skbuff.h 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. #define HAVE_ALLOC_SKB /* For the drivers to know */
  29. #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* A. Checksumming of received packets by device.
  44. *
  45. * NONE: device failed to checksum this packet.
  46. * skb->csum is undefined.
  47. *
  48. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  49. * skb->csum is undefined.
  50. * It is bad option, but, unfortunately, many of vendors do this.
  51. * Apparently with secret goal to sell you new device, when you
  52. * will add new protocol to your host. F.e. IPv6. 8)
  53. *
  54. * COMPLETE: the most generic way. Device supplied checksum of _all_
  55. * the packet as seen by netif_rx in skb->csum.
  56. * NOTE: Even if device supports only some protocols, but
  57. * is able to produce some skb->csum, it MUST use COMPLETE,
  58. * not UNNECESSARY.
  59. *
  60. * PARTIAL: identical to the case for output below. This may occur
  61. * on a packet received directly from another Linux OS, e.g.,
  62. * a virtualised Linux kernel on the same host. The packet can
  63. * be treated in the same way as UNNECESSARY except that on
  64. * output (i.e., forwarding) the checksum must be filled in
  65. * by the OS or the hardware.
  66. *
  67. * B. Checksumming on output.
  68. *
  69. * NONE: skb is checksummed by protocol or csum is not required.
  70. *
  71. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  72. * from skb->csum_start to the end and to record the checksum
  73. * at skb->csum_start + skb->csum_offset.
  74. *
  75. * Device must show its capabilities in dev->features, set
  76. * at device setup time.
  77. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  78. * everything.
  79. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  80. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  81. * TCP/UDP over IPv4. Sigh. Vendors like this
  82. * way by an unknown reason. Though, see comment above
  83. * about CHECKSUM_UNNECESSARY. 8)
  84. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  85. *
  86. * Any questions? No questions, good. --ANK
  87. */
  88. struct net_device;
  89. struct scatterlist;
  90. struct pipe_inode_info;
  91. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  92. struct nf_conntrack {
  93. atomic_t use;
  94. };
  95. #endif
  96. #ifdef CONFIG_BRIDGE_NETFILTER
  97. struct nf_bridge_info {
  98. atomic_t use;
  99. struct net_device *physindev;
  100. struct net_device *physoutdev;
  101. unsigned int mask;
  102. unsigned long data[32 / sizeof(unsigned long)];
  103. };
  104. #endif
  105. struct sk_buff_head {
  106. /* These two members must be first. */
  107. struct sk_buff *next;
  108. struct sk_buff *prev;
  109. __u32 qlen;
  110. spinlock_t lock;
  111. };
  112. struct sk_buff;
  113. /* To allow 64K frame to be packed as single skb without frag_list */
  114. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  115. typedef struct skb_frag_struct skb_frag_t;
  116. struct skb_frag_struct {
  117. struct page *page;
  118. __u32 page_offset;
  119. __u32 size;
  120. };
  121. /* This data is invariant across clones and lives at
  122. * the end of the header data, ie. at skb->end.
  123. */
  124. struct skb_shared_info {
  125. atomic_t dataref;
  126. unsigned short nr_frags;
  127. unsigned short gso_size;
  128. /* Warning: this field is not always filled in (UFO)! */
  129. unsigned short gso_segs;
  130. unsigned short gso_type;
  131. __be32 ip6_frag_id;
  132. struct sk_buff *frag_list;
  133. skb_frag_t frags[MAX_SKB_FRAGS];
  134. };
  135. /* We divide dataref into two halves. The higher 16 bits hold references
  136. * to the payload part of skb->data. The lower 16 bits hold references to
  137. * the entire skb->data. A clone of a headerless skb holds the length of
  138. * the header in skb->hdr_len.
  139. *
  140. * All users must obey the rule that the skb->data reference count must be
  141. * greater than or equal to the payload reference count.
  142. *
  143. * Holding a reference to the payload part means that the user does not
  144. * care about modifications to the header part of skb->data.
  145. */
  146. #define SKB_DATAREF_SHIFT 16
  147. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  148. enum {
  149. SKB_FCLONE_UNAVAILABLE,
  150. SKB_FCLONE_ORIG,
  151. SKB_FCLONE_CLONE,
  152. };
  153. enum {
  154. SKB_GSO_TCPV4 = 1 << 0,
  155. SKB_GSO_UDP = 1 << 1,
  156. /* This indicates the skb is from an untrusted source. */
  157. SKB_GSO_DODGY = 1 << 2,
  158. /* This indicates the tcp segment has CWR set. */
  159. SKB_GSO_TCP_ECN = 1 << 3,
  160. SKB_GSO_TCPV6 = 1 << 4,
  161. };
  162. #if BITS_PER_LONG > 32
  163. #define NET_SKBUFF_DATA_USES_OFFSET 1
  164. #endif
  165. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  166. typedef unsigned int sk_buff_data_t;
  167. #else
  168. typedef unsigned char *sk_buff_data_t;
  169. #endif
  170. /**
  171. * struct sk_buff - socket buffer
  172. * @next: Next buffer in list
  173. * @prev: Previous buffer in list
  174. * @sk: Socket we are owned by
  175. * @tstamp: Time we arrived
  176. * @dev: Device we arrived on/are leaving by
  177. * @transport_header: Transport layer header
  178. * @network_header: Network layer header
  179. * @mac_header: Link layer header
  180. * @dst: destination entry
  181. * @sp: the security path, used for xfrm
  182. * @cb: Control buffer. Free for use by every layer. Put private vars here
  183. * @len: Length of actual data
  184. * @data_len: Data length
  185. * @mac_len: Length of link layer header
  186. * @hdr_len: writable header length of cloned skb
  187. * @csum: Checksum (must include start/offset pair)
  188. * @csum_start: Offset from skb->head where checksumming should start
  189. * @csum_offset: Offset from csum_start where checksum should be stored
  190. * @local_df: allow local fragmentation
  191. * @cloned: Head may be cloned (check refcnt to be sure)
  192. * @nohdr: Payload reference only, must not modify header
  193. * @pkt_type: Packet class
  194. * @fclone: skbuff clone status
  195. * @ip_summed: Driver fed us an IP checksum
  196. * @priority: Packet queueing priority
  197. * @users: User count - see {datagram,tcp}.c
  198. * @protocol: Packet protocol from driver
  199. * @truesize: Buffer size
  200. * @head: Head of buffer
  201. * @data: Data head pointer
  202. * @tail: Tail pointer
  203. * @end: End pointer
  204. * @destructor: Destruct function
  205. * @mark: Generic packet mark
  206. * @nfct: Associated connection, if any
  207. * @ipvs_property: skbuff is owned by ipvs
  208. * @peeked: this packet has been seen already, so stats have been
  209. * done for it, don't do them again
  210. * @nf_trace: netfilter packet trace flag
  211. * @nfctinfo: Relationship of this skb to the connection
  212. * @nfct_reasm: netfilter conntrack re-assembly pointer
  213. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  214. * @iif: ifindex of device we arrived on
  215. * @queue_mapping: Queue mapping for multiqueue devices
  216. * @tc_index: Traffic control index
  217. * @tc_verd: traffic control verdict
  218. * @dma_cookie: a cookie to one of several possible DMA operations
  219. * done by skb DMA functions
  220. * @secmark: security marking
  221. */
  222. struct sk_buff {
  223. /* These two members must be first. */
  224. struct sk_buff *next;
  225. struct sk_buff *prev;
  226. struct sock *sk;
  227. ktime_t tstamp;
  228. struct net_device *dev;
  229. union {
  230. struct dst_entry *dst;
  231. struct rtable *rtable;
  232. };
  233. struct sec_path *sp;
  234. /*
  235. * This is the control buffer. It is free to use for every
  236. * layer. Please put your private variables there. If you
  237. * want to keep them across layers you have to do a skb_clone()
  238. * first. This is owned by whoever has the skb queued ATM.
  239. */
  240. char cb[48];
  241. unsigned int len,
  242. data_len;
  243. __u16 mac_len,
  244. hdr_len;
  245. union {
  246. __wsum csum;
  247. struct {
  248. __u16 csum_start;
  249. __u16 csum_offset;
  250. };
  251. };
  252. __u32 priority;
  253. __u8 local_df:1,
  254. cloned:1,
  255. ip_summed:2,
  256. nohdr:1,
  257. nfctinfo:3;
  258. __u8 pkt_type:3,
  259. fclone:2,
  260. ipvs_property:1,
  261. peeked:1,
  262. nf_trace:1;
  263. __be16 protocol;
  264. void (*destructor)(struct sk_buff *skb);
  265. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  266. struct nf_conntrack *nfct;
  267. struct sk_buff *nfct_reasm;
  268. #endif
  269. #ifdef CONFIG_BRIDGE_NETFILTER
  270. struct nf_bridge_info *nf_bridge;
  271. #endif
  272. int iif;
  273. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  274. __u16 queue_mapping;
  275. #endif
  276. #ifdef CONFIG_NET_SCHED
  277. __u16 tc_index; /* traffic control index */
  278. #ifdef CONFIG_NET_CLS_ACT
  279. __u16 tc_verd; /* traffic control verdict */
  280. #endif
  281. #endif
  282. /* 2 byte hole */
  283. #ifdef CONFIG_NET_DMA
  284. dma_cookie_t dma_cookie;
  285. #endif
  286. #ifdef CONFIG_NETWORK_SECMARK
  287. __u32 secmark;
  288. #endif
  289. __u32 mark;
  290. sk_buff_data_t transport_header;
  291. sk_buff_data_t network_header;
  292. sk_buff_data_t mac_header;
  293. /* These elements must be at the end, see alloc_skb() for details. */
  294. sk_buff_data_t tail;
  295. sk_buff_data_t end;
  296. unsigned char *head,
  297. *data;
  298. unsigned int truesize;
  299. atomic_t users;
  300. };
  301. #ifdef __KERNEL__
  302. /*
  303. * Handling routines are only of interest to the kernel
  304. */
  305. #include <linux/slab.h>
  306. #include <asm/system.h>
  307. extern void kfree_skb(struct sk_buff *skb);
  308. extern void __kfree_skb(struct sk_buff *skb);
  309. extern struct sk_buff *__alloc_skb(unsigned int size,
  310. gfp_t priority, int fclone, int node);
  311. static inline struct sk_buff *alloc_skb(unsigned int size,
  312. gfp_t priority)
  313. {
  314. return __alloc_skb(size, priority, 0, -1);
  315. }
  316. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  317. gfp_t priority)
  318. {
  319. return __alloc_skb(size, priority, 1, -1);
  320. }
  321. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  322. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  323. gfp_t priority);
  324. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  325. gfp_t priority);
  326. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  327. gfp_t gfp_mask);
  328. extern int pskb_expand_head(struct sk_buff *skb,
  329. int nhead, int ntail,
  330. gfp_t gfp_mask);
  331. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  332. unsigned int headroom);
  333. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  334. int newheadroom, int newtailroom,
  335. gfp_t priority);
  336. extern int skb_to_sgvec(struct sk_buff *skb,
  337. struct scatterlist *sg, int offset,
  338. int len);
  339. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  340. struct sk_buff **trailer);
  341. extern int skb_pad(struct sk_buff *skb, int pad);
  342. #define dev_kfree_skb(a) kfree_skb(a)
  343. extern void skb_over_panic(struct sk_buff *skb, int len,
  344. void *here);
  345. extern void skb_under_panic(struct sk_buff *skb, int len,
  346. void *here);
  347. extern void skb_truesize_bug(struct sk_buff *skb);
  348. static inline void skb_truesize_check(struct sk_buff *skb)
  349. {
  350. int len = sizeof(struct sk_buff) + skb->len;
  351. if (unlikely((int)skb->truesize < len))
  352. skb_truesize_bug(skb);
  353. }
  354. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  355. int getfrag(void *from, char *to, int offset,
  356. int len,int odd, struct sk_buff *skb),
  357. void *from, int length);
  358. struct skb_seq_state
  359. {
  360. __u32 lower_offset;
  361. __u32 upper_offset;
  362. __u32 frag_idx;
  363. __u32 stepped_offset;
  364. struct sk_buff *root_skb;
  365. struct sk_buff *cur_skb;
  366. __u8 *frag_data;
  367. };
  368. extern void skb_prepare_seq_read(struct sk_buff *skb,
  369. unsigned int from, unsigned int to,
  370. struct skb_seq_state *st);
  371. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  372. struct skb_seq_state *st);
  373. extern void skb_abort_seq_read(struct skb_seq_state *st);
  374. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  375. unsigned int to, struct ts_config *config,
  376. struct ts_state *state);
  377. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  378. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  379. {
  380. return skb->head + skb->end;
  381. }
  382. #else
  383. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  384. {
  385. return skb->end;
  386. }
  387. #endif
  388. /* Internal */
  389. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  390. /**
  391. * skb_queue_empty - check if a queue is empty
  392. * @list: queue head
  393. *
  394. * Returns true if the queue is empty, false otherwise.
  395. */
  396. static inline int skb_queue_empty(const struct sk_buff_head *list)
  397. {
  398. return list->next == (struct sk_buff *)list;
  399. }
  400. /**
  401. * skb_get - reference buffer
  402. * @skb: buffer to reference
  403. *
  404. * Makes another reference to a socket buffer and returns a pointer
  405. * to the buffer.
  406. */
  407. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  408. {
  409. atomic_inc(&skb->users);
  410. return skb;
  411. }
  412. /*
  413. * If users == 1, we are the only owner and are can avoid redundant
  414. * atomic change.
  415. */
  416. /**
  417. * skb_cloned - is the buffer a clone
  418. * @skb: buffer to check
  419. *
  420. * Returns true if the buffer was generated with skb_clone() and is
  421. * one of multiple shared copies of the buffer. Cloned buffers are
  422. * shared data so must not be written to under normal circumstances.
  423. */
  424. static inline int skb_cloned(const struct sk_buff *skb)
  425. {
  426. return skb->cloned &&
  427. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  428. }
  429. /**
  430. * skb_header_cloned - is the header a clone
  431. * @skb: buffer to check
  432. *
  433. * Returns true if modifying the header part of the buffer requires
  434. * the data to be copied.
  435. */
  436. static inline int skb_header_cloned(const struct sk_buff *skb)
  437. {
  438. int dataref;
  439. if (!skb->cloned)
  440. return 0;
  441. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  442. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  443. return dataref != 1;
  444. }
  445. /**
  446. * skb_header_release - release reference to header
  447. * @skb: buffer to operate on
  448. *
  449. * Drop a reference to the header part of the buffer. This is done
  450. * by acquiring a payload reference. You must not read from the header
  451. * part of skb->data after this.
  452. */
  453. static inline void skb_header_release(struct sk_buff *skb)
  454. {
  455. BUG_ON(skb->nohdr);
  456. skb->nohdr = 1;
  457. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  458. }
  459. /**
  460. * skb_shared - is the buffer shared
  461. * @skb: buffer to check
  462. *
  463. * Returns true if more than one person has a reference to this
  464. * buffer.
  465. */
  466. static inline int skb_shared(const struct sk_buff *skb)
  467. {
  468. return atomic_read(&skb->users) != 1;
  469. }
  470. /**
  471. * skb_share_check - check if buffer is shared and if so clone it
  472. * @skb: buffer to check
  473. * @pri: priority for memory allocation
  474. *
  475. * If the buffer is shared the buffer is cloned and the old copy
  476. * drops a reference. A new clone with a single reference is returned.
  477. * If the buffer is not shared the original buffer is returned. When
  478. * being called from interrupt status or with spinlocks held pri must
  479. * be GFP_ATOMIC.
  480. *
  481. * NULL is returned on a memory allocation failure.
  482. */
  483. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  484. gfp_t pri)
  485. {
  486. might_sleep_if(pri & __GFP_WAIT);
  487. if (skb_shared(skb)) {
  488. struct sk_buff *nskb = skb_clone(skb, pri);
  489. kfree_skb(skb);
  490. skb = nskb;
  491. }
  492. return skb;
  493. }
  494. /*
  495. * Copy shared buffers into a new sk_buff. We effectively do COW on
  496. * packets to handle cases where we have a local reader and forward
  497. * and a couple of other messy ones. The normal one is tcpdumping
  498. * a packet thats being forwarded.
  499. */
  500. /**
  501. * skb_unshare - make a copy of a shared buffer
  502. * @skb: buffer to check
  503. * @pri: priority for memory allocation
  504. *
  505. * If the socket buffer is a clone then this function creates a new
  506. * copy of the data, drops a reference count on the old copy and returns
  507. * the new copy with the reference count at 1. If the buffer is not a clone
  508. * the original buffer is returned. When called with a spinlock held or
  509. * from interrupt state @pri must be %GFP_ATOMIC
  510. *
  511. * %NULL is returned on a memory allocation failure.
  512. */
  513. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  514. gfp_t pri)
  515. {
  516. might_sleep_if(pri & __GFP_WAIT);
  517. if (skb_cloned(skb)) {
  518. struct sk_buff *nskb = skb_copy(skb, pri);
  519. kfree_skb(skb); /* Free our shared copy */
  520. skb = nskb;
  521. }
  522. return skb;
  523. }
  524. /**
  525. * skb_peek
  526. * @list_: list to peek at
  527. *
  528. * Peek an &sk_buff. Unlike most other operations you _MUST_
  529. * be careful with this one. A peek leaves the buffer on the
  530. * list and someone else may run off with it. You must hold
  531. * the appropriate locks or have a private queue to do this.
  532. *
  533. * Returns %NULL for an empty list or a pointer to the head element.
  534. * The reference count is not incremented and the reference is therefore
  535. * volatile. Use with caution.
  536. */
  537. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  538. {
  539. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  540. if (list == (struct sk_buff *)list_)
  541. list = NULL;
  542. return list;
  543. }
  544. /**
  545. * skb_peek_tail
  546. * @list_: list to peek at
  547. *
  548. * Peek an &sk_buff. Unlike most other operations you _MUST_
  549. * be careful with this one. A peek leaves the buffer on the
  550. * list and someone else may run off with it. You must hold
  551. * the appropriate locks or have a private queue to do this.
  552. *
  553. * Returns %NULL for an empty list or a pointer to the tail element.
  554. * The reference count is not incremented and the reference is therefore
  555. * volatile. Use with caution.
  556. */
  557. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  558. {
  559. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  560. if (list == (struct sk_buff *)list_)
  561. list = NULL;
  562. return list;
  563. }
  564. /**
  565. * skb_queue_len - get queue length
  566. * @list_: list to measure
  567. *
  568. * Return the length of an &sk_buff queue.
  569. */
  570. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  571. {
  572. return list_->qlen;
  573. }
  574. /*
  575. * This function creates a split out lock class for each invocation;
  576. * this is needed for now since a whole lot of users of the skb-queue
  577. * infrastructure in drivers have different locking usage (in hardirq)
  578. * than the networking core (in softirq only). In the long run either the
  579. * network layer or drivers should need annotation to consolidate the
  580. * main types of usage into 3 classes.
  581. */
  582. static inline void skb_queue_head_init(struct sk_buff_head *list)
  583. {
  584. spin_lock_init(&list->lock);
  585. list->prev = list->next = (struct sk_buff *)list;
  586. list->qlen = 0;
  587. }
  588. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  589. struct lock_class_key *class)
  590. {
  591. skb_queue_head_init(list);
  592. lockdep_set_class(&list->lock, class);
  593. }
  594. /*
  595. * Insert an sk_buff at the start of a list.
  596. *
  597. * The "__skb_xxxx()" functions are the non-atomic ones that
  598. * can only be called with interrupts disabled.
  599. */
  600. /**
  601. * __skb_queue_after - queue a buffer at the list head
  602. * @list: list to use
  603. * @prev: place after this buffer
  604. * @newsk: buffer to queue
  605. *
  606. * Queue a buffer int the middle of a list. This function takes no locks
  607. * and you must therefore hold required locks before calling it.
  608. *
  609. * A buffer cannot be placed on two lists at the same time.
  610. */
  611. static inline void __skb_queue_after(struct sk_buff_head *list,
  612. struct sk_buff *prev,
  613. struct sk_buff *newsk)
  614. {
  615. struct sk_buff *next;
  616. list->qlen++;
  617. next = prev->next;
  618. newsk->next = next;
  619. newsk->prev = prev;
  620. next->prev = prev->next = newsk;
  621. }
  622. /**
  623. * __skb_queue_head - queue a buffer at the list head
  624. * @list: list to use
  625. * @newsk: buffer to queue
  626. *
  627. * Queue a buffer at the start of a list. This function takes no locks
  628. * and you must therefore hold required locks before calling it.
  629. *
  630. * A buffer cannot be placed on two lists at the same time.
  631. */
  632. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  633. static inline void __skb_queue_head(struct sk_buff_head *list,
  634. struct sk_buff *newsk)
  635. {
  636. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  637. }
  638. /**
  639. * __skb_queue_tail - queue a buffer at the list tail
  640. * @list: list to use
  641. * @newsk: buffer to queue
  642. *
  643. * Queue a buffer at the end of a list. This function takes no locks
  644. * and you must therefore hold required locks before calling it.
  645. *
  646. * A buffer cannot be placed on two lists at the same time.
  647. */
  648. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  649. static inline void __skb_queue_tail(struct sk_buff_head *list,
  650. struct sk_buff *newsk)
  651. {
  652. struct sk_buff *prev, *next;
  653. list->qlen++;
  654. next = (struct sk_buff *)list;
  655. prev = next->prev;
  656. newsk->next = next;
  657. newsk->prev = prev;
  658. next->prev = prev->next = newsk;
  659. }
  660. /**
  661. * __skb_dequeue - remove from the head of the queue
  662. * @list: list to dequeue from
  663. *
  664. * Remove the head of the list. This function does not take any locks
  665. * so must be used with appropriate locks held only. The head item is
  666. * returned or %NULL if the list is empty.
  667. */
  668. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  669. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  670. {
  671. struct sk_buff *next, *prev, *result;
  672. prev = (struct sk_buff *) list;
  673. next = prev->next;
  674. result = NULL;
  675. if (next != prev) {
  676. result = next;
  677. next = next->next;
  678. list->qlen--;
  679. next->prev = prev;
  680. prev->next = next;
  681. result->next = result->prev = NULL;
  682. }
  683. return result;
  684. }
  685. /*
  686. * Insert a packet on a list.
  687. */
  688. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  689. static inline void __skb_insert(struct sk_buff *newsk,
  690. struct sk_buff *prev, struct sk_buff *next,
  691. struct sk_buff_head *list)
  692. {
  693. newsk->next = next;
  694. newsk->prev = prev;
  695. next->prev = prev->next = newsk;
  696. list->qlen++;
  697. }
  698. /*
  699. * Place a packet after a given packet in a list.
  700. */
  701. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  702. static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  703. {
  704. __skb_insert(newsk, old, old->next, list);
  705. }
  706. /*
  707. * remove sk_buff from list. _Must_ be called atomically, and with
  708. * the list known..
  709. */
  710. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  711. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  712. {
  713. struct sk_buff *next, *prev;
  714. list->qlen--;
  715. next = skb->next;
  716. prev = skb->prev;
  717. skb->next = skb->prev = NULL;
  718. next->prev = prev;
  719. prev->next = next;
  720. }
  721. /* XXX: more streamlined implementation */
  722. /**
  723. * __skb_dequeue_tail - remove from the tail of the queue
  724. * @list: list to dequeue from
  725. *
  726. * Remove the tail of the list. This function does not take any locks
  727. * so must be used with appropriate locks held only. The tail item is
  728. * returned or %NULL if the list is empty.
  729. */
  730. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  731. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  732. {
  733. struct sk_buff *skb = skb_peek_tail(list);
  734. if (skb)
  735. __skb_unlink(skb, list);
  736. return skb;
  737. }
  738. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  739. {
  740. return skb->data_len;
  741. }
  742. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  743. {
  744. return skb->len - skb->data_len;
  745. }
  746. static inline int skb_pagelen(const struct sk_buff *skb)
  747. {
  748. int i, len = 0;
  749. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  750. len += skb_shinfo(skb)->frags[i].size;
  751. return len + skb_headlen(skb);
  752. }
  753. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  754. struct page *page, int off, int size)
  755. {
  756. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  757. frag->page = page;
  758. frag->page_offset = off;
  759. frag->size = size;
  760. skb_shinfo(skb)->nr_frags = i + 1;
  761. }
  762. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  763. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  764. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  765. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  766. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  767. {
  768. return skb->head + skb->tail;
  769. }
  770. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  771. {
  772. skb->tail = skb->data - skb->head;
  773. }
  774. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  775. {
  776. skb_reset_tail_pointer(skb);
  777. skb->tail += offset;
  778. }
  779. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  780. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  781. {
  782. return skb->tail;
  783. }
  784. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  785. {
  786. skb->tail = skb->data;
  787. }
  788. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  789. {
  790. skb->tail = skb->data + offset;
  791. }
  792. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  793. /*
  794. * Add data to an sk_buff
  795. */
  796. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  797. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  798. {
  799. unsigned char *tmp = skb_tail_pointer(skb);
  800. SKB_LINEAR_ASSERT(skb);
  801. skb->tail += len;
  802. skb->len += len;
  803. return tmp;
  804. }
  805. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  806. {
  807. skb->data -= len;
  808. skb->len += len;
  809. return skb->data;
  810. }
  811. /**
  812. * skb_push - add data to the start of a buffer
  813. * @skb: buffer to use
  814. * @len: amount of data to add
  815. *
  816. * This function extends the used data area of the buffer at the buffer
  817. * start. If this would exceed the total buffer headroom the kernel will
  818. * panic. A pointer to the first byte of the extra data is returned.
  819. */
  820. static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
  821. {
  822. skb->data -= len;
  823. skb->len += len;
  824. if (unlikely(skb->data<skb->head))
  825. skb_under_panic(skb, len, current_text_addr());
  826. return skb->data;
  827. }
  828. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  829. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  830. {
  831. skb->len -= len;
  832. BUG_ON(skb->len < skb->data_len);
  833. return skb->data += len;
  834. }
  835. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  836. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  837. {
  838. if (len > skb_headlen(skb) &&
  839. !__pskb_pull_tail(skb, len-skb_headlen(skb)))
  840. return NULL;
  841. skb->len -= len;
  842. return skb->data += len;
  843. }
  844. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  845. {
  846. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  847. }
  848. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  849. {
  850. if (likely(len <= skb_headlen(skb)))
  851. return 1;
  852. if (unlikely(len > skb->len))
  853. return 0;
  854. return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
  855. }
  856. /**
  857. * skb_headroom - bytes at buffer head
  858. * @skb: buffer to check
  859. *
  860. * Return the number of bytes of free space at the head of an &sk_buff.
  861. */
  862. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  863. {
  864. return skb->data - skb->head;
  865. }
  866. /**
  867. * skb_tailroom - bytes at buffer end
  868. * @skb: buffer to check
  869. *
  870. * Return the number of bytes of free space at the tail of an sk_buff
  871. */
  872. static inline int skb_tailroom(const struct sk_buff *skb)
  873. {
  874. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  875. }
  876. /**
  877. * skb_reserve - adjust headroom
  878. * @skb: buffer to alter
  879. * @len: bytes to move
  880. *
  881. * Increase the headroom of an empty &sk_buff by reducing the tail
  882. * room. This is only allowed for an empty buffer.
  883. */
  884. static inline void skb_reserve(struct sk_buff *skb, int len)
  885. {
  886. skb->data += len;
  887. skb->tail += len;
  888. }
  889. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  890. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  891. {
  892. return skb->head + skb->transport_header;
  893. }
  894. static inline void skb_reset_transport_header(struct sk_buff *skb)
  895. {
  896. skb->transport_header = skb->data - skb->head;
  897. }
  898. static inline void skb_set_transport_header(struct sk_buff *skb,
  899. const int offset)
  900. {
  901. skb_reset_transport_header(skb);
  902. skb->transport_header += offset;
  903. }
  904. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  905. {
  906. return skb->head + skb->network_header;
  907. }
  908. static inline void skb_reset_network_header(struct sk_buff *skb)
  909. {
  910. skb->network_header = skb->data - skb->head;
  911. }
  912. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  913. {
  914. skb_reset_network_header(skb);
  915. skb->network_header += offset;
  916. }
  917. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  918. {
  919. return skb->head + skb->mac_header;
  920. }
  921. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  922. {
  923. return skb->mac_header != ~0U;
  924. }
  925. static inline void skb_reset_mac_header(struct sk_buff *skb)
  926. {
  927. skb->mac_header = skb->data - skb->head;
  928. }
  929. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  930. {
  931. skb_reset_mac_header(skb);
  932. skb->mac_header += offset;
  933. }
  934. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  935. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  936. {
  937. return skb->transport_header;
  938. }
  939. static inline void skb_reset_transport_header(struct sk_buff *skb)
  940. {
  941. skb->transport_header = skb->data;
  942. }
  943. static inline void skb_set_transport_header(struct sk_buff *skb,
  944. const int offset)
  945. {
  946. skb->transport_header = skb->data + offset;
  947. }
  948. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  949. {
  950. return skb->network_header;
  951. }
  952. static inline void skb_reset_network_header(struct sk_buff *skb)
  953. {
  954. skb->network_header = skb->data;
  955. }
  956. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  957. {
  958. skb->network_header = skb->data + offset;
  959. }
  960. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  961. {
  962. return skb->mac_header;
  963. }
  964. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  965. {
  966. return skb->mac_header != NULL;
  967. }
  968. static inline void skb_reset_mac_header(struct sk_buff *skb)
  969. {
  970. skb->mac_header = skb->data;
  971. }
  972. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  973. {
  974. skb->mac_header = skb->data + offset;
  975. }
  976. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  977. static inline int skb_transport_offset(const struct sk_buff *skb)
  978. {
  979. return skb_transport_header(skb) - skb->data;
  980. }
  981. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  982. {
  983. return skb->transport_header - skb->network_header;
  984. }
  985. static inline int skb_network_offset(const struct sk_buff *skb)
  986. {
  987. return skb_network_header(skb) - skb->data;
  988. }
  989. /*
  990. * CPUs often take a performance hit when accessing unaligned memory
  991. * locations. The actual performance hit varies, it can be small if the
  992. * hardware handles it or large if we have to take an exception and fix it
  993. * in software.
  994. *
  995. * Since an ethernet header is 14 bytes network drivers often end up with
  996. * the IP header at an unaligned offset. The IP header can be aligned by
  997. * shifting the start of the packet by 2 bytes. Drivers should do this
  998. * with:
  999. *
  1000. * skb_reserve(NET_IP_ALIGN);
  1001. *
  1002. * The downside to this alignment of the IP header is that the DMA is now
  1003. * unaligned. On some architectures the cost of an unaligned DMA is high
  1004. * and this cost outweighs the gains made by aligning the IP header.
  1005. *
  1006. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1007. * to be overridden.
  1008. */
  1009. #ifndef NET_IP_ALIGN
  1010. #define NET_IP_ALIGN 2
  1011. #endif
  1012. /*
  1013. * The networking layer reserves some headroom in skb data (via
  1014. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1015. * the header has to grow. In the default case, if the header has to grow
  1016. * 16 bytes or less we avoid the reallocation.
  1017. *
  1018. * Unfortunately this headroom changes the DMA alignment of the resulting
  1019. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1020. * on some architectures. An architecture can override this value,
  1021. * perhaps setting it to a cacheline in size (since that will maintain
  1022. * cacheline alignment of the DMA). It must be a power of 2.
  1023. *
  1024. * Various parts of the networking layer expect at least 16 bytes of
  1025. * headroom, you should not reduce this.
  1026. */
  1027. #ifndef NET_SKB_PAD
  1028. #define NET_SKB_PAD 16
  1029. #endif
  1030. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1031. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1032. {
  1033. if (unlikely(skb->data_len)) {
  1034. WARN_ON(1);
  1035. return;
  1036. }
  1037. skb->len = len;
  1038. skb_set_tail_pointer(skb, len);
  1039. }
  1040. /**
  1041. * skb_trim - remove end from a buffer
  1042. * @skb: buffer to alter
  1043. * @len: new length
  1044. *
  1045. * Cut the length of a buffer down by removing data from the tail. If
  1046. * the buffer is already under the length specified it is not modified.
  1047. * The skb must be linear.
  1048. */
  1049. static inline void skb_trim(struct sk_buff *skb, unsigned int len)
  1050. {
  1051. if (skb->len > len)
  1052. __skb_trim(skb, len);
  1053. }
  1054. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1055. {
  1056. if (skb->data_len)
  1057. return ___pskb_trim(skb, len);
  1058. __skb_trim(skb, len);
  1059. return 0;
  1060. }
  1061. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1062. {
  1063. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1064. }
  1065. /**
  1066. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1067. * @skb: buffer to alter
  1068. * @len: new length
  1069. *
  1070. * This is identical to pskb_trim except that the caller knows that
  1071. * the skb is not cloned so we should never get an error due to out-
  1072. * of-memory.
  1073. */
  1074. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1075. {
  1076. int err = pskb_trim(skb, len);
  1077. BUG_ON(err);
  1078. }
  1079. /**
  1080. * skb_orphan - orphan a buffer
  1081. * @skb: buffer to orphan
  1082. *
  1083. * If a buffer currently has an owner then we call the owner's
  1084. * destructor function and make the @skb unowned. The buffer continues
  1085. * to exist but is no longer charged to its former owner.
  1086. */
  1087. static inline void skb_orphan(struct sk_buff *skb)
  1088. {
  1089. if (skb->destructor)
  1090. skb->destructor(skb);
  1091. skb->destructor = NULL;
  1092. skb->sk = NULL;
  1093. }
  1094. /**
  1095. * __skb_queue_purge - empty a list
  1096. * @list: list to empty
  1097. *
  1098. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1099. * the list and one reference dropped. This function does not take the
  1100. * list lock and the caller must hold the relevant locks to use it.
  1101. */
  1102. extern void skb_queue_purge(struct sk_buff_head *list);
  1103. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1104. {
  1105. struct sk_buff *skb;
  1106. while ((skb = __skb_dequeue(list)) != NULL)
  1107. kfree_skb(skb);
  1108. }
  1109. /**
  1110. * __dev_alloc_skb - allocate an skbuff for receiving
  1111. * @length: length to allocate
  1112. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1113. *
  1114. * Allocate a new &sk_buff and assign it a usage count of one. The
  1115. * buffer has unspecified headroom built in. Users should allocate
  1116. * the headroom they think they need without accounting for the
  1117. * built in space. The built in space is used for optimisations.
  1118. *
  1119. * %NULL is returned if there is no free memory.
  1120. */
  1121. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1122. gfp_t gfp_mask)
  1123. {
  1124. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1125. if (likely(skb))
  1126. skb_reserve(skb, NET_SKB_PAD);
  1127. return skb;
  1128. }
  1129. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1130. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1131. unsigned int length, gfp_t gfp_mask);
  1132. /**
  1133. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1134. * @dev: network device to receive on
  1135. * @length: length to allocate
  1136. *
  1137. * Allocate a new &sk_buff and assign it a usage count of one. The
  1138. * buffer has unspecified headroom built in. Users should allocate
  1139. * the headroom they think they need without accounting for the
  1140. * built in space. The built in space is used for optimisations.
  1141. *
  1142. * %NULL is returned if there is no free memory. Although this function
  1143. * allocates memory it can be called from an interrupt.
  1144. */
  1145. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1146. unsigned int length)
  1147. {
  1148. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1149. }
  1150. /**
  1151. * skb_clone_writable - is the header of a clone writable
  1152. * @skb: buffer to check
  1153. * @len: length up to which to write
  1154. *
  1155. * Returns true if modifying the header part of the cloned buffer
  1156. * does not requires the data to be copied.
  1157. */
  1158. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1159. {
  1160. return !skb_header_cloned(skb) &&
  1161. skb_headroom(skb) + len <= skb->hdr_len;
  1162. }
  1163. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1164. int cloned)
  1165. {
  1166. int delta = 0;
  1167. if (headroom < NET_SKB_PAD)
  1168. headroom = NET_SKB_PAD;
  1169. if (headroom > skb_headroom(skb))
  1170. delta = headroom - skb_headroom(skb);
  1171. if (delta || cloned)
  1172. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1173. GFP_ATOMIC);
  1174. return 0;
  1175. }
  1176. /**
  1177. * skb_cow - copy header of skb when it is required
  1178. * @skb: buffer to cow
  1179. * @headroom: needed headroom
  1180. *
  1181. * If the skb passed lacks sufficient headroom or its data part
  1182. * is shared, data is reallocated. If reallocation fails, an error
  1183. * is returned and original skb is not changed.
  1184. *
  1185. * The result is skb with writable area skb->head...skb->tail
  1186. * and at least @headroom of space at head.
  1187. */
  1188. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1189. {
  1190. return __skb_cow(skb, headroom, skb_cloned(skb));
  1191. }
  1192. /**
  1193. * skb_cow_head - skb_cow but only making the head writable
  1194. * @skb: buffer to cow
  1195. * @headroom: needed headroom
  1196. *
  1197. * This function is identical to skb_cow except that we replace the
  1198. * skb_cloned check by skb_header_cloned. It should be used when
  1199. * you only need to push on some header and do not need to modify
  1200. * the data.
  1201. */
  1202. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1203. {
  1204. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1205. }
  1206. /**
  1207. * skb_padto - pad an skbuff up to a minimal size
  1208. * @skb: buffer to pad
  1209. * @len: minimal length
  1210. *
  1211. * Pads up a buffer to ensure the trailing bytes exist and are
  1212. * blanked. If the buffer already contains sufficient data it
  1213. * is untouched. Otherwise it is extended. Returns zero on
  1214. * success. The skb is freed on error.
  1215. */
  1216. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1217. {
  1218. unsigned int size = skb->len;
  1219. if (likely(size >= len))
  1220. return 0;
  1221. return skb_pad(skb, len-size);
  1222. }
  1223. static inline int skb_add_data(struct sk_buff *skb,
  1224. char __user *from, int copy)
  1225. {
  1226. const int off = skb->len;
  1227. if (skb->ip_summed == CHECKSUM_NONE) {
  1228. int err = 0;
  1229. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1230. copy, 0, &err);
  1231. if (!err) {
  1232. skb->csum = csum_block_add(skb->csum, csum, off);
  1233. return 0;
  1234. }
  1235. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1236. return 0;
  1237. __skb_trim(skb, off);
  1238. return -EFAULT;
  1239. }
  1240. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1241. struct page *page, int off)
  1242. {
  1243. if (i) {
  1244. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1245. return page == frag->page &&
  1246. off == frag->page_offset + frag->size;
  1247. }
  1248. return 0;
  1249. }
  1250. static inline int __skb_linearize(struct sk_buff *skb)
  1251. {
  1252. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1253. }
  1254. /**
  1255. * skb_linearize - convert paged skb to linear one
  1256. * @skb: buffer to linarize
  1257. *
  1258. * If there is no free memory -ENOMEM is returned, otherwise zero
  1259. * is returned and the old skb data released.
  1260. */
  1261. static inline int skb_linearize(struct sk_buff *skb)
  1262. {
  1263. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1264. }
  1265. /**
  1266. * skb_linearize_cow - make sure skb is linear and writable
  1267. * @skb: buffer to process
  1268. *
  1269. * If there is no free memory -ENOMEM is returned, otherwise zero
  1270. * is returned and the old skb data released.
  1271. */
  1272. static inline int skb_linearize_cow(struct sk_buff *skb)
  1273. {
  1274. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1275. __skb_linearize(skb) : 0;
  1276. }
  1277. /**
  1278. * skb_postpull_rcsum - update checksum for received skb after pull
  1279. * @skb: buffer to update
  1280. * @start: start of data before pull
  1281. * @len: length of data pulled
  1282. *
  1283. * After doing a pull on a received packet, you need to call this to
  1284. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1285. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1286. */
  1287. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1288. const void *start, unsigned int len)
  1289. {
  1290. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1291. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1292. }
  1293. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1294. /**
  1295. * pskb_trim_rcsum - trim received skb and update checksum
  1296. * @skb: buffer to trim
  1297. * @len: new length
  1298. *
  1299. * This is exactly the same as pskb_trim except that it ensures the
  1300. * checksum of received packets are still valid after the operation.
  1301. */
  1302. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1303. {
  1304. if (likely(len >= skb->len))
  1305. return 0;
  1306. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1307. skb->ip_summed = CHECKSUM_NONE;
  1308. return __pskb_trim(skb, len);
  1309. }
  1310. #define skb_queue_walk(queue, skb) \
  1311. for (skb = (queue)->next; \
  1312. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1313. skb = skb->next)
  1314. #define skb_queue_walk_safe(queue, skb, tmp) \
  1315. for (skb = (queue)->next, tmp = skb->next; \
  1316. skb != (struct sk_buff *)(queue); \
  1317. skb = tmp, tmp = skb->next)
  1318. #define skb_queue_reverse_walk(queue, skb) \
  1319. for (skb = (queue)->prev; \
  1320. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1321. skb = skb->prev)
  1322. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1323. int *peeked, int *err);
  1324. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1325. int noblock, int *err);
  1326. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1327. struct poll_table_struct *wait);
  1328. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1329. int offset, struct iovec *to,
  1330. int size);
  1331. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1332. int hlen,
  1333. struct iovec *iov);
  1334. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1335. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1336. unsigned int flags);
  1337. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1338. int len, __wsum csum);
  1339. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1340. void *to, int len);
  1341. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1342. const void *from, int len);
  1343. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1344. int offset, u8 *to, int len,
  1345. __wsum csum);
  1346. extern int skb_splice_bits(struct sk_buff *skb,
  1347. unsigned int offset,
  1348. struct pipe_inode_info *pipe,
  1349. unsigned int len,
  1350. unsigned int flags);
  1351. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1352. extern void skb_split(struct sk_buff *skb,
  1353. struct sk_buff *skb1, const u32 len);
  1354. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1355. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1356. int len, void *buffer)
  1357. {
  1358. int hlen = skb_headlen(skb);
  1359. if (hlen - offset >= len)
  1360. return skb->data + offset;
  1361. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1362. return NULL;
  1363. return buffer;
  1364. }
  1365. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1366. void *to,
  1367. const unsigned int len)
  1368. {
  1369. memcpy(to, skb->data, len);
  1370. }
  1371. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1372. const int offset, void *to,
  1373. const unsigned int len)
  1374. {
  1375. memcpy(to, skb->data + offset, len);
  1376. }
  1377. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1378. const void *from,
  1379. const unsigned int len)
  1380. {
  1381. memcpy(skb->data, from, len);
  1382. }
  1383. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1384. const int offset,
  1385. const void *from,
  1386. const unsigned int len)
  1387. {
  1388. memcpy(skb->data + offset, from, len);
  1389. }
  1390. extern void skb_init(void);
  1391. /**
  1392. * skb_get_timestamp - get timestamp from a skb
  1393. * @skb: skb to get stamp from
  1394. * @stamp: pointer to struct timeval to store stamp in
  1395. *
  1396. * Timestamps are stored in the skb as offsets to a base timestamp.
  1397. * This function converts the offset back to a struct timeval and stores
  1398. * it in stamp.
  1399. */
  1400. static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
  1401. {
  1402. *stamp = ktime_to_timeval(skb->tstamp);
  1403. }
  1404. static inline void __net_timestamp(struct sk_buff *skb)
  1405. {
  1406. skb->tstamp = ktime_get_real();
  1407. }
  1408. static inline ktime_t net_timedelta(ktime_t t)
  1409. {
  1410. return ktime_sub(ktime_get_real(), t);
  1411. }
  1412. static inline ktime_t net_invalid_timestamp(void)
  1413. {
  1414. return ktime_set(0, 0);
  1415. }
  1416. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1417. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1418. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1419. {
  1420. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1421. }
  1422. /**
  1423. * skb_checksum_complete - Calculate checksum of an entire packet
  1424. * @skb: packet to process
  1425. *
  1426. * This function calculates the checksum over the entire packet plus
  1427. * the value of skb->csum. The latter can be used to supply the
  1428. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1429. * checksum.
  1430. *
  1431. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1432. * this function can be used to verify that checksum on received
  1433. * packets. In that case the function should return zero if the
  1434. * checksum is correct. In particular, this function will return zero
  1435. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1436. * hardware has already verified the correctness of the checksum.
  1437. */
  1438. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1439. {
  1440. return skb_csum_unnecessary(skb) ?
  1441. 0 : __skb_checksum_complete(skb);
  1442. }
  1443. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1444. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1445. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1446. {
  1447. if (nfct && atomic_dec_and_test(&nfct->use))
  1448. nf_conntrack_destroy(nfct);
  1449. }
  1450. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1451. {
  1452. if (nfct)
  1453. atomic_inc(&nfct->use);
  1454. }
  1455. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1456. {
  1457. if (skb)
  1458. atomic_inc(&skb->users);
  1459. }
  1460. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1461. {
  1462. if (skb)
  1463. kfree_skb(skb);
  1464. }
  1465. #endif
  1466. #ifdef CONFIG_BRIDGE_NETFILTER
  1467. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1468. {
  1469. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1470. kfree(nf_bridge);
  1471. }
  1472. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1473. {
  1474. if (nf_bridge)
  1475. atomic_inc(&nf_bridge->use);
  1476. }
  1477. #endif /* CONFIG_BRIDGE_NETFILTER */
  1478. static inline void nf_reset(struct sk_buff *skb)
  1479. {
  1480. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1481. nf_conntrack_put(skb->nfct);
  1482. skb->nfct = NULL;
  1483. nf_conntrack_put_reasm(skb->nfct_reasm);
  1484. skb->nfct_reasm = NULL;
  1485. #endif
  1486. #ifdef CONFIG_BRIDGE_NETFILTER
  1487. nf_bridge_put(skb->nf_bridge);
  1488. skb->nf_bridge = NULL;
  1489. #endif
  1490. }
  1491. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1492. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1493. {
  1494. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1495. dst->nfct = src->nfct;
  1496. nf_conntrack_get(src->nfct);
  1497. dst->nfctinfo = src->nfctinfo;
  1498. dst->nfct_reasm = src->nfct_reasm;
  1499. nf_conntrack_get_reasm(src->nfct_reasm);
  1500. #endif
  1501. #ifdef CONFIG_BRIDGE_NETFILTER
  1502. dst->nf_bridge = src->nf_bridge;
  1503. nf_bridge_get(src->nf_bridge);
  1504. #endif
  1505. }
  1506. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1507. {
  1508. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1509. nf_conntrack_put(dst->nfct);
  1510. nf_conntrack_put_reasm(dst->nfct_reasm);
  1511. #endif
  1512. #ifdef CONFIG_BRIDGE_NETFILTER
  1513. nf_bridge_put(dst->nf_bridge);
  1514. #endif
  1515. __nf_copy(dst, src);
  1516. }
  1517. #ifdef CONFIG_NETWORK_SECMARK
  1518. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1519. {
  1520. to->secmark = from->secmark;
  1521. }
  1522. static inline void skb_init_secmark(struct sk_buff *skb)
  1523. {
  1524. skb->secmark = 0;
  1525. }
  1526. #else
  1527. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1528. { }
  1529. static inline void skb_init_secmark(struct sk_buff *skb)
  1530. { }
  1531. #endif
  1532. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1533. {
  1534. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  1535. skb->queue_mapping = queue_mapping;
  1536. #endif
  1537. }
  1538. static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
  1539. {
  1540. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  1541. return skb->queue_mapping;
  1542. #else
  1543. return 0;
  1544. #endif
  1545. }
  1546. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1547. {
  1548. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  1549. to->queue_mapping = from->queue_mapping;
  1550. #endif
  1551. }
  1552. static inline int skb_is_gso(const struct sk_buff *skb)
  1553. {
  1554. return skb_shinfo(skb)->gso_size;
  1555. }
  1556. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1557. {
  1558. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1559. }
  1560. static inline void skb_forward_csum(struct sk_buff *skb)
  1561. {
  1562. /* Unfortunately we don't support this one. Any brave souls? */
  1563. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1564. skb->ip_summed = CHECKSUM_NONE;
  1565. }
  1566. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1567. #endif /* __KERNEL__ */
  1568. #endif /* _LINUX_SKBUFF_H */