intel_ringbuffer.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static int
  56. gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  57. {
  58. struct intel_ring *ring = req->ring;
  59. u32 cmd;
  60. int ret;
  61. cmd = MI_FLUSH;
  62. if (mode & EMIT_INVALIDATE)
  63. cmd |= MI_READ_FLUSH;
  64. ret = intel_ring_begin(req, 2);
  65. if (ret)
  66. return ret;
  67. intel_ring_emit(ring, cmd);
  68. intel_ring_emit(ring, MI_NOOP);
  69. intel_ring_advance(ring);
  70. return 0;
  71. }
  72. static int
  73. gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  74. {
  75. struct intel_ring *ring = req->ring;
  76. u32 cmd;
  77. int ret;
  78. /*
  79. * read/write caches:
  80. *
  81. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  82. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  83. * also flushed at 2d versus 3d pipeline switches.
  84. *
  85. * read-only caches:
  86. *
  87. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  88. * MI_READ_FLUSH is set, and is always flushed on 965.
  89. *
  90. * I915_GEM_DOMAIN_COMMAND may not exist?
  91. *
  92. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  93. * invalidated when MI_EXE_FLUSH is set.
  94. *
  95. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  96. * invalidated with every MI_FLUSH.
  97. *
  98. * TLBs:
  99. *
  100. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  101. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  102. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  103. * are flushed at any MI_FLUSH.
  104. */
  105. cmd = MI_FLUSH;
  106. if (mode & EMIT_INVALIDATE) {
  107. cmd |= MI_EXE_FLUSH;
  108. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  109. cmd |= MI_INVALIDATE_ISP;
  110. }
  111. ret = intel_ring_begin(req, 2);
  112. if (ret)
  113. return ret;
  114. intel_ring_emit(ring, cmd);
  115. intel_ring_emit(ring, MI_NOOP);
  116. intel_ring_advance(ring);
  117. return 0;
  118. }
  119. /**
  120. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  121. * implementing two workarounds on gen6. From section 1.4.7.1
  122. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  123. *
  124. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  125. * produced by non-pipelined state commands), software needs to first
  126. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  127. * 0.
  128. *
  129. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  130. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  131. *
  132. * And the workaround for these two requires this workaround first:
  133. *
  134. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  135. * BEFORE the pipe-control with a post-sync op and no write-cache
  136. * flushes.
  137. *
  138. * And this last workaround is tricky because of the requirements on
  139. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  140. * volume 2 part 1:
  141. *
  142. * "1 of the following must also be set:
  143. * - Render Target Cache Flush Enable ([12] of DW1)
  144. * - Depth Cache Flush Enable ([0] of DW1)
  145. * - Stall at Pixel Scoreboard ([1] of DW1)
  146. * - Depth Stall ([13] of DW1)
  147. * - Post-Sync Operation ([13] of DW1)
  148. * - Notify Enable ([8] of DW1)"
  149. *
  150. * The cache flushes require the workaround flush that triggered this
  151. * one, so we can't use it. Depth stall would trigger the same.
  152. * Post-sync nonzero is what triggered this second workaround, so we
  153. * can't use that one either. Notify enable is IRQs, which aren't
  154. * really our business. That leaves only stall at scoreboard.
  155. */
  156. static int
  157. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  158. {
  159. struct intel_ring *ring = req->ring;
  160. u32 scratch_addr =
  161. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  162. int ret;
  163. ret = intel_ring_begin(req, 6);
  164. if (ret)
  165. return ret;
  166. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  167. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  168. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  169. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  170. intel_ring_emit(ring, 0); /* low dword */
  171. intel_ring_emit(ring, 0); /* high dword */
  172. intel_ring_emit(ring, MI_NOOP);
  173. intel_ring_advance(ring);
  174. ret = intel_ring_begin(req, 6);
  175. if (ret)
  176. return ret;
  177. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  178. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  179. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, MI_NOOP);
  183. intel_ring_advance(ring);
  184. return 0;
  185. }
  186. static int
  187. gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  188. {
  189. struct intel_ring *ring = req->ring;
  190. u32 scratch_addr =
  191. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  192. u32 flags = 0;
  193. int ret;
  194. /* Force SNB workarounds for PIPE_CONTROL flushes */
  195. ret = intel_emit_post_sync_nonzero_flush(req);
  196. if (ret)
  197. return ret;
  198. /* Just flush everything. Experiments have shown that reducing the
  199. * number of bits based on the write domains has little performance
  200. * impact.
  201. */
  202. if (mode & EMIT_FLUSH) {
  203. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. /*
  206. * Ensure that any following seqno writes only happen
  207. * when the render cache is indeed flushed.
  208. */
  209. flags |= PIPE_CONTROL_CS_STALL;
  210. }
  211. if (mode & EMIT_INVALIDATE) {
  212. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  213. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  216. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  217. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  218. /*
  219. * TLB invalidate requires a post-sync write.
  220. */
  221. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  222. }
  223. ret = intel_ring_begin(req, 4);
  224. if (ret)
  225. return ret;
  226. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  227. intel_ring_emit(ring, flags);
  228. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  229. intel_ring_emit(ring, 0);
  230. intel_ring_advance(ring);
  231. return 0;
  232. }
  233. static int
  234. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  235. {
  236. struct intel_ring *ring = req->ring;
  237. int ret;
  238. ret = intel_ring_begin(req, 4);
  239. if (ret)
  240. return ret;
  241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  242. intel_ring_emit(ring,
  243. PIPE_CONTROL_CS_STALL |
  244. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  245. intel_ring_emit(ring, 0);
  246. intel_ring_emit(ring, 0);
  247. intel_ring_advance(ring);
  248. return 0;
  249. }
  250. static int
  251. gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  252. {
  253. struct intel_ring *ring = req->ring;
  254. u32 scratch_addr =
  255. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  256. u32 flags = 0;
  257. int ret;
  258. /*
  259. * Ensure that any following seqno writes only happen when the render
  260. * cache is indeed flushed.
  261. *
  262. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  263. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  264. * don't try to be clever and just set it unconditionally.
  265. */
  266. flags |= PIPE_CONTROL_CS_STALL;
  267. /* Just flush everything. Experiments have shown that reducing the
  268. * number of bits based on the write domains has little performance
  269. * impact.
  270. */
  271. if (mode & EMIT_FLUSH) {
  272. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  273. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  274. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  275. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  276. }
  277. if (mode & EMIT_INVALIDATE) {
  278. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  279. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  280. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  281. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  282. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  283. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  284. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  285. /*
  286. * TLB invalidate requires a post-sync write.
  287. */
  288. flags |= PIPE_CONTROL_QW_WRITE;
  289. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  290. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  291. /* Workaround: we must issue a pipe_control with CS-stall bit
  292. * set before a pipe_control command that has the state cache
  293. * invalidate bit set. */
  294. gen7_render_ring_cs_stall_wa(req);
  295. }
  296. ret = intel_ring_begin(req, 4);
  297. if (ret)
  298. return ret;
  299. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  300. intel_ring_emit(ring, flags);
  301. intel_ring_emit(ring, scratch_addr);
  302. intel_ring_emit(ring, 0);
  303. intel_ring_advance(ring);
  304. return 0;
  305. }
  306. static int
  307. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  308. u32 flags, u32 scratch_addr)
  309. {
  310. struct intel_ring *ring = req->ring;
  311. int ret;
  312. ret = intel_ring_begin(req, 6);
  313. if (ret)
  314. return ret;
  315. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  316. intel_ring_emit(ring, flags);
  317. intel_ring_emit(ring, scratch_addr);
  318. intel_ring_emit(ring, 0);
  319. intel_ring_emit(ring, 0);
  320. intel_ring_emit(ring, 0);
  321. intel_ring_advance(ring);
  322. return 0;
  323. }
  324. static int
  325. gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  326. {
  327. u32 scratch_addr =
  328. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  329. u32 flags = 0;
  330. int ret;
  331. flags |= PIPE_CONTROL_CS_STALL;
  332. if (mode & EMIT_FLUSH) {
  333. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  334. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  335. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  336. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  337. }
  338. if (mode & EMIT_INVALIDATE) {
  339. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  340. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  341. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  342. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  343. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  344. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  345. flags |= PIPE_CONTROL_QW_WRITE;
  346. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  347. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  348. ret = gen8_emit_pipe_control(req,
  349. PIPE_CONTROL_CS_STALL |
  350. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  351. 0);
  352. if (ret)
  353. return ret;
  354. }
  355. return gen8_emit_pipe_control(req, flags, scratch_addr);
  356. }
  357. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  358. {
  359. struct drm_i915_private *dev_priv = engine->i915;
  360. u32 addr;
  361. addr = dev_priv->status_page_dmah->busaddr;
  362. if (INTEL_GEN(dev_priv) >= 4)
  363. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  364. I915_WRITE(HWS_PGA, addr);
  365. }
  366. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  367. {
  368. struct drm_i915_private *dev_priv = engine->i915;
  369. i915_reg_t mmio;
  370. /* The ring status page addresses are no longer next to the rest of
  371. * the ring registers as of gen7.
  372. */
  373. if (IS_GEN7(dev_priv)) {
  374. switch (engine->id) {
  375. case RCS:
  376. mmio = RENDER_HWS_PGA_GEN7;
  377. break;
  378. case BCS:
  379. mmio = BLT_HWS_PGA_GEN7;
  380. break;
  381. /*
  382. * VCS2 actually doesn't exist on Gen7. Only shut up
  383. * gcc switch check warning
  384. */
  385. case VCS2:
  386. case VCS:
  387. mmio = BSD_HWS_PGA_GEN7;
  388. break;
  389. case VECS:
  390. mmio = VEBOX_HWS_PGA_GEN7;
  391. break;
  392. }
  393. } else if (IS_GEN6(dev_priv)) {
  394. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  395. } else {
  396. /* XXX: gen8 returns to sanity */
  397. mmio = RING_HWS_PGA(engine->mmio_base);
  398. }
  399. I915_WRITE(mmio, engine->status_page.ggtt_offset);
  400. POSTING_READ(mmio);
  401. /*
  402. * Flush the TLB for this page
  403. *
  404. * FIXME: These two bits have disappeared on gen8, so a question
  405. * arises: do we still need this and if so how should we go about
  406. * invalidating the TLB?
  407. */
  408. if (IS_GEN(dev_priv, 6, 7)) {
  409. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  410. /* ring should be idle before issuing a sync flush*/
  411. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  412. I915_WRITE(reg,
  413. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  414. INSTPM_SYNC_FLUSH));
  415. if (intel_wait_for_register(dev_priv,
  416. reg, INSTPM_SYNC_FLUSH, 0,
  417. 1000))
  418. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  419. engine->name);
  420. }
  421. }
  422. static bool stop_ring(struct intel_engine_cs *engine)
  423. {
  424. struct drm_i915_private *dev_priv = engine->i915;
  425. if (INTEL_GEN(dev_priv) > 2) {
  426. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  427. if (intel_wait_for_register(dev_priv,
  428. RING_MI_MODE(engine->mmio_base),
  429. MODE_IDLE,
  430. MODE_IDLE,
  431. 1000)) {
  432. DRM_ERROR("%s : timed out trying to stop ring\n",
  433. engine->name);
  434. /* Sometimes we observe that the idle flag is not
  435. * set even though the ring is empty. So double
  436. * check before giving up.
  437. */
  438. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  439. return false;
  440. }
  441. }
  442. I915_WRITE_CTL(engine, 0);
  443. I915_WRITE_HEAD(engine, 0);
  444. I915_WRITE_TAIL(engine, 0);
  445. if (INTEL_GEN(dev_priv) > 2) {
  446. (void)I915_READ_CTL(engine);
  447. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  448. }
  449. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  450. }
  451. static int init_ring_common(struct intel_engine_cs *engine)
  452. {
  453. struct drm_i915_private *dev_priv = engine->i915;
  454. struct intel_ring *ring = engine->buffer;
  455. int ret = 0;
  456. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  457. if (!stop_ring(engine)) {
  458. /* G45 ring initialization often fails to reset head to zero */
  459. DRM_DEBUG_KMS("%s head not reset to zero "
  460. "ctl %08x head %08x tail %08x start %08x\n",
  461. engine->name,
  462. I915_READ_CTL(engine),
  463. I915_READ_HEAD(engine),
  464. I915_READ_TAIL(engine),
  465. I915_READ_START(engine));
  466. if (!stop_ring(engine)) {
  467. DRM_ERROR("failed to set %s head to zero "
  468. "ctl %08x head %08x tail %08x start %08x\n",
  469. engine->name,
  470. I915_READ_CTL(engine),
  471. I915_READ_HEAD(engine),
  472. I915_READ_TAIL(engine),
  473. I915_READ_START(engine));
  474. ret = -EIO;
  475. goto out;
  476. }
  477. }
  478. if (HWS_NEEDS_PHYSICAL(dev_priv))
  479. ring_setup_phys_status_page(engine);
  480. else
  481. intel_ring_setup_status_page(engine);
  482. intel_engine_reset_breadcrumbs(engine);
  483. /* Enforce ordering by reading HEAD register back */
  484. I915_READ_HEAD(engine);
  485. /* Initialize the ring. This must happen _after_ we've cleared the ring
  486. * registers with the above sequence (the readback of the HEAD registers
  487. * also enforces ordering), otherwise the hw might lose the new ring
  488. * register values. */
  489. I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
  490. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  491. if (I915_READ_HEAD(engine))
  492. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  493. engine->name, I915_READ_HEAD(engine));
  494. intel_ring_update_space(ring);
  495. I915_WRITE_HEAD(engine, ring->head);
  496. I915_WRITE_TAIL(engine, ring->tail);
  497. (void)I915_READ_TAIL(engine);
  498. I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
  499. /* If the head is still not zero, the ring is dead */
  500. if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
  501. RING_VALID, RING_VALID,
  502. 50)) {
  503. DRM_ERROR("%s initialization failed "
  504. "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
  505. engine->name,
  506. I915_READ_CTL(engine),
  507. I915_READ_CTL(engine) & RING_VALID,
  508. I915_READ_HEAD(engine), ring->head,
  509. I915_READ_TAIL(engine), ring->tail,
  510. I915_READ_START(engine),
  511. i915_ggtt_offset(ring->vma));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. intel_engine_init_hangcheck(engine);
  516. out:
  517. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  518. return ret;
  519. }
  520. static void reset_ring_common(struct intel_engine_cs *engine,
  521. struct drm_i915_gem_request *request)
  522. {
  523. struct intel_ring *ring = request->ring;
  524. ring->head = request->postfix;
  525. ring->last_retired_head = -1;
  526. }
  527. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  528. {
  529. struct intel_ring *ring = req->ring;
  530. struct i915_workarounds *w = &req->i915->workarounds;
  531. int ret, i;
  532. if (w->count == 0)
  533. return 0;
  534. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  535. if (ret)
  536. return ret;
  537. ret = intel_ring_begin(req, (w->count * 2 + 2));
  538. if (ret)
  539. return ret;
  540. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  541. for (i = 0; i < w->count; i++) {
  542. intel_ring_emit_reg(ring, w->reg[i].addr);
  543. intel_ring_emit(ring, w->reg[i].value);
  544. }
  545. intel_ring_emit(ring, MI_NOOP);
  546. intel_ring_advance(ring);
  547. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  548. if (ret)
  549. return ret;
  550. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  551. return 0;
  552. }
  553. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  554. {
  555. int ret;
  556. ret = intel_ring_workarounds_emit(req);
  557. if (ret != 0)
  558. return ret;
  559. ret = i915_gem_render_state_emit(req);
  560. if (ret)
  561. return ret;
  562. return 0;
  563. }
  564. static int wa_add(struct drm_i915_private *dev_priv,
  565. i915_reg_t addr,
  566. const u32 mask, const u32 val)
  567. {
  568. const u32 idx = dev_priv->workarounds.count;
  569. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  570. return -ENOSPC;
  571. dev_priv->workarounds.reg[idx].addr = addr;
  572. dev_priv->workarounds.reg[idx].value = val;
  573. dev_priv->workarounds.reg[idx].mask = mask;
  574. dev_priv->workarounds.count++;
  575. return 0;
  576. }
  577. #define WA_REG(addr, mask, val) do { \
  578. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  579. if (r) \
  580. return r; \
  581. } while (0)
  582. #define WA_SET_BIT_MASKED(addr, mask) \
  583. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  584. #define WA_CLR_BIT_MASKED(addr, mask) \
  585. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  586. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  587. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  588. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  589. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  590. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  591. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  592. i915_reg_t reg)
  593. {
  594. struct drm_i915_private *dev_priv = engine->i915;
  595. struct i915_workarounds *wa = &dev_priv->workarounds;
  596. const uint32_t index = wa->hw_whitelist_count[engine->id];
  597. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  598. return -EINVAL;
  599. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  600. i915_mmio_reg_offset(reg));
  601. wa->hw_whitelist_count[engine->id]++;
  602. return 0;
  603. }
  604. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  605. {
  606. struct drm_i915_private *dev_priv = engine->i915;
  607. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  608. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  609. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  610. /* WaDisablePartialInstShootdown:bdw,chv */
  611. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  612. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  613. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  614. * workaround for for a possible hang in the unlikely event a TLB
  615. * invalidation occurs during a PSD flush.
  616. */
  617. /* WaForceEnableNonCoherent:bdw,chv */
  618. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  619. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  620. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  621. HDC_FORCE_NON_COHERENT);
  622. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  623. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  624. * polygons in the same 8x4 pixel/sample area to be processed without
  625. * stalling waiting for the earlier ones to write to Hierarchical Z
  626. * buffer."
  627. *
  628. * This optimization is off by default for BDW and CHV; turn it on.
  629. */
  630. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  631. /* Wa4x4STCOptimizationDisable:bdw,chv */
  632. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  633. /*
  634. * BSpec recommends 8x4 when MSAA is used,
  635. * however in practice 16x4 seems fastest.
  636. *
  637. * Note that PS/WM thread counts depend on the WIZ hashing
  638. * disable bit, which we don't touch here, but it's good
  639. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  640. */
  641. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  642. GEN6_WIZ_HASHING_MASK,
  643. GEN6_WIZ_HASHING_16x4);
  644. return 0;
  645. }
  646. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  647. {
  648. struct drm_i915_private *dev_priv = engine->i915;
  649. int ret;
  650. ret = gen8_init_workarounds(engine);
  651. if (ret)
  652. return ret;
  653. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  654. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  655. /* WaDisableDopClockGating:bdw */
  656. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  657. DOP_CLOCK_GATING_DISABLE);
  658. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  659. GEN8_SAMPLER_POWER_BYPASS_DIS);
  660. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  661. /* WaForceContextSaveRestoreNonCoherent:bdw */
  662. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  663. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  664. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  665. return 0;
  666. }
  667. static int chv_init_workarounds(struct intel_engine_cs *engine)
  668. {
  669. struct drm_i915_private *dev_priv = engine->i915;
  670. int ret;
  671. ret = gen8_init_workarounds(engine);
  672. if (ret)
  673. return ret;
  674. /* WaDisableThreadStallDopClockGating:chv */
  675. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  676. /* Improve HiZ throughput on CHV. */
  677. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  678. return 0;
  679. }
  680. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  681. {
  682. struct drm_i915_private *dev_priv = engine->i915;
  683. int ret;
  684. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  685. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  686. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  687. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  688. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  689. /* WaDisableKillLogic:bxt,skl,kbl */
  690. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  691. ECOCHK_DIS_TLB);
  692. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  693. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  694. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  695. FLOW_CONTROL_ENABLE |
  696. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  697. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  698. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  699. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  700. /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
  701. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  702. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  703. GEN9_DG_MIRROR_FIX_ENABLE);
  704. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
  705. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  706. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  707. GEN9_RHWO_OPTIMIZATION_DISABLE);
  708. /*
  709. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  710. * but we do that in per ctx batchbuffer as there is an issue
  711. * with this register not getting restored on ctx restore
  712. */
  713. }
  714. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  715. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  716. GEN9_ENABLE_GPGPU_PREEMPTION);
  717. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  718. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  719. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  720. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  721. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  722. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  723. GEN9_CCS_TLB_PREFETCH_ENABLE);
  724. /* WaDisableMaskBasedCammingInRCC:bxt */
  725. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  726. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  727. PIXEL_MASK_CAMMING_DISABLE);
  728. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  729. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  730. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  731. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  732. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  733. * both tied to WaForceContextSaveRestoreNonCoherent
  734. * in some hsds for skl. We keep the tie for all gen9. The
  735. * documentation is a bit hazy and so we want to get common behaviour,
  736. * even though there is no clear evidence we would need both on kbl/bxt.
  737. * This area has been source of system hangs so we play it safe
  738. * and mimic the skl regardless of what bspec says.
  739. *
  740. * Use Force Non-Coherent whenever executing a 3D context. This
  741. * is a workaround for a possible hang in the unlikely event
  742. * a TLB invalidation occurs during a PSD flush.
  743. */
  744. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  745. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  746. HDC_FORCE_NON_COHERENT);
  747. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  748. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  749. BDW_DISABLE_HDC_INVALIDATION);
  750. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  751. if (IS_SKYLAKE(dev_priv) ||
  752. IS_KABYLAKE(dev_priv) ||
  753. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  754. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  755. GEN8_SAMPLER_POWER_BYPASS_DIS);
  756. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  757. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  758. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  759. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  760. GEN8_LQSC_FLUSH_COHERENT_LINES));
  761. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  762. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  763. if (ret)
  764. return ret;
  765. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  766. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  767. if (ret)
  768. return ret;
  769. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  770. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  771. if (ret)
  772. return ret;
  773. return 0;
  774. }
  775. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  776. {
  777. struct drm_i915_private *dev_priv = engine->i915;
  778. u8 vals[3] = { 0, 0, 0 };
  779. unsigned int i;
  780. for (i = 0; i < 3; i++) {
  781. u8 ss;
  782. /*
  783. * Only consider slices where one, and only one, subslice has 7
  784. * EUs
  785. */
  786. if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
  787. continue;
  788. /*
  789. * subslice_7eu[i] != 0 (because of the check above) and
  790. * ss_max == 4 (maximum number of subslices possible per slice)
  791. *
  792. * -> 0 <= ss <= 3;
  793. */
  794. ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
  795. vals[i] = 3 - ss;
  796. }
  797. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  798. return 0;
  799. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  800. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  801. GEN9_IZ_HASHING_MASK(2) |
  802. GEN9_IZ_HASHING_MASK(1) |
  803. GEN9_IZ_HASHING_MASK(0),
  804. GEN9_IZ_HASHING(2, vals[2]) |
  805. GEN9_IZ_HASHING(1, vals[1]) |
  806. GEN9_IZ_HASHING(0, vals[0]));
  807. return 0;
  808. }
  809. static int skl_init_workarounds(struct intel_engine_cs *engine)
  810. {
  811. struct drm_i915_private *dev_priv = engine->i915;
  812. int ret;
  813. ret = gen9_init_workarounds(engine);
  814. if (ret)
  815. return ret;
  816. /*
  817. * Actual WA is to disable percontext preemption granularity control
  818. * until D0 which is the default case so this is equivalent to
  819. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  820. */
  821. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  822. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  823. /* WaEnableGapsTsvCreditFix:skl */
  824. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  825. GEN9_GAPS_TSV_CREDIT_DISABLE));
  826. /* WaDisableGafsUnitClkGating:skl */
  827. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  828. /* WaInPlaceDecompressionHang:skl */
  829. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  830. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  831. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  832. /* WaDisableLSQCROPERFforOCL:skl */
  833. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  834. if (ret)
  835. return ret;
  836. return skl_tune_iz_hashing(engine);
  837. }
  838. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  839. {
  840. struct drm_i915_private *dev_priv = engine->i915;
  841. int ret;
  842. ret = gen9_init_workarounds(engine);
  843. if (ret)
  844. return ret;
  845. /* WaStoreMultiplePTEenable:bxt */
  846. /* This is a requirement according to Hardware specification */
  847. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  848. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  849. /* WaSetClckGatingDisableMedia:bxt */
  850. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  851. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  852. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  853. }
  854. /* WaDisableThreadStallDopClockGating:bxt */
  855. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  856. STALL_DOP_GATING_DISABLE);
  857. /* WaDisablePooledEuLoadBalancingFix:bxt */
  858. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  859. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  860. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  861. }
  862. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  863. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  864. WA_SET_BIT_MASKED(
  865. GEN7_HALF_SLICE_CHICKEN1,
  866. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  867. }
  868. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  869. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  870. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  871. /* WaDisableLSQCROPERFforOCL:bxt */
  872. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  873. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  874. if (ret)
  875. return ret;
  876. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  877. if (ret)
  878. return ret;
  879. }
  880. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  881. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  882. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  883. L3_HIGH_PRIO_CREDITS(2));
  884. /* WaToEnableHwFixForPushConstHWBug:bxt */
  885. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  886. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  887. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  888. /* WaInPlaceDecompressionHang:bxt */
  889. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  890. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  891. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  892. return 0;
  893. }
  894. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  895. {
  896. struct drm_i915_private *dev_priv = engine->i915;
  897. int ret;
  898. ret = gen9_init_workarounds(engine);
  899. if (ret)
  900. return ret;
  901. /* WaEnableGapsTsvCreditFix:kbl */
  902. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  903. GEN9_GAPS_TSV_CREDIT_DISABLE));
  904. /* WaDisableDynamicCreditSharing:kbl */
  905. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  906. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  907. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  908. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  909. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  910. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  911. HDC_FENCE_DEST_SLM_DISABLE);
  912. /* WaToEnableHwFixForPushConstHWBug:kbl */
  913. if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
  914. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  915. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  916. /* WaDisableGafsUnitClkGating:kbl */
  917. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  918. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  919. WA_SET_BIT_MASKED(
  920. GEN7_HALF_SLICE_CHICKEN1,
  921. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  922. /* WaInPlaceDecompressionHang:kbl */
  923. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  924. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  925. /* WaDisableLSQCROPERFforOCL:kbl */
  926. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  927. if (ret)
  928. return ret;
  929. return 0;
  930. }
  931. int init_workarounds_ring(struct intel_engine_cs *engine)
  932. {
  933. struct drm_i915_private *dev_priv = engine->i915;
  934. WARN_ON(engine->id != RCS);
  935. dev_priv->workarounds.count = 0;
  936. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  937. if (IS_BROADWELL(dev_priv))
  938. return bdw_init_workarounds(engine);
  939. if (IS_CHERRYVIEW(dev_priv))
  940. return chv_init_workarounds(engine);
  941. if (IS_SKYLAKE(dev_priv))
  942. return skl_init_workarounds(engine);
  943. if (IS_BROXTON(dev_priv))
  944. return bxt_init_workarounds(engine);
  945. if (IS_KABYLAKE(dev_priv))
  946. return kbl_init_workarounds(engine);
  947. return 0;
  948. }
  949. static int init_render_ring(struct intel_engine_cs *engine)
  950. {
  951. struct drm_i915_private *dev_priv = engine->i915;
  952. int ret = init_ring_common(engine);
  953. if (ret)
  954. return ret;
  955. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  956. if (IS_GEN(dev_priv, 4, 6))
  957. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  958. /* We need to disable the AsyncFlip performance optimisations in order
  959. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  960. * programmed to '1' on all products.
  961. *
  962. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  963. */
  964. if (IS_GEN(dev_priv, 6, 7))
  965. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  966. /* Required for the hardware to program scanline values for waiting */
  967. /* WaEnableFlushTlbInvalidationMode:snb */
  968. if (IS_GEN6(dev_priv))
  969. I915_WRITE(GFX_MODE,
  970. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  971. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  972. if (IS_GEN7(dev_priv))
  973. I915_WRITE(GFX_MODE_GEN7,
  974. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  975. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  976. if (IS_GEN6(dev_priv)) {
  977. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  978. * "If this bit is set, STCunit will have LRA as replacement
  979. * policy. [...] This bit must be reset. LRA replacement
  980. * policy is not supported."
  981. */
  982. I915_WRITE(CACHE_MODE_0,
  983. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  984. }
  985. if (IS_GEN(dev_priv, 6, 7))
  986. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  987. if (INTEL_INFO(dev_priv)->gen >= 6)
  988. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  989. return init_workarounds_ring(engine);
  990. }
  991. static void render_ring_cleanup(struct intel_engine_cs *engine)
  992. {
  993. struct drm_i915_private *dev_priv = engine->i915;
  994. i915_vma_unpin_and_release(&dev_priv->semaphore);
  995. }
  996. static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
  997. {
  998. struct drm_i915_private *dev_priv = req->i915;
  999. struct intel_engine_cs *waiter;
  1000. enum intel_engine_id id;
  1001. for_each_engine(waiter, dev_priv, id) {
  1002. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1003. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1004. continue;
  1005. *out++ = GFX_OP_PIPE_CONTROL(6);
  1006. *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1007. PIPE_CONTROL_QW_WRITE |
  1008. PIPE_CONTROL_CS_STALL);
  1009. *out++ = lower_32_bits(gtt_offset);
  1010. *out++ = upper_32_bits(gtt_offset);
  1011. *out++ = req->global_seqno;
  1012. *out++ = 0;
  1013. *out++ = (MI_SEMAPHORE_SIGNAL |
  1014. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1015. *out++ = 0;
  1016. }
  1017. return out;
  1018. }
  1019. static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
  1020. {
  1021. struct drm_i915_private *dev_priv = req->i915;
  1022. struct intel_engine_cs *waiter;
  1023. enum intel_engine_id id;
  1024. for_each_engine(waiter, dev_priv, id) {
  1025. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1026. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1027. continue;
  1028. *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
  1029. *out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
  1030. *out++ = upper_32_bits(gtt_offset);
  1031. *out++ = req->global_seqno;
  1032. *out++ = (MI_SEMAPHORE_SIGNAL |
  1033. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1034. *out++ = 0;
  1035. }
  1036. return out;
  1037. }
  1038. static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
  1039. {
  1040. struct drm_i915_private *dev_priv = req->i915;
  1041. struct intel_engine_cs *engine;
  1042. enum intel_engine_id id;
  1043. int num_rings = 0;
  1044. for_each_engine(engine, dev_priv, id) {
  1045. i915_reg_t mbox_reg;
  1046. if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
  1047. continue;
  1048. mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
  1049. if (i915_mmio_reg_valid(mbox_reg)) {
  1050. *out++ = MI_LOAD_REGISTER_IMM(1);
  1051. *out++ = i915_mmio_reg_offset(mbox_reg);
  1052. *out++ = req->global_seqno;
  1053. num_rings++;
  1054. }
  1055. }
  1056. if (num_rings & 1)
  1057. *out++ = MI_NOOP;
  1058. return out;
  1059. }
  1060. static void i9xx_submit_request(struct drm_i915_gem_request *request)
  1061. {
  1062. struct drm_i915_private *dev_priv = request->i915;
  1063. i915_gem_request_submit(request);
  1064. I915_WRITE_TAIL(request->engine, request->tail);
  1065. }
  1066. static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
  1067. u32 *out)
  1068. {
  1069. *out++ = MI_STORE_DWORD_INDEX;
  1070. *out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
  1071. *out++ = req->global_seqno;
  1072. *out++ = MI_USER_INTERRUPT;
  1073. req->tail = intel_ring_offset(req->ring, out);
  1074. }
  1075. static const int i9xx_emit_breadcrumb_sz = 4;
  1076. /**
  1077. * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
  1078. *
  1079. * @request - request to write to the ring
  1080. *
  1081. * Update the mailbox registers in the *other* rings with the current seqno.
  1082. * This acts like a signal in the canonical semaphore.
  1083. */
  1084. static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
  1085. u32 *out)
  1086. {
  1087. return i9xx_emit_breadcrumb(req,
  1088. req->engine->semaphore.signal(req, out));
  1089. }
  1090. static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
  1091. u32 *out)
  1092. {
  1093. struct intel_engine_cs *engine = req->engine;
  1094. if (engine->semaphore.signal)
  1095. out = engine->semaphore.signal(req, out);
  1096. *out++ = GFX_OP_PIPE_CONTROL(6);
  1097. *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1098. PIPE_CONTROL_CS_STALL |
  1099. PIPE_CONTROL_QW_WRITE);
  1100. *out++ = intel_hws_seqno_address(engine);
  1101. *out++ = 0;
  1102. *out++ = req->global_seqno;
  1103. /* We're thrashing one dword of HWS. */
  1104. *out++ = 0;
  1105. *out++ = MI_USER_INTERRUPT;
  1106. *out++ = MI_NOOP;
  1107. req->tail = intel_ring_offset(req->ring, out);
  1108. }
  1109. static const int gen8_render_emit_breadcrumb_sz = 8;
  1110. /**
  1111. * intel_ring_sync - sync the waiter to the signaller on seqno
  1112. *
  1113. * @waiter - ring that is waiting
  1114. * @signaller - ring which has, or will signal
  1115. * @seqno - seqno which the waiter will block on
  1116. */
  1117. static int
  1118. gen8_ring_sync_to(struct drm_i915_gem_request *req,
  1119. struct drm_i915_gem_request *signal)
  1120. {
  1121. struct intel_ring *ring = req->ring;
  1122. struct drm_i915_private *dev_priv = req->i915;
  1123. u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
  1124. struct i915_hw_ppgtt *ppgtt;
  1125. int ret;
  1126. ret = intel_ring_begin(req, 4);
  1127. if (ret)
  1128. return ret;
  1129. intel_ring_emit(ring,
  1130. MI_SEMAPHORE_WAIT |
  1131. MI_SEMAPHORE_GLOBAL_GTT |
  1132. MI_SEMAPHORE_SAD_GTE_SDD);
  1133. intel_ring_emit(ring, signal->global_seqno);
  1134. intel_ring_emit(ring, lower_32_bits(offset));
  1135. intel_ring_emit(ring, upper_32_bits(offset));
  1136. intel_ring_advance(ring);
  1137. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1138. * pagetables and we must reload them before executing the batch.
  1139. * We do this on the i915_switch_context() following the wait and
  1140. * before the dispatch.
  1141. */
  1142. ppgtt = req->ctx->ppgtt;
  1143. if (ppgtt && req->engine->id != RCS)
  1144. ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
  1145. return 0;
  1146. }
  1147. static int
  1148. gen6_ring_sync_to(struct drm_i915_gem_request *req,
  1149. struct drm_i915_gem_request *signal)
  1150. {
  1151. struct intel_ring *ring = req->ring;
  1152. u32 dw1 = MI_SEMAPHORE_MBOX |
  1153. MI_SEMAPHORE_COMPARE |
  1154. MI_SEMAPHORE_REGISTER;
  1155. u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
  1156. int ret;
  1157. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1158. ret = intel_ring_begin(req, 4);
  1159. if (ret)
  1160. return ret;
  1161. intel_ring_emit(ring, dw1 | wait_mbox);
  1162. /* Throughout all of the GEM code, seqno passed implies our current
  1163. * seqno is >= the last seqno executed. However for hardware the
  1164. * comparison is strictly greater than.
  1165. */
  1166. intel_ring_emit(ring, signal->global_seqno - 1);
  1167. intel_ring_emit(ring, 0);
  1168. intel_ring_emit(ring, MI_NOOP);
  1169. intel_ring_advance(ring);
  1170. return 0;
  1171. }
  1172. static void
  1173. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1174. {
  1175. /* MI_STORE are internally buffered by the GPU and not flushed
  1176. * either by MI_FLUSH or SyncFlush or any other combination of
  1177. * MI commands.
  1178. *
  1179. * "Only the submission of the store operation is guaranteed.
  1180. * The write result will be complete (coherent) some time later
  1181. * (this is practically a finite period but there is no guaranteed
  1182. * latency)."
  1183. *
  1184. * Empirically, we observe that we need a delay of at least 75us to
  1185. * be sure that the seqno write is visible by the CPU.
  1186. */
  1187. usleep_range(125, 250);
  1188. }
  1189. static void
  1190. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1191. {
  1192. struct drm_i915_private *dev_priv = engine->i915;
  1193. /* Workaround to force correct ordering between irq and seqno writes on
  1194. * ivb (and maybe also on snb) by reading from a CS register (like
  1195. * ACTHD) before reading the status page.
  1196. *
  1197. * Note that this effectively stalls the read by the time it takes to
  1198. * do a memory transaction, which more or less ensures that the write
  1199. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1200. * Alternatively we could delay the interrupt from the CS ring to give
  1201. * the write time to land, but that would incur a delay after every
  1202. * batch i.e. much more frequent than a delay when waiting for the
  1203. * interrupt (with the same net latency).
  1204. *
  1205. * Also note that to prevent whole machine hangs on gen7, we have to
  1206. * take the spinlock to guard against concurrent cacheline access.
  1207. */
  1208. spin_lock_irq(&dev_priv->uncore.lock);
  1209. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1210. spin_unlock_irq(&dev_priv->uncore.lock);
  1211. }
  1212. static void
  1213. gen5_irq_enable(struct intel_engine_cs *engine)
  1214. {
  1215. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1216. }
  1217. static void
  1218. gen5_irq_disable(struct intel_engine_cs *engine)
  1219. {
  1220. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1221. }
  1222. static void
  1223. i9xx_irq_enable(struct intel_engine_cs *engine)
  1224. {
  1225. struct drm_i915_private *dev_priv = engine->i915;
  1226. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1227. I915_WRITE(IMR, dev_priv->irq_mask);
  1228. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1229. }
  1230. static void
  1231. i9xx_irq_disable(struct intel_engine_cs *engine)
  1232. {
  1233. struct drm_i915_private *dev_priv = engine->i915;
  1234. dev_priv->irq_mask |= engine->irq_enable_mask;
  1235. I915_WRITE(IMR, dev_priv->irq_mask);
  1236. }
  1237. static void
  1238. i8xx_irq_enable(struct intel_engine_cs *engine)
  1239. {
  1240. struct drm_i915_private *dev_priv = engine->i915;
  1241. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1242. I915_WRITE16(IMR, dev_priv->irq_mask);
  1243. POSTING_READ16(RING_IMR(engine->mmio_base));
  1244. }
  1245. static void
  1246. i8xx_irq_disable(struct intel_engine_cs *engine)
  1247. {
  1248. struct drm_i915_private *dev_priv = engine->i915;
  1249. dev_priv->irq_mask |= engine->irq_enable_mask;
  1250. I915_WRITE16(IMR, dev_priv->irq_mask);
  1251. }
  1252. static int
  1253. bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1254. {
  1255. struct intel_ring *ring = req->ring;
  1256. int ret;
  1257. ret = intel_ring_begin(req, 2);
  1258. if (ret)
  1259. return ret;
  1260. intel_ring_emit(ring, MI_FLUSH);
  1261. intel_ring_emit(ring, MI_NOOP);
  1262. intel_ring_advance(ring);
  1263. return 0;
  1264. }
  1265. static void
  1266. gen6_irq_enable(struct intel_engine_cs *engine)
  1267. {
  1268. struct drm_i915_private *dev_priv = engine->i915;
  1269. I915_WRITE_IMR(engine,
  1270. ~(engine->irq_enable_mask |
  1271. engine->irq_keep_mask));
  1272. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1273. }
  1274. static void
  1275. gen6_irq_disable(struct intel_engine_cs *engine)
  1276. {
  1277. struct drm_i915_private *dev_priv = engine->i915;
  1278. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1279. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1280. }
  1281. static void
  1282. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1283. {
  1284. struct drm_i915_private *dev_priv = engine->i915;
  1285. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1286. gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
  1287. }
  1288. static void
  1289. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1290. {
  1291. struct drm_i915_private *dev_priv = engine->i915;
  1292. I915_WRITE_IMR(engine, ~0);
  1293. gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
  1294. }
  1295. static void
  1296. gen8_irq_enable(struct intel_engine_cs *engine)
  1297. {
  1298. struct drm_i915_private *dev_priv = engine->i915;
  1299. I915_WRITE_IMR(engine,
  1300. ~(engine->irq_enable_mask |
  1301. engine->irq_keep_mask));
  1302. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1303. }
  1304. static void
  1305. gen8_irq_disable(struct intel_engine_cs *engine)
  1306. {
  1307. struct drm_i915_private *dev_priv = engine->i915;
  1308. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1309. }
  1310. static int
  1311. i965_emit_bb_start(struct drm_i915_gem_request *req,
  1312. u64 offset, u32 length,
  1313. unsigned int dispatch_flags)
  1314. {
  1315. struct intel_ring *ring = req->ring;
  1316. int ret;
  1317. ret = intel_ring_begin(req, 2);
  1318. if (ret)
  1319. return ret;
  1320. intel_ring_emit(ring,
  1321. MI_BATCH_BUFFER_START |
  1322. MI_BATCH_GTT |
  1323. (dispatch_flags & I915_DISPATCH_SECURE ?
  1324. 0 : MI_BATCH_NON_SECURE_I965));
  1325. intel_ring_emit(ring, offset);
  1326. intel_ring_advance(ring);
  1327. return 0;
  1328. }
  1329. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1330. #define I830_BATCH_LIMIT (256*1024)
  1331. #define I830_TLB_ENTRIES (2)
  1332. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1333. static int
  1334. i830_emit_bb_start(struct drm_i915_gem_request *req,
  1335. u64 offset, u32 len,
  1336. unsigned int dispatch_flags)
  1337. {
  1338. struct intel_ring *ring = req->ring;
  1339. u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
  1340. int ret;
  1341. ret = intel_ring_begin(req, 6);
  1342. if (ret)
  1343. return ret;
  1344. /* Evict the invalid PTE TLBs */
  1345. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1346. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1347. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1348. intel_ring_emit(ring, cs_offset);
  1349. intel_ring_emit(ring, 0xdeadbeef);
  1350. intel_ring_emit(ring, MI_NOOP);
  1351. intel_ring_advance(ring);
  1352. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1353. if (len > I830_BATCH_LIMIT)
  1354. return -ENOSPC;
  1355. ret = intel_ring_begin(req, 6 + 2);
  1356. if (ret)
  1357. return ret;
  1358. /* Blit the batch (which has now all relocs applied) to the
  1359. * stable batch scratch bo area (so that the CS never
  1360. * stumbles over its tlb invalidation bug) ...
  1361. */
  1362. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1363. intel_ring_emit(ring,
  1364. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1365. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1366. intel_ring_emit(ring, cs_offset);
  1367. intel_ring_emit(ring, 4096);
  1368. intel_ring_emit(ring, offset);
  1369. intel_ring_emit(ring, MI_FLUSH);
  1370. intel_ring_emit(ring, MI_NOOP);
  1371. intel_ring_advance(ring);
  1372. /* ... and execute it. */
  1373. offset = cs_offset;
  1374. }
  1375. ret = intel_ring_begin(req, 2);
  1376. if (ret)
  1377. return ret;
  1378. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1379. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1380. 0 : MI_BATCH_NON_SECURE));
  1381. intel_ring_advance(ring);
  1382. return 0;
  1383. }
  1384. static int
  1385. i915_emit_bb_start(struct drm_i915_gem_request *req,
  1386. u64 offset, u32 len,
  1387. unsigned int dispatch_flags)
  1388. {
  1389. struct intel_ring *ring = req->ring;
  1390. int ret;
  1391. ret = intel_ring_begin(req, 2);
  1392. if (ret)
  1393. return ret;
  1394. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1395. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1396. 0 : MI_BATCH_NON_SECURE));
  1397. intel_ring_advance(ring);
  1398. return 0;
  1399. }
  1400. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1401. {
  1402. struct drm_i915_private *dev_priv = engine->i915;
  1403. if (!dev_priv->status_page_dmah)
  1404. return;
  1405. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1406. engine->status_page.page_addr = NULL;
  1407. }
  1408. static void cleanup_status_page(struct intel_engine_cs *engine)
  1409. {
  1410. struct i915_vma *vma;
  1411. struct drm_i915_gem_object *obj;
  1412. vma = fetch_and_zero(&engine->status_page.vma);
  1413. if (!vma)
  1414. return;
  1415. obj = vma->obj;
  1416. i915_vma_unpin(vma);
  1417. i915_vma_close(vma);
  1418. i915_gem_object_unpin_map(obj);
  1419. __i915_gem_object_release_unless_active(obj);
  1420. }
  1421. static int init_status_page(struct intel_engine_cs *engine)
  1422. {
  1423. struct drm_i915_gem_object *obj;
  1424. struct i915_vma *vma;
  1425. unsigned int flags;
  1426. void *vaddr;
  1427. int ret;
  1428. obj = i915_gem_object_create_internal(engine->i915, 4096);
  1429. if (IS_ERR(obj)) {
  1430. DRM_ERROR("Failed to allocate status page\n");
  1431. return PTR_ERR(obj);
  1432. }
  1433. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1434. if (ret)
  1435. goto err;
  1436. vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
  1437. if (IS_ERR(vma)) {
  1438. ret = PTR_ERR(vma);
  1439. goto err;
  1440. }
  1441. flags = PIN_GLOBAL;
  1442. if (!HAS_LLC(engine->i915))
  1443. /* On g33, we cannot place HWS above 256MiB, so
  1444. * restrict its pinning to the low mappable arena.
  1445. * Though this restriction is not documented for
  1446. * gen4, gen5, or byt, they also behave similarly
  1447. * and hang if the HWS is placed at the top of the
  1448. * GTT. To generalise, it appears that all !llc
  1449. * platforms have issues with us placing the HWS
  1450. * above the mappable region (even though we never
  1451. * actualy map it).
  1452. */
  1453. flags |= PIN_MAPPABLE;
  1454. ret = i915_vma_pin(vma, 0, 4096, flags);
  1455. if (ret)
  1456. goto err;
  1457. vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
  1458. if (IS_ERR(vaddr)) {
  1459. ret = PTR_ERR(vaddr);
  1460. goto err_unpin;
  1461. }
  1462. engine->status_page.vma = vma;
  1463. engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
  1464. engine->status_page.page_addr = memset(vaddr, 0, 4096);
  1465. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1466. engine->name, i915_ggtt_offset(vma));
  1467. return 0;
  1468. err_unpin:
  1469. i915_vma_unpin(vma);
  1470. err:
  1471. i915_gem_object_put(obj);
  1472. return ret;
  1473. }
  1474. static int init_phys_status_page(struct intel_engine_cs *engine)
  1475. {
  1476. struct drm_i915_private *dev_priv = engine->i915;
  1477. dev_priv->status_page_dmah =
  1478. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1479. if (!dev_priv->status_page_dmah)
  1480. return -ENOMEM;
  1481. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1482. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1483. return 0;
  1484. }
  1485. int intel_ring_pin(struct intel_ring *ring)
  1486. {
  1487. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1488. unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
  1489. enum i915_map_type map;
  1490. struct i915_vma *vma = ring->vma;
  1491. void *addr;
  1492. int ret;
  1493. GEM_BUG_ON(ring->vaddr);
  1494. map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
  1495. if (vma->obj->stolen)
  1496. flags |= PIN_MAPPABLE;
  1497. if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
  1498. if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
  1499. ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
  1500. else
  1501. ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
  1502. if (unlikely(ret))
  1503. return ret;
  1504. }
  1505. ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
  1506. if (unlikely(ret))
  1507. return ret;
  1508. if (i915_vma_is_map_and_fenceable(vma))
  1509. addr = (void __force *)i915_vma_pin_iomap(vma);
  1510. else
  1511. addr = i915_gem_object_pin_map(vma->obj, map);
  1512. if (IS_ERR(addr))
  1513. goto err;
  1514. ring->vaddr = addr;
  1515. return 0;
  1516. err:
  1517. i915_vma_unpin(vma);
  1518. return PTR_ERR(addr);
  1519. }
  1520. void intel_ring_unpin(struct intel_ring *ring)
  1521. {
  1522. GEM_BUG_ON(!ring->vma);
  1523. GEM_BUG_ON(!ring->vaddr);
  1524. if (i915_vma_is_map_and_fenceable(ring->vma))
  1525. i915_vma_unpin_iomap(ring->vma);
  1526. else
  1527. i915_gem_object_unpin_map(ring->vma->obj);
  1528. ring->vaddr = NULL;
  1529. i915_vma_unpin(ring->vma);
  1530. }
  1531. static struct i915_vma *
  1532. intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
  1533. {
  1534. struct drm_i915_gem_object *obj;
  1535. struct i915_vma *vma;
  1536. obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
  1537. if (!obj)
  1538. obj = i915_gem_object_create(&dev_priv->drm, size);
  1539. if (IS_ERR(obj))
  1540. return ERR_CAST(obj);
  1541. /* mark ring buffers as read-only from GPU side by default */
  1542. obj->gt_ro = 1;
  1543. vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
  1544. if (IS_ERR(vma))
  1545. goto err;
  1546. return vma;
  1547. err:
  1548. i915_gem_object_put(obj);
  1549. return vma;
  1550. }
  1551. struct intel_ring *
  1552. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1553. {
  1554. struct intel_ring *ring;
  1555. struct i915_vma *vma;
  1556. GEM_BUG_ON(!is_power_of_2(size));
  1557. GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
  1558. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1559. if (!ring)
  1560. return ERR_PTR(-ENOMEM);
  1561. ring->engine = engine;
  1562. INIT_LIST_HEAD(&ring->request_list);
  1563. ring->size = size;
  1564. /* Workaround an erratum on the i830 which causes a hang if
  1565. * the TAIL pointer points to within the last 2 cachelines
  1566. * of the buffer.
  1567. */
  1568. ring->effective_size = size;
  1569. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1570. ring->effective_size -= 2 * CACHELINE_BYTES;
  1571. ring->last_retired_head = -1;
  1572. intel_ring_update_space(ring);
  1573. vma = intel_ring_create_vma(engine->i915, size);
  1574. if (IS_ERR(vma)) {
  1575. kfree(ring);
  1576. return ERR_CAST(vma);
  1577. }
  1578. ring->vma = vma;
  1579. return ring;
  1580. }
  1581. void
  1582. intel_ring_free(struct intel_ring *ring)
  1583. {
  1584. struct drm_i915_gem_object *obj = ring->vma->obj;
  1585. i915_vma_close(ring->vma);
  1586. __i915_gem_object_release_unless_active(obj);
  1587. kfree(ring);
  1588. }
  1589. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1590. struct intel_engine_cs *engine)
  1591. {
  1592. struct intel_context *ce = &ctx->engine[engine->id];
  1593. int ret;
  1594. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1595. if (ce->pin_count++)
  1596. return 0;
  1597. if (ce->state) {
  1598. struct i915_vma *vma;
  1599. vma = i915_gem_context_pin_legacy(ctx, PIN_HIGH);
  1600. if (IS_ERR(vma)) {
  1601. ret = PTR_ERR(vma);
  1602. goto error;
  1603. }
  1604. }
  1605. /* The kernel context is only used as a placeholder for flushing the
  1606. * active context. It is never used for submitting user rendering and
  1607. * as such never requires the golden render context, and so we can skip
  1608. * emitting it when we switch to the kernel context. This is required
  1609. * as during eviction we cannot allocate and pin the renderstate in
  1610. * order to initialise the context.
  1611. */
  1612. if (ctx == ctx->i915->kernel_context)
  1613. ce->initialised = true;
  1614. i915_gem_context_get(ctx);
  1615. return 0;
  1616. error:
  1617. ce->pin_count = 0;
  1618. return ret;
  1619. }
  1620. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1621. struct intel_engine_cs *engine)
  1622. {
  1623. struct intel_context *ce = &ctx->engine[engine->id];
  1624. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1625. if (--ce->pin_count)
  1626. return;
  1627. if (ce->state)
  1628. i915_vma_unpin(ce->state);
  1629. i915_gem_context_put(ctx);
  1630. }
  1631. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1632. {
  1633. struct drm_i915_private *dev_priv = engine->i915;
  1634. struct intel_ring *ring;
  1635. int ret;
  1636. WARN_ON(engine->buffer);
  1637. intel_engine_setup_common(engine);
  1638. ret = intel_engine_init_common(engine);
  1639. if (ret)
  1640. goto error;
  1641. /* We may need to do things with the shrinker which
  1642. * require us to immediately switch back to the default
  1643. * context. This can cause a problem as pinning the
  1644. * default context also requires GTT space which may not
  1645. * be available. To avoid this we always pin the default
  1646. * context.
  1647. */
  1648. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1649. if (ret)
  1650. goto error;
  1651. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1652. if (IS_ERR(ring)) {
  1653. ret = PTR_ERR(ring);
  1654. goto error;
  1655. }
  1656. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1657. WARN_ON(engine->id != RCS);
  1658. ret = init_phys_status_page(engine);
  1659. if (ret)
  1660. goto error;
  1661. } else {
  1662. ret = init_status_page(engine);
  1663. if (ret)
  1664. goto error;
  1665. }
  1666. ret = intel_ring_pin(ring);
  1667. if (ret) {
  1668. intel_ring_free(ring);
  1669. goto error;
  1670. }
  1671. engine->buffer = ring;
  1672. return 0;
  1673. error:
  1674. intel_engine_cleanup(engine);
  1675. return ret;
  1676. }
  1677. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1678. {
  1679. struct drm_i915_private *dev_priv;
  1680. dev_priv = engine->i915;
  1681. if (engine->buffer) {
  1682. WARN_ON(INTEL_GEN(dev_priv) > 2 &&
  1683. (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1684. intel_ring_unpin(engine->buffer);
  1685. intel_ring_free(engine->buffer);
  1686. engine->buffer = NULL;
  1687. }
  1688. if (engine->cleanup)
  1689. engine->cleanup(engine);
  1690. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1691. WARN_ON(engine->id != RCS);
  1692. cleanup_phys_status_page(engine);
  1693. } else {
  1694. cleanup_status_page(engine);
  1695. }
  1696. intel_engine_cleanup_common(engine);
  1697. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1698. engine->i915 = NULL;
  1699. dev_priv->engine[engine->id] = NULL;
  1700. kfree(engine);
  1701. }
  1702. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
  1703. {
  1704. struct intel_engine_cs *engine;
  1705. enum intel_engine_id id;
  1706. for_each_engine(engine, dev_priv, id) {
  1707. engine->buffer->head = engine->buffer->tail;
  1708. engine->buffer->last_retired_head = -1;
  1709. }
  1710. }
  1711. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1712. {
  1713. int ret;
  1714. /* Flush enough space to reduce the likelihood of waiting after
  1715. * we start building the request - in which case we will just
  1716. * have to repeat work.
  1717. */
  1718. request->reserved_space += LEGACY_REQUEST_SIZE;
  1719. request->ring = request->engine->buffer;
  1720. ret = intel_ring_begin(request, 0);
  1721. if (ret)
  1722. return ret;
  1723. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1724. return 0;
  1725. }
  1726. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1727. {
  1728. struct intel_ring *ring = req->ring;
  1729. struct drm_i915_gem_request *target;
  1730. long timeout;
  1731. lockdep_assert_held(&req->i915->drm.struct_mutex);
  1732. intel_ring_update_space(ring);
  1733. if (ring->space >= bytes)
  1734. return 0;
  1735. /*
  1736. * Space is reserved in the ringbuffer for finalising the request,
  1737. * as that cannot be allowed to fail. During request finalisation,
  1738. * reserved_space is set to 0 to stop the overallocation and the
  1739. * assumption is that then we never need to wait (which has the
  1740. * risk of failing with EINTR).
  1741. *
  1742. * See also i915_gem_request_alloc() and i915_add_request().
  1743. */
  1744. GEM_BUG_ON(!req->reserved_space);
  1745. list_for_each_entry(target, &ring->request_list, ring_link) {
  1746. unsigned space;
  1747. /* Would completion of this request free enough space? */
  1748. space = __intel_ring_space(target->postfix, ring->tail,
  1749. ring->size);
  1750. if (space >= bytes)
  1751. break;
  1752. }
  1753. if (WARN_ON(&target->ring_link == &ring->request_list))
  1754. return -ENOSPC;
  1755. timeout = i915_wait_request(target,
  1756. I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
  1757. MAX_SCHEDULE_TIMEOUT);
  1758. if (timeout < 0)
  1759. return timeout;
  1760. i915_gem_request_retire_upto(target);
  1761. intel_ring_update_space(ring);
  1762. GEM_BUG_ON(ring->space < bytes);
  1763. return 0;
  1764. }
  1765. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1766. {
  1767. struct intel_ring *ring = req->ring;
  1768. int remain_actual = ring->size - ring->tail;
  1769. int remain_usable = ring->effective_size - ring->tail;
  1770. int bytes = num_dwords * sizeof(u32);
  1771. int total_bytes, wait_bytes;
  1772. bool need_wrap = false;
  1773. total_bytes = bytes + req->reserved_space;
  1774. if (unlikely(bytes > remain_usable)) {
  1775. /*
  1776. * Not enough space for the basic request. So need to flush
  1777. * out the remainder and then wait for base + reserved.
  1778. */
  1779. wait_bytes = remain_actual + total_bytes;
  1780. need_wrap = true;
  1781. } else if (unlikely(total_bytes > remain_usable)) {
  1782. /*
  1783. * The base request will fit but the reserved space
  1784. * falls off the end. So we don't need an immediate wrap
  1785. * and only need to effectively wait for the reserved
  1786. * size space from the start of ringbuffer.
  1787. */
  1788. wait_bytes = remain_actual + req->reserved_space;
  1789. } else {
  1790. /* No wrapping required, just waiting. */
  1791. wait_bytes = total_bytes;
  1792. }
  1793. if (wait_bytes > ring->space) {
  1794. int ret = wait_for_space(req, wait_bytes);
  1795. if (unlikely(ret))
  1796. return ret;
  1797. }
  1798. if (unlikely(need_wrap)) {
  1799. GEM_BUG_ON(remain_actual > ring->space);
  1800. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1801. /* Fill the tail with MI_NOOP */
  1802. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1803. ring->tail = 0;
  1804. ring->space -= remain_actual;
  1805. }
  1806. ring->space -= bytes;
  1807. GEM_BUG_ON(ring->space < 0);
  1808. return 0;
  1809. }
  1810. /* Align the ring tail to a cacheline boundary */
  1811. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1812. {
  1813. struct intel_ring *ring = req->ring;
  1814. int num_dwords =
  1815. (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1816. int ret;
  1817. if (num_dwords == 0)
  1818. return 0;
  1819. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1820. ret = intel_ring_begin(req, num_dwords);
  1821. if (ret)
  1822. return ret;
  1823. while (num_dwords--)
  1824. intel_ring_emit(ring, MI_NOOP);
  1825. intel_ring_advance(ring);
  1826. return 0;
  1827. }
  1828. static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
  1829. {
  1830. struct drm_i915_private *dev_priv = request->i915;
  1831. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1832. /* Every tail move must follow the sequence below */
  1833. /* Disable notification that the ring is IDLE. The GT
  1834. * will then assume that it is busy and bring it out of rc6.
  1835. */
  1836. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1837. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1838. /* Clear the context id. Here be magic! */
  1839. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  1840. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1841. if (intel_wait_for_register_fw(dev_priv,
  1842. GEN6_BSD_SLEEP_PSMI_CONTROL,
  1843. GEN6_BSD_SLEEP_INDICATOR,
  1844. 0,
  1845. 50))
  1846. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1847. /* Now that the ring is fully powered up, update the tail */
  1848. i9xx_submit_request(request);
  1849. /* Let the ring send IDLE messages to the GT again,
  1850. * and so let it sleep to conserve power when idle.
  1851. */
  1852. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1853. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1854. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1855. }
  1856. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1857. {
  1858. struct intel_ring *ring = req->ring;
  1859. uint32_t cmd;
  1860. int ret;
  1861. ret = intel_ring_begin(req, 4);
  1862. if (ret)
  1863. return ret;
  1864. cmd = MI_FLUSH_DW;
  1865. if (INTEL_GEN(req->i915) >= 8)
  1866. cmd += 1;
  1867. /* We always require a command barrier so that subsequent
  1868. * commands, such as breadcrumb interrupts, are strictly ordered
  1869. * wrt the contents of the write cache being flushed to memory
  1870. * (and thus being coherent from the CPU).
  1871. */
  1872. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1873. /*
  1874. * Bspec vol 1c.5 - video engine command streamer:
  1875. * "If ENABLED, all TLBs will be invalidated once the flush
  1876. * operation is complete. This bit is only valid when the
  1877. * Post-Sync Operation field is a value of 1h or 3h."
  1878. */
  1879. if (mode & EMIT_INVALIDATE)
  1880. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1881. intel_ring_emit(ring, cmd);
  1882. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1883. if (INTEL_GEN(req->i915) >= 8) {
  1884. intel_ring_emit(ring, 0); /* upper addr */
  1885. intel_ring_emit(ring, 0); /* value */
  1886. } else {
  1887. intel_ring_emit(ring, 0);
  1888. intel_ring_emit(ring, MI_NOOP);
  1889. }
  1890. intel_ring_advance(ring);
  1891. return 0;
  1892. }
  1893. static int
  1894. gen8_emit_bb_start(struct drm_i915_gem_request *req,
  1895. u64 offset, u32 len,
  1896. unsigned int dispatch_flags)
  1897. {
  1898. struct intel_ring *ring = req->ring;
  1899. bool ppgtt = USES_PPGTT(req->i915) &&
  1900. !(dispatch_flags & I915_DISPATCH_SECURE);
  1901. int ret;
  1902. ret = intel_ring_begin(req, 4);
  1903. if (ret)
  1904. return ret;
  1905. /* FIXME(BDW): Address space and security selectors. */
  1906. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  1907. (dispatch_flags & I915_DISPATCH_RS ?
  1908. MI_BATCH_RESOURCE_STREAMER : 0));
  1909. intel_ring_emit(ring, lower_32_bits(offset));
  1910. intel_ring_emit(ring, upper_32_bits(offset));
  1911. intel_ring_emit(ring, MI_NOOP);
  1912. intel_ring_advance(ring);
  1913. return 0;
  1914. }
  1915. static int
  1916. hsw_emit_bb_start(struct drm_i915_gem_request *req,
  1917. u64 offset, u32 len,
  1918. unsigned int dispatch_flags)
  1919. {
  1920. struct intel_ring *ring = req->ring;
  1921. int ret;
  1922. ret = intel_ring_begin(req, 2);
  1923. if (ret)
  1924. return ret;
  1925. intel_ring_emit(ring,
  1926. MI_BATCH_BUFFER_START |
  1927. (dispatch_flags & I915_DISPATCH_SECURE ?
  1928. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  1929. (dispatch_flags & I915_DISPATCH_RS ?
  1930. MI_BATCH_RESOURCE_STREAMER : 0));
  1931. /* bit0-7 is the length on GEN6+ */
  1932. intel_ring_emit(ring, offset);
  1933. intel_ring_advance(ring);
  1934. return 0;
  1935. }
  1936. static int
  1937. gen6_emit_bb_start(struct drm_i915_gem_request *req,
  1938. u64 offset, u32 len,
  1939. unsigned int dispatch_flags)
  1940. {
  1941. struct intel_ring *ring = req->ring;
  1942. int ret;
  1943. ret = intel_ring_begin(req, 2);
  1944. if (ret)
  1945. return ret;
  1946. intel_ring_emit(ring,
  1947. MI_BATCH_BUFFER_START |
  1948. (dispatch_flags & I915_DISPATCH_SECURE ?
  1949. 0 : MI_BATCH_NON_SECURE_I965));
  1950. /* bit0-7 is the length on GEN6+ */
  1951. intel_ring_emit(ring, offset);
  1952. intel_ring_advance(ring);
  1953. return 0;
  1954. }
  1955. /* Blitter support (SandyBridge+) */
  1956. static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1957. {
  1958. struct intel_ring *ring = req->ring;
  1959. uint32_t cmd;
  1960. int ret;
  1961. ret = intel_ring_begin(req, 4);
  1962. if (ret)
  1963. return ret;
  1964. cmd = MI_FLUSH_DW;
  1965. if (INTEL_GEN(req->i915) >= 8)
  1966. cmd += 1;
  1967. /* We always require a command barrier so that subsequent
  1968. * commands, such as breadcrumb interrupts, are strictly ordered
  1969. * wrt the contents of the write cache being flushed to memory
  1970. * (and thus being coherent from the CPU).
  1971. */
  1972. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1973. /*
  1974. * Bspec vol 1c.3 - blitter engine command streamer:
  1975. * "If ENABLED, all TLBs will be invalidated once the flush
  1976. * operation is complete. This bit is only valid when the
  1977. * Post-Sync Operation field is a value of 1h or 3h."
  1978. */
  1979. if (mode & EMIT_INVALIDATE)
  1980. cmd |= MI_INVALIDATE_TLB;
  1981. intel_ring_emit(ring, cmd);
  1982. intel_ring_emit(ring,
  1983. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1984. if (INTEL_GEN(req->i915) >= 8) {
  1985. intel_ring_emit(ring, 0); /* upper addr */
  1986. intel_ring_emit(ring, 0); /* value */
  1987. } else {
  1988. intel_ring_emit(ring, 0);
  1989. intel_ring_emit(ring, MI_NOOP);
  1990. }
  1991. intel_ring_advance(ring);
  1992. return 0;
  1993. }
  1994. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  1995. struct intel_engine_cs *engine)
  1996. {
  1997. struct drm_i915_gem_object *obj;
  1998. int ret, i;
  1999. if (!i915.semaphores)
  2000. return;
  2001. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
  2002. struct i915_vma *vma;
  2003. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2004. if (IS_ERR(obj))
  2005. goto err;
  2006. vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
  2007. if (IS_ERR(vma))
  2008. goto err_obj;
  2009. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  2010. if (ret)
  2011. goto err_obj;
  2012. ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
  2013. if (ret)
  2014. goto err_obj;
  2015. dev_priv->semaphore = vma;
  2016. }
  2017. if (INTEL_GEN(dev_priv) >= 8) {
  2018. u32 offset = i915_ggtt_offset(dev_priv->semaphore);
  2019. engine->semaphore.sync_to = gen8_ring_sync_to;
  2020. engine->semaphore.signal = gen8_xcs_signal;
  2021. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2022. u32 ring_offset;
  2023. if (i != engine->id)
  2024. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2025. else
  2026. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2027. engine->semaphore.signal_ggtt[i] = ring_offset;
  2028. }
  2029. } else if (INTEL_GEN(dev_priv) >= 6) {
  2030. engine->semaphore.sync_to = gen6_ring_sync_to;
  2031. engine->semaphore.signal = gen6_signal;
  2032. /*
  2033. * The current semaphore is only applied on pre-gen8
  2034. * platform. And there is no VCS2 ring on the pre-gen8
  2035. * platform. So the semaphore between RCS and VCS2 is
  2036. * initialized as INVALID. Gen8 will initialize the
  2037. * sema between VCS2 and RCS later.
  2038. */
  2039. for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
  2040. static const struct {
  2041. u32 wait_mbox;
  2042. i915_reg_t mbox_reg;
  2043. } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
  2044. [RCS_HW] = {
  2045. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2046. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2047. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2048. },
  2049. [VCS_HW] = {
  2050. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2051. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2052. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2053. },
  2054. [BCS_HW] = {
  2055. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2056. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2057. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2058. },
  2059. [VECS_HW] = {
  2060. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2061. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2062. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2063. },
  2064. };
  2065. u32 wait_mbox;
  2066. i915_reg_t mbox_reg;
  2067. if (i == engine->hw_id) {
  2068. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2069. mbox_reg = GEN6_NOSYNC;
  2070. } else {
  2071. wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
  2072. mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
  2073. }
  2074. engine->semaphore.mbox.wait[i] = wait_mbox;
  2075. engine->semaphore.mbox.signal[i] = mbox_reg;
  2076. }
  2077. }
  2078. return;
  2079. err_obj:
  2080. i915_gem_object_put(obj);
  2081. err:
  2082. DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
  2083. i915.semaphores = 0;
  2084. }
  2085. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2086. struct intel_engine_cs *engine)
  2087. {
  2088. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2089. if (INTEL_GEN(dev_priv) >= 8) {
  2090. engine->irq_enable = gen8_irq_enable;
  2091. engine->irq_disable = gen8_irq_disable;
  2092. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2093. } else if (INTEL_GEN(dev_priv) >= 6) {
  2094. engine->irq_enable = gen6_irq_enable;
  2095. engine->irq_disable = gen6_irq_disable;
  2096. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2097. } else if (INTEL_GEN(dev_priv) >= 5) {
  2098. engine->irq_enable = gen5_irq_enable;
  2099. engine->irq_disable = gen5_irq_disable;
  2100. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2101. } else if (INTEL_GEN(dev_priv) >= 3) {
  2102. engine->irq_enable = i9xx_irq_enable;
  2103. engine->irq_disable = i9xx_irq_disable;
  2104. } else {
  2105. engine->irq_enable = i8xx_irq_enable;
  2106. engine->irq_disable = i8xx_irq_disable;
  2107. }
  2108. }
  2109. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2110. struct intel_engine_cs *engine)
  2111. {
  2112. intel_ring_init_irq(dev_priv, engine);
  2113. intel_ring_init_semaphores(dev_priv, engine);
  2114. engine->init_hw = init_ring_common;
  2115. engine->reset_hw = reset_ring_common;
  2116. engine->emit_breadcrumb = i9xx_emit_breadcrumb;
  2117. engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
  2118. if (i915.semaphores) {
  2119. int num_rings;
  2120. engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
  2121. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
  2122. if (INTEL_GEN(dev_priv) >= 8) {
  2123. engine->emit_breadcrumb_sz += num_rings * 6;
  2124. } else {
  2125. engine->emit_breadcrumb_sz += num_rings * 3;
  2126. if (num_rings & 1)
  2127. engine->emit_breadcrumb_sz++;
  2128. }
  2129. }
  2130. engine->submit_request = i9xx_submit_request;
  2131. if (INTEL_GEN(dev_priv) >= 8)
  2132. engine->emit_bb_start = gen8_emit_bb_start;
  2133. else if (INTEL_GEN(dev_priv) >= 6)
  2134. engine->emit_bb_start = gen6_emit_bb_start;
  2135. else if (INTEL_GEN(dev_priv) >= 4)
  2136. engine->emit_bb_start = i965_emit_bb_start;
  2137. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2138. engine->emit_bb_start = i830_emit_bb_start;
  2139. else
  2140. engine->emit_bb_start = i915_emit_bb_start;
  2141. }
  2142. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2143. {
  2144. struct drm_i915_private *dev_priv = engine->i915;
  2145. int ret;
  2146. intel_ring_default_vfuncs(dev_priv, engine);
  2147. if (HAS_L3_DPF(dev_priv))
  2148. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2149. if (INTEL_GEN(dev_priv) >= 8) {
  2150. engine->init_context = intel_rcs_ctx_init;
  2151. engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
  2152. engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
  2153. engine->emit_flush = gen8_render_ring_flush;
  2154. if (i915.semaphores) {
  2155. int num_rings;
  2156. engine->semaphore.signal = gen8_rcs_signal;
  2157. num_rings =
  2158. hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
  2159. engine->emit_breadcrumb_sz += num_rings * 6;
  2160. }
  2161. } else if (INTEL_GEN(dev_priv) >= 6) {
  2162. engine->init_context = intel_rcs_ctx_init;
  2163. engine->emit_flush = gen7_render_ring_flush;
  2164. if (IS_GEN6(dev_priv))
  2165. engine->emit_flush = gen6_render_ring_flush;
  2166. } else if (IS_GEN5(dev_priv)) {
  2167. engine->emit_flush = gen4_render_ring_flush;
  2168. } else {
  2169. if (INTEL_GEN(dev_priv) < 4)
  2170. engine->emit_flush = gen2_render_ring_flush;
  2171. else
  2172. engine->emit_flush = gen4_render_ring_flush;
  2173. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2174. }
  2175. if (IS_HASWELL(dev_priv))
  2176. engine->emit_bb_start = hsw_emit_bb_start;
  2177. engine->init_hw = init_render_ring;
  2178. engine->cleanup = render_ring_cleanup;
  2179. ret = intel_init_ring_buffer(engine);
  2180. if (ret)
  2181. return ret;
  2182. if (INTEL_GEN(dev_priv) >= 6) {
  2183. ret = intel_engine_create_scratch(engine, 4096);
  2184. if (ret)
  2185. return ret;
  2186. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2187. ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
  2188. if (ret)
  2189. return ret;
  2190. }
  2191. return 0;
  2192. }
  2193. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2194. {
  2195. struct drm_i915_private *dev_priv = engine->i915;
  2196. intel_ring_default_vfuncs(dev_priv, engine);
  2197. if (INTEL_GEN(dev_priv) >= 6) {
  2198. /* gen6 bsd needs a special wa for tail updates */
  2199. if (IS_GEN6(dev_priv))
  2200. engine->submit_request = gen6_bsd_submit_request;
  2201. engine->emit_flush = gen6_bsd_ring_flush;
  2202. if (INTEL_GEN(dev_priv) < 8)
  2203. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2204. } else {
  2205. engine->mmio_base = BSD_RING_BASE;
  2206. engine->emit_flush = bsd_ring_flush;
  2207. if (IS_GEN5(dev_priv))
  2208. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2209. else
  2210. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2211. }
  2212. return intel_init_ring_buffer(engine);
  2213. }
  2214. /**
  2215. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2216. */
  2217. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2218. {
  2219. struct drm_i915_private *dev_priv = engine->i915;
  2220. intel_ring_default_vfuncs(dev_priv, engine);
  2221. engine->emit_flush = gen6_bsd_ring_flush;
  2222. return intel_init_ring_buffer(engine);
  2223. }
  2224. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2225. {
  2226. struct drm_i915_private *dev_priv = engine->i915;
  2227. intel_ring_default_vfuncs(dev_priv, engine);
  2228. engine->emit_flush = gen6_ring_flush;
  2229. if (INTEL_GEN(dev_priv) < 8)
  2230. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2231. return intel_init_ring_buffer(engine);
  2232. }
  2233. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2234. {
  2235. struct drm_i915_private *dev_priv = engine->i915;
  2236. intel_ring_default_vfuncs(dev_priv, engine);
  2237. engine->emit_flush = gen6_ring_flush;
  2238. if (INTEL_GEN(dev_priv) < 8) {
  2239. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2240. engine->irq_enable = hsw_vebox_irq_enable;
  2241. engine->irq_disable = hsw_vebox_irq_disable;
  2242. }
  2243. return intel_init_ring_buffer(engine);
  2244. }