compression.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135
  1. /*
  2. * Copyright (C) 2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/highmem.h>
  25. #include <linux/time.h>
  26. #include <linux/init.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mpage.h>
  30. #include <linux/swap.h>
  31. #include <linux/writeback.h>
  32. #include <linux/bit_spinlock.h>
  33. #include <linux/slab.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "ordered-data.h"
  40. #include "compression.h"
  41. #include "extent_io.h"
  42. #include "extent_map.h"
  43. struct compressed_bio {
  44. /* number of bios pending for this compressed extent */
  45. atomic_t pending_bios;
  46. /* the pages with the compressed data on them */
  47. struct page **compressed_pages;
  48. /* inode that owns this data */
  49. struct inode *inode;
  50. /* starting offset in the inode for our pages */
  51. u64 start;
  52. /* number of bytes in the inode we're working on */
  53. unsigned long len;
  54. /* number of bytes on disk */
  55. unsigned long compressed_len;
  56. /* the compression algorithm for this bio */
  57. int compress_type;
  58. /* number of compressed pages in the array */
  59. unsigned long nr_pages;
  60. /* IO errors */
  61. int errors;
  62. int mirror_num;
  63. /* for reads, this is the bio we are copying the data into */
  64. struct bio *orig_bio;
  65. /*
  66. * the start of a variable length array of checksums only
  67. * used by reads
  68. */
  69. u32 sums;
  70. };
  71. static int btrfs_decompress_biovec(int type, struct page **pages_in,
  72. u64 disk_start, struct bio_vec *bvec,
  73. int vcnt, size_t srclen);
  74. static inline int compressed_bio_size(struct btrfs_root *root,
  75. unsigned long disk_size)
  76. {
  77. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  78. return sizeof(struct compressed_bio) +
  79. (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
  80. }
  81. static struct bio *compressed_bio_alloc(struct block_device *bdev,
  82. u64 first_byte, gfp_t gfp_flags)
  83. {
  84. return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
  85. }
  86. static int check_compressed_csum(struct inode *inode,
  87. struct compressed_bio *cb,
  88. u64 disk_start)
  89. {
  90. int ret;
  91. struct page *page;
  92. unsigned long i;
  93. char *kaddr;
  94. u32 csum;
  95. u32 *cb_sum = &cb->sums;
  96. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
  97. return 0;
  98. for (i = 0; i < cb->nr_pages; i++) {
  99. page = cb->compressed_pages[i];
  100. csum = ~(u32)0;
  101. kaddr = kmap_atomic(page);
  102. csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
  103. btrfs_csum_final(csum, (char *)&csum);
  104. kunmap_atomic(kaddr);
  105. if (csum != *cb_sum) {
  106. btrfs_info(BTRFS_I(inode)->root->fs_info,
  107. "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
  108. btrfs_ino(inode), disk_start, csum, *cb_sum,
  109. cb->mirror_num);
  110. ret = -EIO;
  111. goto fail;
  112. }
  113. cb_sum++;
  114. }
  115. ret = 0;
  116. fail:
  117. return ret;
  118. }
  119. /* when we finish reading compressed pages from the disk, we
  120. * decompress them and then run the bio end_io routines on the
  121. * decompressed pages (in the inode address space).
  122. *
  123. * This allows the checksumming and other IO error handling routines
  124. * to work normally
  125. *
  126. * The compressed pages are freed here, and it must be run
  127. * in process context
  128. */
  129. static void end_compressed_bio_read(struct bio *bio)
  130. {
  131. struct compressed_bio *cb = bio->bi_private;
  132. struct inode *inode;
  133. struct page *page;
  134. unsigned long index;
  135. int ret;
  136. if (bio->bi_error)
  137. cb->errors = 1;
  138. /* if there are more bios still pending for this compressed
  139. * extent, just exit
  140. */
  141. if (!atomic_dec_and_test(&cb->pending_bios))
  142. goto out;
  143. inode = cb->inode;
  144. ret = check_compressed_csum(inode, cb,
  145. (u64)bio->bi_iter.bi_sector << 9);
  146. if (ret)
  147. goto csum_failed;
  148. /* ok, we're the last bio for this extent, lets start
  149. * the decompression.
  150. */
  151. ret = btrfs_decompress_biovec(cb->compress_type,
  152. cb->compressed_pages,
  153. cb->start,
  154. cb->orig_bio->bi_io_vec,
  155. cb->orig_bio->bi_vcnt,
  156. cb->compressed_len);
  157. csum_failed:
  158. if (ret)
  159. cb->errors = 1;
  160. /* release the compressed pages */
  161. index = 0;
  162. for (index = 0; index < cb->nr_pages; index++) {
  163. page = cb->compressed_pages[index];
  164. page->mapping = NULL;
  165. put_page(page);
  166. }
  167. /* do io completion on the original bio */
  168. if (cb->errors) {
  169. bio_io_error(cb->orig_bio);
  170. } else {
  171. int i;
  172. struct bio_vec *bvec;
  173. /*
  174. * we have verified the checksum already, set page
  175. * checked so the end_io handlers know about it
  176. */
  177. bio_for_each_segment_all(bvec, cb->orig_bio, i)
  178. SetPageChecked(bvec->bv_page);
  179. bio_endio(cb->orig_bio);
  180. }
  181. /* finally free the cb struct */
  182. kfree(cb->compressed_pages);
  183. kfree(cb);
  184. out:
  185. bio_put(bio);
  186. }
  187. /*
  188. * Clear the writeback bits on all of the file
  189. * pages for a compressed write
  190. */
  191. static noinline void end_compressed_writeback(struct inode *inode,
  192. const struct compressed_bio *cb)
  193. {
  194. unsigned long index = cb->start >> PAGE_SHIFT;
  195. unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
  196. struct page *pages[16];
  197. unsigned long nr_pages = end_index - index + 1;
  198. int i;
  199. int ret;
  200. if (cb->errors)
  201. mapping_set_error(inode->i_mapping, -EIO);
  202. while (nr_pages > 0) {
  203. ret = find_get_pages_contig(inode->i_mapping, index,
  204. min_t(unsigned long,
  205. nr_pages, ARRAY_SIZE(pages)), pages);
  206. if (ret == 0) {
  207. nr_pages -= 1;
  208. index += 1;
  209. continue;
  210. }
  211. for (i = 0; i < ret; i++) {
  212. if (cb->errors)
  213. SetPageError(pages[i]);
  214. end_page_writeback(pages[i]);
  215. put_page(pages[i]);
  216. }
  217. nr_pages -= ret;
  218. index += ret;
  219. }
  220. /* the inode may be gone now */
  221. }
  222. /*
  223. * do the cleanup once all the compressed pages hit the disk.
  224. * This will clear writeback on the file pages and free the compressed
  225. * pages.
  226. *
  227. * This also calls the writeback end hooks for the file pages so that
  228. * metadata and checksums can be updated in the file.
  229. */
  230. static void end_compressed_bio_write(struct bio *bio)
  231. {
  232. struct extent_io_tree *tree;
  233. struct compressed_bio *cb = bio->bi_private;
  234. struct inode *inode;
  235. struct page *page;
  236. unsigned long index;
  237. if (bio->bi_error)
  238. cb->errors = 1;
  239. /* if there are more bios still pending for this compressed
  240. * extent, just exit
  241. */
  242. if (!atomic_dec_and_test(&cb->pending_bios))
  243. goto out;
  244. /* ok, we're the last bio for this extent, step one is to
  245. * call back into the FS and do all the end_io operations
  246. */
  247. inode = cb->inode;
  248. tree = &BTRFS_I(inode)->io_tree;
  249. cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
  250. tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
  251. cb->start,
  252. cb->start + cb->len - 1,
  253. NULL,
  254. bio->bi_error ? 0 : 1);
  255. cb->compressed_pages[0]->mapping = NULL;
  256. end_compressed_writeback(inode, cb);
  257. /* note, our inode could be gone now */
  258. /*
  259. * release the compressed pages, these came from alloc_page and
  260. * are not attached to the inode at all
  261. */
  262. index = 0;
  263. for (index = 0; index < cb->nr_pages; index++) {
  264. page = cb->compressed_pages[index];
  265. page->mapping = NULL;
  266. put_page(page);
  267. }
  268. /* finally free the cb struct */
  269. kfree(cb->compressed_pages);
  270. kfree(cb);
  271. out:
  272. bio_put(bio);
  273. }
  274. /*
  275. * worker function to build and submit bios for previously compressed pages.
  276. * The corresponding pages in the inode should be marked for writeback
  277. * and the compressed pages should have a reference on them for dropping
  278. * when the IO is complete.
  279. *
  280. * This also checksums the file bytes and gets things ready for
  281. * the end io hooks.
  282. */
  283. int btrfs_submit_compressed_write(struct inode *inode, u64 start,
  284. unsigned long len, u64 disk_start,
  285. unsigned long compressed_len,
  286. struct page **compressed_pages,
  287. unsigned long nr_pages)
  288. {
  289. struct bio *bio = NULL;
  290. struct btrfs_root *root = BTRFS_I(inode)->root;
  291. struct compressed_bio *cb;
  292. unsigned long bytes_left;
  293. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  294. int pg_index = 0;
  295. struct page *page;
  296. u64 first_byte = disk_start;
  297. struct block_device *bdev;
  298. int ret;
  299. int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  300. WARN_ON(start & ((u64)PAGE_SIZE - 1));
  301. cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
  302. if (!cb)
  303. return -ENOMEM;
  304. atomic_set(&cb->pending_bios, 0);
  305. cb->errors = 0;
  306. cb->inode = inode;
  307. cb->start = start;
  308. cb->len = len;
  309. cb->mirror_num = 0;
  310. cb->compressed_pages = compressed_pages;
  311. cb->compressed_len = compressed_len;
  312. cb->orig_bio = NULL;
  313. cb->nr_pages = nr_pages;
  314. bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  315. bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
  316. if (!bio) {
  317. kfree(cb);
  318. return -ENOMEM;
  319. }
  320. bio->bi_private = cb;
  321. bio->bi_end_io = end_compressed_bio_write;
  322. atomic_inc(&cb->pending_bios);
  323. /* create and submit bios for the compressed pages */
  324. bytes_left = compressed_len;
  325. for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
  326. page = compressed_pages[pg_index];
  327. page->mapping = inode->i_mapping;
  328. if (bio->bi_iter.bi_size)
  329. ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
  330. PAGE_SIZE,
  331. bio, 0);
  332. else
  333. ret = 0;
  334. page->mapping = NULL;
  335. if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
  336. PAGE_SIZE) {
  337. bio_get(bio);
  338. /*
  339. * inc the count before we submit the bio so
  340. * we know the end IO handler won't happen before
  341. * we inc the count. Otherwise, the cb might get
  342. * freed before we're done setting it up
  343. */
  344. atomic_inc(&cb->pending_bios);
  345. ret = btrfs_bio_wq_end_io(root->fs_info, bio,
  346. BTRFS_WQ_ENDIO_DATA);
  347. BUG_ON(ret); /* -ENOMEM */
  348. if (!skip_sum) {
  349. ret = btrfs_csum_one_bio(root, inode, bio,
  350. start, 1);
  351. BUG_ON(ret); /* -ENOMEM */
  352. }
  353. ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
  354. if (ret) {
  355. bio->bi_error = ret;
  356. bio_endio(bio);
  357. }
  358. bio_put(bio);
  359. bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
  360. BUG_ON(!bio);
  361. bio->bi_private = cb;
  362. bio->bi_end_io = end_compressed_bio_write;
  363. bio_add_page(bio, page, PAGE_SIZE, 0);
  364. }
  365. if (bytes_left < PAGE_SIZE) {
  366. btrfs_info(BTRFS_I(inode)->root->fs_info,
  367. "bytes left %lu compress len %lu nr %lu",
  368. bytes_left, cb->compressed_len, cb->nr_pages);
  369. }
  370. bytes_left -= PAGE_SIZE;
  371. first_byte += PAGE_SIZE;
  372. cond_resched();
  373. }
  374. bio_get(bio);
  375. ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
  376. BUG_ON(ret); /* -ENOMEM */
  377. if (!skip_sum) {
  378. ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
  379. BUG_ON(ret); /* -ENOMEM */
  380. }
  381. ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
  382. if (ret) {
  383. bio->bi_error = ret;
  384. bio_endio(bio);
  385. }
  386. bio_put(bio);
  387. return 0;
  388. }
  389. static noinline int add_ra_bio_pages(struct inode *inode,
  390. u64 compressed_end,
  391. struct compressed_bio *cb)
  392. {
  393. unsigned long end_index;
  394. unsigned long pg_index;
  395. u64 last_offset;
  396. u64 isize = i_size_read(inode);
  397. int ret;
  398. struct page *page;
  399. unsigned long nr_pages = 0;
  400. struct extent_map *em;
  401. struct address_space *mapping = inode->i_mapping;
  402. struct extent_map_tree *em_tree;
  403. struct extent_io_tree *tree;
  404. u64 end;
  405. int misses = 0;
  406. page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
  407. last_offset = (page_offset(page) + PAGE_SIZE);
  408. em_tree = &BTRFS_I(inode)->extent_tree;
  409. tree = &BTRFS_I(inode)->io_tree;
  410. if (isize == 0)
  411. return 0;
  412. end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
  413. while (last_offset < compressed_end) {
  414. pg_index = last_offset >> PAGE_SHIFT;
  415. if (pg_index > end_index)
  416. break;
  417. rcu_read_lock();
  418. page = radix_tree_lookup(&mapping->page_tree, pg_index);
  419. rcu_read_unlock();
  420. if (page && !radix_tree_exceptional_entry(page)) {
  421. misses++;
  422. if (misses > 4)
  423. break;
  424. goto next;
  425. }
  426. page = __page_cache_alloc(mapping_gfp_constraint(mapping,
  427. ~__GFP_FS));
  428. if (!page)
  429. break;
  430. if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
  431. put_page(page);
  432. goto next;
  433. }
  434. end = last_offset + PAGE_SIZE - 1;
  435. /*
  436. * at this point, we have a locked page in the page cache
  437. * for these bytes in the file. But, we have to make
  438. * sure they map to this compressed extent on disk.
  439. */
  440. set_page_extent_mapped(page);
  441. lock_extent(tree, last_offset, end);
  442. read_lock(&em_tree->lock);
  443. em = lookup_extent_mapping(em_tree, last_offset,
  444. PAGE_SIZE);
  445. read_unlock(&em_tree->lock);
  446. if (!em || last_offset < em->start ||
  447. (last_offset + PAGE_SIZE > extent_map_end(em)) ||
  448. (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
  449. free_extent_map(em);
  450. unlock_extent(tree, last_offset, end);
  451. unlock_page(page);
  452. put_page(page);
  453. break;
  454. }
  455. free_extent_map(em);
  456. if (page->index == end_index) {
  457. char *userpage;
  458. size_t zero_offset = isize & (PAGE_SIZE - 1);
  459. if (zero_offset) {
  460. int zeros;
  461. zeros = PAGE_SIZE - zero_offset;
  462. userpage = kmap_atomic(page);
  463. memset(userpage + zero_offset, 0, zeros);
  464. flush_dcache_page(page);
  465. kunmap_atomic(userpage);
  466. }
  467. }
  468. ret = bio_add_page(cb->orig_bio, page,
  469. PAGE_SIZE, 0);
  470. if (ret == PAGE_SIZE) {
  471. nr_pages++;
  472. put_page(page);
  473. } else {
  474. unlock_extent(tree, last_offset, end);
  475. unlock_page(page);
  476. put_page(page);
  477. break;
  478. }
  479. next:
  480. last_offset += PAGE_SIZE;
  481. }
  482. return 0;
  483. }
  484. /*
  485. * for a compressed read, the bio we get passed has all the inode pages
  486. * in it. We don't actually do IO on those pages but allocate new ones
  487. * to hold the compressed pages on disk.
  488. *
  489. * bio->bi_iter.bi_sector points to the compressed extent on disk
  490. * bio->bi_io_vec points to all of the inode pages
  491. * bio->bi_vcnt is a count of pages
  492. *
  493. * After the compressed pages are read, we copy the bytes into the
  494. * bio we were passed and then call the bio end_io calls
  495. */
  496. int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
  497. int mirror_num, unsigned long bio_flags)
  498. {
  499. struct extent_io_tree *tree;
  500. struct extent_map_tree *em_tree;
  501. struct compressed_bio *cb;
  502. struct btrfs_root *root = BTRFS_I(inode)->root;
  503. unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
  504. unsigned long compressed_len;
  505. unsigned long nr_pages;
  506. unsigned long pg_index;
  507. struct page *page;
  508. struct block_device *bdev;
  509. struct bio *comp_bio;
  510. u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
  511. u64 em_len;
  512. u64 em_start;
  513. struct extent_map *em;
  514. int ret = -ENOMEM;
  515. int faili = 0;
  516. u32 *sums;
  517. tree = &BTRFS_I(inode)->io_tree;
  518. em_tree = &BTRFS_I(inode)->extent_tree;
  519. /* we need the actual starting offset of this extent in the file */
  520. read_lock(&em_tree->lock);
  521. em = lookup_extent_mapping(em_tree,
  522. page_offset(bio->bi_io_vec->bv_page),
  523. PAGE_SIZE);
  524. read_unlock(&em_tree->lock);
  525. if (!em)
  526. return -EIO;
  527. compressed_len = em->block_len;
  528. cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
  529. if (!cb)
  530. goto out;
  531. atomic_set(&cb->pending_bios, 0);
  532. cb->errors = 0;
  533. cb->inode = inode;
  534. cb->mirror_num = mirror_num;
  535. sums = &cb->sums;
  536. cb->start = em->orig_start;
  537. em_len = em->len;
  538. em_start = em->start;
  539. free_extent_map(em);
  540. em = NULL;
  541. cb->len = uncompressed_len;
  542. cb->compressed_len = compressed_len;
  543. cb->compress_type = extent_compress_type(bio_flags);
  544. cb->orig_bio = bio;
  545. nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
  546. cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
  547. GFP_NOFS);
  548. if (!cb->compressed_pages)
  549. goto fail1;
  550. bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  551. for (pg_index = 0; pg_index < nr_pages; pg_index++) {
  552. cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
  553. __GFP_HIGHMEM);
  554. if (!cb->compressed_pages[pg_index]) {
  555. faili = pg_index - 1;
  556. ret = -ENOMEM;
  557. goto fail2;
  558. }
  559. }
  560. faili = nr_pages - 1;
  561. cb->nr_pages = nr_pages;
  562. add_ra_bio_pages(inode, em_start + em_len, cb);
  563. /* include any pages we added in add_ra-bio_pages */
  564. uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
  565. cb->len = uncompressed_len;
  566. comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
  567. if (!comp_bio)
  568. goto fail2;
  569. comp_bio->bi_private = cb;
  570. comp_bio->bi_end_io = end_compressed_bio_read;
  571. atomic_inc(&cb->pending_bios);
  572. for (pg_index = 0; pg_index < nr_pages; pg_index++) {
  573. page = cb->compressed_pages[pg_index];
  574. page->mapping = inode->i_mapping;
  575. page->index = em_start >> PAGE_SHIFT;
  576. if (comp_bio->bi_iter.bi_size)
  577. ret = tree->ops->merge_bio_hook(READ, page, 0,
  578. PAGE_SIZE,
  579. comp_bio, 0);
  580. else
  581. ret = 0;
  582. page->mapping = NULL;
  583. if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
  584. PAGE_SIZE) {
  585. bio_get(comp_bio);
  586. ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
  587. BTRFS_WQ_ENDIO_DATA);
  588. BUG_ON(ret); /* -ENOMEM */
  589. /*
  590. * inc the count before we submit the bio so
  591. * we know the end IO handler won't happen before
  592. * we inc the count. Otherwise, the cb might get
  593. * freed before we're done setting it up
  594. */
  595. atomic_inc(&cb->pending_bios);
  596. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  597. ret = btrfs_lookup_bio_sums(root, inode,
  598. comp_bio, sums);
  599. BUG_ON(ret); /* -ENOMEM */
  600. }
  601. sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
  602. root->sectorsize);
  603. ret = btrfs_map_bio(root, READ, comp_bio,
  604. mirror_num, 0);
  605. if (ret) {
  606. bio->bi_error = ret;
  607. bio_endio(comp_bio);
  608. }
  609. bio_put(comp_bio);
  610. comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
  611. GFP_NOFS);
  612. BUG_ON(!comp_bio);
  613. comp_bio->bi_private = cb;
  614. comp_bio->bi_end_io = end_compressed_bio_read;
  615. bio_add_page(comp_bio, page, PAGE_SIZE, 0);
  616. }
  617. cur_disk_byte += PAGE_SIZE;
  618. }
  619. bio_get(comp_bio);
  620. ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
  621. BTRFS_WQ_ENDIO_DATA);
  622. BUG_ON(ret); /* -ENOMEM */
  623. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  624. ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
  625. BUG_ON(ret); /* -ENOMEM */
  626. }
  627. ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
  628. if (ret) {
  629. bio->bi_error = ret;
  630. bio_endio(comp_bio);
  631. }
  632. bio_put(comp_bio);
  633. return 0;
  634. fail2:
  635. while (faili >= 0) {
  636. __free_page(cb->compressed_pages[faili]);
  637. faili--;
  638. }
  639. kfree(cb->compressed_pages);
  640. fail1:
  641. kfree(cb);
  642. out:
  643. free_extent_map(em);
  644. return ret;
  645. }
  646. static struct {
  647. struct list_head idle_ws;
  648. spinlock_t ws_lock;
  649. /* Number of free workspaces */
  650. int free_ws;
  651. /* Total number of allocated workspaces */
  652. atomic_t total_ws;
  653. /* Waiters for a free workspace */
  654. wait_queue_head_t ws_wait;
  655. } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
  656. static const struct btrfs_compress_op * const btrfs_compress_op[] = {
  657. &btrfs_zlib_compress,
  658. &btrfs_lzo_compress,
  659. };
  660. void __init btrfs_init_compress(void)
  661. {
  662. int i;
  663. for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
  664. struct list_head *workspace;
  665. INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
  666. spin_lock_init(&btrfs_comp_ws[i].ws_lock);
  667. atomic_set(&btrfs_comp_ws[i].total_ws, 0);
  668. init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
  669. /*
  670. * Preallocate one workspace for each compression type so
  671. * we can guarantee forward progress in the worst case
  672. */
  673. workspace = btrfs_compress_op[i]->alloc_workspace();
  674. if (IS_ERR(workspace)) {
  675. printk(KERN_WARNING
  676. "BTRFS: cannot preallocate compression workspace, will try later");
  677. } else {
  678. atomic_set(&btrfs_comp_ws[i].total_ws, 1);
  679. btrfs_comp_ws[i].free_ws = 1;
  680. list_add(workspace, &btrfs_comp_ws[i].idle_ws);
  681. }
  682. }
  683. }
  684. /*
  685. * This finds an available workspace or allocates a new one.
  686. * If it's not possible to allocate a new one, waits until there's one.
  687. * Preallocation makes a forward progress guarantees and we do not return
  688. * errors.
  689. */
  690. static struct list_head *find_workspace(int type)
  691. {
  692. struct list_head *workspace;
  693. int cpus = num_online_cpus();
  694. int idx = type - 1;
  695. struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
  696. spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
  697. atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
  698. wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
  699. int *free_ws = &btrfs_comp_ws[idx].free_ws;
  700. again:
  701. spin_lock(ws_lock);
  702. if (!list_empty(idle_ws)) {
  703. workspace = idle_ws->next;
  704. list_del(workspace);
  705. (*free_ws)--;
  706. spin_unlock(ws_lock);
  707. return workspace;
  708. }
  709. if (atomic_read(total_ws) > cpus) {
  710. DEFINE_WAIT(wait);
  711. spin_unlock(ws_lock);
  712. prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
  713. if (atomic_read(total_ws) > cpus && !*free_ws)
  714. schedule();
  715. finish_wait(ws_wait, &wait);
  716. goto again;
  717. }
  718. atomic_inc(total_ws);
  719. spin_unlock(ws_lock);
  720. workspace = btrfs_compress_op[idx]->alloc_workspace();
  721. if (IS_ERR(workspace)) {
  722. atomic_dec(total_ws);
  723. wake_up(ws_wait);
  724. /*
  725. * Do not return the error but go back to waiting. There's a
  726. * workspace preallocated for each type and the compression
  727. * time is bounded so we get to a workspace eventually. This
  728. * makes our caller's life easier.
  729. *
  730. * To prevent silent and low-probability deadlocks (when the
  731. * initial preallocation fails), check if there are any
  732. * workspaces at all.
  733. */
  734. if (atomic_read(total_ws) == 0) {
  735. static DEFINE_RATELIMIT_STATE(_rs,
  736. /* once per minute */ 60 * HZ,
  737. /* no burst */ 1);
  738. if (__ratelimit(&_rs)) {
  739. printk(KERN_WARNING
  740. "no compression workspaces, low memory, retrying");
  741. }
  742. }
  743. goto again;
  744. }
  745. return workspace;
  746. }
  747. /*
  748. * put a workspace struct back on the list or free it if we have enough
  749. * idle ones sitting around
  750. */
  751. static void free_workspace(int type, struct list_head *workspace)
  752. {
  753. int idx = type - 1;
  754. struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
  755. spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
  756. atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
  757. wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
  758. int *free_ws = &btrfs_comp_ws[idx].free_ws;
  759. spin_lock(ws_lock);
  760. if (*free_ws < num_online_cpus()) {
  761. list_add(workspace, idle_ws);
  762. (*free_ws)++;
  763. spin_unlock(ws_lock);
  764. goto wake;
  765. }
  766. spin_unlock(ws_lock);
  767. btrfs_compress_op[idx]->free_workspace(workspace);
  768. atomic_dec(total_ws);
  769. wake:
  770. /*
  771. * Make sure counter is updated before we wake up waiters.
  772. */
  773. smp_mb();
  774. if (waitqueue_active(ws_wait))
  775. wake_up(ws_wait);
  776. }
  777. /*
  778. * cleanup function for module exit
  779. */
  780. static void free_workspaces(void)
  781. {
  782. struct list_head *workspace;
  783. int i;
  784. for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
  785. while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
  786. workspace = btrfs_comp_ws[i].idle_ws.next;
  787. list_del(workspace);
  788. btrfs_compress_op[i]->free_workspace(workspace);
  789. atomic_dec(&btrfs_comp_ws[i].total_ws);
  790. }
  791. }
  792. }
  793. /*
  794. * given an address space and start/len, compress the bytes.
  795. *
  796. * pages are allocated to hold the compressed result and stored
  797. * in 'pages'
  798. *
  799. * out_pages is used to return the number of pages allocated. There
  800. * may be pages allocated even if we return an error
  801. *
  802. * total_in is used to return the number of bytes actually read. It
  803. * may be smaller then len if we had to exit early because we
  804. * ran out of room in the pages array or because we cross the
  805. * max_out threshold.
  806. *
  807. * total_out is used to return the total number of compressed bytes
  808. *
  809. * max_out tells us the max number of bytes that we're allowed to
  810. * stuff into pages
  811. */
  812. int btrfs_compress_pages(int type, struct address_space *mapping,
  813. u64 start, unsigned long len,
  814. struct page **pages,
  815. unsigned long nr_dest_pages,
  816. unsigned long *out_pages,
  817. unsigned long *total_in,
  818. unsigned long *total_out,
  819. unsigned long max_out)
  820. {
  821. struct list_head *workspace;
  822. int ret;
  823. workspace = find_workspace(type);
  824. ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
  825. start, len, pages,
  826. nr_dest_pages, out_pages,
  827. total_in, total_out,
  828. max_out);
  829. free_workspace(type, workspace);
  830. return ret;
  831. }
  832. /*
  833. * pages_in is an array of pages with compressed data.
  834. *
  835. * disk_start is the starting logical offset of this array in the file
  836. *
  837. * bvec is a bio_vec of pages from the file that we want to decompress into
  838. *
  839. * vcnt is the count of pages in the biovec
  840. *
  841. * srclen is the number of bytes in pages_in
  842. *
  843. * The basic idea is that we have a bio that was created by readpages.
  844. * The pages in the bio are for the uncompressed data, and they may not
  845. * be contiguous. They all correspond to the range of bytes covered by
  846. * the compressed extent.
  847. */
  848. static int btrfs_decompress_biovec(int type, struct page **pages_in,
  849. u64 disk_start, struct bio_vec *bvec,
  850. int vcnt, size_t srclen)
  851. {
  852. struct list_head *workspace;
  853. int ret;
  854. workspace = find_workspace(type);
  855. ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
  856. disk_start,
  857. bvec, vcnt, srclen);
  858. free_workspace(type, workspace);
  859. return ret;
  860. }
  861. /*
  862. * a less complex decompression routine. Our compressed data fits in a
  863. * single page, and we want to read a single page out of it.
  864. * start_byte tells us the offset into the compressed data we're interested in
  865. */
  866. int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
  867. unsigned long start_byte, size_t srclen, size_t destlen)
  868. {
  869. struct list_head *workspace;
  870. int ret;
  871. workspace = find_workspace(type);
  872. ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
  873. dest_page, start_byte,
  874. srclen, destlen);
  875. free_workspace(type, workspace);
  876. return ret;
  877. }
  878. void btrfs_exit_compress(void)
  879. {
  880. free_workspaces();
  881. }
  882. /*
  883. * Copy uncompressed data from working buffer to pages.
  884. *
  885. * buf_start is the byte offset we're of the start of our workspace buffer.
  886. *
  887. * total_out is the last byte of the buffer
  888. */
  889. int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
  890. unsigned long total_out, u64 disk_start,
  891. struct bio_vec *bvec, int vcnt,
  892. unsigned long *pg_index,
  893. unsigned long *pg_offset)
  894. {
  895. unsigned long buf_offset;
  896. unsigned long current_buf_start;
  897. unsigned long start_byte;
  898. unsigned long working_bytes = total_out - buf_start;
  899. unsigned long bytes;
  900. char *kaddr;
  901. struct page *page_out = bvec[*pg_index].bv_page;
  902. /*
  903. * start byte is the first byte of the page we're currently
  904. * copying into relative to the start of the compressed data.
  905. */
  906. start_byte = page_offset(page_out) - disk_start;
  907. /* we haven't yet hit data corresponding to this page */
  908. if (total_out <= start_byte)
  909. return 1;
  910. /*
  911. * the start of the data we care about is offset into
  912. * the middle of our working buffer
  913. */
  914. if (total_out > start_byte && buf_start < start_byte) {
  915. buf_offset = start_byte - buf_start;
  916. working_bytes -= buf_offset;
  917. } else {
  918. buf_offset = 0;
  919. }
  920. current_buf_start = buf_start;
  921. /* copy bytes from the working buffer into the pages */
  922. while (working_bytes > 0) {
  923. bytes = min(PAGE_SIZE - *pg_offset,
  924. PAGE_SIZE - buf_offset);
  925. bytes = min(bytes, working_bytes);
  926. kaddr = kmap_atomic(page_out);
  927. memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
  928. kunmap_atomic(kaddr);
  929. flush_dcache_page(page_out);
  930. *pg_offset += bytes;
  931. buf_offset += bytes;
  932. working_bytes -= bytes;
  933. current_buf_start += bytes;
  934. /* check if we need to pick another page */
  935. if (*pg_offset == PAGE_SIZE) {
  936. (*pg_index)++;
  937. if (*pg_index >= vcnt)
  938. return 0;
  939. page_out = bvec[*pg_index].bv_page;
  940. *pg_offset = 0;
  941. start_byte = page_offset(page_out) - disk_start;
  942. /*
  943. * make sure our new page is covered by this
  944. * working buffer
  945. */
  946. if (total_out <= start_byte)
  947. return 1;
  948. /*
  949. * the next page in the biovec might not be adjacent
  950. * to the last page, but it might still be found
  951. * inside this working buffer. bump our offset pointer
  952. */
  953. if (total_out > start_byte &&
  954. current_buf_start < start_byte) {
  955. buf_offset = start_byte - buf_start;
  956. working_bytes = total_out - start_byte;
  957. current_buf_start = buf_start + buf_offset;
  958. }
  959. }
  960. }
  961. return 1;
  962. }
  963. /*
  964. * When uncompressing data, we need to make sure and zero any parts of
  965. * the biovec that were not filled in by the decompression code. pg_index
  966. * and pg_offset indicate the last page and the last offset of that page
  967. * that have been filled in. This will zero everything remaining in the
  968. * biovec.
  969. */
  970. void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
  971. unsigned long pg_index,
  972. unsigned long pg_offset)
  973. {
  974. while (pg_index < vcnt) {
  975. struct page *page = bvec[pg_index].bv_page;
  976. unsigned long off = bvec[pg_index].bv_offset;
  977. unsigned long len = bvec[pg_index].bv_len;
  978. if (pg_offset < off)
  979. pg_offset = off;
  980. if (pg_offset < off + len) {
  981. unsigned long bytes = off + len - pg_offset;
  982. char *kaddr;
  983. kaddr = kmap_atomic(page);
  984. memset(kaddr + pg_offset, 0, bytes);
  985. kunmap_atomic(kaddr);
  986. }
  987. pg_index++;
  988. pg_offset = 0;
  989. }
  990. }