xfs_file.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_mount.h"
  25. #include "xfs_da_format.h"
  26. #include "xfs_da_btree.h"
  27. #include "xfs_inode.h"
  28. #include "xfs_trans.h"
  29. #include "xfs_inode_item.h"
  30. #include "xfs_bmap.h"
  31. #include "xfs_bmap_util.h"
  32. #include "xfs_error.h"
  33. #include "xfs_dir2.h"
  34. #include "xfs_dir2_priv.h"
  35. #include "xfs_ioctl.h"
  36. #include "xfs_trace.h"
  37. #include "xfs_log.h"
  38. #include "xfs_icache.h"
  39. #include "xfs_pnfs.h"
  40. #include "xfs_iomap.h"
  41. #include <linux/dcache.h>
  42. #include <linux/falloc.h>
  43. #include <linux/pagevec.h>
  44. #include <linux/backing-dev.h>
  45. static const struct vm_operations_struct xfs_file_vm_ops;
  46. /*
  47. * Locking primitives for read and write IO paths to ensure we consistently use
  48. * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  49. */
  50. static inline void
  51. xfs_rw_ilock(
  52. struct xfs_inode *ip,
  53. int type)
  54. {
  55. if (type & XFS_IOLOCK_EXCL)
  56. inode_lock(VFS_I(ip));
  57. xfs_ilock(ip, type);
  58. }
  59. static inline void
  60. xfs_rw_iunlock(
  61. struct xfs_inode *ip,
  62. int type)
  63. {
  64. xfs_iunlock(ip, type);
  65. if (type & XFS_IOLOCK_EXCL)
  66. inode_unlock(VFS_I(ip));
  67. }
  68. static inline void
  69. xfs_rw_ilock_demote(
  70. struct xfs_inode *ip,
  71. int type)
  72. {
  73. xfs_ilock_demote(ip, type);
  74. if (type & XFS_IOLOCK_EXCL)
  75. inode_unlock(VFS_I(ip));
  76. }
  77. /*
  78. * Clear the specified ranges to zero through either the pagecache or DAX.
  79. * Holes and unwritten extents will be left as-is as they already are zeroed.
  80. */
  81. int
  82. xfs_zero_range(
  83. struct xfs_inode *ip,
  84. xfs_off_t pos,
  85. xfs_off_t count,
  86. bool *did_zero)
  87. {
  88. return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
  89. }
  90. int
  91. xfs_update_prealloc_flags(
  92. struct xfs_inode *ip,
  93. enum xfs_prealloc_flags flags)
  94. {
  95. struct xfs_trans *tp;
  96. int error;
  97. error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  98. 0, 0, 0, &tp);
  99. if (error)
  100. return error;
  101. xfs_ilock(ip, XFS_ILOCK_EXCL);
  102. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  103. if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  104. VFS_I(ip)->i_mode &= ~S_ISUID;
  105. if (VFS_I(ip)->i_mode & S_IXGRP)
  106. VFS_I(ip)->i_mode &= ~S_ISGID;
  107. xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  108. }
  109. if (flags & XFS_PREALLOC_SET)
  110. ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  111. if (flags & XFS_PREALLOC_CLEAR)
  112. ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  113. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  114. if (flags & XFS_PREALLOC_SYNC)
  115. xfs_trans_set_sync(tp);
  116. return xfs_trans_commit(tp);
  117. }
  118. /*
  119. * Fsync operations on directories are much simpler than on regular files,
  120. * as there is no file data to flush, and thus also no need for explicit
  121. * cache flush operations, and there are no non-transaction metadata updates
  122. * on directories either.
  123. */
  124. STATIC int
  125. xfs_dir_fsync(
  126. struct file *file,
  127. loff_t start,
  128. loff_t end,
  129. int datasync)
  130. {
  131. struct xfs_inode *ip = XFS_I(file->f_mapping->host);
  132. struct xfs_mount *mp = ip->i_mount;
  133. xfs_lsn_t lsn = 0;
  134. trace_xfs_dir_fsync(ip);
  135. xfs_ilock(ip, XFS_ILOCK_SHARED);
  136. if (xfs_ipincount(ip))
  137. lsn = ip->i_itemp->ili_last_lsn;
  138. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  139. if (!lsn)
  140. return 0;
  141. return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
  142. }
  143. STATIC int
  144. xfs_file_fsync(
  145. struct file *file,
  146. loff_t start,
  147. loff_t end,
  148. int datasync)
  149. {
  150. struct inode *inode = file->f_mapping->host;
  151. struct xfs_inode *ip = XFS_I(inode);
  152. struct xfs_mount *mp = ip->i_mount;
  153. int error = 0;
  154. int log_flushed = 0;
  155. xfs_lsn_t lsn = 0;
  156. trace_xfs_file_fsync(ip);
  157. error = filemap_write_and_wait_range(inode->i_mapping, start, end);
  158. if (error)
  159. return error;
  160. if (XFS_FORCED_SHUTDOWN(mp))
  161. return -EIO;
  162. xfs_iflags_clear(ip, XFS_ITRUNCATED);
  163. if (mp->m_flags & XFS_MOUNT_BARRIER) {
  164. /*
  165. * If we have an RT and/or log subvolume we need to make sure
  166. * to flush the write cache the device used for file data
  167. * first. This is to ensure newly written file data make
  168. * it to disk before logging the new inode size in case of
  169. * an extending write.
  170. */
  171. if (XFS_IS_REALTIME_INODE(ip))
  172. xfs_blkdev_issue_flush(mp->m_rtdev_targp);
  173. else if (mp->m_logdev_targp != mp->m_ddev_targp)
  174. xfs_blkdev_issue_flush(mp->m_ddev_targp);
  175. }
  176. /*
  177. * All metadata updates are logged, which means that we just have to
  178. * flush the log up to the latest LSN that touched the inode. If we have
  179. * concurrent fsync/fdatasync() calls, we need them to all block on the
  180. * log force before we clear the ili_fsync_fields field. This ensures
  181. * that we don't get a racing sync operation that does not wait for the
  182. * metadata to hit the journal before returning. If we race with
  183. * clearing the ili_fsync_fields, then all that will happen is the log
  184. * force will do nothing as the lsn will already be on disk. We can't
  185. * race with setting ili_fsync_fields because that is done under
  186. * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
  187. * until after the ili_fsync_fields is cleared.
  188. */
  189. xfs_ilock(ip, XFS_ILOCK_SHARED);
  190. if (xfs_ipincount(ip)) {
  191. if (!datasync ||
  192. (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
  193. lsn = ip->i_itemp->ili_last_lsn;
  194. }
  195. if (lsn) {
  196. error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
  197. ip->i_itemp->ili_fsync_fields = 0;
  198. }
  199. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  200. /*
  201. * If we only have a single device, and the log force about was
  202. * a no-op we might have to flush the data device cache here.
  203. * This can only happen for fdatasync/O_DSYNC if we were overwriting
  204. * an already allocated file and thus do not have any metadata to
  205. * commit.
  206. */
  207. if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
  208. mp->m_logdev_targp == mp->m_ddev_targp &&
  209. !XFS_IS_REALTIME_INODE(ip) &&
  210. !log_flushed)
  211. xfs_blkdev_issue_flush(mp->m_ddev_targp);
  212. return error;
  213. }
  214. STATIC ssize_t
  215. xfs_file_dio_aio_read(
  216. struct kiocb *iocb,
  217. struct iov_iter *to)
  218. {
  219. struct address_space *mapping = iocb->ki_filp->f_mapping;
  220. struct inode *inode = mapping->host;
  221. struct xfs_inode *ip = XFS_I(inode);
  222. loff_t isize = i_size_read(inode);
  223. size_t count = iov_iter_count(to);
  224. struct iov_iter data;
  225. struct xfs_buftarg *target;
  226. ssize_t ret = 0;
  227. trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
  228. if (!count)
  229. return 0; /* skip atime */
  230. if (XFS_IS_REALTIME_INODE(ip))
  231. target = ip->i_mount->m_rtdev_targp;
  232. else
  233. target = ip->i_mount->m_ddev_targp;
  234. /* DIO must be aligned to device logical sector size */
  235. if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
  236. if (iocb->ki_pos == isize)
  237. return 0;
  238. return -EINVAL;
  239. }
  240. /*
  241. * Locking is a bit tricky here. If we take an exclusive lock for direct
  242. * IO, we effectively serialise all new concurrent read IO to this file
  243. * and block it behind IO that is currently in progress because IO in
  244. * progress holds the IO lock shared. We only need to hold the lock
  245. * exclusive to blow away the page cache, so only take lock exclusively
  246. * if the page cache needs invalidation. This allows the normal direct
  247. * IO case of no page cache pages to proceeed concurrently without
  248. * serialisation.
  249. */
  250. xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
  251. if (mapping->nrpages) {
  252. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  253. xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
  254. /*
  255. * The generic dio code only flushes the range of the particular
  256. * I/O. Because we take an exclusive lock here, this whole
  257. * sequence is considerably more expensive for us. This has a
  258. * noticeable performance impact for any file with cached pages,
  259. * even when outside of the range of the particular I/O.
  260. *
  261. * Hence, amortize the cost of the lock against a full file
  262. * flush and reduce the chances of repeated iolock cycles going
  263. * forward.
  264. */
  265. if (mapping->nrpages) {
  266. ret = filemap_write_and_wait(mapping);
  267. if (ret) {
  268. xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
  269. return ret;
  270. }
  271. /*
  272. * Invalidate whole pages. This can return an error if
  273. * we fail to invalidate a page, but this should never
  274. * happen on XFS. Warn if it does fail.
  275. */
  276. ret = invalidate_inode_pages2(mapping);
  277. WARN_ON_ONCE(ret);
  278. ret = 0;
  279. }
  280. xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
  281. }
  282. data = *to;
  283. ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
  284. xfs_get_blocks_direct, NULL, NULL, 0);
  285. if (ret > 0) {
  286. iocb->ki_pos += ret;
  287. iov_iter_advance(to, ret);
  288. }
  289. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  290. file_accessed(iocb->ki_filp);
  291. return ret;
  292. }
  293. static noinline ssize_t
  294. xfs_file_dax_read(
  295. struct kiocb *iocb,
  296. struct iov_iter *to)
  297. {
  298. struct address_space *mapping = iocb->ki_filp->f_mapping;
  299. struct inode *inode = mapping->host;
  300. struct xfs_inode *ip = XFS_I(inode);
  301. struct iov_iter data = *to;
  302. size_t count = iov_iter_count(to);
  303. ssize_t ret = 0;
  304. trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
  305. if (!count)
  306. return 0; /* skip atime */
  307. xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
  308. ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct, NULL, 0);
  309. if (ret > 0) {
  310. iocb->ki_pos += ret;
  311. iov_iter_advance(to, ret);
  312. }
  313. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  314. file_accessed(iocb->ki_filp);
  315. return ret;
  316. }
  317. STATIC ssize_t
  318. xfs_file_buffered_aio_read(
  319. struct kiocb *iocb,
  320. struct iov_iter *to)
  321. {
  322. struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
  323. ssize_t ret;
  324. trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
  325. xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
  326. ret = generic_file_read_iter(iocb, to);
  327. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  328. return ret;
  329. }
  330. STATIC ssize_t
  331. xfs_file_read_iter(
  332. struct kiocb *iocb,
  333. struct iov_iter *to)
  334. {
  335. struct inode *inode = file_inode(iocb->ki_filp);
  336. struct xfs_mount *mp = XFS_I(inode)->i_mount;
  337. ssize_t ret = 0;
  338. XFS_STATS_INC(mp, xs_read_calls);
  339. if (XFS_FORCED_SHUTDOWN(mp))
  340. return -EIO;
  341. if (IS_DAX(inode))
  342. ret = xfs_file_dax_read(iocb, to);
  343. else if (iocb->ki_flags & IOCB_DIRECT)
  344. ret = xfs_file_dio_aio_read(iocb, to);
  345. else
  346. ret = xfs_file_buffered_aio_read(iocb, to);
  347. if (ret > 0)
  348. XFS_STATS_ADD(mp, xs_read_bytes, ret);
  349. return ret;
  350. }
  351. STATIC ssize_t
  352. xfs_file_splice_read(
  353. struct file *infilp,
  354. loff_t *ppos,
  355. struct pipe_inode_info *pipe,
  356. size_t count,
  357. unsigned int flags)
  358. {
  359. struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
  360. ssize_t ret;
  361. XFS_STATS_INC(ip->i_mount, xs_read_calls);
  362. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  363. return -EIO;
  364. trace_xfs_file_splice_read(ip, count, *ppos);
  365. /*
  366. * DAX inodes cannot ues the page cache for splice, so we have to push
  367. * them through the VFS IO path. This means it goes through
  368. * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
  369. * cannot lock the splice operation at this level for DAX inodes.
  370. */
  371. if (IS_DAX(VFS_I(ip))) {
  372. ret = default_file_splice_read(infilp, ppos, pipe, count,
  373. flags);
  374. goto out;
  375. }
  376. xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
  377. ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
  378. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  379. out:
  380. if (ret > 0)
  381. XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
  382. return ret;
  383. }
  384. /*
  385. * Zero any on disk space between the current EOF and the new, larger EOF.
  386. *
  387. * This handles the normal case of zeroing the remainder of the last block in
  388. * the file and the unusual case of zeroing blocks out beyond the size of the
  389. * file. This second case only happens with fixed size extents and when the
  390. * system crashes before the inode size was updated but after blocks were
  391. * allocated.
  392. *
  393. * Expects the iolock to be held exclusive, and will take the ilock internally.
  394. */
  395. int /* error (positive) */
  396. xfs_zero_eof(
  397. struct xfs_inode *ip,
  398. xfs_off_t offset, /* starting I/O offset */
  399. xfs_fsize_t isize, /* current inode size */
  400. bool *did_zeroing)
  401. {
  402. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  403. ASSERT(offset > isize);
  404. trace_xfs_zero_eof(ip, isize, offset - isize);
  405. return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
  406. }
  407. /*
  408. * Common pre-write limit and setup checks.
  409. *
  410. * Called with the iolocked held either shared and exclusive according to
  411. * @iolock, and returns with it held. Might upgrade the iolock to exclusive
  412. * if called for a direct write beyond i_size.
  413. */
  414. STATIC ssize_t
  415. xfs_file_aio_write_checks(
  416. struct kiocb *iocb,
  417. struct iov_iter *from,
  418. int *iolock)
  419. {
  420. struct file *file = iocb->ki_filp;
  421. struct inode *inode = file->f_mapping->host;
  422. struct xfs_inode *ip = XFS_I(inode);
  423. ssize_t error = 0;
  424. size_t count = iov_iter_count(from);
  425. bool drained_dio = false;
  426. restart:
  427. error = generic_write_checks(iocb, from);
  428. if (error <= 0)
  429. return error;
  430. error = xfs_break_layouts(inode, iolock, true);
  431. if (error)
  432. return error;
  433. /* For changing security info in file_remove_privs() we need i_mutex */
  434. if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
  435. xfs_rw_iunlock(ip, *iolock);
  436. *iolock = XFS_IOLOCK_EXCL;
  437. xfs_rw_ilock(ip, *iolock);
  438. goto restart;
  439. }
  440. /*
  441. * If the offset is beyond the size of the file, we need to zero any
  442. * blocks that fall between the existing EOF and the start of this
  443. * write. If zeroing is needed and we are currently holding the
  444. * iolock shared, we need to update it to exclusive which implies
  445. * having to redo all checks before.
  446. *
  447. * We need to serialise against EOF updates that occur in IO
  448. * completions here. We want to make sure that nobody is changing the
  449. * size while we do this check until we have placed an IO barrier (i.e.
  450. * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
  451. * The spinlock effectively forms a memory barrier once we have the
  452. * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
  453. * and hence be able to correctly determine if we need to run zeroing.
  454. */
  455. spin_lock(&ip->i_flags_lock);
  456. if (iocb->ki_pos > i_size_read(inode)) {
  457. bool zero = false;
  458. spin_unlock(&ip->i_flags_lock);
  459. if (!drained_dio) {
  460. if (*iolock == XFS_IOLOCK_SHARED) {
  461. xfs_rw_iunlock(ip, *iolock);
  462. *iolock = XFS_IOLOCK_EXCL;
  463. xfs_rw_ilock(ip, *iolock);
  464. iov_iter_reexpand(from, count);
  465. }
  466. /*
  467. * We now have an IO submission barrier in place, but
  468. * AIO can do EOF updates during IO completion and hence
  469. * we now need to wait for all of them to drain. Non-AIO
  470. * DIO will have drained before we are given the
  471. * XFS_IOLOCK_EXCL, and so for most cases this wait is a
  472. * no-op.
  473. */
  474. inode_dio_wait(inode);
  475. drained_dio = true;
  476. goto restart;
  477. }
  478. error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
  479. if (error)
  480. return error;
  481. } else
  482. spin_unlock(&ip->i_flags_lock);
  483. /*
  484. * Updating the timestamps will grab the ilock again from
  485. * xfs_fs_dirty_inode, so we have to call it after dropping the
  486. * lock above. Eventually we should look into a way to avoid
  487. * the pointless lock roundtrip.
  488. */
  489. if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
  490. error = file_update_time(file);
  491. if (error)
  492. return error;
  493. }
  494. /*
  495. * If we're writing the file then make sure to clear the setuid and
  496. * setgid bits if the process is not being run by root. This keeps
  497. * people from modifying setuid and setgid binaries.
  498. */
  499. if (!IS_NOSEC(inode))
  500. return file_remove_privs(file);
  501. return 0;
  502. }
  503. /*
  504. * xfs_file_dio_aio_write - handle direct IO writes
  505. *
  506. * Lock the inode appropriately to prepare for and issue a direct IO write.
  507. * By separating it from the buffered write path we remove all the tricky to
  508. * follow locking changes and looping.
  509. *
  510. * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
  511. * until we're sure the bytes at the new EOF have been zeroed and/or the cached
  512. * pages are flushed out.
  513. *
  514. * In most cases the direct IO writes will be done holding IOLOCK_SHARED
  515. * allowing them to be done in parallel with reads and other direct IO writes.
  516. * However, if the IO is not aligned to filesystem blocks, the direct IO layer
  517. * needs to do sub-block zeroing and that requires serialisation against other
  518. * direct IOs to the same block. In this case we need to serialise the
  519. * submission of the unaligned IOs so that we don't get racing block zeroing in
  520. * the dio layer. To avoid the problem with aio, we also need to wait for
  521. * outstanding IOs to complete so that unwritten extent conversion is completed
  522. * before we try to map the overlapping block. This is currently implemented by
  523. * hitting it with a big hammer (i.e. inode_dio_wait()).
  524. *
  525. * Returns with locks held indicated by @iolock and errors indicated by
  526. * negative return values.
  527. */
  528. STATIC ssize_t
  529. xfs_file_dio_aio_write(
  530. struct kiocb *iocb,
  531. struct iov_iter *from)
  532. {
  533. struct file *file = iocb->ki_filp;
  534. struct address_space *mapping = file->f_mapping;
  535. struct inode *inode = mapping->host;
  536. struct xfs_inode *ip = XFS_I(inode);
  537. struct xfs_mount *mp = ip->i_mount;
  538. ssize_t ret = 0;
  539. int unaligned_io = 0;
  540. int iolock;
  541. size_t count = iov_iter_count(from);
  542. loff_t end;
  543. struct iov_iter data;
  544. struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
  545. mp->m_rtdev_targp : mp->m_ddev_targp;
  546. /* DIO must be aligned to device logical sector size */
  547. if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
  548. return -EINVAL;
  549. /* "unaligned" here means not aligned to a filesystem block */
  550. if ((iocb->ki_pos & mp->m_blockmask) ||
  551. ((iocb->ki_pos + count) & mp->m_blockmask))
  552. unaligned_io = 1;
  553. /*
  554. * We don't need to take an exclusive lock unless there page cache needs
  555. * to be invalidated or unaligned IO is being executed. We don't need to
  556. * consider the EOF extension case here because
  557. * xfs_file_aio_write_checks() will relock the inode as necessary for
  558. * EOF zeroing cases and fill out the new inode size as appropriate.
  559. */
  560. if (unaligned_io || mapping->nrpages)
  561. iolock = XFS_IOLOCK_EXCL;
  562. else
  563. iolock = XFS_IOLOCK_SHARED;
  564. xfs_rw_ilock(ip, iolock);
  565. /*
  566. * Recheck if there are cached pages that need invalidate after we got
  567. * the iolock to protect against other threads adding new pages while
  568. * we were waiting for the iolock.
  569. */
  570. if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
  571. xfs_rw_iunlock(ip, iolock);
  572. iolock = XFS_IOLOCK_EXCL;
  573. xfs_rw_ilock(ip, iolock);
  574. }
  575. ret = xfs_file_aio_write_checks(iocb, from, &iolock);
  576. if (ret)
  577. goto out;
  578. count = iov_iter_count(from);
  579. end = iocb->ki_pos + count - 1;
  580. /*
  581. * See xfs_file_dio_aio_read() for why we do a full-file flush here.
  582. */
  583. if (mapping->nrpages) {
  584. ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
  585. if (ret)
  586. goto out;
  587. /*
  588. * Invalidate whole pages. This can return an error if we fail
  589. * to invalidate a page, but this should never happen on XFS.
  590. * Warn if it does fail.
  591. */
  592. ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
  593. WARN_ON_ONCE(ret);
  594. ret = 0;
  595. }
  596. /*
  597. * If we are doing unaligned IO, wait for all other IO to drain,
  598. * otherwise demote the lock if we had to flush cached pages
  599. */
  600. if (unaligned_io)
  601. inode_dio_wait(inode);
  602. else if (iolock == XFS_IOLOCK_EXCL) {
  603. xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
  604. iolock = XFS_IOLOCK_SHARED;
  605. }
  606. trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
  607. data = *from;
  608. ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
  609. xfs_get_blocks_direct, xfs_end_io_direct_write,
  610. NULL, DIO_ASYNC_EXTEND);
  611. /* see generic_file_direct_write() for why this is necessary */
  612. if (mapping->nrpages) {
  613. invalidate_inode_pages2_range(mapping,
  614. iocb->ki_pos >> PAGE_SHIFT,
  615. end >> PAGE_SHIFT);
  616. }
  617. if (ret > 0) {
  618. iocb->ki_pos += ret;
  619. iov_iter_advance(from, ret);
  620. }
  621. out:
  622. xfs_rw_iunlock(ip, iolock);
  623. /*
  624. * No fallback to buffered IO on errors for XFS, direct IO will either
  625. * complete fully or fail.
  626. */
  627. ASSERT(ret < 0 || ret == count);
  628. return ret;
  629. }
  630. static noinline ssize_t
  631. xfs_file_dax_write(
  632. struct kiocb *iocb,
  633. struct iov_iter *from)
  634. {
  635. struct address_space *mapping = iocb->ki_filp->f_mapping;
  636. struct inode *inode = mapping->host;
  637. struct xfs_inode *ip = XFS_I(inode);
  638. struct xfs_mount *mp = ip->i_mount;
  639. ssize_t ret = 0;
  640. int unaligned_io = 0;
  641. int iolock;
  642. struct iov_iter data;
  643. /* "unaligned" here means not aligned to a filesystem block */
  644. if ((iocb->ki_pos & mp->m_blockmask) ||
  645. ((iocb->ki_pos + iov_iter_count(from)) & mp->m_blockmask)) {
  646. unaligned_io = 1;
  647. iolock = XFS_IOLOCK_EXCL;
  648. } else if (mapping->nrpages) {
  649. iolock = XFS_IOLOCK_EXCL;
  650. } else {
  651. iolock = XFS_IOLOCK_SHARED;
  652. }
  653. xfs_rw_ilock(ip, iolock);
  654. ret = xfs_file_aio_write_checks(iocb, from, &iolock);
  655. if (ret)
  656. goto out;
  657. /*
  658. * Yes, even DAX files can have page cache attached to them: A zeroed
  659. * page is inserted into the pagecache when we have to serve a write
  660. * fault on a hole. It should never be dirtied and can simply be
  661. * dropped from the pagecache once we get real data for the page.
  662. */
  663. if (mapping->nrpages) {
  664. ret = invalidate_inode_pages2(mapping);
  665. WARN_ON_ONCE(ret);
  666. }
  667. if (iolock == XFS_IOLOCK_EXCL && !unaligned_io) {
  668. xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
  669. iolock = XFS_IOLOCK_SHARED;
  670. }
  671. trace_xfs_file_dax_write(ip, iov_iter_count(from), iocb->ki_pos);
  672. data = *from;
  673. ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
  674. xfs_end_io_direct_write, 0);
  675. if (ret > 0) {
  676. iocb->ki_pos += ret;
  677. iov_iter_advance(from, ret);
  678. }
  679. out:
  680. xfs_rw_iunlock(ip, iolock);
  681. return ret;
  682. }
  683. STATIC ssize_t
  684. xfs_file_buffered_aio_write(
  685. struct kiocb *iocb,
  686. struct iov_iter *from)
  687. {
  688. struct file *file = iocb->ki_filp;
  689. struct address_space *mapping = file->f_mapping;
  690. struct inode *inode = mapping->host;
  691. struct xfs_inode *ip = XFS_I(inode);
  692. ssize_t ret;
  693. int enospc = 0;
  694. int iolock = XFS_IOLOCK_EXCL;
  695. xfs_rw_ilock(ip, iolock);
  696. ret = xfs_file_aio_write_checks(iocb, from, &iolock);
  697. if (ret)
  698. goto out;
  699. /* We can write back this queue in page reclaim */
  700. current->backing_dev_info = inode_to_bdi(inode);
  701. write_retry:
  702. trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
  703. ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
  704. if (likely(ret >= 0))
  705. iocb->ki_pos += ret;
  706. /*
  707. * If we hit a space limit, try to free up some lingering preallocated
  708. * space before returning an error. In the case of ENOSPC, first try to
  709. * write back all dirty inodes to free up some of the excess reserved
  710. * metadata space. This reduces the chances that the eofblocks scan
  711. * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
  712. * also behaves as a filter to prevent too many eofblocks scans from
  713. * running at the same time.
  714. */
  715. if (ret == -EDQUOT && !enospc) {
  716. enospc = xfs_inode_free_quota_eofblocks(ip);
  717. if (enospc)
  718. goto write_retry;
  719. } else if (ret == -ENOSPC && !enospc) {
  720. struct xfs_eofblocks eofb = {0};
  721. enospc = 1;
  722. xfs_flush_inodes(ip->i_mount);
  723. eofb.eof_scan_owner = ip->i_ino; /* for locking */
  724. eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
  725. xfs_icache_free_eofblocks(ip->i_mount, &eofb);
  726. goto write_retry;
  727. }
  728. current->backing_dev_info = NULL;
  729. out:
  730. xfs_rw_iunlock(ip, iolock);
  731. return ret;
  732. }
  733. STATIC ssize_t
  734. xfs_file_write_iter(
  735. struct kiocb *iocb,
  736. struct iov_iter *from)
  737. {
  738. struct file *file = iocb->ki_filp;
  739. struct address_space *mapping = file->f_mapping;
  740. struct inode *inode = mapping->host;
  741. struct xfs_inode *ip = XFS_I(inode);
  742. ssize_t ret;
  743. size_t ocount = iov_iter_count(from);
  744. XFS_STATS_INC(ip->i_mount, xs_write_calls);
  745. if (ocount == 0)
  746. return 0;
  747. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  748. return -EIO;
  749. if (IS_DAX(inode))
  750. ret = xfs_file_dax_write(iocb, from);
  751. else if (iocb->ki_flags & IOCB_DIRECT)
  752. ret = xfs_file_dio_aio_write(iocb, from);
  753. else
  754. ret = xfs_file_buffered_aio_write(iocb, from);
  755. if (ret > 0) {
  756. XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
  757. /* Handle various SYNC-type writes */
  758. ret = generic_write_sync(iocb, ret);
  759. }
  760. return ret;
  761. }
  762. #define XFS_FALLOC_FL_SUPPORTED \
  763. (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
  764. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
  765. FALLOC_FL_INSERT_RANGE)
  766. STATIC long
  767. xfs_file_fallocate(
  768. struct file *file,
  769. int mode,
  770. loff_t offset,
  771. loff_t len)
  772. {
  773. struct inode *inode = file_inode(file);
  774. struct xfs_inode *ip = XFS_I(inode);
  775. long error;
  776. enum xfs_prealloc_flags flags = 0;
  777. uint iolock = XFS_IOLOCK_EXCL;
  778. loff_t new_size = 0;
  779. bool do_file_insert = 0;
  780. if (!S_ISREG(inode->i_mode))
  781. return -EINVAL;
  782. if (mode & ~XFS_FALLOC_FL_SUPPORTED)
  783. return -EOPNOTSUPP;
  784. xfs_ilock(ip, iolock);
  785. error = xfs_break_layouts(inode, &iolock, false);
  786. if (error)
  787. goto out_unlock;
  788. xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
  789. iolock |= XFS_MMAPLOCK_EXCL;
  790. if (mode & FALLOC_FL_PUNCH_HOLE) {
  791. error = xfs_free_file_space(ip, offset, len);
  792. if (error)
  793. goto out_unlock;
  794. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  795. unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
  796. if (offset & blksize_mask || len & blksize_mask) {
  797. error = -EINVAL;
  798. goto out_unlock;
  799. }
  800. /*
  801. * There is no need to overlap collapse range with EOF,
  802. * in which case it is effectively a truncate operation
  803. */
  804. if (offset + len >= i_size_read(inode)) {
  805. error = -EINVAL;
  806. goto out_unlock;
  807. }
  808. new_size = i_size_read(inode) - len;
  809. error = xfs_collapse_file_space(ip, offset, len);
  810. if (error)
  811. goto out_unlock;
  812. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  813. unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
  814. new_size = i_size_read(inode) + len;
  815. if (offset & blksize_mask || len & blksize_mask) {
  816. error = -EINVAL;
  817. goto out_unlock;
  818. }
  819. /* check the new inode size does not wrap through zero */
  820. if (new_size > inode->i_sb->s_maxbytes) {
  821. error = -EFBIG;
  822. goto out_unlock;
  823. }
  824. /* Offset should be less than i_size */
  825. if (offset >= i_size_read(inode)) {
  826. error = -EINVAL;
  827. goto out_unlock;
  828. }
  829. do_file_insert = 1;
  830. } else {
  831. flags |= XFS_PREALLOC_SET;
  832. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  833. offset + len > i_size_read(inode)) {
  834. new_size = offset + len;
  835. error = inode_newsize_ok(inode, new_size);
  836. if (error)
  837. goto out_unlock;
  838. }
  839. if (mode & FALLOC_FL_ZERO_RANGE)
  840. error = xfs_zero_file_space(ip, offset, len);
  841. else
  842. error = xfs_alloc_file_space(ip, offset, len,
  843. XFS_BMAPI_PREALLOC);
  844. if (error)
  845. goto out_unlock;
  846. }
  847. if (file->f_flags & O_DSYNC)
  848. flags |= XFS_PREALLOC_SYNC;
  849. error = xfs_update_prealloc_flags(ip, flags);
  850. if (error)
  851. goto out_unlock;
  852. /* Change file size if needed */
  853. if (new_size) {
  854. struct iattr iattr;
  855. iattr.ia_valid = ATTR_SIZE;
  856. iattr.ia_size = new_size;
  857. error = xfs_setattr_size(ip, &iattr);
  858. if (error)
  859. goto out_unlock;
  860. }
  861. /*
  862. * Perform hole insertion now that the file size has been
  863. * updated so that if we crash during the operation we don't
  864. * leave shifted extents past EOF and hence losing access to
  865. * the data that is contained within them.
  866. */
  867. if (do_file_insert)
  868. error = xfs_insert_file_space(ip, offset, len);
  869. out_unlock:
  870. xfs_iunlock(ip, iolock);
  871. return error;
  872. }
  873. STATIC int
  874. xfs_file_open(
  875. struct inode *inode,
  876. struct file *file)
  877. {
  878. if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
  879. return -EFBIG;
  880. if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
  881. return -EIO;
  882. return 0;
  883. }
  884. STATIC int
  885. xfs_dir_open(
  886. struct inode *inode,
  887. struct file *file)
  888. {
  889. struct xfs_inode *ip = XFS_I(inode);
  890. int mode;
  891. int error;
  892. error = xfs_file_open(inode, file);
  893. if (error)
  894. return error;
  895. /*
  896. * If there are any blocks, read-ahead block 0 as we're almost
  897. * certain to have the next operation be a read there.
  898. */
  899. mode = xfs_ilock_data_map_shared(ip);
  900. if (ip->i_d.di_nextents > 0)
  901. xfs_dir3_data_readahead(ip, 0, -1);
  902. xfs_iunlock(ip, mode);
  903. return 0;
  904. }
  905. STATIC int
  906. xfs_file_release(
  907. struct inode *inode,
  908. struct file *filp)
  909. {
  910. return xfs_release(XFS_I(inode));
  911. }
  912. STATIC int
  913. xfs_file_readdir(
  914. struct file *file,
  915. struct dir_context *ctx)
  916. {
  917. struct inode *inode = file_inode(file);
  918. xfs_inode_t *ip = XFS_I(inode);
  919. size_t bufsize;
  920. /*
  921. * The Linux API doesn't pass down the total size of the buffer
  922. * we read into down to the filesystem. With the filldir concept
  923. * it's not needed for correct information, but the XFS dir2 leaf
  924. * code wants an estimate of the buffer size to calculate it's
  925. * readahead window and size the buffers used for mapping to
  926. * physical blocks.
  927. *
  928. * Try to give it an estimate that's good enough, maybe at some
  929. * point we can change the ->readdir prototype to include the
  930. * buffer size. For now we use the current glibc buffer size.
  931. */
  932. bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
  933. return xfs_readdir(ip, ctx, bufsize);
  934. }
  935. /*
  936. * This type is designed to indicate the type of offset we would like
  937. * to search from page cache for xfs_seek_hole_data().
  938. */
  939. enum {
  940. HOLE_OFF = 0,
  941. DATA_OFF,
  942. };
  943. /*
  944. * Lookup the desired type of offset from the given page.
  945. *
  946. * On success, return true and the offset argument will point to the
  947. * start of the region that was found. Otherwise this function will
  948. * return false and keep the offset argument unchanged.
  949. */
  950. STATIC bool
  951. xfs_lookup_buffer_offset(
  952. struct page *page,
  953. loff_t *offset,
  954. unsigned int type)
  955. {
  956. loff_t lastoff = page_offset(page);
  957. bool found = false;
  958. struct buffer_head *bh, *head;
  959. bh = head = page_buffers(page);
  960. do {
  961. /*
  962. * Unwritten extents that have data in the page
  963. * cache covering them can be identified by the
  964. * BH_Unwritten state flag. Pages with multiple
  965. * buffers might have a mix of holes, data and
  966. * unwritten extents - any buffer with valid
  967. * data in it should have BH_Uptodate flag set
  968. * on it.
  969. */
  970. if (buffer_unwritten(bh) ||
  971. buffer_uptodate(bh)) {
  972. if (type == DATA_OFF)
  973. found = true;
  974. } else {
  975. if (type == HOLE_OFF)
  976. found = true;
  977. }
  978. if (found) {
  979. *offset = lastoff;
  980. break;
  981. }
  982. lastoff += bh->b_size;
  983. } while ((bh = bh->b_this_page) != head);
  984. return found;
  985. }
  986. /*
  987. * This routine is called to find out and return a data or hole offset
  988. * from the page cache for unwritten extents according to the desired
  989. * type for xfs_seek_hole_data().
  990. *
  991. * The argument offset is used to tell where we start to search from the
  992. * page cache. Map is used to figure out the end points of the range to
  993. * lookup pages.
  994. *
  995. * Return true if the desired type of offset was found, and the argument
  996. * offset is filled with that address. Otherwise, return false and keep
  997. * offset unchanged.
  998. */
  999. STATIC bool
  1000. xfs_find_get_desired_pgoff(
  1001. struct inode *inode,
  1002. struct xfs_bmbt_irec *map,
  1003. unsigned int type,
  1004. loff_t *offset)
  1005. {
  1006. struct xfs_inode *ip = XFS_I(inode);
  1007. struct xfs_mount *mp = ip->i_mount;
  1008. struct pagevec pvec;
  1009. pgoff_t index;
  1010. pgoff_t end;
  1011. loff_t endoff;
  1012. loff_t startoff = *offset;
  1013. loff_t lastoff = startoff;
  1014. bool found = false;
  1015. pagevec_init(&pvec, 0);
  1016. index = startoff >> PAGE_SHIFT;
  1017. endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
  1018. end = endoff >> PAGE_SHIFT;
  1019. do {
  1020. int want;
  1021. unsigned nr_pages;
  1022. unsigned int i;
  1023. want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
  1024. nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
  1025. want);
  1026. /*
  1027. * No page mapped into given range. If we are searching holes
  1028. * and if this is the first time we got into the loop, it means
  1029. * that the given offset is landed in a hole, return it.
  1030. *
  1031. * If we have already stepped through some block buffers to find
  1032. * holes but they all contains data. In this case, the last
  1033. * offset is already updated and pointed to the end of the last
  1034. * mapped page, if it does not reach the endpoint to search,
  1035. * that means there should be a hole between them.
  1036. */
  1037. if (nr_pages == 0) {
  1038. /* Data search found nothing */
  1039. if (type == DATA_OFF)
  1040. break;
  1041. ASSERT(type == HOLE_OFF);
  1042. if (lastoff == startoff || lastoff < endoff) {
  1043. found = true;
  1044. *offset = lastoff;
  1045. }
  1046. break;
  1047. }
  1048. /*
  1049. * At lease we found one page. If this is the first time we
  1050. * step into the loop, and if the first page index offset is
  1051. * greater than the given search offset, a hole was found.
  1052. */
  1053. if (type == HOLE_OFF && lastoff == startoff &&
  1054. lastoff < page_offset(pvec.pages[0])) {
  1055. found = true;
  1056. break;
  1057. }
  1058. for (i = 0; i < nr_pages; i++) {
  1059. struct page *page = pvec.pages[i];
  1060. loff_t b_offset;
  1061. /*
  1062. * At this point, the page may be truncated or
  1063. * invalidated (changing page->mapping to NULL),
  1064. * or even swizzled back from swapper_space to tmpfs
  1065. * file mapping. However, page->index will not change
  1066. * because we have a reference on the page.
  1067. *
  1068. * Searching done if the page index is out of range.
  1069. * If the current offset is not reaches the end of
  1070. * the specified search range, there should be a hole
  1071. * between them.
  1072. */
  1073. if (page->index > end) {
  1074. if (type == HOLE_OFF && lastoff < endoff) {
  1075. *offset = lastoff;
  1076. found = true;
  1077. }
  1078. goto out;
  1079. }
  1080. lock_page(page);
  1081. /*
  1082. * Page truncated or invalidated(page->mapping == NULL).
  1083. * We can freely skip it and proceed to check the next
  1084. * page.
  1085. */
  1086. if (unlikely(page->mapping != inode->i_mapping)) {
  1087. unlock_page(page);
  1088. continue;
  1089. }
  1090. if (!page_has_buffers(page)) {
  1091. unlock_page(page);
  1092. continue;
  1093. }
  1094. found = xfs_lookup_buffer_offset(page, &b_offset, type);
  1095. if (found) {
  1096. /*
  1097. * The found offset may be less than the start
  1098. * point to search if this is the first time to
  1099. * come here.
  1100. */
  1101. *offset = max_t(loff_t, startoff, b_offset);
  1102. unlock_page(page);
  1103. goto out;
  1104. }
  1105. /*
  1106. * We either searching data but nothing was found, or
  1107. * searching hole but found a data buffer. In either
  1108. * case, probably the next page contains the desired
  1109. * things, update the last offset to it so.
  1110. */
  1111. lastoff = page_offset(page) + PAGE_SIZE;
  1112. unlock_page(page);
  1113. }
  1114. /*
  1115. * The number of returned pages less than our desired, search
  1116. * done. In this case, nothing was found for searching data,
  1117. * but we found a hole behind the last offset.
  1118. */
  1119. if (nr_pages < want) {
  1120. if (type == HOLE_OFF) {
  1121. *offset = lastoff;
  1122. found = true;
  1123. }
  1124. break;
  1125. }
  1126. index = pvec.pages[i - 1]->index + 1;
  1127. pagevec_release(&pvec);
  1128. } while (index <= end);
  1129. out:
  1130. pagevec_release(&pvec);
  1131. return found;
  1132. }
  1133. /*
  1134. * caller must lock inode with xfs_ilock_data_map_shared,
  1135. * can we craft an appropriate ASSERT?
  1136. *
  1137. * end is because the VFS-level lseek interface is defined such that any
  1138. * offset past i_size shall return -ENXIO, but we use this for quota code
  1139. * which does not maintain i_size, and we want to SEEK_DATA past i_size.
  1140. */
  1141. loff_t
  1142. __xfs_seek_hole_data(
  1143. struct inode *inode,
  1144. loff_t start,
  1145. loff_t end,
  1146. int whence)
  1147. {
  1148. struct xfs_inode *ip = XFS_I(inode);
  1149. struct xfs_mount *mp = ip->i_mount;
  1150. loff_t uninitialized_var(offset);
  1151. xfs_fileoff_t fsbno;
  1152. xfs_filblks_t lastbno;
  1153. int error;
  1154. if (start >= end) {
  1155. error = -ENXIO;
  1156. goto out_error;
  1157. }
  1158. /*
  1159. * Try to read extents from the first block indicated
  1160. * by fsbno to the end block of the file.
  1161. */
  1162. fsbno = XFS_B_TO_FSBT(mp, start);
  1163. lastbno = XFS_B_TO_FSB(mp, end);
  1164. for (;;) {
  1165. struct xfs_bmbt_irec map[2];
  1166. int nmap = 2;
  1167. unsigned int i;
  1168. error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
  1169. XFS_BMAPI_ENTIRE);
  1170. if (error)
  1171. goto out_error;
  1172. /* No extents at given offset, must be beyond EOF */
  1173. if (nmap == 0) {
  1174. error = -ENXIO;
  1175. goto out_error;
  1176. }
  1177. for (i = 0; i < nmap; i++) {
  1178. offset = max_t(loff_t, start,
  1179. XFS_FSB_TO_B(mp, map[i].br_startoff));
  1180. /* Landed in the hole we wanted? */
  1181. if (whence == SEEK_HOLE &&
  1182. map[i].br_startblock == HOLESTARTBLOCK)
  1183. goto out;
  1184. /* Landed in the data extent we wanted? */
  1185. if (whence == SEEK_DATA &&
  1186. (map[i].br_startblock == DELAYSTARTBLOCK ||
  1187. (map[i].br_state == XFS_EXT_NORM &&
  1188. !isnullstartblock(map[i].br_startblock))))
  1189. goto out;
  1190. /*
  1191. * Landed in an unwritten extent, try to search
  1192. * for hole or data from page cache.
  1193. */
  1194. if (map[i].br_state == XFS_EXT_UNWRITTEN) {
  1195. if (xfs_find_get_desired_pgoff(inode, &map[i],
  1196. whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
  1197. &offset))
  1198. goto out;
  1199. }
  1200. }
  1201. /*
  1202. * We only received one extent out of the two requested. This
  1203. * means we've hit EOF and didn't find what we are looking for.
  1204. */
  1205. if (nmap == 1) {
  1206. /*
  1207. * If we were looking for a hole, set offset to
  1208. * the end of the file (i.e., there is an implicit
  1209. * hole at the end of any file).
  1210. */
  1211. if (whence == SEEK_HOLE) {
  1212. offset = end;
  1213. break;
  1214. }
  1215. /*
  1216. * If we were looking for data, it's nowhere to be found
  1217. */
  1218. ASSERT(whence == SEEK_DATA);
  1219. error = -ENXIO;
  1220. goto out_error;
  1221. }
  1222. ASSERT(i > 1);
  1223. /*
  1224. * Nothing was found, proceed to the next round of search
  1225. * if the next reading offset is not at or beyond EOF.
  1226. */
  1227. fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
  1228. start = XFS_FSB_TO_B(mp, fsbno);
  1229. if (start >= end) {
  1230. if (whence == SEEK_HOLE) {
  1231. offset = end;
  1232. break;
  1233. }
  1234. ASSERT(whence == SEEK_DATA);
  1235. error = -ENXIO;
  1236. goto out_error;
  1237. }
  1238. }
  1239. out:
  1240. /*
  1241. * If at this point we have found the hole we wanted, the returned
  1242. * offset may be bigger than the file size as it may be aligned to
  1243. * page boundary for unwritten extents. We need to deal with this
  1244. * situation in particular.
  1245. */
  1246. if (whence == SEEK_HOLE)
  1247. offset = min_t(loff_t, offset, end);
  1248. return offset;
  1249. out_error:
  1250. return error;
  1251. }
  1252. STATIC loff_t
  1253. xfs_seek_hole_data(
  1254. struct file *file,
  1255. loff_t start,
  1256. int whence)
  1257. {
  1258. struct inode *inode = file->f_mapping->host;
  1259. struct xfs_inode *ip = XFS_I(inode);
  1260. struct xfs_mount *mp = ip->i_mount;
  1261. uint lock;
  1262. loff_t offset, end;
  1263. int error = 0;
  1264. if (XFS_FORCED_SHUTDOWN(mp))
  1265. return -EIO;
  1266. lock = xfs_ilock_data_map_shared(ip);
  1267. end = i_size_read(inode);
  1268. offset = __xfs_seek_hole_data(inode, start, end, whence);
  1269. if (offset < 0) {
  1270. error = offset;
  1271. goto out_unlock;
  1272. }
  1273. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  1274. out_unlock:
  1275. xfs_iunlock(ip, lock);
  1276. if (error)
  1277. return error;
  1278. return offset;
  1279. }
  1280. STATIC loff_t
  1281. xfs_file_llseek(
  1282. struct file *file,
  1283. loff_t offset,
  1284. int whence)
  1285. {
  1286. switch (whence) {
  1287. case SEEK_END:
  1288. case SEEK_CUR:
  1289. case SEEK_SET:
  1290. return generic_file_llseek(file, offset, whence);
  1291. case SEEK_HOLE:
  1292. case SEEK_DATA:
  1293. return xfs_seek_hole_data(file, offset, whence);
  1294. default:
  1295. return -EINVAL;
  1296. }
  1297. }
  1298. /*
  1299. * Locking for serialisation of IO during page faults. This results in a lock
  1300. * ordering of:
  1301. *
  1302. * mmap_sem (MM)
  1303. * sb_start_pagefault(vfs, freeze)
  1304. * i_mmaplock (XFS - truncate serialisation)
  1305. * page_lock (MM)
  1306. * i_lock (XFS - extent map serialisation)
  1307. */
  1308. /*
  1309. * mmap()d file has taken write protection fault and is being made writable. We
  1310. * can set the page state up correctly for a writable page, which means we can
  1311. * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
  1312. * mapping.
  1313. */
  1314. STATIC int
  1315. xfs_filemap_page_mkwrite(
  1316. struct vm_area_struct *vma,
  1317. struct vm_fault *vmf)
  1318. {
  1319. struct inode *inode = file_inode(vma->vm_file);
  1320. int ret;
  1321. trace_xfs_filemap_page_mkwrite(XFS_I(inode));
  1322. sb_start_pagefault(inode->i_sb);
  1323. file_update_time(vma->vm_file);
  1324. xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
  1325. if (IS_DAX(inode)) {
  1326. ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
  1327. } else {
  1328. ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
  1329. ret = block_page_mkwrite_return(ret);
  1330. }
  1331. xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
  1332. sb_end_pagefault(inode->i_sb);
  1333. return ret;
  1334. }
  1335. STATIC int
  1336. xfs_filemap_fault(
  1337. struct vm_area_struct *vma,
  1338. struct vm_fault *vmf)
  1339. {
  1340. struct inode *inode = file_inode(vma->vm_file);
  1341. int ret;
  1342. trace_xfs_filemap_fault(XFS_I(inode));
  1343. /* DAX can shortcut the normal fault path on write faults! */
  1344. if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
  1345. return xfs_filemap_page_mkwrite(vma, vmf);
  1346. xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
  1347. if (IS_DAX(inode)) {
  1348. /*
  1349. * we do not want to trigger unwritten extent conversion on read
  1350. * faults - that is unnecessary overhead and would also require
  1351. * changes to xfs_get_blocks_direct() to map unwritten extent
  1352. * ioend for conversion on read-only mappings.
  1353. */
  1354. ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
  1355. } else
  1356. ret = filemap_fault(vma, vmf);
  1357. xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
  1358. return ret;
  1359. }
  1360. /*
  1361. * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
  1362. * both read and write faults. Hence we need to handle both cases. There is no
  1363. * ->pmd_mkwrite callout for huge pages, so we have a single function here to
  1364. * handle both cases here. @flags carries the information on the type of fault
  1365. * occuring.
  1366. */
  1367. STATIC int
  1368. xfs_filemap_pmd_fault(
  1369. struct vm_area_struct *vma,
  1370. unsigned long addr,
  1371. pmd_t *pmd,
  1372. unsigned int flags)
  1373. {
  1374. struct inode *inode = file_inode(vma->vm_file);
  1375. struct xfs_inode *ip = XFS_I(inode);
  1376. int ret;
  1377. if (!IS_DAX(inode))
  1378. return VM_FAULT_FALLBACK;
  1379. trace_xfs_filemap_pmd_fault(ip);
  1380. if (flags & FAULT_FLAG_WRITE) {
  1381. sb_start_pagefault(inode->i_sb);
  1382. file_update_time(vma->vm_file);
  1383. }
  1384. xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
  1385. ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
  1386. xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
  1387. if (flags & FAULT_FLAG_WRITE)
  1388. sb_end_pagefault(inode->i_sb);
  1389. return ret;
  1390. }
  1391. /*
  1392. * pfn_mkwrite was originally inteneded to ensure we capture time stamp
  1393. * updates on write faults. In reality, it's need to serialise against
  1394. * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
  1395. * to ensure we serialise the fault barrier in place.
  1396. */
  1397. static int
  1398. xfs_filemap_pfn_mkwrite(
  1399. struct vm_area_struct *vma,
  1400. struct vm_fault *vmf)
  1401. {
  1402. struct inode *inode = file_inode(vma->vm_file);
  1403. struct xfs_inode *ip = XFS_I(inode);
  1404. int ret = VM_FAULT_NOPAGE;
  1405. loff_t size;
  1406. trace_xfs_filemap_pfn_mkwrite(ip);
  1407. sb_start_pagefault(inode->i_sb);
  1408. file_update_time(vma->vm_file);
  1409. /* check if the faulting page hasn't raced with truncate */
  1410. xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
  1411. size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1412. if (vmf->pgoff >= size)
  1413. ret = VM_FAULT_SIGBUS;
  1414. else if (IS_DAX(inode))
  1415. ret = dax_pfn_mkwrite(vma, vmf);
  1416. xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
  1417. sb_end_pagefault(inode->i_sb);
  1418. return ret;
  1419. }
  1420. static const struct vm_operations_struct xfs_file_vm_ops = {
  1421. .fault = xfs_filemap_fault,
  1422. .pmd_fault = xfs_filemap_pmd_fault,
  1423. .map_pages = filemap_map_pages,
  1424. .page_mkwrite = xfs_filemap_page_mkwrite,
  1425. .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
  1426. };
  1427. STATIC int
  1428. xfs_file_mmap(
  1429. struct file *filp,
  1430. struct vm_area_struct *vma)
  1431. {
  1432. file_accessed(filp);
  1433. vma->vm_ops = &xfs_file_vm_ops;
  1434. if (IS_DAX(file_inode(filp)))
  1435. vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
  1436. return 0;
  1437. }
  1438. const struct file_operations xfs_file_operations = {
  1439. .llseek = xfs_file_llseek,
  1440. .read_iter = xfs_file_read_iter,
  1441. .write_iter = xfs_file_write_iter,
  1442. .splice_read = xfs_file_splice_read,
  1443. .splice_write = iter_file_splice_write,
  1444. .unlocked_ioctl = xfs_file_ioctl,
  1445. #ifdef CONFIG_COMPAT
  1446. .compat_ioctl = xfs_file_compat_ioctl,
  1447. #endif
  1448. .mmap = xfs_file_mmap,
  1449. .open = xfs_file_open,
  1450. .release = xfs_file_release,
  1451. .fsync = xfs_file_fsync,
  1452. .fallocate = xfs_file_fallocate,
  1453. };
  1454. const struct file_operations xfs_dir_file_operations = {
  1455. .open = xfs_dir_open,
  1456. .read = generic_read_dir,
  1457. .iterate_shared = xfs_file_readdir,
  1458. .llseek = generic_file_llseek,
  1459. .unlocked_ioctl = xfs_file_ioctl,
  1460. #ifdef CONFIG_COMPAT
  1461. .compat_ioctl = xfs_file_compat_ioctl,
  1462. #endif
  1463. .fsync = xfs_dir_fsync,
  1464. };