skbuff.h 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. #include <linux/sched.h>
  33. #include <net/flow_keys.h>
  34. /* A. Checksumming of received packets by device.
  35. *
  36. * CHECKSUM_NONE:
  37. *
  38. * Device failed to checksum this packet e.g. due to lack of capabilities.
  39. * The packet contains full (though not verified) checksum in packet but
  40. * not in skb->csum. Thus, skb->csum is undefined in this case.
  41. *
  42. * CHECKSUM_UNNECESSARY:
  43. *
  44. * The hardware you're dealing with doesn't calculate the full checksum
  45. * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  46. * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
  47. * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
  48. * undefined in this case though. It is a bad option, but, unfortunately,
  49. * nowadays most vendors do this. Apparently with the secret goal to sell
  50. * you new devices, when you will add new protocol to your host, f.e. IPv6 8)
  51. *
  52. * CHECKSUM_COMPLETE:
  53. *
  54. * This is the most generic way. The device supplied checksum of the _whole_
  55. * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
  56. * hardware doesn't need to parse L3/L4 headers to implement this.
  57. *
  58. * Note: Even if device supports only some protocols, but is able to produce
  59. * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
  60. *
  61. * CHECKSUM_PARTIAL:
  62. *
  63. * This is identical to the case for output below. This may occur on a packet
  64. * received directly from another Linux OS, e.g., a virtualized Linux kernel
  65. * on the same host. The packet can be treated in the same way as
  66. * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
  67. * checksum must be filled in by the OS or the hardware.
  68. *
  69. * B. Checksumming on output.
  70. *
  71. * CHECKSUM_NONE:
  72. *
  73. * The skb was already checksummed by the protocol, or a checksum is not
  74. * required.
  75. *
  76. * CHECKSUM_PARTIAL:
  77. *
  78. * The device is required to checksum the packet as seen by hard_start_xmit()
  79. * from skb->csum_start up to the end, and to record/write the checksum at
  80. * offset skb->csum_start + skb->csum_offset.
  81. *
  82. * The device must show its capabilities in dev->features, set up at device
  83. * setup time, e.g. netdev_features.h:
  84. *
  85. * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
  86. * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
  87. * IPv4. Sigh. Vendors like this way for an unknown reason.
  88. * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
  89. * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
  90. * NETIF_F_... - Well, you get the picture.
  91. *
  92. * CHECKSUM_UNNECESSARY:
  93. *
  94. * Normally, the device will do per protocol specific checksumming. Protocol
  95. * implementations that do not want the NIC to perform the checksum
  96. * calculation should use this flag in their outgoing skbs.
  97. *
  98. * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
  99. * offload. Correspondingly, the FCoE protocol driver
  100. * stack should use CHECKSUM_UNNECESSARY.
  101. *
  102. * Any questions? No questions, good. --ANK
  103. */
  104. /* Don't change this without changing skb_csum_unnecessary! */
  105. #define CHECKSUM_NONE 0
  106. #define CHECKSUM_UNNECESSARY 1
  107. #define CHECKSUM_COMPLETE 2
  108. #define CHECKSUM_PARTIAL 3
  109. #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
  110. #define SKB_WITH_OVERHEAD(X) \
  111. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  112. #define SKB_MAX_ORDER(X, ORDER) \
  113. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  114. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  115. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  116. /* return minimum truesize of one skb containing X bytes of data */
  117. #define SKB_TRUESIZE(X) ((X) + \
  118. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  119. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  120. struct net_device;
  121. struct scatterlist;
  122. struct pipe_inode_info;
  123. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  124. struct nf_conntrack {
  125. atomic_t use;
  126. };
  127. #endif
  128. #ifdef CONFIG_BRIDGE_NETFILTER
  129. struct nf_bridge_info {
  130. atomic_t use;
  131. unsigned int mask;
  132. struct net_device *physindev;
  133. struct net_device *physoutdev;
  134. unsigned long data[32 / sizeof(unsigned long)];
  135. };
  136. #endif
  137. struct sk_buff_head {
  138. /* These two members must be first. */
  139. struct sk_buff *next;
  140. struct sk_buff *prev;
  141. __u32 qlen;
  142. spinlock_t lock;
  143. };
  144. struct sk_buff;
  145. /* To allow 64K frame to be packed as single skb without frag_list we
  146. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  147. * buffers which do not start on a page boundary.
  148. *
  149. * Since GRO uses frags we allocate at least 16 regardless of page
  150. * size.
  151. */
  152. #if (65536/PAGE_SIZE + 1) < 16
  153. #define MAX_SKB_FRAGS 16UL
  154. #else
  155. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  156. #endif
  157. typedef struct skb_frag_struct skb_frag_t;
  158. struct skb_frag_struct {
  159. struct {
  160. struct page *p;
  161. } page;
  162. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  163. __u32 page_offset;
  164. __u32 size;
  165. #else
  166. __u16 page_offset;
  167. __u16 size;
  168. #endif
  169. };
  170. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  171. {
  172. return frag->size;
  173. }
  174. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  175. {
  176. frag->size = size;
  177. }
  178. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  179. {
  180. frag->size += delta;
  181. }
  182. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  183. {
  184. frag->size -= delta;
  185. }
  186. #define HAVE_HW_TIME_STAMP
  187. /**
  188. * struct skb_shared_hwtstamps - hardware time stamps
  189. * @hwtstamp: hardware time stamp transformed into duration
  190. * since arbitrary point in time
  191. *
  192. * Software time stamps generated by ktime_get_real() are stored in
  193. * skb->tstamp.
  194. *
  195. * hwtstamps can only be compared against other hwtstamps from
  196. * the same device.
  197. *
  198. * This structure is attached to packets as part of the
  199. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  200. */
  201. struct skb_shared_hwtstamps {
  202. ktime_t hwtstamp;
  203. };
  204. /* Definitions for tx_flags in struct skb_shared_info */
  205. enum {
  206. /* generate hardware time stamp */
  207. SKBTX_HW_TSTAMP = 1 << 0,
  208. /* generate software time stamp when queueing packet to NIC */
  209. SKBTX_SW_TSTAMP = 1 << 1,
  210. /* device driver is going to provide hardware time stamp */
  211. SKBTX_IN_PROGRESS = 1 << 2,
  212. /* device driver supports TX zero-copy buffers */
  213. SKBTX_DEV_ZEROCOPY = 1 << 3,
  214. /* generate wifi status information (where possible) */
  215. SKBTX_WIFI_STATUS = 1 << 4,
  216. /* This indicates at least one fragment might be overwritten
  217. * (as in vmsplice(), sendfile() ...)
  218. * If we need to compute a TX checksum, we'll need to copy
  219. * all frags to avoid possible bad checksum
  220. */
  221. SKBTX_SHARED_FRAG = 1 << 5,
  222. /* generate software time stamp when entering packet scheduling */
  223. SKBTX_SCHED_TSTAMP = 1 << 6,
  224. /* generate software timestamp on peer data acknowledgment */
  225. SKBTX_ACK_TSTAMP = 1 << 7,
  226. };
  227. #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
  228. SKBTX_SCHED_TSTAMP | \
  229. SKBTX_ACK_TSTAMP)
  230. #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
  231. /*
  232. * The callback notifies userspace to release buffers when skb DMA is done in
  233. * lower device, the skb last reference should be 0 when calling this.
  234. * The zerocopy_success argument is true if zero copy transmit occurred,
  235. * false on data copy or out of memory error caused by data copy attempt.
  236. * The ctx field is used to track device context.
  237. * The desc field is used to track userspace buffer index.
  238. */
  239. struct ubuf_info {
  240. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  241. void *ctx;
  242. unsigned long desc;
  243. };
  244. /* This data is invariant across clones and lives at
  245. * the end of the header data, ie. at skb->end.
  246. */
  247. struct skb_shared_info {
  248. unsigned char nr_frags;
  249. __u8 tx_flags;
  250. unsigned short gso_size;
  251. /* Warning: this field is not always filled in (UFO)! */
  252. unsigned short gso_segs;
  253. unsigned short gso_type;
  254. struct sk_buff *frag_list;
  255. struct skb_shared_hwtstamps hwtstamps;
  256. u32 tskey;
  257. __be32 ip6_frag_id;
  258. /*
  259. * Warning : all fields before dataref are cleared in __alloc_skb()
  260. */
  261. atomic_t dataref;
  262. /* Intermediate layers must ensure that destructor_arg
  263. * remains valid until skb destructor */
  264. void * destructor_arg;
  265. /* must be last field, see pskb_expand_head() */
  266. skb_frag_t frags[MAX_SKB_FRAGS];
  267. };
  268. /* We divide dataref into two halves. The higher 16 bits hold references
  269. * to the payload part of skb->data. The lower 16 bits hold references to
  270. * the entire skb->data. A clone of a headerless skb holds the length of
  271. * the header in skb->hdr_len.
  272. *
  273. * All users must obey the rule that the skb->data reference count must be
  274. * greater than or equal to the payload reference count.
  275. *
  276. * Holding a reference to the payload part means that the user does not
  277. * care about modifications to the header part of skb->data.
  278. */
  279. #define SKB_DATAREF_SHIFT 16
  280. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  281. enum {
  282. SKB_FCLONE_UNAVAILABLE,
  283. SKB_FCLONE_ORIG,
  284. SKB_FCLONE_CLONE,
  285. };
  286. enum {
  287. SKB_GSO_TCPV4 = 1 << 0,
  288. SKB_GSO_UDP = 1 << 1,
  289. /* This indicates the skb is from an untrusted source. */
  290. SKB_GSO_DODGY = 1 << 2,
  291. /* This indicates the tcp segment has CWR set. */
  292. SKB_GSO_TCP_ECN = 1 << 3,
  293. SKB_GSO_TCPV6 = 1 << 4,
  294. SKB_GSO_FCOE = 1 << 5,
  295. SKB_GSO_GRE = 1 << 6,
  296. SKB_GSO_GRE_CSUM = 1 << 7,
  297. SKB_GSO_IPIP = 1 << 8,
  298. SKB_GSO_SIT = 1 << 9,
  299. SKB_GSO_UDP_TUNNEL = 1 << 10,
  300. SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
  301. SKB_GSO_MPLS = 1 << 12,
  302. };
  303. #if BITS_PER_LONG > 32
  304. #define NET_SKBUFF_DATA_USES_OFFSET 1
  305. #endif
  306. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  307. typedef unsigned int sk_buff_data_t;
  308. #else
  309. typedef unsigned char *sk_buff_data_t;
  310. #endif
  311. /**
  312. * struct skb_mstamp - multi resolution time stamps
  313. * @stamp_us: timestamp in us resolution
  314. * @stamp_jiffies: timestamp in jiffies
  315. */
  316. struct skb_mstamp {
  317. union {
  318. u64 v64;
  319. struct {
  320. u32 stamp_us;
  321. u32 stamp_jiffies;
  322. };
  323. };
  324. };
  325. /**
  326. * skb_mstamp_get - get current timestamp
  327. * @cl: place to store timestamps
  328. */
  329. static inline void skb_mstamp_get(struct skb_mstamp *cl)
  330. {
  331. u64 val = local_clock();
  332. do_div(val, NSEC_PER_USEC);
  333. cl->stamp_us = (u32)val;
  334. cl->stamp_jiffies = (u32)jiffies;
  335. }
  336. /**
  337. * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
  338. * @t1: pointer to newest sample
  339. * @t0: pointer to oldest sample
  340. */
  341. static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
  342. const struct skb_mstamp *t0)
  343. {
  344. s32 delta_us = t1->stamp_us - t0->stamp_us;
  345. u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
  346. /* If delta_us is negative, this might be because interval is too big,
  347. * or local_clock() drift is too big : fallback using jiffies.
  348. */
  349. if (delta_us <= 0 ||
  350. delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
  351. delta_us = jiffies_to_usecs(delta_jiffies);
  352. return delta_us;
  353. }
  354. /**
  355. * struct sk_buff - socket buffer
  356. * @next: Next buffer in list
  357. * @prev: Previous buffer in list
  358. * @tstamp: Time we arrived/left
  359. * @sk: Socket we are owned by
  360. * @dev: Device we arrived on/are leaving by
  361. * @cb: Control buffer. Free for use by every layer. Put private vars here
  362. * @_skb_refdst: destination entry (with norefcount bit)
  363. * @sp: the security path, used for xfrm
  364. * @len: Length of actual data
  365. * @data_len: Data length
  366. * @mac_len: Length of link layer header
  367. * @hdr_len: writable header length of cloned skb
  368. * @csum: Checksum (must include start/offset pair)
  369. * @csum_start: Offset from skb->head where checksumming should start
  370. * @csum_offset: Offset from csum_start where checksum should be stored
  371. * @priority: Packet queueing priority
  372. * @ignore_df: allow local fragmentation
  373. * @cloned: Head may be cloned (check refcnt to be sure)
  374. * @ip_summed: Driver fed us an IP checksum
  375. * @nohdr: Payload reference only, must not modify header
  376. * @nfctinfo: Relationship of this skb to the connection
  377. * @pkt_type: Packet class
  378. * @fclone: skbuff clone status
  379. * @ipvs_property: skbuff is owned by ipvs
  380. * @peeked: this packet has been seen already, so stats have been
  381. * done for it, don't do them again
  382. * @nf_trace: netfilter packet trace flag
  383. * @protocol: Packet protocol from driver
  384. * @destructor: Destruct function
  385. * @nfct: Associated connection, if any
  386. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  387. * @skb_iif: ifindex of device we arrived on
  388. * @tc_index: Traffic control index
  389. * @tc_verd: traffic control verdict
  390. * @hash: the packet hash
  391. * @queue_mapping: Queue mapping for multiqueue devices
  392. * @ndisc_nodetype: router type (from link layer)
  393. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  394. * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
  395. * ports.
  396. * @sw_hash: indicates hash was computed in software stack
  397. * @wifi_acked_valid: wifi_acked was set
  398. * @wifi_acked: whether frame was acked on wifi or not
  399. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  400. * @dma_cookie: a cookie to one of several possible DMA operations
  401. * done by skb DMA functions
  402. * @napi_id: id of the NAPI struct this skb came from
  403. * @secmark: security marking
  404. * @mark: Generic packet mark
  405. * @dropcount: total number of sk_receive_queue overflows
  406. * @vlan_proto: vlan encapsulation protocol
  407. * @vlan_tci: vlan tag control information
  408. * @inner_protocol: Protocol (encapsulation)
  409. * @inner_transport_header: Inner transport layer header (encapsulation)
  410. * @inner_network_header: Network layer header (encapsulation)
  411. * @inner_mac_header: Link layer header (encapsulation)
  412. * @transport_header: Transport layer header
  413. * @network_header: Network layer header
  414. * @mac_header: Link layer header
  415. * @tail: Tail pointer
  416. * @end: End pointer
  417. * @head: Head of buffer
  418. * @data: Data head pointer
  419. * @truesize: Buffer size
  420. * @users: User count - see {datagram,tcp}.c
  421. */
  422. struct sk_buff {
  423. /* These two members must be first. */
  424. struct sk_buff *next;
  425. struct sk_buff *prev;
  426. union {
  427. ktime_t tstamp;
  428. struct skb_mstamp skb_mstamp;
  429. };
  430. struct sock *sk;
  431. struct net_device *dev;
  432. /*
  433. * This is the control buffer. It is free to use for every
  434. * layer. Please put your private variables there. If you
  435. * want to keep them across layers you have to do a skb_clone()
  436. * first. This is owned by whoever has the skb queued ATM.
  437. */
  438. char cb[48] __aligned(8);
  439. unsigned long _skb_refdst;
  440. #ifdef CONFIG_XFRM
  441. struct sec_path *sp;
  442. #endif
  443. unsigned int len,
  444. data_len;
  445. __u16 mac_len,
  446. hdr_len;
  447. union {
  448. __wsum csum;
  449. struct {
  450. __u16 csum_start;
  451. __u16 csum_offset;
  452. };
  453. };
  454. __u32 priority;
  455. kmemcheck_bitfield_begin(flags1);
  456. __u8 ignore_df:1,
  457. cloned:1,
  458. ip_summed:2,
  459. nohdr:1,
  460. nfctinfo:3;
  461. __u8 pkt_type:3,
  462. fclone:2,
  463. ipvs_property:1,
  464. peeked:1,
  465. nf_trace:1;
  466. kmemcheck_bitfield_end(flags1);
  467. __be16 protocol;
  468. void (*destructor)(struct sk_buff *skb);
  469. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  470. struct nf_conntrack *nfct;
  471. #endif
  472. #ifdef CONFIG_BRIDGE_NETFILTER
  473. struct nf_bridge_info *nf_bridge;
  474. #endif
  475. int skb_iif;
  476. __u32 hash;
  477. __be16 vlan_proto;
  478. __u16 vlan_tci;
  479. #ifdef CONFIG_NET_SCHED
  480. __u16 tc_index; /* traffic control index */
  481. #ifdef CONFIG_NET_CLS_ACT
  482. __u16 tc_verd; /* traffic control verdict */
  483. #endif
  484. #endif
  485. __u16 queue_mapping;
  486. kmemcheck_bitfield_begin(flags2);
  487. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  488. __u8 ndisc_nodetype:2;
  489. #endif
  490. __u8 pfmemalloc:1;
  491. __u8 ooo_okay:1;
  492. __u8 l4_hash:1;
  493. __u8 sw_hash:1;
  494. __u8 wifi_acked_valid:1;
  495. __u8 wifi_acked:1;
  496. __u8 no_fcs:1;
  497. __u8 head_frag:1;
  498. /* Encapsulation protocol and NIC drivers should use
  499. * this flag to indicate to each other if the skb contains
  500. * encapsulated packet or not and maybe use the inner packet
  501. * headers if needed
  502. */
  503. __u8 encapsulation:1;
  504. __u8 encap_hdr_csum:1;
  505. __u8 csum_valid:1;
  506. __u8 csum_complete_sw:1;
  507. /* 2/4 bit hole (depending on ndisc_nodetype presence) */
  508. kmemcheck_bitfield_end(flags2);
  509. #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
  510. union {
  511. unsigned int napi_id;
  512. dma_cookie_t dma_cookie;
  513. };
  514. #endif
  515. #ifdef CONFIG_NETWORK_SECMARK
  516. __u32 secmark;
  517. #endif
  518. union {
  519. __u32 mark;
  520. __u32 dropcount;
  521. __u32 reserved_tailroom;
  522. };
  523. __be16 inner_protocol;
  524. __u16 inner_transport_header;
  525. __u16 inner_network_header;
  526. __u16 inner_mac_header;
  527. __u16 transport_header;
  528. __u16 network_header;
  529. __u16 mac_header;
  530. /* These elements must be at the end, see alloc_skb() for details. */
  531. sk_buff_data_t tail;
  532. sk_buff_data_t end;
  533. unsigned char *head,
  534. *data;
  535. unsigned int truesize;
  536. atomic_t users;
  537. };
  538. #ifdef __KERNEL__
  539. /*
  540. * Handling routines are only of interest to the kernel
  541. */
  542. #include <linux/slab.h>
  543. #define SKB_ALLOC_FCLONE 0x01
  544. #define SKB_ALLOC_RX 0x02
  545. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  546. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  547. {
  548. return unlikely(skb->pfmemalloc);
  549. }
  550. /*
  551. * skb might have a dst pointer attached, refcounted or not.
  552. * _skb_refdst low order bit is set if refcount was _not_ taken
  553. */
  554. #define SKB_DST_NOREF 1UL
  555. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  556. /**
  557. * skb_dst - returns skb dst_entry
  558. * @skb: buffer
  559. *
  560. * Returns skb dst_entry, regardless of reference taken or not.
  561. */
  562. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  563. {
  564. /* If refdst was not refcounted, check we still are in a
  565. * rcu_read_lock section
  566. */
  567. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  568. !rcu_read_lock_held() &&
  569. !rcu_read_lock_bh_held());
  570. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  571. }
  572. /**
  573. * skb_dst_set - sets skb dst
  574. * @skb: buffer
  575. * @dst: dst entry
  576. *
  577. * Sets skb dst, assuming a reference was taken on dst and should
  578. * be released by skb_dst_drop()
  579. */
  580. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  581. {
  582. skb->_skb_refdst = (unsigned long)dst;
  583. }
  584. void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
  585. bool force);
  586. /**
  587. * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
  588. * @skb: buffer
  589. * @dst: dst entry
  590. *
  591. * Sets skb dst, assuming a reference was not taken on dst.
  592. * If dst entry is cached, we do not take reference and dst_release
  593. * will be avoided by refdst_drop. If dst entry is not cached, we take
  594. * reference, so that last dst_release can destroy the dst immediately.
  595. */
  596. static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
  597. {
  598. __skb_dst_set_noref(skb, dst, false);
  599. }
  600. /**
  601. * skb_dst_set_noref_force - sets skb dst, without taking reference
  602. * @skb: buffer
  603. * @dst: dst entry
  604. *
  605. * Sets skb dst, assuming a reference was not taken on dst.
  606. * No reference is taken and no dst_release will be called. While for
  607. * cached dsts deferred reclaim is a basic feature, for entries that are
  608. * not cached it is caller's job to guarantee that last dst_release for
  609. * provided dst happens when nobody uses it, eg. after a RCU grace period.
  610. */
  611. static inline void skb_dst_set_noref_force(struct sk_buff *skb,
  612. struct dst_entry *dst)
  613. {
  614. __skb_dst_set_noref(skb, dst, true);
  615. }
  616. /**
  617. * skb_dst_is_noref - Test if skb dst isn't refcounted
  618. * @skb: buffer
  619. */
  620. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  621. {
  622. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  623. }
  624. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  625. {
  626. return (struct rtable *)skb_dst(skb);
  627. }
  628. void kfree_skb(struct sk_buff *skb);
  629. void kfree_skb_list(struct sk_buff *segs);
  630. void skb_tx_error(struct sk_buff *skb);
  631. void consume_skb(struct sk_buff *skb);
  632. void __kfree_skb(struct sk_buff *skb);
  633. extern struct kmem_cache *skbuff_head_cache;
  634. void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  635. bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  636. bool *fragstolen, int *delta_truesize);
  637. struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
  638. int node);
  639. struct sk_buff *build_skb(void *data, unsigned int frag_size);
  640. static inline struct sk_buff *alloc_skb(unsigned int size,
  641. gfp_t priority)
  642. {
  643. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  644. }
  645. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  646. gfp_t priority)
  647. {
  648. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  649. }
  650. struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
  651. static inline struct sk_buff *alloc_skb_head(gfp_t priority)
  652. {
  653. return __alloc_skb_head(priority, -1);
  654. }
  655. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  656. int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  657. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
  658. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
  659. struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
  660. gfp_t gfp_mask, bool fclone);
  661. static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
  662. gfp_t gfp_mask)
  663. {
  664. return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
  665. }
  666. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
  667. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  668. unsigned int headroom);
  669. struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
  670. int newtailroom, gfp_t priority);
  671. int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
  672. int offset, int len);
  673. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
  674. int len);
  675. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
  676. int skb_pad(struct sk_buff *skb, int pad);
  677. #define dev_kfree_skb(a) consume_skb(a)
  678. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  679. int getfrag(void *from, char *to, int offset,
  680. int len, int odd, struct sk_buff *skb),
  681. void *from, int length);
  682. struct skb_seq_state {
  683. __u32 lower_offset;
  684. __u32 upper_offset;
  685. __u32 frag_idx;
  686. __u32 stepped_offset;
  687. struct sk_buff *root_skb;
  688. struct sk_buff *cur_skb;
  689. __u8 *frag_data;
  690. };
  691. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  692. unsigned int to, struct skb_seq_state *st);
  693. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  694. struct skb_seq_state *st);
  695. void skb_abort_seq_read(struct skb_seq_state *st);
  696. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  697. unsigned int to, struct ts_config *config,
  698. struct ts_state *state);
  699. /*
  700. * Packet hash types specify the type of hash in skb_set_hash.
  701. *
  702. * Hash types refer to the protocol layer addresses which are used to
  703. * construct a packet's hash. The hashes are used to differentiate or identify
  704. * flows of the protocol layer for the hash type. Hash types are either
  705. * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
  706. *
  707. * Properties of hashes:
  708. *
  709. * 1) Two packets in different flows have different hash values
  710. * 2) Two packets in the same flow should have the same hash value
  711. *
  712. * A hash at a higher layer is considered to be more specific. A driver should
  713. * set the most specific hash possible.
  714. *
  715. * A driver cannot indicate a more specific hash than the layer at which a hash
  716. * was computed. For instance an L3 hash cannot be set as an L4 hash.
  717. *
  718. * A driver may indicate a hash level which is less specific than the
  719. * actual layer the hash was computed on. For instance, a hash computed
  720. * at L4 may be considered an L3 hash. This should only be done if the
  721. * driver can't unambiguously determine that the HW computed the hash at
  722. * the higher layer. Note that the "should" in the second property above
  723. * permits this.
  724. */
  725. enum pkt_hash_types {
  726. PKT_HASH_TYPE_NONE, /* Undefined type */
  727. PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
  728. PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
  729. PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
  730. };
  731. static inline void
  732. skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
  733. {
  734. skb->l4_hash = (type == PKT_HASH_TYPE_L4);
  735. skb->sw_hash = 0;
  736. skb->hash = hash;
  737. }
  738. void __skb_get_hash(struct sk_buff *skb);
  739. static inline __u32 skb_get_hash(struct sk_buff *skb)
  740. {
  741. if (!skb->l4_hash && !skb->sw_hash)
  742. __skb_get_hash(skb);
  743. return skb->hash;
  744. }
  745. static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
  746. {
  747. return skb->hash;
  748. }
  749. static inline void skb_clear_hash(struct sk_buff *skb)
  750. {
  751. skb->hash = 0;
  752. skb->sw_hash = 0;
  753. skb->l4_hash = 0;
  754. }
  755. static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
  756. {
  757. if (!skb->l4_hash)
  758. skb_clear_hash(skb);
  759. }
  760. static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
  761. {
  762. to->hash = from->hash;
  763. to->sw_hash = from->sw_hash;
  764. to->l4_hash = from->l4_hash;
  765. };
  766. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  767. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  768. {
  769. return skb->head + skb->end;
  770. }
  771. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  772. {
  773. return skb->end;
  774. }
  775. #else
  776. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  777. {
  778. return skb->end;
  779. }
  780. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  781. {
  782. return skb->end - skb->head;
  783. }
  784. #endif
  785. /* Internal */
  786. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  787. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  788. {
  789. return &skb_shinfo(skb)->hwtstamps;
  790. }
  791. /**
  792. * skb_queue_empty - check if a queue is empty
  793. * @list: queue head
  794. *
  795. * Returns true if the queue is empty, false otherwise.
  796. */
  797. static inline int skb_queue_empty(const struct sk_buff_head *list)
  798. {
  799. return list->next == (const struct sk_buff *) list;
  800. }
  801. /**
  802. * skb_queue_is_last - check if skb is the last entry in the queue
  803. * @list: queue head
  804. * @skb: buffer
  805. *
  806. * Returns true if @skb is the last buffer on the list.
  807. */
  808. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  809. const struct sk_buff *skb)
  810. {
  811. return skb->next == (const struct sk_buff *) list;
  812. }
  813. /**
  814. * skb_queue_is_first - check if skb is the first entry in the queue
  815. * @list: queue head
  816. * @skb: buffer
  817. *
  818. * Returns true if @skb is the first buffer on the list.
  819. */
  820. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  821. const struct sk_buff *skb)
  822. {
  823. return skb->prev == (const struct sk_buff *) list;
  824. }
  825. /**
  826. * skb_queue_next - return the next packet in the queue
  827. * @list: queue head
  828. * @skb: current buffer
  829. *
  830. * Return the next packet in @list after @skb. It is only valid to
  831. * call this if skb_queue_is_last() evaluates to false.
  832. */
  833. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  834. const struct sk_buff *skb)
  835. {
  836. /* This BUG_ON may seem severe, but if we just return then we
  837. * are going to dereference garbage.
  838. */
  839. BUG_ON(skb_queue_is_last(list, skb));
  840. return skb->next;
  841. }
  842. /**
  843. * skb_queue_prev - return the prev packet in the queue
  844. * @list: queue head
  845. * @skb: current buffer
  846. *
  847. * Return the prev packet in @list before @skb. It is only valid to
  848. * call this if skb_queue_is_first() evaluates to false.
  849. */
  850. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  851. const struct sk_buff *skb)
  852. {
  853. /* This BUG_ON may seem severe, but if we just return then we
  854. * are going to dereference garbage.
  855. */
  856. BUG_ON(skb_queue_is_first(list, skb));
  857. return skb->prev;
  858. }
  859. /**
  860. * skb_get - reference buffer
  861. * @skb: buffer to reference
  862. *
  863. * Makes another reference to a socket buffer and returns a pointer
  864. * to the buffer.
  865. */
  866. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  867. {
  868. atomic_inc(&skb->users);
  869. return skb;
  870. }
  871. /*
  872. * If users == 1, we are the only owner and are can avoid redundant
  873. * atomic change.
  874. */
  875. /**
  876. * skb_cloned - is the buffer a clone
  877. * @skb: buffer to check
  878. *
  879. * Returns true if the buffer was generated with skb_clone() and is
  880. * one of multiple shared copies of the buffer. Cloned buffers are
  881. * shared data so must not be written to under normal circumstances.
  882. */
  883. static inline int skb_cloned(const struct sk_buff *skb)
  884. {
  885. return skb->cloned &&
  886. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  887. }
  888. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  889. {
  890. might_sleep_if(pri & __GFP_WAIT);
  891. if (skb_cloned(skb))
  892. return pskb_expand_head(skb, 0, 0, pri);
  893. return 0;
  894. }
  895. /**
  896. * skb_header_cloned - is the header a clone
  897. * @skb: buffer to check
  898. *
  899. * Returns true if modifying the header part of the buffer requires
  900. * the data to be copied.
  901. */
  902. static inline int skb_header_cloned(const struct sk_buff *skb)
  903. {
  904. int dataref;
  905. if (!skb->cloned)
  906. return 0;
  907. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  908. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  909. return dataref != 1;
  910. }
  911. /**
  912. * skb_header_release - release reference to header
  913. * @skb: buffer to operate on
  914. *
  915. * Drop a reference to the header part of the buffer. This is done
  916. * by acquiring a payload reference. You must not read from the header
  917. * part of skb->data after this.
  918. */
  919. static inline void skb_header_release(struct sk_buff *skb)
  920. {
  921. BUG_ON(skb->nohdr);
  922. skb->nohdr = 1;
  923. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  924. }
  925. /**
  926. * skb_shared - is the buffer shared
  927. * @skb: buffer to check
  928. *
  929. * Returns true if more than one person has a reference to this
  930. * buffer.
  931. */
  932. static inline int skb_shared(const struct sk_buff *skb)
  933. {
  934. return atomic_read(&skb->users) != 1;
  935. }
  936. /**
  937. * skb_share_check - check if buffer is shared and if so clone it
  938. * @skb: buffer to check
  939. * @pri: priority for memory allocation
  940. *
  941. * If the buffer is shared the buffer is cloned and the old copy
  942. * drops a reference. A new clone with a single reference is returned.
  943. * If the buffer is not shared the original buffer is returned. When
  944. * being called from interrupt status or with spinlocks held pri must
  945. * be GFP_ATOMIC.
  946. *
  947. * NULL is returned on a memory allocation failure.
  948. */
  949. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  950. {
  951. might_sleep_if(pri & __GFP_WAIT);
  952. if (skb_shared(skb)) {
  953. struct sk_buff *nskb = skb_clone(skb, pri);
  954. if (likely(nskb))
  955. consume_skb(skb);
  956. else
  957. kfree_skb(skb);
  958. skb = nskb;
  959. }
  960. return skb;
  961. }
  962. /*
  963. * Copy shared buffers into a new sk_buff. We effectively do COW on
  964. * packets to handle cases where we have a local reader and forward
  965. * and a couple of other messy ones. The normal one is tcpdumping
  966. * a packet thats being forwarded.
  967. */
  968. /**
  969. * skb_unshare - make a copy of a shared buffer
  970. * @skb: buffer to check
  971. * @pri: priority for memory allocation
  972. *
  973. * If the socket buffer is a clone then this function creates a new
  974. * copy of the data, drops a reference count on the old copy and returns
  975. * the new copy with the reference count at 1. If the buffer is not a clone
  976. * the original buffer is returned. When called with a spinlock held or
  977. * from interrupt state @pri must be %GFP_ATOMIC
  978. *
  979. * %NULL is returned on a memory allocation failure.
  980. */
  981. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  982. gfp_t pri)
  983. {
  984. might_sleep_if(pri & __GFP_WAIT);
  985. if (skb_cloned(skb)) {
  986. struct sk_buff *nskb = skb_copy(skb, pri);
  987. kfree_skb(skb); /* Free our shared copy */
  988. skb = nskb;
  989. }
  990. return skb;
  991. }
  992. /**
  993. * skb_peek - peek at the head of an &sk_buff_head
  994. * @list_: list to peek at
  995. *
  996. * Peek an &sk_buff. Unlike most other operations you _MUST_
  997. * be careful with this one. A peek leaves the buffer on the
  998. * list and someone else may run off with it. You must hold
  999. * the appropriate locks or have a private queue to do this.
  1000. *
  1001. * Returns %NULL for an empty list or a pointer to the head element.
  1002. * The reference count is not incremented and the reference is therefore
  1003. * volatile. Use with caution.
  1004. */
  1005. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  1006. {
  1007. struct sk_buff *skb = list_->next;
  1008. if (skb == (struct sk_buff *)list_)
  1009. skb = NULL;
  1010. return skb;
  1011. }
  1012. /**
  1013. * skb_peek_next - peek skb following the given one from a queue
  1014. * @skb: skb to start from
  1015. * @list_: list to peek at
  1016. *
  1017. * Returns %NULL when the end of the list is met or a pointer to the
  1018. * next element. The reference count is not incremented and the
  1019. * reference is therefore volatile. Use with caution.
  1020. */
  1021. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  1022. const struct sk_buff_head *list_)
  1023. {
  1024. struct sk_buff *next = skb->next;
  1025. if (next == (struct sk_buff *)list_)
  1026. next = NULL;
  1027. return next;
  1028. }
  1029. /**
  1030. * skb_peek_tail - peek at the tail of an &sk_buff_head
  1031. * @list_: list to peek at
  1032. *
  1033. * Peek an &sk_buff. Unlike most other operations you _MUST_
  1034. * be careful with this one. A peek leaves the buffer on the
  1035. * list and someone else may run off with it. You must hold
  1036. * the appropriate locks or have a private queue to do this.
  1037. *
  1038. * Returns %NULL for an empty list or a pointer to the tail element.
  1039. * The reference count is not incremented and the reference is therefore
  1040. * volatile. Use with caution.
  1041. */
  1042. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  1043. {
  1044. struct sk_buff *skb = list_->prev;
  1045. if (skb == (struct sk_buff *)list_)
  1046. skb = NULL;
  1047. return skb;
  1048. }
  1049. /**
  1050. * skb_queue_len - get queue length
  1051. * @list_: list to measure
  1052. *
  1053. * Return the length of an &sk_buff queue.
  1054. */
  1055. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  1056. {
  1057. return list_->qlen;
  1058. }
  1059. /**
  1060. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  1061. * @list: queue to initialize
  1062. *
  1063. * This initializes only the list and queue length aspects of
  1064. * an sk_buff_head object. This allows to initialize the list
  1065. * aspects of an sk_buff_head without reinitializing things like
  1066. * the spinlock. It can also be used for on-stack sk_buff_head
  1067. * objects where the spinlock is known to not be used.
  1068. */
  1069. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  1070. {
  1071. list->prev = list->next = (struct sk_buff *)list;
  1072. list->qlen = 0;
  1073. }
  1074. /*
  1075. * This function creates a split out lock class for each invocation;
  1076. * this is needed for now since a whole lot of users of the skb-queue
  1077. * infrastructure in drivers have different locking usage (in hardirq)
  1078. * than the networking core (in softirq only). In the long run either the
  1079. * network layer or drivers should need annotation to consolidate the
  1080. * main types of usage into 3 classes.
  1081. */
  1082. static inline void skb_queue_head_init(struct sk_buff_head *list)
  1083. {
  1084. spin_lock_init(&list->lock);
  1085. __skb_queue_head_init(list);
  1086. }
  1087. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  1088. struct lock_class_key *class)
  1089. {
  1090. skb_queue_head_init(list);
  1091. lockdep_set_class(&list->lock, class);
  1092. }
  1093. /*
  1094. * Insert an sk_buff on a list.
  1095. *
  1096. * The "__skb_xxxx()" functions are the non-atomic ones that
  1097. * can only be called with interrupts disabled.
  1098. */
  1099. void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
  1100. struct sk_buff_head *list);
  1101. static inline void __skb_insert(struct sk_buff *newsk,
  1102. struct sk_buff *prev, struct sk_buff *next,
  1103. struct sk_buff_head *list)
  1104. {
  1105. newsk->next = next;
  1106. newsk->prev = prev;
  1107. next->prev = prev->next = newsk;
  1108. list->qlen++;
  1109. }
  1110. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  1111. struct sk_buff *prev,
  1112. struct sk_buff *next)
  1113. {
  1114. struct sk_buff *first = list->next;
  1115. struct sk_buff *last = list->prev;
  1116. first->prev = prev;
  1117. prev->next = first;
  1118. last->next = next;
  1119. next->prev = last;
  1120. }
  1121. /**
  1122. * skb_queue_splice - join two skb lists, this is designed for stacks
  1123. * @list: the new list to add
  1124. * @head: the place to add it in the first list
  1125. */
  1126. static inline void skb_queue_splice(const struct sk_buff_head *list,
  1127. struct sk_buff_head *head)
  1128. {
  1129. if (!skb_queue_empty(list)) {
  1130. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1131. head->qlen += list->qlen;
  1132. }
  1133. }
  1134. /**
  1135. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  1136. * @list: the new list to add
  1137. * @head: the place to add it in the first list
  1138. *
  1139. * The list at @list is reinitialised
  1140. */
  1141. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  1142. struct sk_buff_head *head)
  1143. {
  1144. if (!skb_queue_empty(list)) {
  1145. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1146. head->qlen += list->qlen;
  1147. __skb_queue_head_init(list);
  1148. }
  1149. }
  1150. /**
  1151. * skb_queue_splice_tail - join two skb lists, each list being a queue
  1152. * @list: the new list to add
  1153. * @head: the place to add it in the first list
  1154. */
  1155. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  1156. struct sk_buff_head *head)
  1157. {
  1158. if (!skb_queue_empty(list)) {
  1159. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1160. head->qlen += list->qlen;
  1161. }
  1162. }
  1163. /**
  1164. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  1165. * @list: the new list to add
  1166. * @head: the place to add it in the first list
  1167. *
  1168. * Each of the lists is a queue.
  1169. * The list at @list is reinitialised
  1170. */
  1171. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  1172. struct sk_buff_head *head)
  1173. {
  1174. if (!skb_queue_empty(list)) {
  1175. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1176. head->qlen += list->qlen;
  1177. __skb_queue_head_init(list);
  1178. }
  1179. }
  1180. /**
  1181. * __skb_queue_after - queue a buffer at the list head
  1182. * @list: list to use
  1183. * @prev: place after this buffer
  1184. * @newsk: buffer to queue
  1185. *
  1186. * Queue a buffer int the middle of a list. This function takes no locks
  1187. * and you must therefore hold required locks before calling it.
  1188. *
  1189. * A buffer cannot be placed on two lists at the same time.
  1190. */
  1191. static inline void __skb_queue_after(struct sk_buff_head *list,
  1192. struct sk_buff *prev,
  1193. struct sk_buff *newsk)
  1194. {
  1195. __skb_insert(newsk, prev, prev->next, list);
  1196. }
  1197. void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1198. struct sk_buff_head *list);
  1199. static inline void __skb_queue_before(struct sk_buff_head *list,
  1200. struct sk_buff *next,
  1201. struct sk_buff *newsk)
  1202. {
  1203. __skb_insert(newsk, next->prev, next, list);
  1204. }
  1205. /**
  1206. * __skb_queue_head - queue a buffer at the list head
  1207. * @list: list to use
  1208. * @newsk: buffer to queue
  1209. *
  1210. * Queue a buffer at the start of a list. This function takes no locks
  1211. * and you must therefore hold required locks before calling it.
  1212. *
  1213. * A buffer cannot be placed on two lists at the same time.
  1214. */
  1215. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1216. static inline void __skb_queue_head(struct sk_buff_head *list,
  1217. struct sk_buff *newsk)
  1218. {
  1219. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1220. }
  1221. /**
  1222. * __skb_queue_tail - queue a buffer at the list tail
  1223. * @list: list to use
  1224. * @newsk: buffer to queue
  1225. *
  1226. * Queue a buffer at the end of a list. This function takes no locks
  1227. * and you must therefore hold required locks before calling it.
  1228. *
  1229. * A buffer cannot be placed on two lists at the same time.
  1230. */
  1231. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1232. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1233. struct sk_buff *newsk)
  1234. {
  1235. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1236. }
  1237. /*
  1238. * remove sk_buff from list. _Must_ be called atomically, and with
  1239. * the list known..
  1240. */
  1241. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1242. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1243. {
  1244. struct sk_buff *next, *prev;
  1245. list->qlen--;
  1246. next = skb->next;
  1247. prev = skb->prev;
  1248. skb->next = skb->prev = NULL;
  1249. next->prev = prev;
  1250. prev->next = next;
  1251. }
  1252. /**
  1253. * __skb_dequeue - remove from the head of the queue
  1254. * @list: list to dequeue from
  1255. *
  1256. * Remove the head of the list. This function does not take any locks
  1257. * so must be used with appropriate locks held only. The head item is
  1258. * returned or %NULL if the list is empty.
  1259. */
  1260. struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1261. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1262. {
  1263. struct sk_buff *skb = skb_peek(list);
  1264. if (skb)
  1265. __skb_unlink(skb, list);
  1266. return skb;
  1267. }
  1268. /**
  1269. * __skb_dequeue_tail - remove from the tail of the queue
  1270. * @list: list to dequeue from
  1271. *
  1272. * Remove the tail of the list. This function does not take any locks
  1273. * so must be used with appropriate locks held only. The tail item is
  1274. * returned or %NULL if the list is empty.
  1275. */
  1276. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1277. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1278. {
  1279. struct sk_buff *skb = skb_peek_tail(list);
  1280. if (skb)
  1281. __skb_unlink(skb, list);
  1282. return skb;
  1283. }
  1284. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1285. {
  1286. return skb->data_len;
  1287. }
  1288. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1289. {
  1290. return skb->len - skb->data_len;
  1291. }
  1292. static inline int skb_pagelen(const struct sk_buff *skb)
  1293. {
  1294. int i, len = 0;
  1295. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1296. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1297. return len + skb_headlen(skb);
  1298. }
  1299. /**
  1300. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1301. * @skb: buffer containing fragment to be initialised
  1302. * @i: paged fragment index to initialise
  1303. * @page: the page to use for this fragment
  1304. * @off: the offset to the data with @page
  1305. * @size: the length of the data
  1306. *
  1307. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1308. * offset @off within @page.
  1309. *
  1310. * Does not take any additional reference on the fragment.
  1311. */
  1312. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1313. struct page *page, int off, int size)
  1314. {
  1315. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1316. /*
  1317. * Propagate page->pfmemalloc to the skb if we can. The problem is
  1318. * that not all callers have unique ownership of the page. If
  1319. * pfmemalloc is set, we check the mapping as a mapping implies
  1320. * page->index is set (index and pfmemalloc share space).
  1321. * If it's a valid mapping, we cannot use page->pfmemalloc but we
  1322. * do not lose pfmemalloc information as the pages would not be
  1323. * allocated using __GFP_MEMALLOC.
  1324. */
  1325. frag->page.p = page;
  1326. frag->page_offset = off;
  1327. skb_frag_size_set(frag, size);
  1328. page = compound_head(page);
  1329. if (page->pfmemalloc && !page->mapping)
  1330. skb->pfmemalloc = true;
  1331. }
  1332. /**
  1333. * skb_fill_page_desc - initialise a paged fragment in an skb
  1334. * @skb: buffer containing fragment to be initialised
  1335. * @i: paged fragment index to initialise
  1336. * @page: the page to use for this fragment
  1337. * @off: the offset to the data with @page
  1338. * @size: the length of the data
  1339. *
  1340. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1341. * @skb to point to @size bytes at offset @off within @page. In
  1342. * addition updates @skb such that @i is the last fragment.
  1343. *
  1344. * Does not take any additional reference on the fragment.
  1345. */
  1346. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1347. struct page *page, int off, int size)
  1348. {
  1349. __skb_fill_page_desc(skb, i, page, off, size);
  1350. skb_shinfo(skb)->nr_frags = i + 1;
  1351. }
  1352. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  1353. int size, unsigned int truesize);
  1354. void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
  1355. unsigned int truesize);
  1356. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1357. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1358. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1359. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1360. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1361. {
  1362. return skb->head + skb->tail;
  1363. }
  1364. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1365. {
  1366. skb->tail = skb->data - skb->head;
  1367. }
  1368. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1369. {
  1370. skb_reset_tail_pointer(skb);
  1371. skb->tail += offset;
  1372. }
  1373. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1374. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1375. {
  1376. return skb->tail;
  1377. }
  1378. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1379. {
  1380. skb->tail = skb->data;
  1381. }
  1382. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1383. {
  1384. skb->tail = skb->data + offset;
  1385. }
  1386. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1387. /*
  1388. * Add data to an sk_buff
  1389. */
  1390. unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
  1391. unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1392. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1393. {
  1394. unsigned char *tmp = skb_tail_pointer(skb);
  1395. SKB_LINEAR_ASSERT(skb);
  1396. skb->tail += len;
  1397. skb->len += len;
  1398. return tmp;
  1399. }
  1400. unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1401. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1402. {
  1403. skb->data -= len;
  1404. skb->len += len;
  1405. return skb->data;
  1406. }
  1407. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1408. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1409. {
  1410. skb->len -= len;
  1411. BUG_ON(skb->len < skb->data_len);
  1412. return skb->data += len;
  1413. }
  1414. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1415. {
  1416. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1417. }
  1418. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1419. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1420. {
  1421. if (len > skb_headlen(skb) &&
  1422. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1423. return NULL;
  1424. skb->len -= len;
  1425. return skb->data += len;
  1426. }
  1427. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1428. {
  1429. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1430. }
  1431. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1432. {
  1433. if (likely(len <= skb_headlen(skb)))
  1434. return 1;
  1435. if (unlikely(len > skb->len))
  1436. return 0;
  1437. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1438. }
  1439. /**
  1440. * skb_headroom - bytes at buffer head
  1441. * @skb: buffer to check
  1442. *
  1443. * Return the number of bytes of free space at the head of an &sk_buff.
  1444. */
  1445. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1446. {
  1447. return skb->data - skb->head;
  1448. }
  1449. /**
  1450. * skb_tailroom - bytes at buffer end
  1451. * @skb: buffer to check
  1452. *
  1453. * Return the number of bytes of free space at the tail of an sk_buff
  1454. */
  1455. static inline int skb_tailroom(const struct sk_buff *skb)
  1456. {
  1457. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1458. }
  1459. /**
  1460. * skb_availroom - bytes at buffer end
  1461. * @skb: buffer to check
  1462. *
  1463. * Return the number of bytes of free space at the tail of an sk_buff
  1464. * allocated by sk_stream_alloc()
  1465. */
  1466. static inline int skb_availroom(const struct sk_buff *skb)
  1467. {
  1468. if (skb_is_nonlinear(skb))
  1469. return 0;
  1470. return skb->end - skb->tail - skb->reserved_tailroom;
  1471. }
  1472. /**
  1473. * skb_reserve - adjust headroom
  1474. * @skb: buffer to alter
  1475. * @len: bytes to move
  1476. *
  1477. * Increase the headroom of an empty &sk_buff by reducing the tail
  1478. * room. This is only allowed for an empty buffer.
  1479. */
  1480. static inline void skb_reserve(struct sk_buff *skb, int len)
  1481. {
  1482. skb->data += len;
  1483. skb->tail += len;
  1484. }
  1485. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1486. {
  1487. skb->inner_mac_header = skb->mac_header;
  1488. skb->inner_network_header = skb->network_header;
  1489. skb->inner_transport_header = skb->transport_header;
  1490. }
  1491. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1492. {
  1493. skb->mac_len = skb->network_header - skb->mac_header;
  1494. }
  1495. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1496. *skb)
  1497. {
  1498. return skb->head + skb->inner_transport_header;
  1499. }
  1500. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1501. {
  1502. skb->inner_transport_header = skb->data - skb->head;
  1503. }
  1504. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1505. const int offset)
  1506. {
  1507. skb_reset_inner_transport_header(skb);
  1508. skb->inner_transport_header += offset;
  1509. }
  1510. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1511. {
  1512. return skb->head + skb->inner_network_header;
  1513. }
  1514. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1515. {
  1516. skb->inner_network_header = skb->data - skb->head;
  1517. }
  1518. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1519. const int offset)
  1520. {
  1521. skb_reset_inner_network_header(skb);
  1522. skb->inner_network_header += offset;
  1523. }
  1524. static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
  1525. {
  1526. return skb->head + skb->inner_mac_header;
  1527. }
  1528. static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
  1529. {
  1530. skb->inner_mac_header = skb->data - skb->head;
  1531. }
  1532. static inline void skb_set_inner_mac_header(struct sk_buff *skb,
  1533. const int offset)
  1534. {
  1535. skb_reset_inner_mac_header(skb);
  1536. skb->inner_mac_header += offset;
  1537. }
  1538. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1539. {
  1540. return skb->transport_header != (typeof(skb->transport_header))~0U;
  1541. }
  1542. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1543. {
  1544. return skb->head + skb->transport_header;
  1545. }
  1546. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1547. {
  1548. skb->transport_header = skb->data - skb->head;
  1549. }
  1550. static inline void skb_set_transport_header(struct sk_buff *skb,
  1551. const int offset)
  1552. {
  1553. skb_reset_transport_header(skb);
  1554. skb->transport_header += offset;
  1555. }
  1556. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1557. {
  1558. return skb->head + skb->network_header;
  1559. }
  1560. static inline void skb_reset_network_header(struct sk_buff *skb)
  1561. {
  1562. skb->network_header = skb->data - skb->head;
  1563. }
  1564. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1565. {
  1566. skb_reset_network_header(skb);
  1567. skb->network_header += offset;
  1568. }
  1569. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1570. {
  1571. return skb->head + skb->mac_header;
  1572. }
  1573. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1574. {
  1575. return skb->mac_header != (typeof(skb->mac_header))~0U;
  1576. }
  1577. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1578. {
  1579. skb->mac_header = skb->data - skb->head;
  1580. }
  1581. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1582. {
  1583. skb_reset_mac_header(skb);
  1584. skb->mac_header += offset;
  1585. }
  1586. static inline void skb_pop_mac_header(struct sk_buff *skb)
  1587. {
  1588. skb->mac_header = skb->network_header;
  1589. }
  1590. static inline void skb_probe_transport_header(struct sk_buff *skb,
  1591. const int offset_hint)
  1592. {
  1593. struct flow_keys keys;
  1594. if (skb_transport_header_was_set(skb))
  1595. return;
  1596. else if (skb_flow_dissect(skb, &keys))
  1597. skb_set_transport_header(skb, keys.thoff);
  1598. else
  1599. skb_set_transport_header(skb, offset_hint);
  1600. }
  1601. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1602. {
  1603. if (skb_mac_header_was_set(skb)) {
  1604. const unsigned char *old_mac = skb_mac_header(skb);
  1605. skb_set_mac_header(skb, -skb->mac_len);
  1606. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1607. }
  1608. }
  1609. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1610. {
  1611. return skb->csum_start - skb_headroom(skb);
  1612. }
  1613. static inline int skb_transport_offset(const struct sk_buff *skb)
  1614. {
  1615. return skb_transport_header(skb) - skb->data;
  1616. }
  1617. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1618. {
  1619. return skb->transport_header - skb->network_header;
  1620. }
  1621. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  1622. {
  1623. return skb->inner_transport_header - skb->inner_network_header;
  1624. }
  1625. static inline int skb_network_offset(const struct sk_buff *skb)
  1626. {
  1627. return skb_network_header(skb) - skb->data;
  1628. }
  1629. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  1630. {
  1631. return skb_inner_network_header(skb) - skb->data;
  1632. }
  1633. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1634. {
  1635. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1636. }
  1637. static inline void skb_pop_rcv_encapsulation(struct sk_buff *skb)
  1638. {
  1639. /* Only continue with checksum unnecessary if device indicated
  1640. * it is valid across encapsulation (skb->encapsulation was set).
  1641. */
  1642. if (skb->ip_summed == CHECKSUM_UNNECESSARY && !skb->encapsulation)
  1643. skb->ip_summed = CHECKSUM_NONE;
  1644. skb->encapsulation = 0;
  1645. skb->csum_valid = 0;
  1646. }
  1647. /*
  1648. * CPUs often take a performance hit when accessing unaligned memory
  1649. * locations. The actual performance hit varies, it can be small if the
  1650. * hardware handles it or large if we have to take an exception and fix it
  1651. * in software.
  1652. *
  1653. * Since an ethernet header is 14 bytes network drivers often end up with
  1654. * the IP header at an unaligned offset. The IP header can be aligned by
  1655. * shifting the start of the packet by 2 bytes. Drivers should do this
  1656. * with:
  1657. *
  1658. * skb_reserve(skb, NET_IP_ALIGN);
  1659. *
  1660. * The downside to this alignment of the IP header is that the DMA is now
  1661. * unaligned. On some architectures the cost of an unaligned DMA is high
  1662. * and this cost outweighs the gains made by aligning the IP header.
  1663. *
  1664. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1665. * to be overridden.
  1666. */
  1667. #ifndef NET_IP_ALIGN
  1668. #define NET_IP_ALIGN 2
  1669. #endif
  1670. /*
  1671. * The networking layer reserves some headroom in skb data (via
  1672. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1673. * the header has to grow. In the default case, if the header has to grow
  1674. * 32 bytes or less we avoid the reallocation.
  1675. *
  1676. * Unfortunately this headroom changes the DMA alignment of the resulting
  1677. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1678. * on some architectures. An architecture can override this value,
  1679. * perhaps setting it to a cacheline in size (since that will maintain
  1680. * cacheline alignment of the DMA). It must be a power of 2.
  1681. *
  1682. * Various parts of the networking layer expect at least 32 bytes of
  1683. * headroom, you should not reduce this.
  1684. *
  1685. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1686. * to reduce average number of cache lines per packet.
  1687. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1688. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1689. */
  1690. #ifndef NET_SKB_PAD
  1691. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1692. #endif
  1693. int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1694. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1695. {
  1696. if (unlikely(skb_is_nonlinear(skb))) {
  1697. WARN_ON(1);
  1698. return;
  1699. }
  1700. skb->len = len;
  1701. skb_set_tail_pointer(skb, len);
  1702. }
  1703. void skb_trim(struct sk_buff *skb, unsigned int len);
  1704. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1705. {
  1706. if (skb->data_len)
  1707. return ___pskb_trim(skb, len);
  1708. __skb_trim(skb, len);
  1709. return 0;
  1710. }
  1711. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1712. {
  1713. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1714. }
  1715. /**
  1716. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1717. * @skb: buffer to alter
  1718. * @len: new length
  1719. *
  1720. * This is identical to pskb_trim except that the caller knows that
  1721. * the skb is not cloned so we should never get an error due to out-
  1722. * of-memory.
  1723. */
  1724. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1725. {
  1726. int err = pskb_trim(skb, len);
  1727. BUG_ON(err);
  1728. }
  1729. /**
  1730. * skb_orphan - orphan a buffer
  1731. * @skb: buffer to orphan
  1732. *
  1733. * If a buffer currently has an owner then we call the owner's
  1734. * destructor function and make the @skb unowned. The buffer continues
  1735. * to exist but is no longer charged to its former owner.
  1736. */
  1737. static inline void skb_orphan(struct sk_buff *skb)
  1738. {
  1739. if (skb->destructor) {
  1740. skb->destructor(skb);
  1741. skb->destructor = NULL;
  1742. skb->sk = NULL;
  1743. } else {
  1744. BUG_ON(skb->sk);
  1745. }
  1746. }
  1747. /**
  1748. * skb_orphan_frags - orphan the frags contained in a buffer
  1749. * @skb: buffer to orphan frags from
  1750. * @gfp_mask: allocation mask for replacement pages
  1751. *
  1752. * For each frag in the SKB which needs a destructor (i.e. has an
  1753. * owner) create a copy of that frag and release the original
  1754. * page by calling the destructor.
  1755. */
  1756. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1757. {
  1758. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1759. return 0;
  1760. return skb_copy_ubufs(skb, gfp_mask);
  1761. }
  1762. /**
  1763. * __skb_queue_purge - empty a list
  1764. * @list: list to empty
  1765. *
  1766. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1767. * the list and one reference dropped. This function does not take the
  1768. * list lock and the caller must hold the relevant locks to use it.
  1769. */
  1770. void skb_queue_purge(struct sk_buff_head *list);
  1771. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1772. {
  1773. struct sk_buff *skb;
  1774. while ((skb = __skb_dequeue(list)) != NULL)
  1775. kfree_skb(skb);
  1776. }
  1777. #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
  1778. #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
  1779. #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
  1780. void *netdev_alloc_frag(unsigned int fragsz);
  1781. struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
  1782. gfp_t gfp_mask);
  1783. /**
  1784. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1785. * @dev: network device to receive on
  1786. * @length: length to allocate
  1787. *
  1788. * Allocate a new &sk_buff and assign it a usage count of one. The
  1789. * buffer has unspecified headroom built in. Users should allocate
  1790. * the headroom they think they need without accounting for the
  1791. * built in space. The built in space is used for optimisations.
  1792. *
  1793. * %NULL is returned if there is no free memory. Although this function
  1794. * allocates memory it can be called from an interrupt.
  1795. */
  1796. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1797. unsigned int length)
  1798. {
  1799. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1800. }
  1801. /* legacy helper around __netdev_alloc_skb() */
  1802. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1803. gfp_t gfp_mask)
  1804. {
  1805. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1806. }
  1807. /* legacy helper around netdev_alloc_skb() */
  1808. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1809. {
  1810. return netdev_alloc_skb(NULL, length);
  1811. }
  1812. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1813. unsigned int length, gfp_t gfp)
  1814. {
  1815. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1816. if (NET_IP_ALIGN && skb)
  1817. skb_reserve(skb, NET_IP_ALIGN);
  1818. return skb;
  1819. }
  1820. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1821. unsigned int length)
  1822. {
  1823. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1824. }
  1825. /**
  1826. * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
  1827. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1828. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1829. * @order: size of the allocation
  1830. *
  1831. * Allocate a new page.
  1832. *
  1833. * %NULL is returned if there is no free memory.
  1834. */
  1835. static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
  1836. struct sk_buff *skb,
  1837. unsigned int order)
  1838. {
  1839. struct page *page;
  1840. gfp_mask |= __GFP_COLD;
  1841. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1842. gfp_mask |= __GFP_MEMALLOC;
  1843. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  1844. if (skb && page && page->pfmemalloc)
  1845. skb->pfmemalloc = true;
  1846. return page;
  1847. }
  1848. /**
  1849. * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
  1850. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1851. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1852. *
  1853. * Allocate a new page.
  1854. *
  1855. * %NULL is returned if there is no free memory.
  1856. */
  1857. static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
  1858. struct sk_buff *skb)
  1859. {
  1860. return __skb_alloc_pages(gfp_mask, skb, 0);
  1861. }
  1862. /**
  1863. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  1864. * @page: The page that was allocated from skb_alloc_page
  1865. * @skb: The skb that may need pfmemalloc set
  1866. */
  1867. static inline void skb_propagate_pfmemalloc(struct page *page,
  1868. struct sk_buff *skb)
  1869. {
  1870. if (page && page->pfmemalloc)
  1871. skb->pfmemalloc = true;
  1872. }
  1873. /**
  1874. * skb_frag_page - retrieve the page referred to by a paged fragment
  1875. * @frag: the paged fragment
  1876. *
  1877. * Returns the &struct page associated with @frag.
  1878. */
  1879. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1880. {
  1881. return frag->page.p;
  1882. }
  1883. /**
  1884. * __skb_frag_ref - take an addition reference on a paged fragment.
  1885. * @frag: the paged fragment
  1886. *
  1887. * Takes an additional reference on the paged fragment @frag.
  1888. */
  1889. static inline void __skb_frag_ref(skb_frag_t *frag)
  1890. {
  1891. get_page(skb_frag_page(frag));
  1892. }
  1893. /**
  1894. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1895. * @skb: the buffer
  1896. * @f: the fragment offset.
  1897. *
  1898. * Takes an additional reference on the @f'th paged fragment of @skb.
  1899. */
  1900. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1901. {
  1902. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1903. }
  1904. /**
  1905. * __skb_frag_unref - release a reference on a paged fragment.
  1906. * @frag: the paged fragment
  1907. *
  1908. * Releases a reference on the paged fragment @frag.
  1909. */
  1910. static inline void __skb_frag_unref(skb_frag_t *frag)
  1911. {
  1912. put_page(skb_frag_page(frag));
  1913. }
  1914. /**
  1915. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1916. * @skb: the buffer
  1917. * @f: the fragment offset
  1918. *
  1919. * Releases a reference on the @f'th paged fragment of @skb.
  1920. */
  1921. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1922. {
  1923. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1924. }
  1925. /**
  1926. * skb_frag_address - gets the address of the data contained in a paged fragment
  1927. * @frag: the paged fragment buffer
  1928. *
  1929. * Returns the address of the data within @frag. The page must already
  1930. * be mapped.
  1931. */
  1932. static inline void *skb_frag_address(const skb_frag_t *frag)
  1933. {
  1934. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1935. }
  1936. /**
  1937. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1938. * @frag: the paged fragment buffer
  1939. *
  1940. * Returns the address of the data within @frag. Checks that the page
  1941. * is mapped and returns %NULL otherwise.
  1942. */
  1943. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1944. {
  1945. void *ptr = page_address(skb_frag_page(frag));
  1946. if (unlikely(!ptr))
  1947. return NULL;
  1948. return ptr + frag->page_offset;
  1949. }
  1950. /**
  1951. * __skb_frag_set_page - sets the page contained in a paged fragment
  1952. * @frag: the paged fragment
  1953. * @page: the page to set
  1954. *
  1955. * Sets the fragment @frag to contain @page.
  1956. */
  1957. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1958. {
  1959. frag->page.p = page;
  1960. }
  1961. /**
  1962. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1963. * @skb: the buffer
  1964. * @f: the fragment offset
  1965. * @page: the page to set
  1966. *
  1967. * Sets the @f'th fragment of @skb to contain @page.
  1968. */
  1969. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1970. struct page *page)
  1971. {
  1972. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1973. }
  1974. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
  1975. /**
  1976. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1977. * @dev: the device to map the fragment to
  1978. * @frag: the paged fragment to map
  1979. * @offset: the offset within the fragment (starting at the
  1980. * fragment's own offset)
  1981. * @size: the number of bytes to map
  1982. * @dir: the direction of the mapping (%PCI_DMA_*)
  1983. *
  1984. * Maps the page associated with @frag to @device.
  1985. */
  1986. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1987. const skb_frag_t *frag,
  1988. size_t offset, size_t size,
  1989. enum dma_data_direction dir)
  1990. {
  1991. return dma_map_page(dev, skb_frag_page(frag),
  1992. frag->page_offset + offset, size, dir);
  1993. }
  1994. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1995. gfp_t gfp_mask)
  1996. {
  1997. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1998. }
  1999. static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
  2000. gfp_t gfp_mask)
  2001. {
  2002. return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
  2003. }
  2004. /**
  2005. * skb_clone_writable - is the header of a clone writable
  2006. * @skb: buffer to check
  2007. * @len: length up to which to write
  2008. *
  2009. * Returns true if modifying the header part of the cloned buffer
  2010. * does not requires the data to be copied.
  2011. */
  2012. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  2013. {
  2014. return !skb_header_cloned(skb) &&
  2015. skb_headroom(skb) + len <= skb->hdr_len;
  2016. }
  2017. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  2018. int cloned)
  2019. {
  2020. int delta = 0;
  2021. if (headroom > skb_headroom(skb))
  2022. delta = headroom - skb_headroom(skb);
  2023. if (delta || cloned)
  2024. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  2025. GFP_ATOMIC);
  2026. return 0;
  2027. }
  2028. /**
  2029. * skb_cow - copy header of skb when it is required
  2030. * @skb: buffer to cow
  2031. * @headroom: needed headroom
  2032. *
  2033. * If the skb passed lacks sufficient headroom or its data part
  2034. * is shared, data is reallocated. If reallocation fails, an error
  2035. * is returned and original skb is not changed.
  2036. *
  2037. * The result is skb with writable area skb->head...skb->tail
  2038. * and at least @headroom of space at head.
  2039. */
  2040. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  2041. {
  2042. return __skb_cow(skb, headroom, skb_cloned(skb));
  2043. }
  2044. /**
  2045. * skb_cow_head - skb_cow but only making the head writable
  2046. * @skb: buffer to cow
  2047. * @headroom: needed headroom
  2048. *
  2049. * This function is identical to skb_cow except that we replace the
  2050. * skb_cloned check by skb_header_cloned. It should be used when
  2051. * you only need to push on some header and do not need to modify
  2052. * the data.
  2053. */
  2054. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  2055. {
  2056. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  2057. }
  2058. /**
  2059. * skb_padto - pad an skbuff up to a minimal size
  2060. * @skb: buffer to pad
  2061. * @len: minimal length
  2062. *
  2063. * Pads up a buffer to ensure the trailing bytes exist and are
  2064. * blanked. If the buffer already contains sufficient data it
  2065. * is untouched. Otherwise it is extended. Returns zero on
  2066. * success. The skb is freed on error.
  2067. */
  2068. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  2069. {
  2070. unsigned int size = skb->len;
  2071. if (likely(size >= len))
  2072. return 0;
  2073. return skb_pad(skb, len - size);
  2074. }
  2075. static inline int skb_add_data(struct sk_buff *skb,
  2076. char __user *from, int copy)
  2077. {
  2078. const int off = skb->len;
  2079. if (skb->ip_summed == CHECKSUM_NONE) {
  2080. int err = 0;
  2081. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  2082. copy, 0, &err);
  2083. if (!err) {
  2084. skb->csum = csum_block_add(skb->csum, csum, off);
  2085. return 0;
  2086. }
  2087. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  2088. return 0;
  2089. __skb_trim(skb, off);
  2090. return -EFAULT;
  2091. }
  2092. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  2093. const struct page *page, int off)
  2094. {
  2095. if (i) {
  2096. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  2097. return page == skb_frag_page(frag) &&
  2098. off == frag->page_offset + skb_frag_size(frag);
  2099. }
  2100. return false;
  2101. }
  2102. static inline int __skb_linearize(struct sk_buff *skb)
  2103. {
  2104. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  2105. }
  2106. /**
  2107. * skb_linearize - convert paged skb to linear one
  2108. * @skb: buffer to linarize
  2109. *
  2110. * If there is no free memory -ENOMEM is returned, otherwise zero
  2111. * is returned and the old skb data released.
  2112. */
  2113. static inline int skb_linearize(struct sk_buff *skb)
  2114. {
  2115. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  2116. }
  2117. /**
  2118. * skb_has_shared_frag - can any frag be overwritten
  2119. * @skb: buffer to test
  2120. *
  2121. * Return true if the skb has at least one frag that might be modified
  2122. * by an external entity (as in vmsplice()/sendfile())
  2123. */
  2124. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  2125. {
  2126. return skb_is_nonlinear(skb) &&
  2127. skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
  2128. }
  2129. /**
  2130. * skb_linearize_cow - make sure skb is linear and writable
  2131. * @skb: buffer to process
  2132. *
  2133. * If there is no free memory -ENOMEM is returned, otherwise zero
  2134. * is returned and the old skb data released.
  2135. */
  2136. static inline int skb_linearize_cow(struct sk_buff *skb)
  2137. {
  2138. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  2139. __skb_linearize(skb) : 0;
  2140. }
  2141. /**
  2142. * skb_postpull_rcsum - update checksum for received skb after pull
  2143. * @skb: buffer to update
  2144. * @start: start of data before pull
  2145. * @len: length of data pulled
  2146. *
  2147. * After doing a pull on a received packet, you need to call this to
  2148. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  2149. * CHECKSUM_NONE so that it can be recomputed from scratch.
  2150. */
  2151. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  2152. const void *start, unsigned int len)
  2153. {
  2154. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2155. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  2156. }
  2157. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  2158. /**
  2159. * pskb_trim_rcsum - trim received skb and update checksum
  2160. * @skb: buffer to trim
  2161. * @len: new length
  2162. *
  2163. * This is exactly the same as pskb_trim except that it ensures the
  2164. * checksum of received packets are still valid after the operation.
  2165. */
  2166. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2167. {
  2168. if (likely(len >= skb->len))
  2169. return 0;
  2170. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2171. skb->ip_summed = CHECKSUM_NONE;
  2172. return __pskb_trim(skb, len);
  2173. }
  2174. #define skb_queue_walk(queue, skb) \
  2175. for (skb = (queue)->next; \
  2176. skb != (struct sk_buff *)(queue); \
  2177. skb = skb->next)
  2178. #define skb_queue_walk_safe(queue, skb, tmp) \
  2179. for (skb = (queue)->next, tmp = skb->next; \
  2180. skb != (struct sk_buff *)(queue); \
  2181. skb = tmp, tmp = skb->next)
  2182. #define skb_queue_walk_from(queue, skb) \
  2183. for (; skb != (struct sk_buff *)(queue); \
  2184. skb = skb->next)
  2185. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2186. for (tmp = skb->next; \
  2187. skb != (struct sk_buff *)(queue); \
  2188. skb = tmp, tmp = skb->next)
  2189. #define skb_queue_reverse_walk(queue, skb) \
  2190. for (skb = (queue)->prev; \
  2191. skb != (struct sk_buff *)(queue); \
  2192. skb = skb->prev)
  2193. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2194. for (skb = (queue)->prev, tmp = skb->prev; \
  2195. skb != (struct sk_buff *)(queue); \
  2196. skb = tmp, tmp = skb->prev)
  2197. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2198. for (tmp = skb->prev; \
  2199. skb != (struct sk_buff *)(queue); \
  2200. skb = tmp, tmp = skb->prev)
  2201. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2202. {
  2203. return skb_shinfo(skb)->frag_list != NULL;
  2204. }
  2205. static inline void skb_frag_list_init(struct sk_buff *skb)
  2206. {
  2207. skb_shinfo(skb)->frag_list = NULL;
  2208. }
  2209. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  2210. {
  2211. frag->next = skb_shinfo(skb)->frag_list;
  2212. skb_shinfo(skb)->frag_list = frag;
  2213. }
  2214. #define skb_walk_frags(skb, iter) \
  2215. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2216. struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2217. int *peeked, int *off, int *err);
  2218. struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
  2219. int *err);
  2220. unsigned int datagram_poll(struct file *file, struct socket *sock,
  2221. struct poll_table_struct *wait);
  2222. int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
  2223. struct iovec *to, int size);
  2224. int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
  2225. struct iovec *iov);
  2226. int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
  2227. const struct iovec *from, int from_offset,
  2228. int len);
  2229. int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
  2230. int offset, size_t count);
  2231. int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
  2232. const struct iovec *to, int to_offset,
  2233. int size);
  2234. void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2235. void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
  2236. int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
  2237. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
  2238. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
  2239. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
  2240. int len, __wsum csum);
  2241. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  2242. struct pipe_inode_info *pipe, unsigned int len,
  2243. unsigned int flags);
  2244. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2245. unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
  2246. int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
  2247. int len, int hlen);
  2248. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
  2249. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
  2250. void skb_scrub_packet(struct sk_buff *skb, bool xnet);
  2251. unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
  2252. struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
  2253. struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
  2254. struct skb_checksum_ops {
  2255. __wsum (*update)(const void *mem, int len, __wsum wsum);
  2256. __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
  2257. };
  2258. __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
  2259. __wsum csum, const struct skb_checksum_ops *ops);
  2260. __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
  2261. __wsum csum);
  2262. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  2263. int len, void *buffer)
  2264. {
  2265. int hlen = skb_headlen(skb);
  2266. if (hlen - offset >= len)
  2267. return skb->data + offset;
  2268. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  2269. return NULL;
  2270. return buffer;
  2271. }
  2272. /**
  2273. * skb_needs_linearize - check if we need to linearize a given skb
  2274. * depending on the given device features.
  2275. * @skb: socket buffer to check
  2276. * @features: net device features
  2277. *
  2278. * Returns true if either:
  2279. * 1. skb has frag_list and the device doesn't support FRAGLIST, or
  2280. * 2. skb is fragmented and the device does not support SG.
  2281. */
  2282. static inline bool skb_needs_linearize(struct sk_buff *skb,
  2283. netdev_features_t features)
  2284. {
  2285. return skb_is_nonlinear(skb) &&
  2286. ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
  2287. (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
  2288. }
  2289. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2290. void *to,
  2291. const unsigned int len)
  2292. {
  2293. memcpy(to, skb->data, len);
  2294. }
  2295. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2296. const int offset, void *to,
  2297. const unsigned int len)
  2298. {
  2299. memcpy(to, skb->data + offset, len);
  2300. }
  2301. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2302. const void *from,
  2303. const unsigned int len)
  2304. {
  2305. memcpy(skb->data, from, len);
  2306. }
  2307. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2308. const int offset,
  2309. const void *from,
  2310. const unsigned int len)
  2311. {
  2312. memcpy(skb->data + offset, from, len);
  2313. }
  2314. void skb_init(void);
  2315. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2316. {
  2317. return skb->tstamp;
  2318. }
  2319. /**
  2320. * skb_get_timestamp - get timestamp from a skb
  2321. * @skb: skb to get stamp from
  2322. * @stamp: pointer to struct timeval to store stamp in
  2323. *
  2324. * Timestamps are stored in the skb as offsets to a base timestamp.
  2325. * This function converts the offset back to a struct timeval and stores
  2326. * it in stamp.
  2327. */
  2328. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2329. struct timeval *stamp)
  2330. {
  2331. *stamp = ktime_to_timeval(skb->tstamp);
  2332. }
  2333. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2334. struct timespec *stamp)
  2335. {
  2336. *stamp = ktime_to_timespec(skb->tstamp);
  2337. }
  2338. static inline void __net_timestamp(struct sk_buff *skb)
  2339. {
  2340. skb->tstamp = ktime_get_real();
  2341. }
  2342. static inline ktime_t net_timedelta(ktime_t t)
  2343. {
  2344. return ktime_sub(ktime_get_real(), t);
  2345. }
  2346. static inline ktime_t net_invalid_timestamp(void)
  2347. {
  2348. return ktime_set(0, 0);
  2349. }
  2350. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2351. void skb_clone_tx_timestamp(struct sk_buff *skb);
  2352. bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2353. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2354. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2355. {
  2356. }
  2357. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2358. {
  2359. return false;
  2360. }
  2361. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2362. /**
  2363. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2364. *
  2365. * PHY drivers may accept clones of transmitted packets for
  2366. * timestamping via their phy_driver.txtstamp method. These drivers
  2367. * must call this function to return the skb back to the stack, with
  2368. * or without a timestamp.
  2369. *
  2370. * @skb: clone of the the original outgoing packet
  2371. * @hwtstamps: hardware time stamps, may be NULL if not available
  2372. *
  2373. */
  2374. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2375. struct skb_shared_hwtstamps *hwtstamps);
  2376. void __skb_tstamp_tx(struct sk_buff *orig_skb,
  2377. struct skb_shared_hwtstamps *hwtstamps,
  2378. struct sock *sk, int tstype);
  2379. /**
  2380. * skb_tstamp_tx - queue clone of skb with send time stamps
  2381. * @orig_skb: the original outgoing packet
  2382. * @hwtstamps: hardware time stamps, may be NULL if not available
  2383. *
  2384. * If the skb has a socket associated, then this function clones the
  2385. * skb (thus sharing the actual data and optional structures), stores
  2386. * the optional hardware time stamping information (if non NULL) or
  2387. * generates a software time stamp (otherwise), then queues the clone
  2388. * to the error queue of the socket. Errors are silently ignored.
  2389. */
  2390. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2391. struct skb_shared_hwtstamps *hwtstamps);
  2392. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2393. {
  2394. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2395. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2396. skb_tstamp_tx(skb, NULL);
  2397. }
  2398. /**
  2399. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2400. *
  2401. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2402. * function immediately before giving the sk_buff to the MAC hardware.
  2403. *
  2404. * Specifically, one should make absolutely sure that this function is
  2405. * called before TX completion of this packet can trigger. Otherwise
  2406. * the packet could potentially already be freed.
  2407. *
  2408. * @skb: A socket buffer.
  2409. */
  2410. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2411. {
  2412. skb_clone_tx_timestamp(skb);
  2413. sw_tx_timestamp(skb);
  2414. }
  2415. /**
  2416. * skb_complete_wifi_ack - deliver skb with wifi status
  2417. *
  2418. * @skb: the original outgoing packet
  2419. * @acked: ack status
  2420. *
  2421. */
  2422. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2423. __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2424. __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2425. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2426. {
  2427. return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
  2428. }
  2429. /**
  2430. * skb_checksum_complete - Calculate checksum of an entire packet
  2431. * @skb: packet to process
  2432. *
  2433. * This function calculates the checksum over the entire packet plus
  2434. * the value of skb->csum. The latter can be used to supply the
  2435. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2436. * checksum.
  2437. *
  2438. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2439. * this function can be used to verify that checksum on received
  2440. * packets. In that case the function should return zero if the
  2441. * checksum is correct. In particular, this function will return zero
  2442. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2443. * hardware has already verified the correctness of the checksum.
  2444. */
  2445. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2446. {
  2447. return skb_csum_unnecessary(skb) ?
  2448. 0 : __skb_checksum_complete(skb);
  2449. }
  2450. /* Check if we need to perform checksum complete validation.
  2451. *
  2452. * Returns true if checksum complete is needed, false otherwise
  2453. * (either checksum is unnecessary or zero checksum is allowed).
  2454. */
  2455. static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
  2456. bool zero_okay,
  2457. __sum16 check)
  2458. {
  2459. if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
  2460. skb->csum_valid = 1;
  2461. return false;
  2462. }
  2463. return true;
  2464. }
  2465. /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
  2466. * in checksum_init.
  2467. */
  2468. #define CHECKSUM_BREAK 76
  2469. /* Validate (init) checksum based on checksum complete.
  2470. *
  2471. * Return values:
  2472. * 0: checksum is validated or try to in skb_checksum_complete. In the latter
  2473. * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
  2474. * checksum is stored in skb->csum for use in __skb_checksum_complete
  2475. * non-zero: value of invalid checksum
  2476. *
  2477. */
  2478. static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
  2479. bool complete,
  2480. __wsum psum)
  2481. {
  2482. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  2483. if (!csum_fold(csum_add(psum, skb->csum))) {
  2484. skb->csum_valid = 1;
  2485. return 0;
  2486. }
  2487. }
  2488. skb->csum = psum;
  2489. if (complete || skb->len <= CHECKSUM_BREAK) {
  2490. __sum16 csum;
  2491. csum = __skb_checksum_complete(skb);
  2492. skb->csum_valid = !csum;
  2493. return csum;
  2494. }
  2495. return 0;
  2496. }
  2497. static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
  2498. {
  2499. return 0;
  2500. }
  2501. /* Perform checksum validate (init). Note that this is a macro since we only
  2502. * want to calculate the pseudo header which is an input function if necessary.
  2503. * First we try to validate without any computation (checksum unnecessary) and
  2504. * then calculate based on checksum complete calling the function to compute
  2505. * pseudo header.
  2506. *
  2507. * Return values:
  2508. * 0: checksum is validated or try to in skb_checksum_complete
  2509. * non-zero: value of invalid checksum
  2510. */
  2511. #define __skb_checksum_validate(skb, proto, complete, \
  2512. zero_okay, check, compute_pseudo) \
  2513. ({ \
  2514. __sum16 __ret = 0; \
  2515. skb->csum_valid = 0; \
  2516. if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
  2517. __ret = __skb_checksum_validate_complete(skb, \
  2518. complete, compute_pseudo(skb, proto)); \
  2519. __ret; \
  2520. })
  2521. #define skb_checksum_init(skb, proto, compute_pseudo) \
  2522. __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
  2523. #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
  2524. __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
  2525. #define skb_checksum_validate(skb, proto, compute_pseudo) \
  2526. __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
  2527. #define skb_checksum_validate_zero_check(skb, proto, check, \
  2528. compute_pseudo) \
  2529. __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
  2530. #define skb_checksum_simple_validate(skb) \
  2531. __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
  2532. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2533. void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2534. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2535. {
  2536. if (nfct && atomic_dec_and_test(&nfct->use))
  2537. nf_conntrack_destroy(nfct);
  2538. }
  2539. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2540. {
  2541. if (nfct)
  2542. atomic_inc(&nfct->use);
  2543. }
  2544. #endif
  2545. #ifdef CONFIG_BRIDGE_NETFILTER
  2546. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2547. {
  2548. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2549. kfree(nf_bridge);
  2550. }
  2551. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2552. {
  2553. if (nf_bridge)
  2554. atomic_inc(&nf_bridge->use);
  2555. }
  2556. #endif /* CONFIG_BRIDGE_NETFILTER */
  2557. static inline void nf_reset(struct sk_buff *skb)
  2558. {
  2559. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2560. nf_conntrack_put(skb->nfct);
  2561. skb->nfct = NULL;
  2562. #endif
  2563. #ifdef CONFIG_BRIDGE_NETFILTER
  2564. nf_bridge_put(skb->nf_bridge);
  2565. skb->nf_bridge = NULL;
  2566. #endif
  2567. }
  2568. static inline void nf_reset_trace(struct sk_buff *skb)
  2569. {
  2570. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  2571. skb->nf_trace = 0;
  2572. #endif
  2573. }
  2574. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2575. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2576. {
  2577. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2578. dst->nfct = src->nfct;
  2579. nf_conntrack_get(src->nfct);
  2580. dst->nfctinfo = src->nfctinfo;
  2581. #endif
  2582. #ifdef CONFIG_BRIDGE_NETFILTER
  2583. dst->nf_bridge = src->nf_bridge;
  2584. nf_bridge_get(src->nf_bridge);
  2585. #endif
  2586. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  2587. dst->nf_trace = src->nf_trace;
  2588. #endif
  2589. }
  2590. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2591. {
  2592. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2593. nf_conntrack_put(dst->nfct);
  2594. #endif
  2595. #ifdef CONFIG_BRIDGE_NETFILTER
  2596. nf_bridge_put(dst->nf_bridge);
  2597. #endif
  2598. __nf_copy(dst, src);
  2599. }
  2600. #ifdef CONFIG_NETWORK_SECMARK
  2601. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2602. {
  2603. to->secmark = from->secmark;
  2604. }
  2605. static inline void skb_init_secmark(struct sk_buff *skb)
  2606. {
  2607. skb->secmark = 0;
  2608. }
  2609. #else
  2610. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2611. { }
  2612. static inline void skb_init_secmark(struct sk_buff *skb)
  2613. { }
  2614. #endif
  2615. static inline bool skb_irq_freeable(const struct sk_buff *skb)
  2616. {
  2617. return !skb->destructor &&
  2618. #if IS_ENABLED(CONFIG_XFRM)
  2619. !skb->sp &&
  2620. #endif
  2621. #if IS_ENABLED(CONFIG_NF_CONNTRACK)
  2622. !skb->nfct &&
  2623. #endif
  2624. !skb->_skb_refdst &&
  2625. !skb_has_frag_list(skb);
  2626. }
  2627. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2628. {
  2629. skb->queue_mapping = queue_mapping;
  2630. }
  2631. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2632. {
  2633. return skb->queue_mapping;
  2634. }
  2635. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2636. {
  2637. to->queue_mapping = from->queue_mapping;
  2638. }
  2639. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2640. {
  2641. skb->queue_mapping = rx_queue + 1;
  2642. }
  2643. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2644. {
  2645. return skb->queue_mapping - 1;
  2646. }
  2647. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2648. {
  2649. return skb->queue_mapping != 0;
  2650. }
  2651. u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
  2652. unsigned int num_tx_queues);
  2653. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2654. {
  2655. #ifdef CONFIG_XFRM
  2656. return skb->sp;
  2657. #else
  2658. return NULL;
  2659. #endif
  2660. }
  2661. /* Keeps track of mac header offset relative to skb->head.
  2662. * It is useful for TSO of Tunneling protocol. e.g. GRE.
  2663. * For non-tunnel skb it points to skb_mac_header() and for
  2664. * tunnel skb it points to outer mac header.
  2665. * Keeps track of level of encapsulation of network headers.
  2666. */
  2667. struct skb_gso_cb {
  2668. int mac_offset;
  2669. int encap_level;
  2670. __u16 csum_start;
  2671. };
  2672. #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
  2673. static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
  2674. {
  2675. return (skb_mac_header(inner_skb) - inner_skb->head) -
  2676. SKB_GSO_CB(inner_skb)->mac_offset;
  2677. }
  2678. static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
  2679. {
  2680. int new_headroom, headroom;
  2681. int ret;
  2682. headroom = skb_headroom(skb);
  2683. ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
  2684. if (ret)
  2685. return ret;
  2686. new_headroom = skb_headroom(skb);
  2687. SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
  2688. return 0;
  2689. }
  2690. /* Compute the checksum for a gso segment. First compute the checksum value
  2691. * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
  2692. * then add in skb->csum (checksum from csum_start to end of packet).
  2693. * skb->csum and csum_start are then updated to reflect the checksum of the
  2694. * resultant packet starting from the transport header-- the resultant checksum
  2695. * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
  2696. * header.
  2697. */
  2698. static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
  2699. {
  2700. int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
  2701. skb_transport_offset(skb);
  2702. __u16 csum;
  2703. csum = csum_fold(csum_partial(skb_transport_header(skb),
  2704. plen, skb->csum));
  2705. skb->csum = res;
  2706. SKB_GSO_CB(skb)->csum_start -= plen;
  2707. return csum;
  2708. }
  2709. static inline bool skb_is_gso(const struct sk_buff *skb)
  2710. {
  2711. return skb_shinfo(skb)->gso_size;
  2712. }
  2713. /* Note: Should be called only if skb_is_gso(skb) is true */
  2714. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2715. {
  2716. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2717. }
  2718. void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2719. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2720. {
  2721. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2722. * wanted then gso_type will be set. */
  2723. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2724. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2725. unlikely(shinfo->gso_type == 0)) {
  2726. __skb_warn_lro_forwarding(skb);
  2727. return true;
  2728. }
  2729. return false;
  2730. }
  2731. static inline void skb_forward_csum(struct sk_buff *skb)
  2732. {
  2733. /* Unfortunately we don't support this one. Any brave souls? */
  2734. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2735. skb->ip_summed = CHECKSUM_NONE;
  2736. }
  2737. /**
  2738. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2739. * @skb: skb to check
  2740. *
  2741. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2742. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2743. * use this helper, to document places where we make this assertion.
  2744. */
  2745. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2746. {
  2747. #ifdef DEBUG
  2748. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2749. #endif
  2750. }
  2751. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2752. int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
  2753. u32 __skb_get_poff(const struct sk_buff *skb);
  2754. /**
  2755. * skb_head_is_locked - Determine if the skb->head is locked down
  2756. * @skb: skb to check
  2757. *
  2758. * The head on skbs build around a head frag can be removed if they are
  2759. * not cloned. This function returns true if the skb head is locked down
  2760. * due to either being allocated via kmalloc, or by being a clone with
  2761. * multiple references to the head.
  2762. */
  2763. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  2764. {
  2765. return !skb->head_frag || skb_cloned(skb);
  2766. }
  2767. /**
  2768. * skb_gso_network_seglen - Return length of individual segments of a gso packet
  2769. *
  2770. * @skb: GSO skb
  2771. *
  2772. * skb_gso_network_seglen is used to determine the real size of the
  2773. * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
  2774. *
  2775. * The MAC/L2 header is not accounted for.
  2776. */
  2777. static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
  2778. {
  2779. unsigned int hdr_len = skb_transport_header(skb) -
  2780. skb_network_header(skb);
  2781. return hdr_len + skb_gso_transport_seglen(skb);
  2782. }
  2783. #endif /* __KERNEL__ */
  2784. #endif /* _LINUX_SKBUFF_H */