checkpoint.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. /*
  27. * We guarantee no failure on the returned page.
  28. */
  29. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  30. {
  31. struct address_space *mapping = META_MAPPING(sbi);
  32. struct page *page = NULL;
  33. repeat:
  34. page = grab_cache_page(mapping, index);
  35. if (!page) {
  36. cond_resched();
  37. goto repeat;
  38. }
  39. f2fs_wait_on_page_writeback(page, META);
  40. SetPageUptodate(page);
  41. return page;
  42. }
  43. /*
  44. * We guarantee no failure on the returned page.
  45. */
  46. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  47. {
  48. struct address_space *mapping = META_MAPPING(sbi);
  49. struct page *page;
  50. struct f2fs_io_info fio = {
  51. .type = META,
  52. .rw = READ_SYNC | REQ_META | REQ_PRIO,
  53. .blk_addr = index,
  54. };
  55. repeat:
  56. page = grab_cache_page(mapping, index);
  57. if (!page) {
  58. cond_resched();
  59. goto repeat;
  60. }
  61. if (PageUptodate(page))
  62. goto out;
  63. if (f2fs_submit_page_bio(sbi, page, &fio))
  64. goto repeat;
  65. lock_page(page);
  66. if (unlikely(page->mapping != mapping)) {
  67. f2fs_put_page(page, 1);
  68. goto repeat;
  69. }
  70. out:
  71. return page;
  72. }
  73. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  74. {
  75. switch (type) {
  76. case META_NAT:
  77. break;
  78. case META_SIT:
  79. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  80. return false;
  81. break;
  82. case META_SSA:
  83. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  84. blkaddr < SM_I(sbi)->ssa_blkaddr))
  85. return false;
  86. break;
  87. case META_CP:
  88. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  89. blkaddr < __start_cp_addr(sbi)))
  90. return false;
  91. break;
  92. case META_POR:
  93. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  94. blkaddr < MAIN_BLKADDR(sbi)))
  95. return false;
  96. break;
  97. default:
  98. BUG();
  99. }
  100. return true;
  101. }
  102. /*
  103. * Readahead CP/NAT/SIT/SSA pages
  104. */
  105. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
  106. {
  107. block_t prev_blk_addr = 0;
  108. struct page *page;
  109. block_t blkno = start;
  110. struct f2fs_io_info fio = {
  111. .type = META,
  112. .rw = READ_SYNC | REQ_META | REQ_PRIO
  113. };
  114. for (; nrpages-- > 0; blkno++) {
  115. if (!is_valid_blkaddr(sbi, blkno, type))
  116. goto out;
  117. switch (type) {
  118. case META_NAT:
  119. if (unlikely(blkno >=
  120. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  121. blkno = 0;
  122. /* get nat block addr */
  123. fio.blk_addr = current_nat_addr(sbi,
  124. blkno * NAT_ENTRY_PER_BLOCK);
  125. break;
  126. case META_SIT:
  127. /* get sit block addr */
  128. fio.blk_addr = current_sit_addr(sbi,
  129. blkno * SIT_ENTRY_PER_BLOCK);
  130. if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
  131. goto out;
  132. prev_blk_addr = fio.blk_addr;
  133. break;
  134. case META_SSA:
  135. case META_CP:
  136. case META_POR:
  137. fio.blk_addr = blkno;
  138. break;
  139. default:
  140. BUG();
  141. }
  142. page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
  143. if (!page)
  144. continue;
  145. if (PageUptodate(page)) {
  146. f2fs_put_page(page, 1);
  147. continue;
  148. }
  149. f2fs_submit_page_mbio(sbi, page, &fio);
  150. f2fs_put_page(page, 0);
  151. }
  152. out:
  153. f2fs_submit_merged_bio(sbi, META, READ);
  154. return blkno - start;
  155. }
  156. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  157. {
  158. struct page *page;
  159. bool readahead = false;
  160. page = find_get_page(META_MAPPING(sbi), index);
  161. if (!page || (page && !PageUptodate(page)))
  162. readahead = true;
  163. f2fs_put_page(page, 0);
  164. if (readahead)
  165. ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
  166. }
  167. static int f2fs_write_meta_page(struct page *page,
  168. struct writeback_control *wbc)
  169. {
  170. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  171. trace_f2fs_writepage(page, META);
  172. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  173. goto redirty_out;
  174. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  175. goto redirty_out;
  176. if (unlikely(f2fs_cp_error(sbi)))
  177. goto redirty_out;
  178. f2fs_wait_on_page_writeback(page, META);
  179. write_meta_page(sbi, page);
  180. dec_page_count(sbi, F2FS_DIRTY_META);
  181. unlock_page(page);
  182. if (wbc->for_reclaim)
  183. f2fs_submit_merged_bio(sbi, META, WRITE);
  184. return 0;
  185. redirty_out:
  186. redirty_page_for_writepage(wbc, page);
  187. return AOP_WRITEPAGE_ACTIVATE;
  188. }
  189. static int f2fs_write_meta_pages(struct address_space *mapping,
  190. struct writeback_control *wbc)
  191. {
  192. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  193. long diff, written;
  194. trace_f2fs_writepages(mapping->host, wbc, META);
  195. /* collect a number of dirty meta pages and write together */
  196. if (wbc->for_kupdate ||
  197. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  198. goto skip_write;
  199. /* if mounting is failed, skip writing node pages */
  200. mutex_lock(&sbi->cp_mutex);
  201. diff = nr_pages_to_write(sbi, META, wbc);
  202. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  203. mutex_unlock(&sbi->cp_mutex);
  204. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  205. return 0;
  206. skip_write:
  207. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  208. return 0;
  209. }
  210. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  211. long nr_to_write)
  212. {
  213. struct address_space *mapping = META_MAPPING(sbi);
  214. pgoff_t index = 0, end = LONG_MAX;
  215. struct pagevec pvec;
  216. long nwritten = 0;
  217. struct writeback_control wbc = {
  218. .for_reclaim = 0,
  219. };
  220. pagevec_init(&pvec, 0);
  221. while (index <= end) {
  222. int i, nr_pages;
  223. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  224. PAGECACHE_TAG_DIRTY,
  225. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  226. if (unlikely(nr_pages == 0))
  227. break;
  228. for (i = 0; i < nr_pages; i++) {
  229. struct page *page = pvec.pages[i];
  230. lock_page(page);
  231. if (unlikely(page->mapping != mapping)) {
  232. continue_unlock:
  233. unlock_page(page);
  234. continue;
  235. }
  236. if (!PageDirty(page)) {
  237. /* someone wrote it for us */
  238. goto continue_unlock;
  239. }
  240. if (!clear_page_dirty_for_io(page))
  241. goto continue_unlock;
  242. if (mapping->a_ops->writepage(page, &wbc)) {
  243. unlock_page(page);
  244. break;
  245. }
  246. nwritten++;
  247. if (unlikely(nwritten >= nr_to_write))
  248. break;
  249. }
  250. pagevec_release(&pvec);
  251. cond_resched();
  252. }
  253. if (nwritten)
  254. f2fs_submit_merged_bio(sbi, type, WRITE);
  255. return nwritten;
  256. }
  257. static int f2fs_set_meta_page_dirty(struct page *page)
  258. {
  259. trace_f2fs_set_page_dirty(page, META);
  260. SetPageUptodate(page);
  261. if (!PageDirty(page)) {
  262. __set_page_dirty_nobuffers(page);
  263. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  264. SetPagePrivate(page);
  265. f2fs_trace_pid(page);
  266. return 1;
  267. }
  268. return 0;
  269. }
  270. const struct address_space_operations f2fs_meta_aops = {
  271. .writepage = f2fs_write_meta_page,
  272. .writepages = f2fs_write_meta_pages,
  273. .set_page_dirty = f2fs_set_meta_page_dirty,
  274. .invalidatepage = f2fs_invalidate_page,
  275. .releasepage = f2fs_release_page,
  276. };
  277. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  278. {
  279. struct inode_management *im = &sbi->im[type];
  280. struct ino_entry *e;
  281. retry:
  282. if (radix_tree_preload(GFP_NOFS)) {
  283. cond_resched();
  284. goto retry;
  285. }
  286. spin_lock(&im->ino_lock);
  287. e = radix_tree_lookup(&im->ino_root, ino);
  288. if (!e) {
  289. e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  290. if (!e) {
  291. spin_unlock(&im->ino_lock);
  292. radix_tree_preload_end();
  293. goto retry;
  294. }
  295. if (radix_tree_insert(&im->ino_root, ino, e)) {
  296. spin_unlock(&im->ino_lock);
  297. kmem_cache_free(ino_entry_slab, e);
  298. radix_tree_preload_end();
  299. goto retry;
  300. }
  301. memset(e, 0, sizeof(struct ino_entry));
  302. e->ino = ino;
  303. list_add_tail(&e->list, &im->ino_list);
  304. if (type != ORPHAN_INO)
  305. im->ino_num++;
  306. }
  307. spin_unlock(&im->ino_lock);
  308. radix_tree_preload_end();
  309. }
  310. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  311. {
  312. struct inode_management *im = &sbi->im[type];
  313. struct ino_entry *e;
  314. spin_lock(&im->ino_lock);
  315. e = radix_tree_lookup(&im->ino_root, ino);
  316. if (e) {
  317. list_del(&e->list);
  318. radix_tree_delete(&im->ino_root, ino);
  319. im->ino_num--;
  320. spin_unlock(&im->ino_lock);
  321. kmem_cache_free(ino_entry_slab, e);
  322. return;
  323. }
  324. spin_unlock(&im->ino_lock);
  325. }
  326. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  327. {
  328. /* add new dirty ino entry into list */
  329. __add_ino_entry(sbi, ino, type);
  330. }
  331. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  332. {
  333. /* remove dirty ino entry from list */
  334. __remove_ino_entry(sbi, ino, type);
  335. }
  336. /* mode should be APPEND_INO or UPDATE_INO */
  337. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  338. {
  339. struct inode_management *im = &sbi->im[mode];
  340. struct ino_entry *e;
  341. spin_lock(&im->ino_lock);
  342. e = radix_tree_lookup(&im->ino_root, ino);
  343. spin_unlock(&im->ino_lock);
  344. return e ? true : false;
  345. }
  346. void release_dirty_inode(struct f2fs_sb_info *sbi)
  347. {
  348. struct ino_entry *e, *tmp;
  349. int i;
  350. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  351. struct inode_management *im = &sbi->im[i];
  352. spin_lock(&im->ino_lock);
  353. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  354. list_del(&e->list);
  355. radix_tree_delete(&im->ino_root, e->ino);
  356. kmem_cache_free(ino_entry_slab, e);
  357. im->ino_num--;
  358. }
  359. spin_unlock(&im->ino_lock);
  360. }
  361. }
  362. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  363. {
  364. struct inode_management *im = &sbi->im[ORPHAN_INO];
  365. int err = 0;
  366. spin_lock(&im->ino_lock);
  367. if (unlikely(im->ino_num >= sbi->max_orphans))
  368. err = -ENOSPC;
  369. else
  370. im->ino_num++;
  371. spin_unlock(&im->ino_lock);
  372. return err;
  373. }
  374. void release_orphan_inode(struct f2fs_sb_info *sbi)
  375. {
  376. struct inode_management *im = &sbi->im[ORPHAN_INO];
  377. spin_lock(&im->ino_lock);
  378. f2fs_bug_on(sbi, im->ino_num == 0);
  379. im->ino_num--;
  380. spin_unlock(&im->ino_lock);
  381. }
  382. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  383. {
  384. /* add new orphan ino entry into list */
  385. __add_ino_entry(sbi, ino, ORPHAN_INO);
  386. }
  387. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  388. {
  389. /* remove orphan entry from orphan list */
  390. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  391. }
  392. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  393. {
  394. struct inode *inode = f2fs_iget(sbi->sb, ino);
  395. f2fs_bug_on(sbi, IS_ERR(inode));
  396. clear_nlink(inode);
  397. /* truncate all the data during iput */
  398. iput(inode);
  399. }
  400. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  401. {
  402. block_t start_blk, orphan_blocks, i, j;
  403. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  404. return;
  405. set_sbi_flag(sbi, SBI_POR_DOING);
  406. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  407. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  408. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
  409. for (i = 0; i < orphan_blocks; i++) {
  410. struct page *page = get_meta_page(sbi, start_blk + i);
  411. struct f2fs_orphan_block *orphan_blk;
  412. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  413. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  414. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  415. recover_orphan_inode(sbi, ino);
  416. }
  417. f2fs_put_page(page, 1);
  418. }
  419. /* clear Orphan Flag */
  420. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  421. clear_sbi_flag(sbi, SBI_POR_DOING);
  422. return;
  423. }
  424. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  425. {
  426. struct list_head *head;
  427. struct f2fs_orphan_block *orphan_blk = NULL;
  428. unsigned int nentries = 0;
  429. unsigned short index;
  430. unsigned short orphan_blocks;
  431. struct page *page = NULL;
  432. struct ino_entry *orphan = NULL;
  433. struct inode_management *im = &sbi->im[ORPHAN_INO];
  434. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  435. for (index = 0; index < orphan_blocks; index++)
  436. grab_meta_page(sbi, start_blk + index);
  437. index = 1;
  438. spin_lock(&im->ino_lock);
  439. head = &im->ino_list;
  440. /* loop for each orphan inode entry and write them in Jornal block */
  441. list_for_each_entry(orphan, head, list) {
  442. if (!page) {
  443. page = find_get_page(META_MAPPING(sbi), start_blk++);
  444. f2fs_bug_on(sbi, !page);
  445. orphan_blk =
  446. (struct f2fs_orphan_block *)page_address(page);
  447. memset(orphan_blk, 0, sizeof(*orphan_blk));
  448. f2fs_put_page(page, 0);
  449. }
  450. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  451. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  452. /*
  453. * an orphan block is full of 1020 entries,
  454. * then we need to flush current orphan blocks
  455. * and bring another one in memory
  456. */
  457. orphan_blk->blk_addr = cpu_to_le16(index);
  458. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  459. orphan_blk->entry_count = cpu_to_le32(nentries);
  460. set_page_dirty(page);
  461. f2fs_put_page(page, 1);
  462. index++;
  463. nentries = 0;
  464. page = NULL;
  465. }
  466. }
  467. if (page) {
  468. orphan_blk->blk_addr = cpu_to_le16(index);
  469. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  470. orphan_blk->entry_count = cpu_to_le32(nentries);
  471. set_page_dirty(page);
  472. f2fs_put_page(page, 1);
  473. }
  474. spin_unlock(&im->ino_lock);
  475. }
  476. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  477. block_t cp_addr, unsigned long long *version)
  478. {
  479. struct page *cp_page_1, *cp_page_2 = NULL;
  480. unsigned long blk_size = sbi->blocksize;
  481. struct f2fs_checkpoint *cp_block;
  482. unsigned long long cur_version = 0, pre_version = 0;
  483. size_t crc_offset;
  484. __u32 crc = 0;
  485. /* Read the 1st cp block in this CP pack */
  486. cp_page_1 = get_meta_page(sbi, cp_addr);
  487. /* get the version number */
  488. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  489. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  490. if (crc_offset >= blk_size)
  491. goto invalid_cp1;
  492. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  493. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  494. goto invalid_cp1;
  495. pre_version = cur_cp_version(cp_block);
  496. /* Read the 2nd cp block in this CP pack */
  497. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  498. cp_page_2 = get_meta_page(sbi, cp_addr);
  499. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  500. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  501. if (crc_offset >= blk_size)
  502. goto invalid_cp2;
  503. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  504. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  505. goto invalid_cp2;
  506. cur_version = cur_cp_version(cp_block);
  507. if (cur_version == pre_version) {
  508. *version = cur_version;
  509. f2fs_put_page(cp_page_2, 1);
  510. return cp_page_1;
  511. }
  512. invalid_cp2:
  513. f2fs_put_page(cp_page_2, 1);
  514. invalid_cp1:
  515. f2fs_put_page(cp_page_1, 1);
  516. return NULL;
  517. }
  518. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  519. {
  520. struct f2fs_checkpoint *cp_block;
  521. struct f2fs_super_block *fsb = sbi->raw_super;
  522. struct page *cp1, *cp2, *cur_page;
  523. unsigned long blk_size = sbi->blocksize;
  524. unsigned long long cp1_version = 0, cp2_version = 0;
  525. unsigned long long cp_start_blk_no;
  526. unsigned int cp_blks = 1 + __cp_payload(sbi);
  527. block_t cp_blk_no;
  528. int i;
  529. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  530. if (!sbi->ckpt)
  531. return -ENOMEM;
  532. /*
  533. * Finding out valid cp block involves read both
  534. * sets( cp pack1 and cp pack 2)
  535. */
  536. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  537. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  538. /* The second checkpoint pack should start at the next segment */
  539. cp_start_blk_no += ((unsigned long long)1) <<
  540. le32_to_cpu(fsb->log_blocks_per_seg);
  541. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  542. if (cp1 && cp2) {
  543. if (ver_after(cp2_version, cp1_version))
  544. cur_page = cp2;
  545. else
  546. cur_page = cp1;
  547. } else if (cp1) {
  548. cur_page = cp1;
  549. } else if (cp2) {
  550. cur_page = cp2;
  551. } else {
  552. goto fail_no_cp;
  553. }
  554. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  555. memcpy(sbi->ckpt, cp_block, blk_size);
  556. if (cp_blks <= 1)
  557. goto done;
  558. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  559. if (cur_page == cp2)
  560. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  561. for (i = 1; i < cp_blks; i++) {
  562. void *sit_bitmap_ptr;
  563. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  564. cur_page = get_meta_page(sbi, cp_blk_no + i);
  565. sit_bitmap_ptr = page_address(cur_page);
  566. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  567. f2fs_put_page(cur_page, 1);
  568. }
  569. done:
  570. f2fs_put_page(cp1, 1);
  571. f2fs_put_page(cp2, 1);
  572. return 0;
  573. fail_no_cp:
  574. kfree(sbi->ckpt);
  575. return -EINVAL;
  576. }
  577. static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
  578. {
  579. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  580. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  581. return -EEXIST;
  582. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  583. F2FS_I(inode)->dirty_dir = new;
  584. list_add_tail(&new->list, &sbi->dir_inode_list);
  585. stat_inc_dirty_dir(sbi);
  586. return 0;
  587. }
  588. void update_dirty_page(struct inode *inode, struct page *page)
  589. {
  590. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  591. struct inode_entry *new;
  592. int ret = 0;
  593. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
  594. return;
  595. if (!S_ISDIR(inode->i_mode)) {
  596. inode_inc_dirty_pages(inode);
  597. goto out;
  598. }
  599. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  600. new->inode = inode;
  601. INIT_LIST_HEAD(&new->list);
  602. spin_lock(&sbi->dir_inode_lock);
  603. ret = __add_dirty_inode(inode, new);
  604. inode_inc_dirty_pages(inode);
  605. spin_unlock(&sbi->dir_inode_lock);
  606. if (ret)
  607. kmem_cache_free(inode_entry_slab, new);
  608. out:
  609. SetPagePrivate(page);
  610. f2fs_trace_pid(page);
  611. }
  612. void add_dirty_dir_inode(struct inode *inode)
  613. {
  614. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  615. struct inode_entry *new =
  616. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  617. int ret = 0;
  618. new->inode = inode;
  619. INIT_LIST_HEAD(&new->list);
  620. spin_lock(&sbi->dir_inode_lock);
  621. ret = __add_dirty_inode(inode, new);
  622. spin_unlock(&sbi->dir_inode_lock);
  623. if (ret)
  624. kmem_cache_free(inode_entry_slab, new);
  625. }
  626. void remove_dirty_dir_inode(struct inode *inode)
  627. {
  628. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  629. struct inode_entry *entry;
  630. if (!S_ISDIR(inode->i_mode))
  631. return;
  632. spin_lock(&sbi->dir_inode_lock);
  633. if (get_dirty_pages(inode) ||
  634. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  635. spin_unlock(&sbi->dir_inode_lock);
  636. return;
  637. }
  638. entry = F2FS_I(inode)->dirty_dir;
  639. list_del(&entry->list);
  640. F2FS_I(inode)->dirty_dir = NULL;
  641. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  642. stat_dec_dirty_dir(sbi);
  643. spin_unlock(&sbi->dir_inode_lock);
  644. kmem_cache_free(inode_entry_slab, entry);
  645. /* Only from the recovery routine */
  646. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  647. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  648. iput(inode);
  649. }
  650. }
  651. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  652. {
  653. struct list_head *head;
  654. struct inode_entry *entry;
  655. struct inode *inode;
  656. retry:
  657. if (unlikely(f2fs_cp_error(sbi)))
  658. return;
  659. spin_lock(&sbi->dir_inode_lock);
  660. head = &sbi->dir_inode_list;
  661. if (list_empty(head)) {
  662. spin_unlock(&sbi->dir_inode_lock);
  663. return;
  664. }
  665. entry = list_entry(head->next, struct inode_entry, list);
  666. inode = igrab(entry->inode);
  667. spin_unlock(&sbi->dir_inode_lock);
  668. if (inode) {
  669. filemap_fdatawrite(inode->i_mapping);
  670. iput(inode);
  671. } else {
  672. /*
  673. * We should submit bio, since it exists several
  674. * wribacking dentry pages in the freeing inode.
  675. */
  676. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  677. cond_resched();
  678. }
  679. goto retry;
  680. }
  681. /*
  682. * Freeze all the FS-operations for checkpoint.
  683. */
  684. static int block_operations(struct f2fs_sb_info *sbi)
  685. {
  686. struct writeback_control wbc = {
  687. .sync_mode = WB_SYNC_ALL,
  688. .nr_to_write = LONG_MAX,
  689. .for_reclaim = 0,
  690. };
  691. struct blk_plug plug;
  692. int err = 0;
  693. blk_start_plug(&plug);
  694. retry_flush_dents:
  695. f2fs_lock_all(sbi);
  696. /* write all the dirty dentry pages */
  697. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  698. f2fs_unlock_all(sbi);
  699. sync_dirty_dir_inodes(sbi);
  700. if (unlikely(f2fs_cp_error(sbi))) {
  701. err = -EIO;
  702. goto out;
  703. }
  704. goto retry_flush_dents;
  705. }
  706. /*
  707. * POR: we should ensure that there are no dirty node pages
  708. * until finishing nat/sit flush.
  709. */
  710. retry_flush_nodes:
  711. down_write(&sbi->node_write);
  712. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  713. up_write(&sbi->node_write);
  714. sync_node_pages(sbi, 0, &wbc);
  715. if (unlikely(f2fs_cp_error(sbi))) {
  716. f2fs_unlock_all(sbi);
  717. err = -EIO;
  718. goto out;
  719. }
  720. goto retry_flush_nodes;
  721. }
  722. out:
  723. blk_finish_plug(&plug);
  724. return err;
  725. }
  726. static void unblock_operations(struct f2fs_sb_info *sbi)
  727. {
  728. up_write(&sbi->node_write);
  729. f2fs_unlock_all(sbi);
  730. }
  731. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  732. {
  733. DEFINE_WAIT(wait);
  734. for (;;) {
  735. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  736. if (!get_pages(sbi, F2FS_WRITEBACK))
  737. break;
  738. io_schedule();
  739. }
  740. finish_wait(&sbi->cp_wait, &wait);
  741. }
  742. static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  743. {
  744. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  745. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  746. struct f2fs_nm_info *nm_i = NM_I(sbi);
  747. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  748. nid_t last_nid = nm_i->next_scan_nid;
  749. block_t start_blk;
  750. struct page *cp_page;
  751. unsigned int data_sum_blocks, orphan_blocks;
  752. __u32 crc32 = 0;
  753. void *kaddr;
  754. int i;
  755. int cp_payload_blks = __cp_payload(sbi);
  756. /*
  757. * This avoids to conduct wrong roll-forward operations and uses
  758. * metapages, so should be called prior to sync_meta_pages below.
  759. */
  760. discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
  761. /* Flush all the NAT/SIT pages */
  762. while (get_pages(sbi, F2FS_DIRTY_META)) {
  763. sync_meta_pages(sbi, META, LONG_MAX);
  764. if (unlikely(f2fs_cp_error(sbi)))
  765. return;
  766. }
  767. next_free_nid(sbi, &last_nid);
  768. /*
  769. * modify checkpoint
  770. * version number is already updated
  771. */
  772. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  773. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  774. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  775. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  776. ckpt->cur_node_segno[i] =
  777. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  778. ckpt->cur_node_blkoff[i] =
  779. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  780. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  781. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  782. }
  783. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  784. ckpt->cur_data_segno[i] =
  785. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  786. ckpt->cur_data_blkoff[i] =
  787. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  788. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  789. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  790. }
  791. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  792. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  793. ckpt->next_free_nid = cpu_to_le32(last_nid);
  794. /* 2 cp + n data seg summary + orphan inode blocks */
  795. data_sum_blocks = npages_for_summary_flush(sbi, false);
  796. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  797. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  798. else
  799. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  800. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  801. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  802. orphan_blocks);
  803. if (__remain_node_summaries(cpc->reason))
  804. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  805. cp_payload_blks + data_sum_blocks +
  806. orphan_blocks + NR_CURSEG_NODE_TYPE);
  807. else
  808. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  809. cp_payload_blks + data_sum_blocks +
  810. orphan_blocks);
  811. if (cpc->reason == CP_UMOUNT)
  812. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  813. else
  814. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  815. if (cpc->reason == CP_FASTBOOT)
  816. set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  817. else
  818. clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  819. if (orphan_num)
  820. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  821. else
  822. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  823. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  824. set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  825. /* update SIT/NAT bitmap */
  826. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  827. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  828. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  829. *((__le32 *)((unsigned char *)ckpt +
  830. le32_to_cpu(ckpt->checksum_offset)))
  831. = cpu_to_le32(crc32);
  832. start_blk = __start_cp_addr(sbi);
  833. /* write out checkpoint buffer at block 0 */
  834. cp_page = grab_meta_page(sbi, start_blk++);
  835. kaddr = page_address(cp_page);
  836. memcpy(kaddr, ckpt, F2FS_BLKSIZE);
  837. set_page_dirty(cp_page);
  838. f2fs_put_page(cp_page, 1);
  839. for (i = 1; i < 1 + cp_payload_blks; i++) {
  840. cp_page = grab_meta_page(sbi, start_blk++);
  841. kaddr = page_address(cp_page);
  842. memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, F2FS_BLKSIZE);
  843. set_page_dirty(cp_page);
  844. f2fs_put_page(cp_page, 1);
  845. }
  846. if (orphan_num) {
  847. write_orphan_inodes(sbi, start_blk);
  848. start_blk += orphan_blocks;
  849. }
  850. write_data_summaries(sbi, start_blk);
  851. start_blk += data_sum_blocks;
  852. if (__remain_node_summaries(cpc->reason)) {
  853. write_node_summaries(sbi, start_blk);
  854. start_blk += NR_CURSEG_NODE_TYPE;
  855. }
  856. /* writeout checkpoint block */
  857. cp_page = grab_meta_page(sbi, start_blk);
  858. kaddr = page_address(cp_page);
  859. memcpy(kaddr, ckpt, F2FS_BLKSIZE);
  860. set_page_dirty(cp_page);
  861. f2fs_put_page(cp_page, 1);
  862. /* wait for previous submitted node/meta pages writeback */
  863. wait_on_all_pages_writeback(sbi);
  864. if (unlikely(f2fs_cp_error(sbi)))
  865. return;
  866. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  867. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  868. /* update user_block_counts */
  869. sbi->last_valid_block_count = sbi->total_valid_block_count;
  870. sbi->alloc_valid_block_count = 0;
  871. /* Here, we only have one bio having CP pack */
  872. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  873. /* wait for previous submitted meta pages writeback */
  874. wait_on_all_pages_writeback(sbi);
  875. release_dirty_inode(sbi);
  876. if (unlikely(f2fs_cp_error(sbi)))
  877. return;
  878. clear_prefree_segments(sbi);
  879. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  880. }
  881. /*
  882. * We guarantee that this checkpoint procedure will not fail.
  883. */
  884. void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  885. {
  886. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  887. unsigned long long ckpt_ver;
  888. mutex_lock(&sbi->cp_mutex);
  889. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  890. (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC))
  891. goto out;
  892. if (unlikely(f2fs_cp_error(sbi)))
  893. goto out;
  894. if (f2fs_readonly(sbi->sb))
  895. goto out;
  896. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  897. if (block_operations(sbi))
  898. goto out;
  899. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  900. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  901. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  902. f2fs_submit_merged_bio(sbi, META, WRITE);
  903. /*
  904. * update checkpoint pack index
  905. * Increase the version number so that
  906. * SIT entries and seg summaries are written at correct place
  907. */
  908. ckpt_ver = cur_cp_version(ckpt);
  909. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  910. /* write cached NAT/SIT entries to NAT/SIT area */
  911. flush_nat_entries(sbi);
  912. flush_sit_entries(sbi, cpc);
  913. /* unlock all the fs_lock[] in do_checkpoint() */
  914. do_checkpoint(sbi, cpc);
  915. unblock_operations(sbi);
  916. stat_inc_cp_count(sbi->stat_info);
  917. if (cpc->reason == CP_RECOVERY)
  918. f2fs_msg(sbi->sb, KERN_NOTICE,
  919. "checkpoint: version = %llx", ckpt_ver);
  920. out:
  921. mutex_unlock(&sbi->cp_mutex);
  922. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  923. }
  924. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  925. {
  926. int i;
  927. for (i = 0; i < MAX_INO_ENTRY; i++) {
  928. struct inode_management *im = &sbi->im[i];
  929. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  930. spin_lock_init(&im->ino_lock);
  931. INIT_LIST_HEAD(&im->ino_list);
  932. im->ino_num = 0;
  933. }
  934. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  935. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  936. F2FS_ORPHANS_PER_BLOCK;
  937. }
  938. int __init create_checkpoint_caches(void)
  939. {
  940. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  941. sizeof(struct ino_entry));
  942. if (!ino_entry_slab)
  943. return -ENOMEM;
  944. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  945. sizeof(struct inode_entry));
  946. if (!inode_entry_slab) {
  947. kmem_cache_destroy(ino_entry_slab);
  948. return -ENOMEM;
  949. }
  950. return 0;
  951. }
  952. void destroy_checkpoint_caches(void)
  953. {
  954. kmem_cache_destroy(ino_entry_slab);
  955. kmem_cache_destroy(inode_entry_slab);
  956. }