disk-io.c 119 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static const struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  72. * is complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct btrfs_end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. enum btrfs_wq_endio_type metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. static struct kmem_cache *btrfs_end_io_wq_cache;
  86. int __init btrfs_end_io_wq_init(void)
  87. {
  88. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  89. sizeof(struct btrfs_end_io_wq),
  90. 0,
  91. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  92. NULL);
  93. if (!btrfs_end_io_wq_cache)
  94. return -ENOMEM;
  95. return 0;
  96. }
  97. void btrfs_end_io_wq_exit(void)
  98. {
  99. if (btrfs_end_io_wq_cache)
  100. kmem_cache_destroy(btrfs_end_io_wq_cache);
  101. }
  102. /*
  103. * async submit bios are used to offload expensive checksumming
  104. * onto the worker threads. They checksum file and metadata bios
  105. * just before they are sent down the IO stack.
  106. */
  107. struct async_submit_bio {
  108. struct inode *inode;
  109. struct bio *bio;
  110. struct list_head list;
  111. extent_submit_bio_hook_t *submit_bio_start;
  112. extent_submit_bio_hook_t *submit_bio_done;
  113. int rw;
  114. int mirror_num;
  115. unsigned long bio_flags;
  116. /*
  117. * bio_offset is optional, can be used if the pages in the bio
  118. * can't tell us where in the file the bio should go
  119. */
  120. u64 bio_offset;
  121. struct btrfs_work work;
  122. int error;
  123. };
  124. /*
  125. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  126. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  127. * the level the eb occupies in the tree.
  128. *
  129. * Different roots are used for different purposes and may nest inside each
  130. * other and they require separate keysets. As lockdep keys should be
  131. * static, assign keysets according to the purpose of the root as indicated
  132. * by btrfs_root->objectid. This ensures that all special purpose roots
  133. * have separate keysets.
  134. *
  135. * Lock-nesting across peer nodes is always done with the immediate parent
  136. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  137. * subclass to avoid triggering lockdep warning in such cases.
  138. *
  139. * The key is set by the readpage_end_io_hook after the buffer has passed
  140. * csum validation but before the pages are unlocked. It is also set by
  141. * btrfs_init_new_buffer on freshly allocated blocks.
  142. *
  143. * We also add a check to make sure the highest level of the tree is the
  144. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  145. * needs update as well.
  146. */
  147. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  148. # if BTRFS_MAX_LEVEL != 8
  149. # error
  150. # endif
  151. static struct btrfs_lockdep_keyset {
  152. u64 id; /* root objectid */
  153. const char *name_stem; /* lock name stem */
  154. char names[BTRFS_MAX_LEVEL + 1][20];
  155. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  156. } btrfs_lockdep_keysets[] = {
  157. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  158. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  159. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  160. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  161. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  162. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  163. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  164. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  165. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  166. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  167. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  168. { .id = 0, .name_stem = "tree" },
  169. };
  170. void __init btrfs_init_lockdep(void)
  171. {
  172. int i, j;
  173. /* initialize lockdep class names */
  174. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  175. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  176. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  177. snprintf(ks->names[j], sizeof(ks->names[j]),
  178. "btrfs-%s-%02d", ks->name_stem, j);
  179. }
  180. }
  181. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  182. int level)
  183. {
  184. struct btrfs_lockdep_keyset *ks;
  185. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  186. /* find the matching keyset, id 0 is the default entry */
  187. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  188. if (ks->id == objectid)
  189. break;
  190. lockdep_set_class_and_name(&eb->lock,
  191. &ks->keys[level], ks->names[level]);
  192. }
  193. #endif
  194. /*
  195. * extents on the btree inode are pretty simple, there's one extent
  196. * that covers the entire device
  197. */
  198. static struct extent_map *btree_get_extent(struct inode *inode,
  199. struct page *page, size_t pg_offset, u64 start, u64 len,
  200. int create)
  201. {
  202. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  203. struct extent_map *em;
  204. int ret;
  205. read_lock(&em_tree->lock);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (em) {
  208. em->bdev =
  209. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. read_unlock(&em_tree->lock);
  211. goto out;
  212. }
  213. read_unlock(&em_tree->lock);
  214. em = alloc_extent_map();
  215. if (!em) {
  216. em = ERR_PTR(-ENOMEM);
  217. goto out;
  218. }
  219. em->start = 0;
  220. em->len = (u64)-1;
  221. em->block_len = (u64)-1;
  222. em->block_start = 0;
  223. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  224. write_lock(&em_tree->lock);
  225. ret = add_extent_mapping(em_tree, em, 0);
  226. if (ret == -EEXIST) {
  227. free_extent_map(em);
  228. em = lookup_extent_mapping(em_tree, start, len);
  229. if (!em)
  230. em = ERR_PTR(-EIO);
  231. } else if (ret) {
  232. free_extent_map(em);
  233. em = ERR_PTR(ret);
  234. }
  235. write_unlock(&em_tree->lock);
  236. out:
  237. return em;
  238. }
  239. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  240. {
  241. return btrfs_crc32c(seed, data, len);
  242. }
  243. void btrfs_csum_final(u32 crc, char *result)
  244. {
  245. put_unaligned_le32(~crc, result);
  246. }
  247. /*
  248. * compute the csum for a btree block, and either verify it or write it
  249. * into the csum field of the block.
  250. */
  251. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  252. struct extent_buffer *buf,
  253. int verify)
  254. {
  255. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  256. char *result = NULL;
  257. unsigned long len;
  258. unsigned long cur_len;
  259. unsigned long offset = BTRFS_CSUM_SIZE;
  260. char *kaddr;
  261. unsigned long map_start;
  262. unsigned long map_len;
  263. int err;
  264. u32 crc = ~(u32)0;
  265. unsigned long inline_result;
  266. len = buf->len - offset;
  267. while (len > 0) {
  268. err = map_private_extent_buffer(buf, offset, 32,
  269. &kaddr, &map_start, &map_len);
  270. if (err)
  271. return 1;
  272. cur_len = min(len, map_len - (offset - map_start));
  273. crc = btrfs_csum_data(kaddr + offset - map_start,
  274. crc, cur_len);
  275. len -= cur_len;
  276. offset += cur_len;
  277. }
  278. if (csum_size > sizeof(inline_result)) {
  279. result = kzalloc(csum_size, GFP_NOFS);
  280. if (!result)
  281. return 1;
  282. } else {
  283. result = (char *)&inline_result;
  284. }
  285. btrfs_csum_final(crc, result);
  286. if (verify) {
  287. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  288. u32 val;
  289. u32 found = 0;
  290. memcpy(&found, result, csum_size);
  291. read_extent_buffer(buf, &val, 0, csum_size);
  292. btrfs_warn_rl(fs_info,
  293. "%s checksum verify failed on %llu wanted %X found %X "
  294. "level %d",
  295. fs_info->sb->s_id, buf->start,
  296. val, found, btrfs_header_level(buf));
  297. if (result != (char *)&inline_result)
  298. kfree(result);
  299. return 1;
  300. }
  301. } else {
  302. write_extent_buffer(buf, result, 0, csum_size);
  303. }
  304. if (result != (char *)&inline_result)
  305. kfree(result);
  306. return 0;
  307. }
  308. /*
  309. * we can't consider a given block up to date unless the transid of the
  310. * block matches the transid in the parent node's pointer. This is how we
  311. * detect blocks that either didn't get written at all or got written
  312. * in the wrong place.
  313. */
  314. static int verify_parent_transid(struct extent_io_tree *io_tree,
  315. struct extent_buffer *eb, u64 parent_transid,
  316. int atomic)
  317. {
  318. struct extent_state *cached_state = NULL;
  319. int ret;
  320. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  321. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  322. return 0;
  323. if (atomic)
  324. return -EAGAIN;
  325. if (need_lock) {
  326. btrfs_tree_read_lock(eb);
  327. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  328. }
  329. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  330. 0, &cached_state);
  331. if (extent_buffer_uptodate(eb) &&
  332. btrfs_header_generation(eb) == parent_transid) {
  333. ret = 0;
  334. goto out;
  335. }
  336. btrfs_err_rl(eb->fs_info,
  337. "parent transid verify failed on %llu wanted %llu found %llu",
  338. eb->start,
  339. parent_transid, btrfs_header_generation(eb));
  340. ret = 1;
  341. /*
  342. * Things reading via commit roots that don't have normal protection,
  343. * like send, can have a really old block in cache that may point at a
  344. * block that has been free'd and re-allocated. So don't clear uptodate
  345. * if we find an eb that is under IO (dirty/writeback) because we could
  346. * end up reading in the stale data and then writing it back out and
  347. * making everybody very sad.
  348. */
  349. if (!extent_buffer_under_io(eb))
  350. clear_extent_buffer_uptodate(eb);
  351. out:
  352. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  353. &cached_state, GFP_NOFS);
  354. if (need_lock)
  355. btrfs_tree_read_unlock_blocking(eb);
  356. return ret;
  357. }
  358. /*
  359. * Return 0 if the superblock checksum type matches the checksum value of that
  360. * algorithm. Pass the raw disk superblock data.
  361. */
  362. static int btrfs_check_super_csum(char *raw_disk_sb)
  363. {
  364. struct btrfs_super_block *disk_sb =
  365. (struct btrfs_super_block *)raw_disk_sb;
  366. u16 csum_type = btrfs_super_csum_type(disk_sb);
  367. int ret = 0;
  368. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  369. u32 crc = ~(u32)0;
  370. const int csum_size = sizeof(crc);
  371. char result[csum_size];
  372. /*
  373. * The super_block structure does not span the whole
  374. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  375. * is filled with zeros and is included in the checkum.
  376. */
  377. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  378. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  379. btrfs_csum_final(crc, result);
  380. if (memcmp(raw_disk_sb, result, csum_size))
  381. ret = 1;
  382. }
  383. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  384. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  385. csum_type);
  386. ret = 1;
  387. }
  388. return ret;
  389. }
  390. /*
  391. * helper to read a given tree block, doing retries as required when
  392. * the checksums don't match and we have alternate mirrors to try.
  393. */
  394. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  395. struct extent_buffer *eb,
  396. u64 start, u64 parent_transid)
  397. {
  398. struct extent_io_tree *io_tree;
  399. int failed = 0;
  400. int ret;
  401. int num_copies = 0;
  402. int mirror_num = 0;
  403. int failed_mirror = 0;
  404. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  405. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  406. while (1) {
  407. ret = read_extent_buffer_pages(io_tree, eb, start,
  408. WAIT_COMPLETE,
  409. btree_get_extent, mirror_num);
  410. if (!ret) {
  411. if (!verify_parent_transid(io_tree, eb,
  412. parent_transid, 0))
  413. break;
  414. else
  415. ret = -EIO;
  416. }
  417. /*
  418. * This buffer's crc is fine, but its contents are corrupted, so
  419. * there is no reason to read the other copies, they won't be
  420. * any less wrong.
  421. */
  422. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  423. break;
  424. num_copies = btrfs_num_copies(root->fs_info,
  425. eb->start, eb->len);
  426. if (num_copies == 1)
  427. break;
  428. if (!failed_mirror) {
  429. failed = 1;
  430. failed_mirror = eb->read_mirror;
  431. }
  432. mirror_num++;
  433. if (mirror_num == failed_mirror)
  434. mirror_num++;
  435. if (mirror_num > num_copies)
  436. break;
  437. }
  438. if (failed && !ret && failed_mirror)
  439. repair_eb_io_failure(root, eb, failed_mirror);
  440. return ret;
  441. }
  442. /*
  443. * checksum a dirty tree block before IO. This has extra checks to make sure
  444. * we only fill in the checksum field in the first page of a multi-page block
  445. */
  446. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  447. {
  448. u64 start = page_offset(page);
  449. u64 found_start;
  450. struct extent_buffer *eb;
  451. eb = (struct extent_buffer *)page->private;
  452. if (page != eb->pages[0])
  453. return 0;
  454. found_start = btrfs_header_bytenr(eb);
  455. if (WARN_ON(found_start != start || !PageUptodate(page)))
  456. return 0;
  457. csum_tree_block(fs_info, eb, 0);
  458. return 0;
  459. }
  460. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  461. struct extent_buffer *eb)
  462. {
  463. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  464. u8 fsid[BTRFS_UUID_SIZE];
  465. int ret = 1;
  466. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  467. while (fs_devices) {
  468. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  469. ret = 0;
  470. break;
  471. }
  472. fs_devices = fs_devices->seed;
  473. }
  474. return ret;
  475. }
  476. #define CORRUPT(reason, eb, root, slot) \
  477. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  478. "root=%llu, slot=%d", reason, \
  479. btrfs_header_bytenr(eb), root->objectid, slot)
  480. static noinline int check_leaf(struct btrfs_root *root,
  481. struct extent_buffer *leaf)
  482. {
  483. struct btrfs_key key;
  484. struct btrfs_key leaf_key;
  485. u32 nritems = btrfs_header_nritems(leaf);
  486. int slot;
  487. if (nritems == 0)
  488. return 0;
  489. /* Check the 0 item */
  490. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  491. BTRFS_LEAF_DATA_SIZE(root)) {
  492. CORRUPT("invalid item offset size pair", leaf, root, 0);
  493. return -EIO;
  494. }
  495. /*
  496. * Check to make sure each items keys are in the correct order and their
  497. * offsets make sense. We only have to loop through nritems-1 because
  498. * we check the current slot against the next slot, which verifies the
  499. * next slot's offset+size makes sense and that the current's slot
  500. * offset is correct.
  501. */
  502. for (slot = 0; slot < nritems - 1; slot++) {
  503. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  504. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  505. /* Make sure the keys are in the right order */
  506. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  507. CORRUPT("bad key order", leaf, root, slot);
  508. return -EIO;
  509. }
  510. /*
  511. * Make sure the offset and ends are right, remember that the
  512. * item data starts at the end of the leaf and grows towards the
  513. * front.
  514. */
  515. if (btrfs_item_offset_nr(leaf, slot) !=
  516. btrfs_item_end_nr(leaf, slot + 1)) {
  517. CORRUPT("slot offset bad", leaf, root, slot);
  518. return -EIO;
  519. }
  520. /*
  521. * Check to make sure that we don't point outside of the leaf,
  522. * just incase all the items are consistent to eachother, but
  523. * all point outside of the leaf.
  524. */
  525. if (btrfs_item_end_nr(leaf, slot) >
  526. BTRFS_LEAF_DATA_SIZE(root)) {
  527. CORRUPT("slot end outside of leaf", leaf, root, slot);
  528. return -EIO;
  529. }
  530. }
  531. return 0;
  532. }
  533. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  534. u64 phy_offset, struct page *page,
  535. u64 start, u64 end, int mirror)
  536. {
  537. u64 found_start;
  538. int found_level;
  539. struct extent_buffer *eb;
  540. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  541. int ret = 0;
  542. int reads_done;
  543. if (!page->private)
  544. goto out;
  545. eb = (struct extent_buffer *)page->private;
  546. /* the pending IO might have been the only thing that kept this buffer
  547. * in memory. Make sure we have a ref for all this other checks
  548. */
  549. extent_buffer_get(eb);
  550. reads_done = atomic_dec_and_test(&eb->io_pages);
  551. if (!reads_done)
  552. goto err;
  553. eb->read_mirror = mirror;
  554. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. found_start = btrfs_header_bytenr(eb);
  559. if (found_start != eb->start) {
  560. btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
  561. found_start, eb->start);
  562. ret = -EIO;
  563. goto err;
  564. }
  565. if (check_tree_block_fsid(root->fs_info, eb)) {
  566. btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
  567. eb->start);
  568. ret = -EIO;
  569. goto err;
  570. }
  571. found_level = btrfs_header_level(eb);
  572. if (found_level >= BTRFS_MAX_LEVEL) {
  573. btrfs_err(root->fs_info, "bad tree block level %d",
  574. (int)btrfs_header_level(eb));
  575. ret = -EIO;
  576. goto err;
  577. }
  578. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  579. eb, found_level);
  580. ret = csum_tree_block(root->fs_info, eb, 1);
  581. if (ret) {
  582. ret = -EIO;
  583. goto err;
  584. }
  585. /*
  586. * If this is a leaf block and it is corrupt, set the corrupt bit so
  587. * that we don't try and read the other copies of this block, just
  588. * return -EIO.
  589. */
  590. if (found_level == 0 && check_leaf(root, eb)) {
  591. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  592. ret = -EIO;
  593. }
  594. if (!ret)
  595. set_extent_buffer_uptodate(eb);
  596. err:
  597. if (reads_done &&
  598. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  599. btree_readahead_hook(root, eb, eb->start, ret);
  600. if (ret) {
  601. /*
  602. * our io error hook is going to dec the io pages
  603. * again, we have to make sure it has something
  604. * to decrement
  605. */
  606. atomic_inc(&eb->io_pages);
  607. clear_extent_buffer_uptodate(eb);
  608. }
  609. free_extent_buffer(eb);
  610. out:
  611. return ret;
  612. }
  613. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  614. {
  615. struct extent_buffer *eb;
  616. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  617. eb = (struct extent_buffer *)page->private;
  618. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  619. eb->read_mirror = failed_mirror;
  620. atomic_dec(&eb->io_pages);
  621. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  622. btree_readahead_hook(root, eb, eb->start, -EIO);
  623. return -EIO; /* we fixed nothing */
  624. }
  625. static void end_workqueue_bio(struct bio *bio)
  626. {
  627. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  628. struct btrfs_fs_info *fs_info;
  629. struct btrfs_workqueue *wq;
  630. btrfs_work_func_t func;
  631. fs_info = end_io_wq->info;
  632. end_io_wq->error = bio->bi_error;
  633. if (bio->bi_rw & REQ_WRITE) {
  634. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  635. wq = fs_info->endio_meta_write_workers;
  636. func = btrfs_endio_meta_write_helper;
  637. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  638. wq = fs_info->endio_freespace_worker;
  639. func = btrfs_freespace_write_helper;
  640. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  641. wq = fs_info->endio_raid56_workers;
  642. func = btrfs_endio_raid56_helper;
  643. } else {
  644. wq = fs_info->endio_write_workers;
  645. func = btrfs_endio_write_helper;
  646. }
  647. } else {
  648. if (unlikely(end_io_wq->metadata ==
  649. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  650. wq = fs_info->endio_repair_workers;
  651. func = btrfs_endio_repair_helper;
  652. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  653. wq = fs_info->endio_raid56_workers;
  654. func = btrfs_endio_raid56_helper;
  655. } else if (end_io_wq->metadata) {
  656. wq = fs_info->endio_meta_workers;
  657. func = btrfs_endio_meta_helper;
  658. } else {
  659. wq = fs_info->endio_workers;
  660. func = btrfs_endio_helper;
  661. }
  662. }
  663. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  664. btrfs_queue_work(wq, &end_io_wq->work);
  665. }
  666. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  667. enum btrfs_wq_endio_type metadata)
  668. {
  669. struct btrfs_end_io_wq *end_io_wq;
  670. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  671. if (!end_io_wq)
  672. return -ENOMEM;
  673. end_io_wq->private = bio->bi_private;
  674. end_io_wq->end_io = bio->bi_end_io;
  675. end_io_wq->info = info;
  676. end_io_wq->error = 0;
  677. end_io_wq->bio = bio;
  678. end_io_wq->metadata = metadata;
  679. bio->bi_private = end_io_wq;
  680. bio->bi_end_io = end_workqueue_bio;
  681. return 0;
  682. }
  683. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  684. {
  685. unsigned long limit = min_t(unsigned long,
  686. info->thread_pool_size,
  687. info->fs_devices->open_devices);
  688. return 256 * limit;
  689. }
  690. static void run_one_async_start(struct btrfs_work *work)
  691. {
  692. struct async_submit_bio *async;
  693. int ret;
  694. async = container_of(work, struct async_submit_bio, work);
  695. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  696. async->mirror_num, async->bio_flags,
  697. async->bio_offset);
  698. if (ret)
  699. async->error = ret;
  700. }
  701. static void run_one_async_done(struct btrfs_work *work)
  702. {
  703. struct btrfs_fs_info *fs_info;
  704. struct async_submit_bio *async;
  705. int limit;
  706. async = container_of(work, struct async_submit_bio, work);
  707. fs_info = BTRFS_I(async->inode)->root->fs_info;
  708. limit = btrfs_async_submit_limit(fs_info);
  709. limit = limit * 2 / 3;
  710. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  711. waitqueue_active(&fs_info->async_submit_wait))
  712. wake_up(&fs_info->async_submit_wait);
  713. /* If an error occured we just want to clean up the bio and move on */
  714. if (async->error) {
  715. async->bio->bi_error = async->error;
  716. bio_endio(async->bio);
  717. return;
  718. }
  719. async->submit_bio_done(async->inode, async->rw, async->bio,
  720. async->mirror_num, async->bio_flags,
  721. async->bio_offset);
  722. }
  723. static void run_one_async_free(struct btrfs_work *work)
  724. {
  725. struct async_submit_bio *async;
  726. async = container_of(work, struct async_submit_bio, work);
  727. kfree(async);
  728. }
  729. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  730. int rw, struct bio *bio, int mirror_num,
  731. unsigned long bio_flags,
  732. u64 bio_offset,
  733. extent_submit_bio_hook_t *submit_bio_start,
  734. extent_submit_bio_hook_t *submit_bio_done)
  735. {
  736. struct async_submit_bio *async;
  737. async = kmalloc(sizeof(*async), GFP_NOFS);
  738. if (!async)
  739. return -ENOMEM;
  740. async->inode = inode;
  741. async->rw = rw;
  742. async->bio = bio;
  743. async->mirror_num = mirror_num;
  744. async->submit_bio_start = submit_bio_start;
  745. async->submit_bio_done = submit_bio_done;
  746. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  747. run_one_async_done, run_one_async_free);
  748. async->bio_flags = bio_flags;
  749. async->bio_offset = bio_offset;
  750. async->error = 0;
  751. atomic_inc(&fs_info->nr_async_submits);
  752. if (rw & REQ_SYNC)
  753. btrfs_set_work_high_priority(&async->work);
  754. btrfs_queue_work(fs_info->workers, &async->work);
  755. while (atomic_read(&fs_info->async_submit_draining) &&
  756. atomic_read(&fs_info->nr_async_submits)) {
  757. wait_event(fs_info->async_submit_wait,
  758. (atomic_read(&fs_info->nr_async_submits) == 0));
  759. }
  760. return 0;
  761. }
  762. static int btree_csum_one_bio(struct bio *bio)
  763. {
  764. struct bio_vec *bvec;
  765. struct btrfs_root *root;
  766. int i, ret = 0;
  767. bio_for_each_segment_all(bvec, bio, i) {
  768. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  769. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  770. if (ret)
  771. break;
  772. }
  773. return ret;
  774. }
  775. static int __btree_submit_bio_start(struct inode *inode, int rw,
  776. struct bio *bio, int mirror_num,
  777. unsigned long bio_flags,
  778. u64 bio_offset)
  779. {
  780. /*
  781. * when we're called for a write, we're already in the async
  782. * submission context. Just jump into btrfs_map_bio
  783. */
  784. return btree_csum_one_bio(bio);
  785. }
  786. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  787. int mirror_num, unsigned long bio_flags,
  788. u64 bio_offset)
  789. {
  790. int ret;
  791. /*
  792. * when we're called for a write, we're already in the async
  793. * submission context. Just jump into btrfs_map_bio
  794. */
  795. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  796. if (ret) {
  797. bio->bi_error = ret;
  798. bio_endio(bio);
  799. }
  800. return ret;
  801. }
  802. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  803. {
  804. if (bio_flags & EXTENT_BIO_TREE_LOG)
  805. return 0;
  806. #ifdef CONFIG_X86
  807. if (cpu_has_xmm4_2)
  808. return 0;
  809. #endif
  810. return 1;
  811. }
  812. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  813. int mirror_num, unsigned long bio_flags,
  814. u64 bio_offset)
  815. {
  816. int async = check_async_write(inode, bio_flags);
  817. int ret;
  818. if (!(rw & REQ_WRITE)) {
  819. /*
  820. * called for a read, do the setup so that checksum validation
  821. * can happen in the async kernel threads
  822. */
  823. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  824. bio, BTRFS_WQ_ENDIO_METADATA);
  825. if (ret)
  826. goto out_w_error;
  827. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  828. mirror_num, 0);
  829. } else if (!async) {
  830. ret = btree_csum_one_bio(bio);
  831. if (ret)
  832. goto out_w_error;
  833. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  834. mirror_num, 0);
  835. } else {
  836. /*
  837. * kthread helpers are used to submit writes so that
  838. * checksumming can happen in parallel across all CPUs
  839. */
  840. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  841. inode, rw, bio, mirror_num, 0,
  842. bio_offset,
  843. __btree_submit_bio_start,
  844. __btree_submit_bio_done);
  845. }
  846. if (ret)
  847. goto out_w_error;
  848. return 0;
  849. out_w_error:
  850. bio->bi_error = ret;
  851. bio_endio(bio);
  852. return ret;
  853. }
  854. #ifdef CONFIG_MIGRATION
  855. static int btree_migratepage(struct address_space *mapping,
  856. struct page *newpage, struct page *page,
  857. enum migrate_mode mode)
  858. {
  859. /*
  860. * we can't safely write a btree page from here,
  861. * we haven't done the locking hook
  862. */
  863. if (PageDirty(page))
  864. return -EAGAIN;
  865. /*
  866. * Buffers may be managed in a filesystem specific way.
  867. * We must have no buffers or drop them.
  868. */
  869. if (page_has_private(page) &&
  870. !try_to_release_page(page, GFP_KERNEL))
  871. return -EAGAIN;
  872. return migrate_page(mapping, newpage, page, mode);
  873. }
  874. #endif
  875. static int btree_writepages(struct address_space *mapping,
  876. struct writeback_control *wbc)
  877. {
  878. struct btrfs_fs_info *fs_info;
  879. int ret;
  880. if (wbc->sync_mode == WB_SYNC_NONE) {
  881. if (wbc->for_kupdate)
  882. return 0;
  883. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  884. /* this is a bit racy, but that's ok */
  885. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  886. BTRFS_DIRTY_METADATA_THRESH);
  887. if (ret < 0)
  888. return 0;
  889. }
  890. return btree_write_cache_pages(mapping, wbc);
  891. }
  892. static int btree_readpage(struct file *file, struct page *page)
  893. {
  894. struct extent_io_tree *tree;
  895. tree = &BTRFS_I(page->mapping->host)->io_tree;
  896. return extent_read_full_page(tree, page, btree_get_extent, 0);
  897. }
  898. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  899. {
  900. if (PageWriteback(page) || PageDirty(page))
  901. return 0;
  902. return try_release_extent_buffer(page);
  903. }
  904. static void btree_invalidatepage(struct page *page, unsigned int offset,
  905. unsigned int length)
  906. {
  907. struct extent_io_tree *tree;
  908. tree = &BTRFS_I(page->mapping->host)->io_tree;
  909. extent_invalidatepage(tree, page, offset);
  910. btree_releasepage(page, GFP_NOFS);
  911. if (PagePrivate(page)) {
  912. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  913. "page private not zero on page %llu",
  914. (unsigned long long)page_offset(page));
  915. ClearPagePrivate(page);
  916. set_page_private(page, 0);
  917. page_cache_release(page);
  918. }
  919. }
  920. static int btree_set_page_dirty(struct page *page)
  921. {
  922. #ifdef DEBUG
  923. struct extent_buffer *eb;
  924. BUG_ON(!PagePrivate(page));
  925. eb = (struct extent_buffer *)page->private;
  926. BUG_ON(!eb);
  927. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  928. BUG_ON(!atomic_read(&eb->refs));
  929. btrfs_assert_tree_locked(eb);
  930. #endif
  931. return __set_page_dirty_nobuffers(page);
  932. }
  933. static const struct address_space_operations btree_aops = {
  934. .readpage = btree_readpage,
  935. .writepages = btree_writepages,
  936. .releasepage = btree_releasepage,
  937. .invalidatepage = btree_invalidatepage,
  938. #ifdef CONFIG_MIGRATION
  939. .migratepage = btree_migratepage,
  940. #endif
  941. .set_page_dirty = btree_set_page_dirty,
  942. };
  943. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  944. {
  945. struct extent_buffer *buf = NULL;
  946. struct inode *btree_inode = root->fs_info->btree_inode;
  947. buf = btrfs_find_create_tree_block(root, bytenr);
  948. if (!buf)
  949. return;
  950. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  951. buf, 0, WAIT_NONE, btree_get_extent, 0);
  952. free_extent_buffer(buf);
  953. }
  954. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  955. int mirror_num, struct extent_buffer **eb)
  956. {
  957. struct extent_buffer *buf = NULL;
  958. struct inode *btree_inode = root->fs_info->btree_inode;
  959. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  960. int ret;
  961. buf = btrfs_find_create_tree_block(root, bytenr);
  962. if (!buf)
  963. return 0;
  964. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  965. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  966. btree_get_extent, mirror_num);
  967. if (ret) {
  968. free_extent_buffer(buf);
  969. return ret;
  970. }
  971. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  972. free_extent_buffer(buf);
  973. return -EIO;
  974. } else if (extent_buffer_uptodate(buf)) {
  975. *eb = buf;
  976. } else {
  977. free_extent_buffer(buf);
  978. }
  979. return 0;
  980. }
  981. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  982. u64 bytenr)
  983. {
  984. return find_extent_buffer(fs_info, bytenr);
  985. }
  986. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  987. u64 bytenr)
  988. {
  989. if (btrfs_test_is_dummy_root(root))
  990. return alloc_test_extent_buffer(root->fs_info, bytenr);
  991. return alloc_extent_buffer(root->fs_info, bytenr);
  992. }
  993. int btrfs_write_tree_block(struct extent_buffer *buf)
  994. {
  995. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  996. buf->start + buf->len - 1);
  997. }
  998. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  999. {
  1000. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1001. buf->start, buf->start + buf->len - 1);
  1002. }
  1003. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1004. u64 parent_transid)
  1005. {
  1006. struct extent_buffer *buf = NULL;
  1007. int ret;
  1008. buf = btrfs_find_create_tree_block(root, bytenr);
  1009. if (!buf)
  1010. return ERR_PTR(-ENOMEM);
  1011. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1012. if (ret) {
  1013. free_extent_buffer(buf);
  1014. return ERR_PTR(ret);
  1015. }
  1016. return buf;
  1017. }
  1018. void clean_tree_block(struct btrfs_trans_handle *trans,
  1019. struct btrfs_fs_info *fs_info,
  1020. struct extent_buffer *buf)
  1021. {
  1022. if (btrfs_header_generation(buf) ==
  1023. fs_info->running_transaction->transid) {
  1024. btrfs_assert_tree_locked(buf);
  1025. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1026. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1027. -buf->len,
  1028. fs_info->dirty_metadata_batch);
  1029. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1030. btrfs_set_lock_blocking(buf);
  1031. clear_extent_buffer_dirty(buf);
  1032. }
  1033. }
  1034. }
  1035. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1036. {
  1037. struct btrfs_subvolume_writers *writers;
  1038. int ret;
  1039. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1040. if (!writers)
  1041. return ERR_PTR(-ENOMEM);
  1042. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1043. if (ret < 0) {
  1044. kfree(writers);
  1045. return ERR_PTR(ret);
  1046. }
  1047. init_waitqueue_head(&writers->wait);
  1048. return writers;
  1049. }
  1050. static void
  1051. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1052. {
  1053. percpu_counter_destroy(&writers->counter);
  1054. kfree(writers);
  1055. }
  1056. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1057. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1058. u64 objectid)
  1059. {
  1060. root->node = NULL;
  1061. root->commit_root = NULL;
  1062. root->sectorsize = sectorsize;
  1063. root->nodesize = nodesize;
  1064. root->stripesize = stripesize;
  1065. root->state = 0;
  1066. root->orphan_cleanup_state = 0;
  1067. root->objectid = objectid;
  1068. root->last_trans = 0;
  1069. root->highest_objectid = 0;
  1070. root->nr_delalloc_inodes = 0;
  1071. root->nr_ordered_extents = 0;
  1072. root->name = NULL;
  1073. root->inode_tree = RB_ROOT;
  1074. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1075. root->block_rsv = NULL;
  1076. root->orphan_block_rsv = NULL;
  1077. INIT_LIST_HEAD(&root->dirty_list);
  1078. INIT_LIST_HEAD(&root->root_list);
  1079. INIT_LIST_HEAD(&root->delalloc_inodes);
  1080. INIT_LIST_HEAD(&root->delalloc_root);
  1081. INIT_LIST_HEAD(&root->ordered_extents);
  1082. INIT_LIST_HEAD(&root->ordered_root);
  1083. INIT_LIST_HEAD(&root->logged_list[0]);
  1084. INIT_LIST_HEAD(&root->logged_list[1]);
  1085. spin_lock_init(&root->orphan_lock);
  1086. spin_lock_init(&root->inode_lock);
  1087. spin_lock_init(&root->delalloc_lock);
  1088. spin_lock_init(&root->ordered_extent_lock);
  1089. spin_lock_init(&root->accounting_lock);
  1090. spin_lock_init(&root->log_extents_lock[0]);
  1091. spin_lock_init(&root->log_extents_lock[1]);
  1092. mutex_init(&root->objectid_mutex);
  1093. mutex_init(&root->log_mutex);
  1094. mutex_init(&root->ordered_extent_mutex);
  1095. mutex_init(&root->delalloc_mutex);
  1096. init_waitqueue_head(&root->log_writer_wait);
  1097. init_waitqueue_head(&root->log_commit_wait[0]);
  1098. init_waitqueue_head(&root->log_commit_wait[1]);
  1099. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1100. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1101. atomic_set(&root->log_commit[0], 0);
  1102. atomic_set(&root->log_commit[1], 0);
  1103. atomic_set(&root->log_writers, 0);
  1104. atomic_set(&root->log_batch, 0);
  1105. atomic_set(&root->orphan_inodes, 0);
  1106. atomic_set(&root->refs, 1);
  1107. atomic_set(&root->will_be_snapshoted, 0);
  1108. root->log_transid = 0;
  1109. root->log_transid_committed = -1;
  1110. root->last_log_commit = 0;
  1111. if (fs_info)
  1112. extent_io_tree_init(&root->dirty_log_pages,
  1113. fs_info->btree_inode->i_mapping);
  1114. memset(&root->root_key, 0, sizeof(root->root_key));
  1115. memset(&root->root_item, 0, sizeof(root->root_item));
  1116. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1117. if (fs_info)
  1118. root->defrag_trans_start = fs_info->generation;
  1119. else
  1120. root->defrag_trans_start = 0;
  1121. root->root_key.objectid = objectid;
  1122. root->anon_dev = 0;
  1123. spin_lock_init(&root->root_item_lock);
  1124. }
  1125. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1126. {
  1127. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1128. if (root)
  1129. root->fs_info = fs_info;
  1130. return root;
  1131. }
  1132. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1133. /* Should only be used by the testing infrastructure */
  1134. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1135. {
  1136. struct btrfs_root *root;
  1137. root = btrfs_alloc_root(NULL);
  1138. if (!root)
  1139. return ERR_PTR(-ENOMEM);
  1140. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1141. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1142. root->alloc_bytenr = 0;
  1143. return root;
  1144. }
  1145. #endif
  1146. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1147. struct btrfs_fs_info *fs_info,
  1148. u64 objectid)
  1149. {
  1150. struct extent_buffer *leaf;
  1151. struct btrfs_root *tree_root = fs_info->tree_root;
  1152. struct btrfs_root *root;
  1153. struct btrfs_key key;
  1154. int ret = 0;
  1155. uuid_le uuid;
  1156. root = btrfs_alloc_root(fs_info);
  1157. if (!root)
  1158. return ERR_PTR(-ENOMEM);
  1159. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1160. tree_root->stripesize, root, fs_info, objectid);
  1161. root->root_key.objectid = objectid;
  1162. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1163. root->root_key.offset = 0;
  1164. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1165. if (IS_ERR(leaf)) {
  1166. ret = PTR_ERR(leaf);
  1167. leaf = NULL;
  1168. goto fail;
  1169. }
  1170. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1171. btrfs_set_header_bytenr(leaf, leaf->start);
  1172. btrfs_set_header_generation(leaf, trans->transid);
  1173. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1174. btrfs_set_header_owner(leaf, objectid);
  1175. root->node = leaf;
  1176. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1177. BTRFS_FSID_SIZE);
  1178. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1179. btrfs_header_chunk_tree_uuid(leaf),
  1180. BTRFS_UUID_SIZE);
  1181. btrfs_mark_buffer_dirty(leaf);
  1182. root->commit_root = btrfs_root_node(root);
  1183. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1184. root->root_item.flags = 0;
  1185. root->root_item.byte_limit = 0;
  1186. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1187. btrfs_set_root_generation(&root->root_item, trans->transid);
  1188. btrfs_set_root_level(&root->root_item, 0);
  1189. btrfs_set_root_refs(&root->root_item, 1);
  1190. btrfs_set_root_used(&root->root_item, leaf->len);
  1191. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1192. btrfs_set_root_dirid(&root->root_item, 0);
  1193. uuid_le_gen(&uuid);
  1194. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1195. root->root_item.drop_level = 0;
  1196. key.objectid = objectid;
  1197. key.type = BTRFS_ROOT_ITEM_KEY;
  1198. key.offset = 0;
  1199. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1200. if (ret)
  1201. goto fail;
  1202. btrfs_tree_unlock(leaf);
  1203. return root;
  1204. fail:
  1205. if (leaf) {
  1206. btrfs_tree_unlock(leaf);
  1207. free_extent_buffer(root->commit_root);
  1208. free_extent_buffer(leaf);
  1209. }
  1210. kfree(root);
  1211. return ERR_PTR(ret);
  1212. }
  1213. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1214. struct btrfs_fs_info *fs_info)
  1215. {
  1216. struct btrfs_root *root;
  1217. struct btrfs_root *tree_root = fs_info->tree_root;
  1218. struct extent_buffer *leaf;
  1219. root = btrfs_alloc_root(fs_info);
  1220. if (!root)
  1221. return ERR_PTR(-ENOMEM);
  1222. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1223. tree_root->stripesize, root, fs_info,
  1224. BTRFS_TREE_LOG_OBJECTID);
  1225. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1226. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1227. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1228. /*
  1229. * DON'T set REF_COWS for log trees
  1230. *
  1231. * log trees do not get reference counted because they go away
  1232. * before a real commit is actually done. They do store pointers
  1233. * to file data extents, and those reference counts still get
  1234. * updated (along with back refs to the log tree).
  1235. */
  1236. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1237. NULL, 0, 0, 0);
  1238. if (IS_ERR(leaf)) {
  1239. kfree(root);
  1240. return ERR_CAST(leaf);
  1241. }
  1242. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1243. btrfs_set_header_bytenr(leaf, leaf->start);
  1244. btrfs_set_header_generation(leaf, trans->transid);
  1245. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1246. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1247. root->node = leaf;
  1248. write_extent_buffer(root->node, root->fs_info->fsid,
  1249. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1250. btrfs_mark_buffer_dirty(root->node);
  1251. btrfs_tree_unlock(root->node);
  1252. return root;
  1253. }
  1254. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1255. struct btrfs_fs_info *fs_info)
  1256. {
  1257. struct btrfs_root *log_root;
  1258. log_root = alloc_log_tree(trans, fs_info);
  1259. if (IS_ERR(log_root))
  1260. return PTR_ERR(log_root);
  1261. WARN_ON(fs_info->log_root_tree);
  1262. fs_info->log_root_tree = log_root;
  1263. return 0;
  1264. }
  1265. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1266. struct btrfs_root *root)
  1267. {
  1268. struct btrfs_root *log_root;
  1269. struct btrfs_inode_item *inode_item;
  1270. log_root = alloc_log_tree(trans, root->fs_info);
  1271. if (IS_ERR(log_root))
  1272. return PTR_ERR(log_root);
  1273. log_root->last_trans = trans->transid;
  1274. log_root->root_key.offset = root->root_key.objectid;
  1275. inode_item = &log_root->root_item.inode;
  1276. btrfs_set_stack_inode_generation(inode_item, 1);
  1277. btrfs_set_stack_inode_size(inode_item, 3);
  1278. btrfs_set_stack_inode_nlink(inode_item, 1);
  1279. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1280. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1281. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1282. WARN_ON(root->log_root);
  1283. root->log_root = log_root;
  1284. root->log_transid = 0;
  1285. root->log_transid_committed = -1;
  1286. root->last_log_commit = 0;
  1287. return 0;
  1288. }
  1289. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1290. struct btrfs_key *key)
  1291. {
  1292. struct btrfs_root *root;
  1293. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1294. struct btrfs_path *path;
  1295. u64 generation;
  1296. int ret;
  1297. path = btrfs_alloc_path();
  1298. if (!path)
  1299. return ERR_PTR(-ENOMEM);
  1300. root = btrfs_alloc_root(fs_info);
  1301. if (!root) {
  1302. ret = -ENOMEM;
  1303. goto alloc_fail;
  1304. }
  1305. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1306. tree_root->stripesize, root, fs_info, key->objectid);
  1307. ret = btrfs_find_root(tree_root, key, path,
  1308. &root->root_item, &root->root_key);
  1309. if (ret) {
  1310. if (ret > 0)
  1311. ret = -ENOENT;
  1312. goto find_fail;
  1313. }
  1314. generation = btrfs_root_generation(&root->root_item);
  1315. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1316. generation);
  1317. if (IS_ERR(root->node)) {
  1318. ret = PTR_ERR(root->node);
  1319. goto find_fail;
  1320. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1321. ret = -EIO;
  1322. free_extent_buffer(root->node);
  1323. goto find_fail;
  1324. }
  1325. root->commit_root = btrfs_root_node(root);
  1326. out:
  1327. btrfs_free_path(path);
  1328. return root;
  1329. find_fail:
  1330. kfree(root);
  1331. alloc_fail:
  1332. root = ERR_PTR(ret);
  1333. goto out;
  1334. }
  1335. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1336. struct btrfs_key *location)
  1337. {
  1338. struct btrfs_root *root;
  1339. root = btrfs_read_tree_root(tree_root, location);
  1340. if (IS_ERR(root))
  1341. return root;
  1342. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1343. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1344. btrfs_check_and_init_root_item(&root->root_item);
  1345. }
  1346. return root;
  1347. }
  1348. int btrfs_init_fs_root(struct btrfs_root *root)
  1349. {
  1350. int ret;
  1351. struct btrfs_subvolume_writers *writers;
  1352. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1353. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1354. GFP_NOFS);
  1355. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1356. ret = -ENOMEM;
  1357. goto fail;
  1358. }
  1359. writers = btrfs_alloc_subvolume_writers();
  1360. if (IS_ERR(writers)) {
  1361. ret = PTR_ERR(writers);
  1362. goto fail;
  1363. }
  1364. root->subv_writers = writers;
  1365. btrfs_init_free_ino_ctl(root);
  1366. spin_lock_init(&root->ino_cache_lock);
  1367. init_waitqueue_head(&root->ino_cache_wait);
  1368. ret = get_anon_bdev(&root->anon_dev);
  1369. if (ret)
  1370. goto free_writers;
  1371. return 0;
  1372. free_writers:
  1373. btrfs_free_subvolume_writers(root->subv_writers);
  1374. fail:
  1375. kfree(root->free_ino_ctl);
  1376. kfree(root->free_ino_pinned);
  1377. return ret;
  1378. }
  1379. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1380. u64 root_id)
  1381. {
  1382. struct btrfs_root *root;
  1383. spin_lock(&fs_info->fs_roots_radix_lock);
  1384. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1385. (unsigned long)root_id);
  1386. spin_unlock(&fs_info->fs_roots_radix_lock);
  1387. return root;
  1388. }
  1389. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1390. struct btrfs_root *root)
  1391. {
  1392. int ret;
  1393. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1394. if (ret)
  1395. return ret;
  1396. spin_lock(&fs_info->fs_roots_radix_lock);
  1397. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1398. (unsigned long)root->root_key.objectid,
  1399. root);
  1400. if (ret == 0)
  1401. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1402. spin_unlock(&fs_info->fs_roots_radix_lock);
  1403. radix_tree_preload_end();
  1404. return ret;
  1405. }
  1406. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1407. struct btrfs_key *location,
  1408. bool check_ref)
  1409. {
  1410. struct btrfs_root *root;
  1411. struct btrfs_path *path;
  1412. struct btrfs_key key;
  1413. int ret;
  1414. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1415. return fs_info->tree_root;
  1416. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1417. return fs_info->extent_root;
  1418. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1419. return fs_info->chunk_root;
  1420. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1421. return fs_info->dev_root;
  1422. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1423. return fs_info->csum_root;
  1424. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1425. return fs_info->quota_root ? fs_info->quota_root :
  1426. ERR_PTR(-ENOENT);
  1427. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1428. return fs_info->uuid_root ? fs_info->uuid_root :
  1429. ERR_PTR(-ENOENT);
  1430. again:
  1431. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1432. if (root) {
  1433. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1434. return ERR_PTR(-ENOENT);
  1435. return root;
  1436. }
  1437. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1438. if (IS_ERR(root))
  1439. return root;
  1440. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1441. ret = -ENOENT;
  1442. goto fail;
  1443. }
  1444. ret = btrfs_init_fs_root(root);
  1445. if (ret)
  1446. goto fail;
  1447. path = btrfs_alloc_path();
  1448. if (!path) {
  1449. ret = -ENOMEM;
  1450. goto fail;
  1451. }
  1452. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1453. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1454. key.offset = location->objectid;
  1455. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1456. btrfs_free_path(path);
  1457. if (ret < 0)
  1458. goto fail;
  1459. if (ret == 0)
  1460. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1461. ret = btrfs_insert_fs_root(fs_info, root);
  1462. if (ret) {
  1463. if (ret == -EEXIST) {
  1464. free_fs_root(root);
  1465. goto again;
  1466. }
  1467. goto fail;
  1468. }
  1469. return root;
  1470. fail:
  1471. free_fs_root(root);
  1472. return ERR_PTR(ret);
  1473. }
  1474. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1475. {
  1476. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1477. int ret = 0;
  1478. struct btrfs_device *device;
  1479. struct backing_dev_info *bdi;
  1480. rcu_read_lock();
  1481. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1482. if (!device->bdev)
  1483. continue;
  1484. bdi = blk_get_backing_dev_info(device->bdev);
  1485. if (bdi_congested(bdi, bdi_bits)) {
  1486. ret = 1;
  1487. break;
  1488. }
  1489. }
  1490. rcu_read_unlock();
  1491. return ret;
  1492. }
  1493. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1494. {
  1495. int err;
  1496. err = bdi_setup_and_register(bdi, "btrfs");
  1497. if (err)
  1498. return err;
  1499. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1500. bdi->congested_fn = btrfs_congested_fn;
  1501. bdi->congested_data = info;
  1502. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1503. return 0;
  1504. }
  1505. /*
  1506. * called by the kthread helper functions to finally call the bio end_io
  1507. * functions. This is where read checksum verification actually happens
  1508. */
  1509. static void end_workqueue_fn(struct btrfs_work *work)
  1510. {
  1511. struct bio *bio;
  1512. struct btrfs_end_io_wq *end_io_wq;
  1513. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1514. bio = end_io_wq->bio;
  1515. bio->bi_error = end_io_wq->error;
  1516. bio->bi_private = end_io_wq->private;
  1517. bio->bi_end_io = end_io_wq->end_io;
  1518. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1519. bio_endio(bio);
  1520. }
  1521. static int cleaner_kthread(void *arg)
  1522. {
  1523. struct btrfs_root *root = arg;
  1524. int again;
  1525. struct btrfs_trans_handle *trans;
  1526. do {
  1527. again = 0;
  1528. /* Make the cleaner go to sleep early. */
  1529. if (btrfs_need_cleaner_sleep(root))
  1530. goto sleep;
  1531. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1532. goto sleep;
  1533. /*
  1534. * Avoid the problem that we change the status of the fs
  1535. * during the above check and trylock.
  1536. */
  1537. if (btrfs_need_cleaner_sleep(root)) {
  1538. mutex_unlock(&root->fs_info->cleaner_mutex);
  1539. goto sleep;
  1540. }
  1541. btrfs_run_delayed_iputs(root);
  1542. again = btrfs_clean_one_deleted_snapshot(root);
  1543. mutex_unlock(&root->fs_info->cleaner_mutex);
  1544. /*
  1545. * The defragger has dealt with the R/O remount and umount,
  1546. * needn't do anything special here.
  1547. */
  1548. btrfs_run_defrag_inodes(root->fs_info);
  1549. /*
  1550. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1551. * with relocation (btrfs_relocate_chunk) and relocation
  1552. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1553. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1554. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1555. * unused block groups.
  1556. */
  1557. btrfs_delete_unused_bgs(root->fs_info);
  1558. sleep:
  1559. if (!try_to_freeze() && !again) {
  1560. set_current_state(TASK_INTERRUPTIBLE);
  1561. if (!kthread_should_stop())
  1562. schedule();
  1563. __set_current_state(TASK_RUNNING);
  1564. }
  1565. } while (!kthread_should_stop());
  1566. /*
  1567. * Transaction kthread is stopped before us and wakes us up.
  1568. * However we might have started a new transaction and COWed some
  1569. * tree blocks when deleting unused block groups for example. So
  1570. * make sure we commit the transaction we started to have a clean
  1571. * shutdown when evicting the btree inode - if it has dirty pages
  1572. * when we do the final iput() on it, eviction will trigger a
  1573. * writeback for it which will fail with null pointer dereferences
  1574. * since work queues and other resources were already released and
  1575. * destroyed by the time the iput/eviction/writeback is made.
  1576. */
  1577. trans = btrfs_attach_transaction(root);
  1578. if (IS_ERR(trans)) {
  1579. if (PTR_ERR(trans) != -ENOENT)
  1580. btrfs_err(root->fs_info,
  1581. "cleaner transaction attach returned %ld",
  1582. PTR_ERR(trans));
  1583. } else {
  1584. int ret;
  1585. ret = btrfs_commit_transaction(trans, root);
  1586. if (ret)
  1587. btrfs_err(root->fs_info,
  1588. "cleaner open transaction commit returned %d",
  1589. ret);
  1590. }
  1591. return 0;
  1592. }
  1593. static int transaction_kthread(void *arg)
  1594. {
  1595. struct btrfs_root *root = arg;
  1596. struct btrfs_trans_handle *trans;
  1597. struct btrfs_transaction *cur;
  1598. u64 transid;
  1599. unsigned long now;
  1600. unsigned long delay;
  1601. bool cannot_commit;
  1602. do {
  1603. cannot_commit = false;
  1604. delay = HZ * root->fs_info->commit_interval;
  1605. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1606. spin_lock(&root->fs_info->trans_lock);
  1607. cur = root->fs_info->running_transaction;
  1608. if (!cur) {
  1609. spin_unlock(&root->fs_info->trans_lock);
  1610. goto sleep;
  1611. }
  1612. now = get_seconds();
  1613. if (cur->state < TRANS_STATE_BLOCKED &&
  1614. (now < cur->start_time ||
  1615. now - cur->start_time < root->fs_info->commit_interval)) {
  1616. spin_unlock(&root->fs_info->trans_lock);
  1617. delay = HZ * 5;
  1618. goto sleep;
  1619. }
  1620. transid = cur->transid;
  1621. spin_unlock(&root->fs_info->trans_lock);
  1622. /* If the file system is aborted, this will always fail. */
  1623. trans = btrfs_attach_transaction(root);
  1624. if (IS_ERR(trans)) {
  1625. if (PTR_ERR(trans) != -ENOENT)
  1626. cannot_commit = true;
  1627. goto sleep;
  1628. }
  1629. if (transid == trans->transid) {
  1630. btrfs_commit_transaction(trans, root);
  1631. } else {
  1632. btrfs_end_transaction(trans, root);
  1633. }
  1634. sleep:
  1635. wake_up_process(root->fs_info->cleaner_kthread);
  1636. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1637. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1638. &root->fs_info->fs_state)))
  1639. btrfs_cleanup_transaction(root);
  1640. if (!try_to_freeze()) {
  1641. set_current_state(TASK_INTERRUPTIBLE);
  1642. if (!kthread_should_stop() &&
  1643. (!btrfs_transaction_blocked(root->fs_info) ||
  1644. cannot_commit))
  1645. schedule_timeout(delay);
  1646. __set_current_state(TASK_RUNNING);
  1647. }
  1648. } while (!kthread_should_stop());
  1649. return 0;
  1650. }
  1651. /*
  1652. * this will find the highest generation in the array of
  1653. * root backups. The index of the highest array is returned,
  1654. * or -1 if we can't find anything.
  1655. *
  1656. * We check to make sure the array is valid by comparing the
  1657. * generation of the latest root in the array with the generation
  1658. * in the super block. If they don't match we pitch it.
  1659. */
  1660. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1661. {
  1662. u64 cur;
  1663. int newest_index = -1;
  1664. struct btrfs_root_backup *root_backup;
  1665. int i;
  1666. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1667. root_backup = info->super_copy->super_roots + i;
  1668. cur = btrfs_backup_tree_root_gen(root_backup);
  1669. if (cur == newest_gen)
  1670. newest_index = i;
  1671. }
  1672. /* check to see if we actually wrapped around */
  1673. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1674. root_backup = info->super_copy->super_roots;
  1675. cur = btrfs_backup_tree_root_gen(root_backup);
  1676. if (cur == newest_gen)
  1677. newest_index = 0;
  1678. }
  1679. return newest_index;
  1680. }
  1681. /*
  1682. * find the oldest backup so we know where to store new entries
  1683. * in the backup array. This will set the backup_root_index
  1684. * field in the fs_info struct
  1685. */
  1686. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1687. u64 newest_gen)
  1688. {
  1689. int newest_index = -1;
  1690. newest_index = find_newest_super_backup(info, newest_gen);
  1691. /* if there was garbage in there, just move along */
  1692. if (newest_index == -1) {
  1693. info->backup_root_index = 0;
  1694. } else {
  1695. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1696. }
  1697. }
  1698. /*
  1699. * copy all the root pointers into the super backup array.
  1700. * this will bump the backup pointer by one when it is
  1701. * done
  1702. */
  1703. static void backup_super_roots(struct btrfs_fs_info *info)
  1704. {
  1705. int next_backup;
  1706. struct btrfs_root_backup *root_backup;
  1707. int last_backup;
  1708. next_backup = info->backup_root_index;
  1709. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1710. BTRFS_NUM_BACKUP_ROOTS;
  1711. /*
  1712. * just overwrite the last backup if we're at the same generation
  1713. * this happens only at umount
  1714. */
  1715. root_backup = info->super_for_commit->super_roots + last_backup;
  1716. if (btrfs_backup_tree_root_gen(root_backup) ==
  1717. btrfs_header_generation(info->tree_root->node))
  1718. next_backup = last_backup;
  1719. root_backup = info->super_for_commit->super_roots + next_backup;
  1720. /*
  1721. * make sure all of our padding and empty slots get zero filled
  1722. * regardless of which ones we use today
  1723. */
  1724. memset(root_backup, 0, sizeof(*root_backup));
  1725. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1726. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1727. btrfs_set_backup_tree_root_gen(root_backup,
  1728. btrfs_header_generation(info->tree_root->node));
  1729. btrfs_set_backup_tree_root_level(root_backup,
  1730. btrfs_header_level(info->tree_root->node));
  1731. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1732. btrfs_set_backup_chunk_root_gen(root_backup,
  1733. btrfs_header_generation(info->chunk_root->node));
  1734. btrfs_set_backup_chunk_root_level(root_backup,
  1735. btrfs_header_level(info->chunk_root->node));
  1736. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1737. btrfs_set_backup_extent_root_gen(root_backup,
  1738. btrfs_header_generation(info->extent_root->node));
  1739. btrfs_set_backup_extent_root_level(root_backup,
  1740. btrfs_header_level(info->extent_root->node));
  1741. /*
  1742. * we might commit during log recovery, which happens before we set
  1743. * the fs_root. Make sure it is valid before we fill it in.
  1744. */
  1745. if (info->fs_root && info->fs_root->node) {
  1746. btrfs_set_backup_fs_root(root_backup,
  1747. info->fs_root->node->start);
  1748. btrfs_set_backup_fs_root_gen(root_backup,
  1749. btrfs_header_generation(info->fs_root->node));
  1750. btrfs_set_backup_fs_root_level(root_backup,
  1751. btrfs_header_level(info->fs_root->node));
  1752. }
  1753. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1754. btrfs_set_backup_dev_root_gen(root_backup,
  1755. btrfs_header_generation(info->dev_root->node));
  1756. btrfs_set_backup_dev_root_level(root_backup,
  1757. btrfs_header_level(info->dev_root->node));
  1758. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1759. btrfs_set_backup_csum_root_gen(root_backup,
  1760. btrfs_header_generation(info->csum_root->node));
  1761. btrfs_set_backup_csum_root_level(root_backup,
  1762. btrfs_header_level(info->csum_root->node));
  1763. btrfs_set_backup_total_bytes(root_backup,
  1764. btrfs_super_total_bytes(info->super_copy));
  1765. btrfs_set_backup_bytes_used(root_backup,
  1766. btrfs_super_bytes_used(info->super_copy));
  1767. btrfs_set_backup_num_devices(root_backup,
  1768. btrfs_super_num_devices(info->super_copy));
  1769. /*
  1770. * if we don't copy this out to the super_copy, it won't get remembered
  1771. * for the next commit
  1772. */
  1773. memcpy(&info->super_copy->super_roots,
  1774. &info->super_for_commit->super_roots,
  1775. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1776. }
  1777. /*
  1778. * this copies info out of the root backup array and back into
  1779. * the in-memory super block. It is meant to help iterate through
  1780. * the array, so you send it the number of backups you've already
  1781. * tried and the last backup index you used.
  1782. *
  1783. * this returns -1 when it has tried all the backups
  1784. */
  1785. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1786. struct btrfs_super_block *super,
  1787. int *num_backups_tried, int *backup_index)
  1788. {
  1789. struct btrfs_root_backup *root_backup;
  1790. int newest = *backup_index;
  1791. if (*num_backups_tried == 0) {
  1792. u64 gen = btrfs_super_generation(super);
  1793. newest = find_newest_super_backup(info, gen);
  1794. if (newest == -1)
  1795. return -1;
  1796. *backup_index = newest;
  1797. *num_backups_tried = 1;
  1798. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1799. /* we've tried all the backups, all done */
  1800. return -1;
  1801. } else {
  1802. /* jump to the next oldest backup */
  1803. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1804. BTRFS_NUM_BACKUP_ROOTS;
  1805. *backup_index = newest;
  1806. *num_backups_tried += 1;
  1807. }
  1808. root_backup = super->super_roots + newest;
  1809. btrfs_set_super_generation(super,
  1810. btrfs_backup_tree_root_gen(root_backup));
  1811. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1812. btrfs_set_super_root_level(super,
  1813. btrfs_backup_tree_root_level(root_backup));
  1814. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1815. /*
  1816. * fixme: the total bytes and num_devices need to match or we should
  1817. * need a fsck
  1818. */
  1819. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1820. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1821. return 0;
  1822. }
  1823. /* helper to cleanup workers */
  1824. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1825. {
  1826. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1827. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1828. btrfs_destroy_workqueue(fs_info->workers);
  1829. btrfs_destroy_workqueue(fs_info->endio_workers);
  1830. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1831. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1832. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1833. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1834. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1835. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1836. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1837. btrfs_destroy_workqueue(fs_info->submit_workers);
  1838. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1839. btrfs_destroy_workqueue(fs_info->caching_workers);
  1840. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1841. btrfs_destroy_workqueue(fs_info->flush_workers);
  1842. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1843. btrfs_destroy_workqueue(fs_info->extent_workers);
  1844. }
  1845. static void free_root_extent_buffers(struct btrfs_root *root)
  1846. {
  1847. if (root) {
  1848. free_extent_buffer(root->node);
  1849. free_extent_buffer(root->commit_root);
  1850. root->node = NULL;
  1851. root->commit_root = NULL;
  1852. }
  1853. }
  1854. /* helper to cleanup tree roots */
  1855. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1856. {
  1857. free_root_extent_buffers(info->tree_root);
  1858. free_root_extent_buffers(info->dev_root);
  1859. free_root_extent_buffers(info->extent_root);
  1860. free_root_extent_buffers(info->csum_root);
  1861. free_root_extent_buffers(info->quota_root);
  1862. free_root_extent_buffers(info->uuid_root);
  1863. if (chunk_root)
  1864. free_root_extent_buffers(info->chunk_root);
  1865. }
  1866. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1867. {
  1868. int ret;
  1869. struct btrfs_root *gang[8];
  1870. int i;
  1871. while (!list_empty(&fs_info->dead_roots)) {
  1872. gang[0] = list_entry(fs_info->dead_roots.next,
  1873. struct btrfs_root, root_list);
  1874. list_del(&gang[0]->root_list);
  1875. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1876. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1877. } else {
  1878. free_extent_buffer(gang[0]->node);
  1879. free_extent_buffer(gang[0]->commit_root);
  1880. btrfs_put_fs_root(gang[0]);
  1881. }
  1882. }
  1883. while (1) {
  1884. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1885. (void **)gang, 0,
  1886. ARRAY_SIZE(gang));
  1887. if (!ret)
  1888. break;
  1889. for (i = 0; i < ret; i++)
  1890. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1891. }
  1892. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1893. btrfs_free_log_root_tree(NULL, fs_info);
  1894. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1895. fs_info->pinned_extents);
  1896. }
  1897. }
  1898. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1899. {
  1900. mutex_init(&fs_info->scrub_lock);
  1901. atomic_set(&fs_info->scrubs_running, 0);
  1902. atomic_set(&fs_info->scrub_pause_req, 0);
  1903. atomic_set(&fs_info->scrubs_paused, 0);
  1904. atomic_set(&fs_info->scrub_cancel_req, 0);
  1905. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1906. fs_info->scrub_workers_refcnt = 0;
  1907. }
  1908. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1909. {
  1910. spin_lock_init(&fs_info->balance_lock);
  1911. mutex_init(&fs_info->balance_mutex);
  1912. atomic_set(&fs_info->balance_running, 0);
  1913. atomic_set(&fs_info->balance_pause_req, 0);
  1914. atomic_set(&fs_info->balance_cancel_req, 0);
  1915. fs_info->balance_ctl = NULL;
  1916. init_waitqueue_head(&fs_info->balance_wait_q);
  1917. }
  1918. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1919. struct btrfs_root *tree_root)
  1920. {
  1921. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1922. set_nlink(fs_info->btree_inode, 1);
  1923. /*
  1924. * we set the i_size on the btree inode to the max possible int.
  1925. * the real end of the address space is determined by all of
  1926. * the devices in the system
  1927. */
  1928. fs_info->btree_inode->i_size = OFFSET_MAX;
  1929. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1930. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1931. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1932. fs_info->btree_inode->i_mapping);
  1933. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1934. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1935. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1936. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1937. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1938. sizeof(struct btrfs_key));
  1939. set_bit(BTRFS_INODE_DUMMY,
  1940. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1941. btrfs_insert_inode_hash(fs_info->btree_inode);
  1942. }
  1943. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1944. {
  1945. fs_info->dev_replace.lock_owner = 0;
  1946. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1947. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1948. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1949. mutex_init(&fs_info->dev_replace.lock);
  1950. init_waitqueue_head(&fs_info->replace_wait);
  1951. }
  1952. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1953. {
  1954. spin_lock_init(&fs_info->qgroup_lock);
  1955. mutex_init(&fs_info->qgroup_ioctl_lock);
  1956. fs_info->qgroup_tree = RB_ROOT;
  1957. fs_info->qgroup_op_tree = RB_ROOT;
  1958. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1959. fs_info->qgroup_seq = 1;
  1960. fs_info->quota_enabled = 0;
  1961. fs_info->pending_quota_state = 0;
  1962. fs_info->qgroup_ulist = NULL;
  1963. mutex_init(&fs_info->qgroup_rescan_lock);
  1964. }
  1965. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1966. struct btrfs_fs_devices *fs_devices)
  1967. {
  1968. int max_active = fs_info->thread_pool_size;
  1969. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1970. fs_info->workers =
  1971. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  1972. max_active, 16);
  1973. fs_info->delalloc_workers =
  1974. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  1975. fs_info->flush_workers =
  1976. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  1977. fs_info->caching_workers =
  1978. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  1979. /*
  1980. * a higher idle thresh on the submit workers makes it much more
  1981. * likely that bios will be send down in a sane order to the
  1982. * devices
  1983. */
  1984. fs_info->submit_workers =
  1985. btrfs_alloc_workqueue("submit", flags,
  1986. min_t(u64, fs_devices->num_devices,
  1987. max_active), 64);
  1988. fs_info->fixup_workers =
  1989. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  1990. /*
  1991. * endios are largely parallel and should have a very
  1992. * low idle thresh
  1993. */
  1994. fs_info->endio_workers =
  1995. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  1996. fs_info->endio_meta_workers =
  1997. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  1998. fs_info->endio_meta_write_workers =
  1999. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2000. fs_info->endio_raid56_workers =
  2001. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2002. fs_info->endio_repair_workers =
  2003. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2004. fs_info->rmw_workers =
  2005. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2006. fs_info->endio_write_workers =
  2007. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2008. fs_info->endio_freespace_worker =
  2009. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2010. fs_info->delayed_workers =
  2011. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2012. fs_info->readahead_workers =
  2013. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2014. fs_info->qgroup_rescan_workers =
  2015. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2016. fs_info->extent_workers =
  2017. btrfs_alloc_workqueue("extent-refs", flags,
  2018. min_t(u64, fs_devices->num_devices,
  2019. max_active), 8);
  2020. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2021. fs_info->submit_workers && fs_info->flush_workers &&
  2022. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2023. fs_info->endio_meta_write_workers &&
  2024. fs_info->endio_repair_workers &&
  2025. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2026. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2027. fs_info->caching_workers && fs_info->readahead_workers &&
  2028. fs_info->fixup_workers && fs_info->delayed_workers &&
  2029. fs_info->extent_workers &&
  2030. fs_info->qgroup_rescan_workers)) {
  2031. return -ENOMEM;
  2032. }
  2033. return 0;
  2034. }
  2035. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2036. struct btrfs_fs_devices *fs_devices)
  2037. {
  2038. int ret;
  2039. struct btrfs_root *tree_root = fs_info->tree_root;
  2040. struct btrfs_root *log_tree_root;
  2041. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2042. u64 bytenr = btrfs_super_log_root(disk_super);
  2043. if (fs_devices->rw_devices == 0) {
  2044. btrfs_warn(fs_info, "log replay required on RO media");
  2045. return -EIO;
  2046. }
  2047. log_tree_root = btrfs_alloc_root(fs_info);
  2048. if (!log_tree_root)
  2049. return -ENOMEM;
  2050. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2051. tree_root->stripesize, log_tree_root, fs_info,
  2052. BTRFS_TREE_LOG_OBJECTID);
  2053. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2054. fs_info->generation + 1);
  2055. if (IS_ERR(log_tree_root->node)) {
  2056. btrfs_warn(fs_info, "failed to read log tree");
  2057. ret = PTR_ERR(log_tree_root->node);
  2058. kfree(log_tree_root);
  2059. return ret;
  2060. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2061. btrfs_err(fs_info, "failed to read log tree");
  2062. free_extent_buffer(log_tree_root->node);
  2063. kfree(log_tree_root);
  2064. return -EIO;
  2065. }
  2066. /* returns with log_tree_root freed on success */
  2067. ret = btrfs_recover_log_trees(log_tree_root);
  2068. if (ret) {
  2069. btrfs_error(tree_root->fs_info, ret,
  2070. "Failed to recover log tree");
  2071. free_extent_buffer(log_tree_root->node);
  2072. kfree(log_tree_root);
  2073. return ret;
  2074. }
  2075. if (fs_info->sb->s_flags & MS_RDONLY) {
  2076. ret = btrfs_commit_super(tree_root);
  2077. if (ret)
  2078. return ret;
  2079. }
  2080. return 0;
  2081. }
  2082. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2083. struct btrfs_root *tree_root)
  2084. {
  2085. struct btrfs_root *root;
  2086. struct btrfs_key location;
  2087. int ret;
  2088. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2089. location.type = BTRFS_ROOT_ITEM_KEY;
  2090. location.offset = 0;
  2091. root = btrfs_read_tree_root(tree_root, &location);
  2092. if (IS_ERR(root))
  2093. return PTR_ERR(root);
  2094. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2095. fs_info->extent_root = root;
  2096. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2097. root = btrfs_read_tree_root(tree_root, &location);
  2098. if (IS_ERR(root))
  2099. return PTR_ERR(root);
  2100. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2101. fs_info->dev_root = root;
  2102. btrfs_init_devices_late(fs_info);
  2103. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2104. root = btrfs_read_tree_root(tree_root, &location);
  2105. if (IS_ERR(root))
  2106. return PTR_ERR(root);
  2107. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2108. fs_info->csum_root = root;
  2109. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2110. root = btrfs_read_tree_root(tree_root, &location);
  2111. if (!IS_ERR(root)) {
  2112. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2113. fs_info->quota_enabled = 1;
  2114. fs_info->pending_quota_state = 1;
  2115. fs_info->quota_root = root;
  2116. }
  2117. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2118. root = btrfs_read_tree_root(tree_root, &location);
  2119. if (IS_ERR(root)) {
  2120. ret = PTR_ERR(root);
  2121. if (ret != -ENOENT)
  2122. return ret;
  2123. } else {
  2124. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2125. fs_info->uuid_root = root;
  2126. }
  2127. return 0;
  2128. }
  2129. int open_ctree(struct super_block *sb,
  2130. struct btrfs_fs_devices *fs_devices,
  2131. char *options)
  2132. {
  2133. u32 sectorsize;
  2134. u32 nodesize;
  2135. u32 stripesize;
  2136. u64 generation;
  2137. u64 features;
  2138. struct btrfs_key location;
  2139. struct buffer_head *bh;
  2140. struct btrfs_super_block *disk_super;
  2141. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2142. struct btrfs_root *tree_root;
  2143. struct btrfs_root *chunk_root;
  2144. int ret;
  2145. int err = -EINVAL;
  2146. int num_backups_tried = 0;
  2147. int backup_index = 0;
  2148. int max_active;
  2149. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  2150. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  2151. if (!tree_root || !chunk_root) {
  2152. err = -ENOMEM;
  2153. goto fail;
  2154. }
  2155. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2156. if (ret) {
  2157. err = ret;
  2158. goto fail;
  2159. }
  2160. ret = setup_bdi(fs_info, &fs_info->bdi);
  2161. if (ret) {
  2162. err = ret;
  2163. goto fail_srcu;
  2164. }
  2165. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2166. if (ret) {
  2167. err = ret;
  2168. goto fail_bdi;
  2169. }
  2170. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2171. (1 + ilog2(nr_cpu_ids));
  2172. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2173. if (ret) {
  2174. err = ret;
  2175. goto fail_dirty_metadata_bytes;
  2176. }
  2177. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2178. if (ret) {
  2179. err = ret;
  2180. goto fail_delalloc_bytes;
  2181. }
  2182. fs_info->btree_inode = new_inode(sb);
  2183. if (!fs_info->btree_inode) {
  2184. err = -ENOMEM;
  2185. goto fail_bio_counter;
  2186. }
  2187. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2188. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2189. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2190. INIT_LIST_HEAD(&fs_info->trans_list);
  2191. INIT_LIST_HEAD(&fs_info->dead_roots);
  2192. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2193. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2194. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2195. spin_lock_init(&fs_info->delalloc_root_lock);
  2196. spin_lock_init(&fs_info->trans_lock);
  2197. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2198. spin_lock_init(&fs_info->delayed_iput_lock);
  2199. spin_lock_init(&fs_info->defrag_inodes_lock);
  2200. spin_lock_init(&fs_info->free_chunk_lock);
  2201. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2202. spin_lock_init(&fs_info->super_lock);
  2203. spin_lock_init(&fs_info->qgroup_op_lock);
  2204. spin_lock_init(&fs_info->buffer_lock);
  2205. spin_lock_init(&fs_info->unused_bgs_lock);
  2206. rwlock_init(&fs_info->tree_mod_log_lock);
  2207. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2208. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2209. mutex_init(&fs_info->reloc_mutex);
  2210. mutex_init(&fs_info->delalloc_root_mutex);
  2211. seqlock_init(&fs_info->profiles_lock);
  2212. init_rwsem(&fs_info->delayed_iput_sem);
  2213. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2214. INIT_LIST_HEAD(&fs_info->space_info);
  2215. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2216. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2217. btrfs_mapping_init(&fs_info->mapping_tree);
  2218. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2219. BTRFS_BLOCK_RSV_GLOBAL);
  2220. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2221. BTRFS_BLOCK_RSV_DELALLOC);
  2222. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2223. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2224. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2225. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2226. BTRFS_BLOCK_RSV_DELOPS);
  2227. atomic_set(&fs_info->nr_async_submits, 0);
  2228. atomic_set(&fs_info->async_delalloc_pages, 0);
  2229. atomic_set(&fs_info->async_submit_draining, 0);
  2230. atomic_set(&fs_info->nr_async_bios, 0);
  2231. atomic_set(&fs_info->defrag_running, 0);
  2232. atomic_set(&fs_info->qgroup_op_seq, 0);
  2233. atomic64_set(&fs_info->tree_mod_seq, 0);
  2234. fs_info->sb = sb;
  2235. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2236. fs_info->metadata_ratio = 0;
  2237. fs_info->defrag_inodes = RB_ROOT;
  2238. fs_info->free_chunk_space = 0;
  2239. fs_info->tree_mod_log = RB_ROOT;
  2240. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2241. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2242. /* readahead state */
  2243. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  2244. spin_lock_init(&fs_info->reada_lock);
  2245. fs_info->thread_pool_size = min_t(unsigned long,
  2246. num_online_cpus() + 2, 8);
  2247. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2248. spin_lock_init(&fs_info->ordered_root_lock);
  2249. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2250. GFP_NOFS);
  2251. if (!fs_info->delayed_root) {
  2252. err = -ENOMEM;
  2253. goto fail_iput;
  2254. }
  2255. btrfs_init_delayed_root(fs_info->delayed_root);
  2256. btrfs_init_scrub(fs_info);
  2257. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2258. fs_info->check_integrity_print_mask = 0;
  2259. #endif
  2260. btrfs_init_balance(fs_info);
  2261. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2262. sb->s_blocksize = 4096;
  2263. sb->s_blocksize_bits = blksize_bits(4096);
  2264. sb->s_bdi = &fs_info->bdi;
  2265. btrfs_init_btree_inode(fs_info, tree_root);
  2266. spin_lock_init(&fs_info->block_group_cache_lock);
  2267. fs_info->block_group_cache_tree = RB_ROOT;
  2268. fs_info->first_logical_byte = (u64)-1;
  2269. extent_io_tree_init(&fs_info->freed_extents[0],
  2270. fs_info->btree_inode->i_mapping);
  2271. extent_io_tree_init(&fs_info->freed_extents[1],
  2272. fs_info->btree_inode->i_mapping);
  2273. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2274. fs_info->do_barriers = 1;
  2275. mutex_init(&fs_info->ordered_operations_mutex);
  2276. mutex_init(&fs_info->tree_log_mutex);
  2277. mutex_init(&fs_info->chunk_mutex);
  2278. mutex_init(&fs_info->transaction_kthread_mutex);
  2279. mutex_init(&fs_info->cleaner_mutex);
  2280. mutex_init(&fs_info->volume_mutex);
  2281. mutex_init(&fs_info->ro_block_group_mutex);
  2282. init_rwsem(&fs_info->commit_root_sem);
  2283. init_rwsem(&fs_info->cleanup_work_sem);
  2284. init_rwsem(&fs_info->subvol_sem);
  2285. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2286. btrfs_init_dev_replace_locks(fs_info);
  2287. btrfs_init_qgroup(fs_info);
  2288. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2289. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2290. init_waitqueue_head(&fs_info->transaction_throttle);
  2291. init_waitqueue_head(&fs_info->transaction_wait);
  2292. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2293. init_waitqueue_head(&fs_info->async_submit_wait);
  2294. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2295. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2296. if (ret) {
  2297. err = ret;
  2298. goto fail_alloc;
  2299. }
  2300. __setup_root(4096, 4096, 4096, tree_root,
  2301. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2302. invalidate_bdev(fs_devices->latest_bdev);
  2303. /*
  2304. * Read super block and check the signature bytes only
  2305. */
  2306. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2307. if (!bh) {
  2308. err = -EINVAL;
  2309. goto fail_alloc;
  2310. }
  2311. /*
  2312. * We want to check superblock checksum, the type is stored inside.
  2313. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2314. */
  2315. if (btrfs_check_super_csum(bh->b_data)) {
  2316. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2317. err = -EINVAL;
  2318. goto fail_alloc;
  2319. }
  2320. /*
  2321. * super_copy is zeroed at allocation time and we never touch the
  2322. * following bytes up to INFO_SIZE, the checksum is calculated from
  2323. * the whole block of INFO_SIZE
  2324. */
  2325. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2326. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2327. sizeof(*fs_info->super_for_commit));
  2328. brelse(bh);
  2329. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2330. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2331. if (ret) {
  2332. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2333. err = -EINVAL;
  2334. goto fail_alloc;
  2335. }
  2336. disk_super = fs_info->super_copy;
  2337. if (!btrfs_super_root(disk_super))
  2338. goto fail_alloc;
  2339. /* check FS state, whether FS is broken. */
  2340. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2341. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2342. /*
  2343. * run through our array of backup supers and setup
  2344. * our ring pointer to the oldest one
  2345. */
  2346. generation = btrfs_super_generation(disk_super);
  2347. find_oldest_super_backup(fs_info, generation);
  2348. /*
  2349. * In the long term, we'll store the compression type in the super
  2350. * block, and it'll be used for per file compression control.
  2351. */
  2352. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2353. ret = btrfs_parse_options(tree_root, options);
  2354. if (ret) {
  2355. err = ret;
  2356. goto fail_alloc;
  2357. }
  2358. features = btrfs_super_incompat_flags(disk_super) &
  2359. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2360. if (features) {
  2361. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2362. "unsupported optional features (%Lx).\n",
  2363. features);
  2364. err = -EINVAL;
  2365. goto fail_alloc;
  2366. }
  2367. /*
  2368. * Leafsize and nodesize were always equal, this is only a sanity check.
  2369. */
  2370. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2371. btrfs_super_nodesize(disk_super)) {
  2372. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2373. "blocksizes don't match. node %d leaf %d\n",
  2374. btrfs_super_nodesize(disk_super),
  2375. le32_to_cpu(disk_super->__unused_leafsize));
  2376. err = -EINVAL;
  2377. goto fail_alloc;
  2378. }
  2379. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2380. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2381. "blocksize (%d) was too large\n",
  2382. btrfs_super_nodesize(disk_super));
  2383. err = -EINVAL;
  2384. goto fail_alloc;
  2385. }
  2386. features = btrfs_super_incompat_flags(disk_super);
  2387. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2388. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2389. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2390. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2391. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2392. /*
  2393. * flag our filesystem as having big metadata blocks if
  2394. * they are bigger than the page size
  2395. */
  2396. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2397. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2398. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2399. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2400. }
  2401. nodesize = btrfs_super_nodesize(disk_super);
  2402. sectorsize = btrfs_super_sectorsize(disk_super);
  2403. stripesize = btrfs_super_stripesize(disk_super);
  2404. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2405. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2406. /*
  2407. * mixed block groups end up with duplicate but slightly offset
  2408. * extent buffers for the same range. It leads to corruptions
  2409. */
  2410. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2411. (sectorsize != nodesize)) {
  2412. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2413. "are not allowed for mixed block groups on %s\n",
  2414. sb->s_id);
  2415. goto fail_alloc;
  2416. }
  2417. /*
  2418. * Needn't use the lock because there is no other task which will
  2419. * update the flag.
  2420. */
  2421. btrfs_set_super_incompat_flags(disk_super, features);
  2422. features = btrfs_super_compat_ro_flags(disk_super) &
  2423. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2424. if (!(sb->s_flags & MS_RDONLY) && features) {
  2425. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2426. "unsupported option features (%Lx).\n",
  2427. features);
  2428. err = -EINVAL;
  2429. goto fail_alloc;
  2430. }
  2431. max_active = fs_info->thread_pool_size;
  2432. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2433. if (ret) {
  2434. err = ret;
  2435. goto fail_sb_buffer;
  2436. }
  2437. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2438. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2439. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2440. tree_root->nodesize = nodesize;
  2441. tree_root->sectorsize = sectorsize;
  2442. tree_root->stripesize = stripesize;
  2443. sb->s_blocksize = sectorsize;
  2444. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2445. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2446. printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
  2447. goto fail_sb_buffer;
  2448. }
  2449. if (sectorsize != PAGE_SIZE) {
  2450. printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
  2451. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2452. goto fail_sb_buffer;
  2453. }
  2454. mutex_lock(&fs_info->chunk_mutex);
  2455. ret = btrfs_read_sys_array(tree_root);
  2456. mutex_unlock(&fs_info->chunk_mutex);
  2457. if (ret) {
  2458. printk(KERN_ERR "BTRFS: failed to read the system "
  2459. "array on %s\n", sb->s_id);
  2460. goto fail_sb_buffer;
  2461. }
  2462. generation = btrfs_super_chunk_root_generation(disk_super);
  2463. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2464. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2465. chunk_root->node = read_tree_block(chunk_root,
  2466. btrfs_super_chunk_root(disk_super),
  2467. generation);
  2468. if (IS_ERR(chunk_root->node) ||
  2469. !extent_buffer_uptodate(chunk_root->node)) {
  2470. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2471. sb->s_id);
  2472. chunk_root->node = NULL;
  2473. goto fail_tree_roots;
  2474. }
  2475. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2476. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2477. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2478. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2479. ret = btrfs_read_chunk_tree(chunk_root);
  2480. if (ret) {
  2481. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2482. sb->s_id);
  2483. goto fail_tree_roots;
  2484. }
  2485. /*
  2486. * keep the device that is marked to be the target device for the
  2487. * dev_replace procedure
  2488. */
  2489. btrfs_close_extra_devices(fs_devices, 0);
  2490. if (!fs_devices->latest_bdev) {
  2491. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2492. sb->s_id);
  2493. goto fail_tree_roots;
  2494. }
  2495. retry_root_backup:
  2496. generation = btrfs_super_generation(disk_super);
  2497. tree_root->node = read_tree_block(tree_root,
  2498. btrfs_super_root(disk_super),
  2499. generation);
  2500. if (IS_ERR(tree_root->node) ||
  2501. !extent_buffer_uptodate(tree_root->node)) {
  2502. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2503. sb->s_id);
  2504. tree_root->node = NULL;
  2505. goto recovery_tree_root;
  2506. }
  2507. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2508. tree_root->commit_root = btrfs_root_node(tree_root);
  2509. btrfs_set_root_refs(&tree_root->root_item, 1);
  2510. ret = btrfs_read_roots(fs_info, tree_root);
  2511. if (ret)
  2512. goto recovery_tree_root;
  2513. fs_info->generation = generation;
  2514. fs_info->last_trans_committed = generation;
  2515. ret = btrfs_recover_balance(fs_info);
  2516. if (ret) {
  2517. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2518. goto fail_block_groups;
  2519. }
  2520. ret = btrfs_init_dev_stats(fs_info);
  2521. if (ret) {
  2522. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2523. ret);
  2524. goto fail_block_groups;
  2525. }
  2526. ret = btrfs_init_dev_replace(fs_info);
  2527. if (ret) {
  2528. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2529. goto fail_block_groups;
  2530. }
  2531. btrfs_close_extra_devices(fs_devices, 1);
  2532. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2533. if (ret) {
  2534. pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
  2535. goto fail_block_groups;
  2536. }
  2537. ret = btrfs_sysfs_add_device(fs_devices);
  2538. if (ret) {
  2539. pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
  2540. goto fail_fsdev_sysfs;
  2541. }
  2542. ret = btrfs_sysfs_add_one(fs_info);
  2543. if (ret) {
  2544. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2545. goto fail_fsdev_sysfs;
  2546. }
  2547. ret = btrfs_init_space_info(fs_info);
  2548. if (ret) {
  2549. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2550. goto fail_sysfs;
  2551. }
  2552. ret = btrfs_read_block_groups(fs_info->extent_root);
  2553. if (ret) {
  2554. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2555. goto fail_sysfs;
  2556. }
  2557. fs_info->num_tolerated_disk_barrier_failures =
  2558. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2559. if (fs_info->fs_devices->missing_devices >
  2560. fs_info->num_tolerated_disk_barrier_failures &&
  2561. !(sb->s_flags & MS_RDONLY)) {
  2562. pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
  2563. fs_info->fs_devices->missing_devices,
  2564. fs_info->num_tolerated_disk_barrier_failures);
  2565. goto fail_sysfs;
  2566. }
  2567. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2568. "btrfs-cleaner");
  2569. if (IS_ERR(fs_info->cleaner_kthread))
  2570. goto fail_sysfs;
  2571. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2572. tree_root,
  2573. "btrfs-transaction");
  2574. if (IS_ERR(fs_info->transaction_kthread))
  2575. goto fail_cleaner;
  2576. if (!btrfs_test_opt(tree_root, SSD) &&
  2577. !btrfs_test_opt(tree_root, NOSSD) &&
  2578. !fs_info->fs_devices->rotating) {
  2579. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2580. "mode\n");
  2581. btrfs_set_opt(fs_info->mount_opt, SSD);
  2582. }
  2583. /*
  2584. * Mount does not set all options immediatelly, we can do it now and do
  2585. * not have to wait for transaction commit
  2586. */
  2587. btrfs_apply_pending_changes(fs_info);
  2588. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2589. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2590. ret = btrfsic_mount(tree_root, fs_devices,
  2591. btrfs_test_opt(tree_root,
  2592. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2593. 1 : 0,
  2594. fs_info->check_integrity_print_mask);
  2595. if (ret)
  2596. printk(KERN_WARNING "BTRFS: failed to initialize"
  2597. " integrity check module %s\n", sb->s_id);
  2598. }
  2599. #endif
  2600. ret = btrfs_read_qgroup_config(fs_info);
  2601. if (ret)
  2602. goto fail_trans_kthread;
  2603. /* do not make disk changes in broken FS */
  2604. if (btrfs_super_log_root(disk_super) != 0) {
  2605. ret = btrfs_replay_log(fs_info, fs_devices);
  2606. if (ret) {
  2607. err = ret;
  2608. goto fail_qgroup;
  2609. }
  2610. }
  2611. ret = btrfs_find_orphan_roots(tree_root);
  2612. if (ret)
  2613. goto fail_qgroup;
  2614. if (!(sb->s_flags & MS_RDONLY)) {
  2615. ret = btrfs_cleanup_fs_roots(fs_info);
  2616. if (ret)
  2617. goto fail_qgroup;
  2618. mutex_lock(&fs_info->cleaner_mutex);
  2619. ret = btrfs_recover_relocation(tree_root);
  2620. mutex_unlock(&fs_info->cleaner_mutex);
  2621. if (ret < 0) {
  2622. printk(KERN_WARNING
  2623. "BTRFS: failed to recover relocation\n");
  2624. err = -EINVAL;
  2625. goto fail_qgroup;
  2626. }
  2627. }
  2628. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2629. location.type = BTRFS_ROOT_ITEM_KEY;
  2630. location.offset = 0;
  2631. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2632. if (IS_ERR(fs_info->fs_root)) {
  2633. err = PTR_ERR(fs_info->fs_root);
  2634. goto fail_qgroup;
  2635. }
  2636. if (sb->s_flags & MS_RDONLY)
  2637. return 0;
  2638. down_read(&fs_info->cleanup_work_sem);
  2639. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2640. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2641. up_read(&fs_info->cleanup_work_sem);
  2642. close_ctree(tree_root);
  2643. return ret;
  2644. }
  2645. up_read(&fs_info->cleanup_work_sem);
  2646. ret = btrfs_resume_balance_async(fs_info);
  2647. if (ret) {
  2648. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2649. close_ctree(tree_root);
  2650. return ret;
  2651. }
  2652. ret = btrfs_resume_dev_replace_async(fs_info);
  2653. if (ret) {
  2654. pr_warn("BTRFS: failed to resume dev_replace\n");
  2655. close_ctree(tree_root);
  2656. return ret;
  2657. }
  2658. btrfs_qgroup_rescan_resume(fs_info);
  2659. if (!fs_info->uuid_root) {
  2660. pr_info("BTRFS: creating UUID tree\n");
  2661. ret = btrfs_create_uuid_tree(fs_info);
  2662. if (ret) {
  2663. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2664. ret);
  2665. close_ctree(tree_root);
  2666. return ret;
  2667. }
  2668. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2669. fs_info->generation !=
  2670. btrfs_super_uuid_tree_generation(disk_super)) {
  2671. pr_info("BTRFS: checking UUID tree\n");
  2672. ret = btrfs_check_uuid_tree(fs_info);
  2673. if (ret) {
  2674. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2675. ret);
  2676. close_ctree(tree_root);
  2677. return ret;
  2678. }
  2679. } else {
  2680. fs_info->update_uuid_tree_gen = 1;
  2681. }
  2682. fs_info->open = 1;
  2683. return 0;
  2684. fail_qgroup:
  2685. btrfs_free_qgroup_config(fs_info);
  2686. fail_trans_kthread:
  2687. kthread_stop(fs_info->transaction_kthread);
  2688. btrfs_cleanup_transaction(fs_info->tree_root);
  2689. btrfs_free_fs_roots(fs_info);
  2690. fail_cleaner:
  2691. kthread_stop(fs_info->cleaner_kthread);
  2692. /*
  2693. * make sure we're done with the btree inode before we stop our
  2694. * kthreads
  2695. */
  2696. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2697. fail_sysfs:
  2698. btrfs_sysfs_remove_one(fs_info);
  2699. fail_fsdev_sysfs:
  2700. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2701. fail_block_groups:
  2702. btrfs_put_block_group_cache(fs_info);
  2703. btrfs_free_block_groups(fs_info);
  2704. fail_tree_roots:
  2705. free_root_pointers(fs_info, 1);
  2706. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2707. fail_sb_buffer:
  2708. btrfs_stop_all_workers(fs_info);
  2709. fail_alloc:
  2710. fail_iput:
  2711. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2712. iput(fs_info->btree_inode);
  2713. fail_bio_counter:
  2714. percpu_counter_destroy(&fs_info->bio_counter);
  2715. fail_delalloc_bytes:
  2716. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2717. fail_dirty_metadata_bytes:
  2718. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2719. fail_bdi:
  2720. bdi_destroy(&fs_info->bdi);
  2721. fail_srcu:
  2722. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2723. fail:
  2724. btrfs_free_stripe_hash_table(fs_info);
  2725. btrfs_close_devices(fs_info->fs_devices);
  2726. return err;
  2727. recovery_tree_root:
  2728. if (!btrfs_test_opt(tree_root, RECOVERY))
  2729. goto fail_tree_roots;
  2730. free_root_pointers(fs_info, 0);
  2731. /* don't use the log in recovery mode, it won't be valid */
  2732. btrfs_set_super_log_root(disk_super, 0);
  2733. /* we can't trust the free space cache either */
  2734. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2735. ret = next_root_backup(fs_info, fs_info->super_copy,
  2736. &num_backups_tried, &backup_index);
  2737. if (ret == -1)
  2738. goto fail_block_groups;
  2739. goto retry_root_backup;
  2740. }
  2741. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2742. {
  2743. if (uptodate) {
  2744. set_buffer_uptodate(bh);
  2745. } else {
  2746. struct btrfs_device *device = (struct btrfs_device *)
  2747. bh->b_private;
  2748. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2749. "lost page write due to IO error on %s",
  2750. rcu_str_deref(device->name));
  2751. /* note, we dont' set_buffer_write_io_error because we have
  2752. * our own ways of dealing with the IO errors
  2753. */
  2754. clear_buffer_uptodate(bh);
  2755. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2756. }
  2757. unlock_buffer(bh);
  2758. put_bh(bh);
  2759. }
  2760. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2761. {
  2762. struct buffer_head *bh;
  2763. struct buffer_head *latest = NULL;
  2764. struct btrfs_super_block *super;
  2765. int i;
  2766. u64 transid = 0;
  2767. u64 bytenr;
  2768. /* we would like to check all the supers, but that would make
  2769. * a btrfs mount succeed after a mkfs from a different FS.
  2770. * So, we need to add a special mount option to scan for
  2771. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2772. */
  2773. for (i = 0; i < 1; i++) {
  2774. bytenr = btrfs_sb_offset(i);
  2775. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2776. i_size_read(bdev->bd_inode))
  2777. break;
  2778. bh = __bread(bdev, bytenr / 4096,
  2779. BTRFS_SUPER_INFO_SIZE);
  2780. if (!bh)
  2781. continue;
  2782. super = (struct btrfs_super_block *)bh->b_data;
  2783. if (btrfs_super_bytenr(super) != bytenr ||
  2784. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2785. brelse(bh);
  2786. continue;
  2787. }
  2788. if (!latest || btrfs_super_generation(super) > transid) {
  2789. brelse(latest);
  2790. latest = bh;
  2791. transid = btrfs_super_generation(super);
  2792. } else {
  2793. brelse(bh);
  2794. }
  2795. }
  2796. return latest;
  2797. }
  2798. /*
  2799. * this should be called twice, once with wait == 0 and
  2800. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2801. * we write are pinned.
  2802. *
  2803. * They are released when wait == 1 is done.
  2804. * max_mirrors must be the same for both runs, and it indicates how
  2805. * many supers on this one device should be written.
  2806. *
  2807. * max_mirrors == 0 means to write them all.
  2808. */
  2809. static int write_dev_supers(struct btrfs_device *device,
  2810. struct btrfs_super_block *sb,
  2811. int do_barriers, int wait, int max_mirrors)
  2812. {
  2813. struct buffer_head *bh;
  2814. int i;
  2815. int ret;
  2816. int errors = 0;
  2817. u32 crc;
  2818. u64 bytenr;
  2819. if (max_mirrors == 0)
  2820. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2821. for (i = 0; i < max_mirrors; i++) {
  2822. bytenr = btrfs_sb_offset(i);
  2823. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2824. device->commit_total_bytes)
  2825. break;
  2826. if (wait) {
  2827. bh = __find_get_block(device->bdev, bytenr / 4096,
  2828. BTRFS_SUPER_INFO_SIZE);
  2829. if (!bh) {
  2830. errors++;
  2831. continue;
  2832. }
  2833. wait_on_buffer(bh);
  2834. if (!buffer_uptodate(bh))
  2835. errors++;
  2836. /* drop our reference */
  2837. brelse(bh);
  2838. /* drop the reference from the wait == 0 run */
  2839. brelse(bh);
  2840. continue;
  2841. } else {
  2842. btrfs_set_super_bytenr(sb, bytenr);
  2843. crc = ~(u32)0;
  2844. crc = btrfs_csum_data((char *)sb +
  2845. BTRFS_CSUM_SIZE, crc,
  2846. BTRFS_SUPER_INFO_SIZE -
  2847. BTRFS_CSUM_SIZE);
  2848. btrfs_csum_final(crc, sb->csum);
  2849. /*
  2850. * one reference for us, and we leave it for the
  2851. * caller
  2852. */
  2853. bh = __getblk(device->bdev, bytenr / 4096,
  2854. BTRFS_SUPER_INFO_SIZE);
  2855. if (!bh) {
  2856. btrfs_err(device->dev_root->fs_info,
  2857. "couldn't get super buffer head for bytenr %llu",
  2858. bytenr);
  2859. errors++;
  2860. continue;
  2861. }
  2862. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2863. /* one reference for submit_bh */
  2864. get_bh(bh);
  2865. set_buffer_uptodate(bh);
  2866. lock_buffer(bh);
  2867. bh->b_end_io = btrfs_end_buffer_write_sync;
  2868. bh->b_private = device;
  2869. }
  2870. /*
  2871. * we fua the first super. The others we allow
  2872. * to go down lazy.
  2873. */
  2874. if (i == 0)
  2875. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2876. else
  2877. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2878. if (ret)
  2879. errors++;
  2880. }
  2881. return errors < i ? 0 : -1;
  2882. }
  2883. /*
  2884. * endio for the write_dev_flush, this will wake anyone waiting
  2885. * for the barrier when it is done
  2886. */
  2887. static void btrfs_end_empty_barrier(struct bio *bio)
  2888. {
  2889. if (bio->bi_private)
  2890. complete(bio->bi_private);
  2891. bio_put(bio);
  2892. }
  2893. /*
  2894. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2895. * sent down. With wait == 1, it waits for the previous flush.
  2896. *
  2897. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2898. * capable
  2899. */
  2900. static int write_dev_flush(struct btrfs_device *device, int wait)
  2901. {
  2902. struct bio *bio;
  2903. int ret = 0;
  2904. if (device->nobarriers)
  2905. return 0;
  2906. if (wait) {
  2907. bio = device->flush_bio;
  2908. if (!bio)
  2909. return 0;
  2910. wait_for_completion(&device->flush_wait);
  2911. if (bio->bi_error) {
  2912. ret = bio->bi_error;
  2913. btrfs_dev_stat_inc_and_print(device,
  2914. BTRFS_DEV_STAT_FLUSH_ERRS);
  2915. }
  2916. /* drop the reference from the wait == 0 run */
  2917. bio_put(bio);
  2918. device->flush_bio = NULL;
  2919. return ret;
  2920. }
  2921. /*
  2922. * one reference for us, and we leave it for the
  2923. * caller
  2924. */
  2925. device->flush_bio = NULL;
  2926. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2927. if (!bio)
  2928. return -ENOMEM;
  2929. bio->bi_end_io = btrfs_end_empty_barrier;
  2930. bio->bi_bdev = device->bdev;
  2931. init_completion(&device->flush_wait);
  2932. bio->bi_private = &device->flush_wait;
  2933. device->flush_bio = bio;
  2934. bio_get(bio);
  2935. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2936. return 0;
  2937. }
  2938. /*
  2939. * send an empty flush down to each device in parallel,
  2940. * then wait for them
  2941. */
  2942. static int barrier_all_devices(struct btrfs_fs_info *info)
  2943. {
  2944. struct list_head *head;
  2945. struct btrfs_device *dev;
  2946. int errors_send = 0;
  2947. int errors_wait = 0;
  2948. int ret;
  2949. /* send down all the barriers */
  2950. head = &info->fs_devices->devices;
  2951. list_for_each_entry_rcu(dev, head, dev_list) {
  2952. if (dev->missing)
  2953. continue;
  2954. if (!dev->bdev) {
  2955. errors_send++;
  2956. continue;
  2957. }
  2958. if (!dev->in_fs_metadata || !dev->writeable)
  2959. continue;
  2960. ret = write_dev_flush(dev, 0);
  2961. if (ret)
  2962. errors_send++;
  2963. }
  2964. /* wait for all the barriers */
  2965. list_for_each_entry_rcu(dev, head, dev_list) {
  2966. if (dev->missing)
  2967. continue;
  2968. if (!dev->bdev) {
  2969. errors_wait++;
  2970. continue;
  2971. }
  2972. if (!dev->in_fs_metadata || !dev->writeable)
  2973. continue;
  2974. ret = write_dev_flush(dev, 1);
  2975. if (ret)
  2976. errors_wait++;
  2977. }
  2978. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2979. errors_wait > info->num_tolerated_disk_barrier_failures)
  2980. return -EIO;
  2981. return 0;
  2982. }
  2983. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  2984. {
  2985. if ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2986. BTRFS_BLOCK_GROUP_RAID0 |
  2987. BTRFS_AVAIL_ALLOC_BIT_SINGLE)) ||
  2988. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0))
  2989. return 0;
  2990. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2991. BTRFS_BLOCK_GROUP_RAID5 |
  2992. BTRFS_BLOCK_GROUP_RAID10))
  2993. return 1;
  2994. if (flags & BTRFS_BLOCK_GROUP_RAID6)
  2995. return 2;
  2996. pr_warn("BTRFS: unknown raid type: %llu\n", flags);
  2997. return 0;
  2998. }
  2999. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3000. struct btrfs_fs_info *fs_info)
  3001. {
  3002. struct btrfs_ioctl_space_info space;
  3003. struct btrfs_space_info *sinfo;
  3004. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3005. BTRFS_BLOCK_GROUP_SYSTEM,
  3006. BTRFS_BLOCK_GROUP_METADATA,
  3007. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3008. int i;
  3009. int c;
  3010. int num_tolerated_disk_barrier_failures =
  3011. (int)fs_info->fs_devices->num_devices;
  3012. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3013. struct btrfs_space_info *tmp;
  3014. sinfo = NULL;
  3015. rcu_read_lock();
  3016. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3017. if (tmp->flags == types[i]) {
  3018. sinfo = tmp;
  3019. break;
  3020. }
  3021. }
  3022. rcu_read_unlock();
  3023. if (!sinfo)
  3024. continue;
  3025. down_read(&sinfo->groups_sem);
  3026. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3027. u64 flags;
  3028. if (list_empty(&sinfo->block_groups[c]))
  3029. continue;
  3030. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3031. &space);
  3032. if (space.total_bytes == 0 || space.used_bytes == 0)
  3033. continue;
  3034. flags = space.flags;
  3035. num_tolerated_disk_barrier_failures = min(
  3036. num_tolerated_disk_barrier_failures,
  3037. btrfs_get_num_tolerated_disk_barrier_failures(
  3038. flags));
  3039. }
  3040. up_read(&sinfo->groups_sem);
  3041. }
  3042. return num_tolerated_disk_barrier_failures;
  3043. }
  3044. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3045. {
  3046. struct list_head *head;
  3047. struct btrfs_device *dev;
  3048. struct btrfs_super_block *sb;
  3049. struct btrfs_dev_item *dev_item;
  3050. int ret;
  3051. int do_barriers;
  3052. int max_errors;
  3053. int total_errors = 0;
  3054. u64 flags;
  3055. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3056. backup_super_roots(root->fs_info);
  3057. sb = root->fs_info->super_for_commit;
  3058. dev_item = &sb->dev_item;
  3059. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3060. head = &root->fs_info->fs_devices->devices;
  3061. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3062. if (do_barriers) {
  3063. ret = barrier_all_devices(root->fs_info);
  3064. if (ret) {
  3065. mutex_unlock(
  3066. &root->fs_info->fs_devices->device_list_mutex);
  3067. btrfs_error(root->fs_info, ret,
  3068. "errors while submitting device barriers.");
  3069. return ret;
  3070. }
  3071. }
  3072. list_for_each_entry_rcu(dev, head, dev_list) {
  3073. if (!dev->bdev) {
  3074. total_errors++;
  3075. continue;
  3076. }
  3077. if (!dev->in_fs_metadata || !dev->writeable)
  3078. continue;
  3079. btrfs_set_stack_device_generation(dev_item, 0);
  3080. btrfs_set_stack_device_type(dev_item, dev->type);
  3081. btrfs_set_stack_device_id(dev_item, dev->devid);
  3082. btrfs_set_stack_device_total_bytes(dev_item,
  3083. dev->commit_total_bytes);
  3084. btrfs_set_stack_device_bytes_used(dev_item,
  3085. dev->commit_bytes_used);
  3086. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3087. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3088. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3089. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3090. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3091. flags = btrfs_super_flags(sb);
  3092. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3093. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3094. if (ret)
  3095. total_errors++;
  3096. }
  3097. if (total_errors > max_errors) {
  3098. btrfs_err(root->fs_info, "%d errors while writing supers",
  3099. total_errors);
  3100. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3101. /* FUA is masked off if unsupported and can't be the reason */
  3102. btrfs_error(root->fs_info, -EIO,
  3103. "%d errors while writing supers", total_errors);
  3104. return -EIO;
  3105. }
  3106. total_errors = 0;
  3107. list_for_each_entry_rcu(dev, head, dev_list) {
  3108. if (!dev->bdev)
  3109. continue;
  3110. if (!dev->in_fs_metadata || !dev->writeable)
  3111. continue;
  3112. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3113. if (ret)
  3114. total_errors++;
  3115. }
  3116. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3117. if (total_errors > max_errors) {
  3118. btrfs_error(root->fs_info, -EIO,
  3119. "%d errors while writing supers", total_errors);
  3120. return -EIO;
  3121. }
  3122. return 0;
  3123. }
  3124. int write_ctree_super(struct btrfs_trans_handle *trans,
  3125. struct btrfs_root *root, int max_mirrors)
  3126. {
  3127. return write_all_supers(root, max_mirrors);
  3128. }
  3129. /* Drop a fs root from the radix tree and free it. */
  3130. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3131. struct btrfs_root *root)
  3132. {
  3133. spin_lock(&fs_info->fs_roots_radix_lock);
  3134. radix_tree_delete(&fs_info->fs_roots_radix,
  3135. (unsigned long)root->root_key.objectid);
  3136. spin_unlock(&fs_info->fs_roots_radix_lock);
  3137. if (btrfs_root_refs(&root->root_item) == 0)
  3138. synchronize_srcu(&fs_info->subvol_srcu);
  3139. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3140. btrfs_free_log(NULL, root);
  3141. if (root->free_ino_pinned)
  3142. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3143. if (root->free_ino_ctl)
  3144. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3145. free_fs_root(root);
  3146. }
  3147. static void free_fs_root(struct btrfs_root *root)
  3148. {
  3149. iput(root->ino_cache_inode);
  3150. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3151. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3152. root->orphan_block_rsv = NULL;
  3153. if (root->anon_dev)
  3154. free_anon_bdev(root->anon_dev);
  3155. if (root->subv_writers)
  3156. btrfs_free_subvolume_writers(root->subv_writers);
  3157. free_extent_buffer(root->node);
  3158. free_extent_buffer(root->commit_root);
  3159. kfree(root->free_ino_ctl);
  3160. kfree(root->free_ino_pinned);
  3161. kfree(root->name);
  3162. btrfs_put_fs_root(root);
  3163. }
  3164. void btrfs_free_fs_root(struct btrfs_root *root)
  3165. {
  3166. free_fs_root(root);
  3167. }
  3168. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3169. {
  3170. u64 root_objectid = 0;
  3171. struct btrfs_root *gang[8];
  3172. int i = 0;
  3173. int err = 0;
  3174. unsigned int ret = 0;
  3175. int index;
  3176. while (1) {
  3177. index = srcu_read_lock(&fs_info->subvol_srcu);
  3178. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3179. (void **)gang, root_objectid,
  3180. ARRAY_SIZE(gang));
  3181. if (!ret) {
  3182. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3183. break;
  3184. }
  3185. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3186. for (i = 0; i < ret; i++) {
  3187. /* Avoid to grab roots in dead_roots */
  3188. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3189. gang[i] = NULL;
  3190. continue;
  3191. }
  3192. /* grab all the search result for later use */
  3193. gang[i] = btrfs_grab_fs_root(gang[i]);
  3194. }
  3195. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3196. for (i = 0; i < ret; i++) {
  3197. if (!gang[i])
  3198. continue;
  3199. root_objectid = gang[i]->root_key.objectid;
  3200. err = btrfs_orphan_cleanup(gang[i]);
  3201. if (err)
  3202. break;
  3203. btrfs_put_fs_root(gang[i]);
  3204. }
  3205. root_objectid++;
  3206. }
  3207. /* release the uncleaned roots due to error */
  3208. for (; i < ret; i++) {
  3209. if (gang[i])
  3210. btrfs_put_fs_root(gang[i]);
  3211. }
  3212. return err;
  3213. }
  3214. int btrfs_commit_super(struct btrfs_root *root)
  3215. {
  3216. struct btrfs_trans_handle *trans;
  3217. mutex_lock(&root->fs_info->cleaner_mutex);
  3218. btrfs_run_delayed_iputs(root);
  3219. mutex_unlock(&root->fs_info->cleaner_mutex);
  3220. wake_up_process(root->fs_info->cleaner_kthread);
  3221. /* wait until ongoing cleanup work done */
  3222. down_write(&root->fs_info->cleanup_work_sem);
  3223. up_write(&root->fs_info->cleanup_work_sem);
  3224. trans = btrfs_join_transaction(root);
  3225. if (IS_ERR(trans))
  3226. return PTR_ERR(trans);
  3227. return btrfs_commit_transaction(trans, root);
  3228. }
  3229. void close_ctree(struct btrfs_root *root)
  3230. {
  3231. struct btrfs_fs_info *fs_info = root->fs_info;
  3232. int ret;
  3233. fs_info->closing = 1;
  3234. smp_mb();
  3235. /* wait for the uuid_scan task to finish */
  3236. down(&fs_info->uuid_tree_rescan_sem);
  3237. /* avoid complains from lockdep et al., set sem back to initial state */
  3238. up(&fs_info->uuid_tree_rescan_sem);
  3239. /* pause restriper - we want to resume on mount */
  3240. btrfs_pause_balance(fs_info);
  3241. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3242. btrfs_scrub_cancel(fs_info);
  3243. /* wait for any defraggers to finish */
  3244. wait_event(fs_info->transaction_wait,
  3245. (atomic_read(&fs_info->defrag_running) == 0));
  3246. /* clear out the rbtree of defraggable inodes */
  3247. btrfs_cleanup_defrag_inodes(fs_info);
  3248. cancel_work_sync(&fs_info->async_reclaim_work);
  3249. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3250. /*
  3251. * If the cleaner thread is stopped and there are
  3252. * block groups queued for removal, the deletion will be
  3253. * skipped when we quit the cleaner thread.
  3254. */
  3255. btrfs_delete_unused_bgs(root->fs_info);
  3256. ret = btrfs_commit_super(root);
  3257. if (ret)
  3258. btrfs_err(fs_info, "commit super ret %d", ret);
  3259. }
  3260. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3261. btrfs_error_commit_super(root);
  3262. kthread_stop(fs_info->transaction_kthread);
  3263. kthread_stop(fs_info->cleaner_kthread);
  3264. fs_info->closing = 2;
  3265. smp_mb();
  3266. btrfs_free_qgroup_config(fs_info);
  3267. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3268. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3269. percpu_counter_sum(&fs_info->delalloc_bytes));
  3270. }
  3271. btrfs_sysfs_remove_one(fs_info);
  3272. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3273. btrfs_free_fs_roots(fs_info);
  3274. btrfs_put_block_group_cache(fs_info);
  3275. btrfs_free_block_groups(fs_info);
  3276. /*
  3277. * we must make sure there is not any read request to
  3278. * submit after we stopping all workers.
  3279. */
  3280. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3281. btrfs_stop_all_workers(fs_info);
  3282. fs_info->open = 0;
  3283. free_root_pointers(fs_info, 1);
  3284. iput(fs_info->btree_inode);
  3285. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3286. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3287. btrfsic_unmount(root, fs_info->fs_devices);
  3288. #endif
  3289. btrfs_close_devices(fs_info->fs_devices);
  3290. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3291. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3292. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3293. percpu_counter_destroy(&fs_info->bio_counter);
  3294. bdi_destroy(&fs_info->bdi);
  3295. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3296. btrfs_free_stripe_hash_table(fs_info);
  3297. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3298. root->orphan_block_rsv = NULL;
  3299. lock_chunks(root);
  3300. while (!list_empty(&fs_info->pinned_chunks)) {
  3301. struct extent_map *em;
  3302. em = list_first_entry(&fs_info->pinned_chunks,
  3303. struct extent_map, list);
  3304. list_del_init(&em->list);
  3305. free_extent_map(em);
  3306. }
  3307. unlock_chunks(root);
  3308. }
  3309. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3310. int atomic)
  3311. {
  3312. int ret;
  3313. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3314. ret = extent_buffer_uptodate(buf);
  3315. if (!ret)
  3316. return ret;
  3317. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3318. parent_transid, atomic);
  3319. if (ret == -EAGAIN)
  3320. return ret;
  3321. return !ret;
  3322. }
  3323. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3324. {
  3325. return set_extent_buffer_uptodate(buf);
  3326. }
  3327. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3328. {
  3329. struct btrfs_root *root;
  3330. u64 transid = btrfs_header_generation(buf);
  3331. int was_dirty;
  3332. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3333. /*
  3334. * This is a fast path so only do this check if we have sanity tests
  3335. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3336. * outside of the sanity tests.
  3337. */
  3338. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3339. return;
  3340. #endif
  3341. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3342. btrfs_assert_tree_locked(buf);
  3343. if (transid != root->fs_info->generation)
  3344. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3345. "found %llu running %llu\n",
  3346. buf->start, transid, root->fs_info->generation);
  3347. was_dirty = set_extent_buffer_dirty(buf);
  3348. if (!was_dirty)
  3349. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3350. buf->len,
  3351. root->fs_info->dirty_metadata_batch);
  3352. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3353. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3354. btrfs_print_leaf(root, buf);
  3355. ASSERT(0);
  3356. }
  3357. #endif
  3358. }
  3359. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3360. int flush_delayed)
  3361. {
  3362. /*
  3363. * looks as though older kernels can get into trouble with
  3364. * this code, they end up stuck in balance_dirty_pages forever
  3365. */
  3366. int ret;
  3367. if (current->flags & PF_MEMALLOC)
  3368. return;
  3369. if (flush_delayed)
  3370. btrfs_balance_delayed_items(root);
  3371. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3372. BTRFS_DIRTY_METADATA_THRESH);
  3373. if (ret > 0) {
  3374. balance_dirty_pages_ratelimited(
  3375. root->fs_info->btree_inode->i_mapping);
  3376. }
  3377. return;
  3378. }
  3379. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3380. {
  3381. __btrfs_btree_balance_dirty(root, 1);
  3382. }
  3383. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3384. {
  3385. __btrfs_btree_balance_dirty(root, 0);
  3386. }
  3387. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3388. {
  3389. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3390. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3391. }
  3392. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3393. int read_only)
  3394. {
  3395. struct btrfs_super_block *sb = fs_info->super_copy;
  3396. int ret = 0;
  3397. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3398. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3399. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3400. ret = -EINVAL;
  3401. }
  3402. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3403. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3404. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3405. ret = -EINVAL;
  3406. }
  3407. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3408. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3409. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3410. ret = -EINVAL;
  3411. }
  3412. /*
  3413. * The common minimum, we don't know if we can trust the nodesize/sectorsize
  3414. * items yet, they'll be verified later. Issue just a warning.
  3415. */
  3416. if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
  3417. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3418. btrfs_super_root(sb));
  3419. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
  3420. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3421. btrfs_super_chunk_root(sb));
  3422. if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
  3423. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3424. btrfs_super_log_root(sb));
  3425. /*
  3426. * Check the lower bound, the alignment and other constraints are
  3427. * checked later.
  3428. */
  3429. if (btrfs_super_nodesize(sb) < 4096) {
  3430. printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
  3431. btrfs_super_nodesize(sb));
  3432. ret = -EINVAL;
  3433. }
  3434. if (btrfs_super_sectorsize(sb) < 4096) {
  3435. printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
  3436. btrfs_super_sectorsize(sb));
  3437. ret = -EINVAL;
  3438. }
  3439. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3440. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3441. fs_info->fsid, sb->dev_item.fsid);
  3442. ret = -EINVAL;
  3443. }
  3444. /*
  3445. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3446. * done later
  3447. */
  3448. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3449. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3450. btrfs_super_num_devices(sb));
  3451. if (btrfs_super_num_devices(sb) == 0) {
  3452. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3453. ret = -EINVAL;
  3454. }
  3455. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3456. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3457. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3458. ret = -EINVAL;
  3459. }
  3460. /*
  3461. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3462. * and one chunk
  3463. */
  3464. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3465. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3466. btrfs_super_sys_array_size(sb),
  3467. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3468. ret = -EINVAL;
  3469. }
  3470. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3471. + sizeof(struct btrfs_chunk)) {
  3472. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3473. btrfs_super_sys_array_size(sb),
  3474. sizeof(struct btrfs_disk_key)
  3475. + sizeof(struct btrfs_chunk));
  3476. ret = -EINVAL;
  3477. }
  3478. /*
  3479. * The generation is a global counter, we'll trust it more than the others
  3480. * but it's still possible that it's the one that's wrong.
  3481. */
  3482. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3483. printk(KERN_WARNING
  3484. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3485. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3486. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3487. && btrfs_super_cache_generation(sb) != (u64)-1)
  3488. printk(KERN_WARNING
  3489. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3490. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3491. return ret;
  3492. }
  3493. static void btrfs_error_commit_super(struct btrfs_root *root)
  3494. {
  3495. mutex_lock(&root->fs_info->cleaner_mutex);
  3496. btrfs_run_delayed_iputs(root);
  3497. mutex_unlock(&root->fs_info->cleaner_mutex);
  3498. down_write(&root->fs_info->cleanup_work_sem);
  3499. up_write(&root->fs_info->cleanup_work_sem);
  3500. /* cleanup FS via transaction */
  3501. btrfs_cleanup_transaction(root);
  3502. }
  3503. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3504. {
  3505. struct btrfs_ordered_extent *ordered;
  3506. spin_lock(&root->ordered_extent_lock);
  3507. /*
  3508. * This will just short circuit the ordered completion stuff which will
  3509. * make sure the ordered extent gets properly cleaned up.
  3510. */
  3511. list_for_each_entry(ordered, &root->ordered_extents,
  3512. root_extent_list)
  3513. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3514. spin_unlock(&root->ordered_extent_lock);
  3515. }
  3516. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3517. {
  3518. struct btrfs_root *root;
  3519. struct list_head splice;
  3520. INIT_LIST_HEAD(&splice);
  3521. spin_lock(&fs_info->ordered_root_lock);
  3522. list_splice_init(&fs_info->ordered_roots, &splice);
  3523. while (!list_empty(&splice)) {
  3524. root = list_first_entry(&splice, struct btrfs_root,
  3525. ordered_root);
  3526. list_move_tail(&root->ordered_root,
  3527. &fs_info->ordered_roots);
  3528. spin_unlock(&fs_info->ordered_root_lock);
  3529. btrfs_destroy_ordered_extents(root);
  3530. cond_resched();
  3531. spin_lock(&fs_info->ordered_root_lock);
  3532. }
  3533. spin_unlock(&fs_info->ordered_root_lock);
  3534. }
  3535. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3536. struct btrfs_root *root)
  3537. {
  3538. struct rb_node *node;
  3539. struct btrfs_delayed_ref_root *delayed_refs;
  3540. struct btrfs_delayed_ref_node *ref;
  3541. int ret = 0;
  3542. delayed_refs = &trans->delayed_refs;
  3543. spin_lock(&delayed_refs->lock);
  3544. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3545. spin_unlock(&delayed_refs->lock);
  3546. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3547. return ret;
  3548. }
  3549. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3550. struct btrfs_delayed_ref_head *head;
  3551. struct btrfs_delayed_ref_node *tmp;
  3552. bool pin_bytes = false;
  3553. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3554. href_node);
  3555. if (!mutex_trylock(&head->mutex)) {
  3556. atomic_inc(&head->node.refs);
  3557. spin_unlock(&delayed_refs->lock);
  3558. mutex_lock(&head->mutex);
  3559. mutex_unlock(&head->mutex);
  3560. btrfs_put_delayed_ref(&head->node);
  3561. spin_lock(&delayed_refs->lock);
  3562. continue;
  3563. }
  3564. spin_lock(&head->lock);
  3565. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3566. list) {
  3567. ref->in_tree = 0;
  3568. list_del(&ref->list);
  3569. atomic_dec(&delayed_refs->num_entries);
  3570. btrfs_put_delayed_ref(ref);
  3571. }
  3572. if (head->must_insert_reserved)
  3573. pin_bytes = true;
  3574. btrfs_free_delayed_extent_op(head->extent_op);
  3575. delayed_refs->num_heads--;
  3576. if (head->processing == 0)
  3577. delayed_refs->num_heads_ready--;
  3578. atomic_dec(&delayed_refs->num_entries);
  3579. head->node.in_tree = 0;
  3580. rb_erase(&head->href_node, &delayed_refs->href_root);
  3581. spin_unlock(&head->lock);
  3582. spin_unlock(&delayed_refs->lock);
  3583. mutex_unlock(&head->mutex);
  3584. if (pin_bytes)
  3585. btrfs_pin_extent(root, head->node.bytenr,
  3586. head->node.num_bytes, 1);
  3587. btrfs_put_delayed_ref(&head->node);
  3588. cond_resched();
  3589. spin_lock(&delayed_refs->lock);
  3590. }
  3591. spin_unlock(&delayed_refs->lock);
  3592. return ret;
  3593. }
  3594. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3595. {
  3596. struct btrfs_inode *btrfs_inode;
  3597. struct list_head splice;
  3598. INIT_LIST_HEAD(&splice);
  3599. spin_lock(&root->delalloc_lock);
  3600. list_splice_init(&root->delalloc_inodes, &splice);
  3601. while (!list_empty(&splice)) {
  3602. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3603. delalloc_inodes);
  3604. list_del_init(&btrfs_inode->delalloc_inodes);
  3605. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3606. &btrfs_inode->runtime_flags);
  3607. spin_unlock(&root->delalloc_lock);
  3608. btrfs_invalidate_inodes(btrfs_inode->root);
  3609. spin_lock(&root->delalloc_lock);
  3610. }
  3611. spin_unlock(&root->delalloc_lock);
  3612. }
  3613. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3614. {
  3615. struct btrfs_root *root;
  3616. struct list_head splice;
  3617. INIT_LIST_HEAD(&splice);
  3618. spin_lock(&fs_info->delalloc_root_lock);
  3619. list_splice_init(&fs_info->delalloc_roots, &splice);
  3620. while (!list_empty(&splice)) {
  3621. root = list_first_entry(&splice, struct btrfs_root,
  3622. delalloc_root);
  3623. list_del_init(&root->delalloc_root);
  3624. root = btrfs_grab_fs_root(root);
  3625. BUG_ON(!root);
  3626. spin_unlock(&fs_info->delalloc_root_lock);
  3627. btrfs_destroy_delalloc_inodes(root);
  3628. btrfs_put_fs_root(root);
  3629. spin_lock(&fs_info->delalloc_root_lock);
  3630. }
  3631. spin_unlock(&fs_info->delalloc_root_lock);
  3632. }
  3633. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3634. struct extent_io_tree *dirty_pages,
  3635. int mark)
  3636. {
  3637. int ret;
  3638. struct extent_buffer *eb;
  3639. u64 start = 0;
  3640. u64 end;
  3641. while (1) {
  3642. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3643. mark, NULL);
  3644. if (ret)
  3645. break;
  3646. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3647. while (start <= end) {
  3648. eb = btrfs_find_tree_block(root->fs_info, start);
  3649. start += root->nodesize;
  3650. if (!eb)
  3651. continue;
  3652. wait_on_extent_buffer_writeback(eb);
  3653. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3654. &eb->bflags))
  3655. clear_extent_buffer_dirty(eb);
  3656. free_extent_buffer_stale(eb);
  3657. }
  3658. }
  3659. return ret;
  3660. }
  3661. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3662. struct extent_io_tree *pinned_extents)
  3663. {
  3664. struct extent_io_tree *unpin;
  3665. u64 start;
  3666. u64 end;
  3667. int ret;
  3668. bool loop = true;
  3669. unpin = pinned_extents;
  3670. again:
  3671. while (1) {
  3672. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3673. EXTENT_DIRTY, NULL);
  3674. if (ret)
  3675. break;
  3676. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3677. btrfs_error_unpin_extent_range(root, start, end);
  3678. cond_resched();
  3679. }
  3680. if (loop) {
  3681. if (unpin == &root->fs_info->freed_extents[0])
  3682. unpin = &root->fs_info->freed_extents[1];
  3683. else
  3684. unpin = &root->fs_info->freed_extents[0];
  3685. loop = false;
  3686. goto again;
  3687. }
  3688. return 0;
  3689. }
  3690. static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
  3691. struct btrfs_fs_info *fs_info)
  3692. {
  3693. struct btrfs_ordered_extent *ordered;
  3694. spin_lock(&fs_info->trans_lock);
  3695. while (!list_empty(&cur_trans->pending_ordered)) {
  3696. ordered = list_first_entry(&cur_trans->pending_ordered,
  3697. struct btrfs_ordered_extent,
  3698. trans_list);
  3699. list_del_init(&ordered->trans_list);
  3700. spin_unlock(&fs_info->trans_lock);
  3701. btrfs_put_ordered_extent(ordered);
  3702. spin_lock(&fs_info->trans_lock);
  3703. }
  3704. spin_unlock(&fs_info->trans_lock);
  3705. }
  3706. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3707. struct btrfs_root *root)
  3708. {
  3709. btrfs_destroy_delayed_refs(cur_trans, root);
  3710. cur_trans->state = TRANS_STATE_COMMIT_START;
  3711. wake_up(&root->fs_info->transaction_blocked_wait);
  3712. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3713. wake_up(&root->fs_info->transaction_wait);
  3714. btrfs_free_pending_ordered(cur_trans, root->fs_info);
  3715. btrfs_destroy_delayed_inodes(root);
  3716. btrfs_assert_delayed_root_empty(root);
  3717. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3718. EXTENT_DIRTY);
  3719. btrfs_destroy_pinned_extent(root,
  3720. root->fs_info->pinned_extents);
  3721. cur_trans->state =TRANS_STATE_COMPLETED;
  3722. wake_up(&cur_trans->commit_wait);
  3723. /*
  3724. memset(cur_trans, 0, sizeof(*cur_trans));
  3725. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3726. */
  3727. }
  3728. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3729. {
  3730. struct btrfs_transaction *t;
  3731. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3732. spin_lock(&root->fs_info->trans_lock);
  3733. while (!list_empty(&root->fs_info->trans_list)) {
  3734. t = list_first_entry(&root->fs_info->trans_list,
  3735. struct btrfs_transaction, list);
  3736. if (t->state >= TRANS_STATE_COMMIT_START) {
  3737. atomic_inc(&t->use_count);
  3738. spin_unlock(&root->fs_info->trans_lock);
  3739. btrfs_wait_for_commit(root, t->transid);
  3740. btrfs_put_transaction(t);
  3741. spin_lock(&root->fs_info->trans_lock);
  3742. continue;
  3743. }
  3744. if (t == root->fs_info->running_transaction) {
  3745. t->state = TRANS_STATE_COMMIT_DOING;
  3746. spin_unlock(&root->fs_info->trans_lock);
  3747. /*
  3748. * We wait for 0 num_writers since we don't hold a trans
  3749. * handle open currently for this transaction.
  3750. */
  3751. wait_event(t->writer_wait,
  3752. atomic_read(&t->num_writers) == 0);
  3753. } else {
  3754. spin_unlock(&root->fs_info->trans_lock);
  3755. }
  3756. btrfs_cleanup_one_transaction(t, root);
  3757. spin_lock(&root->fs_info->trans_lock);
  3758. if (t == root->fs_info->running_transaction)
  3759. root->fs_info->running_transaction = NULL;
  3760. list_del_init(&t->list);
  3761. spin_unlock(&root->fs_info->trans_lock);
  3762. btrfs_put_transaction(t);
  3763. trace_btrfs_transaction_commit(root);
  3764. spin_lock(&root->fs_info->trans_lock);
  3765. }
  3766. spin_unlock(&root->fs_info->trans_lock);
  3767. btrfs_destroy_all_ordered_extents(root->fs_info);
  3768. btrfs_destroy_delayed_inodes(root);
  3769. btrfs_assert_delayed_root_empty(root);
  3770. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3771. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3772. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3773. return 0;
  3774. }
  3775. static const struct extent_io_ops btree_extent_io_ops = {
  3776. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3777. .readpage_io_failed_hook = btree_io_failed_hook,
  3778. .submit_bio_hook = btree_submit_bio_hook,
  3779. /* note we're sharing with inode.c for the merge bio hook */
  3780. .merge_bio_hook = btrfs_merge_bio_hook,
  3781. };