block.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355
  1. /*
  2. * Block driver for media (i.e., flash cards)
  3. *
  4. * Copyright 2002 Hewlett-Packard Company
  5. * Copyright 2005-2008 Pierre Ossman
  6. *
  7. * Use consistent with the GNU GPL is permitted,
  8. * provided that this copyright notice is
  9. * preserved in its entirety in all copies and derived works.
  10. *
  11. * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12. * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13. * FITNESS FOR ANY PARTICULAR PURPOSE.
  14. *
  15. * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16. *
  17. * Author: Andrew Christian
  18. * 28 May 2002
  19. */
  20. #include <linux/moduleparam.h>
  21. #include <linux/module.h>
  22. #include <linux/init.h>
  23. #include <linux/kernel.h>
  24. #include <linux/fs.h>
  25. #include <linux/slab.h>
  26. #include <linux/errno.h>
  27. #include <linux/hdreg.h>
  28. #include <linux/kdev_t.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/mutex.h>
  31. #include <linux/scatterlist.h>
  32. #include <linux/string_helpers.h>
  33. #include <linux/delay.h>
  34. #include <linux/capability.h>
  35. #include <linux/compat.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/idr.h>
  38. #include <linux/mmc/ioctl.h>
  39. #include <linux/mmc/card.h>
  40. #include <linux/mmc/host.h>
  41. #include <linux/mmc/mmc.h>
  42. #include <linux/mmc/sd.h>
  43. #include <linux/uaccess.h>
  44. #include "queue.h"
  45. #include "block.h"
  46. #include "core.h"
  47. #include "card.h"
  48. #include "host.h"
  49. #include "bus.h"
  50. #include "mmc_ops.h"
  51. #include "sd_ops.h"
  52. MODULE_ALIAS("mmc:block");
  53. #ifdef MODULE_PARAM_PREFIX
  54. #undef MODULE_PARAM_PREFIX
  55. #endif
  56. #define MODULE_PARAM_PREFIX "mmcblk."
  57. #define INAND_CMD38_ARG_EXT_CSD 113
  58. #define INAND_CMD38_ARG_ERASE 0x00
  59. #define INAND_CMD38_ARG_TRIM 0x01
  60. #define INAND_CMD38_ARG_SECERASE 0x80
  61. #define INAND_CMD38_ARG_SECTRIM1 0x81
  62. #define INAND_CMD38_ARG_SECTRIM2 0x88
  63. #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
  64. #define MMC_SANITIZE_REQ_TIMEOUT 240000
  65. #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  66. #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
  67. (rq_data_dir(req) == WRITE))
  68. static DEFINE_MUTEX(block_mutex);
  69. /*
  70. * The defaults come from config options but can be overriden by module
  71. * or bootarg options.
  72. */
  73. static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  74. /*
  75. * We've only got one major, so number of mmcblk devices is
  76. * limited to (1 << 20) / number of minors per device. It is also
  77. * limited by the MAX_DEVICES below.
  78. */
  79. static int max_devices;
  80. #define MAX_DEVICES 256
  81. static DEFINE_IDA(mmc_blk_ida);
  82. static DEFINE_SPINLOCK(mmc_blk_lock);
  83. /*
  84. * There is one mmc_blk_data per slot.
  85. */
  86. struct mmc_blk_data {
  87. spinlock_t lock;
  88. struct device *parent;
  89. struct gendisk *disk;
  90. struct mmc_queue queue;
  91. struct list_head part;
  92. unsigned int flags;
  93. #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
  94. #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
  95. unsigned int usage;
  96. unsigned int read_only;
  97. unsigned int part_type;
  98. unsigned int reset_done;
  99. #define MMC_BLK_READ BIT(0)
  100. #define MMC_BLK_WRITE BIT(1)
  101. #define MMC_BLK_DISCARD BIT(2)
  102. #define MMC_BLK_SECDISCARD BIT(3)
  103. /*
  104. * Only set in main mmc_blk_data associated
  105. * with mmc_card with dev_set_drvdata, and keeps
  106. * track of the current selected device partition.
  107. */
  108. unsigned int part_curr;
  109. struct device_attribute force_ro;
  110. struct device_attribute power_ro_lock;
  111. int area_type;
  112. };
  113. static DEFINE_MUTEX(open_lock);
  114. module_param(perdev_minors, int, 0444);
  115. MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
  116. static inline int mmc_blk_part_switch(struct mmc_card *card,
  117. struct mmc_blk_data *md);
  118. static int get_card_status(struct mmc_card *card, u32 *status, int retries);
  119. static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
  120. {
  121. struct mmc_blk_data *md;
  122. mutex_lock(&open_lock);
  123. md = disk->private_data;
  124. if (md && md->usage == 0)
  125. md = NULL;
  126. if (md)
  127. md->usage++;
  128. mutex_unlock(&open_lock);
  129. return md;
  130. }
  131. static inline int mmc_get_devidx(struct gendisk *disk)
  132. {
  133. int devidx = disk->first_minor / perdev_minors;
  134. return devidx;
  135. }
  136. static void mmc_blk_put(struct mmc_blk_data *md)
  137. {
  138. mutex_lock(&open_lock);
  139. md->usage--;
  140. if (md->usage == 0) {
  141. int devidx = mmc_get_devidx(md->disk);
  142. blk_cleanup_queue(md->queue.queue);
  143. spin_lock(&mmc_blk_lock);
  144. ida_remove(&mmc_blk_ida, devidx);
  145. spin_unlock(&mmc_blk_lock);
  146. put_disk(md->disk);
  147. kfree(md);
  148. }
  149. mutex_unlock(&open_lock);
  150. }
  151. static ssize_t power_ro_lock_show(struct device *dev,
  152. struct device_attribute *attr, char *buf)
  153. {
  154. int ret;
  155. struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
  156. struct mmc_card *card = md->queue.card;
  157. int locked = 0;
  158. if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
  159. locked = 2;
  160. else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
  161. locked = 1;
  162. ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
  163. mmc_blk_put(md);
  164. return ret;
  165. }
  166. static ssize_t power_ro_lock_store(struct device *dev,
  167. struct device_attribute *attr, const char *buf, size_t count)
  168. {
  169. int ret;
  170. struct mmc_blk_data *md, *part_md;
  171. struct mmc_card *card;
  172. unsigned long set;
  173. if (kstrtoul(buf, 0, &set))
  174. return -EINVAL;
  175. if (set != 1)
  176. return count;
  177. md = mmc_blk_get(dev_to_disk(dev));
  178. card = md->queue.card;
  179. mmc_get_card(card);
  180. ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
  181. card->ext_csd.boot_ro_lock |
  182. EXT_CSD_BOOT_WP_B_PWR_WP_EN,
  183. card->ext_csd.part_time);
  184. if (ret)
  185. pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
  186. else
  187. card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
  188. mmc_put_card(card);
  189. if (!ret) {
  190. pr_info("%s: Locking boot partition ro until next power on\n",
  191. md->disk->disk_name);
  192. set_disk_ro(md->disk, 1);
  193. list_for_each_entry(part_md, &md->part, part)
  194. if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
  195. pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
  196. set_disk_ro(part_md->disk, 1);
  197. }
  198. }
  199. mmc_blk_put(md);
  200. return count;
  201. }
  202. static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
  203. char *buf)
  204. {
  205. int ret;
  206. struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
  207. ret = snprintf(buf, PAGE_SIZE, "%d\n",
  208. get_disk_ro(dev_to_disk(dev)) ^
  209. md->read_only);
  210. mmc_blk_put(md);
  211. return ret;
  212. }
  213. static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
  214. const char *buf, size_t count)
  215. {
  216. int ret;
  217. char *end;
  218. struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
  219. unsigned long set = simple_strtoul(buf, &end, 0);
  220. if (end == buf) {
  221. ret = -EINVAL;
  222. goto out;
  223. }
  224. set_disk_ro(dev_to_disk(dev), set || md->read_only);
  225. ret = count;
  226. out:
  227. mmc_blk_put(md);
  228. return ret;
  229. }
  230. static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
  231. {
  232. struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
  233. int ret = -ENXIO;
  234. mutex_lock(&block_mutex);
  235. if (md) {
  236. if (md->usage == 2)
  237. check_disk_change(bdev);
  238. ret = 0;
  239. if ((mode & FMODE_WRITE) && md->read_only) {
  240. mmc_blk_put(md);
  241. ret = -EROFS;
  242. }
  243. }
  244. mutex_unlock(&block_mutex);
  245. return ret;
  246. }
  247. static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
  248. {
  249. struct mmc_blk_data *md = disk->private_data;
  250. mutex_lock(&block_mutex);
  251. mmc_blk_put(md);
  252. mutex_unlock(&block_mutex);
  253. }
  254. static int
  255. mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  256. {
  257. geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
  258. geo->heads = 4;
  259. geo->sectors = 16;
  260. return 0;
  261. }
  262. struct mmc_blk_ioc_data {
  263. struct mmc_ioc_cmd ic;
  264. unsigned char *buf;
  265. u64 buf_bytes;
  266. };
  267. static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
  268. struct mmc_ioc_cmd __user *user)
  269. {
  270. struct mmc_blk_ioc_data *idata;
  271. int err;
  272. idata = kmalloc(sizeof(*idata), GFP_KERNEL);
  273. if (!idata) {
  274. err = -ENOMEM;
  275. goto out;
  276. }
  277. if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
  278. err = -EFAULT;
  279. goto idata_err;
  280. }
  281. idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
  282. if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
  283. err = -EOVERFLOW;
  284. goto idata_err;
  285. }
  286. if (!idata->buf_bytes) {
  287. idata->buf = NULL;
  288. return idata;
  289. }
  290. idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
  291. if (!idata->buf) {
  292. err = -ENOMEM;
  293. goto idata_err;
  294. }
  295. if (copy_from_user(idata->buf, (void __user *)(unsigned long)
  296. idata->ic.data_ptr, idata->buf_bytes)) {
  297. err = -EFAULT;
  298. goto copy_err;
  299. }
  300. return idata;
  301. copy_err:
  302. kfree(idata->buf);
  303. idata_err:
  304. kfree(idata);
  305. out:
  306. return ERR_PTR(err);
  307. }
  308. static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
  309. struct mmc_blk_ioc_data *idata)
  310. {
  311. struct mmc_ioc_cmd *ic = &idata->ic;
  312. if (copy_to_user(&(ic_ptr->response), ic->response,
  313. sizeof(ic->response)))
  314. return -EFAULT;
  315. if (!idata->ic.write_flag) {
  316. if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
  317. idata->buf, idata->buf_bytes))
  318. return -EFAULT;
  319. }
  320. return 0;
  321. }
  322. static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
  323. u32 retries_max)
  324. {
  325. int err;
  326. u32 retry_count = 0;
  327. if (!status || !retries_max)
  328. return -EINVAL;
  329. do {
  330. err = get_card_status(card, status, 5);
  331. if (err)
  332. break;
  333. if (!R1_STATUS(*status) &&
  334. (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
  335. break; /* RPMB programming operation complete */
  336. /*
  337. * Rechedule to give the MMC device a chance to continue
  338. * processing the previous command without being polled too
  339. * frequently.
  340. */
  341. usleep_range(1000, 5000);
  342. } while (++retry_count < retries_max);
  343. if (retry_count == retries_max)
  344. err = -EPERM;
  345. return err;
  346. }
  347. static int ioctl_do_sanitize(struct mmc_card *card)
  348. {
  349. int err;
  350. if (!mmc_can_sanitize(card)) {
  351. pr_warn("%s: %s - SANITIZE is not supported\n",
  352. mmc_hostname(card->host), __func__);
  353. err = -EOPNOTSUPP;
  354. goto out;
  355. }
  356. pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
  357. mmc_hostname(card->host), __func__);
  358. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  359. EXT_CSD_SANITIZE_START, 1,
  360. MMC_SANITIZE_REQ_TIMEOUT);
  361. if (err)
  362. pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
  363. mmc_hostname(card->host), __func__, err);
  364. pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
  365. __func__);
  366. out:
  367. return err;
  368. }
  369. static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
  370. struct mmc_blk_ioc_data *idata)
  371. {
  372. struct mmc_command cmd = {};
  373. struct mmc_data data = {};
  374. struct mmc_request mrq = {};
  375. struct scatterlist sg;
  376. int err;
  377. int is_rpmb = false;
  378. u32 status = 0;
  379. if (!card || !md || !idata)
  380. return -EINVAL;
  381. if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
  382. is_rpmb = true;
  383. cmd.opcode = idata->ic.opcode;
  384. cmd.arg = idata->ic.arg;
  385. cmd.flags = idata->ic.flags;
  386. if (idata->buf_bytes) {
  387. data.sg = &sg;
  388. data.sg_len = 1;
  389. data.blksz = idata->ic.blksz;
  390. data.blocks = idata->ic.blocks;
  391. sg_init_one(data.sg, idata->buf, idata->buf_bytes);
  392. if (idata->ic.write_flag)
  393. data.flags = MMC_DATA_WRITE;
  394. else
  395. data.flags = MMC_DATA_READ;
  396. /* data.flags must already be set before doing this. */
  397. mmc_set_data_timeout(&data, card);
  398. /* Allow overriding the timeout_ns for empirical tuning. */
  399. if (idata->ic.data_timeout_ns)
  400. data.timeout_ns = idata->ic.data_timeout_ns;
  401. if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
  402. /*
  403. * Pretend this is a data transfer and rely on the
  404. * host driver to compute timeout. When all host
  405. * drivers support cmd.cmd_timeout for R1B, this
  406. * can be changed to:
  407. *
  408. * mrq.data = NULL;
  409. * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
  410. */
  411. data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
  412. }
  413. mrq.data = &data;
  414. }
  415. mrq.cmd = &cmd;
  416. err = mmc_blk_part_switch(card, md);
  417. if (err)
  418. return err;
  419. if (idata->ic.is_acmd) {
  420. err = mmc_app_cmd(card->host, card);
  421. if (err)
  422. return err;
  423. }
  424. if (is_rpmb) {
  425. err = mmc_set_blockcount(card, data.blocks,
  426. idata->ic.write_flag & (1 << 31));
  427. if (err)
  428. return err;
  429. }
  430. if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
  431. (cmd.opcode == MMC_SWITCH)) {
  432. err = ioctl_do_sanitize(card);
  433. if (err)
  434. pr_err("%s: ioctl_do_sanitize() failed. err = %d",
  435. __func__, err);
  436. return err;
  437. }
  438. mmc_wait_for_req(card->host, &mrq);
  439. if (cmd.error) {
  440. dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
  441. __func__, cmd.error);
  442. return cmd.error;
  443. }
  444. if (data.error) {
  445. dev_err(mmc_dev(card->host), "%s: data error %d\n",
  446. __func__, data.error);
  447. return data.error;
  448. }
  449. /*
  450. * According to the SD specs, some commands require a delay after
  451. * issuing the command.
  452. */
  453. if (idata->ic.postsleep_min_us)
  454. usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
  455. memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
  456. if (is_rpmb) {
  457. /*
  458. * Ensure RPMB command has completed by polling CMD13
  459. * "Send Status".
  460. */
  461. err = ioctl_rpmb_card_status_poll(card, &status, 5);
  462. if (err)
  463. dev_err(mmc_dev(card->host),
  464. "%s: Card Status=0x%08X, error %d\n",
  465. __func__, status, err);
  466. }
  467. return err;
  468. }
  469. static int mmc_blk_ioctl_cmd(struct block_device *bdev,
  470. struct mmc_ioc_cmd __user *ic_ptr)
  471. {
  472. struct mmc_blk_ioc_data *idata;
  473. struct mmc_blk_data *md;
  474. struct mmc_card *card;
  475. int err = 0, ioc_err = 0;
  476. /*
  477. * The caller must have CAP_SYS_RAWIO, and must be calling this on the
  478. * whole block device, not on a partition. This prevents overspray
  479. * between sibling partitions.
  480. */
  481. if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
  482. return -EPERM;
  483. idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
  484. if (IS_ERR(idata))
  485. return PTR_ERR(idata);
  486. md = mmc_blk_get(bdev->bd_disk);
  487. if (!md) {
  488. err = -EINVAL;
  489. goto cmd_err;
  490. }
  491. card = md->queue.card;
  492. if (IS_ERR(card)) {
  493. err = PTR_ERR(card);
  494. goto cmd_done;
  495. }
  496. mmc_get_card(card);
  497. ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
  498. /* Always switch back to main area after RPMB access */
  499. if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
  500. mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
  501. mmc_put_card(card);
  502. err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
  503. cmd_done:
  504. mmc_blk_put(md);
  505. cmd_err:
  506. kfree(idata->buf);
  507. kfree(idata);
  508. return ioc_err ? ioc_err : err;
  509. }
  510. static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
  511. struct mmc_ioc_multi_cmd __user *user)
  512. {
  513. struct mmc_blk_ioc_data **idata = NULL;
  514. struct mmc_ioc_cmd __user *cmds = user->cmds;
  515. struct mmc_card *card;
  516. struct mmc_blk_data *md;
  517. int i, err = 0, ioc_err = 0;
  518. __u64 num_of_cmds;
  519. /*
  520. * The caller must have CAP_SYS_RAWIO, and must be calling this on the
  521. * whole block device, not on a partition. This prevents overspray
  522. * between sibling partitions.
  523. */
  524. if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
  525. return -EPERM;
  526. if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
  527. sizeof(num_of_cmds)))
  528. return -EFAULT;
  529. if (num_of_cmds > MMC_IOC_MAX_CMDS)
  530. return -EINVAL;
  531. idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
  532. if (!idata)
  533. return -ENOMEM;
  534. for (i = 0; i < num_of_cmds; i++) {
  535. idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
  536. if (IS_ERR(idata[i])) {
  537. err = PTR_ERR(idata[i]);
  538. num_of_cmds = i;
  539. goto cmd_err;
  540. }
  541. }
  542. md = mmc_blk_get(bdev->bd_disk);
  543. if (!md) {
  544. err = -EINVAL;
  545. goto cmd_err;
  546. }
  547. card = md->queue.card;
  548. if (IS_ERR(card)) {
  549. err = PTR_ERR(card);
  550. goto cmd_done;
  551. }
  552. mmc_get_card(card);
  553. for (i = 0; i < num_of_cmds && !ioc_err; i++)
  554. ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
  555. /* Always switch back to main area after RPMB access */
  556. if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
  557. mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
  558. mmc_put_card(card);
  559. /* copy to user if data and response */
  560. for (i = 0; i < num_of_cmds && !err; i++)
  561. err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
  562. cmd_done:
  563. mmc_blk_put(md);
  564. cmd_err:
  565. for (i = 0; i < num_of_cmds; i++) {
  566. kfree(idata[i]->buf);
  567. kfree(idata[i]);
  568. }
  569. kfree(idata);
  570. return ioc_err ? ioc_err : err;
  571. }
  572. static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
  573. unsigned int cmd, unsigned long arg)
  574. {
  575. switch (cmd) {
  576. case MMC_IOC_CMD:
  577. return mmc_blk_ioctl_cmd(bdev,
  578. (struct mmc_ioc_cmd __user *)arg);
  579. case MMC_IOC_MULTI_CMD:
  580. return mmc_blk_ioctl_multi_cmd(bdev,
  581. (struct mmc_ioc_multi_cmd __user *)arg);
  582. default:
  583. return -EINVAL;
  584. }
  585. }
  586. #ifdef CONFIG_COMPAT
  587. static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
  588. unsigned int cmd, unsigned long arg)
  589. {
  590. return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
  591. }
  592. #endif
  593. static const struct block_device_operations mmc_bdops = {
  594. .open = mmc_blk_open,
  595. .release = mmc_blk_release,
  596. .getgeo = mmc_blk_getgeo,
  597. .owner = THIS_MODULE,
  598. .ioctl = mmc_blk_ioctl,
  599. #ifdef CONFIG_COMPAT
  600. .compat_ioctl = mmc_blk_compat_ioctl,
  601. #endif
  602. };
  603. static inline int mmc_blk_part_switch(struct mmc_card *card,
  604. struct mmc_blk_data *md)
  605. {
  606. int ret;
  607. struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
  608. if (main_md->part_curr == md->part_type)
  609. return 0;
  610. if (mmc_card_mmc(card)) {
  611. u8 part_config = card->ext_csd.part_config;
  612. if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
  613. mmc_retune_pause(card->host);
  614. part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
  615. part_config |= md->part_type;
  616. ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  617. EXT_CSD_PART_CONFIG, part_config,
  618. card->ext_csd.part_time);
  619. if (ret) {
  620. if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
  621. mmc_retune_unpause(card->host);
  622. return ret;
  623. }
  624. card->ext_csd.part_config = part_config;
  625. if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
  626. mmc_retune_unpause(card->host);
  627. }
  628. main_md->part_curr = md->part_type;
  629. return 0;
  630. }
  631. static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
  632. {
  633. int err;
  634. u32 result;
  635. __be32 *blocks;
  636. struct mmc_request mrq = {};
  637. struct mmc_command cmd = {};
  638. struct mmc_data data = {};
  639. struct scatterlist sg;
  640. cmd.opcode = MMC_APP_CMD;
  641. cmd.arg = card->rca << 16;
  642. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  643. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  644. if (err)
  645. return (u32)-1;
  646. if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
  647. return (u32)-1;
  648. memset(&cmd, 0, sizeof(struct mmc_command));
  649. cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
  650. cmd.arg = 0;
  651. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
  652. data.blksz = 4;
  653. data.blocks = 1;
  654. data.flags = MMC_DATA_READ;
  655. data.sg = &sg;
  656. data.sg_len = 1;
  657. mmc_set_data_timeout(&data, card);
  658. mrq.cmd = &cmd;
  659. mrq.data = &data;
  660. blocks = kmalloc(4, GFP_KERNEL);
  661. if (!blocks)
  662. return (u32)-1;
  663. sg_init_one(&sg, blocks, 4);
  664. mmc_wait_for_req(card->host, &mrq);
  665. result = ntohl(*blocks);
  666. kfree(blocks);
  667. if (cmd.error || data.error)
  668. result = (u32)-1;
  669. return result;
  670. }
  671. static int get_card_status(struct mmc_card *card, u32 *status, int retries)
  672. {
  673. struct mmc_command cmd = {};
  674. int err;
  675. cmd.opcode = MMC_SEND_STATUS;
  676. if (!mmc_host_is_spi(card->host))
  677. cmd.arg = card->rca << 16;
  678. cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
  679. err = mmc_wait_for_cmd(card->host, &cmd, retries);
  680. if (err == 0)
  681. *status = cmd.resp[0];
  682. return err;
  683. }
  684. static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
  685. bool hw_busy_detect, struct request *req, bool *gen_err)
  686. {
  687. unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
  688. int err = 0;
  689. u32 status;
  690. do {
  691. err = get_card_status(card, &status, 5);
  692. if (err) {
  693. pr_err("%s: error %d requesting status\n",
  694. req->rq_disk->disk_name, err);
  695. return err;
  696. }
  697. if (status & R1_ERROR) {
  698. pr_err("%s: %s: error sending status cmd, status %#x\n",
  699. req->rq_disk->disk_name, __func__, status);
  700. *gen_err = true;
  701. }
  702. /* We may rely on the host hw to handle busy detection.*/
  703. if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
  704. hw_busy_detect)
  705. break;
  706. /*
  707. * Timeout if the device never becomes ready for data and never
  708. * leaves the program state.
  709. */
  710. if (time_after(jiffies, timeout)) {
  711. pr_err("%s: Card stuck in programming state! %s %s\n",
  712. mmc_hostname(card->host),
  713. req->rq_disk->disk_name, __func__);
  714. return -ETIMEDOUT;
  715. }
  716. /*
  717. * Some cards mishandle the status bits,
  718. * so make sure to check both the busy
  719. * indication and the card state.
  720. */
  721. } while (!(status & R1_READY_FOR_DATA) ||
  722. (R1_CURRENT_STATE(status) == R1_STATE_PRG));
  723. return err;
  724. }
  725. static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
  726. struct request *req, bool *gen_err, u32 *stop_status)
  727. {
  728. struct mmc_host *host = card->host;
  729. struct mmc_command cmd = {};
  730. int err;
  731. bool use_r1b_resp = rq_data_dir(req) == WRITE;
  732. /*
  733. * Normally we use R1B responses for WRITE, but in cases where the host
  734. * has specified a max_busy_timeout we need to validate it. A failure
  735. * means we need to prevent the host from doing hw busy detection, which
  736. * is done by converting to a R1 response instead.
  737. */
  738. if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
  739. use_r1b_resp = false;
  740. cmd.opcode = MMC_STOP_TRANSMISSION;
  741. if (use_r1b_resp) {
  742. cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
  743. cmd.busy_timeout = timeout_ms;
  744. } else {
  745. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  746. }
  747. err = mmc_wait_for_cmd(host, &cmd, 5);
  748. if (err)
  749. return err;
  750. *stop_status = cmd.resp[0];
  751. /* No need to check card status in case of READ. */
  752. if (rq_data_dir(req) == READ)
  753. return 0;
  754. if (!mmc_host_is_spi(host) &&
  755. (*stop_status & R1_ERROR)) {
  756. pr_err("%s: %s: general error sending stop command, resp %#x\n",
  757. req->rq_disk->disk_name, __func__, *stop_status);
  758. *gen_err = true;
  759. }
  760. return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
  761. }
  762. #define ERR_NOMEDIUM 3
  763. #define ERR_RETRY 2
  764. #define ERR_ABORT 1
  765. #define ERR_CONTINUE 0
  766. static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
  767. bool status_valid, u32 status)
  768. {
  769. switch (error) {
  770. case -EILSEQ:
  771. /* response crc error, retry the r/w cmd */
  772. pr_err("%s: %s sending %s command, card status %#x\n",
  773. req->rq_disk->disk_name, "response CRC error",
  774. name, status);
  775. return ERR_RETRY;
  776. case -ETIMEDOUT:
  777. pr_err("%s: %s sending %s command, card status %#x\n",
  778. req->rq_disk->disk_name, "timed out", name, status);
  779. /* If the status cmd initially failed, retry the r/w cmd */
  780. if (!status_valid) {
  781. pr_err("%s: status not valid, retrying timeout\n",
  782. req->rq_disk->disk_name);
  783. return ERR_RETRY;
  784. }
  785. /*
  786. * If it was a r/w cmd crc error, or illegal command
  787. * (eg, issued in wrong state) then retry - we should
  788. * have corrected the state problem above.
  789. */
  790. if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
  791. pr_err("%s: command error, retrying timeout\n",
  792. req->rq_disk->disk_name);
  793. return ERR_RETRY;
  794. }
  795. /* Otherwise abort the command */
  796. return ERR_ABORT;
  797. default:
  798. /* We don't understand the error code the driver gave us */
  799. pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
  800. req->rq_disk->disk_name, error, status);
  801. return ERR_ABORT;
  802. }
  803. }
  804. /*
  805. * Initial r/w and stop cmd error recovery.
  806. * We don't know whether the card received the r/w cmd or not, so try to
  807. * restore things back to a sane state. Essentially, we do this as follows:
  808. * - Obtain card status. If the first attempt to obtain card status fails,
  809. * the status word will reflect the failed status cmd, not the failed
  810. * r/w cmd. If we fail to obtain card status, it suggests we can no
  811. * longer communicate with the card.
  812. * - Check the card state. If the card received the cmd but there was a
  813. * transient problem with the response, it might still be in a data transfer
  814. * mode. Try to send it a stop command. If this fails, we can't recover.
  815. * - If the r/w cmd failed due to a response CRC error, it was probably
  816. * transient, so retry the cmd.
  817. * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
  818. * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
  819. * illegal cmd, retry.
  820. * Otherwise we don't understand what happened, so abort.
  821. */
  822. static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
  823. struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
  824. {
  825. bool prev_cmd_status_valid = true;
  826. u32 status, stop_status = 0;
  827. int err, retry;
  828. if (mmc_card_removed(card))
  829. return ERR_NOMEDIUM;
  830. /*
  831. * Try to get card status which indicates both the card state
  832. * and why there was no response. If the first attempt fails,
  833. * we can't be sure the returned status is for the r/w command.
  834. */
  835. for (retry = 2; retry >= 0; retry--) {
  836. err = get_card_status(card, &status, 0);
  837. if (!err)
  838. break;
  839. /* Re-tune if needed */
  840. mmc_retune_recheck(card->host);
  841. prev_cmd_status_valid = false;
  842. pr_err("%s: error %d sending status command, %sing\n",
  843. req->rq_disk->disk_name, err, retry ? "retry" : "abort");
  844. }
  845. /* We couldn't get a response from the card. Give up. */
  846. if (err) {
  847. /* Check if the card is removed */
  848. if (mmc_detect_card_removed(card->host))
  849. return ERR_NOMEDIUM;
  850. return ERR_ABORT;
  851. }
  852. /* Flag ECC errors */
  853. if ((status & R1_CARD_ECC_FAILED) ||
  854. (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
  855. (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
  856. *ecc_err = true;
  857. /* Flag General errors */
  858. if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
  859. if ((status & R1_ERROR) ||
  860. (brq->stop.resp[0] & R1_ERROR)) {
  861. pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
  862. req->rq_disk->disk_name, __func__,
  863. brq->stop.resp[0], status);
  864. *gen_err = true;
  865. }
  866. /*
  867. * Check the current card state. If it is in some data transfer
  868. * mode, tell it to stop (and hopefully transition back to TRAN.)
  869. */
  870. if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
  871. R1_CURRENT_STATE(status) == R1_STATE_RCV) {
  872. err = send_stop(card,
  873. DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
  874. req, gen_err, &stop_status);
  875. if (err) {
  876. pr_err("%s: error %d sending stop command\n",
  877. req->rq_disk->disk_name, err);
  878. /*
  879. * If the stop cmd also timed out, the card is probably
  880. * not present, so abort. Other errors are bad news too.
  881. */
  882. return ERR_ABORT;
  883. }
  884. if (stop_status & R1_CARD_ECC_FAILED)
  885. *ecc_err = true;
  886. }
  887. /* Check for set block count errors */
  888. if (brq->sbc.error)
  889. return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
  890. prev_cmd_status_valid, status);
  891. /* Check for r/w command errors */
  892. if (brq->cmd.error)
  893. return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
  894. prev_cmd_status_valid, status);
  895. /* Data errors */
  896. if (!brq->stop.error)
  897. return ERR_CONTINUE;
  898. /* Now for stop errors. These aren't fatal to the transfer. */
  899. pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
  900. req->rq_disk->disk_name, brq->stop.error,
  901. brq->cmd.resp[0], status);
  902. /*
  903. * Subsitute in our own stop status as this will give the error
  904. * state which happened during the execution of the r/w command.
  905. */
  906. if (stop_status) {
  907. brq->stop.resp[0] = stop_status;
  908. brq->stop.error = 0;
  909. }
  910. return ERR_CONTINUE;
  911. }
  912. static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
  913. int type)
  914. {
  915. int err;
  916. if (md->reset_done & type)
  917. return -EEXIST;
  918. md->reset_done |= type;
  919. err = mmc_hw_reset(host);
  920. /* Ensure we switch back to the correct partition */
  921. if (err != -EOPNOTSUPP) {
  922. struct mmc_blk_data *main_md =
  923. dev_get_drvdata(&host->card->dev);
  924. int part_err;
  925. main_md->part_curr = main_md->part_type;
  926. part_err = mmc_blk_part_switch(host->card, md);
  927. if (part_err) {
  928. /*
  929. * We have failed to get back into the correct
  930. * partition, so we need to abort the whole request.
  931. */
  932. return -ENODEV;
  933. }
  934. }
  935. return err;
  936. }
  937. static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
  938. {
  939. md->reset_done &= ~type;
  940. }
  941. int mmc_access_rpmb(struct mmc_queue *mq)
  942. {
  943. struct mmc_blk_data *md = mq->blkdata;
  944. /*
  945. * If this is a RPMB partition access, return ture
  946. */
  947. if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
  948. return true;
  949. return false;
  950. }
  951. static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
  952. {
  953. struct mmc_blk_data *md = mq->blkdata;
  954. struct mmc_card *card = md->queue.card;
  955. unsigned int from, nr, arg;
  956. int err = 0, type = MMC_BLK_DISCARD;
  957. if (!mmc_can_erase(card)) {
  958. err = -EOPNOTSUPP;
  959. goto fail;
  960. }
  961. from = blk_rq_pos(req);
  962. nr = blk_rq_sectors(req);
  963. if (mmc_can_discard(card))
  964. arg = MMC_DISCARD_ARG;
  965. else if (mmc_can_trim(card))
  966. arg = MMC_TRIM_ARG;
  967. else
  968. arg = MMC_ERASE_ARG;
  969. do {
  970. err = 0;
  971. if (card->quirks & MMC_QUIRK_INAND_CMD38) {
  972. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  973. INAND_CMD38_ARG_EXT_CSD,
  974. arg == MMC_TRIM_ARG ?
  975. INAND_CMD38_ARG_TRIM :
  976. INAND_CMD38_ARG_ERASE,
  977. 0);
  978. }
  979. if (!err)
  980. err = mmc_erase(card, from, nr, arg);
  981. } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
  982. if (!err)
  983. mmc_blk_reset_success(md, type);
  984. fail:
  985. blk_end_request(req, err, blk_rq_bytes(req));
  986. return err ? 0 : 1;
  987. }
  988. static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
  989. struct request *req)
  990. {
  991. struct mmc_blk_data *md = mq->blkdata;
  992. struct mmc_card *card = md->queue.card;
  993. unsigned int from, nr, arg;
  994. int err = 0, type = MMC_BLK_SECDISCARD;
  995. if (!(mmc_can_secure_erase_trim(card))) {
  996. err = -EOPNOTSUPP;
  997. goto out;
  998. }
  999. from = blk_rq_pos(req);
  1000. nr = blk_rq_sectors(req);
  1001. if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
  1002. arg = MMC_SECURE_TRIM1_ARG;
  1003. else
  1004. arg = MMC_SECURE_ERASE_ARG;
  1005. retry:
  1006. if (card->quirks & MMC_QUIRK_INAND_CMD38) {
  1007. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1008. INAND_CMD38_ARG_EXT_CSD,
  1009. arg == MMC_SECURE_TRIM1_ARG ?
  1010. INAND_CMD38_ARG_SECTRIM1 :
  1011. INAND_CMD38_ARG_SECERASE,
  1012. 0);
  1013. if (err)
  1014. goto out_retry;
  1015. }
  1016. err = mmc_erase(card, from, nr, arg);
  1017. if (err == -EIO)
  1018. goto out_retry;
  1019. if (err)
  1020. goto out;
  1021. if (arg == MMC_SECURE_TRIM1_ARG) {
  1022. if (card->quirks & MMC_QUIRK_INAND_CMD38) {
  1023. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1024. INAND_CMD38_ARG_EXT_CSD,
  1025. INAND_CMD38_ARG_SECTRIM2,
  1026. 0);
  1027. if (err)
  1028. goto out_retry;
  1029. }
  1030. err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
  1031. if (err == -EIO)
  1032. goto out_retry;
  1033. if (err)
  1034. goto out;
  1035. }
  1036. out_retry:
  1037. if (err && !mmc_blk_reset(md, card->host, type))
  1038. goto retry;
  1039. if (!err)
  1040. mmc_blk_reset_success(md, type);
  1041. out:
  1042. blk_end_request(req, err, blk_rq_bytes(req));
  1043. return err ? 0 : 1;
  1044. }
  1045. static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
  1046. {
  1047. struct mmc_blk_data *md = mq->blkdata;
  1048. struct mmc_card *card = md->queue.card;
  1049. int ret = 0;
  1050. ret = mmc_flush_cache(card);
  1051. if (ret)
  1052. ret = -EIO;
  1053. blk_end_request_all(req, ret);
  1054. return ret ? 0 : 1;
  1055. }
  1056. /*
  1057. * Reformat current write as a reliable write, supporting
  1058. * both legacy and the enhanced reliable write MMC cards.
  1059. * In each transfer we'll handle only as much as a single
  1060. * reliable write can handle, thus finish the request in
  1061. * partial completions.
  1062. */
  1063. static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
  1064. struct mmc_card *card,
  1065. struct request *req)
  1066. {
  1067. if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
  1068. /* Legacy mode imposes restrictions on transfers. */
  1069. if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
  1070. brq->data.blocks = 1;
  1071. if (brq->data.blocks > card->ext_csd.rel_sectors)
  1072. brq->data.blocks = card->ext_csd.rel_sectors;
  1073. else if (brq->data.blocks < card->ext_csd.rel_sectors)
  1074. brq->data.blocks = 1;
  1075. }
  1076. }
  1077. #define CMD_ERRORS \
  1078. (R1_OUT_OF_RANGE | /* Command argument out of range */ \
  1079. R1_ADDRESS_ERROR | /* Misaligned address */ \
  1080. R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
  1081. R1_WP_VIOLATION | /* Tried to write to protected block */ \
  1082. R1_CC_ERROR | /* Card controller error */ \
  1083. R1_ERROR) /* General/unknown error */
  1084. static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
  1085. struct mmc_async_req *areq)
  1086. {
  1087. struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
  1088. mmc_active);
  1089. struct mmc_blk_request *brq = &mq_mrq->brq;
  1090. struct request *req = mq_mrq->req;
  1091. int need_retune = card->host->need_retune;
  1092. bool ecc_err = false;
  1093. bool gen_err = false;
  1094. /*
  1095. * sbc.error indicates a problem with the set block count
  1096. * command. No data will have been transferred.
  1097. *
  1098. * cmd.error indicates a problem with the r/w command. No
  1099. * data will have been transferred.
  1100. *
  1101. * stop.error indicates a problem with the stop command. Data
  1102. * may have been transferred, or may still be transferring.
  1103. */
  1104. if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
  1105. brq->data.error) {
  1106. switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
  1107. case ERR_RETRY:
  1108. return MMC_BLK_RETRY;
  1109. case ERR_ABORT:
  1110. return MMC_BLK_ABORT;
  1111. case ERR_NOMEDIUM:
  1112. return MMC_BLK_NOMEDIUM;
  1113. case ERR_CONTINUE:
  1114. break;
  1115. }
  1116. }
  1117. /*
  1118. * Check for errors relating to the execution of the
  1119. * initial command - such as address errors. No data
  1120. * has been transferred.
  1121. */
  1122. if (brq->cmd.resp[0] & CMD_ERRORS) {
  1123. pr_err("%s: r/w command failed, status = %#x\n",
  1124. req->rq_disk->disk_name, brq->cmd.resp[0]);
  1125. return MMC_BLK_ABORT;
  1126. }
  1127. /*
  1128. * Everything else is either success, or a data error of some
  1129. * kind. If it was a write, we may have transitioned to
  1130. * program mode, which we have to wait for it to complete.
  1131. */
  1132. if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
  1133. int err;
  1134. /* Check stop command response */
  1135. if (brq->stop.resp[0] & R1_ERROR) {
  1136. pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
  1137. req->rq_disk->disk_name, __func__,
  1138. brq->stop.resp[0]);
  1139. gen_err = true;
  1140. }
  1141. err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
  1142. &gen_err);
  1143. if (err)
  1144. return MMC_BLK_CMD_ERR;
  1145. }
  1146. /* if general error occurs, retry the write operation. */
  1147. if (gen_err) {
  1148. pr_warn("%s: retrying write for general error\n",
  1149. req->rq_disk->disk_name);
  1150. return MMC_BLK_RETRY;
  1151. }
  1152. if (brq->data.error) {
  1153. if (need_retune && !brq->retune_retry_done) {
  1154. pr_debug("%s: retrying because a re-tune was needed\n",
  1155. req->rq_disk->disk_name);
  1156. brq->retune_retry_done = 1;
  1157. return MMC_BLK_RETRY;
  1158. }
  1159. pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
  1160. req->rq_disk->disk_name, brq->data.error,
  1161. (unsigned)blk_rq_pos(req),
  1162. (unsigned)blk_rq_sectors(req),
  1163. brq->cmd.resp[0], brq->stop.resp[0]);
  1164. if (rq_data_dir(req) == READ) {
  1165. if (ecc_err)
  1166. return MMC_BLK_ECC_ERR;
  1167. return MMC_BLK_DATA_ERR;
  1168. } else {
  1169. return MMC_BLK_CMD_ERR;
  1170. }
  1171. }
  1172. if (!brq->data.bytes_xfered)
  1173. return MMC_BLK_RETRY;
  1174. if (blk_rq_bytes(req) != brq->data.bytes_xfered)
  1175. return MMC_BLK_PARTIAL;
  1176. return MMC_BLK_SUCCESS;
  1177. }
  1178. static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
  1179. struct mmc_card *card,
  1180. int disable_multi,
  1181. struct mmc_queue *mq)
  1182. {
  1183. u32 readcmd, writecmd;
  1184. struct mmc_blk_request *brq = &mqrq->brq;
  1185. struct request *req = mqrq->req;
  1186. struct mmc_blk_data *md = mq->blkdata;
  1187. bool do_data_tag;
  1188. /*
  1189. * Reliable writes are used to implement Forced Unit Access and
  1190. * are supported only on MMCs.
  1191. */
  1192. bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
  1193. (rq_data_dir(req) == WRITE) &&
  1194. (md->flags & MMC_BLK_REL_WR);
  1195. memset(brq, 0, sizeof(struct mmc_blk_request));
  1196. brq->mrq.cmd = &brq->cmd;
  1197. brq->mrq.data = &brq->data;
  1198. brq->cmd.arg = blk_rq_pos(req);
  1199. if (!mmc_card_blockaddr(card))
  1200. brq->cmd.arg <<= 9;
  1201. brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
  1202. brq->data.blksz = 512;
  1203. brq->stop.opcode = MMC_STOP_TRANSMISSION;
  1204. brq->stop.arg = 0;
  1205. brq->data.blocks = blk_rq_sectors(req);
  1206. /*
  1207. * The block layer doesn't support all sector count
  1208. * restrictions, so we need to be prepared for too big
  1209. * requests.
  1210. */
  1211. if (brq->data.blocks > card->host->max_blk_count)
  1212. brq->data.blocks = card->host->max_blk_count;
  1213. if (brq->data.blocks > 1) {
  1214. /*
  1215. * After a read error, we redo the request one sector
  1216. * at a time in order to accurately determine which
  1217. * sectors can be read successfully.
  1218. */
  1219. if (disable_multi)
  1220. brq->data.blocks = 1;
  1221. /*
  1222. * Some controllers have HW issues while operating
  1223. * in multiple I/O mode
  1224. */
  1225. if (card->host->ops->multi_io_quirk)
  1226. brq->data.blocks = card->host->ops->multi_io_quirk(card,
  1227. (rq_data_dir(req) == READ) ?
  1228. MMC_DATA_READ : MMC_DATA_WRITE,
  1229. brq->data.blocks);
  1230. }
  1231. if (brq->data.blocks > 1 || do_rel_wr) {
  1232. /* SPI multiblock writes terminate using a special
  1233. * token, not a STOP_TRANSMISSION request.
  1234. */
  1235. if (!mmc_host_is_spi(card->host) ||
  1236. rq_data_dir(req) == READ)
  1237. brq->mrq.stop = &brq->stop;
  1238. readcmd = MMC_READ_MULTIPLE_BLOCK;
  1239. writecmd = MMC_WRITE_MULTIPLE_BLOCK;
  1240. } else {
  1241. brq->mrq.stop = NULL;
  1242. readcmd = MMC_READ_SINGLE_BLOCK;
  1243. writecmd = MMC_WRITE_BLOCK;
  1244. }
  1245. if (rq_data_dir(req) == READ) {
  1246. brq->cmd.opcode = readcmd;
  1247. brq->data.flags = MMC_DATA_READ;
  1248. if (brq->mrq.stop)
  1249. brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
  1250. MMC_CMD_AC;
  1251. } else {
  1252. brq->cmd.opcode = writecmd;
  1253. brq->data.flags = MMC_DATA_WRITE;
  1254. if (brq->mrq.stop)
  1255. brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
  1256. MMC_CMD_AC;
  1257. }
  1258. if (do_rel_wr)
  1259. mmc_apply_rel_rw(brq, card, req);
  1260. /*
  1261. * Data tag is used only during writing meta data to speed
  1262. * up write and any subsequent read of this meta data
  1263. */
  1264. do_data_tag = (card->ext_csd.data_tag_unit_size) &&
  1265. (req->cmd_flags & REQ_META) &&
  1266. (rq_data_dir(req) == WRITE) &&
  1267. ((brq->data.blocks * brq->data.blksz) >=
  1268. card->ext_csd.data_tag_unit_size);
  1269. /*
  1270. * Pre-defined multi-block transfers are preferable to
  1271. * open ended-ones (and necessary for reliable writes).
  1272. * However, it is not sufficient to just send CMD23,
  1273. * and avoid the final CMD12, as on an error condition
  1274. * CMD12 (stop) needs to be sent anyway. This, coupled
  1275. * with Auto-CMD23 enhancements provided by some
  1276. * hosts, means that the complexity of dealing
  1277. * with this is best left to the host. If CMD23 is
  1278. * supported by card and host, we'll fill sbc in and let
  1279. * the host deal with handling it correctly. This means
  1280. * that for hosts that don't expose MMC_CAP_CMD23, no
  1281. * change of behavior will be observed.
  1282. *
  1283. * N.B: Some MMC cards experience perf degradation.
  1284. * We'll avoid using CMD23-bounded multiblock writes for
  1285. * these, while retaining features like reliable writes.
  1286. */
  1287. if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
  1288. (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
  1289. do_data_tag)) {
  1290. brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
  1291. brq->sbc.arg = brq->data.blocks |
  1292. (do_rel_wr ? (1 << 31) : 0) |
  1293. (do_data_tag ? (1 << 29) : 0);
  1294. brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
  1295. brq->mrq.sbc = &brq->sbc;
  1296. }
  1297. mmc_set_data_timeout(&brq->data, card);
  1298. brq->data.sg = mqrq->sg;
  1299. brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
  1300. /*
  1301. * Adjust the sg list so it is the same size as the
  1302. * request.
  1303. */
  1304. if (brq->data.blocks != blk_rq_sectors(req)) {
  1305. int i, data_size = brq->data.blocks << 9;
  1306. struct scatterlist *sg;
  1307. for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
  1308. data_size -= sg->length;
  1309. if (data_size <= 0) {
  1310. sg->length += data_size;
  1311. i++;
  1312. break;
  1313. }
  1314. }
  1315. brq->data.sg_len = i;
  1316. }
  1317. mqrq->mmc_active.mrq = &brq->mrq;
  1318. mqrq->mmc_active.err_check = mmc_blk_err_check;
  1319. mmc_queue_bounce_pre(mqrq);
  1320. }
  1321. static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
  1322. struct mmc_blk_request *brq, struct request *req,
  1323. int ret)
  1324. {
  1325. struct mmc_queue_req *mq_rq;
  1326. mq_rq = container_of(brq, struct mmc_queue_req, brq);
  1327. /*
  1328. * If this is an SD card and we're writing, we can first
  1329. * mark the known good sectors as ok.
  1330. *
  1331. * If the card is not SD, we can still ok written sectors
  1332. * as reported by the controller (which might be less than
  1333. * the real number of written sectors, but never more).
  1334. */
  1335. if (mmc_card_sd(card)) {
  1336. u32 blocks;
  1337. blocks = mmc_sd_num_wr_blocks(card);
  1338. if (blocks != (u32)-1) {
  1339. ret = blk_end_request(req, 0, blocks << 9);
  1340. }
  1341. } else {
  1342. ret = blk_end_request(req, 0, brq->data.bytes_xfered);
  1343. }
  1344. return ret;
  1345. }
  1346. static void mmc_blk_rw_cmd_abort(struct mmc_card *card, struct request *req)
  1347. {
  1348. int ret = 1;
  1349. if (mmc_card_removed(card))
  1350. req->rq_flags |= RQF_QUIET;
  1351. while (ret)
  1352. ret = blk_end_request(req, -EIO,
  1353. blk_rq_cur_bytes(req));
  1354. }
  1355. static void mmc_blk_rw_start_new(struct mmc_queue *mq, struct mmc_card *card,
  1356. struct request *req)
  1357. {
  1358. if (!req)
  1359. return;
  1360. if (mmc_card_removed(card)) {
  1361. req->rq_flags |= RQF_QUIET;
  1362. blk_end_request_all(req, -EIO);
  1363. } else {
  1364. mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
  1365. mmc_start_req(card->host,
  1366. &mq->mqrq_cur->mmc_active, NULL);
  1367. }
  1368. }
  1369. static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
  1370. {
  1371. struct mmc_blk_data *md = mq->blkdata;
  1372. struct mmc_card *card = md->queue.card;
  1373. struct mmc_blk_request *brq;
  1374. int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
  1375. enum mmc_blk_status status;
  1376. struct mmc_queue_req *mq_rq;
  1377. struct request *req;
  1378. struct mmc_async_req *areq;
  1379. if (!rqc && !mq->mqrq_prev->req)
  1380. return 0;
  1381. do {
  1382. if (rqc) {
  1383. /*
  1384. * When 4KB native sector is enabled, only 8 blocks
  1385. * multiple read or write is allowed
  1386. */
  1387. if (mmc_large_sector(card) &&
  1388. !IS_ALIGNED(blk_rq_sectors(rqc), 8)) {
  1389. pr_err("%s: Transfer size is not 4KB sector size aligned\n",
  1390. rqc->rq_disk->disk_name);
  1391. mq_rq = mq->mqrq_cur;
  1392. req = rqc;
  1393. rqc = NULL;
  1394. goto cmd_abort;
  1395. }
  1396. mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
  1397. areq = &mq->mqrq_cur->mmc_active;
  1398. } else
  1399. areq = NULL;
  1400. areq = mmc_start_req(card->host, areq, &status);
  1401. if (!areq) {
  1402. if (status == MMC_BLK_NEW_REQUEST)
  1403. mq->flags |= MMC_QUEUE_NEW_REQUEST;
  1404. return 0;
  1405. }
  1406. mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
  1407. brq = &mq_rq->brq;
  1408. req = mq_rq->req;
  1409. type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
  1410. mmc_queue_bounce_post(mq_rq);
  1411. switch (status) {
  1412. case MMC_BLK_SUCCESS:
  1413. case MMC_BLK_PARTIAL:
  1414. /*
  1415. * A block was successfully transferred.
  1416. */
  1417. mmc_blk_reset_success(md, type);
  1418. ret = blk_end_request(req, 0,
  1419. brq->data.bytes_xfered);
  1420. /*
  1421. * If the blk_end_request function returns non-zero even
  1422. * though all data has been transferred and no errors
  1423. * were returned by the host controller, it's a bug.
  1424. */
  1425. if (status == MMC_BLK_SUCCESS && ret) {
  1426. pr_err("%s BUG rq_tot %d d_xfer %d\n",
  1427. __func__, blk_rq_bytes(req),
  1428. brq->data.bytes_xfered);
  1429. rqc = NULL;
  1430. goto cmd_abort;
  1431. }
  1432. break;
  1433. case MMC_BLK_CMD_ERR:
  1434. ret = mmc_blk_cmd_err(md, card, brq, req, ret);
  1435. if (mmc_blk_reset(md, card->host, type))
  1436. goto cmd_abort;
  1437. if (!ret)
  1438. goto start_new_req;
  1439. break;
  1440. case MMC_BLK_RETRY:
  1441. retune_retry_done = brq->retune_retry_done;
  1442. if (retry++ < 5)
  1443. break;
  1444. /* Fall through */
  1445. case MMC_BLK_ABORT:
  1446. if (!mmc_blk_reset(md, card->host, type))
  1447. break;
  1448. goto cmd_abort;
  1449. case MMC_BLK_DATA_ERR: {
  1450. int err;
  1451. err = mmc_blk_reset(md, card->host, type);
  1452. if (!err)
  1453. break;
  1454. if (err == -ENODEV)
  1455. goto cmd_abort;
  1456. /* Fall through */
  1457. }
  1458. case MMC_BLK_ECC_ERR:
  1459. if (brq->data.blocks > 1) {
  1460. /* Redo read one sector at a time */
  1461. pr_warn("%s: retrying using single block read\n",
  1462. req->rq_disk->disk_name);
  1463. disable_multi = 1;
  1464. break;
  1465. }
  1466. /*
  1467. * After an error, we redo I/O one sector at a
  1468. * time, so we only reach here after trying to
  1469. * read a single sector.
  1470. */
  1471. ret = blk_end_request(req, -EIO,
  1472. brq->data.blksz);
  1473. if (!ret)
  1474. goto start_new_req;
  1475. break;
  1476. case MMC_BLK_NOMEDIUM:
  1477. goto cmd_abort;
  1478. default:
  1479. pr_err("%s: Unhandled return value (%d)",
  1480. req->rq_disk->disk_name, status);
  1481. goto cmd_abort;
  1482. }
  1483. if (ret) {
  1484. /*
  1485. * In case of a incomplete request
  1486. * prepare it again and resend.
  1487. */
  1488. mmc_blk_rw_rq_prep(mq_rq, card,
  1489. disable_multi, mq);
  1490. mmc_start_req(card->host,
  1491. &mq_rq->mmc_active, NULL);
  1492. mq_rq->brq.retune_retry_done = retune_retry_done;
  1493. }
  1494. } while (ret);
  1495. return 1;
  1496. cmd_abort:
  1497. mmc_blk_rw_cmd_abort(card, req);
  1498. start_new_req:
  1499. mmc_blk_rw_start_new(mq, card, rqc);
  1500. return 0;
  1501. }
  1502. int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
  1503. {
  1504. int ret;
  1505. struct mmc_blk_data *md = mq->blkdata;
  1506. struct mmc_card *card = md->queue.card;
  1507. bool req_is_special = mmc_req_is_special(req);
  1508. if (req && !mq->mqrq_prev->req)
  1509. /* claim host only for the first request */
  1510. mmc_get_card(card);
  1511. ret = mmc_blk_part_switch(card, md);
  1512. if (ret) {
  1513. if (req) {
  1514. blk_end_request_all(req, -EIO);
  1515. }
  1516. ret = 0;
  1517. goto out;
  1518. }
  1519. mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
  1520. if (req && req_op(req) == REQ_OP_DISCARD) {
  1521. /* complete ongoing async transfer before issuing discard */
  1522. if (card->host->areq)
  1523. mmc_blk_issue_rw_rq(mq, NULL);
  1524. ret = mmc_blk_issue_discard_rq(mq, req);
  1525. } else if (req && req_op(req) == REQ_OP_SECURE_ERASE) {
  1526. /* complete ongoing async transfer before issuing secure erase*/
  1527. if (card->host->areq)
  1528. mmc_blk_issue_rw_rq(mq, NULL);
  1529. ret = mmc_blk_issue_secdiscard_rq(mq, req);
  1530. } else if (req && req_op(req) == REQ_OP_FLUSH) {
  1531. /* complete ongoing async transfer before issuing flush */
  1532. if (card->host->areq)
  1533. mmc_blk_issue_rw_rq(mq, NULL);
  1534. ret = mmc_blk_issue_flush(mq, req);
  1535. } else {
  1536. ret = mmc_blk_issue_rw_rq(mq, req);
  1537. }
  1538. out:
  1539. if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) || req_is_special)
  1540. /*
  1541. * Release host when there are no more requests
  1542. * and after special request(discard, flush) is done.
  1543. * In case sepecial request, there is no reentry to
  1544. * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
  1545. */
  1546. mmc_put_card(card);
  1547. return ret;
  1548. }
  1549. static inline int mmc_blk_readonly(struct mmc_card *card)
  1550. {
  1551. return mmc_card_readonly(card) ||
  1552. !(card->csd.cmdclass & CCC_BLOCK_WRITE);
  1553. }
  1554. static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
  1555. struct device *parent,
  1556. sector_t size,
  1557. bool default_ro,
  1558. const char *subname,
  1559. int area_type)
  1560. {
  1561. struct mmc_blk_data *md;
  1562. int devidx, ret;
  1563. again:
  1564. if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL))
  1565. return ERR_PTR(-ENOMEM);
  1566. spin_lock(&mmc_blk_lock);
  1567. ret = ida_get_new(&mmc_blk_ida, &devidx);
  1568. spin_unlock(&mmc_blk_lock);
  1569. if (ret == -EAGAIN)
  1570. goto again;
  1571. else if (ret)
  1572. return ERR_PTR(ret);
  1573. if (devidx >= max_devices) {
  1574. ret = -ENOSPC;
  1575. goto out;
  1576. }
  1577. md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
  1578. if (!md) {
  1579. ret = -ENOMEM;
  1580. goto out;
  1581. }
  1582. md->area_type = area_type;
  1583. /*
  1584. * Set the read-only status based on the supported commands
  1585. * and the write protect switch.
  1586. */
  1587. md->read_only = mmc_blk_readonly(card);
  1588. md->disk = alloc_disk(perdev_minors);
  1589. if (md->disk == NULL) {
  1590. ret = -ENOMEM;
  1591. goto err_kfree;
  1592. }
  1593. spin_lock_init(&md->lock);
  1594. INIT_LIST_HEAD(&md->part);
  1595. md->usage = 1;
  1596. ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
  1597. if (ret)
  1598. goto err_putdisk;
  1599. md->queue.blkdata = md;
  1600. md->disk->major = MMC_BLOCK_MAJOR;
  1601. md->disk->first_minor = devidx * perdev_minors;
  1602. md->disk->fops = &mmc_bdops;
  1603. md->disk->private_data = md;
  1604. md->disk->queue = md->queue.queue;
  1605. md->parent = parent;
  1606. set_disk_ro(md->disk, md->read_only || default_ro);
  1607. md->disk->flags = GENHD_FL_EXT_DEVT;
  1608. if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
  1609. md->disk->flags |= GENHD_FL_NO_PART_SCAN;
  1610. /*
  1611. * As discussed on lkml, GENHD_FL_REMOVABLE should:
  1612. *
  1613. * - be set for removable media with permanent block devices
  1614. * - be unset for removable block devices with permanent media
  1615. *
  1616. * Since MMC block devices clearly fall under the second
  1617. * case, we do not set GENHD_FL_REMOVABLE. Userspace
  1618. * should use the block device creation/destruction hotplug
  1619. * messages to tell when the card is present.
  1620. */
  1621. snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
  1622. "mmcblk%u%s", card->host->index, subname ? subname : "");
  1623. if (mmc_card_mmc(card))
  1624. blk_queue_logical_block_size(md->queue.queue,
  1625. card->ext_csd.data_sector_size);
  1626. else
  1627. blk_queue_logical_block_size(md->queue.queue, 512);
  1628. set_capacity(md->disk, size);
  1629. if (mmc_host_cmd23(card->host)) {
  1630. if ((mmc_card_mmc(card) &&
  1631. card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
  1632. (mmc_card_sd(card) &&
  1633. card->scr.cmds & SD_SCR_CMD23_SUPPORT))
  1634. md->flags |= MMC_BLK_CMD23;
  1635. }
  1636. if (mmc_card_mmc(card) &&
  1637. md->flags & MMC_BLK_CMD23 &&
  1638. ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
  1639. card->ext_csd.rel_sectors)) {
  1640. md->flags |= MMC_BLK_REL_WR;
  1641. blk_queue_write_cache(md->queue.queue, true, true);
  1642. }
  1643. return md;
  1644. err_putdisk:
  1645. put_disk(md->disk);
  1646. err_kfree:
  1647. kfree(md);
  1648. out:
  1649. spin_lock(&mmc_blk_lock);
  1650. ida_remove(&mmc_blk_ida, devidx);
  1651. spin_unlock(&mmc_blk_lock);
  1652. return ERR_PTR(ret);
  1653. }
  1654. static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
  1655. {
  1656. sector_t size;
  1657. if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
  1658. /*
  1659. * The EXT_CSD sector count is in number or 512 byte
  1660. * sectors.
  1661. */
  1662. size = card->ext_csd.sectors;
  1663. } else {
  1664. /*
  1665. * The CSD capacity field is in units of read_blkbits.
  1666. * set_capacity takes units of 512 bytes.
  1667. */
  1668. size = (typeof(sector_t))card->csd.capacity
  1669. << (card->csd.read_blkbits - 9);
  1670. }
  1671. return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
  1672. MMC_BLK_DATA_AREA_MAIN);
  1673. }
  1674. static int mmc_blk_alloc_part(struct mmc_card *card,
  1675. struct mmc_blk_data *md,
  1676. unsigned int part_type,
  1677. sector_t size,
  1678. bool default_ro,
  1679. const char *subname,
  1680. int area_type)
  1681. {
  1682. char cap_str[10];
  1683. struct mmc_blk_data *part_md;
  1684. part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
  1685. subname, area_type);
  1686. if (IS_ERR(part_md))
  1687. return PTR_ERR(part_md);
  1688. part_md->part_type = part_type;
  1689. list_add(&part_md->part, &md->part);
  1690. string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
  1691. cap_str, sizeof(cap_str));
  1692. pr_info("%s: %s %s partition %u %s\n",
  1693. part_md->disk->disk_name, mmc_card_id(card),
  1694. mmc_card_name(card), part_md->part_type, cap_str);
  1695. return 0;
  1696. }
  1697. /* MMC Physical partitions consist of two boot partitions and
  1698. * up to four general purpose partitions.
  1699. * For each partition enabled in EXT_CSD a block device will be allocatedi
  1700. * to provide access to the partition.
  1701. */
  1702. static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
  1703. {
  1704. int idx, ret = 0;
  1705. if (!mmc_card_mmc(card))
  1706. return 0;
  1707. for (idx = 0; idx < card->nr_parts; idx++) {
  1708. if (card->part[idx].size) {
  1709. ret = mmc_blk_alloc_part(card, md,
  1710. card->part[idx].part_cfg,
  1711. card->part[idx].size >> 9,
  1712. card->part[idx].force_ro,
  1713. card->part[idx].name,
  1714. card->part[idx].area_type);
  1715. if (ret)
  1716. return ret;
  1717. }
  1718. }
  1719. return ret;
  1720. }
  1721. static void mmc_blk_remove_req(struct mmc_blk_data *md)
  1722. {
  1723. struct mmc_card *card;
  1724. if (md) {
  1725. /*
  1726. * Flush remaining requests and free queues. It
  1727. * is freeing the queue that stops new requests
  1728. * from being accepted.
  1729. */
  1730. card = md->queue.card;
  1731. mmc_cleanup_queue(&md->queue);
  1732. if (md->disk->flags & GENHD_FL_UP) {
  1733. device_remove_file(disk_to_dev(md->disk), &md->force_ro);
  1734. if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
  1735. card->ext_csd.boot_ro_lockable)
  1736. device_remove_file(disk_to_dev(md->disk),
  1737. &md->power_ro_lock);
  1738. del_gendisk(md->disk);
  1739. }
  1740. mmc_blk_put(md);
  1741. }
  1742. }
  1743. static void mmc_blk_remove_parts(struct mmc_card *card,
  1744. struct mmc_blk_data *md)
  1745. {
  1746. struct list_head *pos, *q;
  1747. struct mmc_blk_data *part_md;
  1748. list_for_each_safe(pos, q, &md->part) {
  1749. part_md = list_entry(pos, struct mmc_blk_data, part);
  1750. list_del(pos);
  1751. mmc_blk_remove_req(part_md);
  1752. }
  1753. }
  1754. static int mmc_add_disk(struct mmc_blk_data *md)
  1755. {
  1756. int ret;
  1757. struct mmc_card *card = md->queue.card;
  1758. device_add_disk(md->parent, md->disk);
  1759. md->force_ro.show = force_ro_show;
  1760. md->force_ro.store = force_ro_store;
  1761. sysfs_attr_init(&md->force_ro.attr);
  1762. md->force_ro.attr.name = "force_ro";
  1763. md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
  1764. ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
  1765. if (ret)
  1766. goto force_ro_fail;
  1767. if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
  1768. card->ext_csd.boot_ro_lockable) {
  1769. umode_t mode;
  1770. if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
  1771. mode = S_IRUGO;
  1772. else
  1773. mode = S_IRUGO | S_IWUSR;
  1774. md->power_ro_lock.show = power_ro_lock_show;
  1775. md->power_ro_lock.store = power_ro_lock_store;
  1776. sysfs_attr_init(&md->power_ro_lock.attr);
  1777. md->power_ro_lock.attr.mode = mode;
  1778. md->power_ro_lock.attr.name =
  1779. "ro_lock_until_next_power_on";
  1780. ret = device_create_file(disk_to_dev(md->disk),
  1781. &md->power_ro_lock);
  1782. if (ret)
  1783. goto power_ro_lock_fail;
  1784. }
  1785. return ret;
  1786. power_ro_lock_fail:
  1787. device_remove_file(disk_to_dev(md->disk), &md->force_ro);
  1788. force_ro_fail:
  1789. del_gendisk(md->disk);
  1790. return ret;
  1791. }
  1792. static const struct mmc_fixup blk_fixups[] =
  1793. {
  1794. MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1795. MMC_QUIRK_INAND_CMD38),
  1796. MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1797. MMC_QUIRK_INAND_CMD38),
  1798. MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1799. MMC_QUIRK_INAND_CMD38),
  1800. MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1801. MMC_QUIRK_INAND_CMD38),
  1802. MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1803. MMC_QUIRK_INAND_CMD38),
  1804. /*
  1805. * Some MMC cards experience performance degradation with CMD23
  1806. * instead of CMD12-bounded multiblock transfers. For now we'll
  1807. * black list what's bad...
  1808. * - Certain Toshiba cards.
  1809. *
  1810. * N.B. This doesn't affect SD cards.
  1811. */
  1812. MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
  1813. MMC_QUIRK_BLK_NO_CMD23),
  1814. MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
  1815. MMC_QUIRK_BLK_NO_CMD23),
  1816. MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
  1817. MMC_QUIRK_BLK_NO_CMD23),
  1818. MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
  1819. MMC_QUIRK_BLK_NO_CMD23),
  1820. MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
  1821. MMC_QUIRK_BLK_NO_CMD23),
  1822. /*
  1823. * Some MMC cards need longer data read timeout than indicated in CSD.
  1824. */
  1825. MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
  1826. MMC_QUIRK_LONG_READ_TIME),
  1827. MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
  1828. MMC_QUIRK_LONG_READ_TIME),
  1829. /*
  1830. * On these Samsung MoviNAND parts, performing secure erase or
  1831. * secure trim can result in unrecoverable corruption due to a
  1832. * firmware bug.
  1833. */
  1834. MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  1835. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  1836. MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  1837. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  1838. MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  1839. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  1840. MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  1841. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  1842. MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  1843. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  1844. MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  1845. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  1846. MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  1847. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  1848. MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  1849. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  1850. /*
  1851. * On Some Kingston eMMCs, performing trim can result in
  1852. * unrecoverable data conrruption occasionally due to a firmware bug.
  1853. */
  1854. MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
  1855. MMC_QUIRK_TRIM_BROKEN),
  1856. MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
  1857. MMC_QUIRK_TRIM_BROKEN),
  1858. END_FIXUP
  1859. };
  1860. static int mmc_blk_probe(struct mmc_card *card)
  1861. {
  1862. struct mmc_blk_data *md, *part_md;
  1863. char cap_str[10];
  1864. /*
  1865. * Check that the card supports the command class(es) we need.
  1866. */
  1867. if (!(card->csd.cmdclass & CCC_BLOCK_READ))
  1868. return -ENODEV;
  1869. mmc_fixup_device(card, blk_fixups);
  1870. md = mmc_blk_alloc(card);
  1871. if (IS_ERR(md))
  1872. return PTR_ERR(md);
  1873. string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
  1874. cap_str, sizeof(cap_str));
  1875. pr_info("%s: %s %s %s %s\n",
  1876. md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
  1877. cap_str, md->read_only ? "(ro)" : "");
  1878. if (mmc_blk_alloc_parts(card, md))
  1879. goto out;
  1880. dev_set_drvdata(&card->dev, md);
  1881. if (mmc_add_disk(md))
  1882. goto out;
  1883. list_for_each_entry(part_md, &md->part, part) {
  1884. if (mmc_add_disk(part_md))
  1885. goto out;
  1886. }
  1887. pm_runtime_set_autosuspend_delay(&card->dev, 3000);
  1888. pm_runtime_use_autosuspend(&card->dev);
  1889. /*
  1890. * Don't enable runtime PM for SD-combo cards here. Leave that
  1891. * decision to be taken during the SDIO init sequence instead.
  1892. */
  1893. if (card->type != MMC_TYPE_SD_COMBO) {
  1894. pm_runtime_set_active(&card->dev);
  1895. pm_runtime_enable(&card->dev);
  1896. }
  1897. return 0;
  1898. out:
  1899. mmc_blk_remove_parts(card, md);
  1900. mmc_blk_remove_req(md);
  1901. return 0;
  1902. }
  1903. static void mmc_blk_remove(struct mmc_card *card)
  1904. {
  1905. struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
  1906. mmc_blk_remove_parts(card, md);
  1907. pm_runtime_get_sync(&card->dev);
  1908. mmc_claim_host(card->host);
  1909. mmc_blk_part_switch(card, md);
  1910. mmc_release_host(card->host);
  1911. if (card->type != MMC_TYPE_SD_COMBO)
  1912. pm_runtime_disable(&card->dev);
  1913. pm_runtime_put_noidle(&card->dev);
  1914. mmc_blk_remove_req(md);
  1915. dev_set_drvdata(&card->dev, NULL);
  1916. }
  1917. static int _mmc_blk_suspend(struct mmc_card *card)
  1918. {
  1919. struct mmc_blk_data *part_md;
  1920. struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
  1921. if (md) {
  1922. mmc_queue_suspend(&md->queue);
  1923. list_for_each_entry(part_md, &md->part, part) {
  1924. mmc_queue_suspend(&part_md->queue);
  1925. }
  1926. }
  1927. return 0;
  1928. }
  1929. static void mmc_blk_shutdown(struct mmc_card *card)
  1930. {
  1931. _mmc_blk_suspend(card);
  1932. }
  1933. #ifdef CONFIG_PM_SLEEP
  1934. static int mmc_blk_suspend(struct device *dev)
  1935. {
  1936. struct mmc_card *card = mmc_dev_to_card(dev);
  1937. return _mmc_blk_suspend(card);
  1938. }
  1939. static int mmc_blk_resume(struct device *dev)
  1940. {
  1941. struct mmc_blk_data *part_md;
  1942. struct mmc_blk_data *md = dev_get_drvdata(dev);
  1943. if (md) {
  1944. /*
  1945. * Resume involves the card going into idle state,
  1946. * so current partition is always the main one.
  1947. */
  1948. md->part_curr = md->part_type;
  1949. mmc_queue_resume(&md->queue);
  1950. list_for_each_entry(part_md, &md->part, part) {
  1951. mmc_queue_resume(&part_md->queue);
  1952. }
  1953. }
  1954. return 0;
  1955. }
  1956. #endif
  1957. static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
  1958. static struct mmc_driver mmc_driver = {
  1959. .drv = {
  1960. .name = "mmcblk",
  1961. .pm = &mmc_blk_pm_ops,
  1962. },
  1963. .probe = mmc_blk_probe,
  1964. .remove = mmc_blk_remove,
  1965. .shutdown = mmc_blk_shutdown,
  1966. };
  1967. static int __init mmc_blk_init(void)
  1968. {
  1969. int res;
  1970. if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
  1971. pr_info("mmcblk: using %d minors per device\n", perdev_minors);
  1972. max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
  1973. res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
  1974. if (res)
  1975. goto out;
  1976. res = mmc_register_driver(&mmc_driver);
  1977. if (res)
  1978. goto out2;
  1979. return 0;
  1980. out2:
  1981. unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
  1982. out:
  1983. return res;
  1984. }
  1985. static void __exit mmc_blk_exit(void)
  1986. {
  1987. mmc_unregister_driver(&mmc_driver);
  1988. unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
  1989. }
  1990. module_init(mmc_blk_init);
  1991. module_exit(mmc_blk_exit);
  1992. MODULE_LICENSE("GPL");
  1993. MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");