iwl-nvm-parse.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
  9. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  10. * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of version 2 of the GNU General Public License as
  14. * published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  24. * USA
  25. *
  26. * The full GNU General Public License is included in this distribution
  27. * in the file called COPYING.
  28. *
  29. * Contact Information:
  30. * Intel Linux Wireless <linuxwifi@intel.com>
  31. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  32. *
  33. * BSD LICENSE
  34. *
  35. * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
  36. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  37. * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
  38. * All rights reserved.
  39. *
  40. * Redistribution and use in source and binary forms, with or without
  41. * modification, are permitted provided that the following conditions
  42. * are met:
  43. *
  44. * * Redistributions of source code must retain the above copyright
  45. * notice, this list of conditions and the following disclaimer.
  46. * * Redistributions in binary form must reproduce the above copyright
  47. * notice, this list of conditions and the following disclaimer in
  48. * the documentation and/or other materials provided with the
  49. * distribution.
  50. * * Neither the name Intel Corporation nor the names of its
  51. * contributors may be used to endorse or promote products derived
  52. * from this software without specific prior written permission.
  53. *
  54. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  55. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  56. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  57. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  58. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  59. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  60. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  61. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  62. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  63. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  64. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  65. *****************************************************************************/
  66. #include <linux/types.h>
  67. #include <linux/slab.h>
  68. #include <linux/export.h>
  69. #include <linux/etherdevice.h>
  70. #include <linux/pci.h>
  71. #include <linux/acpi.h>
  72. #include "iwl-drv.h"
  73. #include "iwl-modparams.h"
  74. #include "iwl-nvm-parse.h"
  75. #include "iwl-prph.h"
  76. #include "iwl-io.h"
  77. #include "iwl-csr.h"
  78. /* NVM offsets (in words) definitions */
  79. enum wkp_nvm_offsets {
  80. /* NVM HW-Section offset (in words) definitions */
  81. HW_ADDR = 0x15,
  82. /* NVM SW-Section offset (in words) definitions */
  83. NVM_SW_SECTION = 0x1C0,
  84. NVM_VERSION = 0,
  85. RADIO_CFG = 1,
  86. SKU = 2,
  87. N_HW_ADDRS = 3,
  88. NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
  89. /* NVM calibration section offset (in words) definitions */
  90. NVM_CALIB_SECTION = 0x2B8,
  91. XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
  92. };
  93. enum ext_nvm_offsets {
  94. /* NVM HW-Section offset (in words) definitions */
  95. MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
  96. /* NVM SW-Section offset (in words) definitions */
  97. NVM_VERSION_EXT_NVM = 0,
  98. RADIO_CFG_FAMILY_EXT_NVM = 0,
  99. SKU_FAMILY_8000 = 2,
  100. N_HW_ADDRS_FAMILY_8000 = 3,
  101. /* NVM REGULATORY -Section offset (in words) definitions */
  102. NVM_CHANNELS_EXTENDED = 0,
  103. NVM_LAR_OFFSET_OLD = 0x4C7,
  104. NVM_LAR_OFFSET = 0x507,
  105. NVM_LAR_ENABLED = 0x7,
  106. };
  107. /* SKU Capabilities (actual values from NVM definition) */
  108. enum nvm_sku_bits {
  109. NVM_SKU_CAP_BAND_24GHZ = BIT(0),
  110. NVM_SKU_CAP_BAND_52GHZ = BIT(1),
  111. NVM_SKU_CAP_11N_ENABLE = BIT(2),
  112. NVM_SKU_CAP_11AC_ENABLE = BIT(3),
  113. NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
  114. };
  115. /*
  116. * These are the channel numbers in the order that they are stored in the NVM
  117. */
  118. static const u8 iwl_nvm_channels[] = {
  119. /* 2.4 GHz */
  120. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  121. /* 5 GHz */
  122. 36, 40, 44 , 48, 52, 56, 60, 64,
  123. 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
  124. 149, 153, 157, 161, 165
  125. };
  126. static const u8 iwl_ext_nvm_channels[] = {
  127. /* 2.4 GHz */
  128. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  129. /* 5 GHz */
  130. 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
  131. 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
  132. 149, 153, 157, 161, 165, 169, 173, 177, 181
  133. };
  134. #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
  135. #define IWL_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
  136. #define NUM_2GHZ_CHANNELS 14
  137. #define NUM_2GHZ_CHANNELS_EXT 14
  138. #define FIRST_2GHZ_HT_MINUS 5
  139. #define LAST_2GHZ_HT_PLUS 9
  140. #define LAST_5GHZ_HT 165
  141. #define LAST_5GHZ_HT_FAMILY_8000 181
  142. #define N_HW_ADDR_MASK 0xF
  143. /* rate data (static) */
  144. static struct ieee80211_rate iwl_cfg80211_rates[] = {
  145. { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
  146. { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
  147. .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
  148. { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
  149. .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
  150. { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
  151. .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
  152. { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
  153. { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
  154. { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
  155. { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
  156. { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
  157. { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
  158. { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
  159. { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
  160. };
  161. #define RATES_24_OFFS 0
  162. #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
  163. #define RATES_52_OFFS 4
  164. #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
  165. /**
  166. * enum iwl_nvm_channel_flags - channel flags in NVM
  167. * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
  168. * @NVM_CHANNEL_IBSS: usable as an IBSS channel
  169. * @NVM_CHANNEL_ACTIVE: active scanning allowed
  170. * @NVM_CHANNEL_RADAR: radar detection required
  171. * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
  172. * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
  173. * on same channel on 2.4 or same UNII band on 5.2
  174. * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
  175. * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
  176. * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
  177. * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
  178. */
  179. enum iwl_nvm_channel_flags {
  180. NVM_CHANNEL_VALID = BIT(0),
  181. NVM_CHANNEL_IBSS = BIT(1),
  182. NVM_CHANNEL_ACTIVE = BIT(3),
  183. NVM_CHANNEL_RADAR = BIT(4),
  184. NVM_CHANNEL_INDOOR_ONLY = BIT(5),
  185. NVM_CHANNEL_GO_CONCURRENT = BIT(6),
  186. NVM_CHANNEL_WIDE = BIT(8),
  187. NVM_CHANNEL_40MHZ = BIT(9),
  188. NVM_CHANNEL_80MHZ = BIT(10),
  189. NVM_CHANNEL_160MHZ = BIT(11),
  190. };
  191. #define CHECK_AND_PRINT_I(x) \
  192. ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
  193. static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
  194. u16 nvm_flags, const struct iwl_cfg *cfg)
  195. {
  196. u32 flags = IEEE80211_CHAN_NO_HT40;
  197. u32 last_5ghz_ht = LAST_5GHZ_HT;
  198. if (cfg->ext_nvm)
  199. last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
  200. if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
  201. if (ch_num <= LAST_2GHZ_HT_PLUS)
  202. flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
  203. if (ch_num >= FIRST_2GHZ_HT_MINUS)
  204. flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
  205. } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
  206. if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
  207. flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
  208. else
  209. flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
  210. }
  211. if (!(nvm_flags & NVM_CHANNEL_80MHZ))
  212. flags |= IEEE80211_CHAN_NO_80MHZ;
  213. if (!(nvm_flags & NVM_CHANNEL_160MHZ))
  214. flags |= IEEE80211_CHAN_NO_160MHZ;
  215. if (!(nvm_flags & NVM_CHANNEL_IBSS))
  216. flags |= IEEE80211_CHAN_NO_IR;
  217. if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
  218. flags |= IEEE80211_CHAN_NO_IR;
  219. if (nvm_flags & NVM_CHANNEL_RADAR)
  220. flags |= IEEE80211_CHAN_RADAR;
  221. if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
  222. flags |= IEEE80211_CHAN_INDOOR_ONLY;
  223. /* Set the GO concurrent flag only in case that NO_IR is set.
  224. * Otherwise it is meaningless
  225. */
  226. if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
  227. (flags & IEEE80211_CHAN_NO_IR))
  228. flags |= IEEE80211_CHAN_IR_CONCURRENT;
  229. return flags;
  230. }
  231. static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
  232. struct iwl_nvm_data *data,
  233. const __le16 * const nvm_ch_flags,
  234. bool lar_supported)
  235. {
  236. int ch_idx;
  237. int n_channels = 0;
  238. struct ieee80211_channel *channel;
  239. u16 ch_flags;
  240. bool is_5ghz;
  241. int num_of_ch, num_2ghz_channels;
  242. const u8 *nvm_chan;
  243. if (!cfg->ext_nvm) {
  244. num_of_ch = IWL_NUM_CHANNELS;
  245. nvm_chan = &iwl_nvm_channels[0];
  246. num_2ghz_channels = NUM_2GHZ_CHANNELS;
  247. } else {
  248. num_of_ch = IWL_NUM_CHANNELS_EXT;
  249. nvm_chan = &iwl_ext_nvm_channels[0];
  250. num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
  251. }
  252. for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
  253. ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
  254. if (ch_idx >= num_2ghz_channels &&
  255. !data->sku_cap_band_52GHz_enable)
  256. continue;
  257. if (ch_flags & NVM_CHANNEL_160MHZ)
  258. data->vht160_supported = true;
  259. if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
  260. /*
  261. * Channels might become valid later if lar is
  262. * supported, hence we still want to add them to
  263. * the list of supported channels to cfg80211.
  264. */
  265. IWL_DEBUG_EEPROM(dev,
  266. "Ch. %d Flags %x [%sGHz] - No traffic\n",
  267. nvm_chan[ch_idx],
  268. ch_flags,
  269. (ch_idx >= num_2ghz_channels) ?
  270. "5.2" : "2.4");
  271. continue;
  272. }
  273. channel = &data->channels[n_channels];
  274. n_channels++;
  275. channel->hw_value = nvm_chan[ch_idx];
  276. channel->band = (ch_idx < num_2ghz_channels) ?
  277. NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
  278. channel->center_freq =
  279. ieee80211_channel_to_frequency(
  280. channel->hw_value, channel->band);
  281. /* Initialize regulatory-based run-time data */
  282. /*
  283. * Default value - highest tx power value. max_power
  284. * is not used in mvm, and is used for backwards compatibility
  285. */
  286. channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
  287. is_5ghz = channel->band == NL80211_BAND_5GHZ;
  288. /* don't put limitations in case we're using LAR */
  289. if (!lar_supported)
  290. channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
  291. ch_idx, is_5ghz,
  292. ch_flags, cfg);
  293. else
  294. channel->flags = 0;
  295. IWL_DEBUG_EEPROM(dev,
  296. "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
  297. channel->hw_value,
  298. is_5ghz ? "5.2" : "2.4",
  299. ch_flags,
  300. CHECK_AND_PRINT_I(VALID),
  301. CHECK_AND_PRINT_I(IBSS),
  302. CHECK_AND_PRINT_I(ACTIVE),
  303. CHECK_AND_PRINT_I(RADAR),
  304. CHECK_AND_PRINT_I(INDOOR_ONLY),
  305. CHECK_AND_PRINT_I(GO_CONCURRENT),
  306. CHECK_AND_PRINT_I(WIDE),
  307. CHECK_AND_PRINT_I(40MHZ),
  308. CHECK_AND_PRINT_I(80MHZ),
  309. CHECK_AND_PRINT_I(160MHZ),
  310. channel->max_power,
  311. ((ch_flags & NVM_CHANNEL_IBSS) &&
  312. !(ch_flags & NVM_CHANNEL_RADAR))
  313. ? "" : "not ");
  314. }
  315. return n_channels;
  316. }
  317. static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
  318. struct iwl_nvm_data *data,
  319. struct ieee80211_sta_vht_cap *vht_cap,
  320. u8 tx_chains, u8 rx_chains)
  321. {
  322. int num_rx_ants = num_of_ant(rx_chains);
  323. int num_tx_ants = num_of_ant(tx_chains);
  324. unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
  325. IEEE80211_VHT_MAX_AMPDU_1024K);
  326. vht_cap->vht_supported = true;
  327. vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
  328. IEEE80211_VHT_CAP_RXSTBC_1 |
  329. IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
  330. 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
  331. max_ampdu_exponent <<
  332. IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
  333. if (data->vht160_supported)
  334. vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
  335. IEEE80211_VHT_CAP_SHORT_GI_160;
  336. if (cfg->vht_mu_mimo_supported)
  337. vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
  338. if (cfg->ht_params->ldpc)
  339. vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
  340. if (data->sku_cap_mimo_disabled) {
  341. num_rx_ants = 1;
  342. num_tx_ants = 1;
  343. }
  344. if (num_tx_ants > 1)
  345. vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
  346. else
  347. vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
  348. switch (iwlwifi_mod_params.amsdu_size) {
  349. case IWL_AMSDU_DEF:
  350. if (cfg->mq_rx_supported)
  351. vht_cap->cap |=
  352. IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
  353. else
  354. vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
  355. break;
  356. case IWL_AMSDU_4K:
  357. vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
  358. break;
  359. case IWL_AMSDU_8K:
  360. vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
  361. break;
  362. case IWL_AMSDU_12K:
  363. vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
  364. break;
  365. default:
  366. break;
  367. }
  368. vht_cap->vht_mcs.rx_mcs_map =
  369. cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
  370. IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
  371. IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
  372. IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
  373. IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
  374. IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
  375. IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
  376. IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
  377. if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
  378. vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
  379. /* this works because NOT_SUPPORTED == 3 */
  380. vht_cap->vht_mcs.rx_mcs_map |=
  381. cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
  382. }
  383. vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
  384. }
  385. void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
  386. struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
  387. u8 tx_chains, u8 rx_chains, bool lar_supported)
  388. {
  389. int n_channels;
  390. int n_used = 0;
  391. struct ieee80211_supported_band *sband;
  392. n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
  393. lar_supported);
  394. sband = &data->bands[NL80211_BAND_2GHZ];
  395. sband->band = NL80211_BAND_2GHZ;
  396. sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
  397. sband->n_bitrates = N_RATES_24;
  398. n_used += iwl_init_sband_channels(data, sband, n_channels,
  399. NL80211_BAND_2GHZ);
  400. iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
  401. tx_chains, rx_chains);
  402. sband = &data->bands[NL80211_BAND_5GHZ];
  403. sband->band = NL80211_BAND_5GHZ;
  404. sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
  405. sband->n_bitrates = N_RATES_52;
  406. n_used += iwl_init_sband_channels(data, sband, n_channels,
  407. NL80211_BAND_5GHZ);
  408. iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
  409. tx_chains, rx_chains);
  410. if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
  411. iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
  412. tx_chains, rx_chains);
  413. if (n_channels != n_used)
  414. IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
  415. n_used, n_channels);
  416. }
  417. IWL_EXPORT_SYMBOL(iwl_init_sbands);
  418. static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
  419. const __le16 *phy_sku)
  420. {
  421. if (!cfg->ext_nvm)
  422. return le16_to_cpup(nvm_sw + SKU);
  423. return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
  424. }
  425. static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
  426. {
  427. if (!cfg->ext_nvm)
  428. return le16_to_cpup(nvm_sw + NVM_VERSION);
  429. else
  430. return le32_to_cpup((__le32 *)(nvm_sw +
  431. NVM_VERSION_EXT_NVM));
  432. }
  433. static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
  434. const __le16 *phy_sku)
  435. {
  436. if (!cfg->ext_nvm)
  437. return le16_to_cpup(nvm_sw + RADIO_CFG);
  438. return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
  439. }
  440. static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
  441. {
  442. int n_hw_addr;
  443. if (!cfg->ext_nvm)
  444. return le16_to_cpup(nvm_sw + N_HW_ADDRS);
  445. n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
  446. return n_hw_addr & N_HW_ADDR_MASK;
  447. }
  448. static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
  449. struct iwl_nvm_data *data,
  450. u32 radio_cfg)
  451. {
  452. if (!cfg->ext_nvm) {
  453. data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
  454. data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
  455. data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
  456. data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
  457. return;
  458. }
  459. /* set the radio configuration for family 8000 */
  460. data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
  461. data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
  462. data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
  463. data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
  464. data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
  465. data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
  466. }
  467. static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
  468. {
  469. const u8 *hw_addr;
  470. hw_addr = (const u8 *)&mac_addr0;
  471. dest[0] = hw_addr[3];
  472. dest[1] = hw_addr[2];
  473. dest[2] = hw_addr[1];
  474. dest[3] = hw_addr[0];
  475. hw_addr = (const u8 *)&mac_addr1;
  476. dest[4] = hw_addr[1];
  477. dest[5] = hw_addr[0];
  478. }
  479. void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
  480. struct iwl_nvm_data *data)
  481. {
  482. __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
  483. __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
  484. iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
  485. /*
  486. * If the OEM fused a valid address, use it instead of the one in the
  487. * OTP
  488. */
  489. if (is_valid_ether_addr(data->hw_addr))
  490. return;
  491. mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
  492. mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
  493. iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
  494. }
  495. IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
  496. static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
  497. const struct iwl_cfg *cfg,
  498. struct iwl_nvm_data *data,
  499. const __le16 *mac_override,
  500. const __le16 *nvm_hw)
  501. {
  502. const u8 *hw_addr;
  503. if (mac_override) {
  504. static const u8 reserved_mac[] = {
  505. 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
  506. };
  507. hw_addr = (const u8 *)(mac_override +
  508. MAC_ADDRESS_OVERRIDE_EXT_NVM);
  509. /*
  510. * Store the MAC address from MAO section.
  511. * No byte swapping is required in MAO section
  512. */
  513. memcpy(data->hw_addr, hw_addr, ETH_ALEN);
  514. /*
  515. * Force the use of the OTP MAC address in case of reserved MAC
  516. * address in the NVM, or if address is given but invalid.
  517. */
  518. if (is_valid_ether_addr(data->hw_addr) &&
  519. memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
  520. return;
  521. IWL_ERR(trans,
  522. "mac address from nvm override section is not valid\n");
  523. }
  524. if (nvm_hw) {
  525. /* read the mac address from WFMP registers */
  526. __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
  527. WFMP_MAC_ADDR_0));
  528. __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
  529. WFMP_MAC_ADDR_1));
  530. iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
  531. return;
  532. }
  533. IWL_ERR(trans, "mac address is not found\n");
  534. }
  535. static int iwl_set_hw_address(struct iwl_trans *trans,
  536. const struct iwl_cfg *cfg,
  537. struct iwl_nvm_data *data, const __le16 *nvm_hw,
  538. const __le16 *mac_override)
  539. {
  540. if (cfg->mac_addr_from_csr) {
  541. iwl_set_hw_address_from_csr(trans, data);
  542. } else if (!cfg->ext_nvm) {
  543. const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
  544. /* The byte order is little endian 16 bit, meaning 214365 */
  545. data->hw_addr[0] = hw_addr[1];
  546. data->hw_addr[1] = hw_addr[0];
  547. data->hw_addr[2] = hw_addr[3];
  548. data->hw_addr[3] = hw_addr[2];
  549. data->hw_addr[4] = hw_addr[5];
  550. data->hw_addr[5] = hw_addr[4];
  551. } else {
  552. iwl_set_hw_address_family_8000(trans, cfg, data,
  553. mac_override, nvm_hw);
  554. }
  555. if (!is_valid_ether_addr(data->hw_addr)) {
  556. IWL_ERR(trans, "no valid mac address was found\n");
  557. return -EINVAL;
  558. }
  559. IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
  560. return 0;
  561. }
  562. struct iwl_nvm_data *
  563. iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
  564. const __le16 *nvm_hw, const __le16 *nvm_sw,
  565. const __le16 *nvm_calib, const __le16 *regulatory,
  566. const __le16 *mac_override, const __le16 *phy_sku,
  567. u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
  568. {
  569. struct device *dev = trans->dev;
  570. struct iwl_nvm_data *data;
  571. bool lar_enabled;
  572. u32 sku, radio_cfg;
  573. u16 lar_config;
  574. const __le16 *ch_section;
  575. if (!cfg->ext_nvm)
  576. data = kzalloc(sizeof(*data) +
  577. sizeof(struct ieee80211_channel) *
  578. IWL_NUM_CHANNELS,
  579. GFP_KERNEL);
  580. else
  581. data = kzalloc(sizeof(*data) +
  582. sizeof(struct ieee80211_channel) *
  583. IWL_NUM_CHANNELS_EXT,
  584. GFP_KERNEL);
  585. if (!data)
  586. return NULL;
  587. data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
  588. radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
  589. iwl_set_radio_cfg(cfg, data, radio_cfg);
  590. if (data->valid_tx_ant)
  591. tx_chains &= data->valid_tx_ant;
  592. if (data->valid_rx_ant)
  593. rx_chains &= data->valid_rx_ant;
  594. sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
  595. data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
  596. data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
  597. data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
  598. if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
  599. data->sku_cap_11n_enable = false;
  600. data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
  601. (sku & NVM_SKU_CAP_11AC_ENABLE);
  602. data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
  603. data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
  604. if (!cfg->ext_nvm) {
  605. /* Checking for required sections */
  606. if (!nvm_calib) {
  607. IWL_ERR(trans,
  608. "Can't parse empty Calib NVM sections\n");
  609. kfree(data);
  610. return NULL;
  611. }
  612. /* in family 8000 Xtal calibration values moved to OTP */
  613. data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
  614. data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
  615. lar_enabled = true;
  616. ch_section = &nvm_sw[NVM_CHANNELS];
  617. } else {
  618. u16 lar_offset = data->nvm_version < 0xE39 ?
  619. NVM_LAR_OFFSET_OLD :
  620. NVM_LAR_OFFSET;
  621. lar_config = le16_to_cpup(regulatory + lar_offset);
  622. data->lar_enabled = !!(lar_config &
  623. NVM_LAR_ENABLED);
  624. lar_enabled = data->lar_enabled;
  625. ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
  626. }
  627. /* If no valid mac address was found - bail out */
  628. if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
  629. kfree(data);
  630. return NULL;
  631. }
  632. iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
  633. lar_fw_supported && lar_enabled);
  634. data->calib_version = 255;
  635. return data;
  636. }
  637. IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
  638. static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
  639. int ch_idx, u16 nvm_flags,
  640. const struct iwl_cfg *cfg)
  641. {
  642. u32 flags = NL80211_RRF_NO_HT40;
  643. u32 last_5ghz_ht = LAST_5GHZ_HT;
  644. if (cfg->ext_nvm)
  645. last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
  646. if (ch_idx < NUM_2GHZ_CHANNELS &&
  647. (nvm_flags & NVM_CHANNEL_40MHZ)) {
  648. if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
  649. flags &= ~NL80211_RRF_NO_HT40PLUS;
  650. if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
  651. flags &= ~NL80211_RRF_NO_HT40MINUS;
  652. } else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
  653. (nvm_flags & NVM_CHANNEL_40MHZ)) {
  654. if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
  655. flags &= ~NL80211_RRF_NO_HT40PLUS;
  656. else
  657. flags &= ~NL80211_RRF_NO_HT40MINUS;
  658. }
  659. if (!(nvm_flags & NVM_CHANNEL_80MHZ))
  660. flags |= NL80211_RRF_NO_80MHZ;
  661. if (!(nvm_flags & NVM_CHANNEL_160MHZ))
  662. flags |= NL80211_RRF_NO_160MHZ;
  663. if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
  664. flags |= NL80211_RRF_NO_IR;
  665. if (nvm_flags & NVM_CHANNEL_RADAR)
  666. flags |= NL80211_RRF_DFS;
  667. if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
  668. flags |= NL80211_RRF_NO_OUTDOOR;
  669. /* Set the GO concurrent flag only in case that NO_IR is set.
  670. * Otherwise it is meaningless
  671. */
  672. if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
  673. (flags & NL80211_RRF_NO_IR))
  674. flags |= NL80211_RRF_GO_CONCURRENT;
  675. return flags;
  676. }
  677. struct ieee80211_regdomain *
  678. iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
  679. int num_of_ch, __le32 *channels, u16 fw_mcc)
  680. {
  681. int ch_idx;
  682. u16 ch_flags, prev_ch_flags = 0;
  683. const u8 *nvm_chan = cfg->ext_nvm ?
  684. iwl_ext_nvm_channels : iwl_nvm_channels;
  685. struct ieee80211_regdomain *regd;
  686. int size_of_regd;
  687. struct ieee80211_reg_rule *rule;
  688. enum nl80211_band band;
  689. int center_freq, prev_center_freq = 0;
  690. int valid_rules = 0;
  691. bool new_rule;
  692. int max_num_ch = cfg->ext_nvm ?
  693. IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS;
  694. if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
  695. return ERR_PTR(-EINVAL);
  696. if (WARN_ON(num_of_ch > max_num_ch))
  697. num_of_ch = max_num_ch;
  698. IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
  699. num_of_ch);
  700. /* build a regdomain rule for every valid channel */
  701. size_of_regd =
  702. sizeof(struct ieee80211_regdomain) +
  703. num_of_ch * sizeof(struct ieee80211_reg_rule);
  704. regd = kzalloc(size_of_regd, GFP_KERNEL);
  705. if (!regd)
  706. return ERR_PTR(-ENOMEM);
  707. for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
  708. ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
  709. band = (ch_idx < NUM_2GHZ_CHANNELS) ?
  710. NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
  711. center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
  712. band);
  713. new_rule = false;
  714. if (!(ch_flags & NVM_CHANNEL_VALID)) {
  715. IWL_DEBUG_DEV(dev, IWL_DL_LAR,
  716. "Ch. %d Flags %x [%sGHz] - No traffic\n",
  717. nvm_chan[ch_idx],
  718. ch_flags,
  719. (ch_idx >= NUM_2GHZ_CHANNELS) ?
  720. "5.2" : "2.4");
  721. continue;
  722. }
  723. /* we can't continue the same rule */
  724. if (ch_idx == 0 || prev_ch_flags != ch_flags ||
  725. center_freq - prev_center_freq > 20) {
  726. valid_rules++;
  727. new_rule = true;
  728. }
  729. rule = &regd->reg_rules[valid_rules - 1];
  730. if (new_rule)
  731. rule->freq_range.start_freq_khz =
  732. MHZ_TO_KHZ(center_freq - 10);
  733. rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
  734. /* this doesn't matter - not used by FW */
  735. rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
  736. rule->power_rule.max_eirp =
  737. DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
  738. rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
  739. ch_flags, cfg);
  740. /* rely on auto-calculation to merge BW of contiguous chans */
  741. rule->flags |= NL80211_RRF_AUTO_BW;
  742. rule->freq_range.max_bandwidth_khz = 0;
  743. prev_ch_flags = ch_flags;
  744. prev_center_freq = center_freq;
  745. IWL_DEBUG_DEV(dev, IWL_DL_LAR,
  746. "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
  747. center_freq,
  748. band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
  749. CHECK_AND_PRINT_I(VALID),
  750. CHECK_AND_PRINT_I(ACTIVE),
  751. CHECK_AND_PRINT_I(RADAR),
  752. CHECK_AND_PRINT_I(WIDE),
  753. CHECK_AND_PRINT_I(40MHZ),
  754. CHECK_AND_PRINT_I(80MHZ),
  755. CHECK_AND_PRINT_I(160MHZ),
  756. CHECK_AND_PRINT_I(INDOOR_ONLY),
  757. CHECK_AND_PRINT_I(GO_CONCURRENT),
  758. ch_flags,
  759. ((ch_flags & NVM_CHANNEL_ACTIVE) &&
  760. !(ch_flags & NVM_CHANNEL_RADAR))
  761. ? "" : "not ");
  762. }
  763. regd->n_reg_rules = valid_rules;
  764. /* set alpha2 from FW. */
  765. regd->alpha2[0] = fw_mcc >> 8;
  766. regd->alpha2[1] = fw_mcc & 0xff;
  767. return regd;
  768. }
  769. IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
  770. #ifdef CONFIG_ACPI
  771. #define WRDD_METHOD "WRDD"
  772. #define WRDD_WIFI (0x07)
  773. #define WRDD_WIGIG (0x10)
  774. static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
  775. {
  776. union acpi_object *mcc_pkg, *domain_type, *mcc_value;
  777. u32 i;
  778. if (wrdd->type != ACPI_TYPE_PACKAGE ||
  779. wrdd->package.count < 2 ||
  780. wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
  781. wrdd->package.elements[0].integer.value != 0) {
  782. IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
  783. return 0;
  784. }
  785. for (i = 1 ; i < wrdd->package.count ; ++i) {
  786. mcc_pkg = &wrdd->package.elements[i];
  787. if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
  788. mcc_pkg->package.count < 2 ||
  789. mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
  790. mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
  791. mcc_pkg = NULL;
  792. continue;
  793. }
  794. domain_type = &mcc_pkg->package.elements[0];
  795. if (domain_type->integer.value == WRDD_WIFI)
  796. break;
  797. mcc_pkg = NULL;
  798. }
  799. if (mcc_pkg) {
  800. mcc_value = &mcc_pkg->package.elements[1];
  801. return mcc_value->integer.value;
  802. }
  803. return 0;
  804. }
  805. int iwl_get_bios_mcc(struct device *dev, char *mcc)
  806. {
  807. acpi_handle root_handle;
  808. acpi_handle handle;
  809. struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
  810. acpi_status status;
  811. u32 mcc_val;
  812. root_handle = ACPI_HANDLE(dev);
  813. if (!root_handle) {
  814. IWL_DEBUG_EEPROM(dev,
  815. "Could not retrieve root port ACPI handle\n");
  816. return -ENOENT;
  817. }
  818. /* Get the method's handle */
  819. status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
  820. &handle);
  821. if (ACPI_FAILURE(status)) {
  822. IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
  823. return -ENOENT;
  824. }
  825. /* Call WRDD with no arguments */
  826. status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
  827. if (ACPI_FAILURE(status)) {
  828. IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
  829. status);
  830. return -ENOENT;
  831. }
  832. mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
  833. kfree(wrdd.pointer);
  834. if (!mcc_val)
  835. return -ENOENT;
  836. mcc[0] = (mcc_val >> 8) & 0xff;
  837. mcc[1] = mcc_val & 0xff;
  838. mcc[2] = '\0';
  839. return 0;
  840. }
  841. IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
  842. #endif