
  1715. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1716. spin_unlock(&khugepaged_mm_lock);
  1717. atomic_inc(&mm->mm_count);
  1718. if (wakeup)
  1719. wake_up_interruptible(&khugepaged_wait);
  1720. return 0;
  1721. }
  1722. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1723. unsigned long vm_flags)
  1724. {
  1725. unsigned long hstart, hend;
  1726. if (!vma->anon_vma)
  1727. /*
  1728. * Not yet faulted in so we will register later in the
  1729. * page fault if needed.
  1730. */
  1731. return 0;
  1732. if (vma->vm_ops || (vm_flags & VM_NO_THP))
  1733. /* khugepaged not yet working on file or special mappings */
  1734. return 0;
  1735. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1736. hend = vma->vm_end & HPAGE_PMD_MASK;
  1737. if (hstart < hend)
  1738. return khugepaged_enter(vma, vm_flags);
  1739. return 0;
  1740. }
  1741. void __khugepaged_exit(struct mm_struct *mm)
  1742. {
  1743. struct mm_slot *mm_slot;
  1744. int free = 0;
  1745. spin_lock(&khugepaged_mm_lock);
  1746. mm_slot = get_mm_slot(mm);
  1747. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1748. hash_del(&mm_slot->hash);
  1749. list_del(&mm_slot->mm_node);
  1750. free = 1;
  1751. }
  1752. spin_unlock(&khugepaged_mm_lock);
  1753. if (free) {
  1754. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1755. free_mm_slot(mm_slot);
  1756. mmdrop(mm);
  1757. } else if (mm_slot) {
  1758. /*
  1759. * This is required to serialize against
  1760. * khugepaged_test_exit() (which is guaranteed to run
  1761. * under mmap sem read mode). Stop here (after we
  1762. * return all pagetables will be destroyed) until
  1763. * khugepaged has finished working on the pagetables
  1764. * under the mmap_sem.
  1765. */
  1766. down_write(&mm->mmap_sem);
  1767. up_write(&mm->mmap_sem);
  1768. }
  1769. }
  1770. static void release_pte_page(struct page *page)
  1771. {
  1772. /* 0 stands for page_is_file_cache(page) == false */
  1773. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1774. unlock_page(page);
  1775. putback_lru_page(page);
  1776. }
  1777. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1778. {
  1779. while (--_pte >= pte) {
  1780. pte_t pteval = *_pte;
  1781. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1782. release_pte_page(pte_page(pteval));
  1783. }
  1784. }
  1785. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1786. unsigned long address,
  1787. pte_t *pte)
  1788. {
  1789. struct page *page = NULL;
  1790. pte_t *_pte;
  1791. int none_or_zero = 0, result = 0;
  1792. bool referenced = false, writable = false;
  1793. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1794. _pte++, address += PAGE_SIZE) {
  1795. pte_t pteval = *_pte;
  1796. if (pte_none(pteval) || (pte_present(pteval) &&
  1797. is_zero_pfn(pte_pfn(pteval)))) {
  1798. if (!userfaultfd_armed(vma) &&
  1799. ++none_or_zero <= khugepaged_max_ptes_none) {
  1800. continue;
  1801. } else {
  1802. result = SCAN_EXCEED_NONE_PTE;
  1803. goto out;
  1804. }
  1805. }
  1806. if (!pte_present(pteval)) {
  1807. result = SCAN_PTE_NON_PRESENT;
  1808. goto out;
  1809. }
  1810. page = vm_normal_page(vma, address, pteval);
  1811. if (unlikely(!page)) {
  1812. result = SCAN_PAGE_NULL;
  1813. goto out;
  1814. }
  1815. VM_BUG_ON_PAGE(PageCompound(page), page);
  1816. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1817. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1818. /*
  1819. * We can do it before isolate_lru_page because the
  1820. * page can't be freed from under us. NOTE: PG_lock
  1821. * is needed to serialize against split_huge_page
  1822. * when invoked from the VM.
  1823. */
  1824. if (!trylock_page(page)) {
  1825. result = SCAN_PAGE_LOCK;
  1826. goto out;
  1827. }
  1828. /*
  1829. * cannot use mapcount: can't collapse if there's a gup pin.
  1830. * The page must only be referenced by the scanned process
  1831. * and page swap cache.
  1832. */
  1833. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1834. unlock_page(page);
  1835. result = SCAN_PAGE_COUNT;
  1836. goto out;
  1837. }
  1838. if (pte_write(pteval)) {
  1839. writable = true;
  1840. } else {
  1841. if (PageSwapCache(page) && !reuse_swap_page(page)) {
  1842. unlock_page(page);
  1843. result = SCAN_SWAP_CACHE_PAGE;
  1844. goto out;
  1845. }
  1846. /*
  1847. * Page is not in the swap cache. It can be collapsed
  1848. * into a THP.
  1849. */
  1850. }
  1851. /*
  1852. * Isolate the page to avoid collapsing an hugepage
  1853. * currently in use by the VM.
  1854. */
  1855. if (isolate_lru_page(page)) {
  1856. unlock_page(page);
  1857. result = SCAN_DEL_PAGE_LRU;
  1858. goto out;
  1859. }
  1860. /* 0 stands for page_is_file_cache(page) == false */
  1861. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1862. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1863. VM_BUG_ON_PAGE(PageLRU(page), page);
  1864. /* If there is no mapped pte young don't collapse the page */
  1865. if (pte_young(pteval) ||
  1866. page_is_young(page) || PageReferenced(page) ||
  1867. mmu_notifier_test_young(vma->vm_mm, address))
  1868. referenced = true;
  1869. }
  1870. if (likely(writable)) {
  1871. if (likely(referenced)) {
  1872. result = SCAN_SUCCEED;
  1873. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1874. referenced, writable, result);
  1875. return 1;
  1876. }
  1877. } else {
  1878. result = SCAN_PAGE_RO;
  1879. }
  1880. out:
  1881. release_pte_pages(pte, _pte);
  1882. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1883. referenced, writable, result);
  1884. return 0;
  1885. }
  1886. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1887. struct vm_area_struct *vma,
  1888. unsigned long address,
  1889. spinlock_t *ptl)
  1890. {
  1891. pte_t *_pte;
  1892. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1893. pte_t pteval = *_pte;
  1894. struct page *src_page;
  1895. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1896. clear_user_highpage(page, address);
  1897. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1898. if (is_zero_pfn(pte_pfn(pteval))) {
  1899. /*
  1900. * ptl mostly unnecessary.
  1901. */
  1902. spin_lock(ptl);
  1903. /*
  1904. * paravirt calls inside pte_clear here are
  1905. * superfluous.
  1906. */
  1907. pte_clear(vma->vm_mm, address, _pte);
  1908. spin_unlock(ptl);
  1909. }
  1910. } else {
  1911. src_page = pte_page(pteval);
  1912. copy_user_highpage(page, src_page, address, vma);
  1913. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1914. release_pte_page(src_page);
  1915. /*
  1916. * ptl mostly unnecessary, but preempt has to
  1917. * be disabled to update the per-cpu stats
  1918. * inside page_remove_rmap().
  1919. */
  1920. spin_lock(ptl);
  1921. /*
  1922. * paravirt calls inside pte_clear here are
  1923. * superfluous.
  1924. */
  1925. pte_clear(vma->vm_mm, address, _pte);
  1926. page_remove_rmap(src_page, false);
  1927. spin_unlock(ptl);
  1928. free_page_and_swap_cache(src_page);
  1929. }
  1930. address += PAGE_SIZE;
  1931. page++;
  1932. }
  1933. }
  1934. static void khugepaged_alloc_sleep(void)
  1935. {
  1936. DEFINE_WAIT(wait);
  1937. add_wait_queue(&khugepaged_wait, &wait);
  1938. freezable_schedule_timeout_interruptible(
  1939. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1940. remove_wait_queue(&khugepaged_wait, &wait);
  1941. }
  1942. static int khugepaged_node_load[MAX_NUMNODES];
  1943. static bool khugepaged_scan_abort(int nid)
  1944. {
  1945. int i;
  1946. /*
  1947. * If zone_reclaim_mode is disabled, then no extra effort is made to
  1948. * allocate memory locally.
  1949. */
  1950. if (!zone_reclaim_mode)
  1951. return false;
  1952. /* If there is a count for this node already, it must be acceptable */
  1953. if (khugepaged_node_load[nid])
  1954. return false;
  1955. for (i = 0; i < MAX_NUMNODES; i++) {
  1956. if (!khugepaged_node_load[i])
  1957. continue;
  1958. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  1959. return true;
  1960. }
  1961. return false;
  1962. }
  1963. #ifdef CONFIG_NUMA
  1964. static int khugepaged_find_target_node(void)
  1965. {
  1966. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1967. int nid, target_node = 0, max_value = 0;
  1968. /* find first node with max normal pages hit */
  1969. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1970. if (khugepaged_node_load[nid] > max_value) {
  1971. max_value = khugepaged_node_load[nid];
  1972. target_node = nid;
  1973. }
  1974. /* do some balance if several nodes have the same hit record */
  1975. if (target_node <= last_khugepaged_target_node)
  1976. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1977. nid++)
  1978. if (max_value == khugepaged_node_load[nid]) {
  1979. target_node = nid;
  1980. break;
  1981. }
  1982. last_khugepaged_target_node = target_node;
  1983. return target_node;
  1984. }
  1985. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1986. {
  1987. if (IS_ERR(*hpage)) {
  1988. if (!*wait)
  1989. return false;
  1990. *wait = false;
  1991. *hpage = NULL;
  1992. khugepaged_alloc_sleep();
  1993. } else if (*hpage) {
  1994. put_page(*hpage);
  1995. *hpage = NULL;
  1996. }
  1997. return true;
  1998. }
  1999. static struct page *
  2000. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2001. unsigned long address, int node)
  2002. {
  2003. VM_BUG_ON_PAGE(*hpage, *hpage);
  2004. /*
  2005. * Before allocating the hugepage, release the mmap_sem read lock.
  2006. * The allocation can take potentially a long time if it involves
  2007. * sync compaction, and we do not need to hold the mmap_sem during
  2008. * that. We will recheck the vma after taking it again in write mode.
  2009. */
  2010. up_read(&mm->mmap_sem);
  2011. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  2012. if (unlikely(!*hpage)) {
  2013. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2014. *hpage = ERR_PTR(-ENOMEM);
  2015. return NULL;
  2016. }
  2017. prep_transhuge_page(*hpage);
  2018. count_vm_event(THP_COLLAPSE_ALLOC);
  2019. return *hpage;
  2020. }
  2021. #else
  2022. static int khugepaged_find_target_node(void)
  2023. {
  2024. return 0;
  2025. }
  2026. static inline struct page *alloc_khugepaged_hugepage(void)
  2027. {
  2028. struct page *page;
  2029. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  2030. HPAGE_PMD_ORDER);
  2031. if (page)
  2032. prep_transhuge_page(page);
  2033. return page;
  2034. }
  2035. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2036. {
  2037. struct page *hpage;
  2038. do {
  2039. hpage = alloc_khugepaged_hugepage();
  2040. if (!hpage) {
  2041. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2042. if (!*wait)
  2043. return NULL;
  2044. *wait = false;
  2045. khugepaged_alloc_sleep();
  2046. } else
  2047. count_vm_event(THP_COLLAPSE_ALLOC);
  2048. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2049. return hpage;
  2050. }
  2051. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2052. {
  2053. if (!*hpage)
  2054. *hpage = khugepaged_alloc_hugepage(wait);
  2055. if (unlikely(!*hpage))
  2056. return false;
  2057. return true;
  2058. }
  2059. static struct page *
  2060. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2061. unsigned long address, int node)
  2062. {
  2063. up_read(&mm->mmap_sem);
  2064. VM_BUG_ON(!*hpage);
  2065. return *hpage;
  2066. }
  2067. #endif
  2068. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2069. {
  2070. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2071. (vma->vm_flags & VM_NOHUGEPAGE))
  2072. return false;
  2073. if (!vma->anon_vma || vma->vm_ops)
  2074. return false;
  2075. if (is_vma_temporary_stack(vma))
  2076. return false;
  2077. return !(vma->vm_flags & VM_NO_THP);
  2078. }
  2079. static void collapse_huge_page(struct mm_struct *mm,
  2080. unsigned long address,
  2081. struct page **hpage,
  2082. struct vm_area_struct *vma,
  2083. int node)
  2084. {
  2085. pmd_t *pmd, _pmd;
  2086. pte_t *pte;
  2087. pgtable_t pgtable;
  2088. struct page *new_page;
  2089. spinlock_t *pmd_ptl, *pte_ptl;
  2090. int isolated = 0, result = 0;
  2091. unsigned long hstart, hend;
  2092. struct mem_cgroup *memcg;
  2093. unsigned long mmun_start; /* For mmu_notifiers */
  2094. unsigned long mmun_end; /* For mmu_notifiers */
  2095. gfp_t gfp;
  2096. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2097. /* Only allocate from the target node */
  2098. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
  2099. /* release the mmap_sem read lock. */
  2100. new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
  2101. if (!new_page) {
  2102. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  2103. goto out_nolock;
  2104. }
  2105. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  2106. result = SCAN_CGROUP_CHARGE_FAIL;
  2107. goto out_nolock;
  2108. }
  2109. /*
  2110. * Prevent all access to pagetables with the exception of
  2111. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2112. * handled by the anon_vma lock + PG_lock.
  2113. */
  2114. down_write(&mm->mmap_sem);
  2115. if (unlikely(khugepaged_test_exit(mm))) {
  2116. result = SCAN_ANY_PROCESS;
  2117. goto out;
  2118. }
  2119. vma = find_vma(mm, address);
  2120. if (!vma) {
  2121. result = SCAN_VMA_NULL;
  2122. goto out;
  2123. }
  2124. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2125. hend = vma->vm_end & HPAGE_PMD_MASK;
  2126. if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
  2127. result = SCAN_ADDRESS_RANGE;
  2128. goto out;
  2129. }
  2130. if (!hugepage_vma_check(vma)) {
  2131. result = SCAN_VMA_CHECK;
  2132. goto out;
  2133. }
  2134. pmd = mm_find_pmd(mm, address);
  2135. if (!pmd) {
  2136. result = SCAN_PMD_NULL;
  2137. goto out;
  2138. }
  2139. anon_vma_lock_write(vma->anon_vma);
  2140. pte = pte_offset_map(pmd, address);
  2141. pte_ptl = pte_lockptr(mm, pmd);
  2142. mmun_start = address;
  2143. mmun_end = address + HPAGE_PMD_SIZE;
  2144. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2145. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2146. /*
  2147. * After this gup_fast can't run anymore. This also removes
  2148. * any huge TLB entry from the CPU so we won't allow
  2149. * huge and small TLB entries for the same virtual address
  2150. * to avoid the risk of CPU bugs in that area.
  2151. */
  2152. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2153. spin_unlock(pmd_ptl);
  2154. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2155. spin_lock(pte_ptl);
  2156. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2157. spin_unlock(pte_ptl);
  2158. if (unlikely(!isolated)) {
  2159. pte_unmap(pte);
  2160. spin_lock(pmd_ptl);
  2161. BUG_ON(!pmd_none(*pmd));
  2162. /*
  2163. * We can only use set_pmd_at when establishing
  2164. * hugepmds and never for establishing regular pmds that
  2165. * points to regular pagetables. Use pmd_populate for that
  2166. */
  2167. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2168. spin_unlock(pmd_ptl);
  2169. anon_vma_unlock_write(vma->anon_vma);
  2170. result = SCAN_FAIL;
  2171. goto out;
  2172. }
  2173. /*
  2174. * All pages are isolated and locked so anon_vma rmap
  2175. * can't run anymore.
  2176. */
  2177. anon_vma_unlock_write(vma->anon_vma);
  2178. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2179. pte_unmap(pte);
  2180. __SetPageUptodate(new_page);
  2181. pgtable = pmd_pgtable(_pmd);
  2182. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2183. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2184. /*
  2185. * spin_lock() below is not the equivalent of smp_wmb(), so
  2186. * this is needed to avoid the copy_huge_page writes to become
  2187. * visible after the set_pmd_at() write.
  2188. */
  2189. smp_wmb();
  2190. spin_lock(pmd_ptl);
  2191. BUG_ON(!pmd_none(*pmd));
  2192. page_add_new_anon_rmap(new_page, vma, address, true);
  2193. mem_cgroup_commit_charge(new_page, memcg, false, true);
  2194. lru_cache_add_active_or_unevictable(new_page, vma);
  2195. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2196. set_pmd_at(mm, address, pmd, _pmd);
  2197. update_mmu_cache_pmd(vma, address, pmd);
  2198. spin_unlock(pmd_ptl);
  2199. *hpage = NULL;
  2200. khugepaged_pages_collapsed++;
  2201. result = SCAN_SUCCEED;
  2202. out_up_write:
  2203. up_write(&mm->mmap_sem);
  2204. trace_mm_collapse_huge_page(mm, isolated, result);
  2205. return;
  2206. out_nolock:
  2207. trace_mm_collapse_huge_page(mm, isolated, result);
  2208. return;
  2209. out:
  2210. mem_cgroup_cancel_charge(new_page, memcg, true);
  2211. goto out_up_write;
  2212. }
  2213. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2214. struct vm_area_struct *vma,
  2215. unsigned long address,
  2216. struct page **hpage)
  2217. {
  2218. pmd_t *pmd;
  2219. pte_t *pte, *_pte;
  2220. int ret = 0, none_or_zero = 0, result = 0;
  2221. struct page *page = NULL;
  2222. unsigned long _address;
  2223. spinlock_t *ptl;
  2224. int node = NUMA_NO_NODE;
  2225. bool writable = false, referenced = false;
  2226. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2227. pmd = mm_find_pmd(mm, address);
  2228. if (!pmd) {
  2229. result = SCAN_PMD_NULL;
  2230. goto out;
  2231. }
  2232. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2233. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2234. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2235. _pte++, _address += PAGE_SIZE) {
  2236. pte_t pteval = *_pte;
  2237. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2238. if (!userfaultfd_armed(vma) &&
  2239. ++none_or_zero <= khugepaged_max_ptes_none) {
  2240. continue;
  2241. } else {
  2242. result = SCAN_EXCEED_NONE_PTE;
  2243. goto out_unmap;
  2244. }
  2245. }
  2246. if (!pte_present(pteval)) {
  2247. result = SCAN_PTE_NON_PRESENT;
  2248. goto out_unmap;
  2249. }
  2250. if (pte_write(pteval))
  2251. writable = true;
  2252. page = vm_normal_page(vma, _address, pteval);
  2253. if (unlikely(!page)) {
  2254. result = SCAN_PAGE_NULL;
  2255. goto out_unmap;
  2256. }
  2257. /* TODO: teach khugepaged to collapse THP mapped with pte */
  2258. if (PageCompound(page)) {
  2259. result = SCAN_PAGE_COMPOUND;
  2260. goto out_unmap;
  2261. }
  2262. /*
  2263. * Record which node the original page is from and save this
  2264. * information to khugepaged_node_load[].
  2265. * Khupaged will allocate hugepage from the node has the max
  2266. * hit record.
  2267. */
  2268. node = page_to_nid(page);
  2269. if (khugepaged_scan_abort(node)) {
  2270. result = SCAN_SCAN_ABORT;
  2271. goto out_unmap;
  2272. }
  2273. khugepaged_node_load[node]++;
  2274. if (!PageLRU(page)) {
  2275. result = SCAN_PAGE_LRU;
  2276. goto out_unmap;
  2277. }
  2278. if (PageLocked(page)) {
  2279. result = SCAN_PAGE_LOCK;
  2280. goto out_unmap;
  2281. }
  2282. if (!PageAnon(page)) {
  2283. result = SCAN_PAGE_ANON;
  2284. goto out_unmap;
  2285. }
  2286. /*
  2287. * cannot use mapcount: can't collapse if there's a gup pin.
  2288. * The page must only be referenced by the scanned process
  2289. * and page swap cache.
  2290. */
  2291. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  2292. result = SCAN_PAGE_COUNT;
  2293. goto out_unmap;
  2294. }
  2295. if (pte_young(pteval) ||
  2296. page_is_young(page) || PageReferenced(page) ||
  2297. mmu_notifier_test_young(vma->vm_mm, address))
  2298. referenced = true;
  2299. }
  2300. if (writable) {
  2301. if (referenced) {
  2302. result = SCAN_SUCCEED;
  2303. ret = 1;
  2304. } else {
  2305. result = SCAN_NO_REFERENCED_PAGE;
  2306. }
  2307. } else {
  2308. result = SCAN_PAGE_RO;
  2309. }
  2310. out_unmap:
  2311. pte_unmap_unlock(pte, ptl);
  2312. if (ret) {
  2313. node = khugepaged_find_target_node();
  2314. /* collapse_huge_page will return with the mmap_sem released */
  2315. collapse_huge_page(mm, address, hpage, vma, node);
  2316. }
  2317. out:
  2318. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  2319. none_or_zero, result);
  2320. return ret;
  2321. }
  2322. static void collect_mm_slot(struct mm_slot *mm_slot)
  2323. {
  2324. struct mm_struct *mm = mm_slot->mm;
  2325. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2326. if (khugepaged_test_exit(mm)) {
  2327. /* free mm_slot */
  2328. hash_del(&mm_slot->hash);
  2329. list_del(&mm_slot->mm_node);
  2330. /*
  2331. * Not strictly needed because the mm exited already.
  2332. *
  2333. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2334. */
  2335. /* khugepaged_mm_lock actually not necessary for the below */
  2336. free_mm_slot(mm_slot);
  2337. mmdrop(mm);
  2338. }
  2339. }
  2340. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2341. struct page **hpage)
  2342. __releases(&khugepaged_mm_lock)
  2343. __acquires(&khugepaged_mm_lock)
  2344. {
  2345. struct mm_slot *mm_slot;
  2346. struct mm_struct *mm;
  2347. struct vm_area_struct *vma;
  2348. int progress = 0;
  2349. VM_BUG_ON(!pages);
  2350. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2351. if (khugepaged_scan.mm_slot)
  2352. mm_slot = khugepaged_scan.mm_slot;
  2353. else {
  2354. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2355. struct mm_slot, mm_node);
  2356. khugepaged_scan.address = 0;
  2357. khugepaged_scan.mm_slot = mm_slot;
  2358. }
  2359. spin_unlock(&khugepaged_mm_lock);
  2360. mm = mm_slot->mm;
  2361. down_read(&mm->mmap_sem);
  2362. if (unlikely(khugepaged_test_exit(mm)))
  2363. vma = NULL;
  2364. else
  2365. vma = find_vma(mm, khugepaged_scan.address);
  2366. progress++;
  2367. for (; vma; vma = vma->vm_next) {
  2368. unsigned long hstart, hend;
  2369. cond_resched();
  2370. if (unlikely(khugepaged_test_exit(mm))) {
  2371. progress++;
  2372. break;
  2373. }
  2374. if (!hugepage_vma_check(vma)) {
  2375. skip:
  2376. progress++;
  2377. continue;
  2378. }
  2379. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2380. hend = vma->vm_end & HPAGE_PMD_MASK;
  2381. if (hstart >= hend)
  2382. goto skip;
  2383. if (khugepaged_scan.address > hend)
  2384. goto skip;
  2385. if (khugepaged_scan.address < hstart)
  2386. khugepaged_scan.address = hstart;
  2387. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2388. while (khugepaged_scan.address < hend) {
  2389. int ret;
  2390. cond_resched();
  2391. if (unlikely(khugepaged_test_exit(mm)))
  2392. goto breakouterloop;
  2393. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2394. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2395. hend);
  2396. ret = khugepaged_scan_pmd(mm, vma,
  2397. khugepaged_scan.address,
  2398. hpage);
  2399. /* move to next address */
  2400. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2401. progress += HPAGE_PMD_NR;
  2402. if (ret)
  2403. /* we released mmap_sem so break loop */
  2404. goto breakouterloop_mmap_sem;
  2405. if (progress >= pages)
  2406. goto breakouterloop;
  2407. }
  2408. }
  2409. breakouterloop:
  2410. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2411. breakouterloop_mmap_sem:
  2412. spin_lock(&khugepaged_mm_lock);
  2413. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2414. /*
  2415. * Release the current mm_slot if this mm is about to die, or
  2416. * if we scanned all vmas of this mm.
  2417. */
  2418. if (khugepaged_test_exit(mm) || !vma) {
  2419. /*
  2420. * Make sure that if mm_users is reaching zero while
  2421. * khugepaged runs here, khugepaged_exit will find
  2422. * mm_slot not pointing to the exiting mm.
  2423. */
  2424. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2425. khugepaged_scan.mm_slot = list_entry(
  2426. mm_slot->mm_node.next,
  2427. struct mm_slot, mm_node);
  2428. khugepaged_scan.address = 0;
  2429. } else {
  2430. khugepaged_scan.mm_slot = NULL;
  2431. khugepaged_full_scans++;
  2432. }
  2433. collect_mm_slot(mm_slot);
  2434. }
  2435. return progress;
  2436. }
  2437. static int khugepaged_has_work(void)
  2438. {
  2439. return !list_empty(&khugepaged_scan.mm_head) &&
  2440. khugepaged_enabled();
  2441. }
  2442. static int khugepaged_wait_event(void)
  2443. {
  2444. return !list_empty(&khugepaged_scan.mm_head) ||
  2445. kthread_should_stop();
  2446. }
  2447. static void khugepaged_do_scan(void)
  2448. {
  2449. struct page *hpage = NULL;
  2450. unsigned int progress = 0, pass_through_head = 0;
  2451. unsigned int pages = khugepaged_pages_to_scan;
  2452. bool wait = true;
  2453. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2454. while (progress < pages) {
  2455. if (!khugepaged_prealloc_page(&hpage, &wait))
  2456. break;
  2457. cond_resched();
  2458. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2459. break;
  2460. spin_lock(&khugepaged_mm_lock);
  2461. if (!khugepaged_scan.mm_slot)
  2462. pass_through_head++;
  2463. if (khugepaged_has_work() &&
  2464. pass_through_head < 2)
  2465. progress += khugepaged_scan_mm_slot(pages - progress,
  2466. &hpage);
  2467. else
  2468. progress = pages;
  2469. spin_unlock(&khugepaged_mm_lock);
  2470. }
  2471. if (!IS_ERR_OR_NULL(hpage))
  2472. put_page(hpage);
  2473. }
  2474. static void khugepaged_wait_work(void)
  2475. {
  2476. if (khugepaged_has_work()) {
  2477. if (!khugepaged_scan_sleep_millisecs)
  2478. return;
  2479. wait_event_freezable_timeout(khugepaged_wait,
  2480. kthread_should_stop(),
  2481. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2482. return;
  2483. }
  2484. if (khugepaged_enabled())
  2485. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2486. }
  2487. static int khugepaged(void *none)
  2488. {
  2489. struct mm_slot *mm_slot;
  2490. set_freezable();
  2491. set_user_nice(current, MAX_NICE);
  2492. while (!kthread_should_stop()) {
  2493. khugepaged_do_scan();
  2494. khugepaged_wait_work();
  2495. }
  2496. spin_lock(&khugepaged_mm_lock);
  2497. mm_slot = khugepaged_scan.mm_slot;
  2498. khugepaged_scan.mm_slot = NULL;
  2499. if (mm_slot)
  2500. collect_mm_slot(mm_slot);
  2501. spin_unlock(&khugepaged_mm_lock);
  2502. return 0;
  2503. }
  2504. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2505. unsigned long haddr, pmd_t *pmd)
  2506. {
  2507. struct mm_struct *mm = vma->vm_mm;
  2508. pgtable_t pgtable;
  2509. pmd_t _pmd;
  2510. int i;
  2511. /* leave pmd empty until pte is filled */
  2512. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2513. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2514. pmd_populate(mm, &_pmd, pgtable);
  2515. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2516. pte_t *pte, entry;
  2517. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2518. entry = pte_mkspecial(entry);
  2519. pte = pte_offset_map(&_pmd, haddr);
  2520. VM_BUG_ON(!pte_none(*pte));
  2521. set_pte_at(mm, haddr, pte, entry);
  2522. pte_unmap(pte);
  2523. }
  2524. smp_wmb(); /* make pte visible before pmd */
  2525. pmd_populate(mm, pmd, pgtable);
  2526. put_huge_zero_page();
  2527. }
  2528. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  2529. unsigned long haddr, bool freeze)
  2530. {
  2531. struct mm_struct *mm = vma->vm_mm;
  2532. struct page *page;
  2533. pgtable_t pgtable;
  2534. pmd_t _pmd;
  2535. bool young, write, dirty;
  2536. unsigned long addr;
  2537. int i;
  2538. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  2539. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  2540. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  2541. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  2542. count_vm_event(THP_SPLIT_PMD);
  2543. if (vma_is_dax(vma)) {
  2544. pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2545. if (is_huge_zero_pmd(_pmd))
  2546. put_huge_zero_page();
  2547. return;
  2548. } else if (is_huge_zero_pmd(*pmd)) {
  2549. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  2550. }
  2551. page = pmd_page(*pmd);
  2552. VM_BUG_ON_PAGE(!page_count(page), page);
  2553. page_ref_add(page, HPAGE_PMD_NR - 1);
  2554. write = pmd_write(*pmd);
  2555. young = pmd_young(*pmd);
  2556. dirty = pmd_dirty(*pmd);
  2557. pmdp_huge_split_prepare(vma, haddr, pmd);
  2558. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2559. pmd_populate(mm, &_pmd, pgtable);
  2560. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  2561. pte_t entry, *pte;
  2562. /*
  2563. * Note that NUMA hinting access restrictions are not
  2564. * transferred to avoid any possibility of altering
  2565. * permissions across VMAs.
  2566. */
  2567. if (freeze) {
  2568. swp_entry_t swp_entry;
  2569. swp_entry = make_migration_entry(page + i, write);
  2570. entry = swp_entry_to_pte(swp_entry);
  2571. } else {
  2572. entry = mk_pte(page + i, vma->vm_page_prot);
  2573. entry = maybe_mkwrite(entry, vma);
  2574. if (!write)
  2575. entry = pte_wrprotect(entry);
  2576. if (!young)
  2577. entry = pte_mkold(entry);
  2578. }
  2579. if (dirty)
  2580. SetPageDirty(page + i);
  2581. pte = pte_offset_map(&_pmd, addr);
  2582. BUG_ON(!pte_none(*pte));
  2583. set_pte_at(mm, addr, pte, entry);
  2584. atomic_inc(&page[i]._mapcount);
  2585. pte_unmap(pte);
  2586. }
  2587. /*
  2588. * Set PG_double_map before dropping compound_mapcount to avoid
  2589. * false-negative page_mapped().
  2590. */
  2591. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  2592. for (i = 0; i < HPAGE_PMD_NR; i++)
  2593. atomic_inc(&page[i]._mapcount);
  2594. }
  2595. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  2596. /* Last compound_mapcount is gone. */
  2597. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  2598. if (TestClearPageDoubleMap(page)) {
  2599. /* No need in mapcount reference anymore */
  2600. for (i = 0; i < HPAGE_PMD_NR; i++)
  2601. atomic_dec(&page[i]._mapcount);
  2602. }
  2603. }
  2604. smp_wmb(); /* make pte visible before pmd */
  2605. /*
  2606. * Up to this point the pmd is present and huge and userland has the
  2607. * whole access to the hugepage during the split (which happens in
  2608. * place). If we overwrite the pmd with the not-huge version pointing
  2609. * to the pte here (which of course we could if all CPUs were bug
  2610. * free), userland could trigger a small page size TLB miss on the
  2611. * small sized TLB while the hugepage TLB entry is still established in
  2612. * the huge TLB. Some CPU doesn't like that.
  2613. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  2614. * 383 on page 93. Intel should be safe but is also warns that it's
  2615. * only safe if the permission and cache attributes of the two entries
  2616. * loaded in the two TLB is identical (which should be the case here).
  2617. * But it is generally safer to never allow small and huge TLB entries
  2618. * for the same virtual address to be loaded simultaneously. So instead
  2619. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  2620. * current pmd notpresent (atomically because here the pmd_trans_huge
  2621. * and pmd_trans_splitting must remain set at all times on the pmd
  2622. * until the split is complete for this pmd), then we flush the SMP TLB
  2623. * and finally we write the non-huge version of the pmd entry with
  2624. * pmd_populate.
  2625. */
  2626. pmdp_invalidate(vma, haddr, pmd);
  2627. pmd_populate(mm, pmd, pgtable);
  2628. if (freeze) {
  2629. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2630. page_remove_rmap(page + i, false);
  2631. put_page(page + i);
  2632. }
  2633. }
  2634. }
  2635. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  2636. unsigned long address, bool freeze)
  2637. {
  2638. spinlock_t *ptl;
  2639. struct mm_struct *mm = vma->vm_mm;
  2640. unsigned long haddr = address & HPAGE_PMD_MASK;
  2641. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2642. ptl = pmd_lock(mm, pmd);
  2643. if (pmd_trans_huge(*pmd)) {
  2644. struct page *page = pmd_page(*pmd);
  2645. if (PageMlocked(page))
  2646. clear_page_mlock(page);
  2647. } else if (!pmd_devmap(*pmd))
  2648. goto out;
  2649. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  2650. out:
  2651. spin_unlock(ptl);
  2652. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2653. }
  2654. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  2655. bool freeze, struct page *page)
  2656. {
  2657. pgd_t *pgd;
  2658. pud_t *pud;
  2659. pmd_t *pmd;
  2660. pgd = pgd_offset(vma->vm_mm, address);
  2661. if (!pgd_present(*pgd))
  2662. return;
  2663. pud = pud_offset(pgd, address);
  2664. if (!pud_present(*pud))
  2665. return;
  2666. pmd = pmd_offset(pud, address);
  2667. if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
  2668. return;
  2669. /*
  2670. * If caller asks to setup a migration entries, we need a page to check
  2671. * pmd against. Otherwise we can end up replacing wrong page.
  2672. */
  2673. VM_BUG_ON(freeze && !page);
  2674. if (page && page != pmd_page(*pmd))
  2675. return;
  2676. /*
  2677. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2678. * materialize from under us.
  2679. */
  2680. __split_huge_pmd(vma, pmd, address, freeze);
  2681. }
  2682. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2683. unsigned long start,
  2684. unsigned long end,
  2685. long adjust_next)
  2686. {
  2687. /*
  2688. * If the new start address isn't hpage aligned and it could
  2689. * previously contain an hugepage: check if we need to split
  2690. * an huge pmd.
  2691. */
  2692. if (start & ~HPAGE_PMD_MASK &&
  2693. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2694. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2695. split_huge_pmd_address(vma, start, false, NULL);
  2696. /*
  2697. * If the new end address isn't hpage aligned and it could
  2698. * previously contain an hugepage: check if we need to split
  2699. * an huge pmd.
  2700. */
  2701. if (end & ~HPAGE_PMD_MASK &&
  2702. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2703. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2704. split_huge_pmd_address(vma, end, false, NULL);
  2705. /*
  2706. * If we're also updating the vma->vm_next->vm_start, if the new
  2707. * vm_next->vm_start isn't page aligned and it could previously
  2708. * contain an hugepage: check if we need to split an huge pmd.
  2709. */
  2710. if (adjust_next > 0) {
  2711. struct vm_area_struct *next = vma->vm_next;
  2712. unsigned long nstart = next->vm_start;
  2713. nstart += adjust_next << PAGE_SHIFT;
  2714. if (nstart & ~HPAGE_PMD_MASK &&
  2715. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2716. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2717. split_huge_pmd_address(next, nstart, false, NULL);
  2718. }
  2719. }
  2720. static void freeze_page(struct page *page)
  2721. {
  2722. enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
  2723. TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
  2724. int i, ret;
  2725. VM_BUG_ON_PAGE(!PageHead(page), page);
  2726. /* We only need TTU_SPLIT_HUGE_PMD once */
  2727. ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
  2728. for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
  2729. /* Cut short if the page is unmapped */
  2730. if (page_count(page) == 1)
  2731. return;
  2732. ret = try_to_unmap(page + i, ttu_flags);
  2733. }
  2734. VM_BUG_ON(ret);
  2735. }
  2736. static void unfreeze_page(struct page *page)
  2737. {
  2738. int i;
  2739. for (i = 0; i < HPAGE_PMD_NR; i++)
  2740. remove_migration_ptes(page + i, page + i, true);
  2741. }
  2742. static void __split_huge_page_tail(struct page *head, int tail,
  2743. struct lruvec *lruvec, struct list_head *list)
  2744. {
  2745. struct page *page_tail = head + tail;
  2746. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2747. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  2748. /*
  2749. * tail_page->_count is zero and not changing from under us. But
  2750. * get_page_unless_zero() may be running from under us on the
  2751. * tail_page. If we used atomic_set() below instead of atomic_inc(), we
  2752. * would then run atomic_set() concurrently with
  2753. * get_page_unless_zero(), and atomic_set() is implemented in C not
  2754. * using locked ops. spin_unlock on x86 sometime uses locked ops
  2755. * because of PPro errata 66, 92, so unless somebody can guarantee
  2756. * atomic_set() here would be safe on all archs (and not only on x86),
  2757. * it's safer to use atomic_inc().
  2758. */
  2759. page_ref_inc(page_tail);
  2760. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2761. page_tail->flags |= (head->flags &
  2762. ((1L << PG_referenced) |
  2763. (1L << PG_swapbacked) |
  2764. (1L << PG_mlocked) |
  2765. (1L << PG_uptodate) |
  2766. (1L << PG_active) |
  2767. (1L << PG_locked) |
  2768. (1L << PG_unevictable) |
  2769. (1L << PG_dirty)));
  2770. /*
  2771. * After clearing PageTail the gup refcount can be released.
  2772. * Page flags also must be visible before we make the page non-compound.
  2773. */
  2774. smp_wmb();
  2775. clear_compound_head(page_tail);
  2776. if (page_is_young(head))
  2777. set_page_young(page_tail);
  2778. if (page_is_idle(head))
  2779. set_page_idle(page_tail);
  2780. /* ->mapping in first tail page is compound_mapcount */
  2781. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2782. page_tail);
  2783. page_tail->mapping = head->mapping;
  2784. page_tail->index = head->index + tail;
  2785. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2786. lru_add_page_tail(head, page_tail, lruvec, list);
  2787. }
  2788. static void __split_huge_page(struct page *page, struct list_head *list)
  2789. {
  2790. struct page *head = compound_head(page);
  2791. struct zone *zone = page_zone(head);
  2792. struct lruvec *lruvec;
  2793. int i;
  2794. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2795. spin_lock_irq(&zone->lru_lock);
  2796. lruvec = mem_cgroup_page_lruvec(head, zone);
  2797. /* complete memcg works before add pages to LRU */
  2798. mem_cgroup_split_huge_fixup(head);
  2799. for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
  2800. __split_huge_page_tail(head, i, lruvec, list);
  2801. ClearPageCompound(head);
  2802. spin_unlock_irq(&zone->lru_lock);
  2803. unfreeze_page(head);
  2804. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2805. struct page *subpage = head + i;
  2806. if (subpage == page)
  2807. continue;
  2808. unlock_page(subpage);
  2809. /*
  2810. * Subpages may be freed if there wasn't any mapping
  2811. * like if add_to_swap() is running on a lru page that
  2812. * had its mapping zapped. And freeing these pages
  2813. * requires taking the lru_lock so we do the put_page
  2814. * of the tail pages after the split is complete.
  2815. */
  2816. put_page(subpage);
  2817. }
  2818. }
  2819. int total_mapcount(struct page *page)
  2820. {
  2821. int i, ret;
  2822. VM_BUG_ON_PAGE(PageTail(page), page);
  2823. if (likely(!PageCompound(page)))
  2824. return atomic_read(&page->_mapcount) + 1;
  2825. ret = compound_mapcount(page);
  2826. if (PageHuge(page))
  2827. return ret;
  2828. for (i = 0; i < HPAGE_PMD_NR; i++)
  2829. ret += atomic_read(&page[i]._mapcount) + 1;
  2830. if (PageDoubleMap(page))
  2831. ret -= HPAGE_PMD_NR;
  2832. return ret;
  2833. }
  2834. /*
  2835. * This function splits huge page into normal pages. @page can point to any
  2836. * subpage of huge page to split. Split doesn't change the position of @page.
  2837. *
  2838. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2839. * The huge page must be locked.
  2840. *
  2841. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2842. *
  2843. * Both head page and tail pages will inherit mapping, flags, and so on from
  2844. * the hugepage.
  2845. *
  2846. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2847. * they are not mapped.
  2848. *
  2849. * Returns 0 if the hugepage is split successfully.
  2850. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2851. * us.
  2852. */
  2853. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2854. {
  2855. struct page *head = compound_head(page);
  2856. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2857. struct anon_vma *anon_vma;
  2858. int count, mapcount, ret;
  2859. bool mlocked;
  2860. unsigned long flags;
  2861. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2862. VM_BUG_ON_PAGE(!PageAnon(page), page);
  2863. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2864. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  2865. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2866. /*
  2867. * The caller does not necessarily hold an mmap_sem that would prevent
  2868. * the anon_vma disappearing so we first we take a reference to it
  2869. * and then lock the anon_vma for write. This is similar to
  2870. * page_lock_anon_vma_read except the write lock is taken to serialise
  2871. * against parallel split or collapse operations.
  2872. */
  2873. anon_vma = page_get_anon_vma(head);
  2874. if (!anon_vma) {
  2875. ret = -EBUSY;
  2876. goto out;
  2877. }
  2878. anon_vma_lock_write(anon_vma);
  2879. /*
  2880. * Racy check if we can split the page, before freeze_page() will
  2881. * split PMDs
  2882. */
  2883. if (total_mapcount(head) != page_count(head) - 1) {
  2884. ret = -EBUSY;
  2885. goto out_unlock;
  2886. }
  2887. mlocked = PageMlocked(page);
  2888. freeze_page(head);
  2889. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2890. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2891. if (mlocked)
  2892. lru_add_drain();
  2893. /* Prevent deferred_split_scan() touching ->_count */
  2894. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2895. count = page_count(head);
  2896. mapcount = total_mapcount(head);
  2897. if (!mapcount && count == 1) {
  2898. if (!list_empty(page_deferred_list(head))) {
  2899. pgdata->split_queue_len--;
  2900. list_del(page_deferred_list(head));
  2901. }
  2902. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2903. __split_huge_page(page, list);
  2904. ret = 0;
  2905. } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2906. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2907. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2908. mapcount, count);
  2909. if (PageTail(page))
  2910. dump_page(head, NULL);
  2911. dump_page(page, "total_mapcount(head) > 0");
  2912. BUG();
  2913. } else {
  2914. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2915. unfreeze_page(head);
  2916. ret = -EBUSY;
  2917. }
  2918. out_unlock:
  2919. anon_vma_unlock_write(anon_vma);
  2920. put_anon_vma(anon_vma);
  2921. out:
  2922. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2923. return ret;
  2924. }
  2925. void free_transhuge_page(struct page *page)
  2926. {
  2927. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2928. unsigned long flags;
  2929. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2930. if (!list_empty(page_deferred_list(page))) {
  2931. pgdata->split_queue_len--;
  2932. list_del(page_deferred_list(page));
  2933. }
  2934. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2935. free_compound_page(page);
  2936. }
  2937. void deferred_split_huge_page(struct page *page)
  2938. {
  2939. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2940. unsigned long flags;
  2941. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2942. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2943. if (list_empty(page_deferred_list(page))) {
  2944. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2945. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2946. pgdata->split_queue_len++;
  2947. }
  2948. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2949. }
  2950. static unsigned long deferred_split_count(struct shrinker *shrink,
  2951. struct shrink_control *sc)
  2952. {
  2953. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2954. return ACCESS_ONCE(pgdata->split_queue_len);
  2955. }
  2956. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2957. struct shrink_control *sc)
  2958. {
  2959. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2960. unsigned long flags;
  2961. LIST_HEAD(list), *pos, *next;
  2962. struct page *page;
  2963. int split = 0;
  2964. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2965. /* Take pin on all head pages to avoid freeing them under us */
  2966. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2967. page = list_entry((void *)pos, struct page, mapping);
  2968. page = compound_head(page);
  2969. if (get_page_unless_zero(page)) {
  2970. list_move(page_deferred_list(page), &list);
  2971. } else {
  2972. /* We lost race with put_compound_page() */
  2973. list_del_init(page_deferred_list(page));
  2974. pgdata->split_queue_len--;
  2975. }
  2976. if (!--sc->nr_to_scan)
  2977. break;
  2978. }
  2979. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2980. list_for_each_safe(pos, next, &list) {
  2981. page = list_entry((void *)pos, struct page, mapping);
  2982. lock_page(page);
  2983. /* split_huge_page() removes page from list on success */
  2984. if (!split_huge_page(page))
  2985. split++;
  2986. unlock_page(page);
  2987. put_page(page);
  2988. }
  2989. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2990. list_splice_tail(&list, &pgdata->split_queue);
  2991. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2992. /*
  2993. * Stop shrinker if we didn't split any page, but the queue is empty.
  2994. * This can happen if pages were freed under us.
  2995. */
  2996. if (!split && list_empty(&pgdata->split_queue))
  2997. return SHRINK_STOP;
  2998. return split;
  2999. }
  3000. static struct shrinker deferred_split_shrinker = {
  3001. .count_objects = deferred_split_count,
  3002. .scan_objects = deferred_split_scan,
  3003. .seeks = DEFAULT_SEEKS,
  3004. .flags = SHRINKER_NUMA_AWARE,
  3005. };
  3006. #ifdef CONFIG_DEBUG_FS
  3007. static int split_huge_pages_set(void *data, u64 val)
  3008. {
  3009. struct zone *zone;
  3010. struct page *page;
  3011. unsigned long pfn, max_zone_pfn;
  3012. unsigned long total = 0, split = 0;
  3013. if (val != 1)
  3014. return -EINVAL;
  3015. for_each_populated_zone(zone) {
  3016. max_zone_pfn = zone_end_pfn(zone);
  3017. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  3018. if (!pfn_valid(pfn))
  3019. continue;
  3020. page = pfn_to_page(pfn);
  3021. if (!get_page_unless_zero(page))
  3022. continue;
  3023. if (zone != page_zone(page))
  3024. goto next;
  3025. if (!PageHead(page) || !PageAnon(page) ||
  3026. PageHuge(page))
  3027. goto next;
  3028. total++;
  3029. lock_page(page);
  3030. if (!split_huge_page(page))
  3031. split++;
  3032. unlock_page(page);
  3033. next:
  3034. put_page(page);
  3035. }
  3036. }
  3037. pr_info("%lu of %lu THP split", split, total);
  3038. return 0;
  3039. }
  3040. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  3041. "%llu\n");
  3042. static int __init split_huge_pages_debugfs(void)
  3043. {
  3044. void *ret;
  3045. ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
  3046. &split_huge_pages_fops);
  3047. if (!ret)
  3048. pr_warn("Failed to create split_huge_pages in debugfs");
  3049. return 0;
  3050. }
  3051. late_initcall(split_huge_pages_debugfs);
  3052. #endif