i915_debugfs.c 148 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  47. * allocated we need to hook into the minor for release. */
  48. static int
  49. drm_add_fake_info_node(struct drm_minor *minor,
  50. struct dentry *ent,
  51. const void *key)
  52. {
  53. struct drm_info_node *node;
  54. node = kmalloc(sizeof(*node), GFP_KERNEL);
  55. if (node == NULL) {
  56. debugfs_remove(ent);
  57. return -ENOMEM;
  58. }
  59. node->minor = minor;
  60. node->dent = ent;
  61. node->info_ent = (void *) key;
  62. mutex_lock(&minor->debugfs_lock);
  63. list_add(&node->list, &minor->debugfs_list);
  64. mutex_unlock(&minor->debugfs_lock);
  65. return 0;
  66. }
  67. static int i915_capabilities(struct seq_file *m, void *data)
  68. {
  69. struct drm_info_node *node = m->private;
  70. struct drm_device *dev = node->minor->dev;
  71. const struct intel_device_info *info = INTEL_INFO(dev);
  72. seq_printf(m, "gen: %d\n", info->gen);
  73. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  74. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  75. #define SEP_SEMICOLON ;
  76. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  77. #undef PRINT_FLAG
  78. #undef SEP_SEMICOLON
  79. return 0;
  80. }
  81. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  82. {
  83. if (obj->pin_display)
  84. return "p";
  85. else
  86. return " ";
  87. }
  88. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  89. {
  90. switch (obj->tiling_mode) {
  91. default:
  92. case I915_TILING_NONE: return " ";
  93. case I915_TILING_X: return "X";
  94. case I915_TILING_Y: return "Y";
  95. }
  96. }
  97. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  98. {
  99. return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
  100. }
  101. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  102. {
  103. u64 size = 0;
  104. struct i915_vma *vma;
  105. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  106. if (i915_is_ggtt(vma->vm) &&
  107. drm_mm_node_allocated(&vma->node))
  108. size += vma->node.size;
  109. }
  110. return size;
  111. }
  112. static void
  113. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  114. {
  115. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  116. struct intel_engine_cs *ring;
  117. struct i915_vma *vma;
  118. int pin_count = 0;
  119. int i;
  120. seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
  121. &obj->base,
  122. obj->active ? "*" : " ",
  123. get_pin_flag(obj),
  124. get_tiling_flag(obj),
  125. get_global_flag(obj),
  126. obj->base.size / 1024,
  127. obj->base.read_domains,
  128. obj->base.write_domain);
  129. for_each_ring(ring, dev_priv, i)
  130. seq_printf(m, "%x ",
  131. i915_gem_request_get_seqno(obj->last_read_req[i]));
  132. seq_printf(m, "] %x %x%s%s%s",
  133. i915_gem_request_get_seqno(obj->last_write_req),
  134. i915_gem_request_get_seqno(obj->last_fenced_req),
  135. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  136. obj->dirty ? " dirty" : "",
  137. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  138. if (obj->base.name)
  139. seq_printf(m, " (name: %d)", obj->base.name);
  140. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  141. if (vma->pin_count > 0)
  142. pin_count++;
  143. }
  144. seq_printf(m, " (pinned x %d)", pin_count);
  145. if (obj->pin_display)
  146. seq_printf(m, " (display)");
  147. if (obj->fence_reg != I915_FENCE_REG_NONE)
  148. seq_printf(m, " (fence: %d)", obj->fence_reg);
  149. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  150. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  151. i915_is_ggtt(vma->vm) ? "g" : "pp",
  152. vma->node.start, vma->node.size);
  153. if (i915_is_ggtt(vma->vm))
  154. seq_printf(m, ", type: %u)", vma->ggtt_view.type);
  155. else
  156. seq_puts(m, ")");
  157. }
  158. if (obj->stolen)
  159. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  160. if (obj->pin_display || obj->fault_mappable) {
  161. char s[3], *t = s;
  162. if (obj->pin_display)
  163. *t++ = 'p';
  164. if (obj->fault_mappable)
  165. *t++ = 'f';
  166. *t = '\0';
  167. seq_printf(m, " (%s mappable)", s);
  168. }
  169. if (obj->last_write_req != NULL)
  170. seq_printf(m, " (%s)",
  171. i915_gem_request_get_ring(obj->last_write_req)->name);
  172. if (obj->frontbuffer_bits)
  173. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  174. }
  175. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  176. {
  177. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  178. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  179. seq_putc(m, ' ');
  180. }
  181. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  182. {
  183. struct drm_info_node *node = m->private;
  184. uintptr_t list = (uintptr_t) node->info_ent->data;
  185. struct list_head *head;
  186. struct drm_device *dev = node->minor->dev;
  187. struct drm_i915_private *dev_priv = dev->dev_private;
  188. struct i915_address_space *vm = &dev_priv->gtt.base;
  189. struct i915_vma *vma;
  190. u64 total_obj_size, total_gtt_size;
  191. int count, ret;
  192. ret = mutex_lock_interruptible(&dev->struct_mutex);
  193. if (ret)
  194. return ret;
  195. /* FIXME: the user of this interface might want more than just GGTT */
  196. switch (list) {
  197. case ACTIVE_LIST:
  198. seq_puts(m, "Active:\n");
  199. head = &vm->active_list;
  200. break;
  201. case INACTIVE_LIST:
  202. seq_puts(m, "Inactive:\n");
  203. head = &vm->inactive_list;
  204. break;
  205. default:
  206. mutex_unlock(&dev->struct_mutex);
  207. return -EINVAL;
  208. }
  209. total_obj_size = total_gtt_size = count = 0;
  210. list_for_each_entry(vma, head, mm_list) {
  211. seq_printf(m, " ");
  212. describe_obj(m, vma->obj);
  213. seq_printf(m, "\n");
  214. total_obj_size += vma->obj->base.size;
  215. total_gtt_size += vma->node.size;
  216. count++;
  217. }
  218. mutex_unlock(&dev->struct_mutex);
  219. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  220. count, total_obj_size, total_gtt_size);
  221. return 0;
  222. }
  223. static int obj_rank_by_stolen(void *priv,
  224. struct list_head *A, struct list_head *B)
  225. {
  226. struct drm_i915_gem_object *a =
  227. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  228. struct drm_i915_gem_object *b =
  229. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  230. if (a->stolen->start < b->stolen->start)
  231. return -1;
  232. if (a->stolen->start > b->stolen->start)
  233. return 1;
  234. return 0;
  235. }
  236. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  237. {
  238. struct drm_info_node *node = m->private;
  239. struct drm_device *dev = node->minor->dev;
  240. struct drm_i915_private *dev_priv = dev->dev_private;
  241. struct drm_i915_gem_object *obj;
  242. u64 total_obj_size, total_gtt_size;
  243. LIST_HEAD(stolen);
  244. int count, ret;
  245. ret = mutex_lock_interruptible(&dev->struct_mutex);
  246. if (ret)
  247. return ret;
  248. total_obj_size = total_gtt_size = count = 0;
  249. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  250. if (obj->stolen == NULL)
  251. continue;
  252. list_add(&obj->obj_exec_link, &stolen);
  253. total_obj_size += obj->base.size;
  254. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  255. count++;
  256. }
  257. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  258. if (obj->stolen == NULL)
  259. continue;
  260. list_add(&obj->obj_exec_link, &stolen);
  261. total_obj_size += obj->base.size;
  262. count++;
  263. }
  264. list_sort(NULL, &stolen, obj_rank_by_stolen);
  265. seq_puts(m, "Stolen:\n");
  266. while (!list_empty(&stolen)) {
  267. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  268. seq_puts(m, " ");
  269. describe_obj(m, obj);
  270. seq_putc(m, '\n');
  271. list_del_init(&obj->obj_exec_link);
  272. }
  273. mutex_unlock(&dev->struct_mutex);
  274. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  275. count, total_obj_size, total_gtt_size);
  276. return 0;
  277. }
  278. #define count_objects(list, member) do { \
  279. list_for_each_entry(obj, list, member) { \
  280. size += i915_gem_obj_total_ggtt_size(obj); \
  281. ++count; \
  282. if (obj->map_and_fenceable) { \
  283. mappable_size += i915_gem_obj_ggtt_size(obj); \
  284. ++mappable_count; \
  285. } \
  286. } \
  287. } while (0)
  288. struct file_stats {
  289. struct drm_i915_file_private *file_priv;
  290. unsigned long count;
  291. u64 total, unbound;
  292. u64 global, shared;
  293. u64 active, inactive;
  294. };
  295. static int per_file_stats(int id, void *ptr, void *data)
  296. {
  297. struct drm_i915_gem_object *obj = ptr;
  298. struct file_stats *stats = data;
  299. struct i915_vma *vma;
  300. stats->count++;
  301. stats->total += obj->base.size;
  302. if (obj->base.name || obj->base.dma_buf)
  303. stats->shared += obj->base.size;
  304. if (USES_FULL_PPGTT(obj->base.dev)) {
  305. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  306. struct i915_hw_ppgtt *ppgtt;
  307. if (!drm_mm_node_allocated(&vma->node))
  308. continue;
  309. if (i915_is_ggtt(vma->vm)) {
  310. stats->global += obj->base.size;
  311. continue;
  312. }
  313. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  314. if (ppgtt->file_priv != stats->file_priv)
  315. continue;
  316. if (obj->active) /* XXX per-vma statistic */
  317. stats->active += obj->base.size;
  318. else
  319. stats->inactive += obj->base.size;
  320. return 0;
  321. }
  322. } else {
  323. if (i915_gem_obj_ggtt_bound(obj)) {
  324. stats->global += obj->base.size;
  325. if (obj->active)
  326. stats->active += obj->base.size;
  327. else
  328. stats->inactive += obj->base.size;
  329. return 0;
  330. }
  331. }
  332. if (!list_empty(&obj->global_list))
  333. stats->unbound += obj->base.size;
  334. return 0;
  335. }
  336. #define print_file_stats(m, name, stats) do { \
  337. if (stats.count) \
  338. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  339. name, \
  340. stats.count, \
  341. stats.total, \
  342. stats.active, \
  343. stats.inactive, \
  344. stats.global, \
  345. stats.shared, \
  346. stats.unbound); \
  347. } while (0)
  348. static void print_batch_pool_stats(struct seq_file *m,
  349. struct drm_i915_private *dev_priv)
  350. {
  351. struct drm_i915_gem_object *obj;
  352. struct file_stats stats;
  353. struct intel_engine_cs *ring;
  354. int i, j;
  355. memset(&stats, 0, sizeof(stats));
  356. for_each_ring(ring, dev_priv, i) {
  357. for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
  358. list_for_each_entry(obj,
  359. &ring->batch_pool.cache_list[j],
  360. batch_pool_link)
  361. per_file_stats(0, obj, &stats);
  362. }
  363. }
  364. print_file_stats(m, "[k]batch pool", stats);
  365. }
  366. #define count_vmas(list, member) do { \
  367. list_for_each_entry(vma, list, member) { \
  368. size += i915_gem_obj_total_ggtt_size(vma->obj); \
  369. ++count; \
  370. if (vma->obj->map_and_fenceable) { \
  371. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  372. ++mappable_count; \
  373. } \
  374. } \
  375. } while (0)
  376. static int i915_gem_object_info(struct seq_file *m, void* data)
  377. {
  378. struct drm_info_node *node = m->private;
  379. struct drm_device *dev = node->minor->dev;
  380. struct drm_i915_private *dev_priv = dev->dev_private;
  381. u32 count, mappable_count, purgeable_count;
  382. u64 size, mappable_size, purgeable_size;
  383. struct drm_i915_gem_object *obj;
  384. struct i915_address_space *vm = &dev_priv->gtt.base;
  385. struct drm_file *file;
  386. struct i915_vma *vma;
  387. int ret;
  388. ret = mutex_lock_interruptible(&dev->struct_mutex);
  389. if (ret)
  390. return ret;
  391. seq_printf(m, "%u objects, %zu bytes\n",
  392. dev_priv->mm.object_count,
  393. dev_priv->mm.object_memory);
  394. size = count = mappable_size = mappable_count = 0;
  395. count_objects(&dev_priv->mm.bound_list, global_list);
  396. seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
  397. count, mappable_count, size, mappable_size);
  398. size = count = mappable_size = mappable_count = 0;
  399. count_vmas(&vm->active_list, mm_list);
  400. seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
  401. count, mappable_count, size, mappable_size);
  402. size = count = mappable_size = mappable_count = 0;
  403. count_vmas(&vm->inactive_list, mm_list);
  404. seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
  405. count, mappable_count, size, mappable_size);
  406. size = count = purgeable_size = purgeable_count = 0;
  407. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  408. size += obj->base.size, ++count;
  409. if (obj->madv == I915_MADV_DONTNEED)
  410. purgeable_size += obj->base.size, ++purgeable_count;
  411. }
  412. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  413. size = count = mappable_size = mappable_count = 0;
  414. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  415. if (obj->fault_mappable) {
  416. size += i915_gem_obj_ggtt_size(obj);
  417. ++count;
  418. }
  419. if (obj->pin_display) {
  420. mappable_size += i915_gem_obj_ggtt_size(obj);
  421. ++mappable_count;
  422. }
  423. if (obj->madv == I915_MADV_DONTNEED) {
  424. purgeable_size += obj->base.size;
  425. ++purgeable_count;
  426. }
  427. }
  428. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  429. purgeable_count, purgeable_size);
  430. seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
  431. mappable_count, mappable_size);
  432. seq_printf(m, "%u fault mappable objects, %llu bytes\n",
  433. count, size);
  434. seq_printf(m, "%llu [%llu] gtt total\n",
  435. dev_priv->gtt.base.total,
  436. (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  437. seq_putc(m, '\n');
  438. print_batch_pool_stats(m, dev_priv);
  439. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  440. struct file_stats stats;
  441. struct task_struct *task;
  442. memset(&stats, 0, sizeof(stats));
  443. stats.file_priv = file->driver_priv;
  444. spin_lock(&file->table_lock);
  445. idr_for_each(&file->object_idr, per_file_stats, &stats);
  446. spin_unlock(&file->table_lock);
  447. /*
  448. * Although we have a valid reference on file->pid, that does
  449. * not guarantee that the task_struct who called get_pid() is
  450. * still alive (e.g. get_pid(current) => fork() => exit()).
  451. * Therefore, we need to protect this ->comm access using RCU.
  452. */
  453. rcu_read_lock();
  454. task = pid_task(file->pid, PIDTYPE_PID);
  455. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  456. rcu_read_unlock();
  457. }
  458. mutex_unlock(&dev->struct_mutex);
  459. return 0;
  460. }
  461. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  462. {
  463. struct drm_info_node *node = m->private;
  464. struct drm_device *dev = node->minor->dev;
  465. uintptr_t list = (uintptr_t) node->info_ent->data;
  466. struct drm_i915_private *dev_priv = dev->dev_private;
  467. struct drm_i915_gem_object *obj;
  468. u64 total_obj_size, total_gtt_size;
  469. int count, ret;
  470. ret = mutex_lock_interruptible(&dev->struct_mutex);
  471. if (ret)
  472. return ret;
  473. total_obj_size = total_gtt_size = count = 0;
  474. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  475. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  476. continue;
  477. seq_puts(m, " ");
  478. describe_obj(m, obj);
  479. seq_putc(m, '\n');
  480. total_obj_size += obj->base.size;
  481. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  482. count++;
  483. }
  484. mutex_unlock(&dev->struct_mutex);
  485. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  486. count, total_obj_size, total_gtt_size);
  487. return 0;
  488. }
  489. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  490. {
  491. struct drm_info_node *node = m->private;
  492. struct drm_device *dev = node->minor->dev;
  493. struct drm_i915_private *dev_priv = dev->dev_private;
  494. struct intel_crtc *crtc;
  495. int ret;
  496. ret = mutex_lock_interruptible(&dev->struct_mutex);
  497. if (ret)
  498. return ret;
  499. for_each_intel_crtc(dev, crtc) {
  500. const char pipe = pipe_name(crtc->pipe);
  501. const char plane = plane_name(crtc->plane);
  502. struct intel_unpin_work *work;
  503. spin_lock_irq(&dev->event_lock);
  504. work = crtc->unpin_work;
  505. if (work == NULL) {
  506. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  507. pipe, plane);
  508. } else {
  509. u32 addr;
  510. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  511. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  512. pipe, plane);
  513. } else {
  514. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  515. pipe, plane);
  516. }
  517. if (work->flip_queued_req) {
  518. struct intel_engine_cs *ring =
  519. i915_gem_request_get_ring(work->flip_queued_req);
  520. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  521. ring->name,
  522. i915_gem_request_get_seqno(work->flip_queued_req),
  523. dev_priv->next_seqno,
  524. ring->get_seqno(ring, true),
  525. i915_gem_request_completed(work->flip_queued_req, true));
  526. } else
  527. seq_printf(m, "Flip not associated with any ring\n");
  528. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  529. work->flip_queued_vblank,
  530. work->flip_ready_vblank,
  531. drm_crtc_vblank_count(&crtc->base));
  532. if (work->enable_stall_check)
  533. seq_puts(m, "Stall check enabled, ");
  534. else
  535. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  536. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  537. if (INTEL_INFO(dev)->gen >= 4)
  538. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  539. else
  540. addr = I915_READ(DSPADDR(crtc->plane));
  541. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  542. if (work->pending_flip_obj) {
  543. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  544. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  545. }
  546. }
  547. spin_unlock_irq(&dev->event_lock);
  548. }
  549. mutex_unlock(&dev->struct_mutex);
  550. return 0;
  551. }
  552. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  553. {
  554. struct drm_info_node *node = m->private;
  555. struct drm_device *dev = node->minor->dev;
  556. struct drm_i915_private *dev_priv = dev->dev_private;
  557. struct drm_i915_gem_object *obj;
  558. struct intel_engine_cs *ring;
  559. int total = 0;
  560. int ret, i, j;
  561. ret = mutex_lock_interruptible(&dev->struct_mutex);
  562. if (ret)
  563. return ret;
  564. for_each_ring(ring, dev_priv, i) {
  565. for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
  566. int count;
  567. count = 0;
  568. list_for_each_entry(obj,
  569. &ring->batch_pool.cache_list[j],
  570. batch_pool_link)
  571. count++;
  572. seq_printf(m, "%s cache[%d]: %d objects\n",
  573. ring->name, j, count);
  574. list_for_each_entry(obj,
  575. &ring->batch_pool.cache_list[j],
  576. batch_pool_link) {
  577. seq_puts(m, " ");
  578. describe_obj(m, obj);
  579. seq_putc(m, '\n');
  580. }
  581. total += count;
  582. }
  583. }
  584. seq_printf(m, "total: %d\n", total);
  585. mutex_unlock(&dev->struct_mutex);
  586. return 0;
  587. }
  588. static int i915_gem_request_info(struct seq_file *m, void *data)
  589. {
  590. struct drm_info_node *node = m->private;
  591. struct drm_device *dev = node->minor->dev;
  592. struct drm_i915_private *dev_priv = dev->dev_private;
  593. struct intel_engine_cs *ring;
  594. struct drm_i915_gem_request *req;
  595. int ret, any, i;
  596. ret = mutex_lock_interruptible(&dev->struct_mutex);
  597. if (ret)
  598. return ret;
  599. any = 0;
  600. for_each_ring(ring, dev_priv, i) {
  601. int count;
  602. count = 0;
  603. list_for_each_entry(req, &ring->request_list, list)
  604. count++;
  605. if (count == 0)
  606. continue;
  607. seq_printf(m, "%s requests: %d\n", ring->name, count);
  608. list_for_each_entry(req, &ring->request_list, list) {
  609. struct task_struct *task;
  610. rcu_read_lock();
  611. task = NULL;
  612. if (req->pid)
  613. task = pid_task(req->pid, PIDTYPE_PID);
  614. seq_printf(m, " %x @ %d: %s [%d]\n",
  615. req->seqno,
  616. (int) (jiffies - req->emitted_jiffies),
  617. task ? task->comm : "<unknown>",
  618. task ? task->pid : -1);
  619. rcu_read_unlock();
  620. }
  621. any++;
  622. }
  623. mutex_unlock(&dev->struct_mutex);
  624. if (any == 0)
  625. seq_puts(m, "No requests\n");
  626. return 0;
  627. }
  628. static void i915_ring_seqno_info(struct seq_file *m,
  629. struct intel_engine_cs *ring)
  630. {
  631. if (ring->get_seqno) {
  632. seq_printf(m, "Current sequence (%s): %x\n",
  633. ring->name, ring->get_seqno(ring, false));
  634. }
  635. }
  636. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  637. {
  638. struct drm_info_node *node = m->private;
  639. struct drm_device *dev = node->minor->dev;
  640. struct drm_i915_private *dev_priv = dev->dev_private;
  641. struct intel_engine_cs *ring;
  642. int ret, i;
  643. ret = mutex_lock_interruptible(&dev->struct_mutex);
  644. if (ret)
  645. return ret;
  646. intel_runtime_pm_get(dev_priv);
  647. for_each_ring(ring, dev_priv, i)
  648. i915_ring_seqno_info(m, ring);
  649. intel_runtime_pm_put(dev_priv);
  650. mutex_unlock(&dev->struct_mutex);
  651. return 0;
  652. }
  653. static int i915_interrupt_info(struct seq_file *m, void *data)
  654. {
  655. struct drm_info_node *node = m->private;
  656. struct drm_device *dev = node->minor->dev;
  657. struct drm_i915_private *dev_priv = dev->dev_private;
  658. struct intel_engine_cs *ring;
  659. int ret, i, pipe;
  660. ret = mutex_lock_interruptible(&dev->struct_mutex);
  661. if (ret)
  662. return ret;
  663. intel_runtime_pm_get(dev_priv);
  664. if (IS_CHERRYVIEW(dev)) {
  665. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  666. I915_READ(GEN8_MASTER_IRQ));
  667. seq_printf(m, "Display IER:\t%08x\n",
  668. I915_READ(VLV_IER));
  669. seq_printf(m, "Display IIR:\t%08x\n",
  670. I915_READ(VLV_IIR));
  671. seq_printf(m, "Display IIR_RW:\t%08x\n",
  672. I915_READ(VLV_IIR_RW));
  673. seq_printf(m, "Display IMR:\t%08x\n",
  674. I915_READ(VLV_IMR));
  675. for_each_pipe(dev_priv, pipe)
  676. seq_printf(m, "Pipe %c stat:\t%08x\n",
  677. pipe_name(pipe),
  678. I915_READ(PIPESTAT(pipe)));
  679. seq_printf(m, "Port hotplug:\t%08x\n",
  680. I915_READ(PORT_HOTPLUG_EN));
  681. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  682. I915_READ(VLV_DPFLIPSTAT));
  683. seq_printf(m, "DPINVGTT:\t%08x\n",
  684. I915_READ(DPINVGTT));
  685. for (i = 0; i < 4; i++) {
  686. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  687. i, I915_READ(GEN8_GT_IMR(i)));
  688. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  689. i, I915_READ(GEN8_GT_IIR(i)));
  690. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  691. i, I915_READ(GEN8_GT_IER(i)));
  692. }
  693. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  694. I915_READ(GEN8_PCU_IMR));
  695. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  696. I915_READ(GEN8_PCU_IIR));
  697. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  698. I915_READ(GEN8_PCU_IER));
  699. } else if (INTEL_INFO(dev)->gen >= 8) {
  700. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  701. I915_READ(GEN8_MASTER_IRQ));
  702. for (i = 0; i < 4; i++) {
  703. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  704. i, I915_READ(GEN8_GT_IMR(i)));
  705. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  706. i, I915_READ(GEN8_GT_IIR(i)));
  707. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  708. i, I915_READ(GEN8_GT_IER(i)));
  709. }
  710. for_each_pipe(dev_priv, pipe) {
  711. if (!intel_display_power_is_enabled(dev_priv,
  712. POWER_DOMAIN_PIPE(pipe))) {
  713. seq_printf(m, "Pipe %c power disabled\n",
  714. pipe_name(pipe));
  715. continue;
  716. }
  717. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  718. pipe_name(pipe),
  719. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  720. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  721. pipe_name(pipe),
  722. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  723. seq_printf(m, "Pipe %c IER:\t%08x\n",
  724. pipe_name(pipe),
  725. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  726. }
  727. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  728. I915_READ(GEN8_DE_PORT_IMR));
  729. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  730. I915_READ(GEN8_DE_PORT_IIR));
  731. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  732. I915_READ(GEN8_DE_PORT_IER));
  733. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  734. I915_READ(GEN8_DE_MISC_IMR));
  735. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  736. I915_READ(GEN8_DE_MISC_IIR));
  737. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  738. I915_READ(GEN8_DE_MISC_IER));
  739. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  740. I915_READ(GEN8_PCU_IMR));
  741. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  742. I915_READ(GEN8_PCU_IIR));
  743. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  744. I915_READ(GEN8_PCU_IER));
  745. } else if (IS_VALLEYVIEW(dev)) {
  746. seq_printf(m, "Display IER:\t%08x\n",
  747. I915_READ(VLV_IER));
  748. seq_printf(m, "Display IIR:\t%08x\n",
  749. I915_READ(VLV_IIR));
  750. seq_printf(m, "Display IIR_RW:\t%08x\n",
  751. I915_READ(VLV_IIR_RW));
  752. seq_printf(m, "Display IMR:\t%08x\n",
  753. I915_READ(VLV_IMR));
  754. for_each_pipe(dev_priv, pipe)
  755. seq_printf(m, "Pipe %c stat:\t%08x\n",
  756. pipe_name(pipe),
  757. I915_READ(PIPESTAT(pipe)));
  758. seq_printf(m, "Master IER:\t%08x\n",
  759. I915_READ(VLV_MASTER_IER));
  760. seq_printf(m, "Render IER:\t%08x\n",
  761. I915_READ(GTIER));
  762. seq_printf(m, "Render IIR:\t%08x\n",
  763. I915_READ(GTIIR));
  764. seq_printf(m, "Render IMR:\t%08x\n",
  765. I915_READ(GTIMR));
  766. seq_printf(m, "PM IER:\t\t%08x\n",
  767. I915_READ(GEN6_PMIER));
  768. seq_printf(m, "PM IIR:\t\t%08x\n",
  769. I915_READ(GEN6_PMIIR));
  770. seq_printf(m, "PM IMR:\t\t%08x\n",
  771. I915_READ(GEN6_PMIMR));
  772. seq_printf(m, "Port hotplug:\t%08x\n",
  773. I915_READ(PORT_HOTPLUG_EN));
  774. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  775. I915_READ(VLV_DPFLIPSTAT));
  776. seq_printf(m, "DPINVGTT:\t%08x\n",
  777. I915_READ(DPINVGTT));
  778. } else if (!HAS_PCH_SPLIT(dev)) {
  779. seq_printf(m, "Interrupt enable: %08x\n",
  780. I915_READ(IER));
  781. seq_printf(m, "Interrupt identity: %08x\n",
  782. I915_READ(IIR));
  783. seq_printf(m, "Interrupt mask: %08x\n",
  784. I915_READ(IMR));
  785. for_each_pipe(dev_priv, pipe)
  786. seq_printf(m, "Pipe %c stat: %08x\n",
  787. pipe_name(pipe),
  788. I915_READ(PIPESTAT(pipe)));
  789. } else {
  790. seq_printf(m, "North Display Interrupt enable: %08x\n",
  791. I915_READ(DEIER));
  792. seq_printf(m, "North Display Interrupt identity: %08x\n",
  793. I915_READ(DEIIR));
  794. seq_printf(m, "North Display Interrupt mask: %08x\n",
  795. I915_READ(DEIMR));
  796. seq_printf(m, "South Display Interrupt enable: %08x\n",
  797. I915_READ(SDEIER));
  798. seq_printf(m, "South Display Interrupt identity: %08x\n",
  799. I915_READ(SDEIIR));
  800. seq_printf(m, "South Display Interrupt mask: %08x\n",
  801. I915_READ(SDEIMR));
  802. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  803. I915_READ(GTIER));
  804. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  805. I915_READ(GTIIR));
  806. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  807. I915_READ(GTIMR));
  808. }
  809. for_each_ring(ring, dev_priv, i) {
  810. if (INTEL_INFO(dev)->gen >= 6) {
  811. seq_printf(m,
  812. "Graphics Interrupt mask (%s): %08x\n",
  813. ring->name, I915_READ_IMR(ring));
  814. }
  815. i915_ring_seqno_info(m, ring);
  816. }
  817. intel_runtime_pm_put(dev_priv);
  818. mutex_unlock(&dev->struct_mutex);
  819. return 0;
  820. }
  821. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  822. {
  823. struct drm_info_node *node = m->private;
  824. struct drm_device *dev = node->minor->dev;
  825. struct drm_i915_private *dev_priv = dev->dev_private;
  826. int i, ret;
  827. ret = mutex_lock_interruptible(&dev->struct_mutex);
  828. if (ret)
  829. return ret;
  830. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  831. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  832. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  833. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  834. seq_printf(m, "Fence %d, pin count = %d, object = ",
  835. i, dev_priv->fence_regs[i].pin_count);
  836. if (obj == NULL)
  837. seq_puts(m, "unused");
  838. else
  839. describe_obj(m, obj);
  840. seq_putc(m, '\n');
  841. }
  842. mutex_unlock(&dev->struct_mutex);
  843. return 0;
  844. }
  845. static int i915_hws_info(struct seq_file *m, void *data)
  846. {
  847. struct drm_info_node *node = m->private;
  848. struct drm_device *dev = node->minor->dev;
  849. struct drm_i915_private *dev_priv = dev->dev_private;
  850. struct intel_engine_cs *ring;
  851. const u32 *hws;
  852. int i;
  853. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  854. hws = ring->status_page.page_addr;
  855. if (hws == NULL)
  856. return 0;
  857. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  858. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  859. i * 4,
  860. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  861. }
  862. return 0;
  863. }
  864. static ssize_t
  865. i915_error_state_write(struct file *filp,
  866. const char __user *ubuf,
  867. size_t cnt,
  868. loff_t *ppos)
  869. {
  870. struct i915_error_state_file_priv *error_priv = filp->private_data;
  871. struct drm_device *dev = error_priv->dev;
  872. int ret;
  873. DRM_DEBUG_DRIVER("Resetting error state\n");
  874. ret = mutex_lock_interruptible(&dev->struct_mutex);
  875. if (ret)
  876. return ret;
  877. i915_destroy_error_state(dev);
  878. mutex_unlock(&dev->struct_mutex);
  879. return cnt;
  880. }
  881. static int i915_error_state_open(struct inode *inode, struct file *file)
  882. {
  883. struct drm_device *dev = inode->i_private;
  884. struct i915_error_state_file_priv *error_priv;
  885. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  886. if (!error_priv)
  887. return -ENOMEM;
  888. error_priv->dev = dev;
  889. i915_error_state_get(dev, error_priv);
  890. file->private_data = error_priv;
  891. return 0;
  892. }
  893. static int i915_error_state_release(struct inode *inode, struct file *file)
  894. {
  895. struct i915_error_state_file_priv *error_priv = file->private_data;
  896. i915_error_state_put(error_priv);
  897. kfree(error_priv);
  898. return 0;
  899. }
  900. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  901. size_t count, loff_t *pos)
  902. {
  903. struct i915_error_state_file_priv *error_priv = file->private_data;
  904. struct drm_i915_error_state_buf error_str;
  905. loff_t tmp_pos = 0;
  906. ssize_t ret_count = 0;
  907. int ret;
  908. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  909. if (ret)
  910. return ret;
  911. ret = i915_error_state_to_str(&error_str, error_priv);
  912. if (ret)
  913. goto out;
  914. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  915. error_str.buf,
  916. error_str.bytes);
  917. if (ret_count < 0)
  918. ret = ret_count;
  919. else
  920. *pos = error_str.start + ret_count;
  921. out:
  922. i915_error_state_buf_release(&error_str);
  923. return ret ?: ret_count;
  924. }
  925. static const struct file_operations i915_error_state_fops = {
  926. .owner = THIS_MODULE,
  927. .open = i915_error_state_open,
  928. .read = i915_error_state_read,
  929. .write = i915_error_state_write,
  930. .llseek = default_llseek,
  931. .release = i915_error_state_release,
  932. };
  933. static int
  934. i915_next_seqno_get(void *data, u64 *val)
  935. {
  936. struct drm_device *dev = data;
  937. struct drm_i915_private *dev_priv = dev->dev_private;
  938. int ret;
  939. ret = mutex_lock_interruptible(&dev->struct_mutex);
  940. if (ret)
  941. return ret;
  942. *val = dev_priv->next_seqno;
  943. mutex_unlock(&dev->struct_mutex);
  944. return 0;
  945. }
  946. static int
  947. i915_next_seqno_set(void *data, u64 val)
  948. {
  949. struct drm_device *dev = data;
  950. int ret;
  951. ret = mutex_lock_interruptible(&dev->struct_mutex);
  952. if (ret)
  953. return ret;
  954. ret = i915_gem_set_seqno(dev, val);
  955. mutex_unlock(&dev->struct_mutex);
  956. return ret;
  957. }
  958. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  959. i915_next_seqno_get, i915_next_seqno_set,
  960. "0x%llx\n");
  961. static int i915_frequency_info(struct seq_file *m, void *unused)
  962. {
  963. struct drm_info_node *node = m->private;
  964. struct drm_device *dev = node->minor->dev;
  965. struct drm_i915_private *dev_priv = dev->dev_private;
  966. int ret = 0;
  967. intel_runtime_pm_get(dev_priv);
  968. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  969. if (IS_GEN5(dev)) {
  970. u16 rgvswctl = I915_READ16(MEMSWCTL);
  971. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  972. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  973. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  974. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  975. MEMSTAT_VID_SHIFT);
  976. seq_printf(m, "Current P-state: %d\n",
  977. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  978. } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
  979. IS_BROADWELL(dev) || IS_GEN9(dev)) {
  980. u32 rp_state_limits;
  981. u32 gt_perf_status;
  982. u32 rp_state_cap;
  983. u32 rpmodectl, rpinclimit, rpdeclimit;
  984. u32 rpstat, cagf, reqf;
  985. u32 rpupei, rpcurup, rpprevup;
  986. u32 rpdownei, rpcurdown, rpprevdown;
  987. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  988. int max_freq;
  989. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  990. if (IS_BROXTON(dev)) {
  991. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  992. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  993. } else {
  994. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  995. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  996. }
  997. /* RPSTAT1 is in the GT power well */
  998. ret = mutex_lock_interruptible(&dev->struct_mutex);
  999. if (ret)
  1000. goto out;
  1001. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1002. reqf = I915_READ(GEN6_RPNSWREQ);
  1003. if (IS_GEN9(dev))
  1004. reqf >>= 23;
  1005. else {
  1006. reqf &= ~GEN6_TURBO_DISABLE;
  1007. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1008. reqf >>= 24;
  1009. else
  1010. reqf >>= 25;
  1011. }
  1012. reqf = intel_gpu_freq(dev_priv, reqf);
  1013. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  1014. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  1015. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  1016. rpstat = I915_READ(GEN6_RPSTAT1);
  1017. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  1018. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  1019. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  1020. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  1021. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  1022. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  1023. if (IS_GEN9(dev))
  1024. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1025. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1026. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1027. else
  1028. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1029. cagf = intel_gpu_freq(dev_priv, cagf);
  1030. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1031. mutex_unlock(&dev->struct_mutex);
  1032. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1033. pm_ier = I915_READ(GEN6_PMIER);
  1034. pm_imr = I915_READ(GEN6_PMIMR);
  1035. pm_isr = I915_READ(GEN6_PMISR);
  1036. pm_iir = I915_READ(GEN6_PMIIR);
  1037. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1038. } else {
  1039. pm_ier = I915_READ(GEN8_GT_IER(2));
  1040. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1041. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1042. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1043. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1044. }
  1045. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1046. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1047. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1048. seq_printf(m, "Render p-state ratio: %d\n",
  1049. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  1050. seq_printf(m, "Render p-state VID: %d\n",
  1051. gt_perf_status & 0xff);
  1052. seq_printf(m, "Render p-state limit: %d\n",
  1053. rp_state_limits & 0xff);
  1054. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1055. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1056. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1057. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1058. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1059. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1060. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  1061. GEN6_CURICONT_MASK);
  1062. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  1063. GEN6_CURBSYTAVG_MASK);
  1064. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  1065. GEN6_CURBSYTAVG_MASK);
  1066. seq_printf(m, "Up threshold: %d%%\n",
  1067. dev_priv->rps.up_threshold);
  1068. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  1069. GEN6_CURIAVG_MASK);
  1070. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  1071. GEN6_CURBSYTAVG_MASK);
  1072. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  1073. GEN6_CURBSYTAVG_MASK);
  1074. seq_printf(m, "Down threshold: %d%%\n",
  1075. dev_priv->rps.down_threshold);
  1076. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
  1077. rp_state_cap >> 16) & 0xff;
  1078. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1079. GEN9_FREQ_SCALER : 1);
  1080. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1081. intel_gpu_freq(dev_priv, max_freq));
  1082. max_freq = (rp_state_cap & 0xff00) >> 8;
  1083. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1084. GEN9_FREQ_SCALER : 1);
  1085. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1086. intel_gpu_freq(dev_priv, max_freq));
  1087. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
  1088. rp_state_cap >> 0) & 0xff;
  1089. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1090. GEN9_FREQ_SCALER : 1);
  1091. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1092. intel_gpu_freq(dev_priv, max_freq));
  1093. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1094. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1095. seq_printf(m, "Current freq: %d MHz\n",
  1096. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1097. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1098. seq_printf(m, "Idle freq: %d MHz\n",
  1099. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1100. seq_printf(m, "Min freq: %d MHz\n",
  1101. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1102. seq_printf(m, "Max freq: %d MHz\n",
  1103. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1104. seq_printf(m,
  1105. "efficient (RPe) frequency: %d MHz\n",
  1106. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1107. } else if (IS_VALLEYVIEW(dev)) {
  1108. u32 freq_sts;
  1109. mutex_lock(&dev_priv->rps.hw_lock);
  1110. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  1111. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  1112. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  1113. seq_printf(m, "actual GPU freq: %d MHz\n",
  1114. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  1115. seq_printf(m, "current GPU freq: %d MHz\n",
  1116. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1117. seq_printf(m, "max GPU freq: %d MHz\n",
  1118. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1119. seq_printf(m, "min GPU freq: %d MHz\n",
  1120. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1121. seq_printf(m, "idle GPU freq: %d MHz\n",
  1122. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1123. seq_printf(m,
  1124. "efficient (RPe) frequency: %d MHz\n",
  1125. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1126. mutex_unlock(&dev_priv->rps.hw_lock);
  1127. } else {
  1128. seq_puts(m, "no P-state info available\n");
  1129. }
  1130. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1131. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1132. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1133. out:
  1134. intel_runtime_pm_put(dev_priv);
  1135. return ret;
  1136. }
  1137. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1138. {
  1139. struct drm_info_node *node = m->private;
  1140. struct drm_device *dev = node->minor->dev;
  1141. struct drm_i915_private *dev_priv = dev->dev_private;
  1142. struct intel_engine_cs *ring;
  1143. u64 acthd[I915_NUM_RINGS];
  1144. u32 seqno[I915_NUM_RINGS];
  1145. int i;
  1146. if (!i915.enable_hangcheck) {
  1147. seq_printf(m, "Hangcheck disabled\n");
  1148. return 0;
  1149. }
  1150. intel_runtime_pm_get(dev_priv);
  1151. for_each_ring(ring, dev_priv, i) {
  1152. seqno[i] = ring->get_seqno(ring, false);
  1153. acthd[i] = intel_ring_get_active_head(ring);
  1154. }
  1155. intel_runtime_pm_put(dev_priv);
  1156. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1157. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1158. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1159. jiffies));
  1160. } else
  1161. seq_printf(m, "Hangcheck inactive\n");
  1162. for_each_ring(ring, dev_priv, i) {
  1163. seq_printf(m, "%s:\n", ring->name);
  1164. seq_printf(m, "\tseqno = %x [current %x]\n",
  1165. ring->hangcheck.seqno, seqno[i]);
  1166. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1167. (long long)ring->hangcheck.acthd,
  1168. (long long)acthd[i]);
  1169. seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
  1170. (long long)ring->hangcheck.max_acthd);
  1171. seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
  1172. seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
  1173. }
  1174. return 0;
  1175. }
  1176. static int ironlake_drpc_info(struct seq_file *m)
  1177. {
  1178. struct drm_info_node *node = m->private;
  1179. struct drm_device *dev = node->minor->dev;
  1180. struct drm_i915_private *dev_priv = dev->dev_private;
  1181. u32 rgvmodectl, rstdbyctl;
  1182. u16 crstandvid;
  1183. int ret;
  1184. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1185. if (ret)
  1186. return ret;
  1187. intel_runtime_pm_get(dev_priv);
  1188. rgvmodectl = I915_READ(MEMMODECTL);
  1189. rstdbyctl = I915_READ(RSTDBYCTL);
  1190. crstandvid = I915_READ16(CRSTANDVID);
  1191. intel_runtime_pm_put(dev_priv);
  1192. mutex_unlock(&dev->struct_mutex);
  1193. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1194. seq_printf(m, "Boost freq: %d\n",
  1195. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1196. MEMMODE_BOOST_FREQ_SHIFT);
  1197. seq_printf(m, "HW control enabled: %s\n",
  1198. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1199. seq_printf(m, "SW control enabled: %s\n",
  1200. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1201. seq_printf(m, "Gated voltage change: %s\n",
  1202. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1203. seq_printf(m, "Starting frequency: P%d\n",
  1204. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1205. seq_printf(m, "Max P-state: P%d\n",
  1206. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1207. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1208. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1209. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1210. seq_printf(m, "Render standby enabled: %s\n",
  1211. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1212. seq_puts(m, "Current RS state: ");
  1213. switch (rstdbyctl & RSX_STATUS_MASK) {
  1214. case RSX_STATUS_ON:
  1215. seq_puts(m, "on\n");
  1216. break;
  1217. case RSX_STATUS_RC1:
  1218. seq_puts(m, "RC1\n");
  1219. break;
  1220. case RSX_STATUS_RC1E:
  1221. seq_puts(m, "RC1E\n");
  1222. break;
  1223. case RSX_STATUS_RS1:
  1224. seq_puts(m, "RS1\n");
  1225. break;
  1226. case RSX_STATUS_RS2:
  1227. seq_puts(m, "RS2 (RC6)\n");
  1228. break;
  1229. case RSX_STATUS_RS3:
  1230. seq_puts(m, "RC3 (RC6+)\n");
  1231. break;
  1232. default:
  1233. seq_puts(m, "unknown\n");
  1234. break;
  1235. }
  1236. return 0;
  1237. }
  1238. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1239. {
  1240. struct drm_info_node *node = m->private;
  1241. struct drm_device *dev = node->minor->dev;
  1242. struct drm_i915_private *dev_priv = dev->dev_private;
  1243. struct intel_uncore_forcewake_domain *fw_domain;
  1244. int i;
  1245. spin_lock_irq(&dev_priv->uncore.lock);
  1246. for_each_fw_domain(fw_domain, dev_priv, i) {
  1247. seq_printf(m, "%s.wake_count = %u\n",
  1248. intel_uncore_forcewake_domain_to_str(i),
  1249. fw_domain->wake_count);
  1250. }
  1251. spin_unlock_irq(&dev_priv->uncore.lock);
  1252. return 0;
  1253. }
  1254. static int vlv_drpc_info(struct seq_file *m)
  1255. {
  1256. struct drm_info_node *node = m->private;
  1257. struct drm_device *dev = node->minor->dev;
  1258. struct drm_i915_private *dev_priv = dev->dev_private;
  1259. u32 rpmodectl1, rcctl1, pw_status;
  1260. intel_runtime_pm_get(dev_priv);
  1261. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1262. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1263. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1264. intel_runtime_pm_put(dev_priv);
  1265. seq_printf(m, "Video Turbo Mode: %s\n",
  1266. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1267. seq_printf(m, "Turbo enabled: %s\n",
  1268. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1269. seq_printf(m, "HW control enabled: %s\n",
  1270. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1271. seq_printf(m, "SW control enabled: %s\n",
  1272. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1273. GEN6_RP_MEDIA_SW_MODE));
  1274. seq_printf(m, "RC6 Enabled: %s\n",
  1275. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1276. GEN6_RC_CTL_EI_MODE(1))));
  1277. seq_printf(m, "Render Power Well: %s\n",
  1278. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1279. seq_printf(m, "Media Power Well: %s\n",
  1280. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1281. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1282. I915_READ(VLV_GT_RENDER_RC6));
  1283. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1284. I915_READ(VLV_GT_MEDIA_RC6));
  1285. return i915_forcewake_domains(m, NULL);
  1286. }
  1287. static int gen6_drpc_info(struct seq_file *m)
  1288. {
  1289. struct drm_info_node *node = m->private;
  1290. struct drm_device *dev = node->minor->dev;
  1291. struct drm_i915_private *dev_priv = dev->dev_private;
  1292. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1293. unsigned forcewake_count;
  1294. int count = 0, ret;
  1295. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1296. if (ret)
  1297. return ret;
  1298. intel_runtime_pm_get(dev_priv);
  1299. spin_lock_irq(&dev_priv->uncore.lock);
  1300. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1301. spin_unlock_irq(&dev_priv->uncore.lock);
  1302. if (forcewake_count) {
  1303. seq_puts(m, "RC information inaccurate because somebody "
  1304. "holds a forcewake reference \n");
  1305. } else {
  1306. /* NB: we cannot use forcewake, else we read the wrong values */
  1307. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1308. udelay(10);
  1309. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1310. }
  1311. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1312. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1313. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1314. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1315. mutex_unlock(&dev->struct_mutex);
  1316. mutex_lock(&dev_priv->rps.hw_lock);
  1317. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1318. mutex_unlock(&dev_priv->rps.hw_lock);
  1319. intel_runtime_pm_put(dev_priv);
  1320. seq_printf(m, "Video Turbo Mode: %s\n",
  1321. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1322. seq_printf(m, "HW control enabled: %s\n",
  1323. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1324. seq_printf(m, "SW control enabled: %s\n",
  1325. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1326. GEN6_RP_MEDIA_SW_MODE));
  1327. seq_printf(m, "RC1e Enabled: %s\n",
  1328. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1329. seq_printf(m, "RC6 Enabled: %s\n",
  1330. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1331. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1332. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1333. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1334. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1335. seq_puts(m, "Current RC state: ");
  1336. switch (gt_core_status & GEN6_RCn_MASK) {
  1337. case GEN6_RC0:
  1338. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1339. seq_puts(m, "Core Power Down\n");
  1340. else
  1341. seq_puts(m, "on\n");
  1342. break;
  1343. case GEN6_RC3:
  1344. seq_puts(m, "RC3\n");
  1345. break;
  1346. case GEN6_RC6:
  1347. seq_puts(m, "RC6\n");
  1348. break;
  1349. case GEN6_RC7:
  1350. seq_puts(m, "RC7\n");
  1351. break;
  1352. default:
  1353. seq_puts(m, "Unknown\n");
  1354. break;
  1355. }
  1356. seq_printf(m, "Core Power Down: %s\n",
  1357. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1358. /* Not exactly sure what this is */
  1359. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1360. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1361. seq_printf(m, "RC6 residency since boot: %u\n",
  1362. I915_READ(GEN6_GT_GFX_RC6));
  1363. seq_printf(m, "RC6+ residency since boot: %u\n",
  1364. I915_READ(GEN6_GT_GFX_RC6p));
  1365. seq_printf(m, "RC6++ residency since boot: %u\n",
  1366. I915_READ(GEN6_GT_GFX_RC6pp));
  1367. seq_printf(m, "RC6 voltage: %dmV\n",
  1368. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1369. seq_printf(m, "RC6+ voltage: %dmV\n",
  1370. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1371. seq_printf(m, "RC6++ voltage: %dmV\n",
  1372. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1373. return 0;
  1374. }
  1375. static int i915_drpc_info(struct seq_file *m, void *unused)
  1376. {
  1377. struct drm_info_node *node = m->private;
  1378. struct drm_device *dev = node->minor->dev;
  1379. if (IS_VALLEYVIEW(dev))
  1380. return vlv_drpc_info(m);
  1381. else if (INTEL_INFO(dev)->gen >= 6)
  1382. return gen6_drpc_info(m);
  1383. else
  1384. return ironlake_drpc_info(m);
  1385. }
  1386. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1387. {
  1388. struct drm_info_node *node = m->private;
  1389. struct drm_device *dev = node->minor->dev;
  1390. struct drm_i915_private *dev_priv = dev->dev_private;
  1391. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1392. dev_priv->fb_tracking.busy_bits);
  1393. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1394. dev_priv->fb_tracking.flip_bits);
  1395. return 0;
  1396. }
  1397. static int i915_fbc_status(struct seq_file *m, void *unused)
  1398. {
  1399. struct drm_info_node *node = m->private;
  1400. struct drm_device *dev = node->minor->dev;
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. if (!HAS_FBC(dev)) {
  1403. seq_puts(m, "FBC unsupported on this chipset\n");
  1404. return 0;
  1405. }
  1406. intel_runtime_pm_get(dev_priv);
  1407. mutex_lock(&dev_priv->fbc.lock);
  1408. if (intel_fbc_enabled(dev_priv))
  1409. seq_puts(m, "FBC enabled\n");
  1410. else
  1411. seq_printf(m, "FBC disabled: %s\n",
  1412. dev_priv->fbc.no_fbc_reason);
  1413. if (INTEL_INFO(dev_priv)->gen >= 7)
  1414. seq_printf(m, "Compressing: %s\n",
  1415. yesno(I915_READ(FBC_STATUS2) &
  1416. FBC_COMPRESSION_MASK));
  1417. mutex_unlock(&dev_priv->fbc.lock);
  1418. intel_runtime_pm_put(dev_priv);
  1419. return 0;
  1420. }
  1421. static int i915_fbc_fc_get(void *data, u64 *val)
  1422. {
  1423. struct drm_device *dev = data;
  1424. struct drm_i915_private *dev_priv = dev->dev_private;
  1425. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1426. return -ENODEV;
  1427. *val = dev_priv->fbc.false_color;
  1428. return 0;
  1429. }
  1430. static int i915_fbc_fc_set(void *data, u64 val)
  1431. {
  1432. struct drm_device *dev = data;
  1433. struct drm_i915_private *dev_priv = dev->dev_private;
  1434. u32 reg;
  1435. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1436. return -ENODEV;
  1437. mutex_lock(&dev_priv->fbc.lock);
  1438. reg = I915_READ(ILK_DPFC_CONTROL);
  1439. dev_priv->fbc.false_color = val;
  1440. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1441. (reg | FBC_CTL_FALSE_COLOR) :
  1442. (reg & ~FBC_CTL_FALSE_COLOR));
  1443. mutex_unlock(&dev_priv->fbc.lock);
  1444. return 0;
  1445. }
  1446. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1447. i915_fbc_fc_get, i915_fbc_fc_set,
  1448. "%llu\n");
  1449. static int i915_ips_status(struct seq_file *m, void *unused)
  1450. {
  1451. struct drm_info_node *node = m->private;
  1452. struct drm_device *dev = node->minor->dev;
  1453. struct drm_i915_private *dev_priv = dev->dev_private;
  1454. if (!HAS_IPS(dev)) {
  1455. seq_puts(m, "not supported\n");
  1456. return 0;
  1457. }
  1458. intel_runtime_pm_get(dev_priv);
  1459. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1460. yesno(i915.enable_ips));
  1461. if (INTEL_INFO(dev)->gen >= 8) {
  1462. seq_puts(m, "Currently: unknown\n");
  1463. } else {
  1464. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1465. seq_puts(m, "Currently: enabled\n");
  1466. else
  1467. seq_puts(m, "Currently: disabled\n");
  1468. }
  1469. intel_runtime_pm_put(dev_priv);
  1470. return 0;
  1471. }
  1472. static int i915_sr_status(struct seq_file *m, void *unused)
  1473. {
  1474. struct drm_info_node *node = m->private;
  1475. struct drm_device *dev = node->minor->dev;
  1476. struct drm_i915_private *dev_priv = dev->dev_private;
  1477. bool sr_enabled = false;
  1478. intel_runtime_pm_get(dev_priv);
  1479. if (HAS_PCH_SPLIT(dev))
  1480. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1481. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1482. IS_I945G(dev) || IS_I945GM(dev))
  1483. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1484. else if (IS_I915GM(dev))
  1485. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1486. else if (IS_PINEVIEW(dev))
  1487. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1488. else if (IS_VALLEYVIEW(dev))
  1489. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1490. intel_runtime_pm_put(dev_priv);
  1491. seq_printf(m, "self-refresh: %s\n",
  1492. sr_enabled ? "enabled" : "disabled");
  1493. return 0;
  1494. }
  1495. static int i915_emon_status(struct seq_file *m, void *unused)
  1496. {
  1497. struct drm_info_node *node = m->private;
  1498. struct drm_device *dev = node->minor->dev;
  1499. struct drm_i915_private *dev_priv = dev->dev_private;
  1500. unsigned long temp, chipset, gfx;
  1501. int ret;
  1502. if (!IS_GEN5(dev))
  1503. return -ENODEV;
  1504. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1505. if (ret)
  1506. return ret;
  1507. temp = i915_mch_val(dev_priv);
  1508. chipset = i915_chipset_val(dev_priv);
  1509. gfx = i915_gfx_val(dev_priv);
  1510. mutex_unlock(&dev->struct_mutex);
  1511. seq_printf(m, "GMCH temp: %ld\n", temp);
  1512. seq_printf(m, "Chipset power: %ld\n", chipset);
  1513. seq_printf(m, "GFX power: %ld\n", gfx);
  1514. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1515. return 0;
  1516. }
  1517. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1518. {
  1519. struct drm_info_node *node = m->private;
  1520. struct drm_device *dev = node->minor->dev;
  1521. struct drm_i915_private *dev_priv = dev->dev_private;
  1522. int ret = 0;
  1523. int gpu_freq, ia_freq;
  1524. unsigned int max_gpu_freq, min_gpu_freq;
  1525. if (!HAS_CORE_RING_FREQ(dev)) {
  1526. seq_puts(m, "unsupported on this chipset\n");
  1527. return 0;
  1528. }
  1529. intel_runtime_pm_get(dev_priv);
  1530. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1531. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1532. if (ret)
  1533. goto out;
  1534. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  1535. /* Convert GT frequency to 50 HZ units */
  1536. min_gpu_freq =
  1537. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1538. max_gpu_freq =
  1539. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1540. } else {
  1541. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1542. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1543. }
  1544. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1545. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1546. ia_freq = gpu_freq;
  1547. sandybridge_pcode_read(dev_priv,
  1548. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1549. &ia_freq);
  1550. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1551. intel_gpu_freq(dev_priv, (gpu_freq *
  1552. (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1553. GEN9_FREQ_SCALER : 1))),
  1554. ((ia_freq >> 0) & 0xff) * 100,
  1555. ((ia_freq >> 8) & 0xff) * 100);
  1556. }
  1557. mutex_unlock(&dev_priv->rps.hw_lock);
  1558. out:
  1559. intel_runtime_pm_put(dev_priv);
  1560. return ret;
  1561. }
  1562. static int i915_opregion(struct seq_file *m, void *unused)
  1563. {
  1564. struct drm_info_node *node = m->private;
  1565. struct drm_device *dev = node->minor->dev;
  1566. struct drm_i915_private *dev_priv = dev->dev_private;
  1567. struct intel_opregion *opregion = &dev_priv->opregion;
  1568. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1569. int ret;
  1570. if (data == NULL)
  1571. return -ENOMEM;
  1572. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1573. if (ret)
  1574. goto out;
  1575. if (opregion->header) {
  1576. memcpy(data, opregion->header, OPREGION_SIZE);
  1577. seq_write(m, data, OPREGION_SIZE);
  1578. }
  1579. mutex_unlock(&dev->struct_mutex);
  1580. out:
  1581. kfree(data);
  1582. return 0;
  1583. }
  1584. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1585. {
  1586. struct drm_info_node *node = m->private;
  1587. struct drm_device *dev = node->minor->dev;
  1588. struct intel_fbdev *ifbdev = NULL;
  1589. struct intel_framebuffer *fb;
  1590. struct drm_framebuffer *drm_fb;
  1591. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1592. struct drm_i915_private *dev_priv = dev->dev_private;
  1593. ifbdev = dev_priv->fbdev;
  1594. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1595. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1596. fb->base.width,
  1597. fb->base.height,
  1598. fb->base.depth,
  1599. fb->base.bits_per_pixel,
  1600. fb->base.modifier[0],
  1601. atomic_read(&fb->base.refcount.refcount));
  1602. describe_obj(m, fb->obj);
  1603. seq_putc(m, '\n');
  1604. #endif
  1605. mutex_lock(&dev->mode_config.fb_lock);
  1606. drm_for_each_fb(drm_fb, dev) {
  1607. fb = to_intel_framebuffer(drm_fb);
  1608. if (ifbdev && &fb->base == ifbdev->helper.fb)
  1609. continue;
  1610. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1611. fb->base.width,
  1612. fb->base.height,
  1613. fb->base.depth,
  1614. fb->base.bits_per_pixel,
  1615. fb->base.modifier[0],
  1616. atomic_read(&fb->base.refcount.refcount));
  1617. describe_obj(m, fb->obj);
  1618. seq_putc(m, '\n');
  1619. }
  1620. mutex_unlock(&dev->mode_config.fb_lock);
  1621. return 0;
  1622. }
  1623. static void describe_ctx_ringbuf(struct seq_file *m,
  1624. struct intel_ringbuffer *ringbuf)
  1625. {
  1626. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1627. ringbuf->space, ringbuf->head, ringbuf->tail,
  1628. ringbuf->last_retired_head);
  1629. }
  1630. static int i915_context_status(struct seq_file *m, void *unused)
  1631. {
  1632. struct drm_info_node *node = m->private;
  1633. struct drm_device *dev = node->minor->dev;
  1634. struct drm_i915_private *dev_priv = dev->dev_private;
  1635. struct intel_engine_cs *ring;
  1636. struct intel_context *ctx;
  1637. int ret, i;
  1638. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1639. if (ret)
  1640. return ret;
  1641. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1642. if (!i915.enable_execlists &&
  1643. ctx->legacy_hw_ctx.rcs_state == NULL)
  1644. continue;
  1645. seq_puts(m, "HW context ");
  1646. describe_ctx(m, ctx);
  1647. for_each_ring(ring, dev_priv, i) {
  1648. if (ring->default_context == ctx)
  1649. seq_printf(m, "(default context %s) ",
  1650. ring->name);
  1651. }
  1652. if (i915.enable_execlists) {
  1653. seq_putc(m, '\n');
  1654. for_each_ring(ring, dev_priv, i) {
  1655. struct drm_i915_gem_object *ctx_obj =
  1656. ctx->engine[i].state;
  1657. struct intel_ringbuffer *ringbuf =
  1658. ctx->engine[i].ringbuf;
  1659. seq_printf(m, "%s: ", ring->name);
  1660. if (ctx_obj)
  1661. describe_obj(m, ctx_obj);
  1662. if (ringbuf)
  1663. describe_ctx_ringbuf(m, ringbuf);
  1664. seq_putc(m, '\n');
  1665. }
  1666. } else {
  1667. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1668. }
  1669. seq_putc(m, '\n');
  1670. }
  1671. mutex_unlock(&dev->struct_mutex);
  1672. return 0;
  1673. }
  1674. static void i915_dump_lrc_obj(struct seq_file *m,
  1675. struct intel_engine_cs *ring,
  1676. struct drm_i915_gem_object *ctx_obj)
  1677. {
  1678. struct page *page;
  1679. uint32_t *reg_state;
  1680. int j;
  1681. unsigned long ggtt_offset = 0;
  1682. if (ctx_obj == NULL) {
  1683. seq_printf(m, "Context on %s with no gem object\n",
  1684. ring->name);
  1685. return;
  1686. }
  1687. seq_printf(m, "CONTEXT: %s %u\n", ring->name,
  1688. intel_execlists_ctx_id(ctx_obj));
  1689. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1690. seq_puts(m, "\tNot bound in GGTT\n");
  1691. else
  1692. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1693. if (i915_gem_object_get_pages(ctx_obj)) {
  1694. seq_puts(m, "\tFailed to get pages for context object\n");
  1695. return;
  1696. }
  1697. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  1698. if (!WARN_ON(page == NULL)) {
  1699. reg_state = kmap_atomic(page);
  1700. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1701. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1702. ggtt_offset + 4096 + (j * 4),
  1703. reg_state[j], reg_state[j + 1],
  1704. reg_state[j + 2], reg_state[j + 3]);
  1705. }
  1706. kunmap_atomic(reg_state);
  1707. }
  1708. seq_putc(m, '\n');
  1709. }
  1710. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1711. {
  1712. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1713. struct drm_device *dev = node->minor->dev;
  1714. struct drm_i915_private *dev_priv = dev->dev_private;
  1715. struct intel_engine_cs *ring;
  1716. struct intel_context *ctx;
  1717. int ret, i;
  1718. if (!i915.enable_execlists) {
  1719. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1720. return 0;
  1721. }
  1722. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1723. if (ret)
  1724. return ret;
  1725. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1726. for_each_ring(ring, dev_priv, i) {
  1727. if (ring->default_context != ctx)
  1728. i915_dump_lrc_obj(m, ring,
  1729. ctx->engine[i].state);
  1730. }
  1731. }
  1732. mutex_unlock(&dev->struct_mutex);
  1733. return 0;
  1734. }
  1735. static int i915_execlists(struct seq_file *m, void *data)
  1736. {
  1737. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1738. struct drm_device *dev = node->minor->dev;
  1739. struct drm_i915_private *dev_priv = dev->dev_private;
  1740. struct intel_engine_cs *ring;
  1741. u32 status_pointer;
  1742. u8 read_pointer;
  1743. u8 write_pointer;
  1744. u32 status;
  1745. u32 ctx_id;
  1746. struct list_head *cursor;
  1747. int ring_id, i;
  1748. int ret;
  1749. if (!i915.enable_execlists) {
  1750. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1751. return 0;
  1752. }
  1753. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1754. if (ret)
  1755. return ret;
  1756. intel_runtime_pm_get(dev_priv);
  1757. for_each_ring(ring, dev_priv, ring_id) {
  1758. struct drm_i915_gem_request *head_req = NULL;
  1759. int count = 0;
  1760. unsigned long flags;
  1761. seq_printf(m, "%s\n", ring->name);
  1762. status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
  1763. ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
  1764. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1765. status, ctx_id);
  1766. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
  1767. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1768. read_pointer = ring->next_context_status_buffer;
  1769. write_pointer = status_pointer & 0x07;
  1770. if (read_pointer > write_pointer)
  1771. write_pointer += 6;
  1772. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1773. read_pointer, write_pointer);
  1774. for (i = 0; i < 6; i++) {
  1775. status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
  1776. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
  1777. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1778. i, status, ctx_id);
  1779. }
  1780. spin_lock_irqsave(&ring->execlist_lock, flags);
  1781. list_for_each(cursor, &ring->execlist_queue)
  1782. count++;
  1783. head_req = list_first_entry_or_null(&ring->execlist_queue,
  1784. struct drm_i915_gem_request, execlist_link);
  1785. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  1786. seq_printf(m, "\t%d requests in queue\n", count);
  1787. if (head_req) {
  1788. struct drm_i915_gem_object *ctx_obj;
  1789. ctx_obj = head_req->ctx->engine[ring_id].state;
  1790. seq_printf(m, "\tHead request id: %u\n",
  1791. intel_execlists_ctx_id(ctx_obj));
  1792. seq_printf(m, "\tHead request tail: %u\n",
  1793. head_req->tail);
  1794. }
  1795. seq_putc(m, '\n');
  1796. }
  1797. intel_runtime_pm_put(dev_priv);
  1798. mutex_unlock(&dev->struct_mutex);
  1799. return 0;
  1800. }
  1801. static const char *swizzle_string(unsigned swizzle)
  1802. {
  1803. switch (swizzle) {
  1804. case I915_BIT_6_SWIZZLE_NONE:
  1805. return "none";
  1806. case I915_BIT_6_SWIZZLE_9:
  1807. return "bit9";
  1808. case I915_BIT_6_SWIZZLE_9_10:
  1809. return "bit9/bit10";
  1810. case I915_BIT_6_SWIZZLE_9_11:
  1811. return "bit9/bit11";
  1812. case I915_BIT_6_SWIZZLE_9_10_11:
  1813. return "bit9/bit10/bit11";
  1814. case I915_BIT_6_SWIZZLE_9_17:
  1815. return "bit9/bit17";
  1816. case I915_BIT_6_SWIZZLE_9_10_17:
  1817. return "bit9/bit10/bit17";
  1818. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1819. return "unknown";
  1820. }
  1821. return "bug";
  1822. }
  1823. static int i915_swizzle_info(struct seq_file *m, void *data)
  1824. {
  1825. struct drm_info_node *node = m->private;
  1826. struct drm_device *dev = node->minor->dev;
  1827. struct drm_i915_private *dev_priv = dev->dev_private;
  1828. int ret;
  1829. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1830. if (ret)
  1831. return ret;
  1832. intel_runtime_pm_get(dev_priv);
  1833. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1834. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1835. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1836. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1837. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1838. seq_printf(m, "DDC = 0x%08x\n",
  1839. I915_READ(DCC));
  1840. seq_printf(m, "DDC2 = 0x%08x\n",
  1841. I915_READ(DCC2));
  1842. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1843. I915_READ16(C0DRB3));
  1844. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1845. I915_READ16(C1DRB3));
  1846. } else if (INTEL_INFO(dev)->gen >= 6) {
  1847. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1848. I915_READ(MAD_DIMM_C0));
  1849. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1850. I915_READ(MAD_DIMM_C1));
  1851. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1852. I915_READ(MAD_DIMM_C2));
  1853. seq_printf(m, "TILECTL = 0x%08x\n",
  1854. I915_READ(TILECTL));
  1855. if (INTEL_INFO(dev)->gen >= 8)
  1856. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1857. I915_READ(GAMTARBMODE));
  1858. else
  1859. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1860. I915_READ(ARB_MODE));
  1861. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1862. I915_READ(DISP_ARB_CTL));
  1863. }
  1864. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1865. seq_puts(m, "L-shaped memory detected\n");
  1866. intel_runtime_pm_put(dev_priv);
  1867. mutex_unlock(&dev->struct_mutex);
  1868. return 0;
  1869. }
  1870. static int per_file_ctx(int id, void *ptr, void *data)
  1871. {
  1872. struct intel_context *ctx = ptr;
  1873. struct seq_file *m = data;
  1874. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1875. if (!ppgtt) {
  1876. seq_printf(m, " no ppgtt for context %d\n",
  1877. ctx->user_handle);
  1878. return 0;
  1879. }
  1880. if (i915_gem_context_is_default(ctx))
  1881. seq_puts(m, " default context:\n");
  1882. else
  1883. seq_printf(m, " context %d:\n", ctx->user_handle);
  1884. ppgtt->debug_dump(ppgtt, m);
  1885. return 0;
  1886. }
  1887. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1888. {
  1889. struct drm_i915_private *dev_priv = dev->dev_private;
  1890. struct intel_engine_cs *ring;
  1891. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1892. int unused, i;
  1893. if (!ppgtt)
  1894. return;
  1895. for_each_ring(ring, dev_priv, unused) {
  1896. seq_printf(m, "%s\n", ring->name);
  1897. for (i = 0; i < 4; i++) {
  1898. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
  1899. pdp <<= 32;
  1900. pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
  1901. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1902. }
  1903. }
  1904. }
  1905. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1906. {
  1907. struct drm_i915_private *dev_priv = dev->dev_private;
  1908. struct intel_engine_cs *ring;
  1909. int i;
  1910. if (INTEL_INFO(dev)->gen == 6)
  1911. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1912. for_each_ring(ring, dev_priv, i) {
  1913. seq_printf(m, "%s\n", ring->name);
  1914. if (INTEL_INFO(dev)->gen == 7)
  1915. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1916. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1917. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1918. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1919. }
  1920. if (dev_priv->mm.aliasing_ppgtt) {
  1921. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1922. seq_puts(m, "aliasing PPGTT:\n");
  1923. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1924. ppgtt->debug_dump(ppgtt, m);
  1925. }
  1926. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1927. }
  1928. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1929. {
  1930. struct drm_info_node *node = m->private;
  1931. struct drm_device *dev = node->minor->dev;
  1932. struct drm_i915_private *dev_priv = dev->dev_private;
  1933. struct drm_file *file;
  1934. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1935. if (ret)
  1936. return ret;
  1937. intel_runtime_pm_get(dev_priv);
  1938. if (INTEL_INFO(dev)->gen >= 8)
  1939. gen8_ppgtt_info(m, dev);
  1940. else if (INTEL_INFO(dev)->gen >= 6)
  1941. gen6_ppgtt_info(m, dev);
  1942. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1943. struct drm_i915_file_private *file_priv = file->driver_priv;
  1944. struct task_struct *task;
  1945. task = get_pid_task(file->pid, PIDTYPE_PID);
  1946. if (!task) {
  1947. ret = -ESRCH;
  1948. goto out_put;
  1949. }
  1950. seq_printf(m, "\nproc: %s\n", task->comm);
  1951. put_task_struct(task);
  1952. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1953. (void *)(unsigned long)m);
  1954. }
  1955. out_put:
  1956. intel_runtime_pm_put(dev_priv);
  1957. mutex_unlock(&dev->struct_mutex);
  1958. return ret;
  1959. }
  1960. static int count_irq_waiters(struct drm_i915_private *i915)
  1961. {
  1962. struct intel_engine_cs *ring;
  1963. int count = 0;
  1964. int i;
  1965. for_each_ring(ring, i915, i)
  1966. count += ring->irq_refcount;
  1967. return count;
  1968. }
  1969. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1970. {
  1971. struct drm_info_node *node = m->private;
  1972. struct drm_device *dev = node->minor->dev;
  1973. struct drm_i915_private *dev_priv = dev->dev_private;
  1974. struct drm_file *file;
  1975. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1976. seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
  1977. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1978. seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1979. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  1980. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1981. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1982. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1983. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1984. spin_lock(&dev_priv->rps.client_lock);
  1985. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1986. struct drm_i915_file_private *file_priv = file->driver_priv;
  1987. struct task_struct *task;
  1988. rcu_read_lock();
  1989. task = pid_task(file->pid, PIDTYPE_PID);
  1990. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1991. task ? task->comm : "<unknown>",
  1992. task ? task->pid : -1,
  1993. file_priv->rps.boosts,
  1994. list_empty(&file_priv->rps.link) ? "" : ", active");
  1995. rcu_read_unlock();
  1996. }
  1997. seq_printf(m, "Semaphore boosts: %d%s\n",
  1998. dev_priv->rps.semaphores.boosts,
  1999. list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
  2000. seq_printf(m, "MMIO flip boosts: %d%s\n",
  2001. dev_priv->rps.mmioflips.boosts,
  2002. list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
  2003. seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
  2004. spin_unlock(&dev_priv->rps.client_lock);
  2005. return 0;
  2006. }
  2007. static int i915_llc(struct seq_file *m, void *data)
  2008. {
  2009. struct drm_info_node *node = m->private;
  2010. struct drm_device *dev = node->minor->dev;
  2011. struct drm_i915_private *dev_priv = dev->dev_private;
  2012. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  2013. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  2014. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  2015. return 0;
  2016. }
  2017. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2018. {
  2019. struct drm_info_node *node = m->private;
  2020. struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
  2021. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  2022. u32 tmp, i;
  2023. if (!HAS_GUC_UCODE(dev_priv->dev))
  2024. return 0;
  2025. seq_printf(m, "GuC firmware status:\n");
  2026. seq_printf(m, "\tpath: %s\n",
  2027. guc_fw->guc_fw_path);
  2028. seq_printf(m, "\tfetch: %s\n",
  2029. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  2030. seq_printf(m, "\tload: %s\n",
  2031. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  2032. seq_printf(m, "\tversion wanted: %d.%d\n",
  2033. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  2034. seq_printf(m, "\tversion found: %d.%d\n",
  2035. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  2036. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2037. guc_fw->header_offset, guc_fw->header_size);
  2038. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2039. guc_fw->ucode_offset, guc_fw->ucode_size);
  2040. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2041. guc_fw->rsa_offset, guc_fw->rsa_size);
  2042. tmp = I915_READ(GUC_STATUS);
  2043. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2044. seq_printf(m, "\tBootrom status = 0x%x\n",
  2045. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2046. seq_printf(m, "\tuKernel status = 0x%x\n",
  2047. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2048. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2049. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2050. seq_puts(m, "\nScratch registers:\n");
  2051. for (i = 0; i < 16; i++)
  2052. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2053. return 0;
  2054. }
  2055. static void i915_guc_client_info(struct seq_file *m,
  2056. struct drm_i915_private *dev_priv,
  2057. struct i915_guc_client *client)
  2058. {
  2059. struct intel_engine_cs *ring;
  2060. uint64_t tot = 0;
  2061. uint32_t i;
  2062. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2063. client->priority, client->ctx_index, client->proc_desc_offset);
  2064. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2065. client->doorbell_id, client->doorbell_offset, client->cookie);
  2066. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2067. client->wq_size, client->wq_offset, client->wq_tail);
  2068. seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
  2069. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2070. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2071. for_each_ring(ring, dev_priv, i) {
  2072. seq_printf(m, "\tSubmissions: %llu %s\n",
  2073. client->submissions[i],
  2074. ring->name);
  2075. tot += client->submissions[i];
  2076. }
  2077. seq_printf(m, "\tTotal: %llu\n", tot);
  2078. }
  2079. static int i915_guc_info(struct seq_file *m, void *data)
  2080. {
  2081. struct drm_info_node *node = m->private;
  2082. struct drm_device *dev = node->minor->dev;
  2083. struct drm_i915_private *dev_priv = dev->dev_private;
  2084. struct intel_guc guc;
  2085. struct i915_guc_client client = {};
  2086. struct intel_engine_cs *ring;
  2087. enum intel_ring_id i;
  2088. u64 total = 0;
  2089. if (!HAS_GUC_SCHED(dev_priv->dev))
  2090. return 0;
  2091. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2092. spin_lock(&dev_priv->guc.host2guc_lock);
  2093. guc = dev_priv->guc;
  2094. if (guc.execbuf_client) {
  2095. spin_lock(&guc.execbuf_client->wq_lock);
  2096. client = *guc.execbuf_client;
  2097. spin_unlock(&guc.execbuf_client->wq_lock);
  2098. }
  2099. spin_unlock(&dev_priv->guc.host2guc_lock);
  2100. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2101. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2102. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2103. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2104. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2105. seq_printf(m, "\nGuC submissions:\n");
  2106. for_each_ring(ring, dev_priv, i) {
  2107. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
  2108. ring->name, guc.submissions[i],
  2109. guc.last_seqno[i], guc.last_seqno[i]);
  2110. total += guc.submissions[i];
  2111. }
  2112. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2113. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2114. i915_guc_client_info(m, dev_priv, &client);
  2115. /* Add more as required ... */
  2116. return 0;
  2117. }
  2118. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2119. {
  2120. struct drm_info_node *node = m->private;
  2121. struct drm_device *dev = node->minor->dev;
  2122. struct drm_i915_private *dev_priv = dev->dev_private;
  2123. struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
  2124. u32 *log;
  2125. int i = 0, pg;
  2126. if (!log_obj)
  2127. return 0;
  2128. for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
  2129. log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
  2130. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2131. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2132. *(log + i), *(log + i + 1),
  2133. *(log + i + 2), *(log + i + 3));
  2134. kunmap_atomic(log);
  2135. }
  2136. seq_putc(m, '\n');
  2137. return 0;
  2138. }
  2139. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2140. {
  2141. struct drm_info_node *node = m->private;
  2142. struct drm_device *dev = node->minor->dev;
  2143. struct drm_i915_private *dev_priv = dev->dev_private;
  2144. u32 psrperf = 0;
  2145. u32 stat[3];
  2146. enum pipe pipe;
  2147. bool enabled = false;
  2148. if (!HAS_PSR(dev)) {
  2149. seq_puts(m, "PSR not supported\n");
  2150. return 0;
  2151. }
  2152. intel_runtime_pm_get(dev_priv);
  2153. mutex_lock(&dev_priv->psr.lock);
  2154. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2155. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2156. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2157. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2158. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2159. dev_priv->psr.busy_frontbuffer_bits);
  2160. seq_printf(m, "Re-enable work scheduled: %s\n",
  2161. yesno(work_busy(&dev_priv->psr.work.work)));
  2162. if (HAS_DDI(dev))
  2163. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2164. else {
  2165. for_each_pipe(dev_priv, pipe) {
  2166. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2167. VLV_EDP_PSR_CURR_STATE_MASK;
  2168. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2169. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2170. enabled = true;
  2171. }
  2172. }
  2173. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2174. if (!HAS_DDI(dev))
  2175. for_each_pipe(dev_priv, pipe) {
  2176. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2177. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2178. seq_printf(m, " pipe %c", pipe_name(pipe));
  2179. }
  2180. seq_puts(m, "\n");
  2181. /* CHV PSR has no kind of performance counter */
  2182. if (HAS_DDI(dev)) {
  2183. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2184. EDP_PSR_PERF_CNT_MASK;
  2185. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2186. }
  2187. mutex_unlock(&dev_priv->psr.lock);
  2188. intel_runtime_pm_put(dev_priv);
  2189. return 0;
  2190. }
  2191. static int i915_sink_crc(struct seq_file *m, void *data)
  2192. {
  2193. struct drm_info_node *node = m->private;
  2194. struct drm_device *dev = node->minor->dev;
  2195. struct intel_encoder *encoder;
  2196. struct intel_connector *connector;
  2197. struct intel_dp *intel_dp = NULL;
  2198. int ret;
  2199. u8 crc[6];
  2200. drm_modeset_lock_all(dev);
  2201. for_each_intel_connector(dev, connector) {
  2202. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  2203. continue;
  2204. if (!connector->base.encoder)
  2205. continue;
  2206. encoder = to_intel_encoder(connector->base.encoder);
  2207. if (encoder->type != INTEL_OUTPUT_EDP)
  2208. continue;
  2209. intel_dp = enc_to_intel_dp(&encoder->base);
  2210. ret = intel_dp_sink_crc(intel_dp, crc);
  2211. if (ret)
  2212. goto out;
  2213. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2214. crc[0], crc[1], crc[2],
  2215. crc[3], crc[4], crc[5]);
  2216. goto out;
  2217. }
  2218. ret = -ENODEV;
  2219. out:
  2220. drm_modeset_unlock_all(dev);
  2221. return ret;
  2222. }
  2223. static int i915_energy_uJ(struct seq_file *m, void *data)
  2224. {
  2225. struct drm_info_node *node = m->private;
  2226. struct drm_device *dev = node->minor->dev;
  2227. struct drm_i915_private *dev_priv = dev->dev_private;
  2228. u64 power;
  2229. u32 units;
  2230. if (INTEL_INFO(dev)->gen < 6)
  2231. return -ENODEV;
  2232. intel_runtime_pm_get(dev_priv);
  2233. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2234. power = (power & 0x1f00) >> 8;
  2235. units = 1000000 / (1 << power); /* convert to uJ */
  2236. power = I915_READ(MCH_SECP_NRG_STTS);
  2237. power *= units;
  2238. intel_runtime_pm_put(dev_priv);
  2239. seq_printf(m, "%llu", (long long unsigned)power);
  2240. return 0;
  2241. }
  2242. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2243. {
  2244. struct drm_info_node *node = m->private;
  2245. struct drm_device *dev = node->minor->dev;
  2246. struct drm_i915_private *dev_priv = dev->dev_private;
  2247. if (!HAS_RUNTIME_PM(dev)) {
  2248. seq_puts(m, "not supported\n");
  2249. return 0;
  2250. }
  2251. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  2252. seq_printf(m, "IRQs disabled: %s\n",
  2253. yesno(!intel_irqs_enabled(dev_priv)));
  2254. #ifdef CONFIG_PM
  2255. seq_printf(m, "Usage count: %d\n",
  2256. atomic_read(&dev->dev->power.usage_count));
  2257. #else
  2258. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2259. #endif
  2260. return 0;
  2261. }
  2262. static const char *power_domain_str(enum intel_display_power_domain domain)
  2263. {
  2264. switch (domain) {
  2265. case POWER_DOMAIN_PIPE_A:
  2266. return "PIPE_A";
  2267. case POWER_DOMAIN_PIPE_B:
  2268. return "PIPE_B";
  2269. case POWER_DOMAIN_PIPE_C:
  2270. return "PIPE_C";
  2271. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  2272. return "PIPE_A_PANEL_FITTER";
  2273. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  2274. return "PIPE_B_PANEL_FITTER";
  2275. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  2276. return "PIPE_C_PANEL_FITTER";
  2277. case POWER_DOMAIN_TRANSCODER_A:
  2278. return "TRANSCODER_A";
  2279. case POWER_DOMAIN_TRANSCODER_B:
  2280. return "TRANSCODER_B";
  2281. case POWER_DOMAIN_TRANSCODER_C:
  2282. return "TRANSCODER_C";
  2283. case POWER_DOMAIN_TRANSCODER_EDP:
  2284. return "TRANSCODER_EDP";
  2285. case POWER_DOMAIN_PORT_DDI_A_LANES:
  2286. return "PORT_DDI_A_LANES";
  2287. case POWER_DOMAIN_PORT_DDI_B_LANES:
  2288. return "PORT_DDI_B_LANES";
  2289. case POWER_DOMAIN_PORT_DDI_C_LANES:
  2290. return "PORT_DDI_C_LANES";
  2291. case POWER_DOMAIN_PORT_DDI_D_LANES:
  2292. return "PORT_DDI_D_LANES";
  2293. case POWER_DOMAIN_PORT_DDI_E_LANES:
  2294. return "PORT_DDI_E_LANES";
  2295. case POWER_DOMAIN_PORT_DSI:
  2296. return "PORT_DSI";
  2297. case POWER_DOMAIN_PORT_CRT:
  2298. return "PORT_CRT";
  2299. case POWER_DOMAIN_PORT_OTHER:
  2300. return "PORT_OTHER";
  2301. case POWER_DOMAIN_VGA:
  2302. return "VGA";
  2303. case POWER_DOMAIN_AUDIO:
  2304. return "AUDIO";
  2305. case POWER_DOMAIN_PLLS:
  2306. return "PLLS";
  2307. case POWER_DOMAIN_AUX_A:
  2308. return "AUX_A";
  2309. case POWER_DOMAIN_AUX_B:
  2310. return "AUX_B";
  2311. case POWER_DOMAIN_AUX_C:
  2312. return "AUX_C";
  2313. case POWER_DOMAIN_AUX_D:
  2314. return "AUX_D";
  2315. case POWER_DOMAIN_GMBUS:
  2316. return "GMBUS";
  2317. case POWER_DOMAIN_MODESET:
  2318. return "MODESET";
  2319. case POWER_DOMAIN_INIT:
  2320. return "INIT";
  2321. default:
  2322. MISSING_CASE(domain);
  2323. return "?";
  2324. }
  2325. }
  2326. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2327. {
  2328. struct drm_info_node *node = m->private;
  2329. struct drm_device *dev = node->minor->dev;
  2330. struct drm_i915_private *dev_priv = dev->dev_private;
  2331. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2332. int i;
  2333. mutex_lock(&power_domains->lock);
  2334. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2335. for (i = 0; i < power_domains->power_well_count; i++) {
  2336. struct i915_power_well *power_well;
  2337. enum intel_display_power_domain power_domain;
  2338. power_well = &power_domains->power_wells[i];
  2339. seq_printf(m, "%-25s %d\n", power_well->name,
  2340. power_well->count);
  2341. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2342. power_domain++) {
  2343. if (!(BIT(power_domain) & power_well->domains))
  2344. continue;
  2345. seq_printf(m, " %-23s %d\n",
  2346. power_domain_str(power_domain),
  2347. power_domains->domain_use_count[power_domain]);
  2348. }
  2349. }
  2350. mutex_unlock(&power_domains->lock);
  2351. return 0;
  2352. }
  2353. static int i915_dmc_info(struct seq_file *m, void *unused)
  2354. {
  2355. struct drm_info_node *node = m->private;
  2356. struct drm_device *dev = node->minor->dev;
  2357. struct drm_i915_private *dev_priv = dev->dev_private;
  2358. struct intel_csr *csr;
  2359. if (!HAS_CSR(dev)) {
  2360. seq_puts(m, "not supported\n");
  2361. return 0;
  2362. }
  2363. csr = &dev_priv->csr;
  2364. intel_runtime_pm_get(dev_priv);
  2365. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2366. seq_printf(m, "path: %s\n", csr->fw_path);
  2367. if (!csr->dmc_payload)
  2368. goto out;
  2369. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2370. CSR_VERSION_MINOR(csr->version));
  2371. if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
  2372. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2373. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2374. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2375. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2376. } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
  2377. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2378. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2379. }
  2380. out:
  2381. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2382. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2383. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2384. intel_runtime_pm_put(dev_priv);
  2385. return 0;
  2386. }
  2387. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2388. struct drm_display_mode *mode)
  2389. {
  2390. int i;
  2391. for (i = 0; i < tabs; i++)
  2392. seq_putc(m, '\t');
  2393. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2394. mode->base.id, mode->name,
  2395. mode->vrefresh, mode->clock,
  2396. mode->hdisplay, mode->hsync_start,
  2397. mode->hsync_end, mode->htotal,
  2398. mode->vdisplay, mode->vsync_start,
  2399. mode->vsync_end, mode->vtotal,
  2400. mode->type, mode->flags);
  2401. }
  2402. static void intel_encoder_info(struct seq_file *m,
  2403. struct intel_crtc *intel_crtc,
  2404. struct intel_encoder *intel_encoder)
  2405. {
  2406. struct drm_info_node *node = m->private;
  2407. struct drm_device *dev = node->minor->dev;
  2408. struct drm_crtc *crtc = &intel_crtc->base;
  2409. struct intel_connector *intel_connector;
  2410. struct drm_encoder *encoder;
  2411. encoder = &intel_encoder->base;
  2412. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2413. encoder->base.id, encoder->name);
  2414. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2415. struct drm_connector *connector = &intel_connector->base;
  2416. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2417. connector->base.id,
  2418. connector->name,
  2419. drm_get_connector_status_name(connector->status));
  2420. if (connector->status == connector_status_connected) {
  2421. struct drm_display_mode *mode = &crtc->mode;
  2422. seq_printf(m, ", mode:\n");
  2423. intel_seq_print_mode(m, 2, mode);
  2424. } else {
  2425. seq_putc(m, '\n');
  2426. }
  2427. }
  2428. }
  2429. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2430. {
  2431. struct drm_info_node *node = m->private;
  2432. struct drm_device *dev = node->minor->dev;
  2433. struct drm_crtc *crtc = &intel_crtc->base;
  2434. struct intel_encoder *intel_encoder;
  2435. struct drm_plane_state *plane_state = crtc->primary->state;
  2436. struct drm_framebuffer *fb = plane_state->fb;
  2437. if (fb)
  2438. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2439. fb->base.id, plane_state->src_x >> 16,
  2440. plane_state->src_y >> 16, fb->width, fb->height);
  2441. else
  2442. seq_puts(m, "\tprimary plane disabled\n");
  2443. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2444. intel_encoder_info(m, intel_crtc, intel_encoder);
  2445. }
  2446. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2447. {
  2448. struct drm_display_mode *mode = panel->fixed_mode;
  2449. seq_printf(m, "\tfixed mode:\n");
  2450. intel_seq_print_mode(m, 2, mode);
  2451. }
  2452. static void intel_dp_info(struct seq_file *m,
  2453. struct intel_connector *intel_connector)
  2454. {
  2455. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2456. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2457. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2458. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2459. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2460. intel_panel_info(m, &intel_connector->panel);
  2461. }
  2462. static void intel_hdmi_info(struct seq_file *m,
  2463. struct intel_connector *intel_connector)
  2464. {
  2465. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2466. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2467. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2468. }
  2469. static void intel_lvds_info(struct seq_file *m,
  2470. struct intel_connector *intel_connector)
  2471. {
  2472. intel_panel_info(m, &intel_connector->panel);
  2473. }
  2474. static void intel_connector_info(struct seq_file *m,
  2475. struct drm_connector *connector)
  2476. {
  2477. struct intel_connector *intel_connector = to_intel_connector(connector);
  2478. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2479. struct drm_display_mode *mode;
  2480. seq_printf(m, "connector %d: type %s, status: %s\n",
  2481. connector->base.id, connector->name,
  2482. drm_get_connector_status_name(connector->status));
  2483. if (connector->status == connector_status_connected) {
  2484. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2485. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2486. connector->display_info.width_mm,
  2487. connector->display_info.height_mm);
  2488. seq_printf(m, "\tsubpixel order: %s\n",
  2489. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2490. seq_printf(m, "\tCEA rev: %d\n",
  2491. connector->display_info.cea_rev);
  2492. }
  2493. if (intel_encoder) {
  2494. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2495. intel_encoder->type == INTEL_OUTPUT_EDP)
  2496. intel_dp_info(m, intel_connector);
  2497. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2498. intel_hdmi_info(m, intel_connector);
  2499. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2500. intel_lvds_info(m, intel_connector);
  2501. }
  2502. seq_printf(m, "\tmodes:\n");
  2503. list_for_each_entry(mode, &connector->modes, head)
  2504. intel_seq_print_mode(m, 2, mode);
  2505. }
  2506. static bool cursor_active(struct drm_device *dev, int pipe)
  2507. {
  2508. struct drm_i915_private *dev_priv = dev->dev_private;
  2509. u32 state;
  2510. if (IS_845G(dev) || IS_I865G(dev))
  2511. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2512. else
  2513. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2514. return state;
  2515. }
  2516. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2517. {
  2518. struct drm_i915_private *dev_priv = dev->dev_private;
  2519. u32 pos;
  2520. pos = I915_READ(CURPOS(pipe));
  2521. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2522. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2523. *x = -*x;
  2524. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2525. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2526. *y = -*y;
  2527. return cursor_active(dev, pipe);
  2528. }
  2529. static const char *plane_type(enum drm_plane_type type)
  2530. {
  2531. switch (type) {
  2532. case DRM_PLANE_TYPE_OVERLAY:
  2533. return "OVL";
  2534. case DRM_PLANE_TYPE_PRIMARY:
  2535. return "PRI";
  2536. case DRM_PLANE_TYPE_CURSOR:
  2537. return "CUR";
  2538. /*
  2539. * Deliberately omitting default: to generate compiler warnings
  2540. * when a new drm_plane_type gets added.
  2541. */
  2542. }
  2543. return "unknown";
  2544. }
  2545. static const char *plane_rotation(unsigned int rotation)
  2546. {
  2547. static char buf[48];
  2548. /*
  2549. * According to doc only one DRM_ROTATE_ is allowed but this
  2550. * will print them all to visualize if the values are misused
  2551. */
  2552. snprintf(buf, sizeof(buf),
  2553. "%s%s%s%s%s%s(0x%08x)",
  2554. (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
  2555. (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
  2556. (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
  2557. (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
  2558. (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
  2559. (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
  2560. rotation);
  2561. return buf;
  2562. }
  2563. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2564. {
  2565. struct drm_info_node *node = m->private;
  2566. struct drm_device *dev = node->minor->dev;
  2567. struct intel_plane *intel_plane;
  2568. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2569. struct drm_plane_state *state;
  2570. struct drm_plane *plane = &intel_plane->base;
  2571. if (!plane->state) {
  2572. seq_puts(m, "plane->state is NULL!\n");
  2573. continue;
  2574. }
  2575. state = plane->state;
  2576. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2577. plane->base.id,
  2578. plane_type(intel_plane->base.type),
  2579. state->crtc_x, state->crtc_y,
  2580. state->crtc_w, state->crtc_h,
  2581. (state->src_x >> 16),
  2582. ((state->src_x & 0xffff) * 15625) >> 10,
  2583. (state->src_y >> 16),
  2584. ((state->src_y & 0xffff) * 15625) >> 10,
  2585. (state->src_w >> 16),
  2586. ((state->src_w & 0xffff) * 15625) >> 10,
  2587. (state->src_h >> 16),
  2588. ((state->src_h & 0xffff) * 15625) >> 10,
  2589. state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
  2590. plane_rotation(state->rotation));
  2591. }
  2592. }
  2593. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2594. {
  2595. struct intel_crtc_state *pipe_config;
  2596. int num_scalers = intel_crtc->num_scalers;
  2597. int i;
  2598. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2599. /* Not all platformas have a scaler */
  2600. if (num_scalers) {
  2601. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2602. num_scalers,
  2603. pipe_config->scaler_state.scaler_users,
  2604. pipe_config->scaler_state.scaler_id);
  2605. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2606. struct intel_scaler *sc =
  2607. &pipe_config->scaler_state.scalers[i];
  2608. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2609. i, yesno(sc->in_use), sc->mode);
  2610. }
  2611. seq_puts(m, "\n");
  2612. } else {
  2613. seq_puts(m, "\tNo scalers available on this platform\n");
  2614. }
  2615. }
  2616. static int i915_display_info(struct seq_file *m, void *unused)
  2617. {
  2618. struct drm_info_node *node = m->private;
  2619. struct drm_device *dev = node->minor->dev;
  2620. struct drm_i915_private *dev_priv = dev->dev_private;
  2621. struct intel_crtc *crtc;
  2622. struct drm_connector *connector;
  2623. intel_runtime_pm_get(dev_priv);
  2624. drm_modeset_lock_all(dev);
  2625. seq_printf(m, "CRTC info\n");
  2626. seq_printf(m, "---------\n");
  2627. for_each_intel_crtc(dev, crtc) {
  2628. bool active;
  2629. struct intel_crtc_state *pipe_config;
  2630. int x, y;
  2631. pipe_config = to_intel_crtc_state(crtc->base.state);
  2632. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2633. crtc->base.base.id, pipe_name(crtc->pipe),
  2634. yesno(pipe_config->base.active),
  2635. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2636. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2637. if (pipe_config->base.active) {
  2638. intel_crtc_info(m, crtc);
  2639. active = cursor_position(dev, crtc->pipe, &x, &y);
  2640. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2641. yesno(crtc->cursor_base),
  2642. x, y, crtc->base.cursor->state->crtc_w,
  2643. crtc->base.cursor->state->crtc_h,
  2644. crtc->cursor_addr, yesno(active));
  2645. intel_scaler_info(m, crtc);
  2646. intel_plane_info(m, crtc);
  2647. }
  2648. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2649. yesno(!crtc->cpu_fifo_underrun_disabled),
  2650. yesno(!crtc->pch_fifo_underrun_disabled));
  2651. }
  2652. seq_printf(m, "\n");
  2653. seq_printf(m, "Connector info\n");
  2654. seq_printf(m, "--------------\n");
  2655. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2656. intel_connector_info(m, connector);
  2657. }
  2658. drm_modeset_unlock_all(dev);
  2659. intel_runtime_pm_put(dev_priv);
  2660. return 0;
  2661. }
  2662. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2663. {
  2664. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2665. struct drm_device *dev = node->minor->dev;
  2666. struct drm_i915_private *dev_priv = dev->dev_private;
  2667. struct intel_engine_cs *ring;
  2668. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2669. int i, j, ret;
  2670. if (!i915_semaphore_is_enabled(dev)) {
  2671. seq_puts(m, "Semaphores are disabled\n");
  2672. return 0;
  2673. }
  2674. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2675. if (ret)
  2676. return ret;
  2677. intel_runtime_pm_get(dev_priv);
  2678. if (IS_BROADWELL(dev)) {
  2679. struct page *page;
  2680. uint64_t *seqno;
  2681. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2682. seqno = (uint64_t *)kmap_atomic(page);
  2683. for_each_ring(ring, dev_priv, i) {
  2684. uint64_t offset;
  2685. seq_printf(m, "%s\n", ring->name);
  2686. seq_puts(m, " Last signal:");
  2687. for (j = 0; j < num_rings; j++) {
  2688. offset = i * I915_NUM_RINGS + j;
  2689. seq_printf(m, "0x%08llx (0x%02llx) ",
  2690. seqno[offset], offset * 8);
  2691. }
  2692. seq_putc(m, '\n');
  2693. seq_puts(m, " Last wait: ");
  2694. for (j = 0; j < num_rings; j++) {
  2695. offset = i + (j * I915_NUM_RINGS);
  2696. seq_printf(m, "0x%08llx (0x%02llx) ",
  2697. seqno[offset], offset * 8);
  2698. }
  2699. seq_putc(m, '\n');
  2700. }
  2701. kunmap_atomic(seqno);
  2702. } else {
  2703. seq_puts(m, " Last signal:");
  2704. for_each_ring(ring, dev_priv, i)
  2705. for (j = 0; j < num_rings; j++)
  2706. seq_printf(m, "0x%08x\n",
  2707. I915_READ(ring->semaphore.mbox.signal[j]));
  2708. seq_putc(m, '\n');
  2709. }
  2710. seq_puts(m, "\nSync seqno:\n");
  2711. for_each_ring(ring, dev_priv, i) {
  2712. for (j = 0; j < num_rings; j++) {
  2713. seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
  2714. }
  2715. seq_putc(m, '\n');
  2716. }
  2717. seq_putc(m, '\n');
  2718. intel_runtime_pm_put(dev_priv);
  2719. mutex_unlock(&dev->struct_mutex);
  2720. return 0;
  2721. }
  2722. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2723. {
  2724. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2725. struct drm_device *dev = node->minor->dev;
  2726. struct drm_i915_private *dev_priv = dev->dev_private;
  2727. int i;
  2728. drm_modeset_lock_all(dev);
  2729. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2730. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2731. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2732. seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
  2733. pll->config.crtc_mask, pll->active, yesno(pll->on));
  2734. seq_printf(m, " tracked hardware state:\n");
  2735. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2736. seq_printf(m, " dpll_md: 0x%08x\n",
  2737. pll->config.hw_state.dpll_md);
  2738. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2739. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2740. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2741. }
  2742. drm_modeset_unlock_all(dev);
  2743. return 0;
  2744. }
  2745. static int i915_wa_registers(struct seq_file *m, void *unused)
  2746. {
  2747. int i;
  2748. int ret;
  2749. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2750. struct drm_device *dev = node->minor->dev;
  2751. struct drm_i915_private *dev_priv = dev->dev_private;
  2752. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2753. if (ret)
  2754. return ret;
  2755. intel_runtime_pm_get(dev_priv);
  2756. seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
  2757. for (i = 0; i < dev_priv->workarounds.count; ++i) {
  2758. i915_reg_t addr;
  2759. u32 mask, value, read;
  2760. bool ok;
  2761. addr = dev_priv->workarounds.reg[i].addr;
  2762. mask = dev_priv->workarounds.reg[i].mask;
  2763. value = dev_priv->workarounds.reg[i].value;
  2764. read = I915_READ(addr);
  2765. ok = (value & mask) == (read & mask);
  2766. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2767. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2768. }
  2769. intel_runtime_pm_put(dev_priv);
  2770. mutex_unlock(&dev->struct_mutex);
  2771. return 0;
  2772. }
  2773. static int i915_ddb_info(struct seq_file *m, void *unused)
  2774. {
  2775. struct drm_info_node *node = m->private;
  2776. struct drm_device *dev = node->minor->dev;
  2777. struct drm_i915_private *dev_priv = dev->dev_private;
  2778. struct skl_ddb_allocation *ddb;
  2779. struct skl_ddb_entry *entry;
  2780. enum pipe pipe;
  2781. int plane;
  2782. if (INTEL_INFO(dev)->gen < 9)
  2783. return 0;
  2784. drm_modeset_lock_all(dev);
  2785. ddb = &dev_priv->wm.skl_hw.ddb;
  2786. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2787. for_each_pipe(dev_priv, pipe) {
  2788. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2789. for_each_plane(dev_priv, pipe, plane) {
  2790. entry = &ddb->plane[pipe][plane];
  2791. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2792. entry->start, entry->end,
  2793. skl_ddb_entry_size(entry));
  2794. }
  2795. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2796. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2797. entry->end, skl_ddb_entry_size(entry));
  2798. }
  2799. drm_modeset_unlock_all(dev);
  2800. return 0;
  2801. }
  2802. static void drrs_status_per_crtc(struct seq_file *m,
  2803. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2804. {
  2805. struct intel_encoder *intel_encoder;
  2806. struct drm_i915_private *dev_priv = dev->dev_private;
  2807. struct i915_drrs *drrs = &dev_priv->drrs;
  2808. int vrefresh = 0;
  2809. for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
  2810. /* Encoder connected on this CRTC */
  2811. switch (intel_encoder->type) {
  2812. case INTEL_OUTPUT_EDP:
  2813. seq_puts(m, "eDP:\n");
  2814. break;
  2815. case INTEL_OUTPUT_DSI:
  2816. seq_puts(m, "DSI:\n");
  2817. break;
  2818. case INTEL_OUTPUT_HDMI:
  2819. seq_puts(m, "HDMI:\n");
  2820. break;
  2821. case INTEL_OUTPUT_DISPLAYPORT:
  2822. seq_puts(m, "DP:\n");
  2823. break;
  2824. default:
  2825. seq_printf(m, "Other encoder (id=%d).\n",
  2826. intel_encoder->type);
  2827. return;
  2828. }
  2829. }
  2830. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2831. seq_puts(m, "\tVBT: DRRS_type: Static");
  2832. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2833. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2834. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2835. seq_puts(m, "\tVBT: DRRS_type: None");
  2836. else
  2837. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2838. seq_puts(m, "\n\n");
  2839. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2840. struct intel_panel *panel;
  2841. mutex_lock(&drrs->mutex);
  2842. /* DRRS Supported */
  2843. seq_puts(m, "\tDRRS Supported: Yes\n");
  2844. /* disable_drrs() will make drrs->dp NULL */
  2845. if (!drrs->dp) {
  2846. seq_puts(m, "Idleness DRRS: Disabled");
  2847. mutex_unlock(&drrs->mutex);
  2848. return;
  2849. }
  2850. panel = &drrs->dp->attached_connector->panel;
  2851. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2852. drrs->busy_frontbuffer_bits);
  2853. seq_puts(m, "\n\t\t");
  2854. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2855. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2856. vrefresh = panel->fixed_mode->vrefresh;
  2857. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2858. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2859. vrefresh = panel->downclock_mode->vrefresh;
  2860. } else {
  2861. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2862. drrs->refresh_rate_type);
  2863. mutex_unlock(&drrs->mutex);
  2864. return;
  2865. }
  2866. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2867. seq_puts(m, "\n\t\t");
  2868. mutex_unlock(&drrs->mutex);
  2869. } else {
  2870. /* DRRS not supported. Print the VBT parameter*/
  2871. seq_puts(m, "\tDRRS Supported : No");
  2872. }
  2873. seq_puts(m, "\n");
  2874. }
  2875. static int i915_drrs_status(struct seq_file *m, void *unused)
  2876. {
  2877. struct drm_info_node *node = m->private;
  2878. struct drm_device *dev = node->minor->dev;
  2879. struct intel_crtc *intel_crtc;
  2880. int active_crtc_cnt = 0;
  2881. for_each_intel_crtc(dev, intel_crtc) {
  2882. drm_modeset_lock(&intel_crtc->base.mutex, NULL);
  2883. if (intel_crtc->base.state->active) {
  2884. active_crtc_cnt++;
  2885. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2886. drrs_status_per_crtc(m, dev, intel_crtc);
  2887. }
  2888. drm_modeset_unlock(&intel_crtc->base.mutex);
  2889. }
  2890. if (!active_crtc_cnt)
  2891. seq_puts(m, "No active crtc found\n");
  2892. return 0;
  2893. }
  2894. struct pipe_crc_info {
  2895. const char *name;
  2896. struct drm_device *dev;
  2897. enum pipe pipe;
  2898. };
  2899. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2900. {
  2901. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2902. struct drm_device *dev = node->minor->dev;
  2903. struct drm_encoder *encoder;
  2904. struct intel_encoder *intel_encoder;
  2905. struct intel_digital_port *intel_dig_port;
  2906. drm_modeset_lock_all(dev);
  2907. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2908. intel_encoder = to_intel_encoder(encoder);
  2909. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2910. continue;
  2911. intel_dig_port = enc_to_dig_port(encoder);
  2912. if (!intel_dig_port->dp.can_mst)
  2913. continue;
  2914. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2915. }
  2916. drm_modeset_unlock_all(dev);
  2917. return 0;
  2918. }
  2919. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2920. {
  2921. struct pipe_crc_info *info = inode->i_private;
  2922. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2923. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2924. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2925. return -ENODEV;
  2926. spin_lock_irq(&pipe_crc->lock);
  2927. if (pipe_crc->opened) {
  2928. spin_unlock_irq(&pipe_crc->lock);
  2929. return -EBUSY; /* already open */
  2930. }
  2931. pipe_crc->opened = true;
  2932. filep->private_data = inode->i_private;
  2933. spin_unlock_irq(&pipe_crc->lock);
  2934. return 0;
  2935. }
  2936. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2937. {
  2938. struct pipe_crc_info *info = inode->i_private;
  2939. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2940. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2941. spin_lock_irq(&pipe_crc->lock);
  2942. pipe_crc->opened = false;
  2943. spin_unlock_irq(&pipe_crc->lock);
  2944. return 0;
  2945. }
  2946. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2947. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2948. /* account for \'0' */
  2949. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2950. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2951. {
  2952. assert_spin_locked(&pipe_crc->lock);
  2953. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2954. INTEL_PIPE_CRC_ENTRIES_NR);
  2955. }
  2956. static ssize_t
  2957. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2958. loff_t *pos)
  2959. {
  2960. struct pipe_crc_info *info = filep->private_data;
  2961. struct drm_device *dev = info->dev;
  2962. struct drm_i915_private *dev_priv = dev->dev_private;
  2963. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2964. char buf[PIPE_CRC_BUFFER_LEN];
  2965. int n_entries;
  2966. ssize_t bytes_read;
  2967. /*
  2968. * Don't allow user space to provide buffers not big enough to hold
  2969. * a line of data.
  2970. */
  2971. if (count < PIPE_CRC_LINE_LEN)
  2972. return -EINVAL;
  2973. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2974. return 0;
  2975. /* nothing to read */
  2976. spin_lock_irq(&pipe_crc->lock);
  2977. while (pipe_crc_data_count(pipe_crc) == 0) {
  2978. int ret;
  2979. if (filep->f_flags & O_NONBLOCK) {
  2980. spin_unlock_irq(&pipe_crc->lock);
  2981. return -EAGAIN;
  2982. }
  2983. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2984. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2985. if (ret) {
  2986. spin_unlock_irq(&pipe_crc->lock);
  2987. return ret;
  2988. }
  2989. }
  2990. /* We now have one or more entries to read */
  2991. n_entries = count / PIPE_CRC_LINE_LEN;
  2992. bytes_read = 0;
  2993. while (n_entries > 0) {
  2994. struct intel_pipe_crc_entry *entry =
  2995. &pipe_crc->entries[pipe_crc->tail];
  2996. int ret;
  2997. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2998. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  2999. break;
  3000. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  3001. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  3002. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  3003. "%8u %8x %8x %8x %8x %8x\n",
  3004. entry->frame, entry->crc[0],
  3005. entry->crc[1], entry->crc[2],
  3006. entry->crc[3], entry->crc[4]);
  3007. spin_unlock_irq(&pipe_crc->lock);
  3008. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  3009. if (ret == PIPE_CRC_LINE_LEN)
  3010. return -EFAULT;
  3011. user_buf += PIPE_CRC_LINE_LEN;
  3012. n_entries--;
  3013. spin_lock_irq(&pipe_crc->lock);
  3014. }
  3015. spin_unlock_irq(&pipe_crc->lock);
  3016. return bytes_read;
  3017. }
  3018. static const struct file_operations i915_pipe_crc_fops = {
  3019. .owner = THIS_MODULE,
  3020. .open = i915_pipe_crc_open,
  3021. .read = i915_pipe_crc_read,
  3022. .release = i915_pipe_crc_release,
  3023. };
  3024. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  3025. {
  3026. .name = "i915_pipe_A_crc",
  3027. .pipe = PIPE_A,
  3028. },
  3029. {
  3030. .name = "i915_pipe_B_crc",
  3031. .pipe = PIPE_B,
  3032. },
  3033. {
  3034. .name = "i915_pipe_C_crc",
  3035. .pipe = PIPE_C,
  3036. },
  3037. };
  3038. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  3039. enum pipe pipe)
  3040. {
  3041. struct drm_device *dev = minor->dev;
  3042. struct dentry *ent;
  3043. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  3044. info->dev = dev;
  3045. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  3046. &i915_pipe_crc_fops);
  3047. if (!ent)
  3048. return -ENOMEM;
  3049. return drm_add_fake_info_node(minor, ent, info);
  3050. }
  3051. static const char * const pipe_crc_sources[] = {
  3052. "none",
  3053. "plane1",
  3054. "plane2",
  3055. "pf",
  3056. "pipe",
  3057. "TV",
  3058. "DP-B",
  3059. "DP-C",
  3060. "DP-D",
  3061. "auto",
  3062. };
  3063. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  3064. {
  3065. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  3066. return pipe_crc_sources[source];
  3067. }
  3068. static int display_crc_ctl_show(struct seq_file *m, void *data)
  3069. {
  3070. struct drm_device *dev = m->private;
  3071. struct drm_i915_private *dev_priv = dev->dev_private;
  3072. int i;
  3073. for (i = 0; i < I915_MAX_PIPES; i++)
  3074. seq_printf(m, "%c %s\n", pipe_name(i),
  3075. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  3076. return 0;
  3077. }
  3078. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  3079. {
  3080. struct drm_device *dev = inode->i_private;
  3081. return single_open(file, display_crc_ctl_show, dev);
  3082. }
  3083. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3084. uint32_t *val)
  3085. {
  3086. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3087. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3088. switch (*source) {
  3089. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3090. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3091. break;
  3092. case INTEL_PIPE_CRC_SOURCE_NONE:
  3093. *val = 0;
  3094. break;
  3095. default:
  3096. return -EINVAL;
  3097. }
  3098. return 0;
  3099. }
  3100. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  3101. enum intel_pipe_crc_source *source)
  3102. {
  3103. struct intel_encoder *encoder;
  3104. struct intel_crtc *crtc;
  3105. struct intel_digital_port *dig_port;
  3106. int ret = 0;
  3107. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3108. drm_modeset_lock_all(dev);
  3109. for_each_intel_encoder(dev, encoder) {
  3110. if (!encoder->base.crtc)
  3111. continue;
  3112. crtc = to_intel_crtc(encoder->base.crtc);
  3113. if (crtc->pipe != pipe)
  3114. continue;
  3115. switch (encoder->type) {
  3116. case INTEL_OUTPUT_TVOUT:
  3117. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3118. break;
  3119. case INTEL_OUTPUT_DISPLAYPORT:
  3120. case INTEL_OUTPUT_EDP:
  3121. dig_port = enc_to_dig_port(&encoder->base);
  3122. switch (dig_port->port) {
  3123. case PORT_B:
  3124. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3125. break;
  3126. case PORT_C:
  3127. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3128. break;
  3129. case PORT_D:
  3130. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3131. break;
  3132. default:
  3133. WARN(1, "nonexisting DP port %c\n",
  3134. port_name(dig_port->port));
  3135. break;
  3136. }
  3137. break;
  3138. default:
  3139. break;
  3140. }
  3141. }
  3142. drm_modeset_unlock_all(dev);
  3143. return ret;
  3144. }
  3145. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  3146. enum pipe pipe,
  3147. enum intel_pipe_crc_source *source,
  3148. uint32_t *val)
  3149. {
  3150. struct drm_i915_private *dev_priv = dev->dev_private;
  3151. bool need_stable_symbols = false;
  3152. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3153. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3154. if (ret)
  3155. return ret;
  3156. }
  3157. switch (*source) {
  3158. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3159. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3160. break;
  3161. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3162. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3163. need_stable_symbols = true;
  3164. break;
  3165. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3166. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3167. need_stable_symbols = true;
  3168. break;
  3169. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3170. if (!IS_CHERRYVIEW(dev))
  3171. return -EINVAL;
  3172. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3173. need_stable_symbols = true;
  3174. break;
  3175. case INTEL_PIPE_CRC_SOURCE_NONE:
  3176. *val = 0;
  3177. break;
  3178. default:
  3179. return -EINVAL;
  3180. }
  3181. /*
  3182. * When the pipe CRC tap point is after the transcoders we need
  3183. * to tweak symbol-level features to produce a deterministic series of
  3184. * symbols for a given frame. We need to reset those features only once
  3185. * a frame (instead of every nth symbol):
  3186. * - DC-balance: used to ensure a better clock recovery from the data
  3187. * link (SDVO)
  3188. * - DisplayPort scrambling: used for EMI reduction
  3189. */
  3190. if (need_stable_symbols) {
  3191. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3192. tmp |= DC_BALANCE_RESET_VLV;
  3193. switch (pipe) {
  3194. case PIPE_A:
  3195. tmp |= PIPE_A_SCRAMBLE_RESET;
  3196. break;
  3197. case PIPE_B:
  3198. tmp |= PIPE_B_SCRAMBLE_RESET;
  3199. break;
  3200. case PIPE_C:
  3201. tmp |= PIPE_C_SCRAMBLE_RESET;
  3202. break;
  3203. default:
  3204. return -EINVAL;
  3205. }
  3206. I915_WRITE(PORT_DFT2_G4X, tmp);
  3207. }
  3208. return 0;
  3209. }
  3210. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  3211. enum pipe pipe,
  3212. enum intel_pipe_crc_source *source,
  3213. uint32_t *val)
  3214. {
  3215. struct drm_i915_private *dev_priv = dev->dev_private;
  3216. bool need_stable_symbols = false;
  3217. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3218. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3219. if (ret)
  3220. return ret;
  3221. }
  3222. switch (*source) {
  3223. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3224. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3225. break;
  3226. case INTEL_PIPE_CRC_SOURCE_TV:
  3227. if (!SUPPORTS_TV(dev))
  3228. return -EINVAL;
  3229. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3230. break;
  3231. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3232. if (!IS_G4X(dev))
  3233. return -EINVAL;
  3234. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3235. need_stable_symbols = true;
  3236. break;
  3237. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3238. if (!IS_G4X(dev))
  3239. return -EINVAL;
  3240. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3241. need_stable_symbols = true;
  3242. break;
  3243. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3244. if (!IS_G4X(dev))
  3245. return -EINVAL;
  3246. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3247. need_stable_symbols = true;
  3248. break;
  3249. case INTEL_PIPE_CRC_SOURCE_NONE:
  3250. *val = 0;
  3251. break;
  3252. default:
  3253. return -EINVAL;
  3254. }
  3255. /*
  3256. * When the pipe CRC tap point is after the transcoders we need
  3257. * to tweak symbol-level features to produce a deterministic series of
  3258. * symbols for a given frame. We need to reset those features only once
  3259. * a frame (instead of every nth symbol):
  3260. * - DC-balance: used to ensure a better clock recovery from the data
  3261. * link (SDVO)
  3262. * - DisplayPort scrambling: used for EMI reduction
  3263. */
  3264. if (need_stable_symbols) {
  3265. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3266. WARN_ON(!IS_G4X(dev));
  3267. I915_WRITE(PORT_DFT_I9XX,
  3268. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3269. if (pipe == PIPE_A)
  3270. tmp |= PIPE_A_SCRAMBLE_RESET;
  3271. else
  3272. tmp |= PIPE_B_SCRAMBLE_RESET;
  3273. I915_WRITE(PORT_DFT2_G4X, tmp);
  3274. }
  3275. return 0;
  3276. }
  3277. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  3278. enum pipe pipe)
  3279. {
  3280. struct drm_i915_private *dev_priv = dev->dev_private;
  3281. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3282. switch (pipe) {
  3283. case PIPE_A:
  3284. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3285. break;
  3286. case PIPE_B:
  3287. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3288. break;
  3289. case PIPE_C:
  3290. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3291. break;
  3292. default:
  3293. return;
  3294. }
  3295. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3296. tmp &= ~DC_BALANCE_RESET_VLV;
  3297. I915_WRITE(PORT_DFT2_G4X, tmp);
  3298. }
  3299. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  3300. enum pipe pipe)
  3301. {
  3302. struct drm_i915_private *dev_priv = dev->dev_private;
  3303. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3304. if (pipe == PIPE_A)
  3305. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3306. else
  3307. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3308. I915_WRITE(PORT_DFT2_G4X, tmp);
  3309. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3310. I915_WRITE(PORT_DFT_I9XX,
  3311. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3312. }
  3313. }
  3314. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3315. uint32_t *val)
  3316. {
  3317. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3318. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3319. switch (*source) {
  3320. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3321. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3322. break;
  3323. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3324. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3325. break;
  3326. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3327. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3328. break;
  3329. case INTEL_PIPE_CRC_SOURCE_NONE:
  3330. *val = 0;
  3331. break;
  3332. default:
  3333. return -EINVAL;
  3334. }
  3335. return 0;
  3336. }
  3337. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
  3338. {
  3339. struct drm_i915_private *dev_priv = dev->dev_private;
  3340. struct intel_crtc *crtc =
  3341. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3342. struct intel_crtc_state *pipe_config;
  3343. struct drm_atomic_state *state;
  3344. int ret = 0;
  3345. drm_modeset_lock_all(dev);
  3346. state = drm_atomic_state_alloc(dev);
  3347. if (!state) {
  3348. ret = -ENOMEM;
  3349. goto out;
  3350. }
  3351. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3352. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3353. if (IS_ERR(pipe_config)) {
  3354. ret = PTR_ERR(pipe_config);
  3355. goto out;
  3356. }
  3357. pipe_config->pch_pfit.force_thru = enable;
  3358. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3359. pipe_config->pch_pfit.enabled != enable)
  3360. pipe_config->base.connectors_changed = true;
  3361. ret = drm_atomic_commit(state);
  3362. out:
  3363. drm_modeset_unlock_all(dev);
  3364. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3365. if (ret)
  3366. drm_atomic_state_free(state);
  3367. }
  3368. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3369. enum pipe pipe,
  3370. enum intel_pipe_crc_source *source,
  3371. uint32_t *val)
  3372. {
  3373. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3374. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3375. switch (*source) {
  3376. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3377. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3378. break;
  3379. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3380. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3381. break;
  3382. case INTEL_PIPE_CRC_SOURCE_PF:
  3383. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3384. hsw_trans_edp_pipe_A_crc_wa(dev, true);
  3385. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3386. break;
  3387. case INTEL_PIPE_CRC_SOURCE_NONE:
  3388. *val = 0;
  3389. break;
  3390. default:
  3391. return -EINVAL;
  3392. }
  3393. return 0;
  3394. }
  3395. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3396. enum intel_pipe_crc_source source)
  3397. {
  3398. struct drm_i915_private *dev_priv = dev->dev_private;
  3399. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3400. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3401. pipe));
  3402. u32 val = 0; /* shut up gcc */
  3403. int ret;
  3404. if (pipe_crc->source == source)
  3405. return 0;
  3406. /* forbid changing the source without going back to 'none' */
  3407. if (pipe_crc->source && source)
  3408. return -EINVAL;
  3409. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
  3410. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3411. return -EIO;
  3412. }
  3413. if (IS_GEN2(dev))
  3414. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3415. else if (INTEL_INFO(dev)->gen < 5)
  3416. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3417. else if (IS_VALLEYVIEW(dev))
  3418. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3419. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3420. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3421. else
  3422. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3423. if (ret != 0)
  3424. return ret;
  3425. /* none -> real source transition */
  3426. if (source) {
  3427. struct intel_pipe_crc_entry *entries;
  3428. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3429. pipe_name(pipe), pipe_crc_source_name(source));
  3430. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3431. sizeof(pipe_crc->entries[0]),
  3432. GFP_KERNEL);
  3433. if (!entries)
  3434. return -ENOMEM;
  3435. /*
  3436. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3437. * enabled and disabled dynamically based on package C states,
  3438. * user space can't make reliable use of the CRCs, so let's just
  3439. * completely disable it.
  3440. */
  3441. hsw_disable_ips(crtc);
  3442. spin_lock_irq(&pipe_crc->lock);
  3443. kfree(pipe_crc->entries);
  3444. pipe_crc->entries = entries;
  3445. pipe_crc->head = 0;
  3446. pipe_crc->tail = 0;
  3447. spin_unlock_irq(&pipe_crc->lock);
  3448. }
  3449. pipe_crc->source = source;
  3450. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3451. POSTING_READ(PIPE_CRC_CTL(pipe));
  3452. /* real source -> none transition */
  3453. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3454. struct intel_pipe_crc_entry *entries;
  3455. struct intel_crtc *crtc =
  3456. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3457. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3458. pipe_name(pipe));
  3459. drm_modeset_lock(&crtc->base.mutex, NULL);
  3460. if (crtc->base.state->active)
  3461. intel_wait_for_vblank(dev, pipe);
  3462. drm_modeset_unlock(&crtc->base.mutex);
  3463. spin_lock_irq(&pipe_crc->lock);
  3464. entries = pipe_crc->entries;
  3465. pipe_crc->entries = NULL;
  3466. pipe_crc->head = 0;
  3467. pipe_crc->tail = 0;
  3468. spin_unlock_irq(&pipe_crc->lock);
  3469. kfree(entries);
  3470. if (IS_G4X(dev))
  3471. g4x_undo_pipe_scramble_reset(dev, pipe);
  3472. else if (IS_VALLEYVIEW(dev))
  3473. vlv_undo_pipe_scramble_reset(dev, pipe);
  3474. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3475. hsw_trans_edp_pipe_A_crc_wa(dev, false);
  3476. hsw_enable_ips(crtc);
  3477. }
  3478. return 0;
  3479. }
  3480. /*
  3481. * Parse pipe CRC command strings:
  3482. * command: wsp* object wsp+ name wsp+ source wsp*
  3483. * object: 'pipe'
  3484. * name: (A | B | C)
  3485. * source: (none | plane1 | plane2 | pf)
  3486. * wsp: (#0x20 | #0x9 | #0xA)+
  3487. *
  3488. * eg.:
  3489. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3490. * "pipe A none" -> Stop CRC
  3491. */
  3492. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3493. {
  3494. int n_words = 0;
  3495. while (*buf) {
  3496. char *end;
  3497. /* skip leading white space */
  3498. buf = skip_spaces(buf);
  3499. if (!*buf)
  3500. break; /* end of buffer */
  3501. /* find end of word */
  3502. for (end = buf; *end && !isspace(*end); end++)
  3503. ;
  3504. if (n_words == max_words) {
  3505. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3506. max_words);
  3507. return -EINVAL; /* ran out of words[] before bytes */
  3508. }
  3509. if (*end)
  3510. *end++ = '\0';
  3511. words[n_words++] = buf;
  3512. buf = end;
  3513. }
  3514. return n_words;
  3515. }
  3516. enum intel_pipe_crc_object {
  3517. PIPE_CRC_OBJECT_PIPE,
  3518. };
  3519. static const char * const pipe_crc_objects[] = {
  3520. "pipe",
  3521. };
  3522. static int
  3523. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3524. {
  3525. int i;
  3526. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3527. if (!strcmp(buf, pipe_crc_objects[i])) {
  3528. *o = i;
  3529. return 0;
  3530. }
  3531. return -EINVAL;
  3532. }
  3533. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3534. {
  3535. const char name = buf[0];
  3536. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3537. return -EINVAL;
  3538. *pipe = name - 'A';
  3539. return 0;
  3540. }
  3541. static int
  3542. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3543. {
  3544. int i;
  3545. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3546. if (!strcmp(buf, pipe_crc_sources[i])) {
  3547. *s = i;
  3548. return 0;
  3549. }
  3550. return -EINVAL;
  3551. }
  3552. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3553. {
  3554. #define N_WORDS 3
  3555. int n_words;
  3556. char *words[N_WORDS];
  3557. enum pipe pipe;
  3558. enum intel_pipe_crc_object object;
  3559. enum intel_pipe_crc_source source;
  3560. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3561. if (n_words != N_WORDS) {
  3562. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3563. N_WORDS);
  3564. return -EINVAL;
  3565. }
  3566. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3567. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3568. return -EINVAL;
  3569. }
  3570. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3571. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3572. return -EINVAL;
  3573. }
  3574. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3575. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3576. return -EINVAL;
  3577. }
  3578. return pipe_crc_set_source(dev, pipe, source);
  3579. }
  3580. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3581. size_t len, loff_t *offp)
  3582. {
  3583. struct seq_file *m = file->private_data;
  3584. struct drm_device *dev = m->private;
  3585. char *tmpbuf;
  3586. int ret;
  3587. if (len == 0)
  3588. return 0;
  3589. if (len > PAGE_SIZE - 1) {
  3590. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3591. PAGE_SIZE);
  3592. return -E2BIG;
  3593. }
  3594. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3595. if (!tmpbuf)
  3596. return -ENOMEM;
  3597. if (copy_from_user(tmpbuf, ubuf, len)) {
  3598. ret = -EFAULT;
  3599. goto out;
  3600. }
  3601. tmpbuf[len] = '\0';
  3602. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3603. out:
  3604. kfree(tmpbuf);
  3605. if (ret < 0)
  3606. return ret;
  3607. *offp += len;
  3608. return len;
  3609. }
  3610. static const struct file_operations i915_display_crc_ctl_fops = {
  3611. .owner = THIS_MODULE,
  3612. .open = display_crc_ctl_open,
  3613. .read = seq_read,
  3614. .llseek = seq_lseek,
  3615. .release = single_release,
  3616. .write = display_crc_ctl_write
  3617. };
  3618. static ssize_t i915_displayport_test_active_write(struct file *file,
  3619. const char __user *ubuf,
  3620. size_t len, loff_t *offp)
  3621. {
  3622. char *input_buffer;
  3623. int status = 0;
  3624. struct drm_device *dev;
  3625. struct drm_connector *connector;
  3626. struct list_head *connector_list;
  3627. struct intel_dp *intel_dp;
  3628. int val = 0;
  3629. dev = ((struct seq_file *)file->private_data)->private;
  3630. connector_list = &dev->mode_config.connector_list;
  3631. if (len == 0)
  3632. return 0;
  3633. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3634. if (!input_buffer)
  3635. return -ENOMEM;
  3636. if (copy_from_user(input_buffer, ubuf, len)) {
  3637. status = -EFAULT;
  3638. goto out;
  3639. }
  3640. input_buffer[len] = '\0';
  3641. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3642. list_for_each_entry(connector, connector_list, head) {
  3643. if (connector->connector_type !=
  3644. DRM_MODE_CONNECTOR_DisplayPort)
  3645. continue;
  3646. if (connector->status == connector_status_connected &&
  3647. connector->encoder != NULL) {
  3648. intel_dp = enc_to_intel_dp(connector->encoder);
  3649. status = kstrtoint(input_buffer, 10, &val);
  3650. if (status < 0)
  3651. goto out;
  3652. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3653. /* To prevent erroneous activation of the compliance
  3654. * testing code, only accept an actual value of 1 here
  3655. */
  3656. if (val == 1)
  3657. intel_dp->compliance_test_active = 1;
  3658. else
  3659. intel_dp->compliance_test_active = 0;
  3660. }
  3661. }
  3662. out:
  3663. kfree(input_buffer);
  3664. if (status < 0)
  3665. return status;
  3666. *offp += len;
  3667. return len;
  3668. }
  3669. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3670. {
  3671. struct drm_device *dev = m->private;
  3672. struct drm_connector *connector;
  3673. struct list_head *connector_list = &dev->mode_config.connector_list;
  3674. struct intel_dp *intel_dp;
  3675. list_for_each_entry(connector, connector_list, head) {
  3676. if (connector->connector_type !=
  3677. DRM_MODE_CONNECTOR_DisplayPort)
  3678. continue;
  3679. if (connector->status == connector_status_connected &&
  3680. connector->encoder != NULL) {
  3681. intel_dp = enc_to_intel_dp(connector->encoder);
  3682. if (intel_dp->compliance_test_active)
  3683. seq_puts(m, "1");
  3684. else
  3685. seq_puts(m, "0");
  3686. } else
  3687. seq_puts(m, "0");
  3688. }
  3689. return 0;
  3690. }
  3691. static int i915_displayport_test_active_open(struct inode *inode,
  3692. struct file *file)
  3693. {
  3694. struct drm_device *dev = inode->i_private;
  3695. return single_open(file, i915_displayport_test_active_show, dev);
  3696. }
  3697. static const struct file_operations i915_displayport_test_active_fops = {
  3698. .owner = THIS_MODULE,
  3699. .open = i915_displayport_test_active_open,
  3700. .read = seq_read,
  3701. .llseek = seq_lseek,
  3702. .release = single_release,
  3703. .write = i915_displayport_test_active_write
  3704. };
  3705. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3706. {
  3707. struct drm_device *dev = m->private;
  3708. struct drm_connector *connector;
  3709. struct list_head *connector_list = &dev->mode_config.connector_list;
  3710. struct intel_dp *intel_dp;
  3711. list_for_each_entry(connector, connector_list, head) {
  3712. if (connector->connector_type !=
  3713. DRM_MODE_CONNECTOR_DisplayPort)
  3714. continue;
  3715. if (connector->status == connector_status_connected &&
  3716. connector->encoder != NULL) {
  3717. intel_dp = enc_to_intel_dp(connector->encoder);
  3718. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3719. } else
  3720. seq_puts(m, "0");
  3721. }
  3722. return 0;
  3723. }
  3724. static int i915_displayport_test_data_open(struct inode *inode,
  3725. struct file *file)
  3726. {
  3727. struct drm_device *dev = inode->i_private;
  3728. return single_open(file, i915_displayport_test_data_show, dev);
  3729. }
  3730. static const struct file_operations i915_displayport_test_data_fops = {
  3731. .owner = THIS_MODULE,
  3732. .open = i915_displayport_test_data_open,
  3733. .read = seq_read,
  3734. .llseek = seq_lseek,
  3735. .release = single_release
  3736. };
  3737. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3738. {
  3739. struct drm_device *dev = m->private;
  3740. struct drm_connector *connector;
  3741. struct list_head *connector_list = &dev->mode_config.connector_list;
  3742. struct intel_dp *intel_dp;
  3743. list_for_each_entry(connector, connector_list, head) {
  3744. if (connector->connector_type !=
  3745. DRM_MODE_CONNECTOR_DisplayPort)
  3746. continue;
  3747. if (connector->status == connector_status_connected &&
  3748. connector->encoder != NULL) {
  3749. intel_dp = enc_to_intel_dp(connector->encoder);
  3750. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3751. } else
  3752. seq_puts(m, "0");
  3753. }
  3754. return 0;
  3755. }
  3756. static int i915_displayport_test_type_open(struct inode *inode,
  3757. struct file *file)
  3758. {
  3759. struct drm_device *dev = inode->i_private;
  3760. return single_open(file, i915_displayport_test_type_show, dev);
  3761. }
  3762. static const struct file_operations i915_displayport_test_type_fops = {
  3763. .owner = THIS_MODULE,
  3764. .open = i915_displayport_test_type_open,
  3765. .read = seq_read,
  3766. .llseek = seq_lseek,
  3767. .release = single_release
  3768. };
  3769. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3770. {
  3771. struct drm_device *dev = m->private;
  3772. int level;
  3773. int num_levels;
  3774. if (IS_CHERRYVIEW(dev))
  3775. num_levels = 3;
  3776. else if (IS_VALLEYVIEW(dev))
  3777. num_levels = 1;
  3778. else
  3779. num_levels = ilk_wm_max_level(dev) + 1;
  3780. drm_modeset_lock_all(dev);
  3781. for (level = 0; level < num_levels; level++) {
  3782. unsigned int latency = wm[level];
  3783. /*
  3784. * - WM1+ latency values in 0.5us units
  3785. * - latencies are in us on gen9/vlv/chv
  3786. */
  3787. if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
  3788. latency *= 10;
  3789. else if (level > 0)
  3790. latency *= 5;
  3791. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3792. level, wm[level], latency / 10, latency % 10);
  3793. }
  3794. drm_modeset_unlock_all(dev);
  3795. }
  3796. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3797. {
  3798. struct drm_device *dev = m->private;
  3799. struct drm_i915_private *dev_priv = dev->dev_private;
  3800. const uint16_t *latencies;
  3801. if (INTEL_INFO(dev)->gen >= 9)
  3802. latencies = dev_priv->wm.skl_latency;
  3803. else
  3804. latencies = to_i915(dev)->wm.pri_latency;
  3805. wm_latency_show(m, latencies);
  3806. return 0;
  3807. }
  3808. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3809. {
  3810. struct drm_device *dev = m->private;
  3811. struct drm_i915_private *dev_priv = dev->dev_private;
  3812. const uint16_t *latencies;
  3813. if (INTEL_INFO(dev)->gen >= 9)
  3814. latencies = dev_priv->wm.skl_latency;
  3815. else
  3816. latencies = to_i915(dev)->wm.spr_latency;
  3817. wm_latency_show(m, latencies);
  3818. return 0;
  3819. }
  3820. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3821. {
  3822. struct drm_device *dev = m->private;
  3823. struct drm_i915_private *dev_priv = dev->dev_private;
  3824. const uint16_t *latencies;
  3825. if (INTEL_INFO(dev)->gen >= 9)
  3826. latencies = dev_priv->wm.skl_latency;
  3827. else
  3828. latencies = to_i915(dev)->wm.cur_latency;
  3829. wm_latency_show(m, latencies);
  3830. return 0;
  3831. }
  3832. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3833. {
  3834. struct drm_device *dev = inode->i_private;
  3835. if (INTEL_INFO(dev)->gen < 5)
  3836. return -ENODEV;
  3837. return single_open(file, pri_wm_latency_show, dev);
  3838. }
  3839. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3840. {
  3841. struct drm_device *dev = inode->i_private;
  3842. if (HAS_GMCH_DISPLAY(dev))
  3843. return -ENODEV;
  3844. return single_open(file, spr_wm_latency_show, dev);
  3845. }
  3846. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3847. {
  3848. struct drm_device *dev = inode->i_private;
  3849. if (HAS_GMCH_DISPLAY(dev))
  3850. return -ENODEV;
  3851. return single_open(file, cur_wm_latency_show, dev);
  3852. }
  3853. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3854. size_t len, loff_t *offp, uint16_t wm[8])
  3855. {
  3856. struct seq_file *m = file->private_data;
  3857. struct drm_device *dev = m->private;
  3858. uint16_t new[8] = { 0 };
  3859. int num_levels;
  3860. int level;
  3861. int ret;
  3862. char tmp[32];
  3863. if (IS_CHERRYVIEW(dev))
  3864. num_levels = 3;
  3865. else if (IS_VALLEYVIEW(dev))
  3866. num_levels = 1;
  3867. else
  3868. num_levels = ilk_wm_max_level(dev) + 1;
  3869. if (len >= sizeof(tmp))
  3870. return -EINVAL;
  3871. if (copy_from_user(tmp, ubuf, len))
  3872. return -EFAULT;
  3873. tmp[len] = '\0';
  3874. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3875. &new[0], &new[1], &new[2], &new[3],
  3876. &new[4], &new[5], &new[6], &new[7]);
  3877. if (ret != num_levels)
  3878. return -EINVAL;
  3879. drm_modeset_lock_all(dev);
  3880. for (level = 0; level < num_levels; level++)
  3881. wm[level] = new[level];
  3882. drm_modeset_unlock_all(dev);
  3883. return len;
  3884. }
  3885. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3886. size_t len, loff_t *offp)
  3887. {
  3888. struct seq_file *m = file->private_data;
  3889. struct drm_device *dev = m->private;
  3890. struct drm_i915_private *dev_priv = dev->dev_private;
  3891. uint16_t *latencies;
  3892. if (INTEL_INFO(dev)->gen >= 9)
  3893. latencies = dev_priv->wm.skl_latency;
  3894. else
  3895. latencies = to_i915(dev)->wm.pri_latency;
  3896. return wm_latency_write(file, ubuf, len, offp, latencies);
  3897. }
  3898. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3899. size_t len, loff_t *offp)
  3900. {
  3901. struct seq_file *m = file->private_data;
  3902. struct drm_device *dev = m->private;
  3903. struct drm_i915_private *dev_priv = dev->dev_private;
  3904. uint16_t *latencies;
  3905. if (INTEL_INFO(dev)->gen >= 9)
  3906. latencies = dev_priv->wm.skl_latency;
  3907. else
  3908. latencies = to_i915(dev)->wm.spr_latency;
  3909. return wm_latency_write(file, ubuf, len, offp, latencies);
  3910. }
  3911. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3912. size_t len, loff_t *offp)
  3913. {
  3914. struct seq_file *m = file->private_data;
  3915. struct drm_device *dev = m->private;
  3916. struct drm_i915_private *dev_priv = dev->dev_private;
  3917. uint16_t *latencies;
  3918. if (INTEL_INFO(dev)->gen >= 9)
  3919. latencies = dev_priv->wm.skl_latency;
  3920. else
  3921. latencies = to_i915(dev)->wm.cur_latency;
  3922. return wm_latency_write(file, ubuf, len, offp, latencies);
  3923. }
  3924. static const struct file_operations i915_pri_wm_latency_fops = {
  3925. .owner = THIS_MODULE,
  3926. .open = pri_wm_latency_open,
  3927. .read = seq_read,
  3928. .llseek = seq_lseek,
  3929. .release = single_release,
  3930. .write = pri_wm_latency_write
  3931. };
  3932. static const struct file_operations i915_spr_wm_latency_fops = {
  3933. .owner = THIS_MODULE,
  3934. .open = spr_wm_latency_open,
  3935. .read = seq_read,
  3936. .llseek = seq_lseek,
  3937. .release = single_release,
  3938. .write = spr_wm_latency_write
  3939. };
  3940. static const struct file_operations i915_cur_wm_latency_fops = {
  3941. .owner = THIS_MODULE,
  3942. .open = cur_wm_latency_open,
  3943. .read = seq_read,
  3944. .llseek = seq_lseek,
  3945. .release = single_release,
  3946. .write = cur_wm_latency_write
  3947. };
  3948. static int
  3949. i915_wedged_get(void *data, u64 *val)
  3950. {
  3951. struct drm_device *dev = data;
  3952. struct drm_i915_private *dev_priv = dev->dev_private;
  3953. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  3954. return 0;
  3955. }
  3956. static int
  3957. i915_wedged_set(void *data, u64 val)
  3958. {
  3959. struct drm_device *dev = data;
  3960. struct drm_i915_private *dev_priv = dev->dev_private;
  3961. /*
  3962. * There is no safeguard against this debugfs entry colliding
  3963. * with the hangcheck calling same i915_handle_error() in
  3964. * parallel, causing an explosion. For now we assume that the
  3965. * test harness is responsible enough not to inject gpu hangs
  3966. * while it is writing to 'i915_wedged'
  3967. */
  3968. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3969. return -EAGAIN;
  3970. intel_runtime_pm_get(dev_priv);
  3971. i915_handle_error(dev, val,
  3972. "Manually setting wedged to %llu", val);
  3973. intel_runtime_pm_put(dev_priv);
  3974. return 0;
  3975. }
  3976. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3977. i915_wedged_get, i915_wedged_set,
  3978. "%llu\n");
  3979. static int
  3980. i915_ring_stop_get(void *data, u64 *val)
  3981. {
  3982. struct drm_device *dev = data;
  3983. struct drm_i915_private *dev_priv = dev->dev_private;
  3984. *val = dev_priv->gpu_error.stop_rings;
  3985. return 0;
  3986. }
  3987. static int
  3988. i915_ring_stop_set(void *data, u64 val)
  3989. {
  3990. struct drm_device *dev = data;
  3991. struct drm_i915_private *dev_priv = dev->dev_private;
  3992. int ret;
  3993. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  3994. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3995. if (ret)
  3996. return ret;
  3997. dev_priv->gpu_error.stop_rings = val;
  3998. mutex_unlock(&dev->struct_mutex);
  3999. return 0;
  4000. }
  4001. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  4002. i915_ring_stop_get, i915_ring_stop_set,
  4003. "0x%08llx\n");
  4004. static int
  4005. i915_ring_missed_irq_get(void *data, u64 *val)
  4006. {
  4007. struct drm_device *dev = data;
  4008. struct drm_i915_private *dev_priv = dev->dev_private;
  4009. *val = dev_priv->gpu_error.missed_irq_rings;
  4010. return 0;
  4011. }
  4012. static int
  4013. i915_ring_missed_irq_set(void *data, u64 val)
  4014. {
  4015. struct drm_device *dev = data;
  4016. struct drm_i915_private *dev_priv = dev->dev_private;
  4017. int ret;
  4018. /* Lock against concurrent debugfs callers */
  4019. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4020. if (ret)
  4021. return ret;
  4022. dev_priv->gpu_error.missed_irq_rings = val;
  4023. mutex_unlock(&dev->struct_mutex);
  4024. return 0;
  4025. }
  4026. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  4027. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  4028. "0x%08llx\n");
  4029. static int
  4030. i915_ring_test_irq_get(void *data, u64 *val)
  4031. {
  4032. struct drm_device *dev = data;
  4033. struct drm_i915_private *dev_priv = dev->dev_private;
  4034. *val = dev_priv->gpu_error.test_irq_rings;
  4035. return 0;
  4036. }
  4037. static int
  4038. i915_ring_test_irq_set(void *data, u64 val)
  4039. {
  4040. struct drm_device *dev = data;
  4041. struct drm_i915_private *dev_priv = dev->dev_private;
  4042. int ret;
  4043. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  4044. /* Lock against concurrent debugfs callers */
  4045. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4046. if (ret)
  4047. return ret;
  4048. dev_priv->gpu_error.test_irq_rings = val;
  4049. mutex_unlock(&dev->struct_mutex);
  4050. return 0;
  4051. }
  4052. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  4053. i915_ring_test_irq_get, i915_ring_test_irq_set,
  4054. "0x%08llx\n");
  4055. #define DROP_UNBOUND 0x1
  4056. #define DROP_BOUND 0x2
  4057. #define DROP_RETIRE 0x4
  4058. #define DROP_ACTIVE 0x8
  4059. #define DROP_ALL (DROP_UNBOUND | \
  4060. DROP_BOUND | \
  4061. DROP_RETIRE | \
  4062. DROP_ACTIVE)
  4063. static int
  4064. i915_drop_caches_get(void *data, u64 *val)
  4065. {
  4066. *val = DROP_ALL;
  4067. return 0;
  4068. }
  4069. static int
  4070. i915_drop_caches_set(void *data, u64 val)
  4071. {
  4072. struct drm_device *dev = data;
  4073. struct drm_i915_private *dev_priv = dev->dev_private;
  4074. int ret;
  4075. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  4076. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  4077. * on ioctls on -EAGAIN. */
  4078. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4079. if (ret)
  4080. return ret;
  4081. if (val & DROP_ACTIVE) {
  4082. ret = i915_gpu_idle(dev);
  4083. if (ret)
  4084. goto unlock;
  4085. }
  4086. if (val & (DROP_RETIRE | DROP_ACTIVE))
  4087. i915_gem_retire_requests(dev);
  4088. if (val & DROP_BOUND)
  4089. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  4090. if (val & DROP_UNBOUND)
  4091. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  4092. unlock:
  4093. mutex_unlock(&dev->struct_mutex);
  4094. return ret;
  4095. }
  4096. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  4097. i915_drop_caches_get, i915_drop_caches_set,
  4098. "0x%08llx\n");
  4099. static int
  4100. i915_max_freq_get(void *data, u64 *val)
  4101. {
  4102. struct drm_device *dev = data;
  4103. struct drm_i915_private *dev_priv = dev->dev_private;
  4104. int ret;
  4105. if (INTEL_INFO(dev)->gen < 6)
  4106. return -ENODEV;
  4107. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4108. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4109. if (ret)
  4110. return ret;
  4111. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4112. mutex_unlock(&dev_priv->rps.hw_lock);
  4113. return 0;
  4114. }
  4115. static int
  4116. i915_max_freq_set(void *data, u64 val)
  4117. {
  4118. struct drm_device *dev = data;
  4119. struct drm_i915_private *dev_priv = dev->dev_private;
  4120. u32 hw_max, hw_min;
  4121. int ret;
  4122. if (INTEL_INFO(dev)->gen < 6)
  4123. return -ENODEV;
  4124. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4125. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4126. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4127. if (ret)
  4128. return ret;
  4129. /*
  4130. * Turbo will still be enabled, but won't go above the set value.
  4131. */
  4132. val = intel_freq_opcode(dev_priv, val);
  4133. hw_max = dev_priv->rps.max_freq;
  4134. hw_min = dev_priv->rps.min_freq;
  4135. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4136. mutex_unlock(&dev_priv->rps.hw_lock);
  4137. return -EINVAL;
  4138. }
  4139. dev_priv->rps.max_freq_softlimit = val;
  4140. intel_set_rps(dev, val);
  4141. mutex_unlock(&dev_priv->rps.hw_lock);
  4142. return 0;
  4143. }
  4144. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4145. i915_max_freq_get, i915_max_freq_set,
  4146. "%llu\n");
  4147. static int
  4148. i915_min_freq_get(void *data, u64 *val)
  4149. {
  4150. struct drm_device *dev = data;
  4151. struct drm_i915_private *dev_priv = dev->dev_private;
  4152. int ret;
  4153. if (INTEL_INFO(dev)->gen < 6)
  4154. return -ENODEV;
  4155. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4156. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4157. if (ret)
  4158. return ret;
  4159. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4160. mutex_unlock(&dev_priv->rps.hw_lock);
  4161. return 0;
  4162. }
  4163. static int
  4164. i915_min_freq_set(void *data, u64 val)
  4165. {
  4166. struct drm_device *dev = data;
  4167. struct drm_i915_private *dev_priv = dev->dev_private;
  4168. u32 hw_max, hw_min;
  4169. int ret;
  4170. if (INTEL_INFO(dev)->gen < 6)
  4171. return -ENODEV;
  4172. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4173. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4174. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4175. if (ret)
  4176. return ret;
  4177. /*
  4178. * Turbo will still be enabled, but won't go below the set value.
  4179. */
  4180. val = intel_freq_opcode(dev_priv, val);
  4181. hw_max = dev_priv->rps.max_freq;
  4182. hw_min = dev_priv->rps.min_freq;
  4183. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4184. mutex_unlock(&dev_priv->rps.hw_lock);
  4185. return -EINVAL;
  4186. }
  4187. dev_priv->rps.min_freq_softlimit = val;
  4188. intel_set_rps(dev, val);
  4189. mutex_unlock(&dev_priv->rps.hw_lock);
  4190. return 0;
  4191. }
  4192. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4193. i915_min_freq_get, i915_min_freq_set,
  4194. "%llu\n");
  4195. static int
  4196. i915_cache_sharing_get(void *data, u64 *val)
  4197. {
  4198. struct drm_device *dev = data;
  4199. struct drm_i915_private *dev_priv = dev->dev_private;
  4200. u32 snpcr;
  4201. int ret;
  4202. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4203. return -ENODEV;
  4204. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4205. if (ret)
  4206. return ret;
  4207. intel_runtime_pm_get(dev_priv);
  4208. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4209. intel_runtime_pm_put(dev_priv);
  4210. mutex_unlock(&dev_priv->dev->struct_mutex);
  4211. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4212. return 0;
  4213. }
  4214. static int
  4215. i915_cache_sharing_set(void *data, u64 val)
  4216. {
  4217. struct drm_device *dev = data;
  4218. struct drm_i915_private *dev_priv = dev->dev_private;
  4219. u32 snpcr;
  4220. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4221. return -ENODEV;
  4222. if (val > 3)
  4223. return -EINVAL;
  4224. intel_runtime_pm_get(dev_priv);
  4225. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4226. /* Update the cache sharing policy here as well */
  4227. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4228. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4229. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4230. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4231. intel_runtime_pm_put(dev_priv);
  4232. return 0;
  4233. }
  4234. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4235. i915_cache_sharing_get, i915_cache_sharing_set,
  4236. "%llu\n");
  4237. struct sseu_dev_status {
  4238. unsigned int slice_total;
  4239. unsigned int subslice_total;
  4240. unsigned int subslice_per_slice;
  4241. unsigned int eu_total;
  4242. unsigned int eu_per_subslice;
  4243. };
  4244. static void cherryview_sseu_device_status(struct drm_device *dev,
  4245. struct sseu_dev_status *stat)
  4246. {
  4247. struct drm_i915_private *dev_priv = dev->dev_private;
  4248. int ss_max = 2;
  4249. int ss;
  4250. u32 sig1[ss_max], sig2[ss_max];
  4251. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4252. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4253. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4254. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4255. for (ss = 0; ss < ss_max; ss++) {
  4256. unsigned int eu_cnt;
  4257. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4258. /* skip disabled subslice */
  4259. continue;
  4260. stat->slice_total = 1;
  4261. stat->subslice_per_slice++;
  4262. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4263. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4264. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4265. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4266. stat->eu_total += eu_cnt;
  4267. stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
  4268. }
  4269. stat->subslice_total = stat->subslice_per_slice;
  4270. }
  4271. static void gen9_sseu_device_status(struct drm_device *dev,
  4272. struct sseu_dev_status *stat)
  4273. {
  4274. struct drm_i915_private *dev_priv = dev->dev_private;
  4275. int s_max = 3, ss_max = 4;
  4276. int s, ss;
  4277. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4278. /* BXT has a single slice and at most 3 subslices. */
  4279. if (IS_BROXTON(dev)) {
  4280. s_max = 1;
  4281. ss_max = 3;
  4282. }
  4283. for (s = 0; s < s_max; s++) {
  4284. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4285. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4286. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4287. }
  4288. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4289. GEN9_PGCTL_SSA_EU19_ACK |
  4290. GEN9_PGCTL_SSA_EU210_ACK |
  4291. GEN9_PGCTL_SSA_EU311_ACK;
  4292. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4293. GEN9_PGCTL_SSB_EU19_ACK |
  4294. GEN9_PGCTL_SSB_EU210_ACK |
  4295. GEN9_PGCTL_SSB_EU311_ACK;
  4296. for (s = 0; s < s_max; s++) {
  4297. unsigned int ss_cnt = 0;
  4298. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4299. /* skip disabled slice */
  4300. continue;
  4301. stat->slice_total++;
  4302. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  4303. ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
  4304. for (ss = 0; ss < ss_max; ss++) {
  4305. unsigned int eu_cnt;
  4306. if (IS_BROXTON(dev) &&
  4307. !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4308. /* skip disabled subslice */
  4309. continue;
  4310. if (IS_BROXTON(dev))
  4311. ss_cnt++;
  4312. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4313. eu_mask[ss%2]);
  4314. stat->eu_total += eu_cnt;
  4315. stat->eu_per_subslice = max(stat->eu_per_subslice,
  4316. eu_cnt);
  4317. }
  4318. stat->subslice_total += ss_cnt;
  4319. stat->subslice_per_slice = max(stat->subslice_per_slice,
  4320. ss_cnt);
  4321. }
  4322. }
  4323. static void broadwell_sseu_device_status(struct drm_device *dev,
  4324. struct sseu_dev_status *stat)
  4325. {
  4326. struct drm_i915_private *dev_priv = dev->dev_private;
  4327. int s;
  4328. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4329. stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
  4330. if (stat->slice_total) {
  4331. stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
  4332. stat->subslice_total = stat->slice_total *
  4333. stat->subslice_per_slice;
  4334. stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
  4335. stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
  4336. /* subtract fused off EU(s) from enabled slice(s) */
  4337. for (s = 0; s < stat->slice_total; s++) {
  4338. u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
  4339. stat->eu_total -= hweight8(subslice_7eu);
  4340. }
  4341. }
  4342. }
  4343. static int i915_sseu_status(struct seq_file *m, void *unused)
  4344. {
  4345. struct drm_info_node *node = (struct drm_info_node *) m->private;
  4346. struct drm_device *dev = node->minor->dev;
  4347. struct sseu_dev_status stat;
  4348. if (INTEL_INFO(dev)->gen < 8)
  4349. return -ENODEV;
  4350. seq_puts(m, "SSEU Device Info\n");
  4351. seq_printf(m, " Available Slice Total: %u\n",
  4352. INTEL_INFO(dev)->slice_total);
  4353. seq_printf(m, " Available Subslice Total: %u\n",
  4354. INTEL_INFO(dev)->subslice_total);
  4355. seq_printf(m, " Available Subslice Per Slice: %u\n",
  4356. INTEL_INFO(dev)->subslice_per_slice);
  4357. seq_printf(m, " Available EU Total: %u\n",
  4358. INTEL_INFO(dev)->eu_total);
  4359. seq_printf(m, " Available EU Per Subslice: %u\n",
  4360. INTEL_INFO(dev)->eu_per_subslice);
  4361. seq_printf(m, " Has Slice Power Gating: %s\n",
  4362. yesno(INTEL_INFO(dev)->has_slice_pg));
  4363. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4364. yesno(INTEL_INFO(dev)->has_subslice_pg));
  4365. seq_printf(m, " Has EU Power Gating: %s\n",
  4366. yesno(INTEL_INFO(dev)->has_eu_pg));
  4367. seq_puts(m, "SSEU Device Status\n");
  4368. memset(&stat, 0, sizeof(stat));
  4369. if (IS_CHERRYVIEW(dev)) {
  4370. cherryview_sseu_device_status(dev, &stat);
  4371. } else if (IS_BROADWELL(dev)) {
  4372. broadwell_sseu_device_status(dev, &stat);
  4373. } else if (INTEL_INFO(dev)->gen >= 9) {
  4374. gen9_sseu_device_status(dev, &stat);
  4375. }
  4376. seq_printf(m, " Enabled Slice Total: %u\n",
  4377. stat.slice_total);
  4378. seq_printf(m, " Enabled Subslice Total: %u\n",
  4379. stat.subslice_total);
  4380. seq_printf(m, " Enabled Subslice Per Slice: %u\n",
  4381. stat.subslice_per_slice);
  4382. seq_printf(m, " Enabled EU Total: %u\n",
  4383. stat.eu_total);
  4384. seq_printf(m, " Enabled EU Per Subslice: %u\n",
  4385. stat.eu_per_subslice);
  4386. return 0;
  4387. }
  4388. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4389. {
  4390. struct drm_device *dev = inode->i_private;
  4391. struct drm_i915_private *dev_priv = dev->dev_private;
  4392. if (INTEL_INFO(dev)->gen < 6)
  4393. return 0;
  4394. intel_runtime_pm_get(dev_priv);
  4395. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4396. return 0;
  4397. }
  4398. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4399. {
  4400. struct drm_device *dev = inode->i_private;
  4401. struct drm_i915_private *dev_priv = dev->dev_private;
  4402. if (INTEL_INFO(dev)->gen < 6)
  4403. return 0;
  4404. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4405. intel_runtime_pm_put(dev_priv);
  4406. return 0;
  4407. }
  4408. static const struct file_operations i915_forcewake_fops = {
  4409. .owner = THIS_MODULE,
  4410. .open = i915_forcewake_open,
  4411. .release = i915_forcewake_release,
  4412. };
  4413. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4414. {
  4415. struct drm_device *dev = minor->dev;
  4416. struct dentry *ent;
  4417. ent = debugfs_create_file("i915_forcewake_user",
  4418. S_IRUSR,
  4419. root, dev,
  4420. &i915_forcewake_fops);
  4421. if (!ent)
  4422. return -ENOMEM;
  4423. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4424. }
  4425. static int i915_debugfs_create(struct dentry *root,
  4426. struct drm_minor *minor,
  4427. const char *name,
  4428. const struct file_operations *fops)
  4429. {
  4430. struct drm_device *dev = minor->dev;
  4431. struct dentry *ent;
  4432. ent = debugfs_create_file(name,
  4433. S_IRUGO | S_IWUSR,
  4434. root, dev,
  4435. fops);
  4436. if (!ent)
  4437. return -ENOMEM;
  4438. return drm_add_fake_info_node(minor, ent, fops);
  4439. }
  4440. static const struct drm_info_list i915_debugfs_list[] = {
  4441. {"i915_capabilities", i915_capabilities, 0},
  4442. {"i915_gem_objects", i915_gem_object_info, 0},
  4443. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4444. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  4445. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  4446. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  4447. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4448. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4449. {"i915_gem_request", i915_gem_request_info, 0},
  4450. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4451. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4452. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4453. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4454. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4455. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4456. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4457. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4458. {"i915_guc_info", i915_guc_info, 0},
  4459. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4460. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4461. {"i915_frequency_info", i915_frequency_info, 0},
  4462. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4463. {"i915_drpc_info", i915_drpc_info, 0},
  4464. {"i915_emon_status", i915_emon_status, 0},
  4465. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4466. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4467. {"i915_fbc_status", i915_fbc_status, 0},
  4468. {"i915_ips_status", i915_ips_status, 0},
  4469. {"i915_sr_status", i915_sr_status, 0},
  4470. {"i915_opregion", i915_opregion, 0},
  4471. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4472. {"i915_context_status", i915_context_status, 0},
  4473. {"i915_dump_lrc", i915_dump_lrc, 0},
  4474. {"i915_execlists", i915_execlists, 0},
  4475. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4476. {"i915_swizzle_info", i915_swizzle_info, 0},
  4477. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4478. {"i915_llc", i915_llc, 0},
  4479. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4480. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4481. {"i915_energy_uJ", i915_energy_uJ, 0},
  4482. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4483. {"i915_power_domain_info", i915_power_domain_info, 0},
  4484. {"i915_dmc_info", i915_dmc_info, 0},
  4485. {"i915_display_info", i915_display_info, 0},
  4486. {"i915_semaphore_status", i915_semaphore_status, 0},
  4487. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4488. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4489. {"i915_wa_registers", i915_wa_registers, 0},
  4490. {"i915_ddb_info", i915_ddb_info, 0},
  4491. {"i915_sseu_status", i915_sseu_status, 0},
  4492. {"i915_drrs_status", i915_drrs_status, 0},
  4493. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4494. };
  4495. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4496. static const struct i915_debugfs_files {
  4497. const char *name;
  4498. const struct file_operations *fops;
  4499. } i915_debugfs_files[] = {
  4500. {"i915_wedged", &i915_wedged_fops},
  4501. {"i915_max_freq", &i915_max_freq_fops},
  4502. {"i915_min_freq", &i915_min_freq_fops},
  4503. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4504. {"i915_ring_stop", &i915_ring_stop_fops},
  4505. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4506. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4507. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4508. {"i915_error_state", &i915_error_state_fops},
  4509. {"i915_next_seqno", &i915_next_seqno_fops},
  4510. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4511. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4512. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4513. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4514. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4515. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4516. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4517. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4518. };
  4519. void intel_display_crc_init(struct drm_device *dev)
  4520. {
  4521. struct drm_i915_private *dev_priv = dev->dev_private;
  4522. enum pipe pipe;
  4523. for_each_pipe(dev_priv, pipe) {
  4524. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4525. pipe_crc->opened = false;
  4526. spin_lock_init(&pipe_crc->lock);
  4527. init_waitqueue_head(&pipe_crc->wq);
  4528. }
  4529. }
  4530. int i915_debugfs_init(struct drm_minor *minor)
  4531. {
  4532. int ret, i;
  4533. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4534. if (ret)
  4535. return ret;
  4536. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4537. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4538. if (ret)
  4539. return ret;
  4540. }
  4541. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4542. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4543. i915_debugfs_files[i].name,
  4544. i915_debugfs_files[i].fops);
  4545. if (ret)
  4546. return ret;
  4547. }
  4548. return drm_debugfs_create_files(i915_debugfs_list,
  4549. I915_DEBUGFS_ENTRIES,
  4550. minor->debugfs_root, minor);
  4551. }
  4552. void i915_debugfs_cleanup(struct drm_minor *minor)
  4553. {
  4554. int i;
  4555. drm_debugfs_remove_files(i915_debugfs_list,
  4556. I915_DEBUGFS_ENTRIES, minor);
  4557. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  4558. 1, minor);
  4559. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4560. struct drm_info_list *info_list =
  4561. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4562. drm_debugfs_remove_files(info_list, 1, minor);
  4563. }
  4564. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4565. struct drm_info_list *info_list =
  4566. (struct drm_info_list *) i915_debugfs_files[i].fops;
  4567. drm_debugfs_remove_files(info_list, 1, minor);
  4568. }
  4569. }
  4570. struct dpcd_block {
  4571. /* DPCD dump start address. */
  4572. unsigned int offset;
  4573. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4574. unsigned int end;
  4575. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4576. size_t size;
  4577. /* Only valid for eDP. */
  4578. bool edp;
  4579. };
  4580. static const struct dpcd_block i915_dpcd_debug[] = {
  4581. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4582. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4583. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4584. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4585. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4586. { .offset = DP_SET_POWER },
  4587. { .offset = DP_EDP_DPCD_REV },
  4588. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4589. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4590. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4591. };
  4592. static int i915_dpcd_show(struct seq_file *m, void *data)
  4593. {
  4594. struct drm_connector *connector = m->private;
  4595. struct intel_dp *intel_dp =
  4596. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4597. uint8_t buf[16];
  4598. ssize_t err;
  4599. int i;
  4600. if (connector->status != connector_status_connected)
  4601. return -ENODEV;
  4602. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4603. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4604. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4605. if (b->edp &&
  4606. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4607. continue;
  4608. /* low tech for now */
  4609. if (WARN_ON(size > sizeof(buf)))
  4610. continue;
  4611. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4612. if (err <= 0) {
  4613. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4614. size, b->offset, err);
  4615. continue;
  4616. }
  4617. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4618. }
  4619. return 0;
  4620. }
  4621. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4622. {
  4623. return single_open(file, i915_dpcd_show, inode->i_private);
  4624. }
  4625. static const struct file_operations i915_dpcd_fops = {
  4626. .owner = THIS_MODULE,
  4627. .open = i915_dpcd_open,
  4628. .read = seq_read,
  4629. .llseek = seq_lseek,
  4630. .release = single_release,
  4631. };
  4632. /**
  4633. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4634. * @connector: pointer to a registered drm_connector
  4635. *
  4636. * Cleanup will be done by drm_connector_unregister() through a call to
  4637. * drm_debugfs_connector_remove().
  4638. *
  4639. * Returns 0 on success, negative error codes on error.
  4640. */
  4641. int i915_debugfs_connector_add(struct drm_connector *connector)
  4642. {
  4643. struct dentry *root = connector->debugfs_entry;
  4644. /* The connector must have been registered beforehands. */
  4645. if (!root)
  4646. return -ENODEV;
  4647. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4648. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4649. debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
  4650. &i915_dpcd_fops);
  4651. return 0;
  4652. }