rcu.h 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. /*
  2. * Read-Copy Update definitions shared among RCU implementations.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2011
  19. *
  20. * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  21. */
  22. #ifndef __LINUX_RCU_H
  23. #define __LINUX_RCU_H
  24. #include <trace/events/rcu.h>
  25. #ifdef CONFIG_RCU_TRACE
  26. #define RCU_TRACE(stmt) stmt
  27. #else /* #ifdef CONFIG_RCU_TRACE */
  28. #define RCU_TRACE(stmt)
  29. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  30. /*
  31. * Process-level increment to ->dynticks_nesting field. This allows for
  32. * architectures that use half-interrupts and half-exceptions from
  33. * process context.
  34. *
  35. * DYNTICK_TASK_NEST_MASK defines a field of width DYNTICK_TASK_NEST_WIDTH
  36. * that counts the number of process-based reasons why RCU cannot
  37. * consider the corresponding CPU to be idle, and DYNTICK_TASK_NEST_VALUE
  38. * is the value used to increment or decrement this field.
  39. *
  40. * The rest of the bits could in principle be used to count interrupts,
  41. * but this would mean that a negative-one value in the interrupt
  42. * field could incorrectly zero out the DYNTICK_TASK_NEST_MASK field.
  43. * We therefore provide a two-bit guard field defined by DYNTICK_TASK_MASK
  44. * that is set to DYNTICK_TASK_FLAG upon initial exit from idle.
  45. * The DYNTICK_TASK_EXIT_IDLE value is thus the combined value used upon
  46. * initial exit from idle.
  47. */
  48. #define DYNTICK_TASK_NEST_WIDTH 7
  49. #define DYNTICK_TASK_NEST_VALUE ((LLONG_MAX >> DYNTICK_TASK_NEST_WIDTH) + 1)
  50. #define DYNTICK_TASK_NEST_MASK (LLONG_MAX - DYNTICK_TASK_NEST_VALUE + 1)
  51. #define DYNTICK_TASK_FLAG ((DYNTICK_TASK_NEST_VALUE / 8) * 2)
  52. #define DYNTICK_TASK_MASK ((DYNTICK_TASK_NEST_VALUE / 8) * 3)
  53. #define DYNTICK_TASK_EXIT_IDLE (DYNTICK_TASK_NEST_VALUE + \
  54. DYNTICK_TASK_FLAG)
  55. /*
  56. * Grace-period counter management.
  57. */
  58. #define RCU_SEQ_CTR_SHIFT 2
  59. #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
  60. /*
  61. * Return the counter portion of a sequence number previously returned
  62. * by rcu_seq_snap() or rcu_seq_current().
  63. */
  64. static inline unsigned long rcu_seq_ctr(unsigned long s)
  65. {
  66. return s >> RCU_SEQ_CTR_SHIFT;
  67. }
  68. /*
  69. * Return the state portion of a sequence number previously returned
  70. * by rcu_seq_snap() or rcu_seq_current().
  71. */
  72. static inline int rcu_seq_state(unsigned long s)
  73. {
  74. return s & RCU_SEQ_STATE_MASK;
  75. }
  76. /* Adjust sequence number for start of update-side operation. */
  77. static inline void rcu_seq_start(unsigned long *sp)
  78. {
  79. WRITE_ONCE(*sp, *sp + 1);
  80. smp_mb(); /* Ensure update-side operation after counter increment. */
  81. WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
  82. }
  83. /* Adjust sequence number for end of update-side operation. */
  84. static inline void rcu_seq_end(unsigned long *sp)
  85. {
  86. smp_mb(); /* Ensure update-side operation before counter increment. */
  87. WARN_ON_ONCE(!rcu_seq_state(*sp));
  88. WRITE_ONCE(*sp, (*sp | RCU_SEQ_STATE_MASK) + 1);
  89. }
  90. /* Take a snapshot of the update side's sequence number. */
  91. static inline unsigned long rcu_seq_snap(unsigned long *sp)
  92. {
  93. unsigned long s;
  94. s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
  95. smp_mb(); /* Above access must not bleed into critical section. */
  96. return s;
  97. }
  98. /* Return the current value the update side's sequence number, no ordering. */
  99. static inline unsigned long rcu_seq_current(unsigned long *sp)
  100. {
  101. return READ_ONCE(*sp);
  102. }
  103. /*
  104. * Given a snapshot from rcu_seq_snap(), determine whether or not a
  105. * full update-side operation has occurred.
  106. */
  107. static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
  108. {
  109. return ULONG_CMP_GE(READ_ONCE(*sp), s);
  110. }
  111. /*
  112. * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
  113. * by call_rcu() and rcu callback execution, and are therefore not part of the
  114. * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
  115. */
  116. #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
  117. # define STATE_RCU_HEAD_READY 0
  118. # define STATE_RCU_HEAD_QUEUED 1
  119. extern struct debug_obj_descr rcuhead_debug_descr;
  120. static inline int debug_rcu_head_queue(struct rcu_head *head)
  121. {
  122. int r1;
  123. r1 = debug_object_activate(head, &rcuhead_debug_descr);
  124. debug_object_active_state(head, &rcuhead_debug_descr,
  125. STATE_RCU_HEAD_READY,
  126. STATE_RCU_HEAD_QUEUED);
  127. return r1;
  128. }
  129. static inline void debug_rcu_head_unqueue(struct rcu_head *head)
  130. {
  131. debug_object_active_state(head, &rcuhead_debug_descr,
  132. STATE_RCU_HEAD_QUEUED,
  133. STATE_RCU_HEAD_READY);
  134. debug_object_deactivate(head, &rcuhead_debug_descr);
  135. }
  136. #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
  137. static inline int debug_rcu_head_queue(struct rcu_head *head)
  138. {
  139. return 0;
  140. }
  141. static inline void debug_rcu_head_unqueue(struct rcu_head *head)
  142. {
  143. }
  144. #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
  145. void kfree(const void *);
  146. /*
  147. * Reclaim the specified callback, either by invoking it (non-lazy case)
  148. * or freeing it directly (lazy case). Return true if lazy, false otherwise.
  149. */
  150. static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
  151. {
  152. unsigned long offset = (unsigned long)head->func;
  153. rcu_lock_acquire(&rcu_callback_map);
  154. if (__is_kfree_rcu_offset(offset)) {
  155. RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
  156. kfree((void *)head - offset);
  157. rcu_lock_release(&rcu_callback_map);
  158. return true;
  159. } else {
  160. RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
  161. head->func(head);
  162. rcu_lock_release(&rcu_callback_map);
  163. return false;
  164. }
  165. }
  166. #ifdef CONFIG_RCU_STALL_COMMON
  167. extern int rcu_cpu_stall_suppress;
  168. int rcu_jiffies_till_stall_check(void);
  169. #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
  170. /*
  171. * Strings used in tracepoints need to be exported via the
  172. * tracing system such that tools like perf and trace-cmd can
  173. * translate the string address pointers to actual text.
  174. */
  175. #define TPS(x) tracepoint_string(x)
  176. void rcu_early_boot_tests(void);
  177. void rcu_test_sync_prims(void);
  178. /*
  179. * This function really isn't for public consumption, but RCU is special in
  180. * that context switches can allow the state machine to make progress.
  181. */
  182. extern void resched_cpu(int cpu);
  183. #if defined(SRCU) || !defined(TINY_RCU)
  184. #include <linux/rcu_node_tree.h>
  185. extern int rcu_num_lvls;
  186. extern int num_rcu_lvl[];
  187. extern int rcu_num_nodes;
  188. static bool rcu_fanout_exact;
  189. static int rcu_fanout_leaf;
  190. /*
  191. * Compute the per-level fanout, either using the exact fanout specified
  192. * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
  193. */
  194. static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
  195. {
  196. int i;
  197. if (rcu_fanout_exact) {
  198. levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
  199. for (i = rcu_num_lvls - 2; i >= 0; i--)
  200. levelspread[i] = RCU_FANOUT;
  201. } else {
  202. int ccur;
  203. int cprv;
  204. cprv = nr_cpu_ids;
  205. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  206. ccur = levelcnt[i];
  207. levelspread[i] = (cprv + ccur - 1) / ccur;
  208. cprv = ccur;
  209. }
  210. }
  211. }
  212. /*
  213. * Do a full breadth-first scan of the rcu_node structures for the
  214. * specified rcu_state structure.
  215. */
  216. #define rcu_for_each_node_breadth_first(rsp, rnp) \
  217. for ((rnp) = &(rsp)->node[0]; \
  218. (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
  219. /*
  220. * Do a breadth-first scan of the non-leaf rcu_node structures for the
  221. * specified rcu_state structure. Note that if there is a singleton
  222. * rcu_node tree with but one rcu_node structure, this loop is a no-op.
  223. */
  224. #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
  225. for ((rnp) = &(rsp)->node[0]; \
  226. (rnp) < (rsp)->level[rcu_num_lvls - 1]; (rnp)++)
  227. /*
  228. * Scan the leaves of the rcu_node hierarchy for the specified rcu_state
  229. * structure. Note that if there is a singleton rcu_node tree with but
  230. * one rcu_node structure, this loop -will- visit the rcu_node structure.
  231. * It is still a leaf node, even if it is also the root node.
  232. */
  233. #define rcu_for_each_leaf_node(rsp, rnp) \
  234. for ((rnp) = (rsp)->level[rcu_num_lvls - 1]; \
  235. (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
  236. /*
  237. * Iterate over all possible CPUs in a leaf RCU node.
  238. */
  239. #define for_each_leaf_node_possible_cpu(rnp, cpu) \
  240. for ((cpu) = cpumask_next(rnp->grplo - 1, cpu_possible_mask); \
  241. cpu <= rnp->grphi; \
  242. cpu = cpumask_next((cpu), cpu_possible_mask))
  243. #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
  244. #endif /* __LINUX_RCU_H */