rtnetlink.c 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/pci.h>
  40. #include <linux/etherdevice.h>
  41. #include <asm/uaccess.h>
  42. #include <linux/inet.h>
  43. #include <linux/netdevice.h>
  44. #include <net/switchdev.h>
  45. #include <net/ip.h>
  46. #include <net/protocol.h>
  47. #include <net/arp.h>
  48. #include <net/route.h>
  49. #include <net/udp.h>
  50. #include <net/tcp.h>
  51. #include <net/sock.h>
  52. #include <net/pkt_sched.h>
  53. #include <net/fib_rules.h>
  54. #include <net/rtnetlink.h>
  55. #include <net/net_namespace.h>
  56. struct rtnl_link {
  57. rtnl_doit_func doit;
  58. rtnl_dumpit_func dumpit;
  59. rtnl_calcit_func calcit;
  60. };
  61. static DEFINE_MUTEX(rtnl_mutex);
  62. void rtnl_lock(void)
  63. {
  64. mutex_lock(&rtnl_mutex);
  65. }
  66. EXPORT_SYMBOL(rtnl_lock);
  67. void __rtnl_unlock(void)
  68. {
  69. mutex_unlock(&rtnl_mutex);
  70. }
  71. void rtnl_unlock(void)
  72. {
  73. /* This fellow will unlock it for us. */
  74. netdev_run_todo();
  75. }
  76. EXPORT_SYMBOL(rtnl_unlock);
  77. int rtnl_trylock(void)
  78. {
  79. return mutex_trylock(&rtnl_mutex);
  80. }
  81. EXPORT_SYMBOL(rtnl_trylock);
  82. int rtnl_is_locked(void)
  83. {
  84. return mutex_is_locked(&rtnl_mutex);
  85. }
  86. EXPORT_SYMBOL(rtnl_is_locked);
  87. #ifdef CONFIG_PROVE_LOCKING
  88. int lockdep_rtnl_is_held(void)
  89. {
  90. return lockdep_is_held(&rtnl_mutex);
  91. }
  92. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  93. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  94. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  95. static inline int rtm_msgindex(int msgtype)
  96. {
  97. int msgindex = msgtype - RTM_BASE;
  98. /*
  99. * msgindex < 0 implies someone tried to register a netlink
  100. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  101. * the message type has not been added to linux/rtnetlink.h
  102. */
  103. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  104. return msgindex;
  105. }
  106. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  107. {
  108. struct rtnl_link *tab;
  109. if (protocol <= RTNL_FAMILY_MAX)
  110. tab = rtnl_msg_handlers[protocol];
  111. else
  112. tab = NULL;
  113. if (tab == NULL || tab[msgindex].doit == NULL)
  114. tab = rtnl_msg_handlers[PF_UNSPEC];
  115. return tab[msgindex].doit;
  116. }
  117. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  118. {
  119. struct rtnl_link *tab;
  120. if (protocol <= RTNL_FAMILY_MAX)
  121. tab = rtnl_msg_handlers[protocol];
  122. else
  123. tab = NULL;
  124. if (tab == NULL || tab[msgindex].dumpit == NULL)
  125. tab = rtnl_msg_handlers[PF_UNSPEC];
  126. return tab[msgindex].dumpit;
  127. }
  128. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  129. {
  130. struct rtnl_link *tab;
  131. if (protocol <= RTNL_FAMILY_MAX)
  132. tab = rtnl_msg_handlers[protocol];
  133. else
  134. tab = NULL;
  135. if (tab == NULL || tab[msgindex].calcit == NULL)
  136. tab = rtnl_msg_handlers[PF_UNSPEC];
  137. return tab[msgindex].calcit;
  138. }
  139. /**
  140. * __rtnl_register - Register a rtnetlink message type
  141. * @protocol: Protocol family or PF_UNSPEC
  142. * @msgtype: rtnetlink message type
  143. * @doit: Function pointer called for each request message
  144. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  145. * @calcit: Function pointer to calc size of dump message
  146. *
  147. * Registers the specified function pointers (at least one of them has
  148. * to be non-NULL) to be called whenever a request message for the
  149. * specified protocol family and message type is received.
  150. *
  151. * The special protocol family PF_UNSPEC may be used to define fallback
  152. * function pointers for the case when no entry for the specific protocol
  153. * family exists.
  154. *
  155. * Returns 0 on success or a negative error code.
  156. */
  157. int __rtnl_register(int protocol, int msgtype,
  158. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  159. rtnl_calcit_func calcit)
  160. {
  161. struct rtnl_link *tab;
  162. int msgindex;
  163. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  164. msgindex = rtm_msgindex(msgtype);
  165. tab = rtnl_msg_handlers[protocol];
  166. if (tab == NULL) {
  167. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  168. if (tab == NULL)
  169. return -ENOBUFS;
  170. rtnl_msg_handlers[protocol] = tab;
  171. }
  172. if (doit)
  173. tab[msgindex].doit = doit;
  174. if (dumpit)
  175. tab[msgindex].dumpit = dumpit;
  176. if (calcit)
  177. tab[msgindex].calcit = calcit;
  178. return 0;
  179. }
  180. EXPORT_SYMBOL_GPL(__rtnl_register);
  181. /**
  182. * rtnl_register - Register a rtnetlink message type
  183. *
  184. * Identical to __rtnl_register() but panics on failure. This is useful
  185. * as failure of this function is very unlikely, it can only happen due
  186. * to lack of memory when allocating the chain to store all message
  187. * handlers for a protocol. Meant for use in init functions where lack
  188. * of memory implies no sense in continuing.
  189. */
  190. void rtnl_register(int protocol, int msgtype,
  191. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  192. rtnl_calcit_func calcit)
  193. {
  194. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  195. panic("Unable to register rtnetlink message handler, "
  196. "protocol = %d, message type = %d\n",
  197. protocol, msgtype);
  198. }
  199. EXPORT_SYMBOL_GPL(rtnl_register);
  200. /**
  201. * rtnl_unregister - Unregister a rtnetlink message type
  202. * @protocol: Protocol family or PF_UNSPEC
  203. * @msgtype: rtnetlink message type
  204. *
  205. * Returns 0 on success or a negative error code.
  206. */
  207. int rtnl_unregister(int protocol, int msgtype)
  208. {
  209. int msgindex;
  210. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  211. msgindex = rtm_msgindex(msgtype);
  212. if (rtnl_msg_handlers[protocol] == NULL)
  213. return -ENOENT;
  214. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  215. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  216. return 0;
  217. }
  218. EXPORT_SYMBOL_GPL(rtnl_unregister);
  219. /**
  220. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  221. * @protocol : Protocol family or PF_UNSPEC
  222. *
  223. * Identical to calling rtnl_unregster() for all registered message types
  224. * of a certain protocol family.
  225. */
  226. void rtnl_unregister_all(int protocol)
  227. {
  228. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  229. kfree(rtnl_msg_handlers[protocol]);
  230. rtnl_msg_handlers[protocol] = NULL;
  231. }
  232. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  233. static LIST_HEAD(link_ops);
  234. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  235. {
  236. const struct rtnl_link_ops *ops;
  237. list_for_each_entry(ops, &link_ops, list) {
  238. if (!strcmp(ops->kind, kind))
  239. return ops;
  240. }
  241. return NULL;
  242. }
  243. /**
  244. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  245. * @ops: struct rtnl_link_ops * to register
  246. *
  247. * The caller must hold the rtnl_mutex. This function should be used
  248. * by drivers that create devices during module initialization. It
  249. * must be called before registering the devices.
  250. *
  251. * Returns 0 on success or a negative error code.
  252. */
  253. int __rtnl_link_register(struct rtnl_link_ops *ops)
  254. {
  255. if (rtnl_link_ops_get(ops->kind))
  256. return -EEXIST;
  257. /* The check for setup is here because if ops
  258. * does not have that filled up, it is not possible
  259. * to use the ops for creating device. So do not
  260. * fill up dellink as well. That disables rtnl_dellink.
  261. */
  262. if (ops->setup && !ops->dellink)
  263. ops->dellink = unregister_netdevice_queue;
  264. list_add_tail(&ops->list, &link_ops);
  265. return 0;
  266. }
  267. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  268. /**
  269. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  270. * @ops: struct rtnl_link_ops * to register
  271. *
  272. * Returns 0 on success or a negative error code.
  273. */
  274. int rtnl_link_register(struct rtnl_link_ops *ops)
  275. {
  276. int err;
  277. rtnl_lock();
  278. err = __rtnl_link_register(ops);
  279. rtnl_unlock();
  280. return err;
  281. }
  282. EXPORT_SYMBOL_GPL(rtnl_link_register);
  283. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  284. {
  285. struct net_device *dev;
  286. LIST_HEAD(list_kill);
  287. for_each_netdev(net, dev) {
  288. if (dev->rtnl_link_ops == ops)
  289. ops->dellink(dev, &list_kill);
  290. }
  291. unregister_netdevice_many(&list_kill);
  292. }
  293. /**
  294. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  295. * @ops: struct rtnl_link_ops * to unregister
  296. *
  297. * The caller must hold the rtnl_mutex.
  298. */
  299. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  300. {
  301. struct net *net;
  302. for_each_net(net) {
  303. __rtnl_kill_links(net, ops);
  304. }
  305. list_del(&ops->list);
  306. }
  307. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  308. /* Return with the rtnl_lock held when there are no network
  309. * devices unregistering in any network namespace.
  310. */
  311. static void rtnl_lock_unregistering_all(void)
  312. {
  313. struct net *net;
  314. bool unregistering;
  315. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  316. add_wait_queue(&netdev_unregistering_wq, &wait);
  317. for (;;) {
  318. unregistering = false;
  319. rtnl_lock();
  320. for_each_net(net) {
  321. if (net->dev_unreg_count > 0) {
  322. unregistering = true;
  323. break;
  324. }
  325. }
  326. if (!unregistering)
  327. break;
  328. __rtnl_unlock();
  329. wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  330. }
  331. remove_wait_queue(&netdev_unregistering_wq, &wait);
  332. }
  333. /**
  334. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  335. * @ops: struct rtnl_link_ops * to unregister
  336. */
  337. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  338. {
  339. /* Close the race with cleanup_net() */
  340. mutex_lock(&net_mutex);
  341. rtnl_lock_unregistering_all();
  342. __rtnl_link_unregister(ops);
  343. rtnl_unlock();
  344. mutex_unlock(&net_mutex);
  345. }
  346. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  347. static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
  348. {
  349. struct net_device *master_dev;
  350. const struct rtnl_link_ops *ops;
  351. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  352. if (!master_dev)
  353. return 0;
  354. ops = master_dev->rtnl_link_ops;
  355. if (!ops || !ops->get_slave_size)
  356. return 0;
  357. /* IFLA_INFO_SLAVE_DATA + nested data */
  358. return nla_total_size(sizeof(struct nlattr)) +
  359. ops->get_slave_size(master_dev, dev);
  360. }
  361. static size_t rtnl_link_get_size(const struct net_device *dev)
  362. {
  363. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  364. size_t size;
  365. if (!ops)
  366. return 0;
  367. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  368. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  369. if (ops->get_size)
  370. /* IFLA_INFO_DATA + nested data */
  371. size += nla_total_size(sizeof(struct nlattr)) +
  372. ops->get_size(dev);
  373. if (ops->get_xstats_size)
  374. /* IFLA_INFO_XSTATS */
  375. size += nla_total_size(ops->get_xstats_size(dev));
  376. size += rtnl_link_get_slave_info_data_size(dev);
  377. return size;
  378. }
  379. static LIST_HEAD(rtnl_af_ops);
  380. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  381. {
  382. const struct rtnl_af_ops *ops;
  383. list_for_each_entry(ops, &rtnl_af_ops, list) {
  384. if (ops->family == family)
  385. return ops;
  386. }
  387. return NULL;
  388. }
  389. /**
  390. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  391. * @ops: struct rtnl_af_ops * to register
  392. *
  393. * Returns 0 on success or a negative error code.
  394. */
  395. void rtnl_af_register(struct rtnl_af_ops *ops)
  396. {
  397. rtnl_lock();
  398. list_add_tail(&ops->list, &rtnl_af_ops);
  399. rtnl_unlock();
  400. }
  401. EXPORT_SYMBOL_GPL(rtnl_af_register);
  402. /**
  403. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  404. * @ops: struct rtnl_af_ops * to unregister
  405. *
  406. * The caller must hold the rtnl_mutex.
  407. */
  408. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  409. {
  410. list_del(&ops->list);
  411. }
  412. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  413. /**
  414. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  415. * @ops: struct rtnl_af_ops * to unregister
  416. */
  417. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  418. {
  419. rtnl_lock();
  420. __rtnl_af_unregister(ops);
  421. rtnl_unlock();
  422. }
  423. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  424. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  425. {
  426. struct rtnl_af_ops *af_ops;
  427. size_t size;
  428. /* IFLA_AF_SPEC */
  429. size = nla_total_size(sizeof(struct nlattr));
  430. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  431. if (af_ops->get_link_af_size) {
  432. /* AF_* + nested data */
  433. size += nla_total_size(sizeof(struct nlattr)) +
  434. af_ops->get_link_af_size(dev);
  435. }
  436. }
  437. return size;
  438. }
  439. static bool rtnl_have_link_slave_info(const struct net_device *dev)
  440. {
  441. struct net_device *master_dev;
  442. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  443. if (master_dev && master_dev->rtnl_link_ops)
  444. return true;
  445. return false;
  446. }
  447. static int rtnl_link_slave_info_fill(struct sk_buff *skb,
  448. const struct net_device *dev)
  449. {
  450. struct net_device *master_dev;
  451. const struct rtnl_link_ops *ops;
  452. struct nlattr *slave_data;
  453. int err;
  454. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  455. if (!master_dev)
  456. return 0;
  457. ops = master_dev->rtnl_link_ops;
  458. if (!ops)
  459. return 0;
  460. if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
  461. return -EMSGSIZE;
  462. if (ops->fill_slave_info) {
  463. slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
  464. if (!slave_data)
  465. return -EMSGSIZE;
  466. err = ops->fill_slave_info(skb, master_dev, dev);
  467. if (err < 0)
  468. goto err_cancel_slave_data;
  469. nla_nest_end(skb, slave_data);
  470. }
  471. return 0;
  472. err_cancel_slave_data:
  473. nla_nest_cancel(skb, slave_data);
  474. return err;
  475. }
  476. static int rtnl_link_info_fill(struct sk_buff *skb,
  477. const struct net_device *dev)
  478. {
  479. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  480. struct nlattr *data;
  481. int err;
  482. if (!ops)
  483. return 0;
  484. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  485. return -EMSGSIZE;
  486. if (ops->fill_xstats) {
  487. err = ops->fill_xstats(skb, dev);
  488. if (err < 0)
  489. return err;
  490. }
  491. if (ops->fill_info) {
  492. data = nla_nest_start(skb, IFLA_INFO_DATA);
  493. if (data == NULL)
  494. return -EMSGSIZE;
  495. err = ops->fill_info(skb, dev);
  496. if (err < 0)
  497. goto err_cancel_data;
  498. nla_nest_end(skb, data);
  499. }
  500. return 0;
  501. err_cancel_data:
  502. nla_nest_cancel(skb, data);
  503. return err;
  504. }
  505. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  506. {
  507. struct nlattr *linkinfo;
  508. int err = -EMSGSIZE;
  509. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  510. if (linkinfo == NULL)
  511. goto out;
  512. err = rtnl_link_info_fill(skb, dev);
  513. if (err < 0)
  514. goto err_cancel_link;
  515. err = rtnl_link_slave_info_fill(skb, dev);
  516. if (err < 0)
  517. goto err_cancel_link;
  518. nla_nest_end(skb, linkinfo);
  519. return 0;
  520. err_cancel_link:
  521. nla_nest_cancel(skb, linkinfo);
  522. out:
  523. return err;
  524. }
  525. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  526. {
  527. struct sock *rtnl = net->rtnl;
  528. int err = 0;
  529. NETLINK_CB(skb).dst_group = group;
  530. if (echo)
  531. atomic_inc(&skb->users);
  532. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  533. if (echo)
  534. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  535. return err;
  536. }
  537. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  538. {
  539. struct sock *rtnl = net->rtnl;
  540. return nlmsg_unicast(rtnl, skb, pid);
  541. }
  542. EXPORT_SYMBOL(rtnl_unicast);
  543. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  544. struct nlmsghdr *nlh, gfp_t flags)
  545. {
  546. struct sock *rtnl = net->rtnl;
  547. int report = 0;
  548. if (nlh)
  549. report = nlmsg_report(nlh);
  550. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  551. }
  552. EXPORT_SYMBOL(rtnl_notify);
  553. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  554. {
  555. struct sock *rtnl = net->rtnl;
  556. netlink_set_err(rtnl, 0, group, error);
  557. }
  558. EXPORT_SYMBOL(rtnl_set_sk_err);
  559. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  560. {
  561. struct nlattr *mx;
  562. int i, valid = 0;
  563. mx = nla_nest_start(skb, RTA_METRICS);
  564. if (mx == NULL)
  565. return -ENOBUFS;
  566. for (i = 0; i < RTAX_MAX; i++) {
  567. if (metrics[i]) {
  568. if (i == RTAX_CC_ALGO - 1) {
  569. char tmp[TCP_CA_NAME_MAX], *name;
  570. name = tcp_ca_get_name_by_key(metrics[i], tmp);
  571. if (!name)
  572. continue;
  573. if (nla_put_string(skb, i + 1, name))
  574. goto nla_put_failure;
  575. } else {
  576. if (nla_put_u32(skb, i + 1, metrics[i]))
  577. goto nla_put_failure;
  578. }
  579. valid++;
  580. }
  581. }
  582. if (!valid) {
  583. nla_nest_cancel(skb, mx);
  584. return 0;
  585. }
  586. return nla_nest_end(skb, mx);
  587. nla_put_failure:
  588. nla_nest_cancel(skb, mx);
  589. return -EMSGSIZE;
  590. }
  591. EXPORT_SYMBOL(rtnetlink_put_metrics);
  592. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  593. long expires, u32 error)
  594. {
  595. struct rta_cacheinfo ci = {
  596. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  597. .rta_used = dst->__use,
  598. .rta_clntref = atomic_read(&(dst->__refcnt)),
  599. .rta_error = error,
  600. .rta_id = id,
  601. };
  602. if (expires) {
  603. unsigned long clock;
  604. clock = jiffies_to_clock_t(abs(expires));
  605. clock = min_t(unsigned long, clock, INT_MAX);
  606. ci.rta_expires = (expires > 0) ? clock : -clock;
  607. }
  608. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  609. }
  610. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  611. static void set_operstate(struct net_device *dev, unsigned char transition)
  612. {
  613. unsigned char operstate = dev->operstate;
  614. switch (transition) {
  615. case IF_OPER_UP:
  616. if ((operstate == IF_OPER_DORMANT ||
  617. operstate == IF_OPER_UNKNOWN) &&
  618. !netif_dormant(dev))
  619. operstate = IF_OPER_UP;
  620. break;
  621. case IF_OPER_DORMANT:
  622. if (operstate == IF_OPER_UP ||
  623. operstate == IF_OPER_UNKNOWN)
  624. operstate = IF_OPER_DORMANT;
  625. break;
  626. }
  627. if (dev->operstate != operstate) {
  628. write_lock_bh(&dev_base_lock);
  629. dev->operstate = operstate;
  630. write_unlock_bh(&dev_base_lock);
  631. netdev_state_change(dev);
  632. }
  633. }
  634. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  635. {
  636. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  637. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  638. }
  639. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  640. const struct ifinfomsg *ifm)
  641. {
  642. unsigned int flags = ifm->ifi_flags;
  643. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  644. if (ifm->ifi_change)
  645. flags = (flags & ifm->ifi_change) |
  646. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  647. return flags;
  648. }
  649. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  650. const struct rtnl_link_stats64 *b)
  651. {
  652. a->rx_packets = b->rx_packets;
  653. a->tx_packets = b->tx_packets;
  654. a->rx_bytes = b->rx_bytes;
  655. a->tx_bytes = b->tx_bytes;
  656. a->rx_errors = b->rx_errors;
  657. a->tx_errors = b->tx_errors;
  658. a->rx_dropped = b->rx_dropped;
  659. a->tx_dropped = b->tx_dropped;
  660. a->multicast = b->multicast;
  661. a->collisions = b->collisions;
  662. a->rx_length_errors = b->rx_length_errors;
  663. a->rx_over_errors = b->rx_over_errors;
  664. a->rx_crc_errors = b->rx_crc_errors;
  665. a->rx_frame_errors = b->rx_frame_errors;
  666. a->rx_fifo_errors = b->rx_fifo_errors;
  667. a->rx_missed_errors = b->rx_missed_errors;
  668. a->tx_aborted_errors = b->tx_aborted_errors;
  669. a->tx_carrier_errors = b->tx_carrier_errors;
  670. a->tx_fifo_errors = b->tx_fifo_errors;
  671. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  672. a->tx_window_errors = b->tx_window_errors;
  673. a->rx_compressed = b->rx_compressed;
  674. a->tx_compressed = b->tx_compressed;
  675. }
  676. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  677. {
  678. memcpy(v, b, sizeof(*b));
  679. }
  680. /* All VF info */
  681. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  682. u32 ext_filter_mask)
  683. {
  684. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  685. (ext_filter_mask & RTEXT_FILTER_VF)) {
  686. int num_vfs = dev_num_vf(dev->dev.parent);
  687. size_t size = nla_total_size(sizeof(struct nlattr));
  688. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  689. size += num_vfs *
  690. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  691. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  692. nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
  693. nla_total_size(sizeof(struct ifla_vf_rate)) +
  694. nla_total_size(sizeof(struct ifla_vf_link_state)));
  695. return size;
  696. } else
  697. return 0;
  698. }
  699. static size_t rtnl_port_size(const struct net_device *dev,
  700. u32 ext_filter_mask)
  701. {
  702. size_t port_size = nla_total_size(4) /* PORT_VF */
  703. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  704. + nla_total_size(sizeof(struct ifla_port_vsi))
  705. /* PORT_VSI_TYPE */
  706. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  707. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  708. + nla_total_size(1) /* PROT_VDP_REQUEST */
  709. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  710. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  711. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  712. + port_size;
  713. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  714. + port_size;
  715. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  716. !(ext_filter_mask & RTEXT_FILTER_VF))
  717. return 0;
  718. if (dev_num_vf(dev->dev.parent))
  719. return port_self_size + vf_ports_size +
  720. vf_port_size * dev_num_vf(dev->dev.parent);
  721. else
  722. return port_self_size;
  723. }
  724. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  725. u32 ext_filter_mask)
  726. {
  727. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  728. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  729. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  730. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  731. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  732. + nla_total_size(sizeof(struct rtnl_link_stats))
  733. + nla_total_size(sizeof(struct rtnl_link_stats64))
  734. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  735. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  736. + nla_total_size(4) /* IFLA_TXQLEN */
  737. + nla_total_size(4) /* IFLA_WEIGHT */
  738. + nla_total_size(4) /* IFLA_MTU */
  739. + nla_total_size(4) /* IFLA_LINK */
  740. + nla_total_size(4) /* IFLA_MASTER */
  741. + nla_total_size(1) /* IFLA_CARRIER */
  742. + nla_total_size(4) /* IFLA_PROMISCUITY */
  743. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  744. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  745. + nla_total_size(1) /* IFLA_OPERSTATE */
  746. + nla_total_size(1) /* IFLA_LINKMODE */
  747. + nla_total_size(4) /* IFLA_CARRIER_CHANGES */
  748. + nla_total_size(4) /* IFLA_LINK_NETNSID */
  749. + nla_total_size(ext_filter_mask
  750. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  751. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  752. + rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  753. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  754. + rtnl_link_get_af_size(dev) /* IFLA_AF_SPEC */
  755. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_PORT_ID */
  756. + nla_total_size(MAX_PHYS_ITEM_ID_LEN); /* IFLA_PHYS_SWITCH_ID */
  757. }
  758. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  759. {
  760. struct nlattr *vf_ports;
  761. struct nlattr *vf_port;
  762. int vf;
  763. int err;
  764. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  765. if (!vf_ports)
  766. return -EMSGSIZE;
  767. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  768. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  769. if (!vf_port)
  770. goto nla_put_failure;
  771. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  772. goto nla_put_failure;
  773. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  774. if (err == -EMSGSIZE)
  775. goto nla_put_failure;
  776. if (err) {
  777. nla_nest_cancel(skb, vf_port);
  778. continue;
  779. }
  780. nla_nest_end(skb, vf_port);
  781. }
  782. nla_nest_end(skb, vf_ports);
  783. return 0;
  784. nla_put_failure:
  785. nla_nest_cancel(skb, vf_ports);
  786. return -EMSGSIZE;
  787. }
  788. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  789. {
  790. struct nlattr *port_self;
  791. int err;
  792. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  793. if (!port_self)
  794. return -EMSGSIZE;
  795. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  796. if (err) {
  797. nla_nest_cancel(skb, port_self);
  798. return (err == -EMSGSIZE) ? err : 0;
  799. }
  800. nla_nest_end(skb, port_self);
  801. return 0;
  802. }
  803. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
  804. u32 ext_filter_mask)
  805. {
  806. int err;
  807. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  808. !(ext_filter_mask & RTEXT_FILTER_VF))
  809. return 0;
  810. err = rtnl_port_self_fill(skb, dev);
  811. if (err)
  812. return err;
  813. if (dev_num_vf(dev->dev.parent)) {
  814. err = rtnl_vf_ports_fill(skb, dev);
  815. if (err)
  816. return err;
  817. }
  818. return 0;
  819. }
  820. static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
  821. {
  822. int err;
  823. struct netdev_phys_item_id ppid;
  824. err = dev_get_phys_port_id(dev, &ppid);
  825. if (err) {
  826. if (err == -EOPNOTSUPP)
  827. return 0;
  828. return err;
  829. }
  830. if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
  831. return -EMSGSIZE;
  832. return 0;
  833. }
  834. static int rtnl_phys_switch_id_fill(struct sk_buff *skb, struct net_device *dev)
  835. {
  836. int err;
  837. struct netdev_phys_item_id psid;
  838. err = netdev_switch_parent_id_get(dev, &psid);
  839. if (err) {
  840. if (err == -EOPNOTSUPP)
  841. return 0;
  842. return err;
  843. }
  844. if (nla_put(skb, IFLA_PHYS_SWITCH_ID, psid.id_len, psid.id))
  845. return -EMSGSIZE;
  846. return 0;
  847. }
  848. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  849. int type, u32 pid, u32 seq, u32 change,
  850. unsigned int flags, u32 ext_filter_mask)
  851. {
  852. struct ifinfomsg *ifm;
  853. struct nlmsghdr *nlh;
  854. struct rtnl_link_stats64 temp;
  855. const struct rtnl_link_stats64 *stats;
  856. struct nlattr *attr, *af_spec;
  857. struct rtnl_af_ops *af_ops;
  858. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  859. ASSERT_RTNL();
  860. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  861. if (nlh == NULL)
  862. return -EMSGSIZE;
  863. ifm = nlmsg_data(nlh);
  864. ifm->ifi_family = AF_UNSPEC;
  865. ifm->__ifi_pad = 0;
  866. ifm->ifi_type = dev->type;
  867. ifm->ifi_index = dev->ifindex;
  868. ifm->ifi_flags = dev_get_flags(dev);
  869. ifm->ifi_change = change;
  870. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  871. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  872. nla_put_u8(skb, IFLA_OPERSTATE,
  873. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  874. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  875. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  876. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  877. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  878. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  879. #ifdef CONFIG_RPS
  880. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  881. #endif
  882. (dev->ifindex != dev->iflink &&
  883. nla_put_u32(skb, IFLA_LINK, dev->iflink)) ||
  884. (upper_dev &&
  885. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  886. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  887. (dev->qdisc &&
  888. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  889. (dev->ifalias &&
  890. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)) ||
  891. nla_put_u32(skb, IFLA_CARRIER_CHANGES,
  892. atomic_read(&dev->carrier_changes)))
  893. goto nla_put_failure;
  894. if (1) {
  895. struct rtnl_link_ifmap map = {
  896. .mem_start = dev->mem_start,
  897. .mem_end = dev->mem_end,
  898. .base_addr = dev->base_addr,
  899. .irq = dev->irq,
  900. .dma = dev->dma,
  901. .port = dev->if_port,
  902. };
  903. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  904. goto nla_put_failure;
  905. }
  906. if (dev->addr_len) {
  907. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  908. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  909. goto nla_put_failure;
  910. }
  911. if (rtnl_phys_port_id_fill(skb, dev))
  912. goto nla_put_failure;
  913. if (rtnl_phys_switch_id_fill(skb, dev))
  914. goto nla_put_failure;
  915. attr = nla_reserve(skb, IFLA_STATS,
  916. sizeof(struct rtnl_link_stats));
  917. if (attr == NULL)
  918. goto nla_put_failure;
  919. stats = dev_get_stats(dev, &temp);
  920. copy_rtnl_link_stats(nla_data(attr), stats);
  921. attr = nla_reserve(skb, IFLA_STATS64,
  922. sizeof(struct rtnl_link_stats64));
  923. if (attr == NULL)
  924. goto nla_put_failure;
  925. copy_rtnl_link_stats64(nla_data(attr), stats);
  926. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  927. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  928. goto nla_put_failure;
  929. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  930. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  931. int i;
  932. struct nlattr *vfinfo, *vf;
  933. int num_vfs = dev_num_vf(dev->dev.parent);
  934. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  935. if (!vfinfo)
  936. goto nla_put_failure;
  937. for (i = 0; i < num_vfs; i++) {
  938. struct ifla_vf_info ivi;
  939. struct ifla_vf_mac vf_mac;
  940. struct ifla_vf_vlan vf_vlan;
  941. struct ifla_vf_rate vf_rate;
  942. struct ifla_vf_tx_rate vf_tx_rate;
  943. struct ifla_vf_spoofchk vf_spoofchk;
  944. struct ifla_vf_link_state vf_linkstate;
  945. /*
  946. * Not all SR-IOV capable drivers support the
  947. * spoofcheck query. Preset to -1 so the user
  948. * space tool can detect that the driver didn't
  949. * report anything.
  950. */
  951. ivi.spoofchk = -1;
  952. memset(ivi.mac, 0, sizeof(ivi.mac));
  953. /* The default value for VF link state is "auto"
  954. * IFLA_VF_LINK_STATE_AUTO which equals zero
  955. */
  956. ivi.linkstate = 0;
  957. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  958. break;
  959. vf_mac.vf =
  960. vf_vlan.vf =
  961. vf_rate.vf =
  962. vf_tx_rate.vf =
  963. vf_spoofchk.vf =
  964. vf_linkstate.vf = ivi.vf;
  965. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  966. vf_vlan.vlan = ivi.vlan;
  967. vf_vlan.qos = ivi.qos;
  968. vf_tx_rate.rate = ivi.max_tx_rate;
  969. vf_rate.min_tx_rate = ivi.min_tx_rate;
  970. vf_rate.max_tx_rate = ivi.max_tx_rate;
  971. vf_spoofchk.setting = ivi.spoofchk;
  972. vf_linkstate.link_state = ivi.linkstate;
  973. vf = nla_nest_start(skb, IFLA_VF_INFO);
  974. if (!vf) {
  975. nla_nest_cancel(skb, vfinfo);
  976. goto nla_put_failure;
  977. }
  978. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  979. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  980. nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
  981. &vf_rate) ||
  982. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  983. &vf_tx_rate) ||
  984. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  985. &vf_spoofchk) ||
  986. nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
  987. &vf_linkstate))
  988. goto nla_put_failure;
  989. nla_nest_end(skb, vf);
  990. }
  991. nla_nest_end(skb, vfinfo);
  992. }
  993. if (rtnl_port_fill(skb, dev, ext_filter_mask))
  994. goto nla_put_failure;
  995. if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
  996. if (rtnl_link_fill(skb, dev) < 0)
  997. goto nla_put_failure;
  998. }
  999. if (dev->rtnl_link_ops &&
  1000. dev->rtnl_link_ops->get_link_net) {
  1001. struct net *link_net = dev->rtnl_link_ops->get_link_net(dev);
  1002. if (!net_eq(dev_net(dev), link_net)) {
  1003. int id = peernet2id(dev_net(dev), link_net);
  1004. if (nla_put_s32(skb, IFLA_LINK_NETNSID, id))
  1005. goto nla_put_failure;
  1006. }
  1007. }
  1008. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  1009. goto nla_put_failure;
  1010. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  1011. if (af_ops->fill_link_af) {
  1012. struct nlattr *af;
  1013. int err;
  1014. if (!(af = nla_nest_start(skb, af_ops->family)))
  1015. goto nla_put_failure;
  1016. err = af_ops->fill_link_af(skb, dev);
  1017. /*
  1018. * Caller may return ENODATA to indicate that there
  1019. * was no data to be dumped. This is not an error, it
  1020. * means we should trim the attribute header and
  1021. * continue.
  1022. */
  1023. if (err == -ENODATA)
  1024. nla_nest_cancel(skb, af);
  1025. else if (err < 0)
  1026. goto nla_put_failure;
  1027. nla_nest_end(skb, af);
  1028. }
  1029. }
  1030. nla_nest_end(skb, af_spec);
  1031. nlmsg_end(skb, nlh);
  1032. return 0;
  1033. nla_put_failure:
  1034. nlmsg_cancel(skb, nlh);
  1035. return -EMSGSIZE;
  1036. }
  1037. static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  1038. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  1039. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1040. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1041. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  1042. [IFLA_MTU] = { .type = NLA_U32 },
  1043. [IFLA_LINK] = { .type = NLA_U32 },
  1044. [IFLA_MASTER] = { .type = NLA_U32 },
  1045. [IFLA_CARRIER] = { .type = NLA_U8 },
  1046. [IFLA_TXQLEN] = { .type = NLA_U32 },
  1047. [IFLA_WEIGHT] = { .type = NLA_U32 },
  1048. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  1049. [IFLA_LINKMODE] = { .type = NLA_U8 },
  1050. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  1051. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  1052. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  1053. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  1054. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  1055. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  1056. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  1057. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  1058. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  1059. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  1060. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  1061. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  1062. [IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1063. [IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
  1064. [IFLA_PHYS_SWITCH_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1065. [IFLA_LINK_NETNSID] = { .type = NLA_S32 },
  1066. };
  1067. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  1068. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  1069. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  1070. [IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
  1071. [IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
  1072. };
  1073. static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
  1074. [IFLA_VF_INFO] = { .type = NLA_NESTED },
  1075. };
  1076. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  1077. [IFLA_VF_MAC] = { .type = NLA_BINARY,
  1078. .len = sizeof(struct ifla_vf_mac) },
  1079. [IFLA_VF_VLAN] = { .type = NLA_BINARY,
  1080. .len = sizeof(struct ifla_vf_vlan) },
  1081. [IFLA_VF_TX_RATE] = { .type = NLA_BINARY,
  1082. .len = sizeof(struct ifla_vf_tx_rate) },
  1083. [IFLA_VF_SPOOFCHK] = { .type = NLA_BINARY,
  1084. .len = sizeof(struct ifla_vf_spoofchk) },
  1085. [IFLA_VF_RATE] = { .type = NLA_BINARY,
  1086. .len = sizeof(struct ifla_vf_rate) },
  1087. [IFLA_VF_LINK_STATE] = { .type = NLA_BINARY,
  1088. .len = sizeof(struct ifla_vf_link_state) },
  1089. };
  1090. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  1091. [IFLA_PORT_VF] = { .type = NLA_U32 },
  1092. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  1093. .len = PORT_PROFILE_MAX },
  1094. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  1095. .len = sizeof(struct ifla_port_vsi)},
  1096. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  1097. .len = PORT_UUID_MAX },
  1098. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  1099. .len = PORT_UUID_MAX },
  1100. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  1101. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  1102. };
  1103. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  1104. {
  1105. struct net *net = sock_net(skb->sk);
  1106. int h, s_h;
  1107. int idx = 0, s_idx;
  1108. struct net_device *dev;
  1109. struct hlist_head *head;
  1110. struct nlattr *tb[IFLA_MAX+1];
  1111. u32 ext_filter_mask = 0;
  1112. int err;
  1113. int hdrlen;
  1114. s_h = cb->args[0];
  1115. s_idx = cb->args[1];
  1116. rcu_read_lock();
  1117. cb->seq = net->dev_base_seq;
  1118. /* A hack to preserve kernel<->userspace interface.
  1119. * The correct header is ifinfomsg. It is consistent with rtnl_getlink.
  1120. * However, before Linux v3.9 the code here assumed rtgenmsg and that's
  1121. * what iproute2 < v3.9.0 used.
  1122. * We can detect the old iproute2. Even including the IFLA_EXT_MASK
  1123. * attribute, its netlink message is shorter than struct ifinfomsg.
  1124. */
  1125. hdrlen = nlmsg_len(cb->nlh) < sizeof(struct ifinfomsg) ?
  1126. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1127. if (nlmsg_parse(cb->nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1128. if (tb[IFLA_EXT_MASK])
  1129. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1130. }
  1131. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  1132. idx = 0;
  1133. head = &net->dev_index_head[h];
  1134. hlist_for_each_entry_rcu(dev, head, index_hlist) {
  1135. if (idx < s_idx)
  1136. goto cont;
  1137. err = rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  1138. NETLINK_CB(cb->skb).portid,
  1139. cb->nlh->nlmsg_seq, 0,
  1140. NLM_F_MULTI,
  1141. ext_filter_mask);
  1142. /* If we ran out of room on the first message,
  1143. * we're in trouble
  1144. */
  1145. WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
  1146. if (err < 0)
  1147. goto out;
  1148. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  1149. cont:
  1150. idx++;
  1151. }
  1152. }
  1153. out:
  1154. rcu_read_unlock();
  1155. cb->args[1] = idx;
  1156. cb->args[0] = h;
  1157. return skb->len;
  1158. }
  1159. int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len)
  1160. {
  1161. return nla_parse(tb, IFLA_MAX, head, len, ifla_policy);
  1162. }
  1163. EXPORT_SYMBOL(rtnl_nla_parse_ifla);
  1164. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  1165. {
  1166. struct net *net;
  1167. /* Examine the link attributes and figure out which
  1168. * network namespace we are talking about.
  1169. */
  1170. if (tb[IFLA_NET_NS_PID])
  1171. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  1172. else if (tb[IFLA_NET_NS_FD])
  1173. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  1174. else
  1175. net = get_net(src_net);
  1176. return net;
  1177. }
  1178. EXPORT_SYMBOL(rtnl_link_get_net);
  1179. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  1180. {
  1181. if (dev) {
  1182. if (tb[IFLA_ADDRESS] &&
  1183. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1184. return -EINVAL;
  1185. if (tb[IFLA_BROADCAST] &&
  1186. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1187. return -EINVAL;
  1188. }
  1189. if (tb[IFLA_AF_SPEC]) {
  1190. struct nlattr *af;
  1191. int rem, err;
  1192. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1193. const struct rtnl_af_ops *af_ops;
  1194. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1195. return -EAFNOSUPPORT;
  1196. if (!af_ops->set_link_af)
  1197. return -EOPNOTSUPP;
  1198. if (af_ops->validate_link_af) {
  1199. err = af_ops->validate_link_af(dev, af);
  1200. if (err < 0)
  1201. return err;
  1202. }
  1203. }
  1204. }
  1205. return 0;
  1206. }
  1207. static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
  1208. {
  1209. int rem, err = -EINVAL;
  1210. struct nlattr *vf;
  1211. const struct net_device_ops *ops = dev->netdev_ops;
  1212. nla_for_each_nested(vf, attr, rem) {
  1213. switch (nla_type(vf)) {
  1214. case IFLA_VF_MAC: {
  1215. struct ifla_vf_mac *ivm;
  1216. ivm = nla_data(vf);
  1217. err = -EOPNOTSUPP;
  1218. if (ops->ndo_set_vf_mac)
  1219. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1220. ivm->mac);
  1221. break;
  1222. }
  1223. case IFLA_VF_VLAN: {
  1224. struct ifla_vf_vlan *ivv;
  1225. ivv = nla_data(vf);
  1226. err = -EOPNOTSUPP;
  1227. if (ops->ndo_set_vf_vlan)
  1228. err = ops->ndo_set_vf_vlan(dev, ivv->vf,
  1229. ivv->vlan,
  1230. ivv->qos);
  1231. break;
  1232. }
  1233. case IFLA_VF_TX_RATE: {
  1234. struct ifla_vf_tx_rate *ivt;
  1235. struct ifla_vf_info ivf;
  1236. ivt = nla_data(vf);
  1237. err = -EOPNOTSUPP;
  1238. if (ops->ndo_get_vf_config)
  1239. err = ops->ndo_get_vf_config(dev, ivt->vf,
  1240. &ivf);
  1241. if (err)
  1242. break;
  1243. err = -EOPNOTSUPP;
  1244. if (ops->ndo_set_vf_rate)
  1245. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1246. ivf.min_tx_rate,
  1247. ivt->rate);
  1248. break;
  1249. }
  1250. case IFLA_VF_RATE: {
  1251. struct ifla_vf_rate *ivt;
  1252. ivt = nla_data(vf);
  1253. err = -EOPNOTSUPP;
  1254. if (ops->ndo_set_vf_rate)
  1255. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1256. ivt->min_tx_rate,
  1257. ivt->max_tx_rate);
  1258. break;
  1259. }
  1260. case IFLA_VF_SPOOFCHK: {
  1261. struct ifla_vf_spoofchk *ivs;
  1262. ivs = nla_data(vf);
  1263. err = -EOPNOTSUPP;
  1264. if (ops->ndo_set_vf_spoofchk)
  1265. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1266. ivs->setting);
  1267. break;
  1268. }
  1269. case IFLA_VF_LINK_STATE: {
  1270. struct ifla_vf_link_state *ivl;
  1271. ivl = nla_data(vf);
  1272. err = -EOPNOTSUPP;
  1273. if (ops->ndo_set_vf_link_state)
  1274. err = ops->ndo_set_vf_link_state(dev, ivl->vf,
  1275. ivl->link_state);
  1276. break;
  1277. }
  1278. default:
  1279. err = -EINVAL;
  1280. break;
  1281. }
  1282. if (err)
  1283. break;
  1284. }
  1285. return err;
  1286. }
  1287. static int do_set_master(struct net_device *dev, int ifindex)
  1288. {
  1289. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1290. const struct net_device_ops *ops;
  1291. int err;
  1292. if (upper_dev) {
  1293. if (upper_dev->ifindex == ifindex)
  1294. return 0;
  1295. ops = upper_dev->netdev_ops;
  1296. if (ops->ndo_del_slave) {
  1297. err = ops->ndo_del_slave(upper_dev, dev);
  1298. if (err)
  1299. return err;
  1300. } else {
  1301. return -EOPNOTSUPP;
  1302. }
  1303. }
  1304. if (ifindex) {
  1305. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1306. if (!upper_dev)
  1307. return -EINVAL;
  1308. ops = upper_dev->netdev_ops;
  1309. if (ops->ndo_add_slave) {
  1310. err = ops->ndo_add_slave(upper_dev, dev);
  1311. if (err)
  1312. return err;
  1313. } else {
  1314. return -EOPNOTSUPP;
  1315. }
  1316. }
  1317. return 0;
  1318. }
  1319. #define DO_SETLINK_MODIFIED 0x01
  1320. /* notify flag means notify + modified. */
  1321. #define DO_SETLINK_NOTIFY 0x03
  1322. static int do_setlink(const struct sk_buff *skb,
  1323. struct net_device *dev, struct ifinfomsg *ifm,
  1324. struct nlattr **tb, char *ifname, int status)
  1325. {
  1326. const struct net_device_ops *ops = dev->netdev_ops;
  1327. int err;
  1328. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1329. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1330. if (IS_ERR(net)) {
  1331. err = PTR_ERR(net);
  1332. goto errout;
  1333. }
  1334. if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
  1335. put_net(net);
  1336. err = -EPERM;
  1337. goto errout;
  1338. }
  1339. err = dev_change_net_namespace(dev, net, ifname);
  1340. put_net(net);
  1341. if (err)
  1342. goto errout;
  1343. status |= DO_SETLINK_MODIFIED;
  1344. }
  1345. if (tb[IFLA_MAP]) {
  1346. struct rtnl_link_ifmap *u_map;
  1347. struct ifmap k_map;
  1348. if (!ops->ndo_set_config) {
  1349. err = -EOPNOTSUPP;
  1350. goto errout;
  1351. }
  1352. if (!netif_device_present(dev)) {
  1353. err = -ENODEV;
  1354. goto errout;
  1355. }
  1356. u_map = nla_data(tb[IFLA_MAP]);
  1357. k_map.mem_start = (unsigned long) u_map->mem_start;
  1358. k_map.mem_end = (unsigned long) u_map->mem_end;
  1359. k_map.base_addr = (unsigned short) u_map->base_addr;
  1360. k_map.irq = (unsigned char) u_map->irq;
  1361. k_map.dma = (unsigned char) u_map->dma;
  1362. k_map.port = (unsigned char) u_map->port;
  1363. err = ops->ndo_set_config(dev, &k_map);
  1364. if (err < 0)
  1365. goto errout;
  1366. status |= DO_SETLINK_NOTIFY;
  1367. }
  1368. if (tb[IFLA_ADDRESS]) {
  1369. struct sockaddr *sa;
  1370. int len;
  1371. len = sizeof(sa_family_t) + dev->addr_len;
  1372. sa = kmalloc(len, GFP_KERNEL);
  1373. if (!sa) {
  1374. err = -ENOMEM;
  1375. goto errout;
  1376. }
  1377. sa->sa_family = dev->type;
  1378. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1379. dev->addr_len);
  1380. err = dev_set_mac_address(dev, sa);
  1381. kfree(sa);
  1382. if (err)
  1383. goto errout;
  1384. status |= DO_SETLINK_MODIFIED;
  1385. }
  1386. if (tb[IFLA_MTU]) {
  1387. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1388. if (err < 0)
  1389. goto errout;
  1390. status |= DO_SETLINK_MODIFIED;
  1391. }
  1392. if (tb[IFLA_GROUP]) {
  1393. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1394. status |= DO_SETLINK_NOTIFY;
  1395. }
  1396. /*
  1397. * Interface selected by interface index but interface
  1398. * name provided implies that a name change has been
  1399. * requested.
  1400. */
  1401. if (ifm->ifi_index > 0 && ifname[0]) {
  1402. err = dev_change_name(dev, ifname);
  1403. if (err < 0)
  1404. goto errout;
  1405. status |= DO_SETLINK_MODIFIED;
  1406. }
  1407. if (tb[IFLA_IFALIAS]) {
  1408. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1409. nla_len(tb[IFLA_IFALIAS]));
  1410. if (err < 0)
  1411. goto errout;
  1412. status |= DO_SETLINK_NOTIFY;
  1413. }
  1414. if (tb[IFLA_BROADCAST]) {
  1415. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1416. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1417. }
  1418. if (ifm->ifi_flags || ifm->ifi_change) {
  1419. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1420. if (err < 0)
  1421. goto errout;
  1422. }
  1423. if (tb[IFLA_MASTER]) {
  1424. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1425. if (err)
  1426. goto errout;
  1427. status |= DO_SETLINK_MODIFIED;
  1428. }
  1429. if (tb[IFLA_CARRIER]) {
  1430. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1431. if (err)
  1432. goto errout;
  1433. status |= DO_SETLINK_MODIFIED;
  1434. }
  1435. if (tb[IFLA_TXQLEN]) {
  1436. unsigned long value = nla_get_u32(tb[IFLA_TXQLEN]);
  1437. if (dev->tx_queue_len ^ value)
  1438. status |= DO_SETLINK_NOTIFY;
  1439. dev->tx_queue_len = value;
  1440. }
  1441. if (tb[IFLA_OPERSTATE])
  1442. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1443. if (tb[IFLA_LINKMODE]) {
  1444. unsigned char value = nla_get_u8(tb[IFLA_LINKMODE]);
  1445. write_lock_bh(&dev_base_lock);
  1446. if (dev->link_mode ^ value)
  1447. status |= DO_SETLINK_NOTIFY;
  1448. dev->link_mode = value;
  1449. write_unlock_bh(&dev_base_lock);
  1450. }
  1451. if (tb[IFLA_VFINFO_LIST]) {
  1452. struct nlattr *attr;
  1453. int rem;
  1454. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1455. if (nla_type(attr) != IFLA_VF_INFO) {
  1456. err = -EINVAL;
  1457. goto errout;
  1458. }
  1459. err = do_setvfinfo(dev, attr);
  1460. if (err < 0)
  1461. goto errout;
  1462. status |= DO_SETLINK_NOTIFY;
  1463. }
  1464. }
  1465. err = 0;
  1466. if (tb[IFLA_VF_PORTS]) {
  1467. struct nlattr *port[IFLA_PORT_MAX+1];
  1468. struct nlattr *attr;
  1469. int vf;
  1470. int rem;
  1471. err = -EOPNOTSUPP;
  1472. if (!ops->ndo_set_vf_port)
  1473. goto errout;
  1474. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1475. if (nla_type(attr) != IFLA_VF_PORT)
  1476. continue;
  1477. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1478. attr, ifla_port_policy);
  1479. if (err < 0)
  1480. goto errout;
  1481. if (!port[IFLA_PORT_VF]) {
  1482. err = -EOPNOTSUPP;
  1483. goto errout;
  1484. }
  1485. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1486. err = ops->ndo_set_vf_port(dev, vf, port);
  1487. if (err < 0)
  1488. goto errout;
  1489. status |= DO_SETLINK_NOTIFY;
  1490. }
  1491. }
  1492. err = 0;
  1493. if (tb[IFLA_PORT_SELF]) {
  1494. struct nlattr *port[IFLA_PORT_MAX+1];
  1495. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1496. tb[IFLA_PORT_SELF], ifla_port_policy);
  1497. if (err < 0)
  1498. goto errout;
  1499. err = -EOPNOTSUPP;
  1500. if (ops->ndo_set_vf_port)
  1501. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1502. if (err < 0)
  1503. goto errout;
  1504. status |= DO_SETLINK_NOTIFY;
  1505. }
  1506. if (tb[IFLA_AF_SPEC]) {
  1507. struct nlattr *af;
  1508. int rem;
  1509. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1510. const struct rtnl_af_ops *af_ops;
  1511. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1512. BUG();
  1513. err = af_ops->set_link_af(dev, af);
  1514. if (err < 0)
  1515. goto errout;
  1516. status |= DO_SETLINK_NOTIFY;
  1517. }
  1518. }
  1519. err = 0;
  1520. errout:
  1521. if (status & DO_SETLINK_MODIFIED) {
  1522. if (status & DO_SETLINK_NOTIFY)
  1523. netdev_state_change(dev);
  1524. if (err < 0)
  1525. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1526. dev->name);
  1527. }
  1528. return err;
  1529. }
  1530. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1531. {
  1532. struct net *net = sock_net(skb->sk);
  1533. struct ifinfomsg *ifm;
  1534. struct net_device *dev;
  1535. int err;
  1536. struct nlattr *tb[IFLA_MAX+1];
  1537. char ifname[IFNAMSIZ];
  1538. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1539. if (err < 0)
  1540. goto errout;
  1541. if (tb[IFLA_IFNAME])
  1542. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1543. else
  1544. ifname[0] = '\0';
  1545. err = -EINVAL;
  1546. ifm = nlmsg_data(nlh);
  1547. if (ifm->ifi_index > 0)
  1548. dev = __dev_get_by_index(net, ifm->ifi_index);
  1549. else if (tb[IFLA_IFNAME])
  1550. dev = __dev_get_by_name(net, ifname);
  1551. else
  1552. goto errout;
  1553. if (dev == NULL) {
  1554. err = -ENODEV;
  1555. goto errout;
  1556. }
  1557. err = validate_linkmsg(dev, tb);
  1558. if (err < 0)
  1559. goto errout;
  1560. err = do_setlink(skb, dev, ifm, tb, ifname, 0);
  1561. errout:
  1562. return err;
  1563. }
  1564. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1565. {
  1566. struct net *net = sock_net(skb->sk);
  1567. const struct rtnl_link_ops *ops;
  1568. struct net_device *dev;
  1569. struct ifinfomsg *ifm;
  1570. char ifname[IFNAMSIZ];
  1571. struct nlattr *tb[IFLA_MAX+1];
  1572. int err;
  1573. LIST_HEAD(list_kill);
  1574. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1575. if (err < 0)
  1576. return err;
  1577. if (tb[IFLA_IFNAME])
  1578. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1579. ifm = nlmsg_data(nlh);
  1580. if (ifm->ifi_index > 0)
  1581. dev = __dev_get_by_index(net, ifm->ifi_index);
  1582. else if (tb[IFLA_IFNAME])
  1583. dev = __dev_get_by_name(net, ifname);
  1584. else
  1585. return -EINVAL;
  1586. if (!dev)
  1587. return -ENODEV;
  1588. ops = dev->rtnl_link_ops;
  1589. if (!ops || !ops->dellink)
  1590. return -EOPNOTSUPP;
  1591. ops->dellink(dev, &list_kill);
  1592. unregister_netdevice_many(&list_kill);
  1593. return 0;
  1594. }
  1595. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1596. {
  1597. unsigned int old_flags;
  1598. int err;
  1599. old_flags = dev->flags;
  1600. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1601. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1602. if (err < 0)
  1603. return err;
  1604. }
  1605. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1606. __dev_notify_flags(dev, old_flags, ~0U);
  1607. return 0;
  1608. }
  1609. EXPORT_SYMBOL(rtnl_configure_link);
  1610. struct net_device *rtnl_create_link(struct net *net,
  1611. char *ifname, unsigned char name_assign_type,
  1612. const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1613. {
  1614. int err;
  1615. struct net_device *dev;
  1616. unsigned int num_tx_queues = 1;
  1617. unsigned int num_rx_queues = 1;
  1618. if (tb[IFLA_NUM_TX_QUEUES])
  1619. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1620. else if (ops->get_num_tx_queues)
  1621. num_tx_queues = ops->get_num_tx_queues();
  1622. if (tb[IFLA_NUM_RX_QUEUES])
  1623. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1624. else if (ops->get_num_rx_queues)
  1625. num_rx_queues = ops->get_num_rx_queues();
  1626. err = -ENOMEM;
  1627. dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
  1628. ops->setup, num_tx_queues, num_rx_queues);
  1629. if (!dev)
  1630. goto err;
  1631. dev_net_set(dev, net);
  1632. dev->rtnl_link_ops = ops;
  1633. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1634. if (tb[IFLA_MTU])
  1635. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1636. if (tb[IFLA_ADDRESS]) {
  1637. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1638. nla_len(tb[IFLA_ADDRESS]));
  1639. dev->addr_assign_type = NET_ADDR_SET;
  1640. }
  1641. if (tb[IFLA_BROADCAST])
  1642. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1643. nla_len(tb[IFLA_BROADCAST]));
  1644. if (tb[IFLA_TXQLEN])
  1645. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1646. if (tb[IFLA_OPERSTATE])
  1647. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1648. if (tb[IFLA_LINKMODE])
  1649. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1650. if (tb[IFLA_GROUP])
  1651. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1652. return dev;
  1653. err:
  1654. return ERR_PTR(err);
  1655. }
  1656. EXPORT_SYMBOL(rtnl_create_link);
  1657. static int rtnl_group_changelink(const struct sk_buff *skb,
  1658. struct net *net, int group,
  1659. struct ifinfomsg *ifm,
  1660. struct nlattr **tb)
  1661. {
  1662. struct net_device *dev;
  1663. int err;
  1664. for_each_netdev(net, dev) {
  1665. if (dev->group == group) {
  1666. err = do_setlink(skb, dev, ifm, tb, NULL, 0);
  1667. if (err < 0)
  1668. return err;
  1669. }
  1670. }
  1671. return 0;
  1672. }
  1673. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1674. {
  1675. struct net *net = sock_net(skb->sk);
  1676. const struct rtnl_link_ops *ops;
  1677. const struct rtnl_link_ops *m_ops = NULL;
  1678. struct net_device *dev;
  1679. struct net_device *master_dev = NULL;
  1680. struct ifinfomsg *ifm;
  1681. char kind[MODULE_NAME_LEN];
  1682. char ifname[IFNAMSIZ];
  1683. struct nlattr *tb[IFLA_MAX+1];
  1684. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1685. unsigned char name_assign_type = NET_NAME_USER;
  1686. int err;
  1687. #ifdef CONFIG_MODULES
  1688. replay:
  1689. #endif
  1690. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1691. if (err < 0)
  1692. return err;
  1693. if (tb[IFLA_IFNAME])
  1694. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1695. else
  1696. ifname[0] = '\0';
  1697. ifm = nlmsg_data(nlh);
  1698. if (ifm->ifi_index > 0)
  1699. dev = __dev_get_by_index(net, ifm->ifi_index);
  1700. else {
  1701. if (ifname[0])
  1702. dev = __dev_get_by_name(net, ifname);
  1703. else
  1704. dev = NULL;
  1705. }
  1706. if (dev) {
  1707. master_dev = netdev_master_upper_dev_get(dev);
  1708. if (master_dev)
  1709. m_ops = master_dev->rtnl_link_ops;
  1710. }
  1711. err = validate_linkmsg(dev, tb);
  1712. if (err < 0)
  1713. return err;
  1714. if (tb[IFLA_LINKINFO]) {
  1715. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1716. tb[IFLA_LINKINFO], ifla_info_policy);
  1717. if (err < 0)
  1718. return err;
  1719. } else
  1720. memset(linkinfo, 0, sizeof(linkinfo));
  1721. if (linkinfo[IFLA_INFO_KIND]) {
  1722. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1723. ops = rtnl_link_ops_get(kind);
  1724. } else {
  1725. kind[0] = '\0';
  1726. ops = NULL;
  1727. }
  1728. if (1) {
  1729. struct nlattr *attr[ops ? ops->maxtype + 1 : 0];
  1730. struct nlattr *slave_attr[m_ops ? m_ops->slave_maxtype + 1 : 0];
  1731. struct nlattr **data = NULL;
  1732. struct nlattr **slave_data = NULL;
  1733. struct net *dest_net, *link_net = NULL;
  1734. if (ops) {
  1735. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1736. err = nla_parse_nested(attr, ops->maxtype,
  1737. linkinfo[IFLA_INFO_DATA],
  1738. ops->policy);
  1739. if (err < 0)
  1740. return err;
  1741. data = attr;
  1742. }
  1743. if (ops->validate) {
  1744. err = ops->validate(tb, data);
  1745. if (err < 0)
  1746. return err;
  1747. }
  1748. }
  1749. if (m_ops) {
  1750. if (m_ops->slave_maxtype &&
  1751. linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1752. err = nla_parse_nested(slave_attr,
  1753. m_ops->slave_maxtype,
  1754. linkinfo[IFLA_INFO_SLAVE_DATA],
  1755. m_ops->slave_policy);
  1756. if (err < 0)
  1757. return err;
  1758. slave_data = slave_attr;
  1759. }
  1760. if (m_ops->slave_validate) {
  1761. err = m_ops->slave_validate(tb, slave_data);
  1762. if (err < 0)
  1763. return err;
  1764. }
  1765. }
  1766. if (dev) {
  1767. int status = 0;
  1768. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1769. return -EEXIST;
  1770. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1771. return -EOPNOTSUPP;
  1772. if (linkinfo[IFLA_INFO_DATA]) {
  1773. if (!ops || ops != dev->rtnl_link_ops ||
  1774. !ops->changelink)
  1775. return -EOPNOTSUPP;
  1776. err = ops->changelink(dev, tb, data);
  1777. if (err < 0)
  1778. return err;
  1779. status |= DO_SETLINK_NOTIFY;
  1780. }
  1781. if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1782. if (!m_ops || !m_ops->slave_changelink)
  1783. return -EOPNOTSUPP;
  1784. err = m_ops->slave_changelink(master_dev, dev,
  1785. tb, slave_data);
  1786. if (err < 0)
  1787. return err;
  1788. status |= DO_SETLINK_NOTIFY;
  1789. }
  1790. return do_setlink(skb, dev, ifm, tb, ifname, status);
  1791. }
  1792. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1793. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1794. return rtnl_group_changelink(skb, net,
  1795. nla_get_u32(tb[IFLA_GROUP]),
  1796. ifm, tb);
  1797. return -ENODEV;
  1798. }
  1799. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1800. return -EOPNOTSUPP;
  1801. if (!ops) {
  1802. #ifdef CONFIG_MODULES
  1803. if (kind[0]) {
  1804. __rtnl_unlock();
  1805. request_module("rtnl-link-%s", kind);
  1806. rtnl_lock();
  1807. ops = rtnl_link_ops_get(kind);
  1808. if (ops)
  1809. goto replay;
  1810. }
  1811. #endif
  1812. return -EOPNOTSUPP;
  1813. }
  1814. if (!ops->setup)
  1815. return -EOPNOTSUPP;
  1816. if (!ifname[0]) {
  1817. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1818. name_assign_type = NET_NAME_ENUM;
  1819. }
  1820. dest_net = rtnl_link_get_net(net, tb);
  1821. if (IS_ERR(dest_net))
  1822. return PTR_ERR(dest_net);
  1823. if (tb[IFLA_LINK_NETNSID]) {
  1824. int id = nla_get_s32(tb[IFLA_LINK_NETNSID]);
  1825. link_net = get_net_ns_by_id(dest_net, id);
  1826. if (!link_net) {
  1827. err = -EINVAL;
  1828. goto out;
  1829. }
  1830. }
  1831. dev = rtnl_create_link(link_net ? : dest_net, ifname,
  1832. name_assign_type, ops, tb);
  1833. if (IS_ERR(dev)) {
  1834. err = PTR_ERR(dev);
  1835. goto out;
  1836. }
  1837. dev->ifindex = ifm->ifi_index;
  1838. if (ops->newlink) {
  1839. err = ops->newlink(net, dev, tb, data);
  1840. /* Drivers should call free_netdev() in ->destructor
  1841. * and unregister it on failure after registration
  1842. * so that device could be finally freed in rtnl_unlock.
  1843. */
  1844. if (err < 0) {
  1845. /* If device is not registered at all, free it now */
  1846. if (dev->reg_state == NETREG_UNINITIALIZED)
  1847. free_netdev(dev);
  1848. goto out;
  1849. }
  1850. } else {
  1851. err = register_netdevice(dev);
  1852. if (err < 0) {
  1853. free_netdev(dev);
  1854. goto out;
  1855. }
  1856. }
  1857. err = rtnl_configure_link(dev, ifm);
  1858. if (err < 0) {
  1859. unregister_netdevice(dev);
  1860. goto out;
  1861. }
  1862. if (link_net) {
  1863. err = dev_change_net_namespace(dev, dest_net, ifname);
  1864. if (err < 0)
  1865. unregister_netdevice(dev);
  1866. }
  1867. out:
  1868. if (link_net)
  1869. put_net(link_net);
  1870. put_net(dest_net);
  1871. return err;
  1872. }
  1873. }
  1874. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
  1875. {
  1876. struct net *net = sock_net(skb->sk);
  1877. struct ifinfomsg *ifm;
  1878. char ifname[IFNAMSIZ];
  1879. struct nlattr *tb[IFLA_MAX+1];
  1880. struct net_device *dev = NULL;
  1881. struct sk_buff *nskb;
  1882. int err;
  1883. u32 ext_filter_mask = 0;
  1884. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1885. if (err < 0)
  1886. return err;
  1887. if (tb[IFLA_IFNAME])
  1888. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1889. if (tb[IFLA_EXT_MASK])
  1890. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1891. ifm = nlmsg_data(nlh);
  1892. if (ifm->ifi_index > 0)
  1893. dev = __dev_get_by_index(net, ifm->ifi_index);
  1894. else if (tb[IFLA_IFNAME])
  1895. dev = __dev_get_by_name(net, ifname);
  1896. else
  1897. return -EINVAL;
  1898. if (dev == NULL)
  1899. return -ENODEV;
  1900. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  1901. if (nskb == NULL)
  1902. return -ENOBUFS;
  1903. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  1904. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  1905. if (err < 0) {
  1906. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  1907. WARN_ON(err == -EMSGSIZE);
  1908. kfree_skb(nskb);
  1909. } else
  1910. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  1911. return err;
  1912. }
  1913. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  1914. {
  1915. struct net *net = sock_net(skb->sk);
  1916. struct net_device *dev;
  1917. struct nlattr *tb[IFLA_MAX+1];
  1918. u32 ext_filter_mask = 0;
  1919. u16 min_ifinfo_dump_size = 0;
  1920. int hdrlen;
  1921. /* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
  1922. hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
  1923. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1924. if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1925. if (tb[IFLA_EXT_MASK])
  1926. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1927. }
  1928. if (!ext_filter_mask)
  1929. return NLMSG_GOODSIZE;
  1930. /*
  1931. * traverse the list of net devices and compute the minimum
  1932. * buffer size based upon the filter mask.
  1933. */
  1934. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  1935. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  1936. if_nlmsg_size(dev,
  1937. ext_filter_mask));
  1938. }
  1939. return min_ifinfo_dump_size;
  1940. }
  1941. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  1942. {
  1943. int idx;
  1944. int s_idx = cb->family;
  1945. if (s_idx == 0)
  1946. s_idx = 1;
  1947. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  1948. int type = cb->nlh->nlmsg_type-RTM_BASE;
  1949. if (idx < s_idx || idx == PF_PACKET)
  1950. continue;
  1951. if (rtnl_msg_handlers[idx] == NULL ||
  1952. rtnl_msg_handlers[idx][type].dumpit == NULL)
  1953. continue;
  1954. if (idx > s_idx) {
  1955. memset(&cb->args[0], 0, sizeof(cb->args));
  1956. cb->prev_seq = 0;
  1957. cb->seq = 0;
  1958. }
  1959. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  1960. break;
  1961. }
  1962. cb->family = idx;
  1963. return skb->len;
  1964. }
  1965. struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev,
  1966. unsigned int change, gfp_t flags)
  1967. {
  1968. struct net *net = dev_net(dev);
  1969. struct sk_buff *skb;
  1970. int err = -ENOBUFS;
  1971. size_t if_info_size;
  1972. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
  1973. if (skb == NULL)
  1974. goto errout;
  1975. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  1976. if (err < 0) {
  1977. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  1978. WARN_ON(err == -EMSGSIZE);
  1979. kfree_skb(skb);
  1980. goto errout;
  1981. }
  1982. return skb;
  1983. errout:
  1984. if (err < 0)
  1985. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  1986. return NULL;
  1987. }
  1988. void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags)
  1989. {
  1990. struct net *net = dev_net(dev);
  1991. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
  1992. }
  1993. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
  1994. gfp_t flags)
  1995. {
  1996. struct sk_buff *skb;
  1997. skb = rtmsg_ifinfo_build_skb(type, dev, change, flags);
  1998. if (skb)
  1999. rtmsg_ifinfo_send(skb, dev, flags);
  2000. }
  2001. EXPORT_SYMBOL(rtmsg_ifinfo);
  2002. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  2003. struct net_device *dev,
  2004. u8 *addr, u32 pid, u32 seq,
  2005. int type, unsigned int flags,
  2006. int nlflags)
  2007. {
  2008. struct nlmsghdr *nlh;
  2009. struct ndmsg *ndm;
  2010. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
  2011. if (!nlh)
  2012. return -EMSGSIZE;
  2013. ndm = nlmsg_data(nlh);
  2014. ndm->ndm_family = AF_BRIDGE;
  2015. ndm->ndm_pad1 = 0;
  2016. ndm->ndm_pad2 = 0;
  2017. ndm->ndm_flags = flags;
  2018. ndm->ndm_type = 0;
  2019. ndm->ndm_ifindex = dev->ifindex;
  2020. ndm->ndm_state = NUD_PERMANENT;
  2021. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  2022. goto nla_put_failure;
  2023. nlmsg_end(skb, nlh);
  2024. return 0;
  2025. nla_put_failure:
  2026. nlmsg_cancel(skb, nlh);
  2027. return -EMSGSIZE;
  2028. }
  2029. static inline size_t rtnl_fdb_nlmsg_size(void)
  2030. {
  2031. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  2032. }
  2033. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, int type)
  2034. {
  2035. struct net *net = dev_net(dev);
  2036. struct sk_buff *skb;
  2037. int err = -ENOBUFS;
  2038. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  2039. if (!skb)
  2040. goto errout;
  2041. err = nlmsg_populate_fdb_fill(skb, dev, addr, 0, 0, type, NTF_SELF, 0);
  2042. if (err < 0) {
  2043. kfree_skb(skb);
  2044. goto errout;
  2045. }
  2046. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  2047. return;
  2048. errout:
  2049. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  2050. }
  2051. /**
  2052. * ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
  2053. */
  2054. int ndo_dflt_fdb_add(struct ndmsg *ndm,
  2055. struct nlattr *tb[],
  2056. struct net_device *dev,
  2057. const unsigned char *addr, u16 vid,
  2058. u16 flags)
  2059. {
  2060. int err = -EINVAL;
  2061. /* If aging addresses are supported device will need to
  2062. * implement its own handler for this.
  2063. */
  2064. if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
  2065. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2066. return err;
  2067. }
  2068. if (vid) {
  2069. pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
  2070. return err;
  2071. }
  2072. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2073. err = dev_uc_add_excl(dev, addr);
  2074. else if (is_multicast_ether_addr(addr))
  2075. err = dev_mc_add_excl(dev, addr);
  2076. /* Only return duplicate errors if NLM_F_EXCL is set */
  2077. if (err == -EEXIST && !(flags & NLM_F_EXCL))
  2078. err = 0;
  2079. return err;
  2080. }
  2081. EXPORT_SYMBOL(ndo_dflt_fdb_add);
  2082. static int fdb_vid_parse(struct nlattr *vlan_attr, u16 *p_vid)
  2083. {
  2084. u16 vid = 0;
  2085. if (vlan_attr) {
  2086. if (nla_len(vlan_attr) != sizeof(u16)) {
  2087. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan\n");
  2088. return -EINVAL;
  2089. }
  2090. vid = nla_get_u16(vlan_attr);
  2091. if (!vid || vid >= VLAN_VID_MASK) {
  2092. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan id %d\n",
  2093. vid);
  2094. return -EINVAL;
  2095. }
  2096. }
  2097. *p_vid = vid;
  2098. return 0;
  2099. }
  2100. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
  2101. {
  2102. struct net *net = sock_net(skb->sk);
  2103. struct ndmsg *ndm;
  2104. struct nlattr *tb[NDA_MAX+1];
  2105. struct net_device *dev;
  2106. u8 *addr;
  2107. u16 vid;
  2108. int err;
  2109. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2110. if (err < 0)
  2111. return err;
  2112. ndm = nlmsg_data(nlh);
  2113. if (ndm->ndm_ifindex == 0) {
  2114. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  2115. return -EINVAL;
  2116. }
  2117. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2118. if (dev == NULL) {
  2119. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  2120. return -ENODEV;
  2121. }
  2122. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2123. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  2124. return -EINVAL;
  2125. }
  2126. addr = nla_data(tb[NDA_LLADDR]);
  2127. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2128. if (err)
  2129. return err;
  2130. err = -EOPNOTSUPP;
  2131. /* Support fdb on master device the net/bridge default case */
  2132. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2133. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2134. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2135. const struct net_device_ops *ops = br_dev->netdev_ops;
  2136. err = ops->ndo_fdb_add(ndm, tb, dev, addr, vid,
  2137. nlh->nlmsg_flags);
  2138. if (err)
  2139. goto out;
  2140. else
  2141. ndm->ndm_flags &= ~NTF_MASTER;
  2142. }
  2143. /* Embedded bridge, macvlan, and any other device support */
  2144. if ((ndm->ndm_flags & NTF_SELF)) {
  2145. if (dev->netdev_ops->ndo_fdb_add)
  2146. err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
  2147. vid,
  2148. nlh->nlmsg_flags);
  2149. else
  2150. err = ndo_dflt_fdb_add(ndm, tb, dev, addr, vid,
  2151. nlh->nlmsg_flags);
  2152. if (!err) {
  2153. rtnl_fdb_notify(dev, addr, RTM_NEWNEIGH);
  2154. ndm->ndm_flags &= ~NTF_SELF;
  2155. }
  2156. }
  2157. out:
  2158. return err;
  2159. }
  2160. /**
  2161. * ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
  2162. */
  2163. int ndo_dflt_fdb_del(struct ndmsg *ndm,
  2164. struct nlattr *tb[],
  2165. struct net_device *dev,
  2166. const unsigned char *addr, u16 vid)
  2167. {
  2168. int err = -EINVAL;
  2169. /* If aging addresses are supported device will need to
  2170. * implement its own handler for this.
  2171. */
  2172. if (!(ndm->ndm_state & NUD_PERMANENT)) {
  2173. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2174. return err;
  2175. }
  2176. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2177. err = dev_uc_del(dev, addr);
  2178. else if (is_multicast_ether_addr(addr))
  2179. err = dev_mc_del(dev, addr);
  2180. return err;
  2181. }
  2182. EXPORT_SYMBOL(ndo_dflt_fdb_del);
  2183. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
  2184. {
  2185. struct net *net = sock_net(skb->sk);
  2186. struct ndmsg *ndm;
  2187. struct nlattr *tb[NDA_MAX+1];
  2188. struct net_device *dev;
  2189. int err = -EINVAL;
  2190. __u8 *addr;
  2191. u16 vid;
  2192. if (!netlink_capable(skb, CAP_NET_ADMIN))
  2193. return -EPERM;
  2194. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2195. if (err < 0)
  2196. return err;
  2197. ndm = nlmsg_data(nlh);
  2198. if (ndm->ndm_ifindex == 0) {
  2199. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  2200. return -EINVAL;
  2201. }
  2202. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2203. if (dev == NULL) {
  2204. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  2205. return -ENODEV;
  2206. }
  2207. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2208. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
  2209. return -EINVAL;
  2210. }
  2211. addr = nla_data(tb[NDA_LLADDR]);
  2212. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2213. if (err)
  2214. return err;
  2215. err = -EOPNOTSUPP;
  2216. /* Support fdb on master device the net/bridge default case */
  2217. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2218. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2219. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2220. const struct net_device_ops *ops = br_dev->netdev_ops;
  2221. if (ops->ndo_fdb_del)
  2222. err = ops->ndo_fdb_del(ndm, tb, dev, addr, vid);
  2223. if (err)
  2224. goto out;
  2225. else
  2226. ndm->ndm_flags &= ~NTF_MASTER;
  2227. }
  2228. /* Embedded bridge, macvlan, and any other device support */
  2229. if (ndm->ndm_flags & NTF_SELF) {
  2230. if (dev->netdev_ops->ndo_fdb_del)
  2231. err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr,
  2232. vid);
  2233. else
  2234. err = ndo_dflt_fdb_del(ndm, tb, dev, addr, vid);
  2235. if (!err) {
  2236. rtnl_fdb_notify(dev, addr, RTM_DELNEIGH);
  2237. ndm->ndm_flags &= ~NTF_SELF;
  2238. }
  2239. }
  2240. out:
  2241. return err;
  2242. }
  2243. static int nlmsg_populate_fdb(struct sk_buff *skb,
  2244. struct netlink_callback *cb,
  2245. struct net_device *dev,
  2246. int *idx,
  2247. struct netdev_hw_addr_list *list)
  2248. {
  2249. struct netdev_hw_addr *ha;
  2250. int err;
  2251. u32 portid, seq;
  2252. portid = NETLINK_CB(cb->skb).portid;
  2253. seq = cb->nlh->nlmsg_seq;
  2254. list_for_each_entry(ha, &list->list, list) {
  2255. if (*idx < cb->args[0])
  2256. goto skip;
  2257. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr,
  2258. portid, seq,
  2259. RTM_NEWNEIGH, NTF_SELF,
  2260. NLM_F_MULTI);
  2261. if (err < 0)
  2262. return err;
  2263. skip:
  2264. *idx += 1;
  2265. }
  2266. return 0;
  2267. }
  2268. /**
  2269. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  2270. * @nlh: netlink message header
  2271. * @dev: netdevice
  2272. *
  2273. * Default netdevice operation to dump the existing unicast address list.
  2274. * Returns number of addresses from list put in skb.
  2275. */
  2276. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  2277. struct netlink_callback *cb,
  2278. struct net_device *dev,
  2279. struct net_device *filter_dev,
  2280. int idx)
  2281. {
  2282. int err;
  2283. netif_addr_lock_bh(dev);
  2284. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  2285. if (err)
  2286. goto out;
  2287. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  2288. out:
  2289. netif_addr_unlock_bh(dev);
  2290. return idx;
  2291. }
  2292. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  2293. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  2294. {
  2295. struct net_device *dev;
  2296. struct nlattr *tb[IFLA_MAX+1];
  2297. struct net_device *bdev = NULL;
  2298. struct net_device *br_dev = NULL;
  2299. const struct net_device_ops *ops = NULL;
  2300. const struct net_device_ops *cops = NULL;
  2301. struct ifinfomsg *ifm = nlmsg_data(cb->nlh);
  2302. struct net *net = sock_net(skb->sk);
  2303. int brport_idx = 0;
  2304. int br_idx = 0;
  2305. int idx = 0;
  2306. if (nlmsg_parse(cb->nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
  2307. ifla_policy) == 0) {
  2308. if (tb[IFLA_MASTER])
  2309. br_idx = nla_get_u32(tb[IFLA_MASTER]);
  2310. }
  2311. brport_idx = ifm->ifi_index;
  2312. if (br_idx) {
  2313. br_dev = __dev_get_by_index(net, br_idx);
  2314. if (!br_dev)
  2315. return -ENODEV;
  2316. ops = br_dev->netdev_ops;
  2317. bdev = br_dev;
  2318. }
  2319. for_each_netdev(net, dev) {
  2320. if (brport_idx && (dev->ifindex != brport_idx))
  2321. continue;
  2322. if (!br_idx) { /* user did not specify a specific bridge */
  2323. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2324. br_dev = netdev_master_upper_dev_get(dev);
  2325. cops = br_dev->netdev_ops;
  2326. }
  2327. bdev = dev;
  2328. } else {
  2329. if (dev != br_dev &&
  2330. !(dev->priv_flags & IFF_BRIDGE_PORT))
  2331. continue;
  2332. if (br_dev != netdev_master_upper_dev_get(dev) &&
  2333. !(dev->priv_flags & IFF_EBRIDGE))
  2334. continue;
  2335. bdev = br_dev;
  2336. cops = ops;
  2337. }
  2338. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2339. if (cops && cops->ndo_fdb_dump)
  2340. idx = cops->ndo_fdb_dump(skb, cb, br_dev, dev,
  2341. idx);
  2342. }
  2343. if (dev->netdev_ops->ndo_fdb_dump)
  2344. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, dev, NULL,
  2345. idx);
  2346. else
  2347. idx = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
  2348. cops = NULL;
  2349. }
  2350. cb->args[0] = idx;
  2351. return skb->len;
  2352. }
  2353. static int brport_nla_put_flag(struct sk_buff *skb, u32 flags, u32 mask,
  2354. unsigned int attrnum, unsigned int flag)
  2355. {
  2356. if (mask & flag)
  2357. return nla_put_u8(skb, attrnum, !!(flags & flag));
  2358. return 0;
  2359. }
  2360. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  2361. struct net_device *dev, u16 mode,
  2362. u32 flags, u32 mask)
  2363. {
  2364. struct nlmsghdr *nlh;
  2365. struct ifinfomsg *ifm;
  2366. struct nlattr *br_afspec;
  2367. struct nlattr *protinfo;
  2368. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  2369. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2370. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), NLM_F_MULTI);
  2371. if (nlh == NULL)
  2372. return -EMSGSIZE;
  2373. ifm = nlmsg_data(nlh);
  2374. ifm->ifi_family = AF_BRIDGE;
  2375. ifm->__ifi_pad = 0;
  2376. ifm->ifi_type = dev->type;
  2377. ifm->ifi_index = dev->ifindex;
  2378. ifm->ifi_flags = dev_get_flags(dev);
  2379. ifm->ifi_change = 0;
  2380. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  2381. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  2382. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  2383. (br_dev &&
  2384. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  2385. (dev->addr_len &&
  2386. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  2387. (dev->ifindex != dev->iflink &&
  2388. nla_put_u32(skb, IFLA_LINK, dev->iflink)))
  2389. goto nla_put_failure;
  2390. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  2391. if (!br_afspec)
  2392. goto nla_put_failure;
  2393. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF)) {
  2394. nla_nest_cancel(skb, br_afspec);
  2395. goto nla_put_failure;
  2396. }
  2397. if (mode != BRIDGE_MODE_UNDEF) {
  2398. if (nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  2399. nla_nest_cancel(skb, br_afspec);
  2400. goto nla_put_failure;
  2401. }
  2402. }
  2403. nla_nest_end(skb, br_afspec);
  2404. protinfo = nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
  2405. if (!protinfo)
  2406. goto nla_put_failure;
  2407. if (brport_nla_put_flag(skb, flags, mask,
  2408. IFLA_BRPORT_MODE, BR_HAIRPIN_MODE) ||
  2409. brport_nla_put_flag(skb, flags, mask,
  2410. IFLA_BRPORT_GUARD, BR_BPDU_GUARD) ||
  2411. brport_nla_put_flag(skb, flags, mask,
  2412. IFLA_BRPORT_FAST_LEAVE,
  2413. BR_MULTICAST_FAST_LEAVE) ||
  2414. brport_nla_put_flag(skb, flags, mask,
  2415. IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK) ||
  2416. brport_nla_put_flag(skb, flags, mask,
  2417. IFLA_BRPORT_LEARNING, BR_LEARNING) ||
  2418. brport_nla_put_flag(skb, flags, mask,
  2419. IFLA_BRPORT_LEARNING_SYNC, BR_LEARNING_SYNC) ||
  2420. brport_nla_put_flag(skb, flags, mask,
  2421. IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD) ||
  2422. brport_nla_put_flag(skb, flags, mask,
  2423. IFLA_BRPORT_PROXYARP, BR_PROXYARP)) {
  2424. nla_nest_cancel(skb, protinfo);
  2425. goto nla_put_failure;
  2426. }
  2427. nla_nest_end(skb, protinfo);
  2428. nlmsg_end(skb, nlh);
  2429. return 0;
  2430. nla_put_failure:
  2431. nlmsg_cancel(skb, nlh);
  2432. return -EMSGSIZE;
  2433. }
  2434. EXPORT_SYMBOL(ndo_dflt_bridge_getlink);
  2435. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  2436. {
  2437. struct net *net = sock_net(skb->sk);
  2438. struct net_device *dev;
  2439. int idx = 0;
  2440. u32 portid = NETLINK_CB(cb->skb).portid;
  2441. u32 seq = cb->nlh->nlmsg_seq;
  2442. u32 filter_mask = 0;
  2443. if (nlmsg_len(cb->nlh) > sizeof(struct ifinfomsg)) {
  2444. struct nlattr *extfilt;
  2445. extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct ifinfomsg),
  2446. IFLA_EXT_MASK);
  2447. if (extfilt) {
  2448. if (nla_len(extfilt) < sizeof(filter_mask))
  2449. return -EINVAL;
  2450. filter_mask = nla_get_u32(extfilt);
  2451. }
  2452. }
  2453. rcu_read_lock();
  2454. for_each_netdev_rcu(net, dev) {
  2455. const struct net_device_ops *ops = dev->netdev_ops;
  2456. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2457. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2458. if (idx >= cb->args[0] &&
  2459. br_dev->netdev_ops->ndo_bridge_getlink(
  2460. skb, portid, seq, dev, filter_mask) < 0)
  2461. break;
  2462. idx++;
  2463. }
  2464. if (ops->ndo_bridge_getlink) {
  2465. if (idx >= cb->args[0] &&
  2466. ops->ndo_bridge_getlink(skb, portid, seq, dev,
  2467. filter_mask) < 0)
  2468. break;
  2469. idx++;
  2470. }
  2471. }
  2472. rcu_read_unlock();
  2473. cb->args[0] = idx;
  2474. return skb->len;
  2475. }
  2476. static inline size_t bridge_nlmsg_size(void)
  2477. {
  2478. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  2479. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  2480. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  2481. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  2482. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2483. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2484. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2485. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2486. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2487. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2488. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2489. }
  2490. static int rtnl_bridge_notify(struct net_device *dev)
  2491. {
  2492. struct net *net = dev_net(dev);
  2493. struct sk_buff *skb;
  2494. int err = -EOPNOTSUPP;
  2495. if (!dev->netdev_ops->ndo_bridge_getlink)
  2496. return 0;
  2497. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2498. if (!skb) {
  2499. err = -ENOMEM;
  2500. goto errout;
  2501. }
  2502. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
  2503. if (err < 0)
  2504. goto errout;
  2505. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2506. return 0;
  2507. errout:
  2508. WARN_ON(err == -EMSGSIZE);
  2509. kfree_skb(skb);
  2510. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2511. return err;
  2512. }
  2513. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2514. {
  2515. struct net *net = sock_net(skb->sk);
  2516. struct ifinfomsg *ifm;
  2517. struct net_device *dev;
  2518. struct nlattr *br_spec, *attr = NULL;
  2519. int rem, err = -EOPNOTSUPP;
  2520. u16 flags = 0;
  2521. bool have_flags = false;
  2522. if (nlmsg_len(nlh) < sizeof(*ifm))
  2523. return -EINVAL;
  2524. ifm = nlmsg_data(nlh);
  2525. if (ifm->ifi_family != AF_BRIDGE)
  2526. return -EPFNOSUPPORT;
  2527. dev = __dev_get_by_index(net, ifm->ifi_index);
  2528. if (!dev) {
  2529. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2530. return -ENODEV;
  2531. }
  2532. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2533. if (br_spec) {
  2534. nla_for_each_nested(attr, br_spec, rem) {
  2535. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2536. if (nla_len(attr) < sizeof(flags))
  2537. return -EINVAL;
  2538. have_flags = true;
  2539. flags = nla_get_u16(attr);
  2540. break;
  2541. }
  2542. }
  2543. }
  2544. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2545. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2546. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2547. err = -EOPNOTSUPP;
  2548. goto out;
  2549. }
  2550. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2551. if (err)
  2552. goto out;
  2553. flags &= ~BRIDGE_FLAGS_MASTER;
  2554. }
  2555. if ((flags & BRIDGE_FLAGS_SELF)) {
  2556. if (!dev->netdev_ops->ndo_bridge_setlink)
  2557. err = -EOPNOTSUPP;
  2558. else
  2559. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2560. if (!err) {
  2561. flags &= ~BRIDGE_FLAGS_SELF;
  2562. /* Generate event to notify upper layer of bridge
  2563. * change
  2564. */
  2565. err = rtnl_bridge_notify(dev);
  2566. }
  2567. }
  2568. if (have_flags)
  2569. memcpy(nla_data(attr), &flags, sizeof(flags));
  2570. out:
  2571. return err;
  2572. }
  2573. static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2574. {
  2575. struct net *net = sock_net(skb->sk);
  2576. struct ifinfomsg *ifm;
  2577. struct net_device *dev;
  2578. struct nlattr *br_spec, *attr = NULL;
  2579. int rem, err = -EOPNOTSUPP;
  2580. u16 flags = 0;
  2581. bool have_flags = false;
  2582. if (nlmsg_len(nlh) < sizeof(*ifm))
  2583. return -EINVAL;
  2584. ifm = nlmsg_data(nlh);
  2585. if (ifm->ifi_family != AF_BRIDGE)
  2586. return -EPFNOSUPPORT;
  2587. dev = __dev_get_by_index(net, ifm->ifi_index);
  2588. if (!dev) {
  2589. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2590. return -ENODEV;
  2591. }
  2592. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2593. if (br_spec) {
  2594. nla_for_each_nested(attr, br_spec, rem) {
  2595. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2596. if (nla_len(attr) < sizeof(flags))
  2597. return -EINVAL;
  2598. have_flags = true;
  2599. flags = nla_get_u16(attr);
  2600. break;
  2601. }
  2602. }
  2603. }
  2604. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2605. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2606. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
  2607. err = -EOPNOTSUPP;
  2608. goto out;
  2609. }
  2610. err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
  2611. if (err)
  2612. goto out;
  2613. flags &= ~BRIDGE_FLAGS_MASTER;
  2614. }
  2615. if ((flags & BRIDGE_FLAGS_SELF)) {
  2616. if (!dev->netdev_ops->ndo_bridge_dellink)
  2617. err = -EOPNOTSUPP;
  2618. else
  2619. err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
  2620. if (!err) {
  2621. flags &= ~BRIDGE_FLAGS_SELF;
  2622. /* Generate event to notify upper layer of bridge
  2623. * change
  2624. */
  2625. err = rtnl_bridge_notify(dev);
  2626. }
  2627. }
  2628. if (have_flags)
  2629. memcpy(nla_data(attr), &flags, sizeof(flags));
  2630. out:
  2631. return err;
  2632. }
  2633. /* Process one rtnetlink message. */
  2634. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  2635. {
  2636. struct net *net = sock_net(skb->sk);
  2637. rtnl_doit_func doit;
  2638. int sz_idx, kind;
  2639. int family;
  2640. int type;
  2641. int err;
  2642. type = nlh->nlmsg_type;
  2643. if (type > RTM_MAX)
  2644. return -EOPNOTSUPP;
  2645. type -= RTM_BASE;
  2646. /* All the messages must have at least 1 byte length */
  2647. if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
  2648. return 0;
  2649. family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
  2650. sz_idx = type>>2;
  2651. kind = type&3;
  2652. if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
  2653. return -EPERM;
  2654. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  2655. struct sock *rtnl;
  2656. rtnl_dumpit_func dumpit;
  2657. rtnl_calcit_func calcit;
  2658. u16 min_dump_alloc = 0;
  2659. dumpit = rtnl_get_dumpit(family, type);
  2660. if (dumpit == NULL)
  2661. return -EOPNOTSUPP;
  2662. calcit = rtnl_get_calcit(family, type);
  2663. if (calcit)
  2664. min_dump_alloc = calcit(skb, nlh);
  2665. __rtnl_unlock();
  2666. rtnl = net->rtnl;
  2667. {
  2668. struct netlink_dump_control c = {
  2669. .dump = dumpit,
  2670. .min_dump_alloc = min_dump_alloc,
  2671. };
  2672. err = netlink_dump_start(rtnl, skb, nlh, &c);
  2673. }
  2674. rtnl_lock();
  2675. return err;
  2676. }
  2677. doit = rtnl_get_doit(family, type);
  2678. if (doit == NULL)
  2679. return -EOPNOTSUPP;
  2680. return doit(skb, nlh);
  2681. }
  2682. static void rtnetlink_rcv(struct sk_buff *skb)
  2683. {
  2684. rtnl_lock();
  2685. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  2686. rtnl_unlock();
  2687. }
  2688. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  2689. {
  2690. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  2691. switch (event) {
  2692. case NETDEV_UP:
  2693. case NETDEV_DOWN:
  2694. case NETDEV_PRE_UP:
  2695. case NETDEV_POST_INIT:
  2696. case NETDEV_REGISTER:
  2697. case NETDEV_CHANGE:
  2698. case NETDEV_PRE_TYPE_CHANGE:
  2699. case NETDEV_GOING_DOWN:
  2700. case NETDEV_UNREGISTER:
  2701. case NETDEV_UNREGISTER_FINAL:
  2702. case NETDEV_RELEASE:
  2703. case NETDEV_JOIN:
  2704. break;
  2705. default:
  2706. rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
  2707. break;
  2708. }
  2709. return NOTIFY_DONE;
  2710. }
  2711. static struct notifier_block rtnetlink_dev_notifier = {
  2712. .notifier_call = rtnetlink_event,
  2713. };
  2714. static int __net_init rtnetlink_net_init(struct net *net)
  2715. {
  2716. struct sock *sk;
  2717. struct netlink_kernel_cfg cfg = {
  2718. .groups = RTNLGRP_MAX,
  2719. .input = rtnetlink_rcv,
  2720. .cb_mutex = &rtnl_mutex,
  2721. .flags = NL_CFG_F_NONROOT_RECV,
  2722. };
  2723. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  2724. if (!sk)
  2725. return -ENOMEM;
  2726. net->rtnl = sk;
  2727. return 0;
  2728. }
  2729. static void __net_exit rtnetlink_net_exit(struct net *net)
  2730. {
  2731. netlink_kernel_release(net->rtnl);
  2732. net->rtnl = NULL;
  2733. }
  2734. static struct pernet_operations rtnetlink_net_ops = {
  2735. .init = rtnetlink_net_init,
  2736. .exit = rtnetlink_net_exit,
  2737. };
  2738. void __init rtnetlink_init(void)
  2739. {
  2740. if (register_pernet_subsys(&rtnetlink_net_ops))
  2741. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2742. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2743. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2744. rtnl_dump_ifinfo, rtnl_calcit);
  2745. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2746. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2747. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2748. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2749. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2750. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2751. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2752. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2753. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  2754. rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
  2755. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  2756. }