intel_ddi.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  33. };
  34. static const u8 index_to_dp_signal_levels[] = {
  35. [0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  36. [1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  37. [2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2,
  38. [3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3,
  39. [4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  40. [5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  41. [6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2,
  42. [7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  43. [8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  44. [9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  45. };
  46. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  47. * them for both DP and FDI transports, allowing those ports to
  48. * automatically adapt to HDMI connections as well
  49. */
  50. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  51. { 0x00FFFFFF, 0x0006000E, 0x0 },
  52. { 0x00D75FFF, 0x0005000A, 0x0 },
  53. { 0x00C30FFF, 0x00040006, 0x0 },
  54. { 0x80AAAFFF, 0x000B0000, 0x0 },
  55. { 0x00FFFFFF, 0x0005000A, 0x0 },
  56. { 0x00D75FFF, 0x000C0004, 0x0 },
  57. { 0x80C30FFF, 0x000B0000, 0x0 },
  58. { 0x00FFFFFF, 0x00040006, 0x0 },
  59. { 0x80D75FFF, 0x000B0000, 0x0 },
  60. };
  61. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  62. { 0x00FFFFFF, 0x0007000E, 0x0 },
  63. { 0x00D75FFF, 0x000F000A, 0x0 },
  64. { 0x00C30FFF, 0x00060006, 0x0 },
  65. { 0x00AAAFFF, 0x001E0000, 0x0 },
  66. { 0x00FFFFFF, 0x000F000A, 0x0 },
  67. { 0x00D75FFF, 0x00160004, 0x0 },
  68. { 0x00C30FFF, 0x001E0000, 0x0 },
  69. { 0x00FFFFFF, 0x00060006, 0x0 },
  70. { 0x00D75FFF, 0x001E0000, 0x0 },
  71. };
  72. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  73. /* Idx NT mV d T mV d db */
  74. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  75. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  76. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  77. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  78. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  79. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  80. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  81. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  82. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  83. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  84. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  85. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  86. };
  87. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  88. { 0x00FFFFFF, 0x00000012, 0x0 },
  89. { 0x00EBAFFF, 0x00020011, 0x0 },
  90. { 0x00C71FFF, 0x0006000F, 0x0 },
  91. { 0x00AAAFFF, 0x000E000A, 0x0 },
  92. { 0x00FFFFFF, 0x00020011, 0x0 },
  93. { 0x00DB6FFF, 0x0005000F, 0x0 },
  94. { 0x00BEEFFF, 0x000A000C, 0x0 },
  95. { 0x00FFFFFF, 0x0005000F, 0x0 },
  96. { 0x00DB6FFF, 0x000A000C, 0x0 },
  97. };
  98. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  99. { 0x00FFFFFF, 0x0007000E, 0x0 },
  100. { 0x00D75FFF, 0x000E000A, 0x0 },
  101. { 0x00BEFFFF, 0x00140006, 0x0 },
  102. { 0x80B2CFFF, 0x001B0002, 0x0 },
  103. { 0x00FFFFFF, 0x000E000A, 0x0 },
  104. { 0x00DB6FFF, 0x00160005, 0x0 },
  105. { 0x80C71FFF, 0x001A0002, 0x0 },
  106. { 0x00F7DFFF, 0x00180004, 0x0 },
  107. { 0x80D75FFF, 0x001B0002, 0x0 },
  108. };
  109. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  110. { 0x00FFFFFF, 0x0001000E, 0x0 },
  111. { 0x00D75FFF, 0x0004000A, 0x0 },
  112. { 0x00C30FFF, 0x00070006, 0x0 },
  113. { 0x00AAAFFF, 0x000C0000, 0x0 },
  114. { 0x00FFFFFF, 0x0004000A, 0x0 },
  115. { 0x00D75FFF, 0x00090004, 0x0 },
  116. { 0x00C30FFF, 0x000C0000, 0x0 },
  117. { 0x00FFFFFF, 0x00070006, 0x0 },
  118. { 0x00D75FFF, 0x000C0000, 0x0 },
  119. };
  120. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  121. /* Idx NT mV d T mV df db */
  122. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  123. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  124. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  125. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  126. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  127. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  128. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  129. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  130. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  131. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  132. };
  133. /* Skylake H and S */
  134. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  135. { 0x00002016, 0x000000A0, 0x0 },
  136. { 0x00005012, 0x0000009B, 0x0 },
  137. { 0x00007011, 0x00000088, 0x0 },
  138. { 0x80009010, 0x000000C0, 0x1 },
  139. { 0x00002016, 0x0000009B, 0x0 },
  140. { 0x00005012, 0x00000088, 0x0 },
  141. { 0x80007011, 0x000000C0, 0x1 },
  142. { 0x00002016, 0x000000DF, 0x0 },
  143. { 0x80005012, 0x000000C0, 0x1 },
  144. };
  145. /* Skylake U */
  146. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  147. { 0x0000201B, 0x000000A2, 0x0 },
  148. { 0x00005012, 0x00000088, 0x0 },
  149. { 0x80007011, 0x000000CD, 0x1 },
  150. { 0x80009010, 0x000000C0, 0x1 },
  151. { 0x0000201B, 0x0000009D, 0x0 },
  152. { 0x80005012, 0x000000C0, 0x1 },
  153. { 0x80007011, 0x000000C0, 0x1 },
  154. { 0x00002016, 0x00000088, 0x0 },
  155. { 0x80005012, 0x000000C0, 0x1 },
  156. };
  157. /* Skylake Y */
  158. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  159. { 0x00000018, 0x000000A2, 0x0 },
  160. { 0x00005012, 0x00000088, 0x0 },
  161. { 0x80007011, 0x000000CD, 0x3 },
  162. { 0x80009010, 0x000000C0, 0x3 },
  163. { 0x00000018, 0x0000009D, 0x0 },
  164. { 0x80005012, 0x000000C0, 0x3 },
  165. { 0x80007011, 0x000000C0, 0x3 },
  166. { 0x00000018, 0x00000088, 0x0 },
  167. { 0x80005012, 0x000000C0, 0x3 },
  168. };
  169. /* Kabylake H and S */
  170. static const struct ddi_buf_trans kbl_ddi_translations_dp[] = {
  171. { 0x00002016, 0x000000A0, 0x0 },
  172. { 0x00005012, 0x0000009B, 0x0 },
  173. { 0x00007011, 0x00000088, 0x0 },
  174. { 0x80009010, 0x000000C0, 0x1 },
  175. { 0x00002016, 0x0000009B, 0x0 },
  176. { 0x00005012, 0x00000088, 0x0 },
  177. { 0x80007011, 0x000000C0, 0x1 },
  178. { 0x00002016, 0x00000097, 0x0 },
  179. { 0x80005012, 0x000000C0, 0x1 },
  180. };
  181. /* Kabylake U */
  182. static const struct ddi_buf_trans kbl_u_ddi_translations_dp[] = {
  183. { 0x0000201B, 0x000000A1, 0x0 },
  184. { 0x00005012, 0x00000088, 0x0 },
  185. { 0x80007011, 0x000000CD, 0x3 },
  186. { 0x80009010, 0x000000C0, 0x3 },
  187. { 0x0000201B, 0x0000009D, 0x0 },
  188. { 0x80005012, 0x000000C0, 0x3 },
  189. { 0x80007011, 0x000000C0, 0x3 },
  190. { 0x00002016, 0x0000004F, 0x0 },
  191. { 0x80005012, 0x000000C0, 0x3 },
  192. };
  193. /* Kabylake Y */
  194. static const struct ddi_buf_trans kbl_y_ddi_translations_dp[] = {
  195. { 0x00001017, 0x000000A1, 0x0 },
  196. { 0x00005012, 0x00000088, 0x0 },
  197. { 0x80007011, 0x000000CD, 0x3 },
  198. { 0x8000800F, 0x000000C0, 0x3 },
  199. { 0x00001017, 0x0000009D, 0x0 },
  200. { 0x80005012, 0x000000C0, 0x3 },
  201. { 0x80007011, 0x000000C0, 0x3 },
  202. { 0x00001017, 0x0000004C, 0x0 },
  203. { 0x80005012, 0x000000C0, 0x3 },
  204. };
  205. /*
  206. * Skylake/Kabylake H and S
  207. * eDP 1.4 low vswing translation parameters
  208. */
  209. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  210. { 0x00000018, 0x000000A8, 0x0 },
  211. { 0x00004013, 0x000000A9, 0x0 },
  212. { 0x00007011, 0x000000A2, 0x0 },
  213. { 0x00009010, 0x0000009C, 0x0 },
  214. { 0x00000018, 0x000000A9, 0x0 },
  215. { 0x00006013, 0x000000A2, 0x0 },
  216. { 0x00007011, 0x000000A6, 0x0 },
  217. { 0x00000018, 0x000000AB, 0x0 },
  218. { 0x00007013, 0x0000009F, 0x0 },
  219. { 0x00000018, 0x000000DF, 0x0 },
  220. };
  221. /*
  222. * Skylake/Kabylake U
  223. * eDP 1.4 low vswing translation parameters
  224. */
  225. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  226. { 0x00000018, 0x000000A8, 0x0 },
  227. { 0x00004013, 0x000000A9, 0x0 },
  228. { 0x00007011, 0x000000A2, 0x0 },
  229. { 0x00009010, 0x0000009C, 0x0 },
  230. { 0x00000018, 0x000000A9, 0x0 },
  231. { 0x00006013, 0x000000A2, 0x0 },
  232. { 0x00007011, 0x000000A6, 0x0 },
  233. { 0x00002016, 0x000000AB, 0x0 },
  234. { 0x00005013, 0x0000009F, 0x0 },
  235. { 0x00000018, 0x000000DF, 0x0 },
  236. };
  237. /*
  238. * Skylake/Kabylake Y
  239. * eDP 1.4 low vswing translation parameters
  240. */
  241. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  242. { 0x00000018, 0x000000A8, 0x0 },
  243. { 0x00004013, 0x000000AB, 0x0 },
  244. { 0x00007011, 0x000000A4, 0x0 },
  245. { 0x00009010, 0x000000DF, 0x0 },
  246. { 0x00000018, 0x000000AA, 0x0 },
  247. { 0x00006013, 0x000000A4, 0x0 },
  248. { 0x00007011, 0x0000009D, 0x0 },
  249. { 0x00000018, 0x000000A0, 0x0 },
  250. { 0x00006012, 0x000000DF, 0x0 },
  251. { 0x00000018, 0x0000008A, 0x0 },
  252. };
  253. /* Skylake/Kabylake U, H and S */
  254. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  255. { 0x00000018, 0x000000AC, 0x0 },
  256. { 0x00005012, 0x0000009D, 0x0 },
  257. { 0x00007011, 0x00000088, 0x0 },
  258. { 0x00000018, 0x000000A1, 0x0 },
  259. { 0x00000018, 0x00000098, 0x0 },
  260. { 0x00004013, 0x00000088, 0x0 },
  261. { 0x80006012, 0x000000CD, 0x1 },
  262. { 0x00000018, 0x000000DF, 0x0 },
  263. { 0x80003015, 0x000000CD, 0x1 }, /* Default */
  264. { 0x80003015, 0x000000C0, 0x1 },
  265. { 0x80000018, 0x000000C0, 0x1 },
  266. };
  267. /* Skylake/Kabylake Y */
  268. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  269. { 0x00000018, 0x000000A1, 0x0 },
  270. { 0x00005012, 0x000000DF, 0x0 },
  271. { 0x80007011, 0x000000CB, 0x3 },
  272. { 0x00000018, 0x000000A4, 0x0 },
  273. { 0x00000018, 0x0000009D, 0x0 },
  274. { 0x00004013, 0x00000080, 0x0 },
  275. { 0x80006013, 0x000000C0, 0x3 },
  276. { 0x00000018, 0x0000008A, 0x0 },
  277. { 0x80003015, 0x000000C0, 0x3 }, /* Default */
  278. { 0x80003015, 0x000000C0, 0x3 },
  279. { 0x80000018, 0x000000C0, 0x3 },
  280. };
  281. struct bxt_ddi_buf_trans {
  282. u8 margin; /* swing value */
  283. u8 scale; /* scale value */
  284. u8 enable; /* scale enable */
  285. u8 deemphasis;
  286. };
  287. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  288. /* Idx NT mV diff db */
  289. { 52, 0x9A, 0, 128, }, /* 0: 400 0 */
  290. { 78, 0x9A, 0, 85, }, /* 1: 400 3.5 */
  291. { 104, 0x9A, 0, 64, }, /* 2: 400 6 */
  292. { 154, 0x9A, 0, 43, }, /* 3: 400 9.5 */
  293. { 77, 0x9A, 0, 128, }, /* 4: 600 0 */
  294. { 116, 0x9A, 0, 85, }, /* 5: 600 3.5 */
  295. { 154, 0x9A, 0, 64, }, /* 6: 600 6 */
  296. { 102, 0x9A, 0, 128, }, /* 7: 800 0 */
  297. { 154, 0x9A, 0, 85, }, /* 8: 800 3.5 */
  298. { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
  299. };
  300. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  301. /* Idx NT mV diff db */
  302. { 26, 0, 0, 128, }, /* 0: 200 0 */
  303. { 38, 0, 0, 112, }, /* 1: 200 1.5 */
  304. { 48, 0, 0, 96, }, /* 2: 200 4 */
  305. { 54, 0, 0, 69, }, /* 3: 200 6 */
  306. { 32, 0, 0, 128, }, /* 4: 250 0 */
  307. { 48, 0, 0, 104, }, /* 5: 250 1.5 */
  308. { 54, 0, 0, 85, }, /* 6: 250 4 */
  309. { 43, 0, 0, 128, }, /* 7: 300 0 */
  310. { 54, 0, 0, 101, }, /* 8: 300 1.5 */
  311. { 48, 0, 0, 128, }, /* 9: 300 0 */
  312. };
  313. /* BSpec has 2 recommended values - entries 0 and 8.
  314. * Using the entry with higher vswing.
  315. */
  316. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  317. /* Idx NT mV diff db */
  318. { 52, 0x9A, 0, 128, }, /* 0: 400 0 */
  319. { 52, 0x9A, 0, 85, }, /* 1: 400 3.5 */
  320. { 52, 0x9A, 0, 64, }, /* 2: 400 6 */
  321. { 42, 0x9A, 0, 43, }, /* 3: 400 9.5 */
  322. { 77, 0x9A, 0, 128, }, /* 4: 600 0 */
  323. { 77, 0x9A, 0, 85, }, /* 5: 600 3.5 */
  324. { 77, 0x9A, 0, 64, }, /* 6: 600 6 */
  325. { 102, 0x9A, 0, 128, }, /* 7: 800 0 */
  326. { 102, 0x9A, 0, 85, }, /* 8: 800 3.5 */
  327. { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
  328. };
  329. struct cnl_ddi_buf_trans {
  330. u8 dw2_swing_sel;
  331. u8 dw7_n_scalar;
  332. u8 dw4_cursor_coeff;
  333. u8 dw4_post_cursor_2;
  334. u8 dw4_post_cursor_1;
  335. };
  336. /* Voltage Swing Programming for VccIO 0.85V for DP */
  337. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_85V[] = {
  338. /* NT mV Trans mV db */
  339. { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
  340. { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
  341. { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
  342. { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
  343. { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
  344. { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
  345. { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
  346. { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
  347. { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
  348. { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
  349. };
  350. /* Voltage Swing Programming for VccIO 0.85V for HDMI */
  351. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_85V[] = {
  352. /* NT mV Trans mV db */
  353. { 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  354. { 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */
  355. { 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */
  356. { 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 */
  357. { 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */
  358. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */
  359. { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  360. };
  361. /* Voltage Swing Programming for VccIO 0.85V for eDP */
  362. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_85V[] = {
  363. /* NT mV Trans mV db */
  364. { 0xA, 0x66, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  365. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  366. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  367. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  368. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  369. { 0xA, 0x66, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  370. { 0xB, 0x70, 0x3C, 0x00, 0x03 }, /* 460 600 2.3 */
  371. { 0xC, 0x75, 0x3C, 0x00, 0x03 }, /* 537 700 2.3 */
  372. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  373. };
  374. /* Voltage Swing Programming for VccIO 0.95V for DP */
  375. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_95V[] = {
  376. /* NT mV Trans mV db */
  377. { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
  378. { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
  379. { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
  380. { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
  381. { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
  382. { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
  383. { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
  384. { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
  385. { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
  386. { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
  387. };
  388. /* Voltage Swing Programming for VccIO 0.95V for HDMI */
  389. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_95V[] = {
  390. /* NT mV Trans mV db */
  391. { 0xA, 0x5C, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  392. { 0xB, 0x69, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  393. { 0x5, 0x76, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  394. { 0xA, 0x5E, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  395. { 0xB, 0x69, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  396. { 0xB, 0x79, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  397. { 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
  398. { 0x5, 0x76, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
  399. { 0x6, 0x7D, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
  400. { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
  401. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  402. };
  403. /* Voltage Swing Programming for VccIO 0.95V for eDP */
  404. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_95V[] = {
  405. /* NT mV Trans mV db */
  406. { 0xA, 0x61, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  407. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  408. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  409. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  410. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  411. { 0xA, 0x61, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  412. { 0xB, 0x68, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
  413. { 0xC, 0x6E, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
  414. { 0x4, 0x7F, 0x3A, 0x00, 0x05 }, /* 460 600 2.3 */
  415. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  416. };
  417. /* Voltage Swing Programming for VccIO 1.05V for DP */
  418. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_1_05V[] = {
  419. /* NT mV Trans mV db */
  420. { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  421. { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  422. { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  423. { 0x6, 0x7F, 0x2C, 0x00, 0x13 }, /* 400 1050 8.4 */
  424. { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  425. { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  426. { 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 550 1050 5.6 */
  427. { 0x5, 0x76, 0x3E, 0x00, 0x01 }, /* 850 900 0.5 */
  428. { 0x6, 0x7F, 0x36, 0x00, 0x09 }, /* 750 1050 2.9 */
  429. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  430. };
  431. /* Voltage Swing Programming for VccIO 1.05V for HDMI */
  432. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_1_05V[] = {
  433. /* NT mV Trans mV db */
  434. { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  435. { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  436. { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  437. { 0xA, 0x5B, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  438. { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  439. { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  440. { 0x6, 0x7C, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
  441. { 0x5, 0x70, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
  442. { 0x6, 0x7C, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
  443. { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
  444. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  445. };
  446. /* Voltage Swing Programming for VccIO 1.05V for eDP */
  447. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_1_05V[] = {
  448. /* NT mV Trans mV db */
  449. { 0xA, 0x5E, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  450. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  451. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  452. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  453. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  454. { 0xA, 0x5E, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  455. { 0xB, 0x64, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
  456. { 0xE, 0x6A, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
  457. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  458. };
  459. static const struct ddi_buf_trans *
  460. bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  461. {
  462. if (dev_priv->vbt.edp.low_vswing) {
  463. *n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  464. return bdw_ddi_translations_edp;
  465. } else {
  466. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  467. return bdw_ddi_translations_dp;
  468. }
  469. }
  470. static const struct ddi_buf_trans *
  471. skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  472. {
  473. if (IS_SKL_ULX(dev_priv)) {
  474. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  475. return skl_y_ddi_translations_dp;
  476. } else if (IS_SKL_ULT(dev_priv)) {
  477. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  478. return skl_u_ddi_translations_dp;
  479. } else {
  480. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  481. return skl_ddi_translations_dp;
  482. }
  483. }
  484. static const struct ddi_buf_trans *
  485. kbl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  486. {
  487. if (IS_KBL_ULX(dev_priv)) {
  488. *n_entries = ARRAY_SIZE(kbl_y_ddi_translations_dp);
  489. return kbl_y_ddi_translations_dp;
  490. } else if (IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv)) {
  491. *n_entries = ARRAY_SIZE(kbl_u_ddi_translations_dp);
  492. return kbl_u_ddi_translations_dp;
  493. } else {
  494. *n_entries = ARRAY_SIZE(kbl_ddi_translations_dp);
  495. return kbl_ddi_translations_dp;
  496. }
  497. }
  498. static const struct ddi_buf_trans *
  499. skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  500. {
  501. if (dev_priv->vbt.edp.low_vswing) {
  502. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  503. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  504. return skl_y_ddi_translations_edp;
  505. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv) ||
  506. IS_CFL_ULT(dev_priv)) {
  507. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  508. return skl_u_ddi_translations_edp;
  509. } else {
  510. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  511. return skl_ddi_translations_edp;
  512. }
  513. }
  514. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
  515. return kbl_get_buf_trans_dp(dev_priv, n_entries);
  516. else
  517. return skl_get_buf_trans_dp(dev_priv, n_entries);
  518. }
  519. static const struct ddi_buf_trans *
  520. skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  521. {
  522. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  523. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  524. return skl_y_ddi_translations_hdmi;
  525. } else {
  526. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  527. return skl_ddi_translations_hdmi;
  528. }
  529. }
  530. static int skl_buf_trans_num_entries(enum port port, int n_entries)
  531. {
  532. /* Only DDIA and DDIE can select the 10th register with DP */
  533. if (port == PORT_A || port == PORT_E)
  534. return min(n_entries, 10);
  535. else
  536. return min(n_entries, 9);
  537. }
  538. static const struct ddi_buf_trans *
  539. intel_ddi_get_buf_trans_dp(struct drm_i915_private *dev_priv,
  540. enum port port, int *n_entries)
  541. {
  542. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) {
  543. const struct ddi_buf_trans *ddi_translations =
  544. kbl_get_buf_trans_dp(dev_priv, n_entries);
  545. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  546. return ddi_translations;
  547. } else if (IS_SKYLAKE(dev_priv)) {
  548. const struct ddi_buf_trans *ddi_translations =
  549. skl_get_buf_trans_dp(dev_priv, n_entries);
  550. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  551. return ddi_translations;
  552. } else if (IS_BROADWELL(dev_priv)) {
  553. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  554. return bdw_ddi_translations_dp;
  555. } else if (IS_HASWELL(dev_priv)) {
  556. *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  557. return hsw_ddi_translations_dp;
  558. }
  559. *n_entries = 0;
  560. return NULL;
  561. }
  562. static const struct ddi_buf_trans *
  563. intel_ddi_get_buf_trans_edp(struct drm_i915_private *dev_priv,
  564. enum port port, int *n_entries)
  565. {
  566. if (IS_GEN9_BC(dev_priv)) {
  567. const struct ddi_buf_trans *ddi_translations =
  568. skl_get_buf_trans_edp(dev_priv, n_entries);
  569. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  570. return ddi_translations;
  571. } else if (IS_BROADWELL(dev_priv)) {
  572. return bdw_get_buf_trans_edp(dev_priv, n_entries);
  573. } else if (IS_HASWELL(dev_priv)) {
  574. *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  575. return hsw_ddi_translations_dp;
  576. }
  577. *n_entries = 0;
  578. return NULL;
  579. }
  580. static const struct ddi_buf_trans *
  581. intel_ddi_get_buf_trans_fdi(struct drm_i915_private *dev_priv,
  582. int *n_entries)
  583. {
  584. if (IS_BROADWELL(dev_priv)) {
  585. *n_entries = ARRAY_SIZE(bdw_ddi_translations_fdi);
  586. return bdw_ddi_translations_fdi;
  587. } else if (IS_HASWELL(dev_priv)) {
  588. *n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi);
  589. return hsw_ddi_translations_fdi;
  590. }
  591. *n_entries = 0;
  592. return NULL;
  593. }
  594. static const struct ddi_buf_trans *
  595. intel_ddi_get_buf_trans_hdmi(struct drm_i915_private *dev_priv,
  596. int *n_entries)
  597. {
  598. if (IS_GEN9_BC(dev_priv)) {
  599. return skl_get_buf_trans_hdmi(dev_priv, n_entries);
  600. } else if (IS_BROADWELL(dev_priv)) {
  601. *n_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  602. return bdw_ddi_translations_hdmi;
  603. } else if (IS_HASWELL(dev_priv)) {
  604. *n_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  605. return hsw_ddi_translations_hdmi;
  606. }
  607. *n_entries = 0;
  608. return NULL;
  609. }
  610. static const struct bxt_ddi_buf_trans *
  611. bxt_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  612. {
  613. *n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  614. return bxt_ddi_translations_dp;
  615. }
  616. static const struct bxt_ddi_buf_trans *
  617. bxt_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  618. {
  619. if (dev_priv->vbt.edp.low_vswing) {
  620. *n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  621. return bxt_ddi_translations_edp;
  622. }
  623. return bxt_get_buf_trans_dp(dev_priv, n_entries);
  624. }
  625. static const struct bxt_ddi_buf_trans *
  626. bxt_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  627. {
  628. *n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  629. return bxt_ddi_translations_hdmi;
  630. }
  631. static const struct cnl_ddi_buf_trans *
  632. cnl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  633. {
  634. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  635. if (voltage == VOLTAGE_INFO_0_85V) {
  636. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_85V);
  637. return cnl_ddi_translations_hdmi_0_85V;
  638. } else if (voltage == VOLTAGE_INFO_0_95V) {
  639. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_95V);
  640. return cnl_ddi_translations_hdmi_0_95V;
  641. } else if (voltage == VOLTAGE_INFO_1_05V) {
  642. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_1_05V);
  643. return cnl_ddi_translations_hdmi_1_05V;
  644. } else {
  645. *n_entries = 1; /* shut up gcc */
  646. MISSING_CASE(voltage);
  647. }
  648. return NULL;
  649. }
  650. static const struct cnl_ddi_buf_trans *
  651. cnl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  652. {
  653. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  654. if (voltage == VOLTAGE_INFO_0_85V) {
  655. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_85V);
  656. return cnl_ddi_translations_dp_0_85V;
  657. } else if (voltage == VOLTAGE_INFO_0_95V) {
  658. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_95V);
  659. return cnl_ddi_translations_dp_0_95V;
  660. } else if (voltage == VOLTAGE_INFO_1_05V) {
  661. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_1_05V);
  662. return cnl_ddi_translations_dp_1_05V;
  663. } else {
  664. *n_entries = 1; /* shut up gcc */
  665. MISSING_CASE(voltage);
  666. }
  667. return NULL;
  668. }
  669. static const struct cnl_ddi_buf_trans *
  670. cnl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  671. {
  672. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  673. if (dev_priv->vbt.edp.low_vswing) {
  674. if (voltage == VOLTAGE_INFO_0_85V) {
  675. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_85V);
  676. return cnl_ddi_translations_edp_0_85V;
  677. } else if (voltage == VOLTAGE_INFO_0_95V) {
  678. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_95V);
  679. return cnl_ddi_translations_edp_0_95V;
  680. } else if (voltage == VOLTAGE_INFO_1_05V) {
  681. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_1_05V);
  682. return cnl_ddi_translations_edp_1_05V;
  683. } else {
  684. *n_entries = 1; /* shut up gcc */
  685. MISSING_CASE(voltage);
  686. }
  687. return NULL;
  688. } else {
  689. return cnl_get_buf_trans_dp(dev_priv, n_entries);
  690. }
  691. }
  692. static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
  693. {
  694. int n_entries, level, default_entry;
  695. level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  696. if (IS_CANNONLAKE(dev_priv)) {
  697. cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
  698. default_entry = n_entries - 1;
  699. } else if (IS_GEN9_LP(dev_priv)) {
  700. bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
  701. default_entry = n_entries - 1;
  702. } else if (IS_GEN9_BC(dev_priv)) {
  703. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  704. default_entry = 8;
  705. } else if (IS_BROADWELL(dev_priv)) {
  706. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  707. default_entry = 7;
  708. } else if (IS_HASWELL(dev_priv)) {
  709. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  710. default_entry = 6;
  711. } else {
  712. WARN(1, "ddi translation table missing\n");
  713. return 0;
  714. }
  715. /* Choose a good default if VBT is badly populated */
  716. if (level == HDMI_LEVEL_SHIFT_UNKNOWN || level >= n_entries)
  717. level = default_entry;
  718. if (WARN_ON_ONCE(n_entries == 0))
  719. return 0;
  720. if (WARN_ON_ONCE(level >= n_entries))
  721. level = n_entries - 1;
  722. return level;
  723. }
  724. /*
  725. * Starting with Haswell, DDI port buffers must be programmed with correct
  726. * values in advance. This function programs the correct values for
  727. * DP/eDP/FDI use cases.
  728. */
  729. static void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder,
  730. const struct intel_crtc_state *crtc_state)
  731. {
  732. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  733. u32 iboost_bit = 0;
  734. int i, n_entries;
  735. enum port port = encoder->port;
  736. const struct ddi_buf_trans *ddi_translations;
  737. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
  738. ddi_translations = intel_ddi_get_buf_trans_fdi(dev_priv,
  739. &n_entries);
  740. else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
  741. ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port,
  742. &n_entries);
  743. else
  744. ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port,
  745. &n_entries);
  746. /* If we're boosting the current, set bit 31 of trans1 */
  747. if (IS_GEN9_BC(dev_priv) &&
  748. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  749. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  750. for (i = 0; i < n_entries; i++) {
  751. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  752. ddi_translations[i].trans1 | iboost_bit);
  753. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  754. ddi_translations[i].trans2);
  755. }
  756. }
  757. /*
  758. * Starting with Haswell, DDI port buffers must be programmed with correct
  759. * values in advance. This function programs the correct values for
  760. * HDMI/DVI use cases.
  761. */
  762. static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder,
  763. int level)
  764. {
  765. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  766. u32 iboost_bit = 0;
  767. int n_entries;
  768. enum port port = encoder->port;
  769. const struct ddi_buf_trans *ddi_translations;
  770. ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  771. if (WARN_ON_ONCE(!ddi_translations))
  772. return;
  773. if (WARN_ON_ONCE(level >= n_entries))
  774. level = n_entries - 1;
  775. /* If we're boosting the current, set bit 31 of trans1 */
  776. if (IS_GEN9_BC(dev_priv) &&
  777. dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
  778. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  779. /* Entry 9 is for HDMI: */
  780. I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
  781. ddi_translations[level].trans1 | iboost_bit);
  782. I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
  783. ddi_translations[level].trans2);
  784. }
  785. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  786. enum port port)
  787. {
  788. i915_reg_t reg = DDI_BUF_CTL(port);
  789. int i;
  790. for (i = 0; i < 16; i++) {
  791. udelay(1);
  792. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  793. return;
  794. }
  795. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  796. }
  797. static uint32_t hsw_pll_to_ddi_pll_sel(const struct intel_shared_dpll *pll)
  798. {
  799. switch (pll->id) {
  800. case DPLL_ID_WRPLL1:
  801. return PORT_CLK_SEL_WRPLL1;
  802. case DPLL_ID_WRPLL2:
  803. return PORT_CLK_SEL_WRPLL2;
  804. case DPLL_ID_SPLL:
  805. return PORT_CLK_SEL_SPLL;
  806. case DPLL_ID_LCPLL_810:
  807. return PORT_CLK_SEL_LCPLL_810;
  808. case DPLL_ID_LCPLL_1350:
  809. return PORT_CLK_SEL_LCPLL_1350;
  810. case DPLL_ID_LCPLL_2700:
  811. return PORT_CLK_SEL_LCPLL_2700;
  812. default:
  813. MISSING_CASE(pll->id);
  814. return PORT_CLK_SEL_NONE;
  815. }
  816. }
  817. /* Starting with Haswell, different DDI ports can work in FDI mode for
  818. * connection to the PCH-located connectors. For this, it is necessary to train
  819. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  820. *
  821. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  822. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  823. * DDI A (which is used for eDP)
  824. */
  825. void hsw_fdi_link_train(struct intel_crtc *crtc,
  826. const struct intel_crtc_state *crtc_state)
  827. {
  828. struct drm_device *dev = crtc->base.dev;
  829. struct drm_i915_private *dev_priv = to_i915(dev);
  830. struct intel_encoder *encoder;
  831. u32 temp, i, rx_ctl_val, ddi_pll_sel;
  832. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  833. WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
  834. intel_prepare_dp_ddi_buffers(encoder, crtc_state);
  835. }
  836. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  837. * mode set "sequence for CRT port" document:
  838. * - TP1 to TP2 time with the default value
  839. * - FDI delay to 90h
  840. *
  841. * WaFDIAutoLinkSetTimingOverrride:hsw
  842. */
  843. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  844. FDI_RX_PWRDN_LANE0_VAL(2) |
  845. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  846. /* Enable the PCH Receiver FDI PLL */
  847. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  848. FDI_RX_PLL_ENABLE |
  849. FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
  850. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  851. POSTING_READ(FDI_RX_CTL(PIPE_A));
  852. udelay(220);
  853. /* Switch from Rawclk to PCDclk */
  854. rx_ctl_val |= FDI_PCDCLK;
  855. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  856. /* Configure Port Clock Select */
  857. ddi_pll_sel = hsw_pll_to_ddi_pll_sel(crtc_state->shared_dpll);
  858. I915_WRITE(PORT_CLK_SEL(PORT_E), ddi_pll_sel);
  859. WARN_ON(ddi_pll_sel != PORT_CLK_SEL_SPLL);
  860. /* Start the training iterating through available voltages and emphasis,
  861. * testing each value twice. */
  862. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  863. /* Configure DP_TP_CTL with auto-training */
  864. I915_WRITE(DP_TP_CTL(PORT_E),
  865. DP_TP_CTL_FDI_AUTOTRAIN |
  866. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  867. DP_TP_CTL_LINK_TRAIN_PAT1 |
  868. DP_TP_CTL_ENABLE);
  869. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  870. * DDI E does not support port reversal, the functionality is
  871. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  872. * port reversal bit */
  873. I915_WRITE(DDI_BUF_CTL(PORT_E),
  874. DDI_BUF_CTL_ENABLE |
  875. ((crtc_state->fdi_lanes - 1) << 1) |
  876. DDI_BUF_TRANS_SELECT(i / 2));
  877. POSTING_READ(DDI_BUF_CTL(PORT_E));
  878. udelay(600);
  879. /* Program PCH FDI Receiver TU */
  880. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  881. /* Enable PCH FDI Receiver with auto-training */
  882. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  883. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  884. POSTING_READ(FDI_RX_CTL(PIPE_A));
  885. /* Wait for FDI receiver lane calibration */
  886. udelay(30);
  887. /* Unset FDI_RX_MISC pwrdn lanes */
  888. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  889. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  890. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  891. POSTING_READ(FDI_RX_MISC(PIPE_A));
  892. /* Wait for FDI auto training time */
  893. udelay(5);
  894. temp = I915_READ(DP_TP_STATUS(PORT_E));
  895. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  896. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  897. break;
  898. }
  899. /*
  900. * Leave things enabled even if we failed to train FDI.
  901. * Results in less fireworks from the state checker.
  902. */
  903. if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
  904. DRM_ERROR("FDI link training failed!\n");
  905. break;
  906. }
  907. rx_ctl_val &= ~FDI_RX_ENABLE;
  908. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  909. POSTING_READ(FDI_RX_CTL(PIPE_A));
  910. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  911. temp &= ~DDI_BUF_CTL_ENABLE;
  912. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  913. POSTING_READ(DDI_BUF_CTL(PORT_E));
  914. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  915. temp = I915_READ(DP_TP_CTL(PORT_E));
  916. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  917. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  918. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  919. POSTING_READ(DP_TP_CTL(PORT_E));
  920. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  921. /* Reset FDI_RX_MISC pwrdn lanes */
  922. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  923. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  924. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  925. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  926. POSTING_READ(FDI_RX_MISC(PIPE_A));
  927. }
  928. /* Enable normal pixel sending for FDI */
  929. I915_WRITE(DP_TP_CTL(PORT_E),
  930. DP_TP_CTL_FDI_AUTOTRAIN |
  931. DP_TP_CTL_LINK_TRAIN_NORMAL |
  932. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  933. DP_TP_CTL_ENABLE);
  934. }
  935. static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  936. {
  937. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  938. struct intel_digital_port *intel_dig_port =
  939. enc_to_dig_port(&encoder->base);
  940. intel_dp->DP = intel_dig_port->saved_port_bits |
  941. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  942. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  943. }
  944. static struct intel_encoder *
  945. intel_ddi_get_crtc_encoder(struct intel_crtc *crtc)
  946. {
  947. struct drm_device *dev = crtc->base.dev;
  948. struct intel_encoder *encoder, *ret = NULL;
  949. int num_encoders = 0;
  950. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  951. ret = encoder;
  952. num_encoders++;
  953. }
  954. if (num_encoders != 1)
  955. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  956. pipe_name(crtc->pipe));
  957. BUG_ON(ret == NULL);
  958. return ret;
  959. }
  960. /* Finds the only possible encoder associated with the given CRTC. */
  961. struct intel_encoder *
  962. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  963. {
  964. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  965. struct intel_encoder *ret = NULL;
  966. struct drm_atomic_state *state;
  967. struct drm_connector *connector;
  968. struct drm_connector_state *connector_state;
  969. int num_encoders = 0;
  970. int i;
  971. state = crtc_state->base.state;
  972. for_each_new_connector_in_state(state, connector, connector_state, i) {
  973. if (connector_state->crtc != crtc_state->base.crtc)
  974. continue;
  975. ret = to_intel_encoder(connector_state->best_encoder);
  976. num_encoders++;
  977. }
  978. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  979. pipe_name(crtc->pipe));
  980. BUG_ON(ret == NULL);
  981. return ret;
  982. }
  983. #define LC_FREQ 2700
  984. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  985. i915_reg_t reg)
  986. {
  987. int refclk = LC_FREQ;
  988. int n, p, r;
  989. u32 wrpll;
  990. wrpll = I915_READ(reg);
  991. switch (wrpll & WRPLL_PLL_REF_MASK) {
  992. case WRPLL_PLL_SSC:
  993. case WRPLL_PLL_NON_SSC:
  994. /*
  995. * We could calculate spread here, but our checking
  996. * code only cares about 5% accuracy, and spread is a max of
  997. * 0.5% downspread.
  998. */
  999. refclk = 135;
  1000. break;
  1001. case WRPLL_PLL_LCPLL:
  1002. refclk = LC_FREQ;
  1003. break;
  1004. default:
  1005. WARN(1, "bad wrpll refclk\n");
  1006. return 0;
  1007. }
  1008. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  1009. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  1010. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  1011. /* Convert to KHz, p & r have a fixed point portion */
  1012. return (refclk * n * 100) / (p * r);
  1013. }
  1014. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1015. enum intel_dpll_id pll_id)
  1016. {
  1017. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  1018. uint32_t cfgcr1_val, cfgcr2_val;
  1019. uint32_t p0, p1, p2, dco_freq;
  1020. cfgcr1_reg = DPLL_CFGCR1(pll_id);
  1021. cfgcr2_reg = DPLL_CFGCR2(pll_id);
  1022. cfgcr1_val = I915_READ(cfgcr1_reg);
  1023. cfgcr2_val = I915_READ(cfgcr2_reg);
  1024. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  1025. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  1026. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  1027. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  1028. else
  1029. p1 = 1;
  1030. switch (p0) {
  1031. case DPLL_CFGCR2_PDIV_1:
  1032. p0 = 1;
  1033. break;
  1034. case DPLL_CFGCR2_PDIV_2:
  1035. p0 = 2;
  1036. break;
  1037. case DPLL_CFGCR2_PDIV_3:
  1038. p0 = 3;
  1039. break;
  1040. case DPLL_CFGCR2_PDIV_7:
  1041. p0 = 7;
  1042. break;
  1043. }
  1044. switch (p2) {
  1045. case DPLL_CFGCR2_KDIV_5:
  1046. p2 = 5;
  1047. break;
  1048. case DPLL_CFGCR2_KDIV_2:
  1049. p2 = 2;
  1050. break;
  1051. case DPLL_CFGCR2_KDIV_3:
  1052. p2 = 3;
  1053. break;
  1054. case DPLL_CFGCR2_KDIV_1:
  1055. p2 = 1;
  1056. break;
  1057. }
  1058. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  1059. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  1060. 1000) / 0x8000;
  1061. return dco_freq / (p0 * p1 * p2 * 5);
  1062. }
  1063. static int cnl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1064. enum intel_dpll_id pll_id)
  1065. {
  1066. uint32_t cfgcr0, cfgcr1;
  1067. uint32_t p0, p1, p2, dco_freq, ref_clock;
  1068. cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id));
  1069. cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(pll_id));
  1070. p0 = cfgcr1 & DPLL_CFGCR1_PDIV_MASK;
  1071. p2 = cfgcr1 & DPLL_CFGCR1_KDIV_MASK;
  1072. if (cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1))
  1073. p1 = (cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >>
  1074. DPLL_CFGCR1_QDIV_RATIO_SHIFT;
  1075. else
  1076. p1 = 1;
  1077. switch (p0) {
  1078. case DPLL_CFGCR1_PDIV_2:
  1079. p0 = 2;
  1080. break;
  1081. case DPLL_CFGCR1_PDIV_3:
  1082. p0 = 3;
  1083. break;
  1084. case DPLL_CFGCR1_PDIV_5:
  1085. p0 = 5;
  1086. break;
  1087. case DPLL_CFGCR1_PDIV_7:
  1088. p0 = 7;
  1089. break;
  1090. }
  1091. switch (p2) {
  1092. case DPLL_CFGCR1_KDIV_1:
  1093. p2 = 1;
  1094. break;
  1095. case DPLL_CFGCR1_KDIV_2:
  1096. p2 = 2;
  1097. break;
  1098. case DPLL_CFGCR1_KDIV_4:
  1099. p2 = 4;
  1100. break;
  1101. }
  1102. ref_clock = dev_priv->cdclk.hw.ref;
  1103. dco_freq = (cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK) * ref_clock;
  1104. dco_freq += (((cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >>
  1105. DPLL_CFGCR0_DCO_FRACTION_SHIFT) * ref_clock) / 0x8000;
  1106. if (WARN_ON(p0 == 0 || p1 == 0 || p2 == 0))
  1107. return 0;
  1108. return dco_freq / (p0 * p1 * p2 * 5);
  1109. }
  1110. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  1111. {
  1112. int dotclock;
  1113. if (pipe_config->has_pch_encoder)
  1114. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1115. &pipe_config->fdi_m_n);
  1116. else if (intel_crtc_has_dp_encoder(pipe_config))
  1117. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1118. &pipe_config->dp_m_n);
  1119. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  1120. dotclock = pipe_config->port_clock * 2 / 3;
  1121. else
  1122. dotclock = pipe_config->port_clock;
  1123. if (pipe_config->ycbcr420)
  1124. dotclock *= 2;
  1125. if (pipe_config->pixel_multiplier)
  1126. dotclock /= pipe_config->pixel_multiplier;
  1127. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  1128. }
  1129. static void cnl_ddi_clock_get(struct intel_encoder *encoder,
  1130. struct intel_crtc_state *pipe_config)
  1131. {
  1132. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1133. int link_clock = 0;
  1134. uint32_t cfgcr0;
  1135. enum intel_dpll_id pll_id;
  1136. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1137. cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id));
  1138. if (cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
  1139. link_clock = cnl_calc_wrpll_link(dev_priv, pll_id);
  1140. } else {
  1141. link_clock = cfgcr0 & DPLL_CFGCR0_LINK_RATE_MASK;
  1142. switch (link_clock) {
  1143. case DPLL_CFGCR0_LINK_RATE_810:
  1144. link_clock = 81000;
  1145. break;
  1146. case DPLL_CFGCR0_LINK_RATE_1080:
  1147. link_clock = 108000;
  1148. break;
  1149. case DPLL_CFGCR0_LINK_RATE_1350:
  1150. link_clock = 135000;
  1151. break;
  1152. case DPLL_CFGCR0_LINK_RATE_1620:
  1153. link_clock = 162000;
  1154. break;
  1155. case DPLL_CFGCR0_LINK_RATE_2160:
  1156. link_clock = 216000;
  1157. break;
  1158. case DPLL_CFGCR0_LINK_RATE_2700:
  1159. link_clock = 270000;
  1160. break;
  1161. case DPLL_CFGCR0_LINK_RATE_3240:
  1162. link_clock = 324000;
  1163. break;
  1164. case DPLL_CFGCR0_LINK_RATE_4050:
  1165. link_clock = 405000;
  1166. break;
  1167. default:
  1168. WARN(1, "Unsupported link rate\n");
  1169. break;
  1170. }
  1171. link_clock *= 2;
  1172. }
  1173. pipe_config->port_clock = link_clock;
  1174. ddi_dotclock_get(pipe_config);
  1175. }
  1176. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  1177. struct intel_crtc_state *pipe_config)
  1178. {
  1179. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1180. int link_clock = 0;
  1181. uint32_t dpll_ctl1;
  1182. enum intel_dpll_id pll_id;
  1183. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1184. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  1185. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(pll_id)) {
  1186. link_clock = skl_calc_wrpll_link(dev_priv, pll_id);
  1187. } else {
  1188. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(pll_id);
  1189. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(pll_id);
  1190. switch (link_clock) {
  1191. case DPLL_CTRL1_LINK_RATE_810:
  1192. link_clock = 81000;
  1193. break;
  1194. case DPLL_CTRL1_LINK_RATE_1080:
  1195. link_clock = 108000;
  1196. break;
  1197. case DPLL_CTRL1_LINK_RATE_1350:
  1198. link_clock = 135000;
  1199. break;
  1200. case DPLL_CTRL1_LINK_RATE_1620:
  1201. link_clock = 162000;
  1202. break;
  1203. case DPLL_CTRL1_LINK_RATE_2160:
  1204. link_clock = 216000;
  1205. break;
  1206. case DPLL_CTRL1_LINK_RATE_2700:
  1207. link_clock = 270000;
  1208. break;
  1209. default:
  1210. WARN(1, "Unsupported link rate\n");
  1211. break;
  1212. }
  1213. link_clock *= 2;
  1214. }
  1215. pipe_config->port_clock = link_clock;
  1216. ddi_dotclock_get(pipe_config);
  1217. }
  1218. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  1219. struct intel_crtc_state *pipe_config)
  1220. {
  1221. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1222. int link_clock = 0;
  1223. u32 val, pll;
  1224. val = hsw_pll_to_ddi_pll_sel(pipe_config->shared_dpll);
  1225. switch (val & PORT_CLK_SEL_MASK) {
  1226. case PORT_CLK_SEL_LCPLL_810:
  1227. link_clock = 81000;
  1228. break;
  1229. case PORT_CLK_SEL_LCPLL_1350:
  1230. link_clock = 135000;
  1231. break;
  1232. case PORT_CLK_SEL_LCPLL_2700:
  1233. link_clock = 270000;
  1234. break;
  1235. case PORT_CLK_SEL_WRPLL1:
  1236. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  1237. break;
  1238. case PORT_CLK_SEL_WRPLL2:
  1239. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  1240. break;
  1241. case PORT_CLK_SEL_SPLL:
  1242. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  1243. if (pll == SPLL_PLL_FREQ_810MHz)
  1244. link_clock = 81000;
  1245. else if (pll == SPLL_PLL_FREQ_1350MHz)
  1246. link_clock = 135000;
  1247. else if (pll == SPLL_PLL_FREQ_2700MHz)
  1248. link_clock = 270000;
  1249. else {
  1250. WARN(1, "bad spll freq\n");
  1251. return;
  1252. }
  1253. break;
  1254. default:
  1255. WARN(1, "bad port clock sel\n");
  1256. return;
  1257. }
  1258. pipe_config->port_clock = link_clock * 2;
  1259. ddi_dotclock_get(pipe_config);
  1260. }
  1261. static int bxt_calc_pll_link(struct intel_crtc_state *crtc_state)
  1262. {
  1263. struct intel_dpll_hw_state *state;
  1264. struct dpll clock;
  1265. /* For DDI ports we always use a shared PLL. */
  1266. if (WARN_ON(!crtc_state->shared_dpll))
  1267. return 0;
  1268. state = &crtc_state->dpll_hw_state;
  1269. clock.m1 = 2;
  1270. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  1271. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  1272. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  1273. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  1274. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  1275. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  1276. return chv_calc_dpll_params(100000, &clock);
  1277. }
  1278. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  1279. struct intel_crtc_state *pipe_config)
  1280. {
  1281. pipe_config->port_clock = bxt_calc_pll_link(pipe_config);
  1282. ddi_dotclock_get(pipe_config);
  1283. }
  1284. static void intel_ddi_clock_get(struct intel_encoder *encoder,
  1285. struct intel_crtc_state *pipe_config)
  1286. {
  1287. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1288. if (INTEL_GEN(dev_priv) <= 8)
  1289. hsw_ddi_clock_get(encoder, pipe_config);
  1290. else if (IS_GEN9_BC(dev_priv))
  1291. skl_ddi_clock_get(encoder, pipe_config);
  1292. else if (IS_GEN9_LP(dev_priv))
  1293. bxt_ddi_clock_get(encoder, pipe_config);
  1294. else if (IS_CANNONLAKE(dev_priv))
  1295. cnl_ddi_clock_get(encoder, pipe_config);
  1296. }
  1297. void intel_ddi_set_pipe_settings(const struct intel_crtc_state *crtc_state)
  1298. {
  1299. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1300. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1301. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1302. u32 temp;
  1303. if (!intel_crtc_has_dp_encoder(crtc_state))
  1304. return;
  1305. WARN_ON(transcoder_is_dsi(cpu_transcoder));
  1306. temp = TRANS_MSA_SYNC_CLK;
  1307. switch (crtc_state->pipe_bpp) {
  1308. case 18:
  1309. temp |= TRANS_MSA_6_BPC;
  1310. break;
  1311. case 24:
  1312. temp |= TRANS_MSA_8_BPC;
  1313. break;
  1314. case 30:
  1315. temp |= TRANS_MSA_10_BPC;
  1316. break;
  1317. case 36:
  1318. temp |= TRANS_MSA_12_BPC;
  1319. break;
  1320. default:
  1321. MISSING_CASE(crtc_state->pipe_bpp);
  1322. break;
  1323. }
  1324. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1325. }
  1326. void intel_ddi_set_vc_payload_alloc(const struct intel_crtc_state *crtc_state,
  1327. bool state)
  1328. {
  1329. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1330. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1331. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1332. uint32_t temp;
  1333. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1334. if (state == true)
  1335. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1336. else
  1337. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1338. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1339. }
  1340. void intel_ddi_enable_transcoder_func(const struct intel_crtc_state *crtc_state)
  1341. {
  1342. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1343. struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
  1344. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1345. enum pipe pipe = crtc->pipe;
  1346. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1347. enum port port = encoder->port;
  1348. uint32_t temp;
  1349. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1350. temp = TRANS_DDI_FUNC_ENABLE;
  1351. temp |= TRANS_DDI_SELECT_PORT(port);
  1352. switch (crtc_state->pipe_bpp) {
  1353. case 18:
  1354. temp |= TRANS_DDI_BPC_6;
  1355. break;
  1356. case 24:
  1357. temp |= TRANS_DDI_BPC_8;
  1358. break;
  1359. case 30:
  1360. temp |= TRANS_DDI_BPC_10;
  1361. break;
  1362. case 36:
  1363. temp |= TRANS_DDI_BPC_12;
  1364. break;
  1365. default:
  1366. BUG();
  1367. }
  1368. if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1369. temp |= TRANS_DDI_PVSYNC;
  1370. if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1371. temp |= TRANS_DDI_PHSYNC;
  1372. if (cpu_transcoder == TRANSCODER_EDP) {
  1373. switch (pipe) {
  1374. case PIPE_A:
  1375. /* On Haswell, can only use the always-on power well for
  1376. * eDP when not using the panel fitter, and when not
  1377. * using motion blur mitigation (which we don't
  1378. * support). */
  1379. if (IS_HASWELL(dev_priv) &&
  1380. (crtc_state->pch_pfit.enabled ||
  1381. crtc_state->pch_pfit.force_thru))
  1382. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1383. else
  1384. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1385. break;
  1386. case PIPE_B:
  1387. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1388. break;
  1389. case PIPE_C:
  1390. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1391. break;
  1392. default:
  1393. BUG();
  1394. break;
  1395. }
  1396. }
  1397. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  1398. if (crtc_state->has_hdmi_sink)
  1399. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1400. else
  1401. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1402. if (crtc_state->hdmi_scrambling)
  1403. temp |= TRANS_DDI_HDMI_SCRAMBLING_MASK;
  1404. if (crtc_state->hdmi_high_tmds_clock_ratio)
  1405. temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE;
  1406. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  1407. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1408. temp |= (crtc_state->fdi_lanes - 1) << 1;
  1409. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
  1410. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1411. temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
  1412. } else {
  1413. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1414. temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
  1415. }
  1416. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1417. }
  1418. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1419. enum transcoder cpu_transcoder)
  1420. {
  1421. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1422. uint32_t val = I915_READ(reg);
  1423. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1424. val |= TRANS_DDI_PORT_NONE;
  1425. I915_WRITE(reg, val);
  1426. }
  1427. int intel_ddi_toggle_hdcp_signalling(struct intel_encoder *intel_encoder,
  1428. bool enable)
  1429. {
  1430. struct drm_device *dev = intel_encoder->base.dev;
  1431. struct drm_i915_private *dev_priv = to_i915(dev);
  1432. enum pipe pipe = 0;
  1433. int ret = 0;
  1434. uint32_t tmp;
  1435. if (WARN_ON(!intel_display_power_get_if_enabled(dev_priv,
  1436. intel_encoder->power_domain)))
  1437. return -ENXIO;
  1438. if (WARN_ON(!intel_encoder->get_hw_state(intel_encoder, &pipe))) {
  1439. ret = -EIO;
  1440. goto out;
  1441. }
  1442. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe));
  1443. if (enable)
  1444. tmp |= TRANS_DDI_HDCP_SIGNALLING;
  1445. else
  1446. tmp &= ~TRANS_DDI_HDCP_SIGNALLING;
  1447. I915_WRITE(TRANS_DDI_FUNC_CTL(pipe), tmp);
  1448. out:
  1449. intel_display_power_put(dev_priv, intel_encoder->power_domain);
  1450. return ret;
  1451. }
  1452. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1453. {
  1454. struct drm_device *dev = intel_connector->base.dev;
  1455. struct drm_i915_private *dev_priv = to_i915(dev);
  1456. struct intel_encoder *encoder = intel_connector->encoder;
  1457. int type = intel_connector->base.connector_type;
  1458. enum port port = encoder->port;
  1459. enum pipe pipe = 0;
  1460. enum transcoder cpu_transcoder;
  1461. uint32_t tmp;
  1462. bool ret;
  1463. if (!intel_display_power_get_if_enabled(dev_priv,
  1464. encoder->power_domain))
  1465. return false;
  1466. if (!encoder->get_hw_state(encoder, &pipe)) {
  1467. ret = false;
  1468. goto out;
  1469. }
  1470. if (port == PORT_A)
  1471. cpu_transcoder = TRANSCODER_EDP;
  1472. else
  1473. cpu_transcoder = (enum transcoder) pipe;
  1474. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1475. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1476. case TRANS_DDI_MODE_SELECT_HDMI:
  1477. case TRANS_DDI_MODE_SELECT_DVI:
  1478. ret = type == DRM_MODE_CONNECTOR_HDMIA;
  1479. break;
  1480. case TRANS_DDI_MODE_SELECT_DP_SST:
  1481. ret = type == DRM_MODE_CONNECTOR_eDP ||
  1482. type == DRM_MODE_CONNECTOR_DisplayPort;
  1483. break;
  1484. case TRANS_DDI_MODE_SELECT_DP_MST:
  1485. /* if the transcoder is in MST state then
  1486. * connector isn't connected */
  1487. ret = false;
  1488. break;
  1489. case TRANS_DDI_MODE_SELECT_FDI:
  1490. ret = type == DRM_MODE_CONNECTOR_VGA;
  1491. break;
  1492. default:
  1493. ret = false;
  1494. break;
  1495. }
  1496. out:
  1497. intel_display_power_put(dev_priv, encoder->power_domain);
  1498. return ret;
  1499. }
  1500. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1501. enum pipe *pipe)
  1502. {
  1503. struct drm_device *dev = encoder->base.dev;
  1504. struct drm_i915_private *dev_priv = to_i915(dev);
  1505. enum port port = encoder->port;
  1506. enum pipe p;
  1507. u32 tmp;
  1508. bool ret;
  1509. if (!intel_display_power_get_if_enabled(dev_priv,
  1510. encoder->power_domain))
  1511. return false;
  1512. ret = false;
  1513. tmp = I915_READ(DDI_BUF_CTL(port));
  1514. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1515. goto out;
  1516. if (port == PORT_A) {
  1517. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1518. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1519. case TRANS_DDI_EDP_INPUT_A_ON:
  1520. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1521. *pipe = PIPE_A;
  1522. break;
  1523. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1524. *pipe = PIPE_B;
  1525. break;
  1526. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1527. *pipe = PIPE_C;
  1528. break;
  1529. }
  1530. ret = true;
  1531. goto out;
  1532. }
  1533. for_each_pipe(dev_priv, p) {
  1534. enum transcoder cpu_transcoder = (enum transcoder) p;
  1535. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1536. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
  1537. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
  1538. TRANS_DDI_MODE_SELECT_DP_MST)
  1539. goto out;
  1540. *pipe = p;
  1541. ret = true;
  1542. goto out;
  1543. }
  1544. }
  1545. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1546. out:
  1547. if (ret && IS_GEN9_LP(dev_priv)) {
  1548. tmp = I915_READ(BXT_PHY_CTL(port));
  1549. if ((tmp & (BXT_PHY_CMNLANE_POWERDOWN_ACK |
  1550. BXT_PHY_LANE_POWERDOWN_ACK |
  1551. BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
  1552. DRM_ERROR("Port %c enabled but PHY powered down? "
  1553. "(PHY_CTL %08x)\n", port_name(port), tmp);
  1554. }
  1555. intel_display_power_put(dev_priv, encoder->power_domain);
  1556. return ret;
  1557. }
  1558. static u64 intel_ddi_get_power_domains(struct intel_encoder *encoder)
  1559. {
  1560. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1561. enum pipe pipe;
  1562. if (intel_ddi_get_hw_state(encoder, &pipe))
  1563. return BIT_ULL(dig_port->ddi_io_power_domain);
  1564. return 0;
  1565. }
  1566. void intel_ddi_enable_pipe_clock(const struct intel_crtc_state *crtc_state)
  1567. {
  1568. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1569. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1570. struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
  1571. enum port port = encoder->port;
  1572. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1573. if (cpu_transcoder != TRANSCODER_EDP)
  1574. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1575. TRANS_CLK_SEL_PORT(port));
  1576. }
  1577. void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state)
  1578. {
  1579. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1580. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1581. if (cpu_transcoder != TRANSCODER_EDP)
  1582. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1583. TRANS_CLK_SEL_DISABLED);
  1584. }
  1585. static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
  1586. enum port port, uint8_t iboost)
  1587. {
  1588. u32 tmp;
  1589. tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1590. tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
  1591. if (iboost)
  1592. tmp |= iboost << BALANCE_LEG_SHIFT(port);
  1593. else
  1594. tmp |= BALANCE_LEG_DISABLE(port);
  1595. I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
  1596. }
  1597. static void skl_ddi_set_iboost(struct intel_encoder *encoder,
  1598. int level, enum intel_output_type type)
  1599. {
  1600. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  1601. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1602. enum port port = encoder->port;
  1603. uint8_t iboost;
  1604. if (type == INTEL_OUTPUT_HDMI)
  1605. iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1606. else
  1607. iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1608. if (iboost == 0) {
  1609. const struct ddi_buf_trans *ddi_translations;
  1610. int n_entries;
  1611. if (type == INTEL_OUTPUT_HDMI)
  1612. ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  1613. else if (type == INTEL_OUTPUT_EDP)
  1614. ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
  1615. else
  1616. ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
  1617. if (WARN_ON_ONCE(!ddi_translations))
  1618. return;
  1619. if (WARN_ON_ONCE(level >= n_entries))
  1620. level = n_entries - 1;
  1621. iboost = ddi_translations[level].i_boost;
  1622. }
  1623. /* Make sure that the requested I_boost is valid */
  1624. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1625. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1626. return;
  1627. }
  1628. _skl_ddi_set_iboost(dev_priv, port, iboost);
  1629. if (port == PORT_A && intel_dig_port->max_lanes == 4)
  1630. _skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
  1631. }
  1632. static void bxt_ddi_vswing_sequence(struct intel_encoder *encoder,
  1633. int level, enum intel_output_type type)
  1634. {
  1635. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1636. const struct bxt_ddi_buf_trans *ddi_translations;
  1637. enum port port = encoder->port;
  1638. int n_entries;
  1639. if (type == INTEL_OUTPUT_HDMI)
  1640. ddi_translations = bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
  1641. else if (type == INTEL_OUTPUT_EDP)
  1642. ddi_translations = bxt_get_buf_trans_edp(dev_priv, &n_entries);
  1643. else
  1644. ddi_translations = bxt_get_buf_trans_dp(dev_priv, &n_entries);
  1645. if (WARN_ON_ONCE(!ddi_translations))
  1646. return;
  1647. if (WARN_ON_ONCE(level >= n_entries))
  1648. level = n_entries - 1;
  1649. bxt_ddi_phy_set_signal_level(dev_priv, port,
  1650. ddi_translations[level].margin,
  1651. ddi_translations[level].scale,
  1652. ddi_translations[level].enable,
  1653. ddi_translations[level].deemphasis);
  1654. }
  1655. u8 intel_ddi_dp_voltage_max(struct intel_encoder *encoder)
  1656. {
  1657. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1658. enum port port = encoder->port;
  1659. int n_entries;
  1660. if (IS_CANNONLAKE(dev_priv)) {
  1661. if (encoder->type == INTEL_OUTPUT_EDP)
  1662. cnl_get_buf_trans_edp(dev_priv, &n_entries);
  1663. else
  1664. cnl_get_buf_trans_dp(dev_priv, &n_entries);
  1665. } else if (IS_GEN9_LP(dev_priv)) {
  1666. if (encoder->type == INTEL_OUTPUT_EDP)
  1667. bxt_get_buf_trans_edp(dev_priv, &n_entries);
  1668. else
  1669. bxt_get_buf_trans_dp(dev_priv, &n_entries);
  1670. } else {
  1671. if (encoder->type == INTEL_OUTPUT_EDP)
  1672. intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
  1673. else
  1674. intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
  1675. }
  1676. if (WARN_ON(n_entries < 1))
  1677. n_entries = 1;
  1678. if (WARN_ON(n_entries > ARRAY_SIZE(index_to_dp_signal_levels)))
  1679. n_entries = ARRAY_SIZE(index_to_dp_signal_levels);
  1680. return index_to_dp_signal_levels[n_entries - 1] &
  1681. DP_TRAIN_VOLTAGE_SWING_MASK;
  1682. }
  1683. static void cnl_ddi_vswing_program(struct intel_encoder *encoder,
  1684. int level, enum intel_output_type type)
  1685. {
  1686. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1687. const struct cnl_ddi_buf_trans *ddi_translations;
  1688. enum port port = encoder->port;
  1689. int n_entries, ln;
  1690. u32 val;
  1691. if (type == INTEL_OUTPUT_HDMI)
  1692. ddi_translations = cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
  1693. else if (type == INTEL_OUTPUT_EDP)
  1694. ddi_translations = cnl_get_buf_trans_edp(dev_priv, &n_entries);
  1695. else
  1696. ddi_translations = cnl_get_buf_trans_dp(dev_priv, &n_entries);
  1697. if (WARN_ON_ONCE(!ddi_translations))
  1698. return;
  1699. if (WARN_ON_ONCE(level >= n_entries))
  1700. level = n_entries - 1;
  1701. /* Set PORT_TX_DW5 Scaling Mode Sel to 010b. */
  1702. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1703. val &= ~SCALING_MODE_SEL_MASK;
  1704. val |= SCALING_MODE_SEL(2);
  1705. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1706. /* Program PORT_TX_DW2 */
  1707. val = I915_READ(CNL_PORT_TX_DW2_LN0(port));
  1708. val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
  1709. RCOMP_SCALAR_MASK);
  1710. val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel);
  1711. val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel);
  1712. /* Rcomp scalar is fixed as 0x98 for every table entry */
  1713. val |= RCOMP_SCALAR(0x98);
  1714. I915_WRITE(CNL_PORT_TX_DW2_GRP(port), val);
  1715. /* Program PORT_TX_DW4 */
  1716. /* We cannot write to GRP. It would overrite individual loadgen */
  1717. for (ln = 0; ln < 4; ln++) {
  1718. val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
  1719. val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
  1720. CURSOR_COEFF_MASK);
  1721. val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1);
  1722. val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2);
  1723. val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff);
  1724. I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
  1725. }
  1726. /* Program PORT_TX_DW5 */
  1727. /* All DW5 values are fixed for every table entry */
  1728. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1729. val &= ~RTERM_SELECT_MASK;
  1730. val |= RTERM_SELECT(6);
  1731. val |= TAP3_DISABLE;
  1732. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1733. /* Program PORT_TX_DW7 */
  1734. val = I915_READ(CNL_PORT_TX_DW7_LN0(port));
  1735. val &= ~N_SCALAR_MASK;
  1736. val |= N_SCALAR(ddi_translations[level].dw7_n_scalar);
  1737. I915_WRITE(CNL_PORT_TX_DW7_GRP(port), val);
  1738. }
  1739. static void cnl_ddi_vswing_sequence(struct intel_encoder *encoder,
  1740. int level, enum intel_output_type type)
  1741. {
  1742. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1743. enum port port = encoder->port;
  1744. int width, rate, ln;
  1745. u32 val;
  1746. if (type == INTEL_OUTPUT_HDMI) {
  1747. width = 4;
  1748. rate = 0; /* Rate is always < than 6GHz for HDMI */
  1749. } else {
  1750. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1751. width = intel_dp->lane_count;
  1752. rate = intel_dp->link_rate;
  1753. }
  1754. /*
  1755. * 1. If port type is eDP or DP,
  1756. * set PORT_PCS_DW1 cmnkeeper_enable to 1b,
  1757. * else clear to 0b.
  1758. */
  1759. val = I915_READ(CNL_PORT_PCS_DW1_LN0(port));
  1760. if (type != INTEL_OUTPUT_HDMI)
  1761. val |= COMMON_KEEPER_EN;
  1762. else
  1763. val &= ~COMMON_KEEPER_EN;
  1764. I915_WRITE(CNL_PORT_PCS_DW1_GRP(port), val);
  1765. /* 2. Program loadgen select */
  1766. /*
  1767. * Program PORT_TX_DW4_LN depending on Bit rate and used lanes
  1768. * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
  1769. * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
  1770. * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
  1771. */
  1772. for (ln = 0; ln <= 3; ln++) {
  1773. val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
  1774. val &= ~LOADGEN_SELECT;
  1775. if ((rate <= 600000 && width == 4 && ln >= 1) ||
  1776. (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
  1777. val |= LOADGEN_SELECT;
  1778. }
  1779. I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
  1780. }
  1781. /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
  1782. val = I915_READ(CNL_PORT_CL1CM_DW5);
  1783. val |= SUS_CLOCK_CONFIG;
  1784. I915_WRITE(CNL_PORT_CL1CM_DW5, val);
  1785. /* 4. Clear training enable to change swing values */
  1786. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1787. val &= ~TX_TRAINING_EN;
  1788. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1789. /* 5. Program swing and de-emphasis */
  1790. cnl_ddi_vswing_program(encoder, level, type);
  1791. /* 6. Set training enable to trigger update */
  1792. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1793. val |= TX_TRAINING_EN;
  1794. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1795. }
  1796. static uint32_t translate_signal_level(int signal_levels)
  1797. {
  1798. int i;
  1799. for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) {
  1800. if (index_to_dp_signal_levels[i] == signal_levels)
  1801. return i;
  1802. }
  1803. WARN(1, "Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  1804. signal_levels);
  1805. return 0;
  1806. }
  1807. static uint32_t intel_ddi_dp_level(struct intel_dp *intel_dp)
  1808. {
  1809. uint8_t train_set = intel_dp->train_set[0];
  1810. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1811. DP_TRAIN_PRE_EMPHASIS_MASK);
  1812. return translate_signal_level(signal_levels);
  1813. }
  1814. u32 bxt_signal_levels(struct intel_dp *intel_dp)
  1815. {
  1816. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1817. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1818. struct intel_encoder *encoder = &dport->base;
  1819. int level = intel_ddi_dp_level(intel_dp);
  1820. if (IS_CANNONLAKE(dev_priv))
  1821. cnl_ddi_vswing_sequence(encoder, level, encoder->type);
  1822. else
  1823. bxt_ddi_vswing_sequence(encoder, level, encoder->type);
  1824. return 0;
  1825. }
  1826. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  1827. {
  1828. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1829. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1830. struct intel_encoder *encoder = &dport->base;
  1831. int level = intel_ddi_dp_level(intel_dp);
  1832. if (IS_GEN9_BC(dev_priv))
  1833. skl_ddi_set_iboost(encoder, level, encoder->type);
  1834. return DDI_BUF_TRANS_SELECT(level);
  1835. }
  1836. static void intel_ddi_clk_select(struct intel_encoder *encoder,
  1837. const struct intel_shared_dpll *pll)
  1838. {
  1839. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1840. enum port port = encoder->port;
  1841. uint32_t val;
  1842. if (WARN_ON(!pll))
  1843. return;
  1844. mutex_lock(&dev_priv->dpll_lock);
  1845. if (IS_CANNONLAKE(dev_priv)) {
  1846. /* Configure DPCLKA_CFGCR0 to map the DPLL to the DDI. */
  1847. val = I915_READ(DPCLKA_CFGCR0);
  1848. val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
  1849. val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->id, port);
  1850. I915_WRITE(DPCLKA_CFGCR0, val);
  1851. /*
  1852. * Configure DPCLKA_CFGCR0 to turn on the clock for the DDI.
  1853. * This step and the step before must be done with separate
  1854. * register writes.
  1855. */
  1856. val = I915_READ(DPCLKA_CFGCR0);
  1857. val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port);
  1858. I915_WRITE(DPCLKA_CFGCR0, val);
  1859. } else if (IS_GEN9_BC(dev_priv)) {
  1860. /* DDI -> PLL mapping */
  1861. val = I915_READ(DPLL_CTRL2);
  1862. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1863. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1864. val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->id, port) |
  1865. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1866. I915_WRITE(DPLL_CTRL2, val);
  1867. } else if (INTEL_GEN(dev_priv) < 9) {
  1868. I915_WRITE(PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll));
  1869. }
  1870. mutex_unlock(&dev_priv->dpll_lock);
  1871. }
  1872. static void intel_ddi_clk_disable(struct intel_encoder *encoder)
  1873. {
  1874. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1875. enum port port = encoder->port;
  1876. if (IS_CANNONLAKE(dev_priv))
  1877. I915_WRITE(DPCLKA_CFGCR0, I915_READ(DPCLKA_CFGCR0) |
  1878. DPCLKA_CFGCR0_DDI_CLK_OFF(port));
  1879. else if (IS_GEN9_BC(dev_priv))
  1880. I915_WRITE(DPLL_CTRL2, I915_READ(DPLL_CTRL2) |
  1881. DPLL_CTRL2_DDI_CLK_OFF(port));
  1882. else if (INTEL_GEN(dev_priv) < 9)
  1883. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1884. }
  1885. static void intel_ddi_pre_enable_dp(struct intel_encoder *encoder,
  1886. const struct intel_crtc_state *crtc_state,
  1887. const struct drm_connector_state *conn_state)
  1888. {
  1889. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1890. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1891. enum port port = encoder->port;
  1892. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1893. bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST);
  1894. int level = intel_ddi_dp_level(intel_dp);
  1895. WARN_ON(is_mst && (port == PORT_A || port == PORT_E));
  1896. intel_dp_set_link_params(intel_dp, crtc_state->port_clock,
  1897. crtc_state->lane_count, is_mst);
  1898. intel_edp_panel_on(intel_dp);
  1899. intel_ddi_clk_select(encoder, crtc_state->shared_dpll);
  1900. intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
  1901. if (IS_CANNONLAKE(dev_priv))
  1902. cnl_ddi_vswing_sequence(encoder, level, encoder->type);
  1903. else if (IS_GEN9_LP(dev_priv))
  1904. bxt_ddi_vswing_sequence(encoder, level, encoder->type);
  1905. else
  1906. intel_prepare_dp_ddi_buffers(encoder, crtc_state);
  1907. intel_ddi_init_dp_buf_reg(encoder);
  1908. if (!is_mst)
  1909. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1910. intel_dp_start_link_train(intel_dp);
  1911. if (port != PORT_A || INTEL_GEN(dev_priv) >= 9)
  1912. intel_dp_stop_link_train(intel_dp);
  1913. }
  1914. static void intel_ddi_pre_enable_hdmi(struct intel_encoder *encoder,
  1915. const struct intel_crtc_state *crtc_state,
  1916. const struct drm_connector_state *conn_state)
  1917. {
  1918. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  1919. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1920. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1921. enum port port = encoder->port;
  1922. int level = intel_ddi_hdmi_level(dev_priv, port);
  1923. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1924. intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
  1925. intel_ddi_clk_select(encoder, crtc_state->shared_dpll);
  1926. intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
  1927. if (IS_CANNONLAKE(dev_priv))
  1928. cnl_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  1929. else if (IS_GEN9_LP(dev_priv))
  1930. bxt_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  1931. else
  1932. intel_prepare_hdmi_ddi_buffers(encoder, level);
  1933. if (IS_GEN9_BC(dev_priv))
  1934. skl_ddi_set_iboost(encoder, level, INTEL_OUTPUT_HDMI);
  1935. intel_dig_port->set_infoframes(&encoder->base,
  1936. crtc_state->has_infoframe,
  1937. crtc_state, conn_state);
  1938. }
  1939. static void intel_ddi_pre_enable(struct intel_encoder *encoder,
  1940. const struct intel_crtc_state *crtc_state,
  1941. const struct drm_connector_state *conn_state)
  1942. {
  1943. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1944. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1945. enum pipe pipe = crtc->pipe;
  1946. /*
  1947. * When called from DP MST code:
  1948. * - conn_state will be NULL
  1949. * - encoder will be the main encoder (ie. mst->primary)
  1950. * - the main connector associated with this port
  1951. * won't be active or linked to a crtc
  1952. * - crtc_state will be the state of the first stream to
  1953. * be activated on this port, and it may not be the same
  1954. * stream that will be deactivated last, but each stream
  1955. * should have a state that is identical when it comes to
  1956. * the DP link parameteres
  1957. */
  1958. WARN_ON(crtc_state->has_pch_encoder);
  1959. intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  1960. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  1961. intel_ddi_pre_enable_hdmi(encoder, crtc_state, conn_state);
  1962. else
  1963. intel_ddi_pre_enable_dp(encoder, crtc_state, conn_state);
  1964. }
  1965. static void intel_disable_ddi_buf(struct intel_encoder *encoder)
  1966. {
  1967. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1968. enum port port = encoder->port;
  1969. bool wait = false;
  1970. u32 val;
  1971. val = I915_READ(DDI_BUF_CTL(port));
  1972. if (val & DDI_BUF_CTL_ENABLE) {
  1973. val &= ~DDI_BUF_CTL_ENABLE;
  1974. I915_WRITE(DDI_BUF_CTL(port), val);
  1975. wait = true;
  1976. }
  1977. val = I915_READ(DP_TP_CTL(port));
  1978. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1979. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1980. I915_WRITE(DP_TP_CTL(port), val);
  1981. if (wait)
  1982. intel_wait_ddi_buf_idle(dev_priv, port);
  1983. }
  1984. static void intel_ddi_post_disable_dp(struct intel_encoder *encoder,
  1985. const struct intel_crtc_state *old_crtc_state,
  1986. const struct drm_connector_state *old_conn_state)
  1987. {
  1988. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1989. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1990. struct intel_dp *intel_dp = &dig_port->dp;
  1991. bool is_mst = intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST);
  1992. /*
  1993. * Power down sink before disabling the port, otherwise we end
  1994. * up getting interrupts from the sink on detecting link loss.
  1995. */
  1996. if (!is_mst)
  1997. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1998. intel_disable_ddi_buf(encoder);
  1999. intel_edp_panel_vdd_on(intel_dp);
  2000. intel_edp_panel_off(intel_dp);
  2001. intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
  2002. intel_ddi_clk_disable(encoder);
  2003. }
  2004. static void intel_ddi_post_disable_hdmi(struct intel_encoder *encoder,
  2005. const struct intel_crtc_state *old_crtc_state,
  2006. const struct drm_connector_state *old_conn_state)
  2007. {
  2008. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2009. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2010. struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
  2011. intel_disable_ddi_buf(encoder);
  2012. dig_port->set_infoframes(&encoder->base, false,
  2013. old_crtc_state, old_conn_state);
  2014. intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
  2015. intel_ddi_clk_disable(encoder);
  2016. intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
  2017. }
  2018. static void intel_ddi_post_disable(struct intel_encoder *encoder,
  2019. const struct intel_crtc_state *old_crtc_state,
  2020. const struct drm_connector_state *old_conn_state)
  2021. {
  2022. /*
  2023. * When called from DP MST code:
  2024. * - old_conn_state will be NULL
  2025. * - encoder will be the main encoder (ie. mst->primary)
  2026. * - the main connector associated with this port
  2027. * won't be active or linked to a crtc
  2028. * - old_crtc_state will be the state of the last stream to
  2029. * be deactivated on this port, and it may not be the same
  2030. * stream that was activated last, but each stream
  2031. * should have a state that is identical when it comes to
  2032. * the DP link parameteres
  2033. */
  2034. if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
  2035. intel_ddi_post_disable_hdmi(encoder,
  2036. old_crtc_state, old_conn_state);
  2037. else
  2038. intel_ddi_post_disable_dp(encoder,
  2039. old_crtc_state, old_conn_state);
  2040. }
  2041. void intel_ddi_fdi_post_disable(struct intel_encoder *encoder,
  2042. const struct intel_crtc_state *old_crtc_state,
  2043. const struct drm_connector_state *old_conn_state)
  2044. {
  2045. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2046. uint32_t val;
  2047. /*
  2048. * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
  2049. * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
  2050. * step 13 is the correct place for it. Step 18 is where it was
  2051. * originally before the BUN.
  2052. */
  2053. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2054. val &= ~FDI_RX_ENABLE;
  2055. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2056. intel_disable_ddi_buf(encoder);
  2057. intel_ddi_clk_disable(encoder);
  2058. val = I915_READ(FDI_RX_MISC(PIPE_A));
  2059. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  2060. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  2061. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  2062. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2063. val &= ~FDI_PCDCLK;
  2064. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2065. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2066. val &= ~FDI_RX_PLL_ENABLE;
  2067. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2068. }
  2069. static void intel_enable_ddi_dp(struct intel_encoder *encoder,
  2070. const struct intel_crtc_state *crtc_state,
  2071. const struct drm_connector_state *conn_state)
  2072. {
  2073. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2074. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2075. enum port port = encoder->port;
  2076. if (port == PORT_A && INTEL_GEN(dev_priv) < 9)
  2077. intel_dp_stop_link_train(intel_dp);
  2078. intel_edp_backlight_on(crtc_state, conn_state);
  2079. intel_psr_enable(intel_dp, crtc_state);
  2080. intel_edp_drrs_enable(intel_dp, crtc_state);
  2081. if (crtc_state->has_audio)
  2082. intel_audio_codec_enable(encoder, crtc_state, conn_state);
  2083. }
  2084. static void intel_enable_ddi_hdmi(struct intel_encoder *encoder,
  2085. const struct intel_crtc_state *crtc_state,
  2086. const struct drm_connector_state *conn_state)
  2087. {
  2088. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2089. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2090. enum port port = encoder->port;
  2091. intel_hdmi_handle_sink_scrambling(encoder,
  2092. conn_state->connector,
  2093. crtc_state->hdmi_high_tmds_clock_ratio,
  2094. crtc_state->hdmi_scrambling);
  2095. /* Display WA #1143: skl,kbl,cfl */
  2096. if (IS_GEN9_BC(dev_priv)) {
  2097. /*
  2098. * For some reason these chicken bits have been
  2099. * stuffed into a transcoder register, event though
  2100. * the bits affect a specific DDI port rather than
  2101. * a specific transcoder.
  2102. */
  2103. static const enum transcoder port_to_transcoder[] = {
  2104. [PORT_A] = TRANSCODER_EDP,
  2105. [PORT_B] = TRANSCODER_A,
  2106. [PORT_C] = TRANSCODER_B,
  2107. [PORT_D] = TRANSCODER_C,
  2108. [PORT_E] = TRANSCODER_A,
  2109. };
  2110. enum transcoder transcoder = port_to_transcoder[port];
  2111. u32 val;
  2112. val = I915_READ(CHICKEN_TRANS(transcoder));
  2113. if (port == PORT_E)
  2114. val |= DDIE_TRAINING_OVERRIDE_ENABLE |
  2115. DDIE_TRAINING_OVERRIDE_VALUE;
  2116. else
  2117. val |= DDI_TRAINING_OVERRIDE_ENABLE |
  2118. DDI_TRAINING_OVERRIDE_VALUE;
  2119. I915_WRITE(CHICKEN_TRANS(transcoder), val);
  2120. POSTING_READ(CHICKEN_TRANS(transcoder));
  2121. udelay(1);
  2122. if (port == PORT_E)
  2123. val &= ~(DDIE_TRAINING_OVERRIDE_ENABLE |
  2124. DDIE_TRAINING_OVERRIDE_VALUE);
  2125. else
  2126. val &= ~(DDI_TRAINING_OVERRIDE_ENABLE |
  2127. DDI_TRAINING_OVERRIDE_VALUE);
  2128. I915_WRITE(CHICKEN_TRANS(transcoder), val);
  2129. }
  2130. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  2131. * are ignored so nothing special needs to be done besides
  2132. * enabling the port.
  2133. */
  2134. I915_WRITE(DDI_BUF_CTL(port),
  2135. dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE);
  2136. if (crtc_state->has_audio)
  2137. intel_audio_codec_enable(encoder, crtc_state, conn_state);
  2138. }
  2139. static void intel_enable_ddi(struct intel_encoder *encoder,
  2140. const struct intel_crtc_state *crtc_state,
  2141. const struct drm_connector_state *conn_state)
  2142. {
  2143. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  2144. intel_enable_ddi_hdmi(encoder, crtc_state, conn_state);
  2145. else
  2146. intel_enable_ddi_dp(encoder, crtc_state, conn_state);
  2147. /* Enable hdcp if it's desired */
  2148. if (conn_state->content_protection ==
  2149. DRM_MODE_CONTENT_PROTECTION_DESIRED)
  2150. intel_hdcp_enable(to_intel_connector(conn_state->connector));
  2151. }
  2152. static void intel_disable_ddi_dp(struct intel_encoder *encoder,
  2153. const struct intel_crtc_state *old_crtc_state,
  2154. const struct drm_connector_state *old_conn_state)
  2155. {
  2156. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2157. if (old_crtc_state->has_audio)
  2158. intel_audio_codec_disable(encoder,
  2159. old_crtc_state, old_conn_state);
  2160. intel_edp_drrs_disable(intel_dp, old_crtc_state);
  2161. intel_psr_disable(intel_dp, old_crtc_state);
  2162. intel_edp_backlight_off(old_conn_state);
  2163. }
  2164. static void intel_disable_ddi_hdmi(struct intel_encoder *encoder,
  2165. const struct intel_crtc_state *old_crtc_state,
  2166. const struct drm_connector_state *old_conn_state)
  2167. {
  2168. if (old_crtc_state->has_audio)
  2169. intel_audio_codec_disable(encoder,
  2170. old_crtc_state, old_conn_state);
  2171. intel_hdmi_handle_sink_scrambling(encoder,
  2172. old_conn_state->connector,
  2173. false, false);
  2174. }
  2175. static void intel_disable_ddi(struct intel_encoder *encoder,
  2176. const struct intel_crtc_state *old_crtc_state,
  2177. const struct drm_connector_state *old_conn_state)
  2178. {
  2179. intel_hdcp_disable(to_intel_connector(old_conn_state->connector));
  2180. if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
  2181. intel_disable_ddi_hdmi(encoder, old_crtc_state, old_conn_state);
  2182. else
  2183. intel_disable_ddi_dp(encoder, old_crtc_state, old_conn_state);
  2184. }
  2185. static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder,
  2186. const struct intel_crtc_state *pipe_config,
  2187. const struct drm_connector_state *conn_state)
  2188. {
  2189. uint8_t mask = pipe_config->lane_lat_optim_mask;
  2190. bxt_ddi_phy_set_lane_optim_mask(encoder, mask);
  2191. }
  2192. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  2193. {
  2194. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2195. struct drm_i915_private *dev_priv =
  2196. to_i915(intel_dig_port->base.base.dev);
  2197. enum port port = intel_dig_port->base.port;
  2198. uint32_t val;
  2199. bool wait = false;
  2200. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  2201. val = I915_READ(DDI_BUF_CTL(port));
  2202. if (val & DDI_BUF_CTL_ENABLE) {
  2203. val &= ~DDI_BUF_CTL_ENABLE;
  2204. I915_WRITE(DDI_BUF_CTL(port), val);
  2205. wait = true;
  2206. }
  2207. val = I915_READ(DP_TP_CTL(port));
  2208. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2209. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2210. I915_WRITE(DP_TP_CTL(port), val);
  2211. POSTING_READ(DP_TP_CTL(port));
  2212. if (wait)
  2213. intel_wait_ddi_buf_idle(dev_priv, port);
  2214. }
  2215. val = DP_TP_CTL_ENABLE |
  2216. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  2217. if (intel_dp->link_mst)
  2218. val |= DP_TP_CTL_MODE_MST;
  2219. else {
  2220. val |= DP_TP_CTL_MODE_SST;
  2221. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2222. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  2223. }
  2224. I915_WRITE(DP_TP_CTL(port), val);
  2225. POSTING_READ(DP_TP_CTL(port));
  2226. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  2227. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  2228. POSTING_READ(DDI_BUF_CTL(port));
  2229. udelay(600);
  2230. }
  2231. static bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
  2232. enum transcoder cpu_transcoder)
  2233. {
  2234. if (cpu_transcoder == TRANSCODER_EDP)
  2235. return false;
  2236. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO))
  2237. return false;
  2238. return I915_READ(HSW_AUD_PIN_ELD_CP_VLD) &
  2239. AUDIO_OUTPUT_ENABLE(cpu_transcoder);
  2240. }
  2241. void intel_ddi_compute_min_voltage_level(struct drm_i915_private *dev_priv,
  2242. struct intel_crtc_state *crtc_state)
  2243. {
  2244. if (IS_CANNONLAKE(dev_priv) && crtc_state->port_clock > 594000)
  2245. crtc_state->min_voltage_level = 2;
  2246. }
  2247. void intel_ddi_get_config(struct intel_encoder *encoder,
  2248. struct intel_crtc_state *pipe_config)
  2249. {
  2250. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2251. struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
  2252. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  2253. struct intel_digital_port *intel_dig_port;
  2254. u32 temp, flags = 0;
  2255. /* XXX: DSI transcoder paranoia */
  2256. if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
  2257. return;
  2258. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  2259. if (temp & TRANS_DDI_PHSYNC)
  2260. flags |= DRM_MODE_FLAG_PHSYNC;
  2261. else
  2262. flags |= DRM_MODE_FLAG_NHSYNC;
  2263. if (temp & TRANS_DDI_PVSYNC)
  2264. flags |= DRM_MODE_FLAG_PVSYNC;
  2265. else
  2266. flags |= DRM_MODE_FLAG_NVSYNC;
  2267. pipe_config->base.adjusted_mode.flags |= flags;
  2268. switch (temp & TRANS_DDI_BPC_MASK) {
  2269. case TRANS_DDI_BPC_6:
  2270. pipe_config->pipe_bpp = 18;
  2271. break;
  2272. case TRANS_DDI_BPC_8:
  2273. pipe_config->pipe_bpp = 24;
  2274. break;
  2275. case TRANS_DDI_BPC_10:
  2276. pipe_config->pipe_bpp = 30;
  2277. break;
  2278. case TRANS_DDI_BPC_12:
  2279. pipe_config->pipe_bpp = 36;
  2280. break;
  2281. default:
  2282. break;
  2283. }
  2284. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  2285. case TRANS_DDI_MODE_SELECT_HDMI:
  2286. pipe_config->has_hdmi_sink = true;
  2287. intel_dig_port = enc_to_dig_port(&encoder->base);
  2288. if (intel_dig_port->infoframe_enabled(&encoder->base, pipe_config))
  2289. pipe_config->has_infoframe = true;
  2290. if ((temp & TRANS_DDI_HDMI_SCRAMBLING_MASK) ==
  2291. TRANS_DDI_HDMI_SCRAMBLING_MASK)
  2292. pipe_config->hdmi_scrambling = true;
  2293. if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE)
  2294. pipe_config->hdmi_high_tmds_clock_ratio = true;
  2295. /* fall through */
  2296. case TRANS_DDI_MODE_SELECT_DVI:
  2297. pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
  2298. pipe_config->lane_count = 4;
  2299. break;
  2300. case TRANS_DDI_MODE_SELECT_FDI:
  2301. pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG);
  2302. break;
  2303. case TRANS_DDI_MODE_SELECT_DP_SST:
  2304. if (encoder->type == INTEL_OUTPUT_EDP)
  2305. pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
  2306. else
  2307. pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
  2308. pipe_config->lane_count =
  2309. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2310. intel_dp_get_m_n(intel_crtc, pipe_config);
  2311. break;
  2312. case TRANS_DDI_MODE_SELECT_DP_MST:
  2313. pipe_config->output_types |= BIT(INTEL_OUTPUT_DP_MST);
  2314. pipe_config->lane_count =
  2315. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2316. intel_dp_get_m_n(intel_crtc, pipe_config);
  2317. break;
  2318. default:
  2319. break;
  2320. }
  2321. pipe_config->has_audio =
  2322. intel_ddi_is_audio_enabled(dev_priv, cpu_transcoder);
  2323. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
  2324. pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
  2325. /*
  2326. * This is a big fat ugly hack.
  2327. *
  2328. * Some machines in UEFI boot mode provide us a VBT that has 18
  2329. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  2330. * unknown we fail to light up. Yet the same BIOS boots up with
  2331. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  2332. * max, not what it tells us to use.
  2333. *
  2334. * Note: This will still be broken if the eDP panel is not lit
  2335. * up by the BIOS, and thus we can't get the mode at module
  2336. * load.
  2337. */
  2338. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  2339. pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
  2340. dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
  2341. }
  2342. intel_ddi_clock_get(encoder, pipe_config);
  2343. if (IS_GEN9_LP(dev_priv))
  2344. pipe_config->lane_lat_optim_mask =
  2345. bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
  2346. intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
  2347. }
  2348. static enum intel_output_type
  2349. intel_ddi_compute_output_type(struct intel_encoder *encoder,
  2350. struct intel_crtc_state *crtc_state,
  2351. struct drm_connector_state *conn_state)
  2352. {
  2353. switch (conn_state->connector->connector_type) {
  2354. case DRM_MODE_CONNECTOR_HDMIA:
  2355. return INTEL_OUTPUT_HDMI;
  2356. case DRM_MODE_CONNECTOR_eDP:
  2357. return INTEL_OUTPUT_EDP;
  2358. case DRM_MODE_CONNECTOR_DisplayPort:
  2359. return INTEL_OUTPUT_DP;
  2360. default:
  2361. MISSING_CASE(conn_state->connector->connector_type);
  2362. return INTEL_OUTPUT_UNUSED;
  2363. }
  2364. }
  2365. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  2366. struct intel_crtc_state *pipe_config,
  2367. struct drm_connector_state *conn_state)
  2368. {
  2369. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2370. enum port port = encoder->port;
  2371. int ret;
  2372. if (port == PORT_A)
  2373. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2374. if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
  2375. ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state);
  2376. else
  2377. ret = intel_dp_compute_config(encoder, pipe_config, conn_state);
  2378. if (IS_GEN9_LP(dev_priv) && ret)
  2379. pipe_config->lane_lat_optim_mask =
  2380. bxt_ddi_phy_calc_lane_lat_optim_mask(pipe_config->lane_count);
  2381. intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
  2382. return ret;
  2383. }
  2384. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2385. .reset = intel_dp_encoder_reset,
  2386. .destroy = intel_dp_encoder_destroy,
  2387. };
  2388. static struct intel_connector *
  2389. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2390. {
  2391. struct intel_connector *connector;
  2392. enum port port = intel_dig_port->base.port;
  2393. connector = intel_connector_alloc();
  2394. if (!connector)
  2395. return NULL;
  2396. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2397. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2398. kfree(connector);
  2399. return NULL;
  2400. }
  2401. return connector;
  2402. }
  2403. static struct intel_connector *
  2404. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2405. {
  2406. struct intel_connector *connector;
  2407. enum port port = intel_dig_port->base.port;
  2408. connector = intel_connector_alloc();
  2409. if (!connector)
  2410. return NULL;
  2411. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2412. intel_hdmi_init_connector(intel_dig_port, connector);
  2413. return connector;
  2414. }
  2415. static bool intel_ddi_a_force_4_lanes(struct intel_digital_port *dport)
  2416. {
  2417. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  2418. if (dport->base.port != PORT_A)
  2419. return false;
  2420. if (dport->saved_port_bits & DDI_A_4_LANES)
  2421. return false;
  2422. /* Broxton/Geminilake: Bspec says that DDI_A_4_LANES is the only
  2423. * supported configuration
  2424. */
  2425. if (IS_GEN9_LP(dev_priv))
  2426. return true;
  2427. /* Cannonlake: Most of SKUs don't support DDI_E, and the only
  2428. * one who does also have a full A/E split called
  2429. * DDI_F what makes DDI_E useless. However for this
  2430. * case let's trust VBT info.
  2431. */
  2432. if (IS_CANNONLAKE(dev_priv) &&
  2433. !intel_bios_is_port_present(dev_priv, PORT_E))
  2434. return true;
  2435. return false;
  2436. }
  2437. void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port)
  2438. {
  2439. struct intel_digital_port *intel_dig_port;
  2440. struct intel_encoder *intel_encoder;
  2441. struct drm_encoder *encoder;
  2442. bool init_hdmi, init_dp, init_lspcon = false;
  2443. int max_lanes;
  2444. if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
  2445. switch (port) {
  2446. case PORT_A:
  2447. max_lanes = 4;
  2448. break;
  2449. case PORT_E:
  2450. max_lanes = 0;
  2451. break;
  2452. default:
  2453. max_lanes = 4;
  2454. break;
  2455. }
  2456. } else {
  2457. switch (port) {
  2458. case PORT_A:
  2459. max_lanes = 2;
  2460. break;
  2461. case PORT_E:
  2462. max_lanes = 2;
  2463. break;
  2464. default:
  2465. max_lanes = 4;
  2466. break;
  2467. }
  2468. }
  2469. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  2470. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  2471. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  2472. if (intel_bios_is_lspcon_present(dev_priv, port)) {
  2473. /*
  2474. * Lspcon device needs to be driven with DP connector
  2475. * with special detection sequence. So make sure DP
  2476. * is initialized before lspcon.
  2477. */
  2478. init_dp = true;
  2479. init_lspcon = true;
  2480. init_hdmi = false;
  2481. DRM_DEBUG_KMS("VBT says port %c has lspcon\n", port_name(port));
  2482. }
  2483. if (!init_dp && !init_hdmi) {
  2484. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  2485. port_name(port));
  2486. return;
  2487. }
  2488. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  2489. if (!intel_dig_port)
  2490. return;
  2491. intel_encoder = &intel_dig_port->base;
  2492. encoder = &intel_encoder->base;
  2493. drm_encoder_init(&dev_priv->drm, encoder, &intel_ddi_funcs,
  2494. DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
  2495. intel_encoder->compute_output_type = intel_ddi_compute_output_type;
  2496. intel_encoder->compute_config = intel_ddi_compute_config;
  2497. intel_encoder->enable = intel_enable_ddi;
  2498. if (IS_GEN9_LP(dev_priv))
  2499. intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable;
  2500. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2501. intel_encoder->disable = intel_disable_ddi;
  2502. intel_encoder->post_disable = intel_ddi_post_disable;
  2503. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2504. intel_encoder->get_config = intel_ddi_get_config;
  2505. intel_encoder->suspend = intel_dp_encoder_suspend;
  2506. intel_encoder->get_power_domains = intel_ddi_get_power_domains;
  2507. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2508. (DDI_BUF_PORT_REVERSAL |
  2509. DDI_A_4_LANES);
  2510. switch (port) {
  2511. case PORT_A:
  2512. intel_dig_port->ddi_io_power_domain =
  2513. POWER_DOMAIN_PORT_DDI_A_IO;
  2514. break;
  2515. case PORT_B:
  2516. intel_dig_port->ddi_io_power_domain =
  2517. POWER_DOMAIN_PORT_DDI_B_IO;
  2518. break;
  2519. case PORT_C:
  2520. intel_dig_port->ddi_io_power_domain =
  2521. POWER_DOMAIN_PORT_DDI_C_IO;
  2522. break;
  2523. case PORT_D:
  2524. intel_dig_port->ddi_io_power_domain =
  2525. POWER_DOMAIN_PORT_DDI_D_IO;
  2526. break;
  2527. case PORT_E:
  2528. intel_dig_port->ddi_io_power_domain =
  2529. POWER_DOMAIN_PORT_DDI_E_IO;
  2530. break;
  2531. case PORT_F:
  2532. intel_dig_port->ddi_io_power_domain =
  2533. POWER_DOMAIN_PORT_DDI_F_IO;
  2534. break;
  2535. default:
  2536. MISSING_CASE(port);
  2537. }
  2538. /*
  2539. * Some BIOS might fail to set this bit on port A if eDP
  2540. * wasn't lit up at boot. Force this bit set when needed
  2541. * so we use the proper lane count for our calculations.
  2542. */
  2543. if (intel_ddi_a_force_4_lanes(intel_dig_port)) {
  2544. DRM_DEBUG_KMS("Forcing DDI_A_4_LANES for port A\n");
  2545. intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
  2546. max_lanes = 4;
  2547. }
  2548. intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
  2549. intel_dig_port->max_lanes = max_lanes;
  2550. intel_encoder->type = INTEL_OUTPUT_DDI;
  2551. intel_encoder->power_domain = intel_port_to_power_domain(port);
  2552. intel_encoder->port = port;
  2553. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2554. intel_encoder->cloneable = 0;
  2555. intel_infoframe_init(intel_dig_port);
  2556. if (init_dp) {
  2557. if (!intel_ddi_init_dp_connector(intel_dig_port))
  2558. goto err;
  2559. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  2560. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  2561. }
  2562. /* In theory we don't need the encoder->type check, but leave it just in
  2563. * case we have some really bad VBTs... */
  2564. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  2565. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  2566. goto err;
  2567. }
  2568. if (init_lspcon) {
  2569. if (lspcon_init(intel_dig_port))
  2570. /* TODO: handle hdmi info frame part */
  2571. DRM_DEBUG_KMS("LSPCON init success on port %c\n",
  2572. port_name(port));
  2573. else
  2574. /*
  2575. * LSPCON init faied, but DP init was success, so
  2576. * lets try to drive as DP++ port.
  2577. */
  2578. DRM_ERROR("LSPCON init failed on port %c\n",
  2579. port_name(port));
  2580. }
  2581. return;
  2582. err:
  2583. drm_encoder_cleanup(encoder);
  2584. kfree(intel_dig_port);
  2585. }