file.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static int f2fs_filemap_fault(struct vm_fault *vmf)
  35. {
  36. struct inode *inode = file_inode(vmf->vma->vm_file);
  37. int err;
  38. down_read(&F2FS_I(inode)->i_mmap_sem);
  39. err = filemap_fault(vmf);
  40. up_read(&F2FS_I(inode)->i_mmap_sem);
  41. return err;
  42. }
  43. static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  44. {
  45. struct page *page = vmf->page;
  46. struct inode *inode = file_inode(vmf->vma->vm_file);
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct dnode_of_data dn;
  49. int err;
  50. if (unlikely(f2fs_cp_error(sbi))) {
  51. err = -EIO;
  52. goto err;
  53. }
  54. sb_start_pagefault(inode->i_sb);
  55. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  56. /* block allocation */
  57. f2fs_lock_op(sbi);
  58. set_new_dnode(&dn, inode, NULL, NULL, 0);
  59. err = f2fs_reserve_block(&dn, page->index);
  60. if (err) {
  61. f2fs_unlock_op(sbi);
  62. goto out;
  63. }
  64. f2fs_put_dnode(&dn);
  65. f2fs_unlock_op(sbi);
  66. f2fs_balance_fs(sbi, dn.node_changed);
  67. file_update_time(vmf->vma->vm_file);
  68. down_read(&F2FS_I(inode)->i_mmap_sem);
  69. lock_page(page);
  70. if (unlikely(page->mapping != inode->i_mapping ||
  71. page_offset(page) > i_size_read(inode) ||
  72. !PageUptodate(page))) {
  73. unlock_page(page);
  74. err = -EFAULT;
  75. goto out_sem;
  76. }
  77. /*
  78. * check to see if the page is mapped already (no holes)
  79. */
  80. if (PageMappedToDisk(page))
  81. goto mapped;
  82. /* page is wholly or partially inside EOF */
  83. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  84. i_size_read(inode)) {
  85. unsigned offset;
  86. offset = i_size_read(inode) & ~PAGE_MASK;
  87. zero_user_segment(page, offset, PAGE_SIZE);
  88. }
  89. set_page_dirty(page);
  90. if (!PageUptodate(page))
  91. SetPageUptodate(page);
  92. f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
  93. trace_f2fs_vm_page_mkwrite(page, DATA);
  94. mapped:
  95. /* fill the page */
  96. f2fs_wait_on_page_writeback(page, DATA, false);
  97. /* wait for GCed encrypted page writeback */
  98. if (f2fs_encrypted_file(inode))
  99. f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
  100. out_sem:
  101. up_read(&F2FS_I(inode)->i_mmap_sem);
  102. out:
  103. sb_end_pagefault(inode->i_sb);
  104. f2fs_update_time(sbi, REQ_TIME);
  105. err:
  106. return block_page_mkwrite_return(err);
  107. }
  108. static const struct vm_operations_struct f2fs_file_vm_ops = {
  109. .fault = f2fs_filemap_fault,
  110. .map_pages = filemap_map_pages,
  111. .page_mkwrite = f2fs_vm_page_mkwrite,
  112. };
  113. static int get_parent_ino(struct inode *inode, nid_t *pino)
  114. {
  115. struct dentry *dentry;
  116. inode = igrab(inode);
  117. dentry = d_find_any_alias(inode);
  118. iput(inode);
  119. if (!dentry)
  120. return 0;
  121. *pino = parent_ino(dentry);
  122. dput(dentry);
  123. return 1;
  124. }
  125. static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
  126. {
  127. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  128. enum cp_reason_type cp_reason = CP_NO_NEEDED;
  129. if (!S_ISREG(inode->i_mode))
  130. cp_reason = CP_NON_REGULAR;
  131. else if (inode->i_nlink != 1)
  132. cp_reason = CP_HARDLINK;
  133. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  134. cp_reason = CP_SB_NEED_CP;
  135. else if (file_wrong_pino(inode))
  136. cp_reason = CP_WRONG_PINO;
  137. else if (!space_for_roll_forward(sbi))
  138. cp_reason = CP_NO_SPC_ROLL;
  139. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  140. cp_reason = CP_NODE_NEED_CP;
  141. else if (test_opt(sbi, FASTBOOT))
  142. cp_reason = CP_FASTBOOT_MODE;
  143. else if (sbi->active_logs == 2)
  144. cp_reason = CP_SPEC_LOG_NUM;
  145. else if (need_dentry_mark(sbi, inode->i_ino) &&
  146. exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO))
  147. cp_reason = CP_RECOVER_DIR;
  148. return cp_reason;
  149. }
  150. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  151. {
  152. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  153. bool ret = false;
  154. /* But we need to avoid that there are some inode updates */
  155. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  156. ret = true;
  157. f2fs_put_page(i, 0);
  158. return ret;
  159. }
  160. static void try_to_fix_pino(struct inode *inode)
  161. {
  162. struct f2fs_inode_info *fi = F2FS_I(inode);
  163. nid_t pino;
  164. down_write(&fi->i_sem);
  165. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  166. get_parent_ino(inode, &pino)) {
  167. f2fs_i_pino_write(inode, pino);
  168. file_got_pino(inode);
  169. }
  170. up_write(&fi->i_sem);
  171. }
  172. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  173. int datasync, bool atomic)
  174. {
  175. struct inode *inode = file->f_mapping->host;
  176. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  177. nid_t ino = inode->i_ino;
  178. int ret = 0;
  179. enum cp_reason_type cp_reason = 0;
  180. struct writeback_control wbc = {
  181. .sync_mode = WB_SYNC_ALL,
  182. .nr_to_write = LONG_MAX,
  183. .for_reclaim = 0,
  184. };
  185. if (unlikely(f2fs_readonly(inode->i_sb)))
  186. return 0;
  187. trace_f2fs_sync_file_enter(inode);
  188. /* if fdatasync is triggered, let's do in-place-update */
  189. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  190. set_inode_flag(inode, FI_NEED_IPU);
  191. ret = file_write_and_wait_range(file, start, end);
  192. clear_inode_flag(inode, FI_NEED_IPU);
  193. if (ret) {
  194. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  195. return ret;
  196. }
  197. /* if the inode is dirty, let's recover all the time */
  198. if (!f2fs_skip_inode_update(inode, datasync)) {
  199. f2fs_write_inode(inode, NULL);
  200. goto go_write;
  201. }
  202. /*
  203. * if there is no written data, don't waste time to write recovery info.
  204. */
  205. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  206. !exist_written_data(sbi, ino, APPEND_INO)) {
  207. /* it may call write_inode just prior to fsync */
  208. if (need_inode_page_update(sbi, ino))
  209. goto go_write;
  210. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  211. exist_written_data(sbi, ino, UPDATE_INO))
  212. goto flush_out;
  213. goto out;
  214. }
  215. go_write:
  216. /*
  217. * Both of fdatasync() and fsync() are able to be recovered from
  218. * sudden-power-off.
  219. */
  220. down_read(&F2FS_I(inode)->i_sem);
  221. cp_reason = need_do_checkpoint(inode);
  222. up_read(&F2FS_I(inode)->i_sem);
  223. if (cp_reason) {
  224. /* all the dirty node pages should be flushed for POR */
  225. ret = f2fs_sync_fs(inode->i_sb, 1);
  226. /*
  227. * We've secured consistency through sync_fs. Following pino
  228. * will be used only for fsynced inodes after checkpoint.
  229. */
  230. try_to_fix_pino(inode);
  231. clear_inode_flag(inode, FI_APPEND_WRITE);
  232. clear_inode_flag(inode, FI_UPDATE_WRITE);
  233. goto out;
  234. }
  235. sync_nodes:
  236. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  237. if (ret)
  238. goto out;
  239. /* if cp_error was enabled, we should avoid infinite loop */
  240. if (unlikely(f2fs_cp_error(sbi))) {
  241. ret = -EIO;
  242. goto out;
  243. }
  244. if (need_inode_block_update(sbi, ino)) {
  245. f2fs_mark_inode_dirty_sync(inode, true);
  246. f2fs_write_inode(inode, NULL);
  247. goto sync_nodes;
  248. }
  249. /*
  250. * If it's atomic_write, it's just fine to keep write ordering. So
  251. * here we don't need to wait for node write completion, since we use
  252. * node chain which serializes node blocks. If one of node writes are
  253. * reordered, we can see simply broken chain, resulting in stopping
  254. * roll-forward recovery. It means we'll recover all or none node blocks
  255. * given fsync mark.
  256. */
  257. if (!atomic) {
  258. ret = wait_on_node_pages_writeback(sbi, ino);
  259. if (ret)
  260. goto out;
  261. }
  262. /* once recovery info is written, don't need to tack this */
  263. remove_ino_entry(sbi, ino, APPEND_INO);
  264. clear_inode_flag(inode, FI_APPEND_WRITE);
  265. flush_out:
  266. if (!atomic)
  267. ret = f2fs_issue_flush(sbi, inode->i_ino);
  268. if (!ret) {
  269. remove_ino_entry(sbi, ino, UPDATE_INO);
  270. clear_inode_flag(inode, FI_UPDATE_WRITE);
  271. remove_ino_entry(sbi, ino, FLUSH_INO);
  272. }
  273. f2fs_update_time(sbi, REQ_TIME);
  274. out:
  275. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  276. f2fs_trace_ios(NULL, 1);
  277. return ret;
  278. }
  279. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  280. {
  281. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
  282. return -EIO;
  283. return f2fs_do_sync_file(file, start, end, datasync, false);
  284. }
  285. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  286. pgoff_t pgofs, int whence)
  287. {
  288. struct page *page;
  289. int nr_pages;
  290. if (whence != SEEK_DATA)
  291. return 0;
  292. /* find first dirty page index */
  293. nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
  294. 1, &page);
  295. if (!nr_pages)
  296. return ULONG_MAX;
  297. pgofs = page->index;
  298. put_page(page);
  299. return pgofs;
  300. }
  301. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  302. int whence)
  303. {
  304. switch (whence) {
  305. case SEEK_DATA:
  306. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  307. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  308. return true;
  309. break;
  310. case SEEK_HOLE:
  311. if (blkaddr == NULL_ADDR)
  312. return true;
  313. break;
  314. }
  315. return false;
  316. }
  317. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  318. {
  319. struct inode *inode = file->f_mapping->host;
  320. loff_t maxbytes = inode->i_sb->s_maxbytes;
  321. struct dnode_of_data dn;
  322. pgoff_t pgofs, end_offset, dirty;
  323. loff_t data_ofs = offset;
  324. loff_t isize;
  325. int err = 0;
  326. inode_lock(inode);
  327. isize = i_size_read(inode);
  328. if (offset >= isize)
  329. goto fail;
  330. /* handle inline data case */
  331. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  332. if (whence == SEEK_HOLE)
  333. data_ofs = isize;
  334. goto found;
  335. }
  336. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  337. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  338. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  339. set_new_dnode(&dn, inode, NULL, NULL, 0);
  340. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  341. if (err && err != -ENOENT) {
  342. goto fail;
  343. } else if (err == -ENOENT) {
  344. /* direct node does not exists */
  345. if (whence == SEEK_DATA) {
  346. pgofs = get_next_page_offset(&dn, pgofs);
  347. continue;
  348. } else {
  349. goto found;
  350. }
  351. }
  352. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  353. /* find data/hole in dnode block */
  354. for (; dn.ofs_in_node < end_offset;
  355. dn.ofs_in_node++, pgofs++,
  356. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  357. block_t blkaddr;
  358. blkaddr = datablock_addr(dn.inode,
  359. dn.node_page, dn.ofs_in_node);
  360. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  361. f2fs_put_dnode(&dn);
  362. goto found;
  363. }
  364. }
  365. f2fs_put_dnode(&dn);
  366. }
  367. if (whence == SEEK_DATA)
  368. goto fail;
  369. found:
  370. if (whence == SEEK_HOLE && data_ofs > isize)
  371. data_ofs = isize;
  372. inode_unlock(inode);
  373. return vfs_setpos(file, data_ofs, maxbytes);
  374. fail:
  375. inode_unlock(inode);
  376. return -ENXIO;
  377. }
  378. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  379. {
  380. struct inode *inode = file->f_mapping->host;
  381. loff_t maxbytes = inode->i_sb->s_maxbytes;
  382. switch (whence) {
  383. case SEEK_SET:
  384. case SEEK_CUR:
  385. case SEEK_END:
  386. return generic_file_llseek_size(file, offset, whence,
  387. maxbytes, i_size_read(inode));
  388. case SEEK_DATA:
  389. case SEEK_HOLE:
  390. if (offset < 0)
  391. return -ENXIO;
  392. return f2fs_seek_block(file, offset, whence);
  393. }
  394. return -EINVAL;
  395. }
  396. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  397. {
  398. struct inode *inode = file_inode(file);
  399. int err;
  400. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  401. return -EIO;
  402. /* we don't need to use inline_data strictly */
  403. err = f2fs_convert_inline_inode(inode);
  404. if (err)
  405. return err;
  406. file_accessed(file);
  407. vma->vm_ops = &f2fs_file_vm_ops;
  408. return 0;
  409. }
  410. static int f2fs_file_open(struct inode *inode, struct file *filp)
  411. {
  412. int err = fscrypt_file_open(inode, filp);
  413. if (err)
  414. return err;
  415. return dquot_file_open(inode, filp);
  416. }
  417. void truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  418. {
  419. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  420. struct f2fs_node *raw_node;
  421. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  422. __le32 *addr;
  423. int base = 0;
  424. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  425. base = get_extra_isize(dn->inode);
  426. raw_node = F2FS_NODE(dn->node_page);
  427. addr = blkaddr_in_node(raw_node) + base + ofs;
  428. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  429. block_t blkaddr = le32_to_cpu(*addr);
  430. if (blkaddr == NULL_ADDR)
  431. continue;
  432. dn->data_blkaddr = NULL_ADDR;
  433. set_data_blkaddr(dn);
  434. invalidate_blocks(sbi, blkaddr);
  435. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  436. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  437. nr_free++;
  438. }
  439. if (nr_free) {
  440. pgoff_t fofs;
  441. /*
  442. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  443. * we will invalidate all blkaddr in the whole range.
  444. */
  445. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  446. dn->inode) + ofs;
  447. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  448. dec_valid_block_count(sbi, dn->inode, nr_free);
  449. }
  450. dn->ofs_in_node = ofs;
  451. f2fs_update_time(sbi, REQ_TIME);
  452. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  453. dn->ofs_in_node, nr_free);
  454. }
  455. void truncate_data_blocks(struct dnode_of_data *dn)
  456. {
  457. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  458. }
  459. static int truncate_partial_data_page(struct inode *inode, u64 from,
  460. bool cache_only)
  461. {
  462. unsigned offset = from & (PAGE_SIZE - 1);
  463. pgoff_t index = from >> PAGE_SHIFT;
  464. struct address_space *mapping = inode->i_mapping;
  465. struct page *page;
  466. if (!offset && !cache_only)
  467. return 0;
  468. if (cache_only) {
  469. page = find_lock_page(mapping, index);
  470. if (page && PageUptodate(page))
  471. goto truncate_out;
  472. f2fs_put_page(page, 1);
  473. return 0;
  474. }
  475. page = get_lock_data_page(inode, index, true);
  476. if (IS_ERR(page))
  477. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  478. truncate_out:
  479. f2fs_wait_on_page_writeback(page, DATA, true);
  480. zero_user(page, offset, PAGE_SIZE - offset);
  481. /* An encrypted inode should have a key and truncate the last page. */
  482. f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
  483. if (!cache_only)
  484. set_page_dirty(page);
  485. f2fs_put_page(page, 1);
  486. return 0;
  487. }
  488. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  489. {
  490. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  491. unsigned int blocksize = inode->i_sb->s_blocksize;
  492. struct dnode_of_data dn;
  493. pgoff_t free_from;
  494. int count = 0, err = 0;
  495. struct page *ipage;
  496. bool truncate_page = false;
  497. trace_f2fs_truncate_blocks_enter(inode, from);
  498. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  499. if (free_from >= sbi->max_file_blocks)
  500. goto free_partial;
  501. if (lock)
  502. f2fs_lock_op(sbi);
  503. ipage = get_node_page(sbi, inode->i_ino);
  504. if (IS_ERR(ipage)) {
  505. err = PTR_ERR(ipage);
  506. goto out;
  507. }
  508. if (f2fs_has_inline_data(inode)) {
  509. truncate_inline_inode(inode, ipage, from);
  510. f2fs_put_page(ipage, 1);
  511. truncate_page = true;
  512. goto out;
  513. }
  514. set_new_dnode(&dn, inode, ipage, NULL, 0);
  515. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  516. if (err) {
  517. if (err == -ENOENT)
  518. goto free_next;
  519. goto out;
  520. }
  521. count = ADDRS_PER_PAGE(dn.node_page, inode);
  522. count -= dn.ofs_in_node;
  523. f2fs_bug_on(sbi, count < 0);
  524. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  525. truncate_data_blocks_range(&dn, count);
  526. free_from += count;
  527. }
  528. f2fs_put_dnode(&dn);
  529. free_next:
  530. err = truncate_inode_blocks(inode, free_from);
  531. out:
  532. if (lock)
  533. f2fs_unlock_op(sbi);
  534. free_partial:
  535. /* lastly zero out the first data page */
  536. if (!err)
  537. err = truncate_partial_data_page(inode, from, truncate_page);
  538. trace_f2fs_truncate_blocks_exit(inode, err);
  539. return err;
  540. }
  541. int f2fs_truncate(struct inode *inode)
  542. {
  543. int err;
  544. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  545. return -EIO;
  546. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  547. S_ISLNK(inode->i_mode)))
  548. return 0;
  549. trace_f2fs_truncate(inode);
  550. #ifdef CONFIG_F2FS_FAULT_INJECTION
  551. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  552. f2fs_show_injection_info(FAULT_TRUNCATE);
  553. return -EIO;
  554. }
  555. #endif
  556. /* we should check inline_data size */
  557. if (!f2fs_may_inline_data(inode)) {
  558. err = f2fs_convert_inline_inode(inode);
  559. if (err)
  560. return err;
  561. }
  562. err = truncate_blocks(inode, i_size_read(inode), true);
  563. if (err)
  564. return err;
  565. inode->i_mtime = inode->i_ctime = current_time(inode);
  566. f2fs_mark_inode_dirty_sync(inode, false);
  567. return 0;
  568. }
  569. int f2fs_getattr(const struct path *path, struct kstat *stat,
  570. u32 request_mask, unsigned int query_flags)
  571. {
  572. struct inode *inode = d_inode(path->dentry);
  573. struct f2fs_inode_info *fi = F2FS_I(inode);
  574. unsigned int flags;
  575. flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
  576. if (flags & FS_APPEND_FL)
  577. stat->attributes |= STATX_ATTR_APPEND;
  578. if (flags & FS_COMPR_FL)
  579. stat->attributes |= STATX_ATTR_COMPRESSED;
  580. if (f2fs_encrypted_inode(inode))
  581. stat->attributes |= STATX_ATTR_ENCRYPTED;
  582. if (flags & FS_IMMUTABLE_FL)
  583. stat->attributes |= STATX_ATTR_IMMUTABLE;
  584. if (flags & FS_NODUMP_FL)
  585. stat->attributes |= STATX_ATTR_NODUMP;
  586. stat->attributes_mask |= (STATX_ATTR_APPEND |
  587. STATX_ATTR_COMPRESSED |
  588. STATX_ATTR_ENCRYPTED |
  589. STATX_ATTR_IMMUTABLE |
  590. STATX_ATTR_NODUMP);
  591. generic_fillattr(inode, stat);
  592. /* we need to show initial sectors used for inline_data/dentries */
  593. if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
  594. f2fs_has_inline_dentry(inode))
  595. stat->blocks += (stat->size + 511) >> 9;
  596. return 0;
  597. }
  598. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  599. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  600. {
  601. unsigned int ia_valid = attr->ia_valid;
  602. if (ia_valid & ATTR_UID)
  603. inode->i_uid = attr->ia_uid;
  604. if (ia_valid & ATTR_GID)
  605. inode->i_gid = attr->ia_gid;
  606. if (ia_valid & ATTR_ATIME)
  607. inode->i_atime = timespec_trunc(attr->ia_atime,
  608. inode->i_sb->s_time_gran);
  609. if (ia_valid & ATTR_MTIME)
  610. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  611. inode->i_sb->s_time_gran);
  612. if (ia_valid & ATTR_CTIME)
  613. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  614. inode->i_sb->s_time_gran);
  615. if (ia_valid & ATTR_MODE) {
  616. umode_t mode = attr->ia_mode;
  617. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  618. mode &= ~S_ISGID;
  619. set_acl_inode(inode, mode);
  620. }
  621. }
  622. #else
  623. #define __setattr_copy setattr_copy
  624. #endif
  625. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  626. {
  627. struct inode *inode = d_inode(dentry);
  628. int err;
  629. bool size_changed = false;
  630. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  631. return -EIO;
  632. err = setattr_prepare(dentry, attr);
  633. if (err)
  634. return err;
  635. err = fscrypt_prepare_setattr(dentry, attr);
  636. if (err)
  637. return err;
  638. if (is_quota_modification(inode, attr)) {
  639. err = dquot_initialize(inode);
  640. if (err)
  641. return err;
  642. }
  643. if ((attr->ia_valid & ATTR_UID &&
  644. !uid_eq(attr->ia_uid, inode->i_uid)) ||
  645. (attr->ia_valid & ATTR_GID &&
  646. !gid_eq(attr->ia_gid, inode->i_gid))) {
  647. err = dquot_transfer(inode, attr);
  648. if (err)
  649. return err;
  650. }
  651. if (attr->ia_valid & ATTR_SIZE) {
  652. if (attr->ia_size <= i_size_read(inode)) {
  653. down_write(&F2FS_I(inode)->i_mmap_sem);
  654. truncate_setsize(inode, attr->ia_size);
  655. err = f2fs_truncate(inode);
  656. up_write(&F2FS_I(inode)->i_mmap_sem);
  657. if (err)
  658. return err;
  659. } else {
  660. /*
  661. * do not trim all blocks after i_size if target size is
  662. * larger than i_size.
  663. */
  664. down_write(&F2FS_I(inode)->i_mmap_sem);
  665. truncate_setsize(inode, attr->ia_size);
  666. up_write(&F2FS_I(inode)->i_mmap_sem);
  667. /* should convert inline inode here */
  668. if (!f2fs_may_inline_data(inode)) {
  669. err = f2fs_convert_inline_inode(inode);
  670. if (err)
  671. return err;
  672. }
  673. inode->i_mtime = inode->i_ctime = current_time(inode);
  674. }
  675. down_write(&F2FS_I(inode)->i_sem);
  676. F2FS_I(inode)->last_disk_size = i_size_read(inode);
  677. up_write(&F2FS_I(inode)->i_sem);
  678. size_changed = true;
  679. }
  680. __setattr_copy(inode, attr);
  681. if (attr->ia_valid & ATTR_MODE) {
  682. err = posix_acl_chmod(inode, get_inode_mode(inode));
  683. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  684. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  685. clear_inode_flag(inode, FI_ACL_MODE);
  686. }
  687. }
  688. /* file size may changed here */
  689. f2fs_mark_inode_dirty_sync(inode, size_changed);
  690. /* inode change will produce dirty node pages flushed by checkpoint */
  691. f2fs_balance_fs(F2FS_I_SB(inode), true);
  692. return err;
  693. }
  694. const struct inode_operations f2fs_file_inode_operations = {
  695. .getattr = f2fs_getattr,
  696. .setattr = f2fs_setattr,
  697. .get_acl = f2fs_get_acl,
  698. .set_acl = f2fs_set_acl,
  699. #ifdef CONFIG_F2FS_FS_XATTR
  700. .listxattr = f2fs_listxattr,
  701. #endif
  702. .fiemap = f2fs_fiemap,
  703. };
  704. static int fill_zero(struct inode *inode, pgoff_t index,
  705. loff_t start, loff_t len)
  706. {
  707. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  708. struct page *page;
  709. if (!len)
  710. return 0;
  711. f2fs_balance_fs(sbi, true);
  712. f2fs_lock_op(sbi);
  713. page = get_new_data_page(inode, NULL, index, false);
  714. f2fs_unlock_op(sbi);
  715. if (IS_ERR(page))
  716. return PTR_ERR(page);
  717. f2fs_wait_on_page_writeback(page, DATA, true);
  718. zero_user(page, start, len);
  719. set_page_dirty(page);
  720. f2fs_put_page(page, 1);
  721. return 0;
  722. }
  723. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  724. {
  725. int err;
  726. while (pg_start < pg_end) {
  727. struct dnode_of_data dn;
  728. pgoff_t end_offset, count;
  729. set_new_dnode(&dn, inode, NULL, NULL, 0);
  730. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  731. if (err) {
  732. if (err == -ENOENT) {
  733. pg_start = get_next_page_offset(&dn, pg_start);
  734. continue;
  735. }
  736. return err;
  737. }
  738. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  739. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  740. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  741. truncate_data_blocks_range(&dn, count);
  742. f2fs_put_dnode(&dn);
  743. pg_start += count;
  744. }
  745. return 0;
  746. }
  747. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  748. {
  749. pgoff_t pg_start, pg_end;
  750. loff_t off_start, off_end;
  751. int ret;
  752. ret = f2fs_convert_inline_inode(inode);
  753. if (ret)
  754. return ret;
  755. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  756. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  757. off_start = offset & (PAGE_SIZE - 1);
  758. off_end = (offset + len) & (PAGE_SIZE - 1);
  759. if (pg_start == pg_end) {
  760. ret = fill_zero(inode, pg_start, off_start,
  761. off_end - off_start);
  762. if (ret)
  763. return ret;
  764. } else {
  765. if (off_start) {
  766. ret = fill_zero(inode, pg_start++, off_start,
  767. PAGE_SIZE - off_start);
  768. if (ret)
  769. return ret;
  770. }
  771. if (off_end) {
  772. ret = fill_zero(inode, pg_end, 0, off_end);
  773. if (ret)
  774. return ret;
  775. }
  776. if (pg_start < pg_end) {
  777. struct address_space *mapping = inode->i_mapping;
  778. loff_t blk_start, blk_end;
  779. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  780. f2fs_balance_fs(sbi, true);
  781. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  782. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  783. down_write(&F2FS_I(inode)->i_mmap_sem);
  784. truncate_inode_pages_range(mapping, blk_start,
  785. blk_end - 1);
  786. f2fs_lock_op(sbi);
  787. ret = truncate_hole(inode, pg_start, pg_end);
  788. f2fs_unlock_op(sbi);
  789. up_write(&F2FS_I(inode)->i_mmap_sem);
  790. }
  791. }
  792. return ret;
  793. }
  794. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  795. int *do_replace, pgoff_t off, pgoff_t len)
  796. {
  797. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  798. struct dnode_of_data dn;
  799. int ret, done, i;
  800. next_dnode:
  801. set_new_dnode(&dn, inode, NULL, NULL, 0);
  802. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  803. if (ret && ret != -ENOENT) {
  804. return ret;
  805. } else if (ret == -ENOENT) {
  806. if (dn.max_level == 0)
  807. return -ENOENT;
  808. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  809. blkaddr += done;
  810. do_replace += done;
  811. goto next;
  812. }
  813. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  814. dn.ofs_in_node, len);
  815. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  816. *blkaddr = datablock_addr(dn.inode,
  817. dn.node_page, dn.ofs_in_node);
  818. if (!is_checkpointed_data(sbi, *blkaddr)) {
  819. if (test_opt(sbi, LFS)) {
  820. f2fs_put_dnode(&dn);
  821. return -ENOTSUPP;
  822. }
  823. /* do not invalidate this block address */
  824. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  825. *do_replace = 1;
  826. }
  827. }
  828. f2fs_put_dnode(&dn);
  829. next:
  830. len -= done;
  831. off += done;
  832. if (len)
  833. goto next_dnode;
  834. return 0;
  835. }
  836. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  837. int *do_replace, pgoff_t off, int len)
  838. {
  839. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  840. struct dnode_of_data dn;
  841. int ret, i;
  842. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  843. if (*do_replace == 0)
  844. continue;
  845. set_new_dnode(&dn, inode, NULL, NULL, 0);
  846. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  847. if (ret) {
  848. dec_valid_block_count(sbi, inode, 1);
  849. invalidate_blocks(sbi, *blkaddr);
  850. } else {
  851. f2fs_update_data_blkaddr(&dn, *blkaddr);
  852. }
  853. f2fs_put_dnode(&dn);
  854. }
  855. return 0;
  856. }
  857. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  858. block_t *blkaddr, int *do_replace,
  859. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  860. {
  861. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  862. pgoff_t i = 0;
  863. int ret;
  864. while (i < len) {
  865. if (blkaddr[i] == NULL_ADDR && !full) {
  866. i++;
  867. continue;
  868. }
  869. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  870. struct dnode_of_data dn;
  871. struct node_info ni;
  872. size_t new_size;
  873. pgoff_t ilen;
  874. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  875. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  876. if (ret)
  877. return ret;
  878. get_node_info(sbi, dn.nid, &ni);
  879. ilen = min((pgoff_t)
  880. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  881. dn.ofs_in_node, len - i);
  882. do {
  883. dn.data_blkaddr = datablock_addr(dn.inode,
  884. dn.node_page, dn.ofs_in_node);
  885. truncate_data_blocks_range(&dn, 1);
  886. if (do_replace[i]) {
  887. f2fs_i_blocks_write(src_inode,
  888. 1, false, false);
  889. f2fs_i_blocks_write(dst_inode,
  890. 1, true, false);
  891. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  892. blkaddr[i], ni.version, true, false);
  893. do_replace[i] = 0;
  894. }
  895. dn.ofs_in_node++;
  896. i++;
  897. new_size = (dst + i) << PAGE_SHIFT;
  898. if (dst_inode->i_size < new_size)
  899. f2fs_i_size_write(dst_inode, new_size);
  900. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  901. f2fs_put_dnode(&dn);
  902. } else {
  903. struct page *psrc, *pdst;
  904. psrc = get_lock_data_page(src_inode, src + i, true);
  905. if (IS_ERR(psrc))
  906. return PTR_ERR(psrc);
  907. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  908. true);
  909. if (IS_ERR(pdst)) {
  910. f2fs_put_page(psrc, 1);
  911. return PTR_ERR(pdst);
  912. }
  913. f2fs_copy_page(psrc, pdst);
  914. set_page_dirty(pdst);
  915. f2fs_put_page(pdst, 1);
  916. f2fs_put_page(psrc, 1);
  917. ret = truncate_hole(src_inode, src + i, src + i + 1);
  918. if (ret)
  919. return ret;
  920. i++;
  921. }
  922. }
  923. return 0;
  924. }
  925. static int __exchange_data_block(struct inode *src_inode,
  926. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  927. pgoff_t len, bool full)
  928. {
  929. block_t *src_blkaddr;
  930. int *do_replace;
  931. pgoff_t olen;
  932. int ret;
  933. while (len) {
  934. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  935. src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  936. sizeof(block_t) * olen, GFP_KERNEL);
  937. if (!src_blkaddr)
  938. return -ENOMEM;
  939. do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  940. sizeof(int) * olen, GFP_KERNEL);
  941. if (!do_replace) {
  942. kvfree(src_blkaddr);
  943. return -ENOMEM;
  944. }
  945. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  946. do_replace, src, olen);
  947. if (ret)
  948. goto roll_back;
  949. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  950. do_replace, src, dst, olen, full);
  951. if (ret)
  952. goto roll_back;
  953. src += olen;
  954. dst += olen;
  955. len -= olen;
  956. kvfree(src_blkaddr);
  957. kvfree(do_replace);
  958. }
  959. return 0;
  960. roll_back:
  961. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  962. kvfree(src_blkaddr);
  963. kvfree(do_replace);
  964. return ret;
  965. }
  966. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  967. {
  968. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  969. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  970. int ret;
  971. f2fs_balance_fs(sbi, true);
  972. f2fs_lock_op(sbi);
  973. f2fs_drop_extent_tree(inode);
  974. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  975. f2fs_unlock_op(sbi);
  976. return ret;
  977. }
  978. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  979. {
  980. pgoff_t pg_start, pg_end;
  981. loff_t new_size;
  982. int ret;
  983. if (offset + len >= i_size_read(inode))
  984. return -EINVAL;
  985. /* collapse range should be aligned to block size of f2fs. */
  986. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  987. return -EINVAL;
  988. ret = f2fs_convert_inline_inode(inode);
  989. if (ret)
  990. return ret;
  991. pg_start = offset >> PAGE_SHIFT;
  992. pg_end = (offset + len) >> PAGE_SHIFT;
  993. /* avoid gc operation during block exchange */
  994. down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  995. down_write(&F2FS_I(inode)->i_mmap_sem);
  996. /* write out all dirty pages from offset */
  997. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  998. if (ret)
  999. goto out_unlock;
  1000. truncate_pagecache(inode, offset);
  1001. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  1002. if (ret)
  1003. goto out_unlock;
  1004. /* write out all moved pages, if possible */
  1005. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1006. truncate_pagecache(inode, offset);
  1007. new_size = i_size_read(inode) - len;
  1008. truncate_pagecache(inode, new_size);
  1009. ret = truncate_blocks(inode, new_size, true);
  1010. if (!ret)
  1011. f2fs_i_size_write(inode, new_size);
  1012. out_unlock:
  1013. up_write(&F2FS_I(inode)->i_mmap_sem);
  1014. up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1015. return ret;
  1016. }
  1017. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  1018. pgoff_t end)
  1019. {
  1020. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1021. pgoff_t index = start;
  1022. unsigned int ofs_in_node = dn->ofs_in_node;
  1023. blkcnt_t count = 0;
  1024. int ret;
  1025. for (; index < end; index++, dn->ofs_in_node++) {
  1026. if (datablock_addr(dn->inode, dn->node_page,
  1027. dn->ofs_in_node) == NULL_ADDR)
  1028. count++;
  1029. }
  1030. dn->ofs_in_node = ofs_in_node;
  1031. ret = reserve_new_blocks(dn, count);
  1032. if (ret)
  1033. return ret;
  1034. dn->ofs_in_node = ofs_in_node;
  1035. for (index = start; index < end; index++, dn->ofs_in_node++) {
  1036. dn->data_blkaddr = datablock_addr(dn->inode,
  1037. dn->node_page, dn->ofs_in_node);
  1038. /*
  1039. * reserve_new_blocks will not guarantee entire block
  1040. * allocation.
  1041. */
  1042. if (dn->data_blkaddr == NULL_ADDR) {
  1043. ret = -ENOSPC;
  1044. break;
  1045. }
  1046. if (dn->data_blkaddr != NEW_ADDR) {
  1047. invalidate_blocks(sbi, dn->data_blkaddr);
  1048. dn->data_blkaddr = NEW_ADDR;
  1049. set_data_blkaddr(dn);
  1050. }
  1051. }
  1052. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  1053. return ret;
  1054. }
  1055. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  1056. int mode)
  1057. {
  1058. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1059. struct address_space *mapping = inode->i_mapping;
  1060. pgoff_t index, pg_start, pg_end;
  1061. loff_t new_size = i_size_read(inode);
  1062. loff_t off_start, off_end;
  1063. int ret = 0;
  1064. ret = inode_newsize_ok(inode, (len + offset));
  1065. if (ret)
  1066. return ret;
  1067. ret = f2fs_convert_inline_inode(inode);
  1068. if (ret)
  1069. return ret;
  1070. down_write(&F2FS_I(inode)->i_mmap_sem);
  1071. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  1072. if (ret)
  1073. goto out_sem;
  1074. truncate_pagecache_range(inode, offset, offset + len - 1);
  1075. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  1076. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  1077. off_start = offset & (PAGE_SIZE - 1);
  1078. off_end = (offset + len) & (PAGE_SIZE - 1);
  1079. if (pg_start == pg_end) {
  1080. ret = fill_zero(inode, pg_start, off_start,
  1081. off_end - off_start);
  1082. if (ret)
  1083. goto out_sem;
  1084. new_size = max_t(loff_t, new_size, offset + len);
  1085. } else {
  1086. if (off_start) {
  1087. ret = fill_zero(inode, pg_start++, off_start,
  1088. PAGE_SIZE - off_start);
  1089. if (ret)
  1090. goto out_sem;
  1091. new_size = max_t(loff_t, new_size,
  1092. (loff_t)pg_start << PAGE_SHIFT);
  1093. }
  1094. for (index = pg_start; index < pg_end;) {
  1095. struct dnode_of_data dn;
  1096. unsigned int end_offset;
  1097. pgoff_t end;
  1098. f2fs_lock_op(sbi);
  1099. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1100. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1101. if (ret) {
  1102. f2fs_unlock_op(sbi);
  1103. goto out;
  1104. }
  1105. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1106. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1107. ret = f2fs_do_zero_range(&dn, index, end);
  1108. f2fs_put_dnode(&dn);
  1109. f2fs_unlock_op(sbi);
  1110. f2fs_balance_fs(sbi, dn.node_changed);
  1111. if (ret)
  1112. goto out;
  1113. index = end;
  1114. new_size = max_t(loff_t, new_size,
  1115. (loff_t)index << PAGE_SHIFT);
  1116. }
  1117. if (off_end) {
  1118. ret = fill_zero(inode, pg_end, 0, off_end);
  1119. if (ret)
  1120. goto out;
  1121. new_size = max_t(loff_t, new_size, offset + len);
  1122. }
  1123. }
  1124. out:
  1125. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1126. f2fs_i_size_write(inode, new_size);
  1127. out_sem:
  1128. up_write(&F2FS_I(inode)->i_mmap_sem);
  1129. return ret;
  1130. }
  1131. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1132. {
  1133. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1134. pgoff_t nr, pg_start, pg_end, delta, idx;
  1135. loff_t new_size;
  1136. int ret = 0;
  1137. new_size = i_size_read(inode) + len;
  1138. ret = inode_newsize_ok(inode, new_size);
  1139. if (ret)
  1140. return ret;
  1141. if (offset >= i_size_read(inode))
  1142. return -EINVAL;
  1143. /* insert range should be aligned to block size of f2fs. */
  1144. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1145. return -EINVAL;
  1146. ret = f2fs_convert_inline_inode(inode);
  1147. if (ret)
  1148. return ret;
  1149. f2fs_balance_fs(sbi, true);
  1150. /* avoid gc operation during block exchange */
  1151. down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1152. down_write(&F2FS_I(inode)->i_mmap_sem);
  1153. ret = truncate_blocks(inode, i_size_read(inode), true);
  1154. if (ret)
  1155. goto out;
  1156. /* write out all dirty pages from offset */
  1157. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1158. if (ret)
  1159. goto out;
  1160. truncate_pagecache(inode, offset);
  1161. pg_start = offset >> PAGE_SHIFT;
  1162. pg_end = (offset + len) >> PAGE_SHIFT;
  1163. delta = pg_end - pg_start;
  1164. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1165. while (!ret && idx > pg_start) {
  1166. nr = idx - pg_start;
  1167. if (nr > delta)
  1168. nr = delta;
  1169. idx -= nr;
  1170. f2fs_lock_op(sbi);
  1171. f2fs_drop_extent_tree(inode);
  1172. ret = __exchange_data_block(inode, inode, idx,
  1173. idx + delta, nr, false);
  1174. f2fs_unlock_op(sbi);
  1175. }
  1176. /* write out all moved pages, if possible */
  1177. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1178. truncate_pagecache(inode, offset);
  1179. if (!ret)
  1180. f2fs_i_size_write(inode, new_size);
  1181. out:
  1182. up_write(&F2FS_I(inode)->i_mmap_sem);
  1183. up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1184. return ret;
  1185. }
  1186. static int expand_inode_data(struct inode *inode, loff_t offset,
  1187. loff_t len, int mode)
  1188. {
  1189. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1190. struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
  1191. .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
  1192. pgoff_t pg_end;
  1193. loff_t new_size = i_size_read(inode);
  1194. loff_t off_end;
  1195. int err;
  1196. err = inode_newsize_ok(inode, (len + offset));
  1197. if (err)
  1198. return err;
  1199. err = f2fs_convert_inline_inode(inode);
  1200. if (err)
  1201. return err;
  1202. f2fs_balance_fs(sbi, true);
  1203. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1204. off_end = (offset + len) & (PAGE_SIZE - 1);
  1205. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1206. map.m_len = pg_end - map.m_lblk;
  1207. if (off_end)
  1208. map.m_len++;
  1209. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1210. if (err) {
  1211. pgoff_t last_off;
  1212. if (!map.m_len)
  1213. return err;
  1214. last_off = map.m_lblk + map.m_len - 1;
  1215. /* update new size to the failed position */
  1216. new_size = (last_off == pg_end) ? offset + len:
  1217. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1218. } else {
  1219. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1220. }
  1221. if (new_size > i_size_read(inode)) {
  1222. if (mode & FALLOC_FL_KEEP_SIZE)
  1223. file_set_keep_isize(inode);
  1224. else
  1225. f2fs_i_size_write(inode, new_size);
  1226. }
  1227. return err;
  1228. }
  1229. static long f2fs_fallocate(struct file *file, int mode,
  1230. loff_t offset, loff_t len)
  1231. {
  1232. struct inode *inode = file_inode(file);
  1233. long ret = 0;
  1234. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  1235. return -EIO;
  1236. /* f2fs only support ->fallocate for regular file */
  1237. if (!S_ISREG(inode->i_mode))
  1238. return -EINVAL;
  1239. if (f2fs_encrypted_inode(inode) &&
  1240. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1241. return -EOPNOTSUPP;
  1242. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1243. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1244. FALLOC_FL_INSERT_RANGE))
  1245. return -EOPNOTSUPP;
  1246. inode_lock(inode);
  1247. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1248. if (offset >= inode->i_size)
  1249. goto out;
  1250. ret = punch_hole(inode, offset, len);
  1251. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1252. ret = f2fs_collapse_range(inode, offset, len);
  1253. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1254. ret = f2fs_zero_range(inode, offset, len, mode);
  1255. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1256. ret = f2fs_insert_range(inode, offset, len);
  1257. } else {
  1258. ret = expand_inode_data(inode, offset, len, mode);
  1259. }
  1260. if (!ret) {
  1261. inode->i_mtime = inode->i_ctime = current_time(inode);
  1262. f2fs_mark_inode_dirty_sync(inode, false);
  1263. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1264. }
  1265. out:
  1266. inode_unlock(inode);
  1267. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1268. return ret;
  1269. }
  1270. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1271. {
  1272. /*
  1273. * f2fs_relase_file is called at every close calls. So we should
  1274. * not drop any inmemory pages by close called by other process.
  1275. */
  1276. if (!(filp->f_mode & FMODE_WRITE) ||
  1277. atomic_read(&inode->i_writecount) != 1)
  1278. return 0;
  1279. /* some remained atomic pages should discarded */
  1280. if (f2fs_is_atomic_file(inode))
  1281. drop_inmem_pages(inode);
  1282. if (f2fs_is_volatile_file(inode)) {
  1283. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1284. stat_dec_volatile_write(inode);
  1285. set_inode_flag(inode, FI_DROP_CACHE);
  1286. filemap_fdatawrite(inode->i_mapping);
  1287. clear_inode_flag(inode, FI_DROP_CACHE);
  1288. }
  1289. return 0;
  1290. }
  1291. static int f2fs_file_flush(struct file *file, fl_owner_t id)
  1292. {
  1293. struct inode *inode = file_inode(file);
  1294. /*
  1295. * If the process doing a transaction is crashed, we should do
  1296. * roll-back. Otherwise, other reader/write can see corrupted database
  1297. * until all the writers close its file. Since this should be done
  1298. * before dropping file lock, it needs to do in ->flush.
  1299. */
  1300. if (f2fs_is_atomic_file(inode) &&
  1301. F2FS_I(inode)->inmem_task == current)
  1302. drop_inmem_pages(inode);
  1303. return 0;
  1304. }
  1305. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1306. {
  1307. struct inode *inode = file_inode(filp);
  1308. struct f2fs_inode_info *fi = F2FS_I(inode);
  1309. unsigned int flags = fi->i_flags &
  1310. (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
  1311. return put_user(flags, (int __user *)arg);
  1312. }
  1313. static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
  1314. {
  1315. struct f2fs_inode_info *fi = F2FS_I(inode);
  1316. unsigned int oldflags;
  1317. /* Is it quota file? Do not allow user to mess with it */
  1318. if (IS_NOQUOTA(inode))
  1319. return -EPERM;
  1320. flags = f2fs_mask_flags(inode->i_mode, flags);
  1321. oldflags = fi->i_flags;
  1322. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
  1323. if (!capable(CAP_LINUX_IMMUTABLE))
  1324. return -EPERM;
  1325. flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
  1326. flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
  1327. fi->i_flags = flags;
  1328. if (fi->i_flags & FS_PROJINHERIT_FL)
  1329. set_inode_flag(inode, FI_PROJ_INHERIT);
  1330. else
  1331. clear_inode_flag(inode, FI_PROJ_INHERIT);
  1332. inode->i_ctime = current_time(inode);
  1333. f2fs_set_inode_flags(inode);
  1334. f2fs_mark_inode_dirty_sync(inode, false);
  1335. return 0;
  1336. }
  1337. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1338. {
  1339. struct inode *inode = file_inode(filp);
  1340. unsigned int flags;
  1341. int ret;
  1342. if (!inode_owner_or_capable(inode))
  1343. return -EACCES;
  1344. if (get_user(flags, (int __user *)arg))
  1345. return -EFAULT;
  1346. ret = mnt_want_write_file(filp);
  1347. if (ret)
  1348. return ret;
  1349. inode_lock(inode);
  1350. ret = __f2fs_ioc_setflags(inode, flags);
  1351. inode_unlock(inode);
  1352. mnt_drop_write_file(filp);
  1353. return ret;
  1354. }
  1355. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1356. {
  1357. struct inode *inode = file_inode(filp);
  1358. return put_user(inode->i_generation, (int __user *)arg);
  1359. }
  1360. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1361. {
  1362. struct inode *inode = file_inode(filp);
  1363. int ret;
  1364. if (!inode_owner_or_capable(inode))
  1365. return -EACCES;
  1366. if (!S_ISREG(inode->i_mode))
  1367. return -EINVAL;
  1368. ret = mnt_want_write_file(filp);
  1369. if (ret)
  1370. return ret;
  1371. inode_lock(inode);
  1372. if (f2fs_is_atomic_file(inode))
  1373. goto out;
  1374. ret = f2fs_convert_inline_inode(inode);
  1375. if (ret)
  1376. goto out;
  1377. set_inode_flag(inode, FI_ATOMIC_FILE);
  1378. set_inode_flag(inode, FI_HOT_DATA);
  1379. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1380. if (!get_dirty_pages(inode))
  1381. goto inc_stat;
  1382. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1383. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1384. inode->i_ino, get_dirty_pages(inode));
  1385. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1386. if (ret) {
  1387. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1388. clear_inode_flag(inode, FI_HOT_DATA);
  1389. goto out;
  1390. }
  1391. inc_stat:
  1392. F2FS_I(inode)->inmem_task = current;
  1393. stat_inc_atomic_write(inode);
  1394. stat_update_max_atomic_write(inode);
  1395. out:
  1396. inode_unlock(inode);
  1397. mnt_drop_write_file(filp);
  1398. return ret;
  1399. }
  1400. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1401. {
  1402. struct inode *inode = file_inode(filp);
  1403. int ret;
  1404. if (!inode_owner_or_capable(inode))
  1405. return -EACCES;
  1406. ret = mnt_want_write_file(filp);
  1407. if (ret)
  1408. return ret;
  1409. inode_lock(inode);
  1410. if (f2fs_is_volatile_file(inode))
  1411. goto err_out;
  1412. if (f2fs_is_atomic_file(inode)) {
  1413. ret = commit_inmem_pages(inode);
  1414. if (ret)
  1415. goto err_out;
  1416. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1417. if (!ret) {
  1418. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1419. clear_inode_flag(inode, FI_HOT_DATA);
  1420. stat_dec_atomic_write(inode);
  1421. }
  1422. } else {
  1423. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
  1424. }
  1425. err_out:
  1426. inode_unlock(inode);
  1427. mnt_drop_write_file(filp);
  1428. return ret;
  1429. }
  1430. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1431. {
  1432. struct inode *inode = file_inode(filp);
  1433. int ret;
  1434. if (!inode_owner_or_capable(inode))
  1435. return -EACCES;
  1436. if (!S_ISREG(inode->i_mode))
  1437. return -EINVAL;
  1438. ret = mnt_want_write_file(filp);
  1439. if (ret)
  1440. return ret;
  1441. inode_lock(inode);
  1442. if (f2fs_is_volatile_file(inode))
  1443. goto out;
  1444. ret = f2fs_convert_inline_inode(inode);
  1445. if (ret)
  1446. goto out;
  1447. stat_inc_volatile_write(inode);
  1448. stat_update_max_volatile_write(inode);
  1449. set_inode_flag(inode, FI_VOLATILE_FILE);
  1450. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1451. out:
  1452. inode_unlock(inode);
  1453. mnt_drop_write_file(filp);
  1454. return ret;
  1455. }
  1456. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1457. {
  1458. struct inode *inode = file_inode(filp);
  1459. int ret;
  1460. if (!inode_owner_or_capable(inode))
  1461. return -EACCES;
  1462. ret = mnt_want_write_file(filp);
  1463. if (ret)
  1464. return ret;
  1465. inode_lock(inode);
  1466. if (!f2fs_is_volatile_file(inode))
  1467. goto out;
  1468. if (!f2fs_is_first_block_written(inode)) {
  1469. ret = truncate_partial_data_page(inode, 0, true);
  1470. goto out;
  1471. }
  1472. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1473. out:
  1474. inode_unlock(inode);
  1475. mnt_drop_write_file(filp);
  1476. return ret;
  1477. }
  1478. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1479. {
  1480. struct inode *inode = file_inode(filp);
  1481. int ret;
  1482. if (!inode_owner_or_capable(inode))
  1483. return -EACCES;
  1484. ret = mnt_want_write_file(filp);
  1485. if (ret)
  1486. return ret;
  1487. inode_lock(inode);
  1488. if (f2fs_is_atomic_file(inode))
  1489. drop_inmem_pages(inode);
  1490. if (f2fs_is_volatile_file(inode)) {
  1491. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1492. stat_dec_volatile_write(inode);
  1493. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1494. }
  1495. inode_unlock(inode);
  1496. mnt_drop_write_file(filp);
  1497. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1498. return ret;
  1499. }
  1500. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1501. {
  1502. struct inode *inode = file_inode(filp);
  1503. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1504. struct super_block *sb = sbi->sb;
  1505. __u32 in;
  1506. int ret;
  1507. if (!capable(CAP_SYS_ADMIN))
  1508. return -EPERM;
  1509. if (get_user(in, (__u32 __user *)arg))
  1510. return -EFAULT;
  1511. ret = mnt_want_write_file(filp);
  1512. if (ret)
  1513. return ret;
  1514. switch (in) {
  1515. case F2FS_GOING_DOWN_FULLSYNC:
  1516. sb = freeze_bdev(sb->s_bdev);
  1517. if (sb && !IS_ERR(sb)) {
  1518. f2fs_stop_checkpoint(sbi, false);
  1519. thaw_bdev(sb->s_bdev, sb);
  1520. }
  1521. break;
  1522. case F2FS_GOING_DOWN_METASYNC:
  1523. /* do checkpoint only */
  1524. f2fs_sync_fs(sb, 1);
  1525. f2fs_stop_checkpoint(sbi, false);
  1526. break;
  1527. case F2FS_GOING_DOWN_NOSYNC:
  1528. f2fs_stop_checkpoint(sbi, false);
  1529. break;
  1530. case F2FS_GOING_DOWN_METAFLUSH:
  1531. sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
  1532. f2fs_stop_checkpoint(sbi, false);
  1533. break;
  1534. default:
  1535. ret = -EINVAL;
  1536. goto out;
  1537. }
  1538. f2fs_update_time(sbi, REQ_TIME);
  1539. out:
  1540. mnt_drop_write_file(filp);
  1541. return ret;
  1542. }
  1543. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1544. {
  1545. struct inode *inode = file_inode(filp);
  1546. struct super_block *sb = inode->i_sb;
  1547. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1548. struct fstrim_range range;
  1549. int ret;
  1550. if (!capable(CAP_SYS_ADMIN))
  1551. return -EPERM;
  1552. if (!blk_queue_discard(q))
  1553. return -EOPNOTSUPP;
  1554. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1555. sizeof(range)))
  1556. return -EFAULT;
  1557. ret = mnt_want_write_file(filp);
  1558. if (ret)
  1559. return ret;
  1560. range.minlen = max((unsigned int)range.minlen,
  1561. q->limits.discard_granularity);
  1562. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1563. mnt_drop_write_file(filp);
  1564. if (ret < 0)
  1565. return ret;
  1566. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1567. sizeof(range)))
  1568. return -EFAULT;
  1569. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1570. return 0;
  1571. }
  1572. static bool uuid_is_nonzero(__u8 u[16])
  1573. {
  1574. int i;
  1575. for (i = 0; i < 16; i++)
  1576. if (u[i])
  1577. return true;
  1578. return false;
  1579. }
  1580. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1581. {
  1582. struct inode *inode = file_inode(filp);
  1583. if (!f2fs_sb_has_crypto(inode->i_sb))
  1584. return -EOPNOTSUPP;
  1585. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1586. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1587. }
  1588. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1589. {
  1590. if (!f2fs_sb_has_crypto(file_inode(filp)->i_sb))
  1591. return -EOPNOTSUPP;
  1592. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1593. }
  1594. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1595. {
  1596. struct inode *inode = file_inode(filp);
  1597. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1598. int err;
  1599. if (!f2fs_sb_has_crypto(inode->i_sb))
  1600. return -EOPNOTSUPP;
  1601. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1602. goto got_it;
  1603. err = mnt_want_write_file(filp);
  1604. if (err)
  1605. return err;
  1606. /* update superblock with uuid */
  1607. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1608. err = f2fs_commit_super(sbi, false);
  1609. if (err) {
  1610. /* undo new data */
  1611. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1612. mnt_drop_write_file(filp);
  1613. return err;
  1614. }
  1615. mnt_drop_write_file(filp);
  1616. got_it:
  1617. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1618. 16))
  1619. return -EFAULT;
  1620. return 0;
  1621. }
  1622. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1623. {
  1624. struct inode *inode = file_inode(filp);
  1625. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1626. __u32 sync;
  1627. int ret;
  1628. if (!capable(CAP_SYS_ADMIN))
  1629. return -EPERM;
  1630. if (get_user(sync, (__u32 __user *)arg))
  1631. return -EFAULT;
  1632. if (f2fs_readonly(sbi->sb))
  1633. return -EROFS;
  1634. ret = mnt_want_write_file(filp);
  1635. if (ret)
  1636. return ret;
  1637. if (!sync) {
  1638. if (!mutex_trylock(&sbi->gc_mutex)) {
  1639. ret = -EBUSY;
  1640. goto out;
  1641. }
  1642. } else {
  1643. mutex_lock(&sbi->gc_mutex);
  1644. }
  1645. ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
  1646. out:
  1647. mnt_drop_write_file(filp);
  1648. return ret;
  1649. }
  1650. static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
  1651. {
  1652. struct inode *inode = file_inode(filp);
  1653. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1654. struct f2fs_gc_range range;
  1655. u64 end;
  1656. int ret;
  1657. if (!capable(CAP_SYS_ADMIN))
  1658. return -EPERM;
  1659. if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
  1660. sizeof(range)))
  1661. return -EFAULT;
  1662. if (f2fs_readonly(sbi->sb))
  1663. return -EROFS;
  1664. ret = mnt_want_write_file(filp);
  1665. if (ret)
  1666. return ret;
  1667. end = range.start + range.len;
  1668. if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
  1669. return -EINVAL;
  1670. do_more:
  1671. if (!range.sync) {
  1672. if (!mutex_trylock(&sbi->gc_mutex)) {
  1673. ret = -EBUSY;
  1674. goto out;
  1675. }
  1676. } else {
  1677. mutex_lock(&sbi->gc_mutex);
  1678. }
  1679. ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
  1680. range.start += sbi->blocks_per_seg;
  1681. if (range.start <= end)
  1682. goto do_more;
  1683. out:
  1684. mnt_drop_write_file(filp);
  1685. return ret;
  1686. }
  1687. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1688. {
  1689. struct inode *inode = file_inode(filp);
  1690. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1691. int ret;
  1692. if (!capable(CAP_SYS_ADMIN))
  1693. return -EPERM;
  1694. if (f2fs_readonly(sbi->sb))
  1695. return -EROFS;
  1696. ret = mnt_want_write_file(filp);
  1697. if (ret)
  1698. return ret;
  1699. ret = f2fs_sync_fs(sbi->sb, 1);
  1700. mnt_drop_write_file(filp);
  1701. return ret;
  1702. }
  1703. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1704. struct file *filp,
  1705. struct f2fs_defragment *range)
  1706. {
  1707. struct inode *inode = file_inode(filp);
  1708. struct f2fs_map_blocks map = { .m_next_extent = NULL,
  1709. .m_seg_type = NO_CHECK_TYPE };
  1710. struct extent_info ei = {0,0,0};
  1711. pgoff_t pg_start, pg_end, next_pgofs;
  1712. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1713. unsigned int total = 0, sec_num;
  1714. block_t blk_end = 0;
  1715. bool fragmented = false;
  1716. int err;
  1717. /* if in-place-update policy is enabled, don't waste time here */
  1718. if (need_inplace_update_policy(inode, NULL))
  1719. return -EINVAL;
  1720. pg_start = range->start >> PAGE_SHIFT;
  1721. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1722. f2fs_balance_fs(sbi, true);
  1723. inode_lock(inode);
  1724. /* writeback all dirty pages in the range */
  1725. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1726. range->start + range->len - 1);
  1727. if (err)
  1728. goto out;
  1729. /*
  1730. * lookup mapping info in extent cache, skip defragmenting if physical
  1731. * block addresses are continuous.
  1732. */
  1733. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1734. if (ei.fofs + ei.len >= pg_end)
  1735. goto out;
  1736. }
  1737. map.m_lblk = pg_start;
  1738. map.m_next_pgofs = &next_pgofs;
  1739. /*
  1740. * lookup mapping info in dnode page cache, skip defragmenting if all
  1741. * physical block addresses are continuous even if there are hole(s)
  1742. * in logical blocks.
  1743. */
  1744. while (map.m_lblk < pg_end) {
  1745. map.m_len = pg_end - map.m_lblk;
  1746. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1747. if (err)
  1748. goto out;
  1749. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1750. map.m_lblk = next_pgofs;
  1751. continue;
  1752. }
  1753. if (blk_end && blk_end != map.m_pblk)
  1754. fragmented = true;
  1755. /* record total count of block that we're going to move */
  1756. total += map.m_len;
  1757. blk_end = map.m_pblk + map.m_len;
  1758. map.m_lblk += map.m_len;
  1759. }
  1760. if (!fragmented)
  1761. goto out;
  1762. sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
  1763. /*
  1764. * make sure there are enough free section for LFS allocation, this can
  1765. * avoid defragment running in SSR mode when free section are allocated
  1766. * intensively
  1767. */
  1768. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1769. err = -EAGAIN;
  1770. goto out;
  1771. }
  1772. map.m_lblk = pg_start;
  1773. map.m_len = pg_end - pg_start;
  1774. total = 0;
  1775. while (map.m_lblk < pg_end) {
  1776. pgoff_t idx;
  1777. int cnt = 0;
  1778. do_map:
  1779. map.m_len = pg_end - map.m_lblk;
  1780. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1781. if (err)
  1782. goto clear_out;
  1783. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1784. map.m_lblk = next_pgofs;
  1785. continue;
  1786. }
  1787. set_inode_flag(inode, FI_DO_DEFRAG);
  1788. idx = map.m_lblk;
  1789. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1790. struct page *page;
  1791. page = get_lock_data_page(inode, idx, true);
  1792. if (IS_ERR(page)) {
  1793. err = PTR_ERR(page);
  1794. goto clear_out;
  1795. }
  1796. set_page_dirty(page);
  1797. f2fs_put_page(page, 1);
  1798. idx++;
  1799. cnt++;
  1800. total++;
  1801. }
  1802. map.m_lblk = idx;
  1803. if (idx < pg_end && cnt < blk_per_seg)
  1804. goto do_map;
  1805. clear_inode_flag(inode, FI_DO_DEFRAG);
  1806. err = filemap_fdatawrite(inode->i_mapping);
  1807. if (err)
  1808. goto out;
  1809. }
  1810. clear_out:
  1811. clear_inode_flag(inode, FI_DO_DEFRAG);
  1812. out:
  1813. inode_unlock(inode);
  1814. if (!err)
  1815. range->len = (u64)total << PAGE_SHIFT;
  1816. return err;
  1817. }
  1818. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1819. {
  1820. struct inode *inode = file_inode(filp);
  1821. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1822. struct f2fs_defragment range;
  1823. int err;
  1824. if (!capable(CAP_SYS_ADMIN))
  1825. return -EPERM;
  1826. if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
  1827. return -EINVAL;
  1828. if (f2fs_readonly(sbi->sb))
  1829. return -EROFS;
  1830. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1831. sizeof(range)))
  1832. return -EFAULT;
  1833. /* verify alignment of offset & size */
  1834. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  1835. return -EINVAL;
  1836. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  1837. sbi->max_file_blocks))
  1838. return -EINVAL;
  1839. err = mnt_want_write_file(filp);
  1840. if (err)
  1841. return err;
  1842. err = f2fs_defragment_range(sbi, filp, &range);
  1843. mnt_drop_write_file(filp);
  1844. f2fs_update_time(sbi, REQ_TIME);
  1845. if (err < 0)
  1846. return err;
  1847. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1848. sizeof(range)))
  1849. return -EFAULT;
  1850. return 0;
  1851. }
  1852. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1853. struct file *file_out, loff_t pos_out, size_t len)
  1854. {
  1855. struct inode *src = file_inode(file_in);
  1856. struct inode *dst = file_inode(file_out);
  1857. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1858. size_t olen = len, dst_max_i_size = 0;
  1859. size_t dst_osize;
  1860. int ret;
  1861. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1862. src->i_sb != dst->i_sb)
  1863. return -EXDEV;
  1864. if (unlikely(f2fs_readonly(src->i_sb)))
  1865. return -EROFS;
  1866. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1867. return -EINVAL;
  1868. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1869. return -EOPNOTSUPP;
  1870. if (src == dst) {
  1871. if (pos_in == pos_out)
  1872. return 0;
  1873. if (pos_out > pos_in && pos_out < pos_in + len)
  1874. return -EINVAL;
  1875. }
  1876. inode_lock(src);
  1877. down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
  1878. if (src != dst) {
  1879. ret = -EBUSY;
  1880. if (!inode_trylock(dst))
  1881. goto out;
  1882. if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
  1883. inode_unlock(dst);
  1884. goto out;
  1885. }
  1886. }
  1887. ret = -EINVAL;
  1888. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1889. goto out_unlock;
  1890. if (len == 0)
  1891. olen = len = src->i_size - pos_in;
  1892. if (pos_in + len == src->i_size)
  1893. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1894. if (len == 0) {
  1895. ret = 0;
  1896. goto out_unlock;
  1897. }
  1898. dst_osize = dst->i_size;
  1899. if (pos_out + olen > dst->i_size)
  1900. dst_max_i_size = pos_out + olen;
  1901. /* verify the end result is block aligned */
  1902. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1903. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1904. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1905. goto out_unlock;
  1906. ret = f2fs_convert_inline_inode(src);
  1907. if (ret)
  1908. goto out_unlock;
  1909. ret = f2fs_convert_inline_inode(dst);
  1910. if (ret)
  1911. goto out_unlock;
  1912. /* write out all dirty pages from offset */
  1913. ret = filemap_write_and_wait_range(src->i_mapping,
  1914. pos_in, pos_in + len);
  1915. if (ret)
  1916. goto out_unlock;
  1917. ret = filemap_write_and_wait_range(dst->i_mapping,
  1918. pos_out, pos_out + len);
  1919. if (ret)
  1920. goto out_unlock;
  1921. f2fs_balance_fs(sbi, true);
  1922. f2fs_lock_op(sbi);
  1923. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1924. pos_out >> F2FS_BLKSIZE_BITS,
  1925. len >> F2FS_BLKSIZE_BITS, false);
  1926. if (!ret) {
  1927. if (dst_max_i_size)
  1928. f2fs_i_size_write(dst, dst_max_i_size);
  1929. else if (dst_osize != dst->i_size)
  1930. f2fs_i_size_write(dst, dst_osize);
  1931. }
  1932. f2fs_unlock_op(sbi);
  1933. out_unlock:
  1934. if (src != dst) {
  1935. up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
  1936. inode_unlock(dst);
  1937. }
  1938. out:
  1939. up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
  1940. inode_unlock(src);
  1941. return ret;
  1942. }
  1943. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1944. {
  1945. struct f2fs_move_range range;
  1946. struct fd dst;
  1947. int err;
  1948. if (!(filp->f_mode & FMODE_READ) ||
  1949. !(filp->f_mode & FMODE_WRITE))
  1950. return -EBADF;
  1951. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1952. sizeof(range)))
  1953. return -EFAULT;
  1954. dst = fdget(range.dst_fd);
  1955. if (!dst.file)
  1956. return -EBADF;
  1957. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1958. err = -EBADF;
  1959. goto err_out;
  1960. }
  1961. err = mnt_want_write_file(filp);
  1962. if (err)
  1963. goto err_out;
  1964. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1965. range.pos_out, range.len);
  1966. mnt_drop_write_file(filp);
  1967. if (err)
  1968. goto err_out;
  1969. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1970. &range, sizeof(range)))
  1971. err = -EFAULT;
  1972. err_out:
  1973. fdput(dst);
  1974. return err;
  1975. }
  1976. static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
  1977. {
  1978. struct inode *inode = file_inode(filp);
  1979. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1980. struct sit_info *sm = SIT_I(sbi);
  1981. unsigned int start_segno = 0, end_segno = 0;
  1982. unsigned int dev_start_segno = 0, dev_end_segno = 0;
  1983. struct f2fs_flush_device range;
  1984. int ret;
  1985. if (!capable(CAP_SYS_ADMIN))
  1986. return -EPERM;
  1987. if (f2fs_readonly(sbi->sb))
  1988. return -EROFS;
  1989. if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
  1990. sizeof(range)))
  1991. return -EFAULT;
  1992. if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
  1993. sbi->segs_per_sec != 1) {
  1994. f2fs_msg(sbi->sb, KERN_WARNING,
  1995. "Can't flush %u in %d for segs_per_sec %u != 1\n",
  1996. range.dev_num, sbi->s_ndevs,
  1997. sbi->segs_per_sec);
  1998. return -EINVAL;
  1999. }
  2000. ret = mnt_want_write_file(filp);
  2001. if (ret)
  2002. return ret;
  2003. if (range.dev_num != 0)
  2004. dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
  2005. dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
  2006. start_segno = sm->last_victim[FLUSH_DEVICE];
  2007. if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
  2008. start_segno = dev_start_segno;
  2009. end_segno = min(start_segno + range.segments, dev_end_segno);
  2010. while (start_segno < end_segno) {
  2011. if (!mutex_trylock(&sbi->gc_mutex)) {
  2012. ret = -EBUSY;
  2013. goto out;
  2014. }
  2015. sm->last_victim[GC_CB] = end_segno + 1;
  2016. sm->last_victim[GC_GREEDY] = end_segno + 1;
  2017. sm->last_victim[ALLOC_NEXT] = end_segno + 1;
  2018. ret = f2fs_gc(sbi, true, true, start_segno);
  2019. if (ret == -EAGAIN)
  2020. ret = 0;
  2021. else if (ret < 0)
  2022. break;
  2023. start_segno++;
  2024. }
  2025. out:
  2026. mnt_drop_write_file(filp);
  2027. return ret;
  2028. }
  2029. static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
  2030. {
  2031. struct inode *inode = file_inode(filp);
  2032. u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
  2033. /* Must validate to set it with SQLite behavior in Android. */
  2034. sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
  2035. return put_user(sb_feature, (u32 __user *)arg);
  2036. }
  2037. #ifdef CONFIG_QUOTA
  2038. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2039. {
  2040. struct inode *inode = file_inode(filp);
  2041. struct f2fs_inode_info *fi = F2FS_I(inode);
  2042. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2043. struct super_block *sb = sbi->sb;
  2044. struct dquot *transfer_to[MAXQUOTAS] = {};
  2045. struct page *ipage;
  2046. kprojid_t kprojid;
  2047. int err;
  2048. if (!f2fs_sb_has_project_quota(sb)) {
  2049. if (projid != F2FS_DEF_PROJID)
  2050. return -EOPNOTSUPP;
  2051. else
  2052. return 0;
  2053. }
  2054. if (!f2fs_has_extra_attr(inode))
  2055. return -EOPNOTSUPP;
  2056. kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
  2057. if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
  2058. return 0;
  2059. err = mnt_want_write_file(filp);
  2060. if (err)
  2061. return err;
  2062. err = -EPERM;
  2063. inode_lock(inode);
  2064. /* Is it quota file? Do not allow user to mess with it */
  2065. if (IS_NOQUOTA(inode))
  2066. goto out_unlock;
  2067. ipage = get_node_page(sbi, inode->i_ino);
  2068. if (IS_ERR(ipage)) {
  2069. err = PTR_ERR(ipage);
  2070. goto out_unlock;
  2071. }
  2072. if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
  2073. i_projid)) {
  2074. err = -EOVERFLOW;
  2075. f2fs_put_page(ipage, 1);
  2076. goto out_unlock;
  2077. }
  2078. f2fs_put_page(ipage, 1);
  2079. dquot_initialize(inode);
  2080. transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
  2081. if (!IS_ERR(transfer_to[PRJQUOTA])) {
  2082. err = __dquot_transfer(inode, transfer_to);
  2083. dqput(transfer_to[PRJQUOTA]);
  2084. if (err)
  2085. goto out_dirty;
  2086. }
  2087. F2FS_I(inode)->i_projid = kprojid;
  2088. inode->i_ctime = current_time(inode);
  2089. out_dirty:
  2090. f2fs_mark_inode_dirty_sync(inode, true);
  2091. out_unlock:
  2092. inode_unlock(inode);
  2093. mnt_drop_write_file(filp);
  2094. return err;
  2095. }
  2096. #else
  2097. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2098. {
  2099. if (projid != F2FS_DEF_PROJID)
  2100. return -EOPNOTSUPP;
  2101. return 0;
  2102. }
  2103. #endif
  2104. /* Transfer internal flags to xflags */
  2105. static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
  2106. {
  2107. __u32 xflags = 0;
  2108. if (iflags & FS_SYNC_FL)
  2109. xflags |= FS_XFLAG_SYNC;
  2110. if (iflags & FS_IMMUTABLE_FL)
  2111. xflags |= FS_XFLAG_IMMUTABLE;
  2112. if (iflags & FS_APPEND_FL)
  2113. xflags |= FS_XFLAG_APPEND;
  2114. if (iflags & FS_NODUMP_FL)
  2115. xflags |= FS_XFLAG_NODUMP;
  2116. if (iflags & FS_NOATIME_FL)
  2117. xflags |= FS_XFLAG_NOATIME;
  2118. if (iflags & FS_PROJINHERIT_FL)
  2119. xflags |= FS_XFLAG_PROJINHERIT;
  2120. return xflags;
  2121. }
  2122. #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
  2123. FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
  2124. FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
  2125. /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
  2126. #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
  2127. FS_IMMUTABLE_FL | \
  2128. FS_APPEND_FL | \
  2129. FS_NODUMP_FL | \
  2130. FS_NOATIME_FL | \
  2131. FS_PROJINHERIT_FL)
  2132. /* Transfer xflags flags to internal */
  2133. static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
  2134. {
  2135. unsigned long iflags = 0;
  2136. if (xflags & FS_XFLAG_SYNC)
  2137. iflags |= FS_SYNC_FL;
  2138. if (xflags & FS_XFLAG_IMMUTABLE)
  2139. iflags |= FS_IMMUTABLE_FL;
  2140. if (xflags & FS_XFLAG_APPEND)
  2141. iflags |= FS_APPEND_FL;
  2142. if (xflags & FS_XFLAG_NODUMP)
  2143. iflags |= FS_NODUMP_FL;
  2144. if (xflags & FS_XFLAG_NOATIME)
  2145. iflags |= FS_NOATIME_FL;
  2146. if (xflags & FS_XFLAG_PROJINHERIT)
  2147. iflags |= FS_PROJINHERIT_FL;
  2148. return iflags;
  2149. }
  2150. static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
  2151. {
  2152. struct inode *inode = file_inode(filp);
  2153. struct f2fs_inode_info *fi = F2FS_I(inode);
  2154. struct fsxattr fa;
  2155. memset(&fa, 0, sizeof(struct fsxattr));
  2156. fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
  2157. (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
  2158. if (f2fs_sb_has_project_quota(inode->i_sb))
  2159. fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
  2160. fi->i_projid);
  2161. if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
  2162. return -EFAULT;
  2163. return 0;
  2164. }
  2165. static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
  2166. {
  2167. struct inode *inode = file_inode(filp);
  2168. struct f2fs_inode_info *fi = F2FS_I(inode);
  2169. struct fsxattr fa;
  2170. unsigned int flags;
  2171. int err;
  2172. if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
  2173. return -EFAULT;
  2174. /* Make sure caller has proper permission */
  2175. if (!inode_owner_or_capable(inode))
  2176. return -EACCES;
  2177. if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
  2178. return -EOPNOTSUPP;
  2179. flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
  2180. if (f2fs_mask_flags(inode->i_mode, flags) != flags)
  2181. return -EOPNOTSUPP;
  2182. err = mnt_want_write_file(filp);
  2183. if (err)
  2184. return err;
  2185. inode_lock(inode);
  2186. flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
  2187. (flags & F2FS_FL_XFLAG_VISIBLE);
  2188. err = __f2fs_ioc_setflags(inode, flags);
  2189. inode_unlock(inode);
  2190. mnt_drop_write_file(filp);
  2191. if (err)
  2192. return err;
  2193. err = f2fs_ioc_setproject(filp, fa.fsx_projid);
  2194. if (err)
  2195. return err;
  2196. return 0;
  2197. }
  2198. int f2fs_pin_file_control(struct inode *inode, bool inc)
  2199. {
  2200. struct f2fs_inode_info *fi = F2FS_I(inode);
  2201. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2202. /* Use i_gc_failures for normal file as a risk signal. */
  2203. if (inc)
  2204. f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
  2205. if (fi->i_gc_failures > sbi->gc_pin_file_threshold) {
  2206. f2fs_msg(sbi->sb, KERN_WARNING,
  2207. "%s: Enable GC = ino %lx after %x GC trials\n",
  2208. __func__, inode->i_ino, fi->i_gc_failures);
  2209. clear_inode_flag(inode, FI_PIN_FILE);
  2210. return -EAGAIN;
  2211. }
  2212. return 0;
  2213. }
  2214. static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
  2215. {
  2216. struct inode *inode = file_inode(filp);
  2217. __u32 pin;
  2218. int ret = 0;
  2219. if (!inode_owner_or_capable(inode))
  2220. return -EACCES;
  2221. if (get_user(pin, (__u32 __user *)arg))
  2222. return -EFAULT;
  2223. if (!S_ISREG(inode->i_mode))
  2224. return -EINVAL;
  2225. if (f2fs_readonly(F2FS_I_SB(inode)->sb))
  2226. return -EROFS;
  2227. ret = mnt_want_write_file(filp);
  2228. if (ret)
  2229. return ret;
  2230. inode_lock(inode);
  2231. if (!pin) {
  2232. clear_inode_flag(inode, FI_PIN_FILE);
  2233. F2FS_I(inode)->i_gc_failures = 1;
  2234. goto done;
  2235. }
  2236. if (f2fs_pin_file_control(inode, false)) {
  2237. ret = -EAGAIN;
  2238. goto out;
  2239. }
  2240. ret = f2fs_convert_inline_inode(inode);
  2241. if (ret)
  2242. goto out;
  2243. set_inode_flag(inode, FI_PIN_FILE);
  2244. ret = F2FS_I(inode)->i_gc_failures;
  2245. done:
  2246. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2247. out:
  2248. inode_unlock(inode);
  2249. mnt_drop_write_file(filp);
  2250. return ret;
  2251. }
  2252. static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
  2253. {
  2254. struct inode *inode = file_inode(filp);
  2255. __u32 pin = 0;
  2256. if (is_inode_flag_set(inode, FI_PIN_FILE))
  2257. pin = F2FS_I(inode)->i_gc_failures;
  2258. return put_user(pin, (u32 __user *)arg);
  2259. }
  2260. int f2fs_precache_extents(struct inode *inode)
  2261. {
  2262. struct f2fs_inode_info *fi = F2FS_I(inode);
  2263. struct f2fs_map_blocks map;
  2264. pgoff_t m_next_extent;
  2265. loff_t end;
  2266. int err;
  2267. if (is_inode_flag_set(inode, FI_NO_EXTENT))
  2268. return -EOPNOTSUPP;
  2269. map.m_lblk = 0;
  2270. map.m_next_pgofs = NULL;
  2271. map.m_next_extent = &m_next_extent;
  2272. map.m_seg_type = NO_CHECK_TYPE;
  2273. end = F2FS_I_SB(inode)->max_file_blocks;
  2274. while (map.m_lblk < end) {
  2275. map.m_len = end - map.m_lblk;
  2276. down_write(&fi->dio_rwsem[WRITE]);
  2277. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
  2278. up_write(&fi->dio_rwsem[WRITE]);
  2279. if (err)
  2280. return err;
  2281. map.m_lblk = m_next_extent;
  2282. }
  2283. return err;
  2284. }
  2285. static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
  2286. {
  2287. return f2fs_precache_extents(file_inode(filp));
  2288. }
  2289. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  2290. {
  2291. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
  2292. return -EIO;
  2293. switch (cmd) {
  2294. case F2FS_IOC_GETFLAGS:
  2295. return f2fs_ioc_getflags(filp, arg);
  2296. case F2FS_IOC_SETFLAGS:
  2297. return f2fs_ioc_setflags(filp, arg);
  2298. case F2FS_IOC_GETVERSION:
  2299. return f2fs_ioc_getversion(filp, arg);
  2300. case F2FS_IOC_START_ATOMIC_WRITE:
  2301. return f2fs_ioc_start_atomic_write(filp);
  2302. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2303. return f2fs_ioc_commit_atomic_write(filp);
  2304. case F2FS_IOC_START_VOLATILE_WRITE:
  2305. return f2fs_ioc_start_volatile_write(filp);
  2306. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2307. return f2fs_ioc_release_volatile_write(filp);
  2308. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2309. return f2fs_ioc_abort_volatile_write(filp);
  2310. case F2FS_IOC_SHUTDOWN:
  2311. return f2fs_ioc_shutdown(filp, arg);
  2312. case FITRIM:
  2313. return f2fs_ioc_fitrim(filp, arg);
  2314. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2315. return f2fs_ioc_set_encryption_policy(filp, arg);
  2316. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2317. return f2fs_ioc_get_encryption_policy(filp, arg);
  2318. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2319. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  2320. case F2FS_IOC_GARBAGE_COLLECT:
  2321. return f2fs_ioc_gc(filp, arg);
  2322. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2323. return f2fs_ioc_gc_range(filp, arg);
  2324. case F2FS_IOC_WRITE_CHECKPOINT:
  2325. return f2fs_ioc_write_checkpoint(filp, arg);
  2326. case F2FS_IOC_DEFRAGMENT:
  2327. return f2fs_ioc_defragment(filp, arg);
  2328. case F2FS_IOC_MOVE_RANGE:
  2329. return f2fs_ioc_move_range(filp, arg);
  2330. case F2FS_IOC_FLUSH_DEVICE:
  2331. return f2fs_ioc_flush_device(filp, arg);
  2332. case F2FS_IOC_GET_FEATURES:
  2333. return f2fs_ioc_get_features(filp, arg);
  2334. case F2FS_IOC_FSGETXATTR:
  2335. return f2fs_ioc_fsgetxattr(filp, arg);
  2336. case F2FS_IOC_FSSETXATTR:
  2337. return f2fs_ioc_fssetxattr(filp, arg);
  2338. case F2FS_IOC_GET_PIN_FILE:
  2339. return f2fs_ioc_get_pin_file(filp, arg);
  2340. case F2FS_IOC_SET_PIN_FILE:
  2341. return f2fs_ioc_set_pin_file(filp, arg);
  2342. case F2FS_IOC_PRECACHE_EXTENTS:
  2343. return f2fs_ioc_precache_extents(filp, arg);
  2344. default:
  2345. return -ENOTTY;
  2346. }
  2347. }
  2348. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  2349. {
  2350. struct file *file = iocb->ki_filp;
  2351. struct inode *inode = file_inode(file);
  2352. struct blk_plug plug;
  2353. ssize_t ret;
  2354. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  2355. return -EIO;
  2356. inode_lock(inode);
  2357. ret = generic_write_checks(iocb, from);
  2358. if (ret > 0) {
  2359. int err;
  2360. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  2361. set_inode_flag(inode, FI_NO_PREALLOC);
  2362. err = f2fs_preallocate_blocks(iocb, from);
  2363. if (err) {
  2364. clear_inode_flag(inode, FI_NO_PREALLOC);
  2365. inode_unlock(inode);
  2366. return err;
  2367. }
  2368. blk_start_plug(&plug);
  2369. ret = __generic_file_write_iter(iocb, from);
  2370. blk_finish_plug(&plug);
  2371. clear_inode_flag(inode, FI_NO_PREALLOC);
  2372. if (ret > 0)
  2373. f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
  2374. }
  2375. inode_unlock(inode);
  2376. if (ret > 0)
  2377. ret = generic_write_sync(iocb, ret);
  2378. return ret;
  2379. }
  2380. #ifdef CONFIG_COMPAT
  2381. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2382. {
  2383. switch (cmd) {
  2384. case F2FS_IOC32_GETFLAGS:
  2385. cmd = F2FS_IOC_GETFLAGS;
  2386. break;
  2387. case F2FS_IOC32_SETFLAGS:
  2388. cmd = F2FS_IOC_SETFLAGS;
  2389. break;
  2390. case F2FS_IOC32_GETVERSION:
  2391. cmd = F2FS_IOC_GETVERSION;
  2392. break;
  2393. case F2FS_IOC_START_ATOMIC_WRITE:
  2394. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2395. case F2FS_IOC_START_VOLATILE_WRITE:
  2396. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2397. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2398. case F2FS_IOC_SHUTDOWN:
  2399. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2400. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2401. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2402. case F2FS_IOC_GARBAGE_COLLECT:
  2403. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2404. case F2FS_IOC_WRITE_CHECKPOINT:
  2405. case F2FS_IOC_DEFRAGMENT:
  2406. case F2FS_IOC_MOVE_RANGE:
  2407. case F2FS_IOC_FLUSH_DEVICE:
  2408. case F2FS_IOC_GET_FEATURES:
  2409. case F2FS_IOC_FSGETXATTR:
  2410. case F2FS_IOC_FSSETXATTR:
  2411. case F2FS_IOC_GET_PIN_FILE:
  2412. case F2FS_IOC_SET_PIN_FILE:
  2413. case F2FS_IOC_PRECACHE_EXTENTS:
  2414. break;
  2415. default:
  2416. return -ENOIOCTLCMD;
  2417. }
  2418. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  2419. }
  2420. #endif
  2421. const struct file_operations f2fs_file_operations = {
  2422. .llseek = f2fs_llseek,
  2423. .read_iter = generic_file_read_iter,
  2424. .write_iter = f2fs_file_write_iter,
  2425. .open = f2fs_file_open,
  2426. .release = f2fs_release_file,
  2427. .mmap = f2fs_file_mmap,
  2428. .flush = f2fs_file_flush,
  2429. .fsync = f2fs_sync_file,
  2430. .fallocate = f2fs_fallocate,
  2431. .unlocked_ioctl = f2fs_ioctl,
  2432. #ifdef CONFIG_COMPAT
  2433. .compat_ioctl = f2fs_compat_ioctl,
  2434. #endif
  2435. .splice_read = generic_file_splice_read,
  2436. .splice_write = iter_file_splice_write,
  2437. };