sched.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060
  1. /*
  2. * linux/net/sunrpc/sched.c
  3. *
  4. * Scheduling for synchronous and asynchronous RPC requests.
  5. *
  6. * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
  7. *
  8. * TCP NFS related read + write fixes
  9. * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10. */
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/slab.h>
  15. #include <linux/mempool.h>
  16. #include <linux/smp.h>
  17. #include <linux/smp_lock.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/mutex.h>
  20. #include <linux/sunrpc/clnt.h>
  21. #ifdef RPC_DEBUG
  22. #define RPCDBG_FACILITY RPCDBG_SCHED
  23. #define RPC_TASK_MAGIC_ID 0xf00baa
  24. #endif
  25. /*
  26. * RPC slabs and memory pools
  27. */
  28. #define RPC_BUFFER_MAXSIZE (2048)
  29. #define RPC_BUFFER_POOLSIZE (8)
  30. #define RPC_TASK_POOLSIZE (8)
  31. static struct kmem_cache *rpc_task_slabp __read_mostly;
  32. static struct kmem_cache *rpc_buffer_slabp __read_mostly;
  33. static mempool_t *rpc_task_mempool __read_mostly;
  34. static mempool_t *rpc_buffer_mempool __read_mostly;
  35. static void rpc_async_schedule(struct work_struct *);
  36. static void rpc_release_task(struct rpc_task *task);
  37. static void __rpc_queue_timer_fn(unsigned long ptr);
  38. /*
  39. * RPC tasks sit here while waiting for conditions to improve.
  40. */
  41. static struct rpc_wait_queue delay_queue;
  42. /*
  43. * rpciod-related stuff
  44. */
  45. struct workqueue_struct *rpciod_workqueue;
  46. /*
  47. * Disable the timer for a given RPC task. Should be called with
  48. * queue->lock and bh_disabled in order to avoid races within
  49. * rpc_run_timer().
  50. */
  51. static void
  52. __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  53. {
  54. if (task->tk_timeout == 0)
  55. return;
  56. dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  57. task->tk_timeout = 0;
  58. list_del(&task->u.tk_wait.timer_list);
  59. if (list_empty(&queue->timer_list.list))
  60. del_timer(&queue->timer_list.timer);
  61. }
  62. static void
  63. rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  64. {
  65. queue->timer_list.expires = expires;
  66. mod_timer(&queue->timer_list.timer, expires);
  67. }
  68. /*
  69. * Set up a timer for the current task.
  70. */
  71. static void
  72. __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  73. {
  74. if (!task->tk_timeout)
  75. return;
  76. dprintk("RPC: %5u setting alarm for %lu ms\n",
  77. task->tk_pid, task->tk_timeout * 1000 / HZ);
  78. task->u.tk_wait.expires = jiffies + task->tk_timeout;
  79. if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  80. rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  81. list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  82. }
  83. /*
  84. * Add new request to a priority queue.
  85. */
  86. static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
  87. {
  88. struct list_head *q;
  89. struct rpc_task *t;
  90. INIT_LIST_HEAD(&task->u.tk_wait.links);
  91. q = &queue->tasks[task->tk_priority];
  92. if (unlikely(task->tk_priority > queue->maxpriority))
  93. q = &queue->tasks[queue->maxpriority];
  94. list_for_each_entry(t, q, u.tk_wait.list) {
  95. if (t->tk_owner == task->tk_owner) {
  96. list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
  97. return;
  98. }
  99. }
  100. list_add_tail(&task->u.tk_wait.list, q);
  101. }
  102. /*
  103. * Add new request to wait queue.
  104. *
  105. * Swapper tasks always get inserted at the head of the queue.
  106. * This should avoid many nasty memory deadlocks and hopefully
  107. * improve overall performance.
  108. * Everyone else gets appended to the queue to ensure proper FIFO behavior.
  109. */
  110. static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  111. {
  112. BUG_ON (RPC_IS_QUEUED(task));
  113. if (RPC_IS_PRIORITY(queue))
  114. __rpc_add_wait_queue_priority(queue, task);
  115. else if (RPC_IS_SWAPPER(task))
  116. list_add(&task->u.tk_wait.list, &queue->tasks[0]);
  117. else
  118. list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
  119. task->tk_waitqueue = queue;
  120. queue->qlen++;
  121. rpc_set_queued(task);
  122. dprintk("RPC: %5u added to queue %p \"%s\"\n",
  123. task->tk_pid, queue, rpc_qname(queue));
  124. }
  125. /*
  126. * Remove request from a priority queue.
  127. */
  128. static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
  129. {
  130. struct rpc_task *t;
  131. if (!list_empty(&task->u.tk_wait.links)) {
  132. t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
  133. list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
  134. list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
  135. }
  136. }
  137. /*
  138. * Remove request from queue.
  139. * Note: must be called with spin lock held.
  140. */
  141. static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  142. {
  143. __rpc_disable_timer(queue, task);
  144. if (RPC_IS_PRIORITY(queue))
  145. __rpc_remove_wait_queue_priority(task);
  146. list_del(&task->u.tk_wait.list);
  147. queue->qlen--;
  148. dprintk("RPC: %5u removed from queue %p \"%s\"\n",
  149. task->tk_pid, queue, rpc_qname(queue));
  150. }
  151. static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
  152. {
  153. queue->priority = priority;
  154. queue->count = 1 << (priority * 2);
  155. }
  156. static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
  157. {
  158. queue->owner = pid;
  159. queue->nr = RPC_BATCH_COUNT;
  160. }
  161. static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
  162. {
  163. rpc_set_waitqueue_priority(queue, queue->maxpriority);
  164. rpc_set_waitqueue_owner(queue, 0);
  165. }
  166. static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
  167. {
  168. int i;
  169. spin_lock_init(&queue->lock);
  170. for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
  171. INIT_LIST_HEAD(&queue->tasks[i]);
  172. queue->maxpriority = nr_queues - 1;
  173. rpc_reset_waitqueue_priority(queue);
  174. queue->qlen = 0;
  175. setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
  176. INIT_LIST_HEAD(&queue->timer_list.list);
  177. #ifdef RPC_DEBUG
  178. queue->name = qname;
  179. #endif
  180. }
  181. void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  182. {
  183. __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
  184. }
  185. void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  186. {
  187. __rpc_init_priority_wait_queue(queue, qname, 1);
  188. }
  189. EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
  190. void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
  191. {
  192. del_timer_sync(&queue->timer_list.timer);
  193. }
  194. EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
  195. static int rpc_wait_bit_killable(void *word)
  196. {
  197. if (fatal_signal_pending(current))
  198. return -ERESTARTSYS;
  199. schedule();
  200. return 0;
  201. }
  202. #ifdef RPC_DEBUG
  203. static void rpc_task_set_debuginfo(struct rpc_task *task)
  204. {
  205. static atomic_t rpc_pid;
  206. task->tk_magic = RPC_TASK_MAGIC_ID;
  207. task->tk_pid = atomic_inc_return(&rpc_pid);
  208. }
  209. #else
  210. static inline void rpc_task_set_debuginfo(struct rpc_task *task)
  211. {
  212. }
  213. #endif
  214. static void rpc_set_active(struct rpc_task *task)
  215. {
  216. struct rpc_clnt *clnt;
  217. if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
  218. return;
  219. rpc_task_set_debuginfo(task);
  220. /* Add to global list of all tasks */
  221. clnt = task->tk_client;
  222. if (clnt != NULL) {
  223. spin_lock(&clnt->cl_lock);
  224. list_add_tail(&task->tk_task, &clnt->cl_tasks);
  225. spin_unlock(&clnt->cl_lock);
  226. }
  227. }
  228. /*
  229. * Mark an RPC call as having completed by clearing the 'active' bit
  230. */
  231. static void rpc_mark_complete_task(struct rpc_task *task)
  232. {
  233. smp_mb__before_clear_bit();
  234. clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  235. smp_mb__after_clear_bit();
  236. wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
  237. }
  238. /*
  239. * Allow callers to wait for completion of an RPC call
  240. */
  241. int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
  242. {
  243. if (action == NULL)
  244. action = rpc_wait_bit_killable;
  245. return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
  246. action, TASK_KILLABLE);
  247. }
  248. EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
  249. /*
  250. * Make an RPC task runnable.
  251. *
  252. * Note: If the task is ASYNC, this must be called with
  253. * the spinlock held to protect the wait queue operation.
  254. */
  255. static void rpc_make_runnable(struct rpc_task *task)
  256. {
  257. rpc_clear_queued(task);
  258. if (rpc_test_and_set_running(task))
  259. return;
  260. /* We might have raced */
  261. if (RPC_IS_QUEUED(task)) {
  262. rpc_clear_running(task);
  263. return;
  264. }
  265. if (RPC_IS_ASYNC(task)) {
  266. int status;
  267. INIT_WORK(&task->u.tk_work, rpc_async_schedule);
  268. status = queue_work(rpciod_workqueue, &task->u.tk_work);
  269. if (status < 0) {
  270. printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
  271. task->tk_status = status;
  272. return;
  273. }
  274. } else
  275. wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
  276. }
  277. /*
  278. * Prepare for sleeping on a wait queue.
  279. * By always appending tasks to the list we ensure FIFO behavior.
  280. * NB: An RPC task will only receive interrupt-driven events as long
  281. * as it's on a wait queue.
  282. */
  283. static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  284. rpc_action action)
  285. {
  286. dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
  287. task->tk_pid, rpc_qname(q), jiffies);
  288. if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
  289. printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
  290. return;
  291. }
  292. __rpc_add_wait_queue(q, task);
  293. BUG_ON(task->tk_callback != NULL);
  294. task->tk_callback = action;
  295. __rpc_add_timer(q, task);
  296. }
  297. void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  298. rpc_action action)
  299. {
  300. /* Mark the task as being activated if so needed */
  301. rpc_set_active(task);
  302. /*
  303. * Protect the queue operations.
  304. */
  305. spin_lock_bh(&q->lock);
  306. __rpc_sleep_on(q, task, action);
  307. spin_unlock_bh(&q->lock);
  308. }
  309. EXPORT_SYMBOL_GPL(rpc_sleep_on);
  310. /**
  311. * __rpc_do_wake_up_task - wake up a single rpc_task
  312. * @queue: wait queue
  313. * @task: task to be woken up
  314. *
  315. * Caller must hold queue->lock, and have cleared the task queued flag.
  316. */
  317. static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  318. {
  319. dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
  320. task->tk_pid, jiffies);
  321. #ifdef RPC_DEBUG
  322. BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
  323. #endif
  324. /* Has the task been executed yet? If not, we cannot wake it up! */
  325. if (!RPC_IS_ACTIVATED(task)) {
  326. printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
  327. return;
  328. }
  329. __rpc_remove_wait_queue(queue, task);
  330. rpc_make_runnable(task);
  331. dprintk("RPC: __rpc_wake_up_task done\n");
  332. }
  333. /*
  334. * Wake up a queued task while the queue lock is being held
  335. */
  336. static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
  337. {
  338. if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
  339. __rpc_do_wake_up_task(queue, task);
  340. }
  341. /*
  342. * Wake up a task on a specific queue
  343. */
  344. void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  345. {
  346. rcu_read_lock_bh();
  347. spin_lock(&queue->lock);
  348. rpc_wake_up_task_queue_locked(queue, task);
  349. spin_unlock(&queue->lock);
  350. rcu_read_unlock_bh();
  351. }
  352. EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
  353. /*
  354. * Wake up the specified task
  355. */
  356. static void rpc_wake_up_task(struct rpc_task *task)
  357. {
  358. rpc_wake_up_queued_task(task->tk_waitqueue, task);
  359. }
  360. /*
  361. * Wake up the next task on a priority queue.
  362. */
  363. static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
  364. {
  365. struct list_head *q;
  366. struct rpc_task *task;
  367. /*
  368. * Service a batch of tasks from a single owner.
  369. */
  370. q = &queue->tasks[queue->priority];
  371. if (!list_empty(q)) {
  372. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  373. if (queue->owner == task->tk_owner) {
  374. if (--queue->nr)
  375. goto out;
  376. list_move_tail(&task->u.tk_wait.list, q);
  377. }
  378. /*
  379. * Check if we need to switch queues.
  380. */
  381. if (--queue->count)
  382. goto new_owner;
  383. }
  384. /*
  385. * Service the next queue.
  386. */
  387. do {
  388. if (q == &queue->tasks[0])
  389. q = &queue->tasks[queue->maxpriority];
  390. else
  391. q = q - 1;
  392. if (!list_empty(q)) {
  393. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  394. goto new_queue;
  395. }
  396. } while (q != &queue->tasks[queue->priority]);
  397. rpc_reset_waitqueue_priority(queue);
  398. return NULL;
  399. new_queue:
  400. rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
  401. new_owner:
  402. rpc_set_waitqueue_owner(queue, task->tk_owner);
  403. out:
  404. rpc_wake_up_task_queue_locked(queue, task);
  405. return task;
  406. }
  407. /*
  408. * Wake up the next task on the wait queue.
  409. */
  410. struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
  411. {
  412. struct rpc_task *task = NULL;
  413. dprintk("RPC: wake_up_next(%p \"%s\")\n",
  414. queue, rpc_qname(queue));
  415. rcu_read_lock_bh();
  416. spin_lock(&queue->lock);
  417. if (RPC_IS_PRIORITY(queue))
  418. task = __rpc_wake_up_next_priority(queue);
  419. else {
  420. task_for_first(task, &queue->tasks[0])
  421. rpc_wake_up_task_queue_locked(queue, task);
  422. }
  423. spin_unlock(&queue->lock);
  424. rcu_read_unlock_bh();
  425. return task;
  426. }
  427. EXPORT_SYMBOL_GPL(rpc_wake_up_next);
  428. /**
  429. * rpc_wake_up - wake up all rpc_tasks
  430. * @queue: rpc_wait_queue on which the tasks are sleeping
  431. *
  432. * Grabs queue->lock
  433. */
  434. void rpc_wake_up(struct rpc_wait_queue *queue)
  435. {
  436. struct rpc_task *task, *next;
  437. struct list_head *head;
  438. rcu_read_lock_bh();
  439. spin_lock(&queue->lock);
  440. head = &queue->tasks[queue->maxpriority];
  441. for (;;) {
  442. list_for_each_entry_safe(task, next, head, u.tk_wait.list)
  443. rpc_wake_up_task_queue_locked(queue, task);
  444. if (head == &queue->tasks[0])
  445. break;
  446. head--;
  447. }
  448. spin_unlock(&queue->lock);
  449. rcu_read_unlock_bh();
  450. }
  451. EXPORT_SYMBOL_GPL(rpc_wake_up);
  452. /**
  453. * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
  454. * @queue: rpc_wait_queue on which the tasks are sleeping
  455. * @status: status value to set
  456. *
  457. * Grabs queue->lock
  458. */
  459. void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
  460. {
  461. struct rpc_task *task, *next;
  462. struct list_head *head;
  463. rcu_read_lock_bh();
  464. spin_lock(&queue->lock);
  465. head = &queue->tasks[queue->maxpriority];
  466. for (;;) {
  467. list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
  468. task->tk_status = status;
  469. rpc_wake_up_task_queue_locked(queue, task);
  470. }
  471. if (head == &queue->tasks[0])
  472. break;
  473. head--;
  474. }
  475. spin_unlock(&queue->lock);
  476. rcu_read_unlock_bh();
  477. }
  478. EXPORT_SYMBOL_GPL(rpc_wake_up_status);
  479. static void __rpc_queue_timer_fn(unsigned long ptr)
  480. {
  481. struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
  482. struct rpc_task *task, *n;
  483. unsigned long expires, now, timeo;
  484. spin_lock(&queue->lock);
  485. expires = now = jiffies;
  486. list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
  487. timeo = task->u.tk_wait.expires;
  488. if (time_after_eq(now, timeo)) {
  489. dprintk("RPC: %5u timeout\n", task->tk_pid);
  490. task->tk_status = -ETIMEDOUT;
  491. rpc_wake_up_task_queue_locked(queue, task);
  492. continue;
  493. }
  494. if (expires == now || time_after(expires, timeo))
  495. expires = timeo;
  496. }
  497. if (!list_empty(&queue->timer_list.list))
  498. rpc_set_queue_timer(queue, expires);
  499. spin_unlock(&queue->lock);
  500. }
  501. static void __rpc_atrun(struct rpc_task *task)
  502. {
  503. task->tk_status = 0;
  504. }
  505. /*
  506. * Run a task at a later time
  507. */
  508. void rpc_delay(struct rpc_task *task, unsigned long delay)
  509. {
  510. task->tk_timeout = delay;
  511. rpc_sleep_on(&delay_queue, task, __rpc_atrun);
  512. }
  513. EXPORT_SYMBOL_GPL(rpc_delay);
  514. /*
  515. * Helper to call task->tk_ops->rpc_call_prepare
  516. */
  517. static void rpc_prepare_task(struct rpc_task *task)
  518. {
  519. lock_kernel();
  520. task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
  521. unlock_kernel();
  522. }
  523. /*
  524. * Helper that calls task->tk_ops->rpc_call_done if it exists
  525. */
  526. void rpc_exit_task(struct rpc_task *task)
  527. {
  528. task->tk_action = NULL;
  529. if (task->tk_ops->rpc_call_done != NULL) {
  530. lock_kernel();
  531. task->tk_ops->rpc_call_done(task, task->tk_calldata);
  532. unlock_kernel();
  533. if (task->tk_action != NULL) {
  534. WARN_ON(RPC_ASSASSINATED(task));
  535. /* Always release the RPC slot and buffer memory */
  536. xprt_release(task);
  537. }
  538. }
  539. }
  540. EXPORT_SYMBOL_GPL(rpc_exit_task);
  541. void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
  542. {
  543. if (ops->rpc_release != NULL) {
  544. lock_kernel();
  545. ops->rpc_release(calldata);
  546. unlock_kernel();
  547. }
  548. }
  549. /*
  550. * This is the RPC `scheduler' (or rather, the finite state machine).
  551. */
  552. static void __rpc_execute(struct rpc_task *task)
  553. {
  554. int status = 0;
  555. dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
  556. task->tk_pid, task->tk_flags);
  557. BUG_ON(RPC_IS_QUEUED(task));
  558. for (;;) {
  559. /*
  560. * Execute any pending callback.
  561. */
  562. if (RPC_DO_CALLBACK(task)) {
  563. /* Define a callback save pointer */
  564. void (*save_callback)(struct rpc_task *);
  565. /*
  566. * If a callback exists, save it, reset it,
  567. * call it.
  568. * The save is needed to stop from resetting
  569. * another callback set within the callback handler
  570. * - Dave
  571. */
  572. save_callback=task->tk_callback;
  573. task->tk_callback=NULL;
  574. save_callback(task);
  575. }
  576. /*
  577. * Perform the next FSM step.
  578. * tk_action may be NULL when the task has been killed
  579. * by someone else.
  580. */
  581. if (!RPC_IS_QUEUED(task)) {
  582. if (task->tk_action == NULL)
  583. break;
  584. task->tk_action(task);
  585. }
  586. /*
  587. * Lockless check for whether task is sleeping or not.
  588. */
  589. if (!RPC_IS_QUEUED(task))
  590. continue;
  591. rpc_clear_running(task);
  592. if (RPC_IS_ASYNC(task)) {
  593. /* Careful! we may have raced... */
  594. if (RPC_IS_QUEUED(task))
  595. return;
  596. if (rpc_test_and_set_running(task))
  597. return;
  598. continue;
  599. }
  600. /* sync task: sleep here */
  601. dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
  602. status = out_of_line_wait_on_bit(&task->tk_runstate,
  603. RPC_TASK_QUEUED, rpc_wait_bit_killable,
  604. TASK_KILLABLE);
  605. if (status == -ERESTARTSYS) {
  606. /*
  607. * When a sync task receives a signal, it exits with
  608. * -ERESTARTSYS. In order to catch any callbacks that
  609. * clean up after sleeping on some queue, we don't
  610. * break the loop here, but go around once more.
  611. */
  612. dprintk("RPC: %5u got signal\n", task->tk_pid);
  613. task->tk_flags |= RPC_TASK_KILLED;
  614. rpc_exit(task, -ERESTARTSYS);
  615. rpc_wake_up_task(task);
  616. }
  617. rpc_set_running(task);
  618. dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
  619. }
  620. dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
  621. task->tk_status);
  622. /* Release all resources associated with the task */
  623. rpc_release_task(task);
  624. }
  625. /*
  626. * User-visible entry point to the scheduler.
  627. *
  628. * This may be called recursively if e.g. an async NFS task updates
  629. * the attributes and finds that dirty pages must be flushed.
  630. * NOTE: Upon exit of this function the task is guaranteed to be
  631. * released. In particular note that tk_release() will have
  632. * been called, so your task memory may have been freed.
  633. */
  634. void rpc_execute(struct rpc_task *task)
  635. {
  636. rpc_set_active(task);
  637. rpc_set_running(task);
  638. __rpc_execute(task);
  639. }
  640. static void rpc_async_schedule(struct work_struct *work)
  641. {
  642. __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
  643. }
  644. struct rpc_buffer {
  645. size_t len;
  646. char data[];
  647. };
  648. /**
  649. * rpc_malloc - allocate an RPC buffer
  650. * @task: RPC task that will use this buffer
  651. * @size: requested byte size
  652. *
  653. * To prevent rpciod from hanging, this allocator never sleeps,
  654. * returning NULL if the request cannot be serviced immediately.
  655. * The caller can arrange to sleep in a way that is safe for rpciod.
  656. *
  657. * Most requests are 'small' (under 2KiB) and can be serviced from a
  658. * mempool, ensuring that NFS reads and writes can always proceed,
  659. * and that there is good locality of reference for these buffers.
  660. *
  661. * In order to avoid memory starvation triggering more writebacks of
  662. * NFS requests, we avoid using GFP_KERNEL.
  663. */
  664. void *rpc_malloc(struct rpc_task *task, size_t size)
  665. {
  666. struct rpc_buffer *buf;
  667. gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
  668. size += sizeof(struct rpc_buffer);
  669. if (size <= RPC_BUFFER_MAXSIZE)
  670. buf = mempool_alloc(rpc_buffer_mempool, gfp);
  671. else
  672. buf = kmalloc(size, gfp);
  673. if (!buf)
  674. return NULL;
  675. buf->len = size;
  676. dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
  677. task->tk_pid, size, buf);
  678. return &buf->data;
  679. }
  680. EXPORT_SYMBOL_GPL(rpc_malloc);
  681. /**
  682. * rpc_free - free buffer allocated via rpc_malloc
  683. * @buffer: buffer to free
  684. *
  685. */
  686. void rpc_free(void *buffer)
  687. {
  688. size_t size;
  689. struct rpc_buffer *buf;
  690. if (!buffer)
  691. return;
  692. buf = container_of(buffer, struct rpc_buffer, data);
  693. size = buf->len;
  694. dprintk("RPC: freeing buffer of size %zu at %p\n",
  695. size, buf);
  696. if (size <= RPC_BUFFER_MAXSIZE)
  697. mempool_free(buf, rpc_buffer_mempool);
  698. else
  699. kfree(buf);
  700. }
  701. EXPORT_SYMBOL_GPL(rpc_free);
  702. /*
  703. * Creation and deletion of RPC task structures
  704. */
  705. static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
  706. {
  707. memset(task, 0, sizeof(*task));
  708. atomic_set(&task->tk_count, 1);
  709. task->tk_flags = task_setup_data->flags;
  710. task->tk_ops = task_setup_data->callback_ops;
  711. task->tk_calldata = task_setup_data->callback_data;
  712. INIT_LIST_HEAD(&task->tk_task);
  713. /* Initialize retry counters */
  714. task->tk_garb_retry = 2;
  715. task->tk_cred_retry = 2;
  716. task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
  717. task->tk_owner = current->tgid;
  718. /* Initialize workqueue for async tasks */
  719. task->tk_workqueue = task_setup_data->workqueue;
  720. task->tk_client = task_setup_data->rpc_client;
  721. if (task->tk_client != NULL) {
  722. kref_get(&task->tk_client->cl_kref);
  723. if (task->tk_client->cl_softrtry)
  724. task->tk_flags |= RPC_TASK_SOFT;
  725. }
  726. if (task->tk_ops->rpc_call_prepare != NULL)
  727. task->tk_action = rpc_prepare_task;
  728. if (task_setup_data->rpc_message != NULL) {
  729. memcpy(&task->tk_msg, task_setup_data->rpc_message, sizeof(task->tk_msg));
  730. /* Bind the user cred */
  731. if (task->tk_msg.rpc_cred != NULL)
  732. rpcauth_holdcred(task);
  733. else
  734. rpcauth_bindcred(task);
  735. if (task->tk_action == NULL)
  736. rpc_call_start(task);
  737. }
  738. /* starting timestamp */
  739. task->tk_start = jiffies;
  740. dprintk("RPC: new task initialized, procpid %u\n",
  741. task_pid_nr(current));
  742. }
  743. static struct rpc_task *
  744. rpc_alloc_task(void)
  745. {
  746. return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
  747. }
  748. static void rpc_free_task_rcu(struct rcu_head *rcu)
  749. {
  750. struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
  751. dprintk("RPC: %5u freeing task\n", task->tk_pid);
  752. mempool_free(task, rpc_task_mempool);
  753. }
  754. /*
  755. * Create a new task for the specified client.
  756. */
  757. struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
  758. {
  759. struct rpc_task *task = setup_data->task;
  760. unsigned short flags = 0;
  761. if (task == NULL) {
  762. task = rpc_alloc_task();
  763. if (task == NULL)
  764. goto out;
  765. flags = RPC_TASK_DYNAMIC;
  766. }
  767. rpc_init_task(task, setup_data);
  768. task->tk_flags |= flags;
  769. dprintk("RPC: allocated task %p\n", task);
  770. out:
  771. return task;
  772. }
  773. static void rpc_free_task(struct rpc_task *task)
  774. {
  775. const struct rpc_call_ops *tk_ops = task->tk_ops;
  776. void *calldata = task->tk_calldata;
  777. if (task->tk_flags & RPC_TASK_DYNAMIC)
  778. call_rcu_bh(&task->u.tk_rcu, rpc_free_task_rcu);
  779. rpc_release_calldata(tk_ops, calldata);
  780. }
  781. static void rpc_async_release(struct work_struct *work)
  782. {
  783. rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
  784. }
  785. void rpc_put_task(struct rpc_task *task)
  786. {
  787. if (!atomic_dec_and_test(&task->tk_count))
  788. return;
  789. /* Release resources */
  790. if (task->tk_rqstp)
  791. xprt_release(task);
  792. if (task->tk_msg.rpc_cred)
  793. rpcauth_unbindcred(task);
  794. if (task->tk_client) {
  795. rpc_release_client(task->tk_client);
  796. task->tk_client = NULL;
  797. }
  798. if (task->tk_workqueue != NULL) {
  799. INIT_WORK(&task->u.tk_work, rpc_async_release);
  800. queue_work(task->tk_workqueue, &task->u.tk_work);
  801. } else
  802. rpc_free_task(task);
  803. }
  804. EXPORT_SYMBOL_GPL(rpc_put_task);
  805. static void rpc_release_task(struct rpc_task *task)
  806. {
  807. #ifdef RPC_DEBUG
  808. BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
  809. #endif
  810. dprintk("RPC: %5u release task\n", task->tk_pid);
  811. if (!list_empty(&task->tk_task)) {
  812. struct rpc_clnt *clnt = task->tk_client;
  813. /* Remove from client task list */
  814. spin_lock(&clnt->cl_lock);
  815. list_del(&task->tk_task);
  816. spin_unlock(&clnt->cl_lock);
  817. }
  818. BUG_ON (RPC_IS_QUEUED(task));
  819. #ifdef RPC_DEBUG
  820. task->tk_magic = 0;
  821. #endif
  822. /* Wake up anyone who is waiting for task completion */
  823. rpc_mark_complete_task(task);
  824. rpc_put_task(task);
  825. }
  826. /*
  827. * Kill all tasks for the given client.
  828. * XXX: kill their descendants as well?
  829. */
  830. void rpc_killall_tasks(struct rpc_clnt *clnt)
  831. {
  832. struct rpc_task *rovr;
  833. if (list_empty(&clnt->cl_tasks))
  834. return;
  835. dprintk("RPC: killing all tasks for client %p\n", clnt);
  836. /*
  837. * Spin lock all_tasks to prevent changes...
  838. */
  839. spin_lock(&clnt->cl_lock);
  840. list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
  841. if (! RPC_IS_ACTIVATED(rovr))
  842. continue;
  843. if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
  844. rovr->tk_flags |= RPC_TASK_KILLED;
  845. rpc_exit(rovr, -EIO);
  846. rpc_wake_up_task(rovr);
  847. }
  848. }
  849. spin_unlock(&clnt->cl_lock);
  850. }
  851. EXPORT_SYMBOL_GPL(rpc_killall_tasks);
  852. int rpciod_up(void)
  853. {
  854. return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
  855. }
  856. void rpciod_down(void)
  857. {
  858. module_put(THIS_MODULE);
  859. }
  860. /*
  861. * Start up the rpciod workqueue.
  862. */
  863. static int rpciod_start(void)
  864. {
  865. struct workqueue_struct *wq;
  866. /*
  867. * Create the rpciod thread and wait for it to start.
  868. */
  869. dprintk("RPC: creating workqueue rpciod\n");
  870. wq = create_workqueue("rpciod");
  871. rpciod_workqueue = wq;
  872. return rpciod_workqueue != NULL;
  873. }
  874. static void rpciod_stop(void)
  875. {
  876. struct workqueue_struct *wq = NULL;
  877. if (rpciod_workqueue == NULL)
  878. return;
  879. dprintk("RPC: destroying workqueue rpciod\n");
  880. wq = rpciod_workqueue;
  881. rpciod_workqueue = NULL;
  882. destroy_workqueue(wq);
  883. }
  884. void
  885. rpc_destroy_mempool(void)
  886. {
  887. rpciod_stop();
  888. if (rpc_buffer_mempool)
  889. mempool_destroy(rpc_buffer_mempool);
  890. if (rpc_task_mempool)
  891. mempool_destroy(rpc_task_mempool);
  892. if (rpc_task_slabp)
  893. kmem_cache_destroy(rpc_task_slabp);
  894. if (rpc_buffer_slabp)
  895. kmem_cache_destroy(rpc_buffer_slabp);
  896. rpc_destroy_wait_queue(&delay_queue);
  897. }
  898. int
  899. rpc_init_mempool(void)
  900. {
  901. /*
  902. * The following is not strictly a mempool initialisation,
  903. * but there is no harm in doing it here
  904. */
  905. rpc_init_wait_queue(&delay_queue, "delayq");
  906. if (!rpciod_start())
  907. goto err_nomem;
  908. rpc_task_slabp = kmem_cache_create("rpc_tasks",
  909. sizeof(struct rpc_task),
  910. 0, SLAB_HWCACHE_ALIGN,
  911. NULL);
  912. if (!rpc_task_slabp)
  913. goto err_nomem;
  914. rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
  915. RPC_BUFFER_MAXSIZE,
  916. 0, SLAB_HWCACHE_ALIGN,
  917. NULL);
  918. if (!rpc_buffer_slabp)
  919. goto err_nomem;
  920. rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
  921. rpc_task_slabp);
  922. if (!rpc_task_mempool)
  923. goto err_nomem;
  924. rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
  925. rpc_buffer_slabp);
  926. if (!rpc_buffer_mempool)
  927. goto err_nomem;
  928. return 0;
  929. err_nomem:
  930. rpc_destroy_mempool();
  931. return -ENOMEM;
  932. }