flow_netlink.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638
  1. /*
  2. * Copyright (c) 2007-2014 Nicira, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of version 2 of the GNU General Public
  6. * License as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16. * 02110-1301, USA
  17. */
  18. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19. #include "flow.h"
  20. #include "datapath.h"
  21. #include <linux/uaccess.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/if_ether.h>
  25. #include <linux/if_vlan.h>
  26. #include <net/llc_pdu.h>
  27. #include <linux/kernel.h>
  28. #include <linux/jhash.h>
  29. #include <linux/jiffies.h>
  30. #include <linux/llc.h>
  31. #include <linux/module.h>
  32. #include <linux/in.h>
  33. #include <linux/rcupdate.h>
  34. #include <linux/if_arp.h>
  35. #include <linux/ip.h>
  36. #include <linux/ipv6.h>
  37. #include <linux/sctp.h>
  38. #include <linux/tcp.h>
  39. #include <linux/udp.h>
  40. #include <linux/icmp.h>
  41. #include <linux/icmpv6.h>
  42. #include <linux/rculist.h>
  43. #include <net/ip.h>
  44. #include <net/ipv6.h>
  45. #include <net/ndisc.h>
  46. #include "flow_netlink.h"
  47. static void update_range__(struct sw_flow_match *match,
  48. size_t offset, size_t size, bool is_mask)
  49. {
  50. struct sw_flow_key_range *range = NULL;
  51. size_t start = rounddown(offset, sizeof(long));
  52. size_t end = roundup(offset + size, sizeof(long));
  53. if (!is_mask)
  54. range = &match->range;
  55. else if (match->mask)
  56. range = &match->mask->range;
  57. if (!range)
  58. return;
  59. if (range->start == range->end) {
  60. range->start = start;
  61. range->end = end;
  62. return;
  63. }
  64. if (range->start > start)
  65. range->start = start;
  66. if (range->end < end)
  67. range->end = end;
  68. }
  69. #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  70. do { \
  71. update_range__(match, offsetof(struct sw_flow_key, field), \
  72. sizeof((match)->key->field), is_mask); \
  73. if (is_mask) { \
  74. if ((match)->mask) \
  75. (match)->mask->key.field = value; \
  76. } else { \
  77. (match)->key->field = value; \
  78. } \
  79. } while (0)
  80. #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
  81. do { \
  82. update_range__(match, offsetof(struct sw_flow_key, field), \
  83. len, is_mask); \
  84. if (is_mask) { \
  85. if ((match)->mask) \
  86. memcpy(&(match)->mask->key.field, value_p, len);\
  87. } else { \
  88. memcpy(&(match)->key->field, value_p, len); \
  89. } \
  90. } while (0)
  91. static u16 range_n_bytes(const struct sw_flow_key_range *range)
  92. {
  93. return range->end - range->start;
  94. }
  95. static bool match_validate(const struct sw_flow_match *match,
  96. u64 key_attrs, u64 mask_attrs)
  97. {
  98. u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
  99. u64 mask_allowed = key_attrs; /* At most allow all key attributes */
  100. /* The following mask attributes allowed only if they
  101. * pass the validation tests. */
  102. mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
  103. | (1 << OVS_KEY_ATTR_IPV6)
  104. | (1 << OVS_KEY_ATTR_TCP)
  105. | (1 << OVS_KEY_ATTR_TCP_FLAGS)
  106. | (1 << OVS_KEY_ATTR_UDP)
  107. | (1 << OVS_KEY_ATTR_SCTP)
  108. | (1 << OVS_KEY_ATTR_ICMP)
  109. | (1 << OVS_KEY_ATTR_ICMPV6)
  110. | (1 << OVS_KEY_ATTR_ARP)
  111. | (1 << OVS_KEY_ATTR_ND));
  112. /* Always allowed mask fields. */
  113. mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
  114. | (1 << OVS_KEY_ATTR_IN_PORT)
  115. | (1 << OVS_KEY_ATTR_ETHERTYPE));
  116. /* Check key attributes. */
  117. if (match->key->eth.type == htons(ETH_P_ARP)
  118. || match->key->eth.type == htons(ETH_P_RARP)) {
  119. key_expected |= 1 << OVS_KEY_ATTR_ARP;
  120. if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
  121. mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
  122. }
  123. if (match->key->eth.type == htons(ETH_P_IP)) {
  124. key_expected |= 1 << OVS_KEY_ATTR_IPV4;
  125. if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
  126. mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
  127. if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
  128. if (match->key->ip.proto == IPPROTO_UDP) {
  129. key_expected |= 1 << OVS_KEY_ATTR_UDP;
  130. if (match->mask && (match->mask->key.ip.proto == 0xff))
  131. mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
  132. }
  133. if (match->key->ip.proto == IPPROTO_SCTP) {
  134. key_expected |= 1 << OVS_KEY_ATTR_SCTP;
  135. if (match->mask && (match->mask->key.ip.proto == 0xff))
  136. mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
  137. }
  138. if (match->key->ip.proto == IPPROTO_TCP) {
  139. key_expected |= 1 << OVS_KEY_ATTR_TCP;
  140. key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
  141. if (match->mask && (match->mask->key.ip.proto == 0xff)) {
  142. mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
  143. mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
  144. }
  145. }
  146. if (match->key->ip.proto == IPPROTO_ICMP) {
  147. key_expected |= 1 << OVS_KEY_ATTR_ICMP;
  148. if (match->mask && (match->mask->key.ip.proto == 0xff))
  149. mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
  150. }
  151. }
  152. }
  153. if (match->key->eth.type == htons(ETH_P_IPV6)) {
  154. key_expected |= 1 << OVS_KEY_ATTR_IPV6;
  155. if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
  156. mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
  157. if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
  158. if (match->key->ip.proto == IPPROTO_UDP) {
  159. key_expected |= 1 << OVS_KEY_ATTR_UDP;
  160. if (match->mask && (match->mask->key.ip.proto == 0xff))
  161. mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
  162. }
  163. if (match->key->ip.proto == IPPROTO_SCTP) {
  164. key_expected |= 1 << OVS_KEY_ATTR_SCTP;
  165. if (match->mask && (match->mask->key.ip.proto == 0xff))
  166. mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
  167. }
  168. if (match->key->ip.proto == IPPROTO_TCP) {
  169. key_expected |= 1 << OVS_KEY_ATTR_TCP;
  170. key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
  171. if (match->mask && (match->mask->key.ip.proto == 0xff)) {
  172. mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
  173. mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
  174. }
  175. }
  176. if (match->key->ip.proto == IPPROTO_ICMPV6) {
  177. key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
  178. if (match->mask && (match->mask->key.ip.proto == 0xff))
  179. mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
  180. if (match->key->tp.src ==
  181. htons(NDISC_NEIGHBOUR_SOLICITATION) ||
  182. match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
  183. key_expected |= 1 << OVS_KEY_ATTR_ND;
  184. if (match->mask && (match->mask->key.tp.src == htons(0xffff)))
  185. mask_allowed |= 1 << OVS_KEY_ATTR_ND;
  186. }
  187. }
  188. }
  189. }
  190. if ((key_attrs & key_expected) != key_expected) {
  191. /* Key attributes check failed. */
  192. OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
  193. (unsigned long long)key_attrs, (unsigned long long)key_expected);
  194. return false;
  195. }
  196. if ((mask_attrs & mask_allowed) != mask_attrs) {
  197. /* Mask attributes check failed. */
  198. OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
  199. (unsigned long long)mask_attrs, (unsigned long long)mask_allowed);
  200. return false;
  201. }
  202. return true;
  203. }
  204. /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
  205. static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
  206. [OVS_KEY_ATTR_ENCAP] = -1,
  207. [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
  208. [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
  209. [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
  210. [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
  211. [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
  212. [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
  213. [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
  214. [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
  215. [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
  216. [OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
  217. [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
  218. [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
  219. [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
  220. [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
  221. [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
  222. [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
  223. [OVS_KEY_ATTR_RECIRC_ID] = sizeof(u32),
  224. [OVS_KEY_ATTR_DP_HASH] = sizeof(u32),
  225. [OVS_KEY_ATTR_TUNNEL] = -1,
  226. };
  227. static bool is_all_zero(const u8 *fp, size_t size)
  228. {
  229. int i;
  230. if (!fp)
  231. return false;
  232. for (i = 0; i < size; i++)
  233. if (fp[i])
  234. return false;
  235. return true;
  236. }
  237. static int __parse_flow_nlattrs(const struct nlattr *attr,
  238. const struct nlattr *a[],
  239. u64 *attrsp, bool nz)
  240. {
  241. const struct nlattr *nla;
  242. u64 attrs;
  243. int rem;
  244. attrs = *attrsp;
  245. nla_for_each_nested(nla, attr, rem) {
  246. u16 type = nla_type(nla);
  247. int expected_len;
  248. if (type > OVS_KEY_ATTR_MAX) {
  249. OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
  250. type, OVS_KEY_ATTR_MAX);
  251. return -EINVAL;
  252. }
  253. if (attrs & (1 << type)) {
  254. OVS_NLERR("Duplicate key attribute (type %d).\n", type);
  255. return -EINVAL;
  256. }
  257. expected_len = ovs_key_lens[type];
  258. if (nla_len(nla) != expected_len && expected_len != -1) {
  259. OVS_NLERR("Key attribute has unexpected length (type=%d"
  260. ", length=%d, expected=%d).\n", type,
  261. nla_len(nla), expected_len);
  262. return -EINVAL;
  263. }
  264. if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
  265. attrs |= 1 << type;
  266. a[type] = nla;
  267. }
  268. }
  269. if (rem) {
  270. OVS_NLERR("Message has %d unknown bytes.\n", rem);
  271. return -EINVAL;
  272. }
  273. *attrsp = attrs;
  274. return 0;
  275. }
  276. static int parse_flow_mask_nlattrs(const struct nlattr *attr,
  277. const struct nlattr *a[], u64 *attrsp)
  278. {
  279. return __parse_flow_nlattrs(attr, a, attrsp, true);
  280. }
  281. static int parse_flow_nlattrs(const struct nlattr *attr,
  282. const struct nlattr *a[], u64 *attrsp)
  283. {
  284. return __parse_flow_nlattrs(attr, a, attrsp, false);
  285. }
  286. static int ipv4_tun_from_nlattr(const struct nlattr *attr,
  287. struct sw_flow_match *match, bool is_mask)
  288. {
  289. struct nlattr *a;
  290. int rem;
  291. bool ttl = false;
  292. __be16 tun_flags = 0;
  293. nla_for_each_nested(a, attr, rem) {
  294. int type = nla_type(a);
  295. static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
  296. [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
  297. [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
  298. [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
  299. [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
  300. [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
  301. [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
  302. [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
  303. [OVS_TUNNEL_KEY_ATTR_OAM] = 0,
  304. };
  305. if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
  306. OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
  307. type, OVS_TUNNEL_KEY_ATTR_MAX);
  308. return -EINVAL;
  309. }
  310. if (ovs_tunnel_key_lens[type] != nla_len(a)) {
  311. OVS_NLERR("IPv4 tunnel attribute type has unexpected "
  312. " length (type=%d, length=%d, expected=%d).\n",
  313. type, nla_len(a), ovs_tunnel_key_lens[type]);
  314. return -EINVAL;
  315. }
  316. switch (type) {
  317. case OVS_TUNNEL_KEY_ATTR_ID:
  318. SW_FLOW_KEY_PUT(match, tun_key.tun_id,
  319. nla_get_be64(a), is_mask);
  320. tun_flags |= TUNNEL_KEY;
  321. break;
  322. case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
  323. SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
  324. nla_get_be32(a), is_mask);
  325. break;
  326. case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
  327. SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
  328. nla_get_be32(a), is_mask);
  329. break;
  330. case OVS_TUNNEL_KEY_ATTR_TOS:
  331. SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
  332. nla_get_u8(a), is_mask);
  333. break;
  334. case OVS_TUNNEL_KEY_ATTR_TTL:
  335. SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
  336. nla_get_u8(a), is_mask);
  337. ttl = true;
  338. break;
  339. case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
  340. tun_flags |= TUNNEL_DONT_FRAGMENT;
  341. break;
  342. case OVS_TUNNEL_KEY_ATTR_CSUM:
  343. tun_flags |= TUNNEL_CSUM;
  344. break;
  345. case OVS_TUNNEL_KEY_ATTR_OAM:
  346. tun_flags |= TUNNEL_OAM;
  347. break;
  348. default:
  349. return -EINVAL;
  350. }
  351. }
  352. SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
  353. if (rem > 0) {
  354. OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
  355. return -EINVAL;
  356. }
  357. if (!is_mask) {
  358. if (!match->key->tun_key.ipv4_dst) {
  359. OVS_NLERR("IPv4 tunnel destination address is zero.\n");
  360. return -EINVAL;
  361. }
  362. if (!ttl) {
  363. OVS_NLERR("IPv4 tunnel TTL not specified.\n");
  364. return -EINVAL;
  365. }
  366. }
  367. return 0;
  368. }
  369. static int ipv4_tun_to_nlattr(struct sk_buff *skb,
  370. const struct ovs_key_ipv4_tunnel *tun_key,
  371. const struct ovs_key_ipv4_tunnel *output)
  372. {
  373. struct nlattr *nla;
  374. nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
  375. if (!nla)
  376. return -EMSGSIZE;
  377. if (output->tun_flags & TUNNEL_KEY &&
  378. nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
  379. return -EMSGSIZE;
  380. if (output->ipv4_src &&
  381. nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
  382. return -EMSGSIZE;
  383. if (output->ipv4_dst &&
  384. nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
  385. return -EMSGSIZE;
  386. if (output->ipv4_tos &&
  387. nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
  388. return -EMSGSIZE;
  389. if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
  390. return -EMSGSIZE;
  391. if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
  392. nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
  393. return -EMSGSIZE;
  394. if ((output->tun_flags & TUNNEL_CSUM) &&
  395. nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
  396. return -EMSGSIZE;
  397. if ((output->tun_flags & TUNNEL_OAM) &&
  398. nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
  399. return -EMSGSIZE;
  400. nla_nest_end(skb, nla);
  401. return 0;
  402. }
  403. static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
  404. const struct nlattr **a, bool is_mask)
  405. {
  406. if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
  407. u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
  408. SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
  409. *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
  410. }
  411. if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
  412. u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
  413. SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
  414. *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
  415. }
  416. if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
  417. SW_FLOW_KEY_PUT(match, phy.priority,
  418. nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
  419. *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
  420. }
  421. if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
  422. u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
  423. if (is_mask)
  424. in_port = 0xffffffff; /* Always exact match in_port. */
  425. else if (in_port >= DP_MAX_PORTS)
  426. return -EINVAL;
  427. SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
  428. *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
  429. } else if (!is_mask) {
  430. SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
  431. }
  432. if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
  433. uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
  434. SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
  435. *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
  436. }
  437. if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
  438. if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
  439. is_mask))
  440. return -EINVAL;
  441. *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
  442. }
  443. return 0;
  444. }
  445. static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
  446. const struct nlattr **a, bool is_mask)
  447. {
  448. int err;
  449. u64 orig_attrs = attrs;
  450. err = metadata_from_nlattrs(match, &attrs, a, is_mask);
  451. if (err)
  452. return err;
  453. if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
  454. const struct ovs_key_ethernet *eth_key;
  455. eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
  456. SW_FLOW_KEY_MEMCPY(match, eth.src,
  457. eth_key->eth_src, ETH_ALEN, is_mask);
  458. SW_FLOW_KEY_MEMCPY(match, eth.dst,
  459. eth_key->eth_dst, ETH_ALEN, is_mask);
  460. attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
  461. }
  462. if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
  463. __be16 tci;
  464. tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
  465. if (!(tci & htons(VLAN_TAG_PRESENT))) {
  466. if (is_mask)
  467. OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
  468. else
  469. OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
  470. return -EINVAL;
  471. }
  472. SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
  473. attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
  474. } else if (!is_mask)
  475. SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
  476. if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
  477. __be16 eth_type;
  478. eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
  479. if (is_mask) {
  480. /* Always exact match EtherType. */
  481. eth_type = htons(0xffff);
  482. } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
  483. OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
  484. ntohs(eth_type), ETH_P_802_3_MIN);
  485. return -EINVAL;
  486. }
  487. SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
  488. attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
  489. } else if (!is_mask) {
  490. SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
  491. }
  492. if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
  493. const struct ovs_key_ipv4 *ipv4_key;
  494. ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
  495. if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
  496. OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
  497. ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
  498. return -EINVAL;
  499. }
  500. SW_FLOW_KEY_PUT(match, ip.proto,
  501. ipv4_key->ipv4_proto, is_mask);
  502. SW_FLOW_KEY_PUT(match, ip.tos,
  503. ipv4_key->ipv4_tos, is_mask);
  504. SW_FLOW_KEY_PUT(match, ip.ttl,
  505. ipv4_key->ipv4_ttl, is_mask);
  506. SW_FLOW_KEY_PUT(match, ip.frag,
  507. ipv4_key->ipv4_frag, is_mask);
  508. SW_FLOW_KEY_PUT(match, ipv4.addr.src,
  509. ipv4_key->ipv4_src, is_mask);
  510. SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
  511. ipv4_key->ipv4_dst, is_mask);
  512. attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
  513. }
  514. if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
  515. const struct ovs_key_ipv6 *ipv6_key;
  516. ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
  517. if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
  518. OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
  519. ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
  520. return -EINVAL;
  521. }
  522. SW_FLOW_KEY_PUT(match, ipv6.label,
  523. ipv6_key->ipv6_label, is_mask);
  524. SW_FLOW_KEY_PUT(match, ip.proto,
  525. ipv6_key->ipv6_proto, is_mask);
  526. SW_FLOW_KEY_PUT(match, ip.tos,
  527. ipv6_key->ipv6_tclass, is_mask);
  528. SW_FLOW_KEY_PUT(match, ip.ttl,
  529. ipv6_key->ipv6_hlimit, is_mask);
  530. SW_FLOW_KEY_PUT(match, ip.frag,
  531. ipv6_key->ipv6_frag, is_mask);
  532. SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
  533. ipv6_key->ipv6_src,
  534. sizeof(match->key->ipv6.addr.src),
  535. is_mask);
  536. SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
  537. ipv6_key->ipv6_dst,
  538. sizeof(match->key->ipv6.addr.dst),
  539. is_mask);
  540. attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
  541. }
  542. if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
  543. const struct ovs_key_arp *arp_key;
  544. arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
  545. if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
  546. OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
  547. arp_key->arp_op);
  548. return -EINVAL;
  549. }
  550. SW_FLOW_KEY_PUT(match, ipv4.addr.src,
  551. arp_key->arp_sip, is_mask);
  552. SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
  553. arp_key->arp_tip, is_mask);
  554. SW_FLOW_KEY_PUT(match, ip.proto,
  555. ntohs(arp_key->arp_op), is_mask);
  556. SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
  557. arp_key->arp_sha, ETH_ALEN, is_mask);
  558. SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
  559. arp_key->arp_tha, ETH_ALEN, is_mask);
  560. attrs &= ~(1 << OVS_KEY_ATTR_ARP);
  561. }
  562. if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
  563. const struct ovs_key_tcp *tcp_key;
  564. tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
  565. SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
  566. SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
  567. attrs &= ~(1 << OVS_KEY_ATTR_TCP);
  568. }
  569. if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
  570. if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
  571. SW_FLOW_KEY_PUT(match, tp.flags,
  572. nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
  573. is_mask);
  574. } else {
  575. SW_FLOW_KEY_PUT(match, tp.flags,
  576. nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
  577. is_mask);
  578. }
  579. attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
  580. }
  581. if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
  582. const struct ovs_key_udp *udp_key;
  583. udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
  584. SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
  585. SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
  586. attrs &= ~(1 << OVS_KEY_ATTR_UDP);
  587. }
  588. if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
  589. const struct ovs_key_sctp *sctp_key;
  590. sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
  591. SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
  592. SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
  593. attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
  594. }
  595. if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
  596. const struct ovs_key_icmp *icmp_key;
  597. icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
  598. SW_FLOW_KEY_PUT(match, tp.src,
  599. htons(icmp_key->icmp_type), is_mask);
  600. SW_FLOW_KEY_PUT(match, tp.dst,
  601. htons(icmp_key->icmp_code), is_mask);
  602. attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
  603. }
  604. if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
  605. const struct ovs_key_icmpv6 *icmpv6_key;
  606. icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
  607. SW_FLOW_KEY_PUT(match, tp.src,
  608. htons(icmpv6_key->icmpv6_type), is_mask);
  609. SW_FLOW_KEY_PUT(match, tp.dst,
  610. htons(icmpv6_key->icmpv6_code), is_mask);
  611. attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
  612. }
  613. if (attrs & (1 << OVS_KEY_ATTR_ND)) {
  614. const struct ovs_key_nd *nd_key;
  615. nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
  616. SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
  617. nd_key->nd_target,
  618. sizeof(match->key->ipv6.nd.target),
  619. is_mask);
  620. SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
  621. nd_key->nd_sll, ETH_ALEN, is_mask);
  622. SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
  623. nd_key->nd_tll, ETH_ALEN, is_mask);
  624. attrs &= ~(1 << OVS_KEY_ATTR_ND);
  625. }
  626. if (attrs != 0)
  627. return -EINVAL;
  628. return 0;
  629. }
  630. static void sw_flow_mask_set(struct sw_flow_mask *mask,
  631. struct sw_flow_key_range *range, u8 val)
  632. {
  633. u8 *m = (u8 *)&mask->key + range->start;
  634. mask->range = *range;
  635. memset(m, val, range_n_bytes(range));
  636. }
  637. /**
  638. * ovs_nla_get_match - parses Netlink attributes into a flow key and
  639. * mask. In case the 'mask' is NULL, the flow is treated as exact match
  640. * flow. Otherwise, it is treated as a wildcarded flow, except the mask
  641. * does not include any don't care bit.
  642. * @match: receives the extracted flow match information.
  643. * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
  644. * sequence. The fields should of the packet that triggered the creation
  645. * of this flow.
  646. * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
  647. * attribute specifies the mask field of the wildcarded flow.
  648. */
  649. int ovs_nla_get_match(struct sw_flow_match *match,
  650. const struct nlattr *key,
  651. const struct nlattr *mask)
  652. {
  653. const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
  654. const struct nlattr *encap;
  655. u64 key_attrs = 0;
  656. u64 mask_attrs = 0;
  657. bool encap_valid = false;
  658. int err;
  659. err = parse_flow_nlattrs(key, a, &key_attrs);
  660. if (err)
  661. return err;
  662. if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
  663. (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
  664. (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
  665. __be16 tci;
  666. if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
  667. (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
  668. OVS_NLERR("Invalid Vlan frame.\n");
  669. return -EINVAL;
  670. }
  671. key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
  672. tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
  673. encap = a[OVS_KEY_ATTR_ENCAP];
  674. key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
  675. encap_valid = true;
  676. if (tci & htons(VLAN_TAG_PRESENT)) {
  677. err = parse_flow_nlattrs(encap, a, &key_attrs);
  678. if (err)
  679. return err;
  680. } else if (!tci) {
  681. /* Corner case for truncated 802.1Q header. */
  682. if (nla_len(encap)) {
  683. OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
  684. return -EINVAL;
  685. }
  686. } else {
  687. OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
  688. return -EINVAL;
  689. }
  690. }
  691. err = ovs_key_from_nlattrs(match, key_attrs, a, false);
  692. if (err)
  693. return err;
  694. if (mask) {
  695. err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
  696. if (err)
  697. return err;
  698. if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
  699. __be16 eth_type = 0;
  700. __be16 tci = 0;
  701. if (!encap_valid) {
  702. OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
  703. return -EINVAL;
  704. }
  705. mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
  706. if (a[OVS_KEY_ATTR_ETHERTYPE])
  707. eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
  708. if (eth_type == htons(0xffff)) {
  709. mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
  710. encap = a[OVS_KEY_ATTR_ENCAP];
  711. err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
  712. } else {
  713. OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
  714. ntohs(eth_type));
  715. return -EINVAL;
  716. }
  717. if (a[OVS_KEY_ATTR_VLAN])
  718. tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
  719. if (!(tci & htons(VLAN_TAG_PRESENT))) {
  720. OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
  721. return -EINVAL;
  722. }
  723. }
  724. err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
  725. if (err)
  726. return err;
  727. } else {
  728. /* Populate exact match flow's key mask. */
  729. if (match->mask)
  730. sw_flow_mask_set(match->mask, &match->range, 0xff);
  731. }
  732. if (!match_validate(match, key_attrs, mask_attrs))
  733. return -EINVAL;
  734. return 0;
  735. }
  736. /**
  737. * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
  738. * @key: Receives extracted in_port, priority, tun_key and skb_mark.
  739. * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
  740. * sequence.
  741. *
  742. * This parses a series of Netlink attributes that form a flow key, which must
  743. * take the same form accepted by flow_from_nlattrs(), but only enough of it to
  744. * get the metadata, that is, the parts of the flow key that cannot be
  745. * extracted from the packet itself.
  746. */
  747. int ovs_nla_get_flow_metadata(const struct nlattr *attr,
  748. struct sw_flow_key *key)
  749. {
  750. const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
  751. struct sw_flow_match match;
  752. u64 attrs = 0;
  753. int err;
  754. err = parse_flow_nlattrs(attr, a, &attrs);
  755. if (err)
  756. return -EINVAL;
  757. memset(&match, 0, sizeof(match));
  758. match.key = key;
  759. key->phy.in_port = DP_MAX_PORTS;
  760. return metadata_from_nlattrs(&match, &attrs, a, false);
  761. }
  762. int ovs_nla_put_flow(const struct sw_flow_key *swkey,
  763. const struct sw_flow_key *output, struct sk_buff *skb)
  764. {
  765. struct ovs_key_ethernet *eth_key;
  766. struct nlattr *nla, *encap;
  767. bool is_mask = (swkey != output);
  768. if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
  769. goto nla_put_failure;
  770. if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
  771. goto nla_put_failure;
  772. if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
  773. goto nla_put_failure;
  774. if ((swkey->tun_key.ipv4_dst || is_mask) &&
  775. ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
  776. goto nla_put_failure;
  777. if (swkey->phy.in_port == DP_MAX_PORTS) {
  778. if (is_mask && (output->phy.in_port == 0xffff))
  779. if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
  780. goto nla_put_failure;
  781. } else {
  782. u16 upper_u16;
  783. upper_u16 = !is_mask ? 0 : 0xffff;
  784. if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
  785. (upper_u16 << 16) | output->phy.in_port))
  786. goto nla_put_failure;
  787. }
  788. if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
  789. goto nla_put_failure;
  790. nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
  791. if (!nla)
  792. goto nla_put_failure;
  793. eth_key = nla_data(nla);
  794. ether_addr_copy(eth_key->eth_src, output->eth.src);
  795. ether_addr_copy(eth_key->eth_dst, output->eth.dst);
  796. if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
  797. __be16 eth_type;
  798. eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
  799. if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
  800. nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
  801. goto nla_put_failure;
  802. encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
  803. if (!swkey->eth.tci)
  804. goto unencap;
  805. } else
  806. encap = NULL;
  807. if (swkey->eth.type == htons(ETH_P_802_2)) {
  808. /*
  809. * Ethertype 802.2 is represented in the netlink with omitted
  810. * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
  811. * 0xffff in the mask attribute. Ethertype can also
  812. * be wildcarded.
  813. */
  814. if (is_mask && output->eth.type)
  815. if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
  816. output->eth.type))
  817. goto nla_put_failure;
  818. goto unencap;
  819. }
  820. if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
  821. goto nla_put_failure;
  822. if (swkey->eth.type == htons(ETH_P_IP)) {
  823. struct ovs_key_ipv4 *ipv4_key;
  824. nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
  825. if (!nla)
  826. goto nla_put_failure;
  827. ipv4_key = nla_data(nla);
  828. ipv4_key->ipv4_src = output->ipv4.addr.src;
  829. ipv4_key->ipv4_dst = output->ipv4.addr.dst;
  830. ipv4_key->ipv4_proto = output->ip.proto;
  831. ipv4_key->ipv4_tos = output->ip.tos;
  832. ipv4_key->ipv4_ttl = output->ip.ttl;
  833. ipv4_key->ipv4_frag = output->ip.frag;
  834. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  835. struct ovs_key_ipv6 *ipv6_key;
  836. nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
  837. if (!nla)
  838. goto nla_put_failure;
  839. ipv6_key = nla_data(nla);
  840. memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
  841. sizeof(ipv6_key->ipv6_src));
  842. memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
  843. sizeof(ipv6_key->ipv6_dst));
  844. ipv6_key->ipv6_label = output->ipv6.label;
  845. ipv6_key->ipv6_proto = output->ip.proto;
  846. ipv6_key->ipv6_tclass = output->ip.tos;
  847. ipv6_key->ipv6_hlimit = output->ip.ttl;
  848. ipv6_key->ipv6_frag = output->ip.frag;
  849. } else if (swkey->eth.type == htons(ETH_P_ARP) ||
  850. swkey->eth.type == htons(ETH_P_RARP)) {
  851. struct ovs_key_arp *arp_key;
  852. nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
  853. if (!nla)
  854. goto nla_put_failure;
  855. arp_key = nla_data(nla);
  856. memset(arp_key, 0, sizeof(struct ovs_key_arp));
  857. arp_key->arp_sip = output->ipv4.addr.src;
  858. arp_key->arp_tip = output->ipv4.addr.dst;
  859. arp_key->arp_op = htons(output->ip.proto);
  860. ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
  861. ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
  862. }
  863. if ((swkey->eth.type == htons(ETH_P_IP) ||
  864. swkey->eth.type == htons(ETH_P_IPV6)) &&
  865. swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
  866. if (swkey->ip.proto == IPPROTO_TCP) {
  867. struct ovs_key_tcp *tcp_key;
  868. nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
  869. if (!nla)
  870. goto nla_put_failure;
  871. tcp_key = nla_data(nla);
  872. tcp_key->tcp_src = output->tp.src;
  873. tcp_key->tcp_dst = output->tp.dst;
  874. if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
  875. output->tp.flags))
  876. goto nla_put_failure;
  877. } else if (swkey->ip.proto == IPPROTO_UDP) {
  878. struct ovs_key_udp *udp_key;
  879. nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
  880. if (!nla)
  881. goto nla_put_failure;
  882. udp_key = nla_data(nla);
  883. udp_key->udp_src = output->tp.src;
  884. udp_key->udp_dst = output->tp.dst;
  885. } else if (swkey->ip.proto == IPPROTO_SCTP) {
  886. struct ovs_key_sctp *sctp_key;
  887. nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
  888. if (!nla)
  889. goto nla_put_failure;
  890. sctp_key = nla_data(nla);
  891. sctp_key->sctp_src = output->tp.src;
  892. sctp_key->sctp_dst = output->tp.dst;
  893. } else if (swkey->eth.type == htons(ETH_P_IP) &&
  894. swkey->ip.proto == IPPROTO_ICMP) {
  895. struct ovs_key_icmp *icmp_key;
  896. nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
  897. if (!nla)
  898. goto nla_put_failure;
  899. icmp_key = nla_data(nla);
  900. icmp_key->icmp_type = ntohs(output->tp.src);
  901. icmp_key->icmp_code = ntohs(output->tp.dst);
  902. } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
  903. swkey->ip.proto == IPPROTO_ICMPV6) {
  904. struct ovs_key_icmpv6 *icmpv6_key;
  905. nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
  906. sizeof(*icmpv6_key));
  907. if (!nla)
  908. goto nla_put_failure;
  909. icmpv6_key = nla_data(nla);
  910. icmpv6_key->icmpv6_type = ntohs(output->tp.src);
  911. icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
  912. if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
  913. icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
  914. struct ovs_key_nd *nd_key;
  915. nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
  916. if (!nla)
  917. goto nla_put_failure;
  918. nd_key = nla_data(nla);
  919. memcpy(nd_key->nd_target, &output->ipv6.nd.target,
  920. sizeof(nd_key->nd_target));
  921. ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
  922. ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
  923. }
  924. }
  925. }
  926. unencap:
  927. if (encap)
  928. nla_nest_end(skb, encap);
  929. return 0;
  930. nla_put_failure:
  931. return -EMSGSIZE;
  932. }
  933. #define MAX_ACTIONS_BUFSIZE (32 * 1024)
  934. struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
  935. {
  936. struct sw_flow_actions *sfa;
  937. if (size > MAX_ACTIONS_BUFSIZE)
  938. return ERR_PTR(-EINVAL);
  939. sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
  940. if (!sfa)
  941. return ERR_PTR(-ENOMEM);
  942. sfa->actions_len = 0;
  943. return sfa;
  944. }
  945. /* Schedules 'sf_acts' to be freed after the next RCU grace period.
  946. * The caller must hold rcu_read_lock for this to be sensible. */
  947. void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
  948. {
  949. kfree_rcu(sf_acts, rcu);
  950. }
  951. static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
  952. int attr_len)
  953. {
  954. struct sw_flow_actions *acts;
  955. int new_acts_size;
  956. int req_size = NLA_ALIGN(attr_len);
  957. int next_offset = offsetof(struct sw_flow_actions, actions) +
  958. (*sfa)->actions_len;
  959. if (req_size <= (ksize(*sfa) - next_offset))
  960. goto out;
  961. new_acts_size = ksize(*sfa) * 2;
  962. if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
  963. if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
  964. return ERR_PTR(-EMSGSIZE);
  965. new_acts_size = MAX_ACTIONS_BUFSIZE;
  966. }
  967. acts = ovs_nla_alloc_flow_actions(new_acts_size);
  968. if (IS_ERR(acts))
  969. return (void *)acts;
  970. memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
  971. acts->actions_len = (*sfa)->actions_len;
  972. kfree(*sfa);
  973. *sfa = acts;
  974. out:
  975. (*sfa)->actions_len += req_size;
  976. return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
  977. }
  978. static struct nlattr *__add_action(struct sw_flow_actions **sfa,
  979. int attrtype, void *data, int len)
  980. {
  981. struct nlattr *a;
  982. a = reserve_sfa_size(sfa, nla_attr_size(len));
  983. if (IS_ERR(a))
  984. return a;
  985. a->nla_type = attrtype;
  986. a->nla_len = nla_attr_size(len);
  987. if (data)
  988. memcpy(nla_data(a), data, len);
  989. memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
  990. return a;
  991. }
  992. static int add_action(struct sw_flow_actions **sfa, int attrtype,
  993. void *data, int len)
  994. {
  995. struct nlattr *a;
  996. a = __add_action(sfa, attrtype, data, len);
  997. if (IS_ERR(a))
  998. return PTR_ERR(a);
  999. return 0;
  1000. }
  1001. static inline int add_nested_action_start(struct sw_flow_actions **sfa,
  1002. int attrtype)
  1003. {
  1004. int used = (*sfa)->actions_len;
  1005. int err;
  1006. err = add_action(sfa, attrtype, NULL, 0);
  1007. if (err)
  1008. return err;
  1009. return used;
  1010. }
  1011. static inline void add_nested_action_end(struct sw_flow_actions *sfa,
  1012. int st_offset)
  1013. {
  1014. struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
  1015. st_offset);
  1016. a->nla_len = sfa->actions_len - st_offset;
  1017. }
  1018. static int validate_and_copy_sample(const struct nlattr *attr,
  1019. const struct sw_flow_key *key, int depth,
  1020. struct sw_flow_actions **sfa)
  1021. {
  1022. const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
  1023. const struct nlattr *probability, *actions;
  1024. const struct nlattr *a;
  1025. int rem, start, err, st_acts;
  1026. memset(attrs, 0, sizeof(attrs));
  1027. nla_for_each_nested(a, attr, rem) {
  1028. int type = nla_type(a);
  1029. if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
  1030. return -EINVAL;
  1031. attrs[type] = a;
  1032. }
  1033. if (rem)
  1034. return -EINVAL;
  1035. probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
  1036. if (!probability || nla_len(probability) != sizeof(u32))
  1037. return -EINVAL;
  1038. actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
  1039. if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
  1040. return -EINVAL;
  1041. /* validation done, copy sample action. */
  1042. start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
  1043. if (start < 0)
  1044. return start;
  1045. err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
  1046. nla_data(probability), sizeof(u32));
  1047. if (err)
  1048. return err;
  1049. st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
  1050. if (st_acts < 0)
  1051. return st_acts;
  1052. err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
  1053. if (err)
  1054. return err;
  1055. add_nested_action_end(*sfa, st_acts);
  1056. add_nested_action_end(*sfa, start);
  1057. return 0;
  1058. }
  1059. static int validate_tp_port(const struct sw_flow_key *flow_key)
  1060. {
  1061. if ((flow_key->eth.type == htons(ETH_P_IP) ||
  1062. flow_key->eth.type == htons(ETH_P_IPV6)) &&
  1063. (flow_key->tp.src || flow_key->tp.dst))
  1064. return 0;
  1065. return -EINVAL;
  1066. }
  1067. void ovs_match_init(struct sw_flow_match *match,
  1068. struct sw_flow_key *key,
  1069. struct sw_flow_mask *mask)
  1070. {
  1071. memset(match, 0, sizeof(*match));
  1072. match->key = key;
  1073. match->mask = mask;
  1074. memset(key, 0, sizeof(*key));
  1075. if (mask) {
  1076. memset(&mask->key, 0, sizeof(mask->key));
  1077. mask->range.start = mask->range.end = 0;
  1078. }
  1079. }
  1080. static int validate_and_copy_set_tun(const struct nlattr *attr,
  1081. struct sw_flow_actions **sfa)
  1082. {
  1083. struct sw_flow_match match;
  1084. struct sw_flow_key key;
  1085. struct ovs_tunnel_info *tun_info;
  1086. struct nlattr *a;
  1087. int err, start;
  1088. ovs_match_init(&match, &key, NULL);
  1089. err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
  1090. if (err)
  1091. return err;
  1092. start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
  1093. if (start < 0)
  1094. return start;
  1095. a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
  1096. sizeof(*tun_info));
  1097. if (IS_ERR(a))
  1098. return PTR_ERR(a);
  1099. tun_info = nla_data(a);
  1100. tun_info->tunnel = key.tun_key;
  1101. add_nested_action_end(*sfa, start);
  1102. return err;
  1103. }
  1104. static int validate_set(const struct nlattr *a,
  1105. const struct sw_flow_key *flow_key,
  1106. struct sw_flow_actions **sfa,
  1107. bool *set_tun)
  1108. {
  1109. const struct nlattr *ovs_key = nla_data(a);
  1110. int key_type = nla_type(ovs_key);
  1111. /* There can be only one key in a action */
  1112. if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
  1113. return -EINVAL;
  1114. if (key_type > OVS_KEY_ATTR_MAX ||
  1115. (ovs_key_lens[key_type] != nla_len(ovs_key) &&
  1116. ovs_key_lens[key_type] != -1))
  1117. return -EINVAL;
  1118. switch (key_type) {
  1119. const struct ovs_key_ipv4 *ipv4_key;
  1120. const struct ovs_key_ipv6 *ipv6_key;
  1121. int err;
  1122. case OVS_KEY_ATTR_PRIORITY:
  1123. case OVS_KEY_ATTR_SKB_MARK:
  1124. case OVS_KEY_ATTR_ETHERNET:
  1125. break;
  1126. case OVS_KEY_ATTR_TUNNEL:
  1127. *set_tun = true;
  1128. err = validate_and_copy_set_tun(a, sfa);
  1129. if (err)
  1130. return err;
  1131. break;
  1132. case OVS_KEY_ATTR_IPV4:
  1133. if (flow_key->eth.type != htons(ETH_P_IP))
  1134. return -EINVAL;
  1135. if (!flow_key->ip.proto)
  1136. return -EINVAL;
  1137. ipv4_key = nla_data(ovs_key);
  1138. if (ipv4_key->ipv4_proto != flow_key->ip.proto)
  1139. return -EINVAL;
  1140. if (ipv4_key->ipv4_frag != flow_key->ip.frag)
  1141. return -EINVAL;
  1142. break;
  1143. case OVS_KEY_ATTR_IPV6:
  1144. if (flow_key->eth.type != htons(ETH_P_IPV6))
  1145. return -EINVAL;
  1146. if (!flow_key->ip.proto)
  1147. return -EINVAL;
  1148. ipv6_key = nla_data(ovs_key);
  1149. if (ipv6_key->ipv6_proto != flow_key->ip.proto)
  1150. return -EINVAL;
  1151. if (ipv6_key->ipv6_frag != flow_key->ip.frag)
  1152. return -EINVAL;
  1153. if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
  1154. return -EINVAL;
  1155. break;
  1156. case OVS_KEY_ATTR_TCP:
  1157. if (flow_key->ip.proto != IPPROTO_TCP)
  1158. return -EINVAL;
  1159. return validate_tp_port(flow_key);
  1160. case OVS_KEY_ATTR_UDP:
  1161. if (flow_key->ip.proto != IPPROTO_UDP)
  1162. return -EINVAL;
  1163. return validate_tp_port(flow_key);
  1164. case OVS_KEY_ATTR_SCTP:
  1165. if (flow_key->ip.proto != IPPROTO_SCTP)
  1166. return -EINVAL;
  1167. return validate_tp_port(flow_key);
  1168. default:
  1169. return -EINVAL;
  1170. }
  1171. return 0;
  1172. }
  1173. static int validate_userspace(const struct nlattr *attr)
  1174. {
  1175. static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
  1176. [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
  1177. [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
  1178. };
  1179. struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
  1180. int error;
  1181. error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
  1182. attr, userspace_policy);
  1183. if (error)
  1184. return error;
  1185. if (!a[OVS_USERSPACE_ATTR_PID] ||
  1186. !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
  1187. return -EINVAL;
  1188. return 0;
  1189. }
  1190. static int copy_action(const struct nlattr *from,
  1191. struct sw_flow_actions **sfa)
  1192. {
  1193. int totlen = NLA_ALIGN(from->nla_len);
  1194. struct nlattr *to;
  1195. to = reserve_sfa_size(sfa, from->nla_len);
  1196. if (IS_ERR(to))
  1197. return PTR_ERR(to);
  1198. memcpy(to, from, totlen);
  1199. return 0;
  1200. }
  1201. int ovs_nla_copy_actions(const struct nlattr *attr,
  1202. const struct sw_flow_key *key,
  1203. int depth,
  1204. struct sw_flow_actions **sfa)
  1205. {
  1206. const struct nlattr *a;
  1207. int rem, err;
  1208. if (depth >= SAMPLE_ACTION_DEPTH)
  1209. return -EOVERFLOW;
  1210. nla_for_each_nested(a, attr, rem) {
  1211. /* Expected argument lengths, (u32)-1 for variable length. */
  1212. static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
  1213. [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
  1214. [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
  1215. [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
  1216. [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
  1217. [OVS_ACTION_ATTR_POP_VLAN] = 0,
  1218. [OVS_ACTION_ATTR_SET] = (u32)-1,
  1219. [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
  1220. [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
  1221. };
  1222. const struct ovs_action_push_vlan *vlan;
  1223. int type = nla_type(a);
  1224. bool skip_copy;
  1225. if (type > OVS_ACTION_ATTR_MAX ||
  1226. (action_lens[type] != nla_len(a) &&
  1227. action_lens[type] != (u32)-1))
  1228. return -EINVAL;
  1229. skip_copy = false;
  1230. switch (type) {
  1231. case OVS_ACTION_ATTR_UNSPEC:
  1232. return -EINVAL;
  1233. case OVS_ACTION_ATTR_USERSPACE:
  1234. err = validate_userspace(a);
  1235. if (err)
  1236. return err;
  1237. break;
  1238. case OVS_ACTION_ATTR_OUTPUT:
  1239. if (nla_get_u32(a) >= DP_MAX_PORTS)
  1240. return -EINVAL;
  1241. break;
  1242. case OVS_ACTION_ATTR_HASH: {
  1243. const struct ovs_action_hash *act_hash = nla_data(a);
  1244. switch (act_hash->hash_alg) {
  1245. case OVS_HASH_ALG_L4:
  1246. break;
  1247. default:
  1248. return -EINVAL;
  1249. }
  1250. break;
  1251. }
  1252. case OVS_ACTION_ATTR_POP_VLAN:
  1253. break;
  1254. case OVS_ACTION_ATTR_PUSH_VLAN:
  1255. vlan = nla_data(a);
  1256. if (vlan->vlan_tpid != htons(ETH_P_8021Q))
  1257. return -EINVAL;
  1258. if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
  1259. return -EINVAL;
  1260. break;
  1261. case OVS_ACTION_ATTR_RECIRC:
  1262. break;
  1263. case OVS_ACTION_ATTR_SET:
  1264. err = validate_set(a, key, sfa, &skip_copy);
  1265. if (err)
  1266. return err;
  1267. break;
  1268. case OVS_ACTION_ATTR_SAMPLE:
  1269. err = validate_and_copy_sample(a, key, depth, sfa);
  1270. if (err)
  1271. return err;
  1272. skip_copy = true;
  1273. break;
  1274. default:
  1275. return -EINVAL;
  1276. }
  1277. if (!skip_copy) {
  1278. err = copy_action(a, sfa);
  1279. if (err)
  1280. return err;
  1281. }
  1282. }
  1283. if (rem > 0)
  1284. return -EINVAL;
  1285. return 0;
  1286. }
  1287. static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
  1288. {
  1289. const struct nlattr *a;
  1290. struct nlattr *start;
  1291. int err = 0, rem;
  1292. start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
  1293. if (!start)
  1294. return -EMSGSIZE;
  1295. nla_for_each_nested(a, attr, rem) {
  1296. int type = nla_type(a);
  1297. struct nlattr *st_sample;
  1298. switch (type) {
  1299. case OVS_SAMPLE_ATTR_PROBABILITY:
  1300. if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
  1301. sizeof(u32), nla_data(a)))
  1302. return -EMSGSIZE;
  1303. break;
  1304. case OVS_SAMPLE_ATTR_ACTIONS:
  1305. st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
  1306. if (!st_sample)
  1307. return -EMSGSIZE;
  1308. err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
  1309. if (err)
  1310. return err;
  1311. nla_nest_end(skb, st_sample);
  1312. break;
  1313. }
  1314. }
  1315. nla_nest_end(skb, start);
  1316. return err;
  1317. }
  1318. static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
  1319. {
  1320. const struct nlattr *ovs_key = nla_data(a);
  1321. int key_type = nla_type(ovs_key);
  1322. struct nlattr *start;
  1323. int err;
  1324. switch (key_type) {
  1325. case OVS_KEY_ATTR_TUNNEL_INFO: {
  1326. struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
  1327. start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
  1328. if (!start)
  1329. return -EMSGSIZE;
  1330. err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
  1331. nla_data(ovs_key));
  1332. if (err)
  1333. return err;
  1334. nla_nest_end(skb, start);
  1335. break;
  1336. }
  1337. default:
  1338. if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
  1339. return -EMSGSIZE;
  1340. break;
  1341. }
  1342. return 0;
  1343. }
  1344. int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
  1345. {
  1346. const struct nlattr *a;
  1347. int rem, err;
  1348. nla_for_each_attr(a, attr, len, rem) {
  1349. int type = nla_type(a);
  1350. switch (type) {
  1351. case OVS_ACTION_ATTR_SET:
  1352. err = set_action_to_attr(a, skb);
  1353. if (err)
  1354. return err;
  1355. break;
  1356. case OVS_ACTION_ATTR_SAMPLE:
  1357. err = sample_action_to_attr(a, skb);
  1358. if (err)
  1359. return err;
  1360. break;
  1361. default:
  1362. if (nla_put(skb, type, nla_len(a), nla_data(a)))
  1363. return -EMSGSIZE;
  1364. break;
  1365. }
  1366. }
  1367. return 0;
  1368. }