pci.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/bitops.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/blk-mq.h>
  17. #include <linux/cpu.h>
  18. #include <linux/delay.h>
  19. #include <linux/errno.h>
  20. #include <linux/fs.h>
  21. #include <linux/genhd.h>
  22. #include <linux/hdreg.h>
  23. #include <linux/idr.h>
  24. #include <linux/init.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/kdev_t.h>
  28. #include <linux/kthread.h>
  29. #include <linux/kernel.h>
  30. #include <linux/mm.h>
  31. #include <linux/module.h>
  32. #include <linux/moduleparam.h>
  33. #include <linux/pci.h>
  34. #include <linux/poison.h>
  35. #include <linux/ptrace.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/t10-pi.h>
  39. #include <linux/types.h>
  40. #include <linux/io-64-nonatomic-lo-hi.h>
  41. #include <asm/unaligned.h>
  42. #include "nvme.h"
  43. #define NVME_Q_DEPTH 1024
  44. #define NVME_AQ_DEPTH 256
  45. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  46. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  47. unsigned char admin_timeout = 60;
  48. module_param(admin_timeout, byte, 0644);
  49. MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  50. unsigned char nvme_io_timeout = 30;
  51. module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
  52. MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  53. unsigned char shutdown_timeout = 5;
  54. module_param(shutdown_timeout, byte, 0644);
  55. MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  56. static int use_threaded_interrupts;
  57. module_param(use_threaded_interrupts, int, 0);
  58. static bool use_cmb_sqes = true;
  59. module_param(use_cmb_sqes, bool, 0644);
  60. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  61. static LIST_HEAD(dev_list);
  62. static struct task_struct *nvme_thread;
  63. static struct workqueue_struct *nvme_workq;
  64. static wait_queue_head_t nvme_kthread_wait;
  65. struct nvme_dev;
  66. struct nvme_queue;
  67. struct nvme_iod;
  68. static int __nvme_reset(struct nvme_dev *dev);
  69. static int nvme_reset(struct nvme_dev *dev);
  70. static void nvme_process_cq(struct nvme_queue *nvmeq);
  71. static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
  72. static void nvme_dead_ctrl(struct nvme_dev *dev);
  73. struct async_cmd_info {
  74. struct kthread_work work;
  75. struct kthread_worker *worker;
  76. struct request *req;
  77. u32 result;
  78. int status;
  79. void *ctx;
  80. };
  81. /*
  82. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  83. */
  84. struct nvme_dev {
  85. struct list_head node;
  86. struct nvme_queue **queues;
  87. struct blk_mq_tag_set tagset;
  88. struct blk_mq_tag_set admin_tagset;
  89. u32 __iomem *dbs;
  90. struct device *dev;
  91. struct dma_pool *prp_page_pool;
  92. struct dma_pool *prp_small_pool;
  93. unsigned queue_count;
  94. unsigned online_queues;
  95. unsigned max_qid;
  96. int q_depth;
  97. u32 db_stride;
  98. struct msix_entry *entry;
  99. void __iomem *bar;
  100. struct work_struct reset_work;
  101. struct work_struct probe_work;
  102. struct work_struct scan_work;
  103. bool subsystem;
  104. void __iomem *cmb;
  105. dma_addr_t cmb_dma_addr;
  106. u64 cmb_size;
  107. u32 cmbsz;
  108. struct nvme_ctrl ctrl;
  109. };
  110. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  111. {
  112. return container_of(ctrl, struct nvme_dev, ctrl);
  113. }
  114. /*
  115. * An NVM Express queue. Each device has at least two (one for admin
  116. * commands and one for I/O commands).
  117. */
  118. struct nvme_queue {
  119. struct device *q_dmadev;
  120. struct nvme_dev *dev;
  121. char irqname[24]; /* nvme4294967295-65535\0 */
  122. spinlock_t q_lock;
  123. struct nvme_command *sq_cmds;
  124. struct nvme_command __iomem *sq_cmds_io;
  125. volatile struct nvme_completion *cqes;
  126. struct blk_mq_tags **tags;
  127. dma_addr_t sq_dma_addr;
  128. dma_addr_t cq_dma_addr;
  129. u32 __iomem *q_db;
  130. u16 q_depth;
  131. s16 cq_vector;
  132. u16 sq_head;
  133. u16 sq_tail;
  134. u16 cq_head;
  135. u16 qid;
  136. u8 cq_phase;
  137. u8 cqe_seen;
  138. struct async_cmd_info cmdinfo;
  139. };
  140. /*
  141. * The nvme_iod describes the data in an I/O, including the list of PRP
  142. * entries. You can't see it in this data structure because C doesn't let
  143. * me express that. Use nvme_alloc_iod to ensure there's enough space
  144. * allocated to store the PRP list.
  145. */
  146. struct nvme_iod {
  147. unsigned long private; /* For the use of the submitter of the I/O */
  148. int npages; /* In the PRP list. 0 means small pool in use */
  149. int offset; /* Of PRP list */
  150. int nents; /* Used in scatterlist */
  151. int length; /* Of data, in bytes */
  152. dma_addr_t first_dma;
  153. struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
  154. struct scatterlist sg[0];
  155. };
  156. /*
  157. * Check we didin't inadvertently grow the command struct
  158. */
  159. static inline void _nvme_check_size(void)
  160. {
  161. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  162. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  163. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  164. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  165. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  166. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  167. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  168. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  169. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  170. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  171. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  172. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  173. }
  174. typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
  175. struct nvme_completion *);
  176. struct nvme_cmd_info {
  177. nvme_completion_fn fn;
  178. void *ctx;
  179. int aborted;
  180. struct nvme_queue *nvmeq;
  181. struct nvme_iod iod[0];
  182. };
  183. /*
  184. * Max size of iod being embedded in the request payload
  185. */
  186. #define NVME_INT_PAGES 2
  187. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  188. #define NVME_INT_MASK 0x01
  189. /*
  190. * Will slightly overestimate the number of pages needed. This is OK
  191. * as it only leads to a small amount of wasted memory for the lifetime of
  192. * the I/O.
  193. */
  194. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  195. {
  196. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  197. dev->ctrl.page_size);
  198. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  199. }
  200. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  201. {
  202. unsigned int ret = sizeof(struct nvme_cmd_info);
  203. ret += sizeof(struct nvme_iod);
  204. ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
  205. ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
  206. return ret;
  207. }
  208. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  209. unsigned int hctx_idx)
  210. {
  211. struct nvme_dev *dev = data;
  212. struct nvme_queue *nvmeq = dev->queues[0];
  213. WARN_ON(hctx_idx != 0);
  214. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  215. WARN_ON(nvmeq->tags);
  216. hctx->driver_data = nvmeq;
  217. nvmeq->tags = &dev->admin_tagset.tags[0];
  218. return 0;
  219. }
  220. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  221. {
  222. struct nvme_queue *nvmeq = hctx->driver_data;
  223. nvmeq->tags = NULL;
  224. }
  225. static int nvme_admin_init_request(void *data, struct request *req,
  226. unsigned int hctx_idx, unsigned int rq_idx,
  227. unsigned int numa_node)
  228. {
  229. struct nvme_dev *dev = data;
  230. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  231. struct nvme_queue *nvmeq = dev->queues[0];
  232. BUG_ON(!nvmeq);
  233. cmd->nvmeq = nvmeq;
  234. return 0;
  235. }
  236. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  237. unsigned int hctx_idx)
  238. {
  239. struct nvme_dev *dev = data;
  240. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  241. if (!nvmeq->tags)
  242. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  243. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  244. hctx->driver_data = nvmeq;
  245. return 0;
  246. }
  247. static int nvme_init_request(void *data, struct request *req,
  248. unsigned int hctx_idx, unsigned int rq_idx,
  249. unsigned int numa_node)
  250. {
  251. struct nvme_dev *dev = data;
  252. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  253. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  254. BUG_ON(!nvmeq);
  255. cmd->nvmeq = nvmeq;
  256. return 0;
  257. }
  258. static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
  259. nvme_completion_fn handler)
  260. {
  261. cmd->fn = handler;
  262. cmd->ctx = ctx;
  263. cmd->aborted = 0;
  264. blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
  265. }
  266. static void *iod_get_private(struct nvme_iod *iod)
  267. {
  268. return (void *) (iod->private & ~0x1UL);
  269. }
  270. /*
  271. * If bit 0 is set, the iod is embedded in the request payload.
  272. */
  273. static bool iod_should_kfree(struct nvme_iod *iod)
  274. {
  275. return (iod->private & NVME_INT_MASK) == 0;
  276. }
  277. /* Special values must be less than 0x1000 */
  278. #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
  279. #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
  280. #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
  281. #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
  282. static void special_completion(struct nvme_queue *nvmeq, void *ctx,
  283. struct nvme_completion *cqe)
  284. {
  285. if (ctx == CMD_CTX_CANCELLED)
  286. return;
  287. if (ctx == CMD_CTX_COMPLETED) {
  288. dev_warn(nvmeq->q_dmadev,
  289. "completed id %d twice on queue %d\n",
  290. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  291. return;
  292. }
  293. if (ctx == CMD_CTX_INVALID) {
  294. dev_warn(nvmeq->q_dmadev,
  295. "invalid id %d completed on queue %d\n",
  296. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  297. return;
  298. }
  299. dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
  300. }
  301. static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
  302. {
  303. void *ctx;
  304. if (fn)
  305. *fn = cmd->fn;
  306. ctx = cmd->ctx;
  307. cmd->fn = special_completion;
  308. cmd->ctx = CMD_CTX_CANCELLED;
  309. return ctx;
  310. }
  311. static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
  312. struct nvme_completion *cqe)
  313. {
  314. u32 result = le32_to_cpup(&cqe->result);
  315. u16 status = le16_to_cpup(&cqe->status) >> 1;
  316. if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
  317. ++nvmeq->dev->ctrl.event_limit;
  318. if (status != NVME_SC_SUCCESS)
  319. return;
  320. switch (result & 0xff07) {
  321. case NVME_AER_NOTICE_NS_CHANGED:
  322. dev_info(nvmeq->q_dmadev, "rescanning\n");
  323. schedule_work(&nvmeq->dev->scan_work);
  324. default:
  325. dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
  326. }
  327. }
  328. static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
  329. struct nvme_completion *cqe)
  330. {
  331. struct request *req = ctx;
  332. u16 status = le16_to_cpup(&cqe->status) >> 1;
  333. u32 result = le32_to_cpup(&cqe->result);
  334. blk_mq_free_request(req);
  335. dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
  336. ++nvmeq->dev->ctrl.abort_limit;
  337. }
  338. static void async_completion(struct nvme_queue *nvmeq, void *ctx,
  339. struct nvme_completion *cqe)
  340. {
  341. struct async_cmd_info *cmdinfo = ctx;
  342. cmdinfo->result = le32_to_cpup(&cqe->result);
  343. cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
  344. queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
  345. blk_mq_free_request(cmdinfo->req);
  346. }
  347. static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
  348. unsigned int tag)
  349. {
  350. struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
  351. return blk_mq_rq_to_pdu(req);
  352. }
  353. /*
  354. * Called with local interrupts disabled and the q_lock held. May not sleep.
  355. */
  356. static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
  357. nvme_completion_fn *fn)
  358. {
  359. struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
  360. void *ctx;
  361. if (tag >= nvmeq->q_depth) {
  362. *fn = special_completion;
  363. return CMD_CTX_INVALID;
  364. }
  365. if (fn)
  366. *fn = cmd->fn;
  367. ctx = cmd->ctx;
  368. cmd->fn = special_completion;
  369. cmd->ctx = CMD_CTX_COMPLETED;
  370. return ctx;
  371. }
  372. /**
  373. * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  374. * @nvmeq: The queue to use
  375. * @cmd: The command to send
  376. *
  377. * Safe to use from interrupt context
  378. */
  379. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  380. struct nvme_command *cmd)
  381. {
  382. u16 tail = nvmeq->sq_tail;
  383. if (nvmeq->sq_cmds_io)
  384. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  385. else
  386. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  387. if (++tail == nvmeq->q_depth)
  388. tail = 0;
  389. writel(tail, nvmeq->q_db);
  390. nvmeq->sq_tail = tail;
  391. }
  392. static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
  393. {
  394. unsigned long flags;
  395. spin_lock_irqsave(&nvmeq->q_lock, flags);
  396. __nvme_submit_cmd(nvmeq, cmd);
  397. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  398. }
  399. static __le64 **iod_list(struct nvme_iod *iod)
  400. {
  401. return ((void *)iod) + iod->offset;
  402. }
  403. static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
  404. unsigned nseg, unsigned long private)
  405. {
  406. iod->private = private;
  407. iod->offset = offsetof(struct nvme_iod, sg[nseg]);
  408. iod->npages = -1;
  409. iod->length = nbytes;
  410. iod->nents = 0;
  411. }
  412. static struct nvme_iod *
  413. __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
  414. unsigned long priv, gfp_t gfp)
  415. {
  416. struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
  417. sizeof(__le64 *) * nvme_npages(bytes, dev) +
  418. sizeof(struct scatterlist) * nseg, gfp);
  419. if (iod)
  420. iod_init(iod, bytes, nseg, priv);
  421. return iod;
  422. }
  423. static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
  424. gfp_t gfp)
  425. {
  426. unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
  427. sizeof(struct nvme_dsm_range);
  428. struct nvme_iod *iod;
  429. if (rq->nr_phys_segments <= NVME_INT_PAGES &&
  430. size <= NVME_INT_BYTES(dev)) {
  431. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
  432. iod = cmd->iod;
  433. iod_init(iod, size, rq->nr_phys_segments,
  434. (unsigned long) rq | NVME_INT_MASK);
  435. return iod;
  436. }
  437. return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
  438. (unsigned long) rq, gfp);
  439. }
  440. static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
  441. {
  442. const int last_prp = dev->ctrl.page_size / 8 - 1;
  443. int i;
  444. __le64 **list = iod_list(iod);
  445. dma_addr_t prp_dma = iod->first_dma;
  446. if (iod->npages == 0)
  447. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  448. for (i = 0; i < iod->npages; i++) {
  449. __le64 *prp_list = list[i];
  450. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  451. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  452. prp_dma = next_prp_dma;
  453. }
  454. if (iod_should_kfree(iod))
  455. kfree(iod);
  456. }
  457. #ifdef CONFIG_BLK_DEV_INTEGRITY
  458. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  459. {
  460. if (be32_to_cpu(pi->ref_tag) == v)
  461. pi->ref_tag = cpu_to_be32(p);
  462. }
  463. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  464. {
  465. if (be32_to_cpu(pi->ref_tag) == p)
  466. pi->ref_tag = cpu_to_be32(v);
  467. }
  468. /**
  469. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  470. *
  471. * The virtual start sector is the one that was originally submitted by the
  472. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  473. * start sector may be different. Remap protection information to match the
  474. * physical LBA on writes, and back to the original seed on reads.
  475. *
  476. * Type 0 and 3 do not have a ref tag, so no remapping required.
  477. */
  478. static void nvme_dif_remap(struct request *req,
  479. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  480. {
  481. struct nvme_ns *ns = req->rq_disk->private_data;
  482. struct bio_integrity_payload *bip;
  483. struct t10_pi_tuple *pi;
  484. void *p, *pmap;
  485. u32 i, nlb, ts, phys, virt;
  486. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  487. return;
  488. bip = bio_integrity(req->bio);
  489. if (!bip)
  490. return;
  491. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  492. p = pmap;
  493. virt = bip_get_seed(bip);
  494. phys = nvme_block_nr(ns, blk_rq_pos(req));
  495. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  496. ts = ns->disk->queue->integrity.tuple_size;
  497. for (i = 0; i < nlb; i++, virt++, phys++) {
  498. pi = (struct t10_pi_tuple *)p;
  499. dif_swap(phys, virt, pi);
  500. p += ts;
  501. }
  502. kunmap_atomic(pmap);
  503. }
  504. #else /* CONFIG_BLK_DEV_INTEGRITY */
  505. static void nvme_dif_remap(struct request *req,
  506. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  507. {
  508. }
  509. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  510. {
  511. }
  512. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  513. {
  514. }
  515. #endif
  516. static void req_completion(struct nvme_queue *nvmeq, void *ctx,
  517. struct nvme_completion *cqe)
  518. {
  519. struct nvme_iod *iod = ctx;
  520. struct request *req = iod_get_private(iod);
  521. struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
  522. u16 status = le16_to_cpup(&cqe->status) >> 1;
  523. int error = 0;
  524. if (unlikely(status)) {
  525. if (!(status & NVME_SC_DNR || blk_noretry_request(req))
  526. && (jiffies - req->start_time) < req->timeout) {
  527. unsigned long flags;
  528. nvme_unmap_data(nvmeq->dev, iod);
  529. blk_mq_requeue_request(req);
  530. spin_lock_irqsave(req->q->queue_lock, flags);
  531. if (!blk_queue_stopped(req->q))
  532. blk_mq_kick_requeue_list(req->q);
  533. spin_unlock_irqrestore(req->q->queue_lock, flags);
  534. return;
  535. }
  536. if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
  537. if (cmd_rq->ctx == CMD_CTX_CANCELLED)
  538. error = -EINTR;
  539. else
  540. error = status;
  541. } else {
  542. error = nvme_error_status(status);
  543. }
  544. }
  545. if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
  546. u32 result = le32_to_cpup(&cqe->result);
  547. req->special = (void *)(uintptr_t)result;
  548. }
  549. if (cmd_rq->aborted)
  550. dev_warn(nvmeq->dev->dev,
  551. "completing aborted command with status:%04x\n",
  552. error);
  553. nvme_unmap_data(nvmeq->dev, iod);
  554. blk_mq_complete_request(req, error);
  555. }
  556. static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
  557. int total_len)
  558. {
  559. struct dma_pool *pool;
  560. int length = total_len;
  561. struct scatterlist *sg = iod->sg;
  562. int dma_len = sg_dma_len(sg);
  563. u64 dma_addr = sg_dma_address(sg);
  564. u32 page_size = dev->ctrl.page_size;
  565. int offset = dma_addr & (page_size - 1);
  566. __le64 *prp_list;
  567. __le64 **list = iod_list(iod);
  568. dma_addr_t prp_dma;
  569. int nprps, i;
  570. length -= (page_size - offset);
  571. if (length <= 0)
  572. return true;
  573. dma_len -= (page_size - offset);
  574. if (dma_len) {
  575. dma_addr += (page_size - offset);
  576. } else {
  577. sg = sg_next(sg);
  578. dma_addr = sg_dma_address(sg);
  579. dma_len = sg_dma_len(sg);
  580. }
  581. if (length <= page_size) {
  582. iod->first_dma = dma_addr;
  583. return true;
  584. }
  585. nprps = DIV_ROUND_UP(length, page_size);
  586. if (nprps <= (256 / 8)) {
  587. pool = dev->prp_small_pool;
  588. iod->npages = 0;
  589. } else {
  590. pool = dev->prp_page_pool;
  591. iod->npages = 1;
  592. }
  593. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  594. if (!prp_list) {
  595. iod->first_dma = dma_addr;
  596. iod->npages = -1;
  597. return false;
  598. }
  599. list[0] = prp_list;
  600. iod->first_dma = prp_dma;
  601. i = 0;
  602. for (;;) {
  603. if (i == page_size >> 3) {
  604. __le64 *old_prp_list = prp_list;
  605. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  606. if (!prp_list)
  607. return false;
  608. list[iod->npages++] = prp_list;
  609. prp_list[0] = old_prp_list[i - 1];
  610. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  611. i = 1;
  612. }
  613. prp_list[i++] = cpu_to_le64(dma_addr);
  614. dma_len -= page_size;
  615. dma_addr += page_size;
  616. length -= page_size;
  617. if (length <= 0)
  618. break;
  619. if (dma_len > 0)
  620. continue;
  621. BUG_ON(dma_len < 0);
  622. sg = sg_next(sg);
  623. dma_addr = sg_dma_address(sg);
  624. dma_len = sg_dma_len(sg);
  625. }
  626. return true;
  627. }
  628. static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
  629. struct nvme_command *cmnd)
  630. {
  631. struct request *req = iod_get_private(iod);
  632. struct request_queue *q = req->q;
  633. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  634. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  635. int ret = BLK_MQ_RQ_QUEUE_ERROR;
  636. sg_init_table(iod->sg, req->nr_phys_segments);
  637. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  638. if (!iod->nents)
  639. goto out;
  640. ret = BLK_MQ_RQ_QUEUE_BUSY;
  641. if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
  642. goto out;
  643. if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
  644. goto out_unmap;
  645. ret = BLK_MQ_RQ_QUEUE_ERROR;
  646. if (blk_integrity_rq(req)) {
  647. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  648. goto out_unmap;
  649. sg_init_table(iod->meta_sg, 1);
  650. if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
  651. goto out_unmap;
  652. if (rq_data_dir(req))
  653. nvme_dif_remap(req, nvme_dif_prep);
  654. if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
  655. goto out_unmap;
  656. }
  657. cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  658. cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
  659. if (blk_integrity_rq(req))
  660. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
  661. return BLK_MQ_RQ_QUEUE_OK;
  662. out_unmap:
  663. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  664. out:
  665. return ret;
  666. }
  667. static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
  668. {
  669. struct request *req = iod_get_private(iod);
  670. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  671. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  672. if (iod->nents) {
  673. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  674. if (blk_integrity_rq(req)) {
  675. if (!rq_data_dir(req))
  676. nvme_dif_remap(req, nvme_dif_complete);
  677. dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
  678. }
  679. }
  680. nvme_free_iod(dev, iod);
  681. }
  682. /*
  683. * We reuse the small pool to allocate the 16-byte range here as it is not
  684. * worth having a special pool for these or additional cases to handle freeing
  685. * the iod.
  686. */
  687. static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  688. struct nvme_iod *iod, struct nvme_command *cmnd)
  689. {
  690. struct request *req = iod_get_private(iod);
  691. struct nvme_dsm_range *range;
  692. range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
  693. &iod->first_dma);
  694. if (!range)
  695. return BLK_MQ_RQ_QUEUE_BUSY;
  696. iod_list(iod)[0] = (__le64 *)range;
  697. iod->npages = 0;
  698. range->cattr = cpu_to_le32(0);
  699. range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
  700. range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
  701. memset(cmnd, 0, sizeof(*cmnd));
  702. cmnd->dsm.opcode = nvme_cmd_dsm;
  703. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  704. cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
  705. cmnd->dsm.nr = 0;
  706. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  707. return BLK_MQ_RQ_QUEUE_OK;
  708. }
  709. /*
  710. * NOTE: ns is NULL when called on the admin queue.
  711. */
  712. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  713. const struct blk_mq_queue_data *bd)
  714. {
  715. struct nvme_ns *ns = hctx->queue->queuedata;
  716. struct nvme_queue *nvmeq = hctx->driver_data;
  717. struct nvme_dev *dev = nvmeq->dev;
  718. struct request *req = bd->rq;
  719. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  720. struct nvme_iod *iod;
  721. struct nvme_command cmnd;
  722. int ret = BLK_MQ_RQ_QUEUE_OK;
  723. /*
  724. * If formated with metadata, require the block layer provide a buffer
  725. * unless this namespace is formated such that the metadata can be
  726. * stripped/generated by the controller with PRACT=1.
  727. */
  728. if (ns && ns->ms && !blk_integrity_rq(req)) {
  729. if (!(ns->pi_type && ns->ms == 8) &&
  730. req->cmd_type != REQ_TYPE_DRV_PRIV) {
  731. blk_mq_complete_request(req, -EFAULT);
  732. return BLK_MQ_RQ_QUEUE_OK;
  733. }
  734. }
  735. iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
  736. if (!iod)
  737. return BLK_MQ_RQ_QUEUE_BUSY;
  738. if (req->cmd_flags & REQ_DISCARD) {
  739. ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
  740. } else {
  741. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  742. memcpy(&cmnd, req->cmd, sizeof(cmnd));
  743. else if (req->cmd_flags & REQ_FLUSH)
  744. nvme_setup_flush(ns, &cmnd);
  745. else
  746. nvme_setup_rw(ns, req, &cmnd);
  747. if (req->nr_phys_segments)
  748. ret = nvme_map_data(dev, iod, &cmnd);
  749. }
  750. if (ret)
  751. goto out;
  752. cmnd.common.command_id = req->tag;
  753. nvme_set_info(cmd, iod, req_completion);
  754. spin_lock_irq(&nvmeq->q_lock);
  755. __nvme_submit_cmd(nvmeq, &cmnd);
  756. nvme_process_cq(nvmeq);
  757. spin_unlock_irq(&nvmeq->q_lock);
  758. return BLK_MQ_RQ_QUEUE_OK;
  759. out:
  760. nvme_free_iod(dev, iod);
  761. return ret;
  762. }
  763. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  764. {
  765. u16 head, phase;
  766. head = nvmeq->cq_head;
  767. phase = nvmeq->cq_phase;
  768. for (;;) {
  769. void *ctx;
  770. nvme_completion_fn fn;
  771. struct nvme_completion cqe = nvmeq->cqes[head];
  772. if ((le16_to_cpu(cqe.status) & 1) != phase)
  773. break;
  774. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  775. if (++head == nvmeq->q_depth) {
  776. head = 0;
  777. phase = !phase;
  778. }
  779. if (tag && *tag == cqe.command_id)
  780. *tag = -1;
  781. ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
  782. fn(nvmeq, ctx, &cqe);
  783. }
  784. /* If the controller ignores the cq head doorbell and continuously
  785. * writes to the queue, it is theoretically possible to wrap around
  786. * the queue twice and mistakenly return IRQ_NONE. Linux only
  787. * requires that 0.1% of your interrupts are handled, so this isn't
  788. * a big problem.
  789. */
  790. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  791. return;
  792. if (likely(nvmeq->cq_vector >= 0))
  793. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  794. nvmeq->cq_head = head;
  795. nvmeq->cq_phase = phase;
  796. nvmeq->cqe_seen = 1;
  797. }
  798. static void nvme_process_cq(struct nvme_queue *nvmeq)
  799. {
  800. __nvme_process_cq(nvmeq, NULL);
  801. }
  802. static irqreturn_t nvme_irq(int irq, void *data)
  803. {
  804. irqreturn_t result;
  805. struct nvme_queue *nvmeq = data;
  806. spin_lock(&nvmeq->q_lock);
  807. nvme_process_cq(nvmeq);
  808. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  809. nvmeq->cqe_seen = 0;
  810. spin_unlock(&nvmeq->q_lock);
  811. return result;
  812. }
  813. static irqreturn_t nvme_irq_check(int irq, void *data)
  814. {
  815. struct nvme_queue *nvmeq = data;
  816. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  817. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  818. return IRQ_NONE;
  819. return IRQ_WAKE_THREAD;
  820. }
  821. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  822. {
  823. struct nvme_queue *nvmeq = hctx->driver_data;
  824. if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
  825. nvmeq->cq_phase) {
  826. spin_lock_irq(&nvmeq->q_lock);
  827. __nvme_process_cq(nvmeq, &tag);
  828. spin_unlock_irq(&nvmeq->q_lock);
  829. if (tag == -1)
  830. return 1;
  831. }
  832. return 0;
  833. }
  834. static int nvme_submit_async_admin_req(struct nvme_dev *dev)
  835. {
  836. struct nvme_queue *nvmeq = dev->queues[0];
  837. struct nvme_command c;
  838. struct nvme_cmd_info *cmd_info;
  839. struct request *req;
  840. req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
  841. BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
  842. if (IS_ERR(req))
  843. return PTR_ERR(req);
  844. req->cmd_flags |= REQ_NO_TIMEOUT;
  845. cmd_info = blk_mq_rq_to_pdu(req);
  846. nvme_set_info(cmd_info, NULL, async_req_completion);
  847. memset(&c, 0, sizeof(c));
  848. c.common.opcode = nvme_admin_async_event;
  849. c.common.command_id = req->tag;
  850. blk_mq_free_request(req);
  851. __nvme_submit_cmd(nvmeq, &c);
  852. return 0;
  853. }
  854. static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
  855. struct nvme_command *cmd,
  856. struct async_cmd_info *cmdinfo, unsigned timeout)
  857. {
  858. struct nvme_queue *nvmeq = dev->queues[0];
  859. struct request *req;
  860. struct nvme_cmd_info *cmd_rq;
  861. req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
  862. if (IS_ERR(req))
  863. return PTR_ERR(req);
  864. req->timeout = timeout;
  865. cmd_rq = blk_mq_rq_to_pdu(req);
  866. cmdinfo->req = req;
  867. nvme_set_info(cmd_rq, cmdinfo, async_completion);
  868. cmdinfo->status = -EINTR;
  869. cmd->common.command_id = req->tag;
  870. nvme_submit_cmd(nvmeq, cmd);
  871. return 0;
  872. }
  873. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  874. {
  875. struct nvme_command c;
  876. memset(&c, 0, sizeof(c));
  877. c.delete_queue.opcode = opcode;
  878. c.delete_queue.qid = cpu_to_le16(id);
  879. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  880. }
  881. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  882. struct nvme_queue *nvmeq)
  883. {
  884. struct nvme_command c;
  885. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  886. /*
  887. * Note: we (ab)use the fact the the prp fields survive if no data
  888. * is attached to the request.
  889. */
  890. memset(&c, 0, sizeof(c));
  891. c.create_cq.opcode = nvme_admin_create_cq;
  892. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  893. c.create_cq.cqid = cpu_to_le16(qid);
  894. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  895. c.create_cq.cq_flags = cpu_to_le16(flags);
  896. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  897. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  898. }
  899. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  900. struct nvme_queue *nvmeq)
  901. {
  902. struct nvme_command c;
  903. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  904. /*
  905. * Note: we (ab)use the fact the the prp fields survive if no data
  906. * is attached to the request.
  907. */
  908. memset(&c, 0, sizeof(c));
  909. c.create_sq.opcode = nvme_admin_create_sq;
  910. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  911. c.create_sq.sqid = cpu_to_le16(qid);
  912. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  913. c.create_sq.sq_flags = cpu_to_le16(flags);
  914. c.create_sq.cqid = cpu_to_le16(qid);
  915. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  916. }
  917. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  918. {
  919. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  920. }
  921. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  922. {
  923. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  924. }
  925. /**
  926. * nvme_abort_req - Attempt aborting a request
  927. *
  928. * Schedule controller reset if the command was already aborted once before and
  929. * still hasn't been returned to the driver, or if this is the admin queue.
  930. */
  931. static void nvme_abort_req(struct request *req)
  932. {
  933. struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
  934. struct nvme_queue *nvmeq = cmd_rq->nvmeq;
  935. struct nvme_dev *dev = nvmeq->dev;
  936. struct request *abort_req;
  937. struct nvme_cmd_info *abort_cmd;
  938. struct nvme_command cmd;
  939. if (!nvmeq->qid || cmd_rq->aborted) {
  940. spin_lock(&dev_list_lock);
  941. if (!__nvme_reset(dev)) {
  942. dev_warn(dev->dev,
  943. "I/O %d QID %d timeout, reset controller\n",
  944. req->tag, nvmeq->qid);
  945. }
  946. spin_unlock(&dev_list_lock);
  947. return;
  948. }
  949. if (!dev->ctrl.abort_limit)
  950. return;
  951. abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
  952. BLK_MQ_REQ_NOWAIT);
  953. if (IS_ERR(abort_req))
  954. return;
  955. abort_cmd = blk_mq_rq_to_pdu(abort_req);
  956. nvme_set_info(abort_cmd, abort_req, abort_completion);
  957. memset(&cmd, 0, sizeof(cmd));
  958. cmd.abort.opcode = nvme_admin_abort_cmd;
  959. cmd.abort.cid = req->tag;
  960. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  961. cmd.abort.command_id = abort_req->tag;
  962. --dev->ctrl.abort_limit;
  963. cmd_rq->aborted = 1;
  964. dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
  965. nvmeq->qid);
  966. nvme_submit_cmd(dev->queues[0], &cmd);
  967. }
  968. static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
  969. {
  970. struct nvme_queue *nvmeq = data;
  971. void *ctx;
  972. nvme_completion_fn fn;
  973. struct nvme_cmd_info *cmd;
  974. struct nvme_completion cqe;
  975. if (!blk_mq_request_started(req))
  976. return;
  977. cmd = blk_mq_rq_to_pdu(req);
  978. if (cmd->ctx == CMD_CTX_CANCELLED)
  979. return;
  980. if (blk_queue_dying(req->q))
  981. cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
  982. else
  983. cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
  984. dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
  985. req->tag, nvmeq->qid);
  986. ctx = cancel_cmd_info(cmd, &fn);
  987. fn(nvmeq, ctx, &cqe);
  988. }
  989. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  990. {
  991. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  992. struct nvme_queue *nvmeq = cmd->nvmeq;
  993. dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
  994. nvmeq->qid);
  995. spin_lock_irq(&nvmeq->q_lock);
  996. nvme_abort_req(req);
  997. spin_unlock_irq(&nvmeq->q_lock);
  998. /*
  999. * The aborted req will be completed on receiving the abort req.
  1000. * We enable the timer again. If hit twice, it'll cause a device reset,
  1001. * as the device then is in a faulty state.
  1002. */
  1003. return BLK_EH_RESET_TIMER;
  1004. }
  1005. static void nvme_free_queue(struct nvme_queue *nvmeq)
  1006. {
  1007. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  1008. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  1009. if (nvmeq->sq_cmds)
  1010. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  1011. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  1012. kfree(nvmeq);
  1013. }
  1014. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  1015. {
  1016. int i;
  1017. for (i = dev->queue_count - 1; i >= lowest; i--) {
  1018. struct nvme_queue *nvmeq = dev->queues[i];
  1019. dev->queue_count--;
  1020. dev->queues[i] = NULL;
  1021. nvme_free_queue(nvmeq);
  1022. }
  1023. }
  1024. /**
  1025. * nvme_suspend_queue - put queue into suspended state
  1026. * @nvmeq - queue to suspend
  1027. */
  1028. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  1029. {
  1030. int vector;
  1031. spin_lock_irq(&nvmeq->q_lock);
  1032. if (nvmeq->cq_vector == -1) {
  1033. spin_unlock_irq(&nvmeq->q_lock);
  1034. return 1;
  1035. }
  1036. vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
  1037. nvmeq->dev->online_queues--;
  1038. nvmeq->cq_vector = -1;
  1039. spin_unlock_irq(&nvmeq->q_lock);
  1040. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  1041. blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
  1042. irq_set_affinity_hint(vector, NULL);
  1043. free_irq(vector, nvmeq);
  1044. return 0;
  1045. }
  1046. static void nvme_clear_queue(struct nvme_queue *nvmeq)
  1047. {
  1048. spin_lock_irq(&nvmeq->q_lock);
  1049. if (nvmeq->tags && *nvmeq->tags)
  1050. blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
  1051. spin_unlock_irq(&nvmeq->q_lock);
  1052. }
  1053. static void nvme_disable_queue(struct nvme_dev *dev, int qid)
  1054. {
  1055. struct nvme_queue *nvmeq = dev->queues[qid];
  1056. if (!nvmeq)
  1057. return;
  1058. if (nvme_suspend_queue(nvmeq))
  1059. return;
  1060. /* Don't tell the adapter to delete the admin queue.
  1061. * Don't tell a removed adapter to delete IO queues. */
  1062. if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
  1063. adapter_delete_sq(dev, qid);
  1064. adapter_delete_cq(dev, qid);
  1065. }
  1066. spin_lock_irq(&nvmeq->q_lock);
  1067. nvme_process_cq(nvmeq);
  1068. spin_unlock_irq(&nvmeq->q_lock);
  1069. }
  1070. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  1071. int entry_size)
  1072. {
  1073. int q_depth = dev->q_depth;
  1074. unsigned q_size_aligned = roundup(q_depth * entry_size,
  1075. dev->ctrl.page_size);
  1076. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  1077. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  1078. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  1079. q_depth = div_u64(mem_per_q, entry_size);
  1080. /*
  1081. * Ensure the reduced q_depth is above some threshold where it
  1082. * would be better to map queues in system memory with the
  1083. * original depth
  1084. */
  1085. if (q_depth < 64)
  1086. return -ENOMEM;
  1087. }
  1088. return q_depth;
  1089. }
  1090. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1091. int qid, int depth)
  1092. {
  1093. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  1094. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  1095. dev->ctrl.page_size);
  1096. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  1097. nvmeq->sq_cmds_io = dev->cmb + offset;
  1098. } else {
  1099. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  1100. &nvmeq->sq_dma_addr, GFP_KERNEL);
  1101. if (!nvmeq->sq_cmds)
  1102. return -ENOMEM;
  1103. }
  1104. return 0;
  1105. }
  1106. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  1107. int depth)
  1108. {
  1109. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
  1110. if (!nvmeq)
  1111. return NULL;
  1112. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1113. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1114. if (!nvmeq->cqes)
  1115. goto free_nvmeq;
  1116. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1117. goto free_cqdma;
  1118. nvmeq->q_dmadev = dev->dev;
  1119. nvmeq->dev = dev;
  1120. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  1121. dev->ctrl.instance, qid);
  1122. spin_lock_init(&nvmeq->q_lock);
  1123. nvmeq->cq_head = 0;
  1124. nvmeq->cq_phase = 1;
  1125. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1126. nvmeq->q_depth = depth;
  1127. nvmeq->qid = qid;
  1128. nvmeq->cq_vector = -1;
  1129. dev->queues[qid] = nvmeq;
  1130. /* make sure queue descriptor is set before queue count, for kthread */
  1131. mb();
  1132. dev->queue_count++;
  1133. return nvmeq;
  1134. free_cqdma:
  1135. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1136. nvmeq->cq_dma_addr);
  1137. free_nvmeq:
  1138. kfree(nvmeq);
  1139. return NULL;
  1140. }
  1141. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1142. const char *name)
  1143. {
  1144. if (use_threaded_interrupts)
  1145. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  1146. nvme_irq_check, nvme_irq, IRQF_SHARED,
  1147. name, nvmeq);
  1148. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  1149. IRQF_SHARED, name, nvmeq);
  1150. }
  1151. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1152. {
  1153. struct nvme_dev *dev = nvmeq->dev;
  1154. spin_lock_irq(&nvmeq->q_lock);
  1155. nvmeq->sq_tail = 0;
  1156. nvmeq->cq_head = 0;
  1157. nvmeq->cq_phase = 1;
  1158. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1159. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1160. dev->online_queues++;
  1161. spin_unlock_irq(&nvmeq->q_lock);
  1162. }
  1163. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1164. {
  1165. struct nvme_dev *dev = nvmeq->dev;
  1166. int result;
  1167. nvmeq->cq_vector = qid - 1;
  1168. result = adapter_alloc_cq(dev, qid, nvmeq);
  1169. if (result < 0)
  1170. return result;
  1171. result = adapter_alloc_sq(dev, qid, nvmeq);
  1172. if (result < 0)
  1173. goto release_cq;
  1174. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1175. if (result < 0)
  1176. goto release_sq;
  1177. nvme_init_queue(nvmeq, qid);
  1178. return result;
  1179. release_sq:
  1180. adapter_delete_sq(dev, qid);
  1181. release_cq:
  1182. adapter_delete_cq(dev, qid);
  1183. return result;
  1184. }
  1185. static struct blk_mq_ops nvme_mq_admin_ops = {
  1186. .queue_rq = nvme_queue_rq,
  1187. .map_queue = blk_mq_map_queue,
  1188. .init_hctx = nvme_admin_init_hctx,
  1189. .exit_hctx = nvme_admin_exit_hctx,
  1190. .init_request = nvme_admin_init_request,
  1191. .timeout = nvme_timeout,
  1192. };
  1193. static struct blk_mq_ops nvme_mq_ops = {
  1194. .queue_rq = nvme_queue_rq,
  1195. .map_queue = blk_mq_map_queue,
  1196. .init_hctx = nvme_init_hctx,
  1197. .init_request = nvme_init_request,
  1198. .timeout = nvme_timeout,
  1199. .poll = nvme_poll,
  1200. };
  1201. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1202. {
  1203. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1204. blk_cleanup_queue(dev->ctrl.admin_q);
  1205. blk_mq_free_tag_set(&dev->admin_tagset);
  1206. }
  1207. }
  1208. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1209. {
  1210. if (!dev->ctrl.admin_q) {
  1211. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1212. dev->admin_tagset.nr_hw_queues = 1;
  1213. dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
  1214. dev->admin_tagset.reserved_tags = 1;
  1215. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1216. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1217. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1218. dev->admin_tagset.driver_data = dev;
  1219. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1220. return -ENOMEM;
  1221. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1222. if (IS_ERR(dev->ctrl.admin_q)) {
  1223. blk_mq_free_tag_set(&dev->admin_tagset);
  1224. return -ENOMEM;
  1225. }
  1226. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1227. nvme_dev_remove_admin(dev);
  1228. dev->ctrl.admin_q = NULL;
  1229. return -ENODEV;
  1230. }
  1231. } else
  1232. blk_mq_unfreeze_queue(dev->ctrl.admin_q);
  1233. return 0;
  1234. }
  1235. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1236. {
  1237. int result;
  1238. u32 aqa;
  1239. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1240. struct nvme_queue *nvmeq;
  1241. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
  1242. NVME_CAP_NSSRC(cap) : 0;
  1243. if (dev->subsystem &&
  1244. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1245. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1246. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1247. if (result < 0)
  1248. return result;
  1249. nvmeq = dev->queues[0];
  1250. if (!nvmeq) {
  1251. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1252. if (!nvmeq)
  1253. return -ENOMEM;
  1254. }
  1255. aqa = nvmeq->q_depth - 1;
  1256. aqa |= aqa << 16;
  1257. writel(aqa, dev->bar + NVME_REG_AQA);
  1258. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1259. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1260. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1261. if (result)
  1262. goto free_nvmeq;
  1263. nvmeq->cq_vector = 0;
  1264. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1265. if (result) {
  1266. nvmeq->cq_vector = -1;
  1267. goto free_nvmeq;
  1268. }
  1269. return result;
  1270. free_nvmeq:
  1271. nvme_free_queues(dev, 0);
  1272. return result;
  1273. }
  1274. static int nvme_kthread(void *data)
  1275. {
  1276. struct nvme_dev *dev, *next;
  1277. while (!kthread_should_stop()) {
  1278. set_current_state(TASK_INTERRUPTIBLE);
  1279. spin_lock(&dev_list_lock);
  1280. list_for_each_entry_safe(dev, next, &dev_list, node) {
  1281. int i;
  1282. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1283. if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
  1284. csts & NVME_CSTS_CFS) {
  1285. if (!__nvme_reset(dev)) {
  1286. dev_warn(dev->dev,
  1287. "Failed status: %x, reset controller\n",
  1288. readl(dev->bar + NVME_REG_CSTS));
  1289. }
  1290. continue;
  1291. }
  1292. for (i = 0; i < dev->queue_count; i++) {
  1293. struct nvme_queue *nvmeq = dev->queues[i];
  1294. if (!nvmeq)
  1295. continue;
  1296. spin_lock_irq(&nvmeq->q_lock);
  1297. nvme_process_cq(nvmeq);
  1298. while (i == 0 && dev->ctrl.event_limit > 0) {
  1299. if (nvme_submit_async_admin_req(dev))
  1300. break;
  1301. dev->ctrl.event_limit--;
  1302. }
  1303. spin_unlock_irq(&nvmeq->q_lock);
  1304. }
  1305. }
  1306. spin_unlock(&dev_list_lock);
  1307. schedule_timeout(round_jiffies_relative(HZ));
  1308. }
  1309. return 0;
  1310. }
  1311. /*
  1312. * Create I/O queues. Failing to create an I/O queue is not an issue,
  1313. * we can continue with less than the desired amount of queues, and
  1314. * even a controller without I/O queues an still be used to issue
  1315. * admin commands. This might be useful to upgrade a buggy firmware
  1316. * for example.
  1317. */
  1318. static void nvme_create_io_queues(struct nvme_dev *dev)
  1319. {
  1320. unsigned i;
  1321. for (i = dev->queue_count; i <= dev->max_qid; i++)
  1322. if (!nvme_alloc_queue(dev, i, dev->q_depth))
  1323. break;
  1324. for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
  1325. if (nvme_create_queue(dev->queues[i], i)) {
  1326. nvme_free_queues(dev, i);
  1327. break;
  1328. }
  1329. }
  1330. static int set_queue_count(struct nvme_dev *dev, int count)
  1331. {
  1332. int status;
  1333. u32 result;
  1334. u32 q_count = (count - 1) | ((count - 1) << 16);
  1335. status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
  1336. &result);
  1337. if (status < 0)
  1338. return status;
  1339. if (status > 0) {
  1340. dev_err(dev->dev, "Could not set queue count (%d)\n", status);
  1341. return 0;
  1342. }
  1343. return min(result & 0xffff, result >> 16) + 1;
  1344. }
  1345. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1346. {
  1347. u64 szu, size, offset;
  1348. u32 cmbloc;
  1349. resource_size_t bar_size;
  1350. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1351. void __iomem *cmb;
  1352. dma_addr_t dma_addr;
  1353. if (!use_cmb_sqes)
  1354. return NULL;
  1355. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1356. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1357. return NULL;
  1358. cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1359. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1360. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1361. offset = szu * NVME_CMB_OFST(cmbloc);
  1362. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
  1363. if (offset > bar_size)
  1364. return NULL;
  1365. /*
  1366. * Controllers may support a CMB size larger than their BAR,
  1367. * for example, due to being behind a bridge. Reduce the CMB to
  1368. * the reported size of the BAR
  1369. */
  1370. if (size > bar_size - offset)
  1371. size = bar_size - offset;
  1372. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
  1373. cmb = ioremap_wc(dma_addr, size);
  1374. if (!cmb)
  1375. return NULL;
  1376. dev->cmb_dma_addr = dma_addr;
  1377. dev->cmb_size = size;
  1378. return cmb;
  1379. }
  1380. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1381. {
  1382. if (dev->cmb) {
  1383. iounmap(dev->cmb);
  1384. dev->cmb = NULL;
  1385. }
  1386. }
  1387. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1388. {
  1389. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1390. }
  1391. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1392. {
  1393. struct nvme_queue *adminq = dev->queues[0];
  1394. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1395. int result, i, vecs, nr_io_queues, size;
  1396. nr_io_queues = num_possible_cpus();
  1397. result = set_queue_count(dev, nr_io_queues);
  1398. if (result <= 0)
  1399. return result;
  1400. if (result < nr_io_queues)
  1401. nr_io_queues = result;
  1402. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1403. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1404. sizeof(struct nvme_command));
  1405. if (result > 0)
  1406. dev->q_depth = result;
  1407. else
  1408. nvme_release_cmb(dev);
  1409. }
  1410. size = db_bar_size(dev, nr_io_queues);
  1411. if (size > 8192) {
  1412. iounmap(dev->bar);
  1413. do {
  1414. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1415. if (dev->bar)
  1416. break;
  1417. if (!--nr_io_queues)
  1418. return -ENOMEM;
  1419. size = db_bar_size(dev, nr_io_queues);
  1420. } while (1);
  1421. dev->dbs = dev->bar + 4096;
  1422. adminq->q_db = dev->dbs;
  1423. }
  1424. /* Deregister the admin queue's interrupt */
  1425. free_irq(dev->entry[0].vector, adminq);
  1426. /*
  1427. * If we enable msix early due to not intx, disable it again before
  1428. * setting up the full range we need.
  1429. */
  1430. if (!pdev->irq)
  1431. pci_disable_msix(pdev);
  1432. for (i = 0; i < nr_io_queues; i++)
  1433. dev->entry[i].entry = i;
  1434. vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
  1435. if (vecs < 0) {
  1436. vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
  1437. if (vecs < 0) {
  1438. vecs = 1;
  1439. } else {
  1440. for (i = 0; i < vecs; i++)
  1441. dev->entry[i].vector = i + pdev->irq;
  1442. }
  1443. }
  1444. /*
  1445. * Should investigate if there's a performance win from allocating
  1446. * more queues than interrupt vectors; it might allow the submission
  1447. * path to scale better, even if the receive path is limited by the
  1448. * number of interrupts.
  1449. */
  1450. nr_io_queues = vecs;
  1451. dev->max_qid = nr_io_queues;
  1452. result = queue_request_irq(dev, adminq, adminq->irqname);
  1453. if (result) {
  1454. adminq->cq_vector = -1;
  1455. goto free_queues;
  1456. }
  1457. /* Free previously allocated queues that are no longer usable */
  1458. nvme_free_queues(dev, nr_io_queues + 1);
  1459. nvme_create_io_queues(dev);
  1460. return 0;
  1461. free_queues:
  1462. nvme_free_queues(dev, 1);
  1463. return result;
  1464. }
  1465. static void nvme_set_irq_hints(struct nvme_dev *dev)
  1466. {
  1467. struct nvme_queue *nvmeq;
  1468. int i;
  1469. for (i = 0; i < dev->online_queues; i++) {
  1470. nvmeq = dev->queues[i];
  1471. if (!nvmeq->tags || !(*nvmeq->tags))
  1472. continue;
  1473. irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
  1474. blk_mq_tags_cpumask(*nvmeq->tags));
  1475. }
  1476. }
  1477. static void nvme_dev_scan(struct work_struct *work)
  1478. {
  1479. struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
  1480. if (!dev->tagset.tags)
  1481. return;
  1482. nvme_scan_namespaces(&dev->ctrl);
  1483. nvme_set_irq_hints(dev);
  1484. }
  1485. /*
  1486. * Return: error value if an error occurred setting up the queues or calling
  1487. * Identify Device. 0 if these succeeded, even if adding some of the
  1488. * namespaces failed. At the moment, these failures are silent. TBD which
  1489. * failures should be reported.
  1490. */
  1491. static int nvme_dev_add(struct nvme_dev *dev)
  1492. {
  1493. if (!dev->ctrl.tagset) {
  1494. dev->tagset.ops = &nvme_mq_ops;
  1495. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1496. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1497. dev->tagset.numa_node = dev_to_node(dev->dev);
  1498. dev->tagset.queue_depth =
  1499. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1500. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1501. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1502. dev->tagset.driver_data = dev;
  1503. if (blk_mq_alloc_tag_set(&dev->tagset))
  1504. return 0;
  1505. dev->ctrl.tagset = &dev->tagset;
  1506. }
  1507. schedule_work(&dev->scan_work);
  1508. return 0;
  1509. }
  1510. static int nvme_dev_map(struct nvme_dev *dev)
  1511. {
  1512. u64 cap;
  1513. int bars, result = -ENOMEM;
  1514. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1515. if (pci_enable_device_mem(pdev))
  1516. return result;
  1517. dev->entry[0].vector = pdev->irq;
  1518. pci_set_master(pdev);
  1519. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1520. if (!bars)
  1521. goto disable_pci;
  1522. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1523. goto disable_pci;
  1524. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1525. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1526. goto disable;
  1527. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1528. if (!dev->bar)
  1529. goto disable;
  1530. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1531. result = -ENODEV;
  1532. goto unmap;
  1533. }
  1534. /*
  1535. * Some devices don't advertse INTx interrupts, pre-enable a single
  1536. * MSIX vec for setup. We'll adjust this later.
  1537. */
  1538. if (!pdev->irq) {
  1539. result = pci_enable_msix(pdev, dev->entry, 1);
  1540. if (result < 0)
  1541. goto unmap;
  1542. }
  1543. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1544. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1545. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1546. dev->dbs = dev->bar + 4096;
  1547. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
  1548. dev->cmb = nvme_map_cmb(dev);
  1549. return 0;
  1550. unmap:
  1551. iounmap(dev->bar);
  1552. dev->bar = NULL;
  1553. disable:
  1554. pci_release_regions(pdev);
  1555. disable_pci:
  1556. pci_disable_device(pdev);
  1557. return result;
  1558. }
  1559. static void nvme_dev_unmap(struct nvme_dev *dev)
  1560. {
  1561. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1562. if (pdev->msi_enabled)
  1563. pci_disable_msi(pdev);
  1564. else if (pdev->msix_enabled)
  1565. pci_disable_msix(pdev);
  1566. if (dev->bar) {
  1567. iounmap(dev->bar);
  1568. dev->bar = NULL;
  1569. pci_release_regions(pdev);
  1570. }
  1571. if (pci_is_enabled(pdev))
  1572. pci_disable_device(pdev);
  1573. }
  1574. struct nvme_delq_ctx {
  1575. struct task_struct *waiter;
  1576. struct kthread_worker *worker;
  1577. atomic_t refcount;
  1578. };
  1579. static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
  1580. {
  1581. dq->waiter = current;
  1582. mb();
  1583. for (;;) {
  1584. set_current_state(TASK_KILLABLE);
  1585. if (!atomic_read(&dq->refcount))
  1586. break;
  1587. if (!schedule_timeout(ADMIN_TIMEOUT) ||
  1588. fatal_signal_pending(current)) {
  1589. /*
  1590. * Disable the controller first since we can't trust it
  1591. * at this point, but leave the admin queue enabled
  1592. * until all queue deletion requests are flushed.
  1593. * FIXME: This may take a while if there are more h/w
  1594. * queues than admin tags.
  1595. */
  1596. set_current_state(TASK_RUNNING);
  1597. nvme_disable_ctrl(&dev->ctrl,
  1598. lo_hi_readq(dev->bar + NVME_REG_CAP));
  1599. nvme_clear_queue(dev->queues[0]);
  1600. flush_kthread_worker(dq->worker);
  1601. nvme_disable_queue(dev, 0);
  1602. return;
  1603. }
  1604. }
  1605. set_current_state(TASK_RUNNING);
  1606. }
  1607. static void nvme_put_dq(struct nvme_delq_ctx *dq)
  1608. {
  1609. atomic_dec(&dq->refcount);
  1610. if (dq->waiter)
  1611. wake_up_process(dq->waiter);
  1612. }
  1613. static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
  1614. {
  1615. atomic_inc(&dq->refcount);
  1616. return dq;
  1617. }
  1618. static void nvme_del_queue_end(struct nvme_queue *nvmeq)
  1619. {
  1620. struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
  1621. nvme_put_dq(dq);
  1622. spin_lock_irq(&nvmeq->q_lock);
  1623. nvme_process_cq(nvmeq);
  1624. spin_unlock_irq(&nvmeq->q_lock);
  1625. }
  1626. static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
  1627. kthread_work_func_t fn)
  1628. {
  1629. struct nvme_command c;
  1630. memset(&c, 0, sizeof(c));
  1631. c.delete_queue.opcode = opcode;
  1632. c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1633. init_kthread_work(&nvmeq->cmdinfo.work, fn);
  1634. return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
  1635. ADMIN_TIMEOUT);
  1636. }
  1637. static void nvme_del_cq_work_handler(struct kthread_work *work)
  1638. {
  1639. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  1640. cmdinfo.work);
  1641. nvme_del_queue_end(nvmeq);
  1642. }
  1643. static int nvme_delete_cq(struct nvme_queue *nvmeq)
  1644. {
  1645. return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
  1646. nvme_del_cq_work_handler);
  1647. }
  1648. static void nvme_del_sq_work_handler(struct kthread_work *work)
  1649. {
  1650. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  1651. cmdinfo.work);
  1652. int status = nvmeq->cmdinfo.status;
  1653. if (!status)
  1654. status = nvme_delete_cq(nvmeq);
  1655. if (status)
  1656. nvme_del_queue_end(nvmeq);
  1657. }
  1658. static int nvme_delete_sq(struct nvme_queue *nvmeq)
  1659. {
  1660. return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
  1661. nvme_del_sq_work_handler);
  1662. }
  1663. static void nvme_del_queue_start(struct kthread_work *work)
  1664. {
  1665. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  1666. cmdinfo.work);
  1667. if (nvme_delete_sq(nvmeq))
  1668. nvme_del_queue_end(nvmeq);
  1669. }
  1670. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1671. {
  1672. int i;
  1673. DEFINE_KTHREAD_WORKER_ONSTACK(worker);
  1674. struct nvme_delq_ctx dq;
  1675. struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
  1676. &worker, "nvme%d", dev->ctrl.instance);
  1677. if (IS_ERR(kworker_task)) {
  1678. dev_err(dev->dev,
  1679. "Failed to create queue del task\n");
  1680. for (i = dev->queue_count - 1; i > 0; i--)
  1681. nvme_disable_queue(dev, i);
  1682. return;
  1683. }
  1684. dq.waiter = NULL;
  1685. atomic_set(&dq.refcount, 0);
  1686. dq.worker = &worker;
  1687. for (i = dev->queue_count - 1; i > 0; i--) {
  1688. struct nvme_queue *nvmeq = dev->queues[i];
  1689. if (nvme_suspend_queue(nvmeq))
  1690. continue;
  1691. nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
  1692. nvmeq->cmdinfo.worker = dq.worker;
  1693. init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
  1694. queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
  1695. }
  1696. nvme_wait_dq(&dq, dev);
  1697. kthread_stop(kworker_task);
  1698. }
  1699. /*
  1700. * Remove the node from the device list and check
  1701. * for whether or not we need to stop the nvme_thread.
  1702. */
  1703. static void nvme_dev_list_remove(struct nvme_dev *dev)
  1704. {
  1705. struct task_struct *tmp = NULL;
  1706. spin_lock(&dev_list_lock);
  1707. list_del_init(&dev->node);
  1708. if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
  1709. tmp = nvme_thread;
  1710. nvme_thread = NULL;
  1711. }
  1712. spin_unlock(&dev_list_lock);
  1713. if (tmp)
  1714. kthread_stop(tmp);
  1715. }
  1716. static void nvme_freeze_queues(struct nvme_dev *dev)
  1717. {
  1718. struct nvme_ns *ns;
  1719. list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
  1720. blk_mq_freeze_queue_start(ns->queue);
  1721. spin_lock_irq(ns->queue->queue_lock);
  1722. queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
  1723. spin_unlock_irq(ns->queue->queue_lock);
  1724. blk_mq_cancel_requeue_work(ns->queue);
  1725. blk_mq_stop_hw_queues(ns->queue);
  1726. }
  1727. }
  1728. static void nvme_unfreeze_queues(struct nvme_dev *dev)
  1729. {
  1730. struct nvme_ns *ns;
  1731. list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
  1732. queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
  1733. blk_mq_unfreeze_queue(ns->queue);
  1734. blk_mq_start_stopped_hw_queues(ns->queue, true);
  1735. blk_mq_kick_requeue_list(ns->queue);
  1736. }
  1737. }
  1738. static void nvme_dev_shutdown(struct nvme_dev *dev)
  1739. {
  1740. int i;
  1741. u32 csts = -1;
  1742. nvme_dev_list_remove(dev);
  1743. if (dev->bar) {
  1744. nvme_freeze_queues(dev);
  1745. csts = readl(dev->bar + NVME_REG_CSTS);
  1746. }
  1747. if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
  1748. for (i = dev->queue_count - 1; i >= 0; i--) {
  1749. struct nvme_queue *nvmeq = dev->queues[i];
  1750. nvme_suspend_queue(nvmeq);
  1751. }
  1752. } else {
  1753. nvme_disable_io_queues(dev);
  1754. nvme_shutdown_ctrl(&dev->ctrl);
  1755. nvme_disable_queue(dev, 0);
  1756. }
  1757. nvme_dev_unmap(dev);
  1758. for (i = dev->queue_count - 1; i >= 0; i--)
  1759. nvme_clear_queue(dev->queues[i]);
  1760. }
  1761. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1762. {
  1763. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1764. PAGE_SIZE, PAGE_SIZE, 0);
  1765. if (!dev->prp_page_pool)
  1766. return -ENOMEM;
  1767. /* Optimisation for I/Os between 4k and 128k */
  1768. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1769. 256, 256, 0);
  1770. if (!dev->prp_small_pool) {
  1771. dma_pool_destroy(dev->prp_page_pool);
  1772. return -ENOMEM;
  1773. }
  1774. return 0;
  1775. }
  1776. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1777. {
  1778. dma_pool_destroy(dev->prp_page_pool);
  1779. dma_pool_destroy(dev->prp_small_pool);
  1780. }
  1781. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1782. {
  1783. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1784. put_device(dev->dev);
  1785. if (dev->tagset.tags)
  1786. blk_mq_free_tag_set(&dev->tagset);
  1787. if (dev->ctrl.admin_q)
  1788. blk_put_queue(dev->ctrl.admin_q);
  1789. kfree(dev->queues);
  1790. kfree(dev->entry);
  1791. kfree(dev);
  1792. }
  1793. static void nvme_probe_work(struct work_struct *work)
  1794. {
  1795. struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
  1796. bool start_thread = false;
  1797. int result;
  1798. result = nvme_dev_map(dev);
  1799. if (result)
  1800. goto out;
  1801. result = nvme_configure_admin_queue(dev);
  1802. if (result)
  1803. goto unmap;
  1804. spin_lock(&dev_list_lock);
  1805. if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
  1806. start_thread = true;
  1807. nvme_thread = NULL;
  1808. }
  1809. list_add(&dev->node, &dev_list);
  1810. spin_unlock(&dev_list_lock);
  1811. if (start_thread) {
  1812. nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
  1813. wake_up_all(&nvme_kthread_wait);
  1814. } else
  1815. wait_event_killable(nvme_kthread_wait, nvme_thread);
  1816. if (IS_ERR_OR_NULL(nvme_thread)) {
  1817. result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
  1818. goto disable;
  1819. }
  1820. nvme_init_queue(dev->queues[0], 0);
  1821. result = nvme_alloc_admin_tags(dev);
  1822. if (result)
  1823. goto disable;
  1824. result = nvme_init_identify(&dev->ctrl);
  1825. if (result)
  1826. goto free_tags;
  1827. result = nvme_setup_io_queues(dev);
  1828. if (result)
  1829. goto free_tags;
  1830. dev->ctrl.event_limit = 1;
  1831. /*
  1832. * Keep the controller around but remove all namespaces if we don't have
  1833. * any working I/O queue.
  1834. */
  1835. if (dev->online_queues < 2) {
  1836. dev_warn(dev->dev, "IO queues not created\n");
  1837. nvme_remove_namespaces(&dev->ctrl);
  1838. } else {
  1839. nvme_unfreeze_queues(dev);
  1840. nvme_dev_add(dev);
  1841. }
  1842. return;
  1843. free_tags:
  1844. nvme_dev_remove_admin(dev);
  1845. blk_put_queue(dev->ctrl.admin_q);
  1846. dev->ctrl.admin_q = NULL;
  1847. dev->queues[0]->tags = NULL;
  1848. disable:
  1849. nvme_disable_queue(dev, 0);
  1850. nvme_dev_list_remove(dev);
  1851. unmap:
  1852. nvme_dev_unmap(dev);
  1853. out:
  1854. if (!work_busy(&dev->reset_work))
  1855. nvme_dead_ctrl(dev);
  1856. }
  1857. static int nvme_remove_dead_ctrl(void *arg)
  1858. {
  1859. struct nvme_dev *dev = (struct nvme_dev *)arg;
  1860. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1861. if (pci_get_drvdata(pdev))
  1862. pci_stop_and_remove_bus_device_locked(pdev);
  1863. nvme_put_ctrl(&dev->ctrl);
  1864. return 0;
  1865. }
  1866. static void nvme_dead_ctrl(struct nvme_dev *dev)
  1867. {
  1868. dev_warn(dev->dev, "Device failed to resume\n");
  1869. kref_get(&dev->ctrl.kref);
  1870. if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
  1871. dev->ctrl.instance))) {
  1872. dev_err(dev->dev,
  1873. "Failed to start controller remove task\n");
  1874. nvme_put_ctrl(&dev->ctrl);
  1875. }
  1876. }
  1877. static void nvme_reset_work(struct work_struct *ws)
  1878. {
  1879. struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
  1880. bool in_probe = work_busy(&dev->probe_work);
  1881. nvme_dev_shutdown(dev);
  1882. /* Synchronize with device probe so that work will see failure status
  1883. * and exit gracefully without trying to schedule another reset */
  1884. flush_work(&dev->probe_work);
  1885. /* Fail this device if reset occured during probe to avoid
  1886. * infinite initialization loops. */
  1887. if (in_probe) {
  1888. nvme_dead_ctrl(dev);
  1889. return;
  1890. }
  1891. /* Schedule device resume asynchronously so the reset work is available
  1892. * to cleanup errors that may occur during reinitialization */
  1893. schedule_work(&dev->probe_work);
  1894. }
  1895. static int __nvme_reset(struct nvme_dev *dev)
  1896. {
  1897. if (work_pending(&dev->reset_work))
  1898. return -EBUSY;
  1899. list_del_init(&dev->node);
  1900. queue_work(nvme_workq, &dev->reset_work);
  1901. return 0;
  1902. }
  1903. static int nvme_reset(struct nvme_dev *dev)
  1904. {
  1905. int ret;
  1906. if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
  1907. return -ENODEV;
  1908. spin_lock(&dev_list_lock);
  1909. ret = __nvme_reset(dev);
  1910. spin_unlock(&dev_list_lock);
  1911. if (!ret) {
  1912. flush_work(&dev->reset_work);
  1913. flush_work(&dev->probe_work);
  1914. return 0;
  1915. }
  1916. return ret;
  1917. }
  1918. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1919. {
  1920. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1921. return 0;
  1922. }
  1923. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1924. {
  1925. writel(val, to_nvme_dev(ctrl)->bar + off);
  1926. return 0;
  1927. }
  1928. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1929. {
  1930. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1931. return 0;
  1932. }
  1933. static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
  1934. {
  1935. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1936. return !dev->bar || dev->online_queues < 2;
  1937. }
  1938. static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
  1939. {
  1940. return nvme_reset(to_nvme_dev(ctrl));
  1941. }
  1942. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1943. .reg_read32 = nvme_pci_reg_read32,
  1944. .reg_write32 = nvme_pci_reg_write32,
  1945. .reg_read64 = nvme_pci_reg_read64,
  1946. .io_incapable = nvme_pci_io_incapable,
  1947. .reset_ctrl = nvme_pci_reset_ctrl,
  1948. .free_ctrl = nvme_pci_free_ctrl,
  1949. };
  1950. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1951. {
  1952. int node, result = -ENOMEM;
  1953. struct nvme_dev *dev;
  1954. node = dev_to_node(&pdev->dev);
  1955. if (node == NUMA_NO_NODE)
  1956. set_dev_node(&pdev->dev, 0);
  1957. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1958. if (!dev)
  1959. return -ENOMEM;
  1960. dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
  1961. GFP_KERNEL, node);
  1962. if (!dev->entry)
  1963. goto free;
  1964. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1965. GFP_KERNEL, node);
  1966. if (!dev->queues)
  1967. goto free;
  1968. dev->dev = get_device(&pdev->dev);
  1969. pci_set_drvdata(pdev, dev);
  1970. INIT_LIST_HEAD(&dev->node);
  1971. INIT_WORK(&dev->scan_work, nvme_dev_scan);
  1972. INIT_WORK(&dev->probe_work, nvme_probe_work);
  1973. INIT_WORK(&dev->reset_work, nvme_reset_work);
  1974. result = nvme_setup_prp_pools(dev);
  1975. if (result)
  1976. goto put_pci;
  1977. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1978. id->driver_data);
  1979. if (result)
  1980. goto release_pools;
  1981. schedule_work(&dev->probe_work);
  1982. return 0;
  1983. release_pools:
  1984. nvme_release_prp_pools(dev);
  1985. put_pci:
  1986. put_device(dev->dev);
  1987. free:
  1988. kfree(dev->queues);
  1989. kfree(dev->entry);
  1990. kfree(dev);
  1991. return result;
  1992. }
  1993. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  1994. {
  1995. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1996. if (prepare)
  1997. nvme_dev_shutdown(dev);
  1998. else
  1999. schedule_work(&dev->probe_work);
  2000. }
  2001. static void nvme_shutdown(struct pci_dev *pdev)
  2002. {
  2003. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2004. nvme_dev_shutdown(dev);
  2005. }
  2006. static void nvme_remove(struct pci_dev *pdev)
  2007. {
  2008. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2009. spin_lock(&dev_list_lock);
  2010. list_del_init(&dev->node);
  2011. spin_unlock(&dev_list_lock);
  2012. pci_set_drvdata(pdev, NULL);
  2013. flush_work(&dev->probe_work);
  2014. flush_work(&dev->reset_work);
  2015. flush_work(&dev->scan_work);
  2016. nvme_remove_namespaces(&dev->ctrl);
  2017. nvme_dev_shutdown(dev);
  2018. nvme_dev_remove_admin(dev);
  2019. nvme_free_queues(dev, 0);
  2020. nvme_release_cmb(dev);
  2021. nvme_release_prp_pools(dev);
  2022. nvme_put_ctrl(&dev->ctrl);
  2023. }
  2024. /* These functions are yet to be implemented */
  2025. #define nvme_error_detected NULL
  2026. #define nvme_dump_registers NULL
  2027. #define nvme_link_reset NULL
  2028. #define nvme_slot_reset NULL
  2029. #define nvme_error_resume NULL
  2030. #ifdef CONFIG_PM_SLEEP
  2031. static int nvme_suspend(struct device *dev)
  2032. {
  2033. struct pci_dev *pdev = to_pci_dev(dev);
  2034. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2035. nvme_dev_shutdown(ndev);
  2036. return 0;
  2037. }
  2038. static int nvme_resume(struct device *dev)
  2039. {
  2040. struct pci_dev *pdev = to_pci_dev(dev);
  2041. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2042. schedule_work(&ndev->probe_work);
  2043. return 0;
  2044. }
  2045. #endif
  2046. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  2047. static const struct pci_error_handlers nvme_err_handler = {
  2048. .error_detected = nvme_error_detected,
  2049. .mmio_enabled = nvme_dump_registers,
  2050. .link_reset = nvme_link_reset,
  2051. .slot_reset = nvme_slot_reset,
  2052. .resume = nvme_error_resume,
  2053. .reset_notify = nvme_reset_notify,
  2054. };
  2055. /* Move to pci_ids.h later */
  2056. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  2057. static const struct pci_device_id nvme_id_table[] = {
  2058. { PCI_VDEVICE(INTEL, 0x0953),
  2059. .driver_data = NVME_QUIRK_STRIPE_SIZE, },
  2060. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2061. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  2062. { 0, }
  2063. };
  2064. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2065. static struct pci_driver nvme_driver = {
  2066. .name = "nvme",
  2067. .id_table = nvme_id_table,
  2068. .probe = nvme_probe,
  2069. .remove = nvme_remove,
  2070. .shutdown = nvme_shutdown,
  2071. .driver = {
  2072. .pm = &nvme_dev_pm_ops,
  2073. },
  2074. .err_handler = &nvme_err_handler,
  2075. };
  2076. static int __init nvme_init(void)
  2077. {
  2078. int result;
  2079. init_waitqueue_head(&nvme_kthread_wait);
  2080. nvme_workq = create_singlethread_workqueue("nvme");
  2081. if (!nvme_workq)
  2082. return -ENOMEM;
  2083. result = nvme_core_init();
  2084. if (result < 0)
  2085. goto kill_workq;
  2086. result = pci_register_driver(&nvme_driver);
  2087. if (result)
  2088. goto core_exit;
  2089. return 0;
  2090. core_exit:
  2091. nvme_core_exit();
  2092. kill_workq:
  2093. destroy_workqueue(nvme_workq);
  2094. return result;
  2095. }
  2096. static void __exit nvme_exit(void)
  2097. {
  2098. pci_unregister_driver(&nvme_driver);
  2099. nvme_core_exit();
  2100. destroy_workqueue(nvme_workq);
  2101. BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
  2102. _nvme_check_size();
  2103. }
  2104. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2105. MODULE_LICENSE("GPL");
  2106. MODULE_VERSION("1.0");
  2107. module_init(nvme_init);
  2108. module_exit(nvme_exit);