page_ext.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. #include <linux/mm.h>
  2. #include <linux/mmzone.h>
  3. #include <linux/bootmem.h>
  4. #include <linux/page_ext.h>
  5. #include <linux/memory.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/kmemleak.h>
  8. /*
  9. * struct page extension
  10. *
  11. * This is the feature to manage memory for extended data per page.
  12. *
  13. * Until now, we must modify struct page itself to store extra data per page.
  14. * This requires rebuilding the kernel and it is really time consuming process.
  15. * And, sometimes, rebuild is impossible due to third party module dependency.
  16. * At last, enlarging struct page could cause un-wanted system behaviour change.
  17. *
  18. * This feature is intended to overcome above mentioned problems. This feature
  19. * allocates memory for extended data per page in certain place rather than
  20. * the struct page itself. This memory can be accessed by the accessor
  21. * functions provided by this code. During the boot process, it checks whether
  22. * allocation of huge chunk of memory is needed or not. If not, it avoids
  23. * allocating memory at all. With this advantage, we can include this feature
  24. * into the kernel in default and can avoid rebuild and solve related problems.
  25. *
  26. * To help these things to work well, there are two callbacks for clients. One
  27. * is the need callback which is mandatory if user wants to avoid useless
  28. * memory allocation at boot-time. The other is optional, init callback, which
  29. * is used to do proper initialization after memory is allocated.
  30. *
  31. * The need callback is used to decide whether extended memory allocation is
  32. * needed or not. Sometimes users want to deactivate some features in this
  33. * boot and extra memory would be unneccessary. In this case, to avoid
  34. * allocating huge chunk of memory, each clients represent their need of
  35. * extra memory through the need callback. If one of the need callbacks
  36. * returns true, it means that someone needs extra memory so that
  37. * page extension core should allocates memory for page extension. If
  38. * none of need callbacks return true, memory isn't needed at all in this boot
  39. * and page extension core can skip to allocate memory. As result,
  40. * none of memory is wasted.
  41. *
  42. * The init callback is used to do proper initialization after page extension
  43. * is completely initialized. In sparse memory system, extra memory is
  44. * allocated some time later than memmap is allocated. In other words, lifetime
  45. * of memory for page extension isn't same with memmap for struct page.
  46. * Therefore, clients can't store extra data until page extension is
  47. * initialized, even if pages are allocated and used freely. This could
  48. * cause inadequate state of extra data per page, so, to prevent it, client
  49. * can utilize this callback to initialize the state of it correctly.
  50. */
  51. static struct page_ext_operations *page_ext_ops[] = {
  52. };
  53. static unsigned long total_usage;
  54. static bool __init invoke_need_callbacks(void)
  55. {
  56. int i;
  57. int entries = ARRAY_SIZE(page_ext_ops);
  58. for (i = 0; i < entries; i++) {
  59. if (page_ext_ops[i]->need && page_ext_ops[i]->need())
  60. return true;
  61. }
  62. return false;
  63. }
  64. static void __init invoke_init_callbacks(void)
  65. {
  66. int i;
  67. int entries = ARRAY_SIZE(page_ext_ops);
  68. for (i = 0; i < entries; i++) {
  69. if (page_ext_ops[i]->init)
  70. page_ext_ops[i]->init();
  71. }
  72. }
  73. #if !defined(CONFIG_SPARSEMEM)
  74. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  75. {
  76. pgdat->node_page_ext = NULL;
  77. }
  78. struct page_ext *lookup_page_ext(struct page *page)
  79. {
  80. unsigned long pfn = page_to_pfn(page);
  81. unsigned long offset;
  82. struct page_ext *base;
  83. base = NODE_DATA(page_to_nid(page))->node_page_ext;
  84. #ifdef CONFIG_DEBUG_VM
  85. /*
  86. * The sanity checks the page allocator does upon freeing a
  87. * page can reach here before the page_ext arrays are
  88. * allocated when feeding a range of pages to the allocator
  89. * for the first time during bootup or memory hotplug.
  90. */
  91. if (unlikely(!base))
  92. return NULL;
  93. #endif
  94. offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
  95. MAX_ORDER_NR_PAGES);
  96. return base + offset;
  97. }
  98. static int __init alloc_node_page_ext(int nid)
  99. {
  100. struct page_ext *base;
  101. unsigned long table_size;
  102. unsigned long nr_pages;
  103. nr_pages = NODE_DATA(nid)->node_spanned_pages;
  104. if (!nr_pages)
  105. return 0;
  106. /*
  107. * Need extra space if node range is not aligned with
  108. * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
  109. * checks buddy's status, range could be out of exact node range.
  110. */
  111. if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
  112. !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
  113. nr_pages += MAX_ORDER_NR_PAGES;
  114. table_size = sizeof(struct page_ext) * nr_pages;
  115. base = memblock_virt_alloc_try_nid_nopanic(
  116. table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  117. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  118. if (!base)
  119. return -ENOMEM;
  120. NODE_DATA(nid)->node_page_ext = base;
  121. total_usage += table_size;
  122. return 0;
  123. }
  124. void __init page_ext_init_flatmem(void)
  125. {
  126. int nid, fail;
  127. if (!invoke_need_callbacks())
  128. return;
  129. for_each_online_node(nid) {
  130. fail = alloc_node_page_ext(nid);
  131. if (fail)
  132. goto fail;
  133. }
  134. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  135. invoke_init_callbacks();
  136. return;
  137. fail:
  138. pr_crit("allocation of page_ext failed.\n");
  139. panic("Out of memory");
  140. }
  141. #else /* CONFIG_FLAT_NODE_MEM_MAP */
  142. struct page_ext *lookup_page_ext(struct page *page)
  143. {
  144. unsigned long pfn = page_to_pfn(page);
  145. struct mem_section *section = __pfn_to_section(pfn);
  146. #ifdef CONFIG_DEBUG_VM
  147. /*
  148. * The sanity checks the page allocator does upon freeing a
  149. * page can reach here before the page_ext arrays are
  150. * allocated when feeding a range of pages to the allocator
  151. * for the first time during bootup or memory hotplug.
  152. */
  153. if (!section->page_ext)
  154. return NULL;
  155. #endif
  156. return section->page_ext + pfn;
  157. }
  158. static void *__meminit alloc_page_ext(size_t size, int nid)
  159. {
  160. gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
  161. void *addr = NULL;
  162. addr = alloc_pages_exact_nid(nid, size, flags);
  163. if (addr) {
  164. kmemleak_alloc(addr, size, 1, flags);
  165. return addr;
  166. }
  167. if (node_state(nid, N_HIGH_MEMORY))
  168. addr = vzalloc_node(size, nid);
  169. else
  170. addr = vzalloc(size);
  171. return addr;
  172. }
  173. static int __meminit init_section_page_ext(unsigned long pfn, int nid)
  174. {
  175. struct mem_section *section;
  176. struct page_ext *base;
  177. unsigned long table_size;
  178. section = __pfn_to_section(pfn);
  179. if (section->page_ext)
  180. return 0;
  181. table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
  182. base = alloc_page_ext(table_size, nid);
  183. /*
  184. * The value stored in section->page_ext is (base - pfn)
  185. * and it does not point to the memory block allocated above,
  186. * causing kmemleak false positives.
  187. */
  188. kmemleak_not_leak(base);
  189. if (!base) {
  190. pr_err("page ext allocation failure\n");
  191. return -ENOMEM;
  192. }
  193. /*
  194. * The passed "pfn" may not be aligned to SECTION. For the calculation
  195. * we need to apply a mask.
  196. */
  197. pfn &= PAGE_SECTION_MASK;
  198. section->page_ext = base - pfn;
  199. total_usage += table_size;
  200. return 0;
  201. }
  202. #ifdef CONFIG_MEMORY_HOTPLUG
  203. static void free_page_ext(void *addr)
  204. {
  205. if (is_vmalloc_addr(addr)) {
  206. vfree(addr);
  207. } else {
  208. struct page *page = virt_to_page(addr);
  209. size_t table_size;
  210. table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
  211. BUG_ON(PageReserved(page));
  212. free_pages_exact(addr, table_size);
  213. }
  214. }
  215. static void __free_page_ext(unsigned long pfn)
  216. {
  217. struct mem_section *ms;
  218. struct page_ext *base;
  219. ms = __pfn_to_section(pfn);
  220. if (!ms || !ms->page_ext)
  221. return;
  222. base = ms->page_ext + pfn;
  223. free_page_ext(base);
  224. ms->page_ext = NULL;
  225. }
  226. static int __meminit online_page_ext(unsigned long start_pfn,
  227. unsigned long nr_pages,
  228. int nid)
  229. {
  230. unsigned long start, end, pfn;
  231. int fail = 0;
  232. start = SECTION_ALIGN_DOWN(start_pfn);
  233. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  234. if (nid == -1) {
  235. /*
  236. * In this case, "nid" already exists and contains valid memory.
  237. * "start_pfn" passed to us is a pfn which is an arg for
  238. * online__pages(), and start_pfn should exist.
  239. */
  240. nid = pfn_to_nid(start_pfn);
  241. VM_BUG_ON(!node_state(nid, N_ONLINE));
  242. }
  243. for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
  244. if (!pfn_present(pfn))
  245. continue;
  246. fail = init_section_page_ext(pfn, nid);
  247. }
  248. if (!fail)
  249. return 0;
  250. /* rollback */
  251. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  252. __free_page_ext(pfn);
  253. return -ENOMEM;
  254. }
  255. static int __meminit offline_page_ext(unsigned long start_pfn,
  256. unsigned long nr_pages, int nid)
  257. {
  258. unsigned long start, end, pfn;
  259. start = SECTION_ALIGN_DOWN(start_pfn);
  260. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  261. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  262. __free_page_ext(pfn);
  263. return 0;
  264. }
  265. static int __meminit page_ext_callback(struct notifier_block *self,
  266. unsigned long action, void *arg)
  267. {
  268. struct memory_notify *mn = arg;
  269. int ret = 0;
  270. switch (action) {
  271. case MEM_GOING_ONLINE:
  272. ret = online_page_ext(mn->start_pfn,
  273. mn->nr_pages, mn->status_change_nid);
  274. break;
  275. case MEM_OFFLINE:
  276. offline_page_ext(mn->start_pfn,
  277. mn->nr_pages, mn->status_change_nid);
  278. break;
  279. case MEM_CANCEL_ONLINE:
  280. offline_page_ext(mn->start_pfn,
  281. mn->nr_pages, mn->status_change_nid);
  282. break;
  283. case MEM_GOING_OFFLINE:
  284. break;
  285. case MEM_ONLINE:
  286. case MEM_CANCEL_OFFLINE:
  287. break;
  288. }
  289. return notifier_from_errno(ret);
  290. }
  291. #endif
  292. void __init page_ext_init(void)
  293. {
  294. unsigned long pfn;
  295. int nid;
  296. if (!invoke_need_callbacks())
  297. return;
  298. for_each_node_state(nid, N_MEMORY) {
  299. unsigned long start_pfn, end_pfn;
  300. start_pfn = node_start_pfn(nid);
  301. end_pfn = node_end_pfn(nid);
  302. /*
  303. * start_pfn and end_pfn may not be aligned to SECTION and the
  304. * page->flags of out of node pages are not initialized. So we
  305. * scan [start_pfn, the biggest section's pfn < end_pfn) here.
  306. */
  307. for (pfn = start_pfn; pfn < end_pfn;
  308. pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
  309. if (!pfn_valid(pfn))
  310. continue;
  311. /*
  312. * Nodes's pfns can be overlapping.
  313. * We know some arch can have a nodes layout such as
  314. * -------------pfn-------------->
  315. * N0 | N1 | N2 | N0 | N1 | N2|....
  316. */
  317. if (pfn_to_nid(pfn) != nid)
  318. continue;
  319. if (init_section_page_ext(pfn, nid))
  320. goto oom;
  321. }
  322. }
  323. hotplug_memory_notifier(page_ext_callback, 0);
  324. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  325. invoke_init_callbacks();
  326. return;
  327. oom:
  328. panic("Out of memory");
  329. }
  330. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  331. {
  332. }
  333. #endif