page_alloc.c 182 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_ext.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/prefetch.h>
  56. #include <linux/mm_inline.h>
  57. #include <linux/migrate.h>
  58. #include <linux/page-debug-flags.h>
  59. #include <linux/hugetlb.h>
  60. #include <linux/sched/rt.h>
  61. #include <asm/sections.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/div64.h>
  64. #include "internal.h"
  65. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  66. static DEFINE_MUTEX(pcp_batch_high_lock);
  67. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  68. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  69. DEFINE_PER_CPU(int, numa_node);
  70. EXPORT_PER_CPU_SYMBOL(numa_node);
  71. #endif
  72. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  73. /*
  74. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  75. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  76. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  77. * defined in <linux/topology.h>.
  78. */
  79. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  80. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  81. int _node_numa_mem_[MAX_NUMNODES];
  82. #endif
  83. /*
  84. * Array of node states.
  85. */
  86. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  87. [N_POSSIBLE] = NODE_MASK_ALL,
  88. [N_ONLINE] = { { [0] = 1UL } },
  89. #ifndef CONFIG_NUMA
  90. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  91. #ifdef CONFIG_HIGHMEM
  92. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  93. #endif
  94. #ifdef CONFIG_MOVABLE_NODE
  95. [N_MEMORY] = { { [0] = 1UL } },
  96. #endif
  97. [N_CPU] = { { [0] = 1UL } },
  98. #endif /* NUMA */
  99. };
  100. EXPORT_SYMBOL(node_states);
  101. /* Protect totalram_pages and zone->managed_pages */
  102. static DEFINE_SPINLOCK(managed_page_count_lock);
  103. unsigned long totalram_pages __read_mostly;
  104. unsigned long totalreserve_pages __read_mostly;
  105. /*
  106. * When calculating the number of globally allowed dirty pages, there
  107. * is a certain number of per-zone reserves that should not be
  108. * considered dirtyable memory. This is the sum of those reserves
  109. * over all existing zones that contribute dirtyable memory.
  110. */
  111. unsigned long dirty_balance_reserve __read_mostly;
  112. int percpu_pagelist_fraction;
  113. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  114. #ifdef CONFIG_PM_SLEEP
  115. /*
  116. * The following functions are used by the suspend/hibernate code to temporarily
  117. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  118. * while devices are suspended. To avoid races with the suspend/hibernate code,
  119. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  120. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  121. * guaranteed not to run in parallel with that modification).
  122. */
  123. static gfp_t saved_gfp_mask;
  124. void pm_restore_gfp_mask(void)
  125. {
  126. WARN_ON(!mutex_is_locked(&pm_mutex));
  127. if (saved_gfp_mask) {
  128. gfp_allowed_mask = saved_gfp_mask;
  129. saved_gfp_mask = 0;
  130. }
  131. }
  132. void pm_restrict_gfp_mask(void)
  133. {
  134. WARN_ON(!mutex_is_locked(&pm_mutex));
  135. WARN_ON(saved_gfp_mask);
  136. saved_gfp_mask = gfp_allowed_mask;
  137. gfp_allowed_mask &= ~GFP_IOFS;
  138. }
  139. bool pm_suspended_storage(void)
  140. {
  141. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  142. return false;
  143. return true;
  144. }
  145. #endif /* CONFIG_PM_SLEEP */
  146. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  147. int pageblock_order __read_mostly;
  148. #endif
  149. static void __free_pages_ok(struct page *page, unsigned int order);
  150. /*
  151. * results with 256, 32 in the lowmem_reserve sysctl:
  152. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  153. * 1G machine -> (16M dma, 784M normal, 224M high)
  154. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  155. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  156. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  157. *
  158. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  159. * don't need any ZONE_NORMAL reservation
  160. */
  161. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  162. #ifdef CONFIG_ZONE_DMA
  163. 256,
  164. #endif
  165. #ifdef CONFIG_ZONE_DMA32
  166. 256,
  167. #endif
  168. #ifdef CONFIG_HIGHMEM
  169. 32,
  170. #endif
  171. 32,
  172. };
  173. EXPORT_SYMBOL(totalram_pages);
  174. static char * const zone_names[MAX_NR_ZONES] = {
  175. #ifdef CONFIG_ZONE_DMA
  176. "DMA",
  177. #endif
  178. #ifdef CONFIG_ZONE_DMA32
  179. "DMA32",
  180. #endif
  181. "Normal",
  182. #ifdef CONFIG_HIGHMEM
  183. "HighMem",
  184. #endif
  185. "Movable",
  186. };
  187. int min_free_kbytes = 1024;
  188. int user_min_free_kbytes = -1;
  189. static unsigned long __meminitdata nr_kernel_pages;
  190. static unsigned long __meminitdata nr_all_pages;
  191. static unsigned long __meminitdata dma_reserve;
  192. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  193. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  194. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  195. static unsigned long __initdata required_kernelcore;
  196. static unsigned long __initdata required_movablecore;
  197. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  198. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  199. int movable_zone;
  200. EXPORT_SYMBOL(movable_zone);
  201. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  202. #if MAX_NUMNODES > 1
  203. int nr_node_ids __read_mostly = MAX_NUMNODES;
  204. int nr_online_nodes __read_mostly = 1;
  205. EXPORT_SYMBOL(nr_node_ids);
  206. EXPORT_SYMBOL(nr_online_nodes);
  207. #endif
  208. int page_group_by_mobility_disabled __read_mostly;
  209. void set_pageblock_migratetype(struct page *page, int migratetype)
  210. {
  211. if (unlikely(page_group_by_mobility_disabled &&
  212. migratetype < MIGRATE_PCPTYPES))
  213. migratetype = MIGRATE_UNMOVABLE;
  214. set_pageblock_flags_group(page, (unsigned long)migratetype,
  215. PB_migrate, PB_migrate_end);
  216. }
  217. bool oom_killer_disabled __read_mostly;
  218. #ifdef CONFIG_DEBUG_VM
  219. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  220. {
  221. int ret = 0;
  222. unsigned seq;
  223. unsigned long pfn = page_to_pfn(page);
  224. unsigned long sp, start_pfn;
  225. do {
  226. seq = zone_span_seqbegin(zone);
  227. start_pfn = zone->zone_start_pfn;
  228. sp = zone->spanned_pages;
  229. if (!zone_spans_pfn(zone, pfn))
  230. ret = 1;
  231. } while (zone_span_seqretry(zone, seq));
  232. if (ret)
  233. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  234. pfn, zone_to_nid(zone), zone->name,
  235. start_pfn, start_pfn + sp);
  236. return ret;
  237. }
  238. static int page_is_consistent(struct zone *zone, struct page *page)
  239. {
  240. if (!pfn_valid_within(page_to_pfn(page)))
  241. return 0;
  242. if (zone != page_zone(page))
  243. return 0;
  244. return 1;
  245. }
  246. /*
  247. * Temporary debugging check for pages not lying within a given zone.
  248. */
  249. static int bad_range(struct zone *zone, struct page *page)
  250. {
  251. if (page_outside_zone_boundaries(zone, page))
  252. return 1;
  253. if (!page_is_consistent(zone, page))
  254. return 1;
  255. return 0;
  256. }
  257. #else
  258. static inline int bad_range(struct zone *zone, struct page *page)
  259. {
  260. return 0;
  261. }
  262. #endif
  263. static void bad_page(struct page *page, const char *reason,
  264. unsigned long bad_flags)
  265. {
  266. static unsigned long resume;
  267. static unsigned long nr_shown;
  268. static unsigned long nr_unshown;
  269. /* Don't complain about poisoned pages */
  270. if (PageHWPoison(page)) {
  271. page_mapcount_reset(page); /* remove PageBuddy */
  272. return;
  273. }
  274. /*
  275. * Allow a burst of 60 reports, then keep quiet for that minute;
  276. * or allow a steady drip of one report per second.
  277. */
  278. if (nr_shown == 60) {
  279. if (time_before(jiffies, resume)) {
  280. nr_unshown++;
  281. goto out;
  282. }
  283. if (nr_unshown) {
  284. printk(KERN_ALERT
  285. "BUG: Bad page state: %lu messages suppressed\n",
  286. nr_unshown);
  287. nr_unshown = 0;
  288. }
  289. nr_shown = 0;
  290. }
  291. if (nr_shown++ == 0)
  292. resume = jiffies + 60 * HZ;
  293. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  294. current->comm, page_to_pfn(page));
  295. dump_page_badflags(page, reason, bad_flags);
  296. print_modules();
  297. dump_stack();
  298. out:
  299. /* Leave bad fields for debug, except PageBuddy could make trouble */
  300. page_mapcount_reset(page); /* remove PageBuddy */
  301. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  302. }
  303. /*
  304. * Higher-order pages are called "compound pages". They are structured thusly:
  305. *
  306. * The first PAGE_SIZE page is called the "head page".
  307. *
  308. * The remaining PAGE_SIZE pages are called "tail pages".
  309. *
  310. * All pages have PG_compound set. All tail pages have their ->first_page
  311. * pointing at the head page.
  312. *
  313. * The first tail page's ->lru.next holds the address of the compound page's
  314. * put_page() function. Its ->lru.prev holds the order of allocation.
  315. * This usage means that zero-order pages may not be compound.
  316. */
  317. static void free_compound_page(struct page *page)
  318. {
  319. __free_pages_ok(page, compound_order(page));
  320. }
  321. void prep_compound_page(struct page *page, unsigned long order)
  322. {
  323. int i;
  324. int nr_pages = 1 << order;
  325. set_compound_page_dtor(page, free_compound_page);
  326. set_compound_order(page, order);
  327. __SetPageHead(page);
  328. for (i = 1; i < nr_pages; i++) {
  329. struct page *p = page + i;
  330. set_page_count(p, 0);
  331. p->first_page = page;
  332. /* Make sure p->first_page is always valid for PageTail() */
  333. smp_wmb();
  334. __SetPageTail(p);
  335. }
  336. }
  337. /* update __split_huge_page_refcount if you change this function */
  338. static int destroy_compound_page(struct page *page, unsigned long order)
  339. {
  340. int i;
  341. int nr_pages = 1 << order;
  342. int bad = 0;
  343. if (unlikely(compound_order(page) != order)) {
  344. bad_page(page, "wrong compound order", 0);
  345. bad++;
  346. }
  347. __ClearPageHead(page);
  348. for (i = 1; i < nr_pages; i++) {
  349. struct page *p = page + i;
  350. if (unlikely(!PageTail(p))) {
  351. bad_page(page, "PageTail not set", 0);
  352. bad++;
  353. } else if (unlikely(p->first_page != page)) {
  354. bad_page(page, "first_page not consistent", 0);
  355. bad++;
  356. }
  357. __ClearPageTail(p);
  358. }
  359. return bad;
  360. }
  361. static inline void prep_zero_page(struct page *page, unsigned int order,
  362. gfp_t gfp_flags)
  363. {
  364. int i;
  365. /*
  366. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  367. * and __GFP_HIGHMEM from hard or soft interrupt context.
  368. */
  369. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  370. for (i = 0; i < (1 << order); i++)
  371. clear_highpage(page + i);
  372. }
  373. #ifdef CONFIG_DEBUG_PAGEALLOC
  374. unsigned int _debug_guardpage_minorder;
  375. static int __init debug_guardpage_minorder_setup(char *buf)
  376. {
  377. unsigned long res;
  378. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  379. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  380. return 0;
  381. }
  382. _debug_guardpage_minorder = res;
  383. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  384. return 0;
  385. }
  386. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  387. static inline void set_page_guard(struct zone *zone, struct page *page,
  388. unsigned int order, int migratetype)
  389. {
  390. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  391. INIT_LIST_HEAD(&page->lru);
  392. set_page_private(page, order);
  393. /* Guard pages are not available for any usage */
  394. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  395. }
  396. static inline void clear_page_guard(struct zone *zone, struct page *page,
  397. unsigned int order, int migratetype)
  398. {
  399. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  400. set_page_private(page, 0);
  401. if (!is_migrate_isolate(migratetype))
  402. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  403. }
  404. #else
  405. static inline void set_page_guard(struct zone *zone, struct page *page,
  406. unsigned int order, int migratetype) {}
  407. static inline void clear_page_guard(struct zone *zone, struct page *page,
  408. unsigned int order, int migratetype) {}
  409. #endif
  410. static inline void set_page_order(struct page *page, unsigned int order)
  411. {
  412. set_page_private(page, order);
  413. __SetPageBuddy(page);
  414. }
  415. static inline void rmv_page_order(struct page *page)
  416. {
  417. __ClearPageBuddy(page);
  418. set_page_private(page, 0);
  419. }
  420. /*
  421. * This function checks whether a page is free && is the buddy
  422. * we can do coalesce a page and its buddy if
  423. * (a) the buddy is not in a hole &&
  424. * (b) the buddy is in the buddy system &&
  425. * (c) a page and its buddy have the same order &&
  426. * (d) a page and its buddy are in the same zone.
  427. *
  428. * For recording whether a page is in the buddy system, we set ->_mapcount
  429. * PAGE_BUDDY_MAPCOUNT_VALUE.
  430. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  431. * serialized by zone->lock.
  432. *
  433. * For recording page's order, we use page_private(page).
  434. */
  435. static inline int page_is_buddy(struct page *page, struct page *buddy,
  436. unsigned int order)
  437. {
  438. if (!pfn_valid_within(page_to_pfn(buddy)))
  439. return 0;
  440. if (page_is_guard(buddy) && page_order(buddy) == order) {
  441. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  442. if (page_zone_id(page) != page_zone_id(buddy))
  443. return 0;
  444. return 1;
  445. }
  446. if (PageBuddy(buddy) && page_order(buddy) == order) {
  447. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  448. /*
  449. * zone check is done late to avoid uselessly
  450. * calculating zone/node ids for pages that could
  451. * never merge.
  452. */
  453. if (page_zone_id(page) != page_zone_id(buddy))
  454. return 0;
  455. return 1;
  456. }
  457. return 0;
  458. }
  459. /*
  460. * Freeing function for a buddy system allocator.
  461. *
  462. * The concept of a buddy system is to maintain direct-mapped table
  463. * (containing bit values) for memory blocks of various "orders".
  464. * The bottom level table contains the map for the smallest allocatable
  465. * units of memory (here, pages), and each level above it describes
  466. * pairs of units from the levels below, hence, "buddies".
  467. * At a high level, all that happens here is marking the table entry
  468. * at the bottom level available, and propagating the changes upward
  469. * as necessary, plus some accounting needed to play nicely with other
  470. * parts of the VM system.
  471. * At each level, we keep a list of pages, which are heads of continuous
  472. * free pages of length of (1 << order) and marked with _mapcount
  473. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  474. * field.
  475. * So when we are allocating or freeing one, we can derive the state of the
  476. * other. That is, if we allocate a small block, and both were
  477. * free, the remainder of the region must be split into blocks.
  478. * If a block is freed, and its buddy is also free, then this
  479. * triggers coalescing into a block of larger size.
  480. *
  481. * -- nyc
  482. */
  483. static inline void __free_one_page(struct page *page,
  484. unsigned long pfn,
  485. struct zone *zone, unsigned int order,
  486. int migratetype)
  487. {
  488. unsigned long page_idx;
  489. unsigned long combined_idx;
  490. unsigned long uninitialized_var(buddy_idx);
  491. struct page *buddy;
  492. int max_order = MAX_ORDER;
  493. VM_BUG_ON(!zone_is_initialized(zone));
  494. if (unlikely(PageCompound(page)))
  495. if (unlikely(destroy_compound_page(page, order)))
  496. return;
  497. VM_BUG_ON(migratetype == -1);
  498. if (is_migrate_isolate(migratetype)) {
  499. /*
  500. * We restrict max order of merging to prevent merge
  501. * between freepages on isolate pageblock and normal
  502. * pageblock. Without this, pageblock isolation
  503. * could cause incorrect freepage accounting.
  504. */
  505. max_order = min(MAX_ORDER, pageblock_order + 1);
  506. } else {
  507. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  508. }
  509. page_idx = pfn & ((1 << max_order) - 1);
  510. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  511. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  512. while (order < max_order - 1) {
  513. buddy_idx = __find_buddy_index(page_idx, order);
  514. buddy = page + (buddy_idx - page_idx);
  515. if (!page_is_buddy(page, buddy, order))
  516. break;
  517. /*
  518. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  519. * merge with it and move up one order.
  520. */
  521. if (page_is_guard(buddy)) {
  522. clear_page_guard(zone, buddy, order, migratetype);
  523. } else {
  524. list_del(&buddy->lru);
  525. zone->free_area[order].nr_free--;
  526. rmv_page_order(buddy);
  527. }
  528. combined_idx = buddy_idx & page_idx;
  529. page = page + (combined_idx - page_idx);
  530. page_idx = combined_idx;
  531. order++;
  532. }
  533. set_page_order(page, order);
  534. /*
  535. * If this is not the largest possible page, check if the buddy
  536. * of the next-highest order is free. If it is, it's possible
  537. * that pages are being freed that will coalesce soon. In case,
  538. * that is happening, add the free page to the tail of the list
  539. * so it's less likely to be used soon and more likely to be merged
  540. * as a higher order page
  541. */
  542. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  543. struct page *higher_page, *higher_buddy;
  544. combined_idx = buddy_idx & page_idx;
  545. higher_page = page + (combined_idx - page_idx);
  546. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  547. higher_buddy = higher_page + (buddy_idx - combined_idx);
  548. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  549. list_add_tail(&page->lru,
  550. &zone->free_area[order].free_list[migratetype]);
  551. goto out;
  552. }
  553. }
  554. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  555. out:
  556. zone->free_area[order].nr_free++;
  557. }
  558. static inline int free_pages_check(struct page *page)
  559. {
  560. const char *bad_reason = NULL;
  561. unsigned long bad_flags = 0;
  562. if (unlikely(page_mapcount(page)))
  563. bad_reason = "nonzero mapcount";
  564. if (unlikely(page->mapping != NULL))
  565. bad_reason = "non-NULL mapping";
  566. if (unlikely(atomic_read(&page->_count) != 0))
  567. bad_reason = "nonzero _count";
  568. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  569. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  570. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  571. }
  572. #ifdef CONFIG_MEMCG
  573. if (unlikely(page->mem_cgroup))
  574. bad_reason = "page still charged to cgroup";
  575. #endif
  576. if (unlikely(bad_reason)) {
  577. bad_page(page, bad_reason, bad_flags);
  578. return 1;
  579. }
  580. page_cpupid_reset_last(page);
  581. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  582. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  583. return 0;
  584. }
  585. /*
  586. * Frees a number of pages from the PCP lists
  587. * Assumes all pages on list are in same zone, and of same order.
  588. * count is the number of pages to free.
  589. *
  590. * If the zone was previously in an "all pages pinned" state then look to
  591. * see if this freeing clears that state.
  592. *
  593. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  594. * pinned" detection logic.
  595. */
  596. static void free_pcppages_bulk(struct zone *zone, int count,
  597. struct per_cpu_pages *pcp)
  598. {
  599. int migratetype = 0;
  600. int batch_free = 0;
  601. int to_free = count;
  602. unsigned long nr_scanned;
  603. spin_lock(&zone->lock);
  604. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  605. if (nr_scanned)
  606. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  607. while (to_free) {
  608. struct page *page;
  609. struct list_head *list;
  610. /*
  611. * Remove pages from lists in a round-robin fashion. A
  612. * batch_free count is maintained that is incremented when an
  613. * empty list is encountered. This is so more pages are freed
  614. * off fuller lists instead of spinning excessively around empty
  615. * lists
  616. */
  617. do {
  618. batch_free++;
  619. if (++migratetype == MIGRATE_PCPTYPES)
  620. migratetype = 0;
  621. list = &pcp->lists[migratetype];
  622. } while (list_empty(list));
  623. /* This is the only non-empty list. Free them all. */
  624. if (batch_free == MIGRATE_PCPTYPES)
  625. batch_free = to_free;
  626. do {
  627. int mt; /* migratetype of the to-be-freed page */
  628. page = list_entry(list->prev, struct page, lru);
  629. /* must delete as __free_one_page list manipulates */
  630. list_del(&page->lru);
  631. mt = get_freepage_migratetype(page);
  632. if (unlikely(has_isolate_pageblock(zone)))
  633. mt = get_pageblock_migratetype(page);
  634. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  635. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  636. trace_mm_page_pcpu_drain(page, 0, mt);
  637. } while (--to_free && --batch_free && !list_empty(list));
  638. }
  639. spin_unlock(&zone->lock);
  640. }
  641. static void free_one_page(struct zone *zone,
  642. struct page *page, unsigned long pfn,
  643. unsigned int order,
  644. int migratetype)
  645. {
  646. unsigned long nr_scanned;
  647. spin_lock(&zone->lock);
  648. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  649. if (nr_scanned)
  650. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  651. if (unlikely(has_isolate_pageblock(zone) ||
  652. is_migrate_isolate(migratetype))) {
  653. migratetype = get_pfnblock_migratetype(page, pfn);
  654. }
  655. __free_one_page(page, pfn, zone, order, migratetype);
  656. spin_unlock(&zone->lock);
  657. }
  658. static bool free_pages_prepare(struct page *page, unsigned int order)
  659. {
  660. int i;
  661. int bad = 0;
  662. VM_BUG_ON_PAGE(PageTail(page), page);
  663. VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
  664. trace_mm_page_free(page, order);
  665. kmemcheck_free_shadow(page, order);
  666. if (PageAnon(page))
  667. page->mapping = NULL;
  668. for (i = 0; i < (1 << order); i++)
  669. bad += free_pages_check(page + i);
  670. if (bad)
  671. return false;
  672. if (!PageHighMem(page)) {
  673. debug_check_no_locks_freed(page_address(page),
  674. PAGE_SIZE << order);
  675. debug_check_no_obj_freed(page_address(page),
  676. PAGE_SIZE << order);
  677. }
  678. arch_free_page(page, order);
  679. kernel_map_pages(page, 1 << order, 0);
  680. return true;
  681. }
  682. static void __free_pages_ok(struct page *page, unsigned int order)
  683. {
  684. unsigned long flags;
  685. int migratetype;
  686. unsigned long pfn = page_to_pfn(page);
  687. if (!free_pages_prepare(page, order))
  688. return;
  689. migratetype = get_pfnblock_migratetype(page, pfn);
  690. local_irq_save(flags);
  691. __count_vm_events(PGFREE, 1 << order);
  692. set_freepage_migratetype(page, migratetype);
  693. free_one_page(page_zone(page), page, pfn, order, migratetype);
  694. local_irq_restore(flags);
  695. }
  696. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  697. {
  698. unsigned int nr_pages = 1 << order;
  699. struct page *p = page;
  700. unsigned int loop;
  701. prefetchw(p);
  702. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  703. prefetchw(p + 1);
  704. __ClearPageReserved(p);
  705. set_page_count(p, 0);
  706. }
  707. __ClearPageReserved(p);
  708. set_page_count(p, 0);
  709. page_zone(page)->managed_pages += nr_pages;
  710. set_page_refcounted(page);
  711. __free_pages(page, order);
  712. }
  713. #ifdef CONFIG_CMA
  714. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  715. void __init init_cma_reserved_pageblock(struct page *page)
  716. {
  717. unsigned i = pageblock_nr_pages;
  718. struct page *p = page;
  719. do {
  720. __ClearPageReserved(p);
  721. set_page_count(p, 0);
  722. } while (++p, --i);
  723. set_pageblock_migratetype(page, MIGRATE_CMA);
  724. if (pageblock_order >= MAX_ORDER) {
  725. i = pageblock_nr_pages;
  726. p = page;
  727. do {
  728. set_page_refcounted(p);
  729. __free_pages(p, MAX_ORDER - 1);
  730. p += MAX_ORDER_NR_PAGES;
  731. } while (i -= MAX_ORDER_NR_PAGES);
  732. } else {
  733. set_page_refcounted(page);
  734. __free_pages(page, pageblock_order);
  735. }
  736. adjust_managed_page_count(page, pageblock_nr_pages);
  737. }
  738. #endif
  739. /*
  740. * The order of subdivision here is critical for the IO subsystem.
  741. * Please do not alter this order without good reasons and regression
  742. * testing. Specifically, as large blocks of memory are subdivided,
  743. * the order in which smaller blocks are delivered depends on the order
  744. * they're subdivided in this function. This is the primary factor
  745. * influencing the order in which pages are delivered to the IO
  746. * subsystem according to empirical testing, and this is also justified
  747. * by considering the behavior of a buddy system containing a single
  748. * large block of memory acted on by a series of small allocations.
  749. * This behavior is a critical factor in sglist merging's success.
  750. *
  751. * -- nyc
  752. */
  753. static inline void expand(struct zone *zone, struct page *page,
  754. int low, int high, struct free_area *area,
  755. int migratetype)
  756. {
  757. unsigned long size = 1 << high;
  758. while (high > low) {
  759. area--;
  760. high--;
  761. size >>= 1;
  762. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  763. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  764. high < debug_guardpage_minorder()) {
  765. /*
  766. * Mark as guard pages (or page), that will allow to
  767. * merge back to allocator when buddy will be freed.
  768. * Corresponding page table entries will not be touched,
  769. * pages will stay not present in virtual address space
  770. */
  771. set_page_guard(zone, &page[size], high, migratetype);
  772. continue;
  773. }
  774. list_add(&page[size].lru, &area->free_list[migratetype]);
  775. area->nr_free++;
  776. set_page_order(&page[size], high);
  777. }
  778. }
  779. /*
  780. * This page is about to be returned from the page allocator
  781. */
  782. static inline int check_new_page(struct page *page)
  783. {
  784. const char *bad_reason = NULL;
  785. unsigned long bad_flags = 0;
  786. if (unlikely(page_mapcount(page)))
  787. bad_reason = "nonzero mapcount";
  788. if (unlikely(page->mapping != NULL))
  789. bad_reason = "non-NULL mapping";
  790. if (unlikely(atomic_read(&page->_count) != 0))
  791. bad_reason = "nonzero _count";
  792. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  793. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  794. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  795. }
  796. #ifdef CONFIG_MEMCG
  797. if (unlikely(page->mem_cgroup))
  798. bad_reason = "page still charged to cgroup";
  799. #endif
  800. if (unlikely(bad_reason)) {
  801. bad_page(page, bad_reason, bad_flags);
  802. return 1;
  803. }
  804. return 0;
  805. }
  806. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
  807. {
  808. int i;
  809. for (i = 0; i < (1 << order); i++) {
  810. struct page *p = page + i;
  811. if (unlikely(check_new_page(p)))
  812. return 1;
  813. }
  814. set_page_private(page, 0);
  815. set_page_refcounted(page);
  816. arch_alloc_page(page, order);
  817. kernel_map_pages(page, 1 << order, 1);
  818. if (gfp_flags & __GFP_ZERO)
  819. prep_zero_page(page, order, gfp_flags);
  820. if (order && (gfp_flags & __GFP_COMP))
  821. prep_compound_page(page, order);
  822. return 0;
  823. }
  824. /*
  825. * Go through the free lists for the given migratetype and remove
  826. * the smallest available page from the freelists
  827. */
  828. static inline
  829. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  830. int migratetype)
  831. {
  832. unsigned int current_order;
  833. struct free_area *area;
  834. struct page *page;
  835. /* Find a page of the appropriate size in the preferred list */
  836. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  837. area = &(zone->free_area[current_order]);
  838. if (list_empty(&area->free_list[migratetype]))
  839. continue;
  840. page = list_entry(area->free_list[migratetype].next,
  841. struct page, lru);
  842. list_del(&page->lru);
  843. rmv_page_order(page);
  844. area->nr_free--;
  845. expand(zone, page, order, current_order, area, migratetype);
  846. set_freepage_migratetype(page, migratetype);
  847. return page;
  848. }
  849. return NULL;
  850. }
  851. /*
  852. * This array describes the order lists are fallen back to when
  853. * the free lists for the desirable migrate type are depleted
  854. */
  855. static int fallbacks[MIGRATE_TYPES][4] = {
  856. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  857. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  858. #ifdef CONFIG_CMA
  859. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  860. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  861. #else
  862. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  863. #endif
  864. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  865. #ifdef CONFIG_MEMORY_ISOLATION
  866. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  867. #endif
  868. };
  869. /*
  870. * Move the free pages in a range to the free lists of the requested type.
  871. * Note that start_page and end_pages are not aligned on a pageblock
  872. * boundary. If alignment is required, use move_freepages_block()
  873. */
  874. int move_freepages(struct zone *zone,
  875. struct page *start_page, struct page *end_page,
  876. int migratetype)
  877. {
  878. struct page *page;
  879. unsigned long order;
  880. int pages_moved = 0;
  881. #ifndef CONFIG_HOLES_IN_ZONE
  882. /*
  883. * page_zone is not safe to call in this context when
  884. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  885. * anyway as we check zone boundaries in move_freepages_block().
  886. * Remove at a later date when no bug reports exist related to
  887. * grouping pages by mobility
  888. */
  889. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  890. #endif
  891. for (page = start_page; page <= end_page;) {
  892. /* Make sure we are not inadvertently changing nodes */
  893. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  894. if (!pfn_valid_within(page_to_pfn(page))) {
  895. page++;
  896. continue;
  897. }
  898. if (!PageBuddy(page)) {
  899. page++;
  900. continue;
  901. }
  902. order = page_order(page);
  903. list_move(&page->lru,
  904. &zone->free_area[order].free_list[migratetype]);
  905. set_freepage_migratetype(page, migratetype);
  906. page += 1 << order;
  907. pages_moved += 1 << order;
  908. }
  909. return pages_moved;
  910. }
  911. int move_freepages_block(struct zone *zone, struct page *page,
  912. int migratetype)
  913. {
  914. unsigned long start_pfn, end_pfn;
  915. struct page *start_page, *end_page;
  916. start_pfn = page_to_pfn(page);
  917. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  918. start_page = pfn_to_page(start_pfn);
  919. end_page = start_page + pageblock_nr_pages - 1;
  920. end_pfn = start_pfn + pageblock_nr_pages - 1;
  921. /* Do not cross zone boundaries */
  922. if (!zone_spans_pfn(zone, start_pfn))
  923. start_page = page;
  924. if (!zone_spans_pfn(zone, end_pfn))
  925. return 0;
  926. return move_freepages(zone, start_page, end_page, migratetype);
  927. }
  928. static void change_pageblock_range(struct page *pageblock_page,
  929. int start_order, int migratetype)
  930. {
  931. int nr_pageblocks = 1 << (start_order - pageblock_order);
  932. while (nr_pageblocks--) {
  933. set_pageblock_migratetype(pageblock_page, migratetype);
  934. pageblock_page += pageblock_nr_pages;
  935. }
  936. }
  937. /*
  938. * If breaking a large block of pages, move all free pages to the preferred
  939. * allocation list. If falling back for a reclaimable kernel allocation, be
  940. * more aggressive about taking ownership of free pages.
  941. *
  942. * On the other hand, never change migration type of MIGRATE_CMA pageblocks
  943. * nor move CMA pages to different free lists. We don't want unmovable pages
  944. * to be allocated from MIGRATE_CMA areas.
  945. *
  946. * Returns the new migratetype of the pageblock (or the same old migratetype
  947. * if it was unchanged).
  948. */
  949. static int try_to_steal_freepages(struct zone *zone, struct page *page,
  950. int start_type, int fallback_type)
  951. {
  952. int current_order = page_order(page);
  953. /*
  954. * When borrowing from MIGRATE_CMA, we need to release the excess
  955. * buddy pages to CMA itself. We also ensure the freepage_migratetype
  956. * is set to CMA so it is returned to the correct freelist in case
  957. * the page ends up being not actually allocated from the pcp lists.
  958. */
  959. if (is_migrate_cma(fallback_type))
  960. return fallback_type;
  961. /* Take ownership for orders >= pageblock_order */
  962. if (current_order >= pageblock_order) {
  963. change_pageblock_range(page, current_order, start_type);
  964. return start_type;
  965. }
  966. if (current_order >= pageblock_order / 2 ||
  967. start_type == MIGRATE_RECLAIMABLE ||
  968. page_group_by_mobility_disabled) {
  969. int pages;
  970. pages = move_freepages_block(zone, page, start_type);
  971. /* Claim the whole block if over half of it is free */
  972. if (pages >= (1 << (pageblock_order-1)) ||
  973. page_group_by_mobility_disabled) {
  974. set_pageblock_migratetype(page, start_type);
  975. return start_type;
  976. }
  977. }
  978. return fallback_type;
  979. }
  980. /* Remove an element from the buddy allocator from the fallback list */
  981. static inline struct page *
  982. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  983. {
  984. struct free_area *area;
  985. unsigned int current_order;
  986. struct page *page;
  987. int migratetype, new_type, i;
  988. /* Find the largest possible block of pages in the other list */
  989. for (current_order = MAX_ORDER-1;
  990. current_order >= order && current_order <= MAX_ORDER-1;
  991. --current_order) {
  992. for (i = 0;; i++) {
  993. migratetype = fallbacks[start_migratetype][i];
  994. /* MIGRATE_RESERVE handled later if necessary */
  995. if (migratetype == MIGRATE_RESERVE)
  996. break;
  997. area = &(zone->free_area[current_order]);
  998. if (list_empty(&area->free_list[migratetype]))
  999. continue;
  1000. page = list_entry(area->free_list[migratetype].next,
  1001. struct page, lru);
  1002. area->nr_free--;
  1003. new_type = try_to_steal_freepages(zone, page,
  1004. start_migratetype,
  1005. migratetype);
  1006. /* Remove the page from the freelists */
  1007. list_del(&page->lru);
  1008. rmv_page_order(page);
  1009. expand(zone, page, order, current_order, area,
  1010. new_type);
  1011. /* The freepage_migratetype may differ from pageblock's
  1012. * migratetype depending on the decisions in
  1013. * try_to_steal_freepages. This is OK as long as it does
  1014. * not differ for MIGRATE_CMA type.
  1015. */
  1016. set_freepage_migratetype(page, new_type);
  1017. trace_mm_page_alloc_extfrag(page, order, current_order,
  1018. start_migratetype, migratetype, new_type);
  1019. return page;
  1020. }
  1021. }
  1022. return NULL;
  1023. }
  1024. /*
  1025. * Do the hard work of removing an element from the buddy allocator.
  1026. * Call me with the zone->lock already held.
  1027. */
  1028. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1029. int migratetype)
  1030. {
  1031. struct page *page;
  1032. retry_reserve:
  1033. page = __rmqueue_smallest(zone, order, migratetype);
  1034. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1035. page = __rmqueue_fallback(zone, order, migratetype);
  1036. /*
  1037. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1038. * is used because __rmqueue_smallest is an inline function
  1039. * and we want just one call site
  1040. */
  1041. if (!page) {
  1042. migratetype = MIGRATE_RESERVE;
  1043. goto retry_reserve;
  1044. }
  1045. }
  1046. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1047. return page;
  1048. }
  1049. /*
  1050. * Obtain a specified number of elements from the buddy allocator, all under
  1051. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1052. * Returns the number of new pages which were placed at *list.
  1053. */
  1054. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1055. unsigned long count, struct list_head *list,
  1056. int migratetype, bool cold)
  1057. {
  1058. int i;
  1059. spin_lock(&zone->lock);
  1060. for (i = 0; i < count; ++i) {
  1061. struct page *page = __rmqueue(zone, order, migratetype);
  1062. if (unlikely(page == NULL))
  1063. break;
  1064. /*
  1065. * Split buddy pages returned by expand() are received here
  1066. * in physical page order. The page is added to the callers and
  1067. * list and the list head then moves forward. From the callers
  1068. * perspective, the linked list is ordered by page number in
  1069. * some conditions. This is useful for IO devices that can
  1070. * merge IO requests if the physical pages are ordered
  1071. * properly.
  1072. */
  1073. if (likely(!cold))
  1074. list_add(&page->lru, list);
  1075. else
  1076. list_add_tail(&page->lru, list);
  1077. list = &page->lru;
  1078. if (is_migrate_cma(get_freepage_migratetype(page)))
  1079. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1080. -(1 << order));
  1081. }
  1082. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1083. spin_unlock(&zone->lock);
  1084. return i;
  1085. }
  1086. #ifdef CONFIG_NUMA
  1087. /*
  1088. * Called from the vmstat counter updater to drain pagesets of this
  1089. * currently executing processor on remote nodes after they have
  1090. * expired.
  1091. *
  1092. * Note that this function must be called with the thread pinned to
  1093. * a single processor.
  1094. */
  1095. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1096. {
  1097. unsigned long flags;
  1098. int to_drain, batch;
  1099. local_irq_save(flags);
  1100. batch = ACCESS_ONCE(pcp->batch);
  1101. to_drain = min(pcp->count, batch);
  1102. if (to_drain > 0) {
  1103. free_pcppages_bulk(zone, to_drain, pcp);
  1104. pcp->count -= to_drain;
  1105. }
  1106. local_irq_restore(flags);
  1107. }
  1108. #endif
  1109. /*
  1110. * Drain pcplists of the indicated processor and zone.
  1111. *
  1112. * The processor must either be the current processor and the
  1113. * thread pinned to the current processor or a processor that
  1114. * is not online.
  1115. */
  1116. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1117. {
  1118. unsigned long flags;
  1119. struct per_cpu_pageset *pset;
  1120. struct per_cpu_pages *pcp;
  1121. local_irq_save(flags);
  1122. pset = per_cpu_ptr(zone->pageset, cpu);
  1123. pcp = &pset->pcp;
  1124. if (pcp->count) {
  1125. free_pcppages_bulk(zone, pcp->count, pcp);
  1126. pcp->count = 0;
  1127. }
  1128. local_irq_restore(flags);
  1129. }
  1130. /*
  1131. * Drain pcplists of all zones on the indicated processor.
  1132. *
  1133. * The processor must either be the current processor and the
  1134. * thread pinned to the current processor or a processor that
  1135. * is not online.
  1136. */
  1137. static void drain_pages(unsigned int cpu)
  1138. {
  1139. struct zone *zone;
  1140. for_each_populated_zone(zone) {
  1141. drain_pages_zone(cpu, zone);
  1142. }
  1143. }
  1144. /*
  1145. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1146. *
  1147. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1148. * the single zone's pages.
  1149. */
  1150. void drain_local_pages(struct zone *zone)
  1151. {
  1152. int cpu = smp_processor_id();
  1153. if (zone)
  1154. drain_pages_zone(cpu, zone);
  1155. else
  1156. drain_pages(cpu);
  1157. }
  1158. /*
  1159. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1160. *
  1161. * When zone parameter is non-NULL, spill just the single zone's pages.
  1162. *
  1163. * Note that this code is protected against sending an IPI to an offline
  1164. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1165. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1166. * nothing keeps CPUs from showing up after we populated the cpumask and
  1167. * before the call to on_each_cpu_mask().
  1168. */
  1169. void drain_all_pages(struct zone *zone)
  1170. {
  1171. int cpu;
  1172. /*
  1173. * Allocate in the BSS so we wont require allocation in
  1174. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1175. */
  1176. static cpumask_t cpus_with_pcps;
  1177. /*
  1178. * We don't care about racing with CPU hotplug event
  1179. * as offline notification will cause the notified
  1180. * cpu to drain that CPU pcps and on_each_cpu_mask
  1181. * disables preemption as part of its processing
  1182. */
  1183. for_each_online_cpu(cpu) {
  1184. struct per_cpu_pageset *pcp;
  1185. struct zone *z;
  1186. bool has_pcps = false;
  1187. if (zone) {
  1188. pcp = per_cpu_ptr(zone->pageset, cpu);
  1189. if (pcp->pcp.count)
  1190. has_pcps = true;
  1191. } else {
  1192. for_each_populated_zone(z) {
  1193. pcp = per_cpu_ptr(z->pageset, cpu);
  1194. if (pcp->pcp.count) {
  1195. has_pcps = true;
  1196. break;
  1197. }
  1198. }
  1199. }
  1200. if (has_pcps)
  1201. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1202. else
  1203. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1204. }
  1205. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1206. zone, 1);
  1207. }
  1208. #ifdef CONFIG_HIBERNATION
  1209. void mark_free_pages(struct zone *zone)
  1210. {
  1211. unsigned long pfn, max_zone_pfn;
  1212. unsigned long flags;
  1213. unsigned int order, t;
  1214. struct list_head *curr;
  1215. if (zone_is_empty(zone))
  1216. return;
  1217. spin_lock_irqsave(&zone->lock, flags);
  1218. max_zone_pfn = zone_end_pfn(zone);
  1219. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1220. if (pfn_valid(pfn)) {
  1221. struct page *page = pfn_to_page(pfn);
  1222. if (!swsusp_page_is_forbidden(page))
  1223. swsusp_unset_page_free(page);
  1224. }
  1225. for_each_migratetype_order(order, t) {
  1226. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1227. unsigned long i;
  1228. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1229. for (i = 0; i < (1UL << order); i++)
  1230. swsusp_set_page_free(pfn_to_page(pfn + i));
  1231. }
  1232. }
  1233. spin_unlock_irqrestore(&zone->lock, flags);
  1234. }
  1235. #endif /* CONFIG_PM */
  1236. /*
  1237. * Free a 0-order page
  1238. * cold == true ? free a cold page : free a hot page
  1239. */
  1240. void free_hot_cold_page(struct page *page, bool cold)
  1241. {
  1242. struct zone *zone = page_zone(page);
  1243. struct per_cpu_pages *pcp;
  1244. unsigned long flags;
  1245. unsigned long pfn = page_to_pfn(page);
  1246. int migratetype;
  1247. if (!free_pages_prepare(page, 0))
  1248. return;
  1249. migratetype = get_pfnblock_migratetype(page, pfn);
  1250. set_freepage_migratetype(page, migratetype);
  1251. local_irq_save(flags);
  1252. __count_vm_event(PGFREE);
  1253. /*
  1254. * We only track unmovable, reclaimable and movable on pcp lists.
  1255. * Free ISOLATE pages back to the allocator because they are being
  1256. * offlined but treat RESERVE as movable pages so we can get those
  1257. * areas back if necessary. Otherwise, we may have to free
  1258. * excessively into the page allocator
  1259. */
  1260. if (migratetype >= MIGRATE_PCPTYPES) {
  1261. if (unlikely(is_migrate_isolate(migratetype))) {
  1262. free_one_page(zone, page, pfn, 0, migratetype);
  1263. goto out;
  1264. }
  1265. migratetype = MIGRATE_MOVABLE;
  1266. }
  1267. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1268. if (!cold)
  1269. list_add(&page->lru, &pcp->lists[migratetype]);
  1270. else
  1271. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1272. pcp->count++;
  1273. if (pcp->count >= pcp->high) {
  1274. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1275. free_pcppages_bulk(zone, batch, pcp);
  1276. pcp->count -= batch;
  1277. }
  1278. out:
  1279. local_irq_restore(flags);
  1280. }
  1281. /*
  1282. * Free a list of 0-order pages
  1283. */
  1284. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1285. {
  1286. struct page *page, *next;
  1287. list_for_each_entry_safe(page, next, list, lru) {
  1288. trace_mm_page_free_batched(page, cold);
  1289. free_hot_cold_page(page, cold);
  1290. }
  1291. }
  1292. /*
  1293. * split_page takes a non-compound higher-order page, and splits it into
  1294. * n (1<<order) sub-pages: page[0..n]
  1295. * Each sub-page must be freed individually.
  1296. *
  1297. * Note: this is probably too low level an operation for use in drivers.
  1298. * Please consult with lkml before using this in your driver.
  1299. */
  1300. void split_page(struct page *page, unsigned int order)
  1301. {
  1302. int i;
  1303. VM_BUG_ON_PAGE(PageCompound(page), page);
  1304. VM_BUG_ON_PAGE(!page_count(page), page);
  1305. #ifdef CONFIG_KMEMCHECK
  1306. /*
  1307. * Split shadow pages too, because free(page[0]) would
  1308. * otherwise free the whole shadow.
  1309. */
  1310. if (kmemcheck_page_is_tracked(page))
  1311. split_page(virt_to_page(page[0].shadow), order);
  1312. #endif
  1313. for (i = 1; i < (1 << order); i++)
  1314. set_page_refcounted(page + i);
  1315. }
  1316. EXPORT_SYMBOL_GPL(split_page);
  1317. int __isolate_free_page(struct page *page, unsigned int order)
  1318. {
  1319. unsigned long watermark;
  1320. struct zone *zone;
  1321. int mt;
  1322. BUG_ON(!PageBuddy(page));
  1323. zone = page_zone(page);
  1324. mt = get_pageblock_migratetype(page);
  1325. if (!is_migrate_isolate(mt)) {
  1326. /* Obey watermarks as if the page was being allocated */
  1327. watermark = low_wmark_pages(zone) + (1 << order);
  1328. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1329. return 0;
  1330. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1331. }
  1332. /* Remove page from free list */
  1333. list_del(&page->lru);
  1334. zone->free_area[order].nr_free--;
  1335. rmv_page_order(page);
  1336. /* Set the pageblock if the isolated page is at least a pageblock */
  1337. if (order >= pageblock_order - 1) {
  1338. struct page *endpage = page + (1 << order) - 1;
  1339. for (; page < endpage; page += pageblock_nr_pages) {
  1340. int mt = get_pageblock_migratetype(page);
  1341. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1342. set_pageblock_migratetype(page,
  1343. MIGRATE_MOVABLE);
  1344. }
  1345. }
  1346. return 1UL << order;
  1347. }
  1348. /*
  1349. * Similar to split_page except the page is already free. As this is only
  1350. * being used for migration, the migratetype of the block also changes.
  1351. * As this is called with interrupts disabled, the caller is responsible
  1352. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1353. * are enabled.
  1354. *
  1355. * Note: this is probably too low level an operation for use in drivers.
  1356. * Please consult with lkml before using this in your driver.
  1357. */
  1358. int split_free_page(struct page *page)
  1359. {
  1360. unsigned int order;
  1361. int nr_pages;
  1362. order = page_order(page);
  1363. nr_pages = __isolate_free_page(page, order);
  1364. if (!nr_pages)
  1365. return 0;
  1366. /* Split into individual pages */
  1367. set_page_refcounted(page);
  1368. split_page(page, order);
  1369. return nr_pages;
  1370. }
  1371. /*
  1372. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1373. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1374. * or two.
  1375. */
  1376. static inline
  1377. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1378. struct zone *zone, unsigned int order,
  1379. gfp_t gfp_flags, int migratetype)
  1380. {
  1381. unsigned long flags;
  1382. struct page *page;
  1383. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1384. again:
  1385. if (likely(order == 0)) {
  1386. struct per_cpu_pages *pcp;
  1387. struct list_head *list;
  1388. local_irq_save(flags);
  1389. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1390. list = &pcp->lists[migratetype];
  1391. if (list_empty(list)) {
  1392. pcp->count += rmqueue_bulk(zone, 0,
  1393. pcp->batch, list,
  1394. migratetype, cold);
  1395. if (unlikely(list_empty(list)))
  1396. goto failed;
  1397. }
  1398. if (cold)
  1399. page = list_entry(list->prev, struct page, lru);
  1400. else
  1401. page = list_entry(list->next, struct page, lru);
  1402. list_del(&page->lru);
  1403. pcp->count--;
  1404. } else {
  1405. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1406. /*
  1407. * __GFP_NOFAIL is not to be used in new code.
  1408. *
  1409. * All __GFP_NOFAIL callers should be fixed so that they
  1410. * properly detect and handle allocation failures.
  1411. *
  1412. * We most definitely don't want callers attempting to
  1413. * allocate greater than order-1 page units with
  1414. * __GFP_NOFAIL.
  1415. */
  1416. WARN_ON_ONCE(order > 1);
  1417. }
  1418. spin_lock_irqsave(&zone->lock, flags);
  1419. page = __rmqueue(zone, order, migratetype);
  1420. spin_unlock(&zone->lock);
  1421. if (!page)
  1422. goto failed;
  1423. __mod_zone_freepage_state(zone, -(1 << order),
  1424. get_freepage_migratetype(page));
  1425. }
  1426. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1427. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1428. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1429. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1430. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1431. zone_statistics(preferred_zone, zone, gfp_flags);
  1432. local_irq_restore(flags);
  1433. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1434. if (prep_new_page(page, order, gfp_flags))
  1435. goto again;
  1436. return page;
  1437. failed:
  1438. local_irq_restore(flags);
  1439. return NULL;
  1440. }
  1441. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1442. static struct {
  1443. struct fault_attr attr;
  1444. u32 ignore_gfp_highmem;
  1445. u32 ignore_gfp_wait;
  1446. u32 min_order;
  1447. } fail_page_alloc = {
  1448. .attr = FAULT_ATTR_INITIALIZER,
  1449. .ignore_gfp_wait = 1,
  1450. .ignore_gfp_highmem = 1,
  1451. .min_order = 1,
  1452. };
  1453. static int __init setup_fail_page_alloc(char *str)
  1454. {
  1455. return setup_fault_attr(&fail_page_alloc.attr, str);
  1456. }
  1457. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1458. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1459. {
  1460. if (order < fail_page_alloc.min_order)
  1461. return false;
  1462. if (gfp_mask & __GFP_NOFAIL)
  1463. return false;
  1464. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1465. return false;
  1466. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1467. return false;
  1468. return should_fail(&fail_page_alloc.attr, 1 << order);
  1469. }
  1470. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1471. static int __init fail_page_alloc_debugfs(void)
  1472. {
  1473. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1474. struct dentry *dir;
  1475. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1476. &fail_page_alloc.attr);
  1477. if (IS_ERR(dir))
  1478. return PTR_ERR(dir);
  1479. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1480. &fail_page_alloc.ignore_gfp_wait))
  1481. goto fail;
  1482. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1483. &fail_page_alloc.ignore_gfp_highmem))
  1484. goto fail;
  1485. if (!debugfs_create_u32("min-order", mode, dir,
  1486. &fail_page_alloc.min_order))
  1487. goto fail;
  1488. return 0;
  1489. fail:
  1490. debugfs_remove_recursive(dir);
  1491. return -ENOMEM;
  1492. }
  1493. late_initcall(fail_page_alloc_debugfs);
  1494. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1495. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1496. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1497. {
  1498. return false;
  1499. }
  1500. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1501. /*
  1502. * Return true if free pages are above 'mark'. This takes into account the order
  1503. * of the allocation.
  1504. */
  1505. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  1506. unsigned long mark, int classzone_idx, int alloc_flags,
  1507. long free_pages)
  1508. {
  1509. /* free_pages may go negative - that's OK */
  1510. long min = mark;
  1511. int o;
  1512. long free_cma = 0;
  1513. free_pages -= (1 << order) - 1;
  1514. if (alloc_flags & ALLOC_HIGH)
  1515. min -= min / 2;
  1516. if (alloc_flags & ALLOC_HARDER)
  1517. min -= min / 4;
  1518. #ifdef CONFIG_CMA
  1519. /* If allocation can't use CMA areas don't use free CMA pages */
  1520. if (!(alloc_flags & ALLOC_CMA))
  1521. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1522. #endif
  1523. if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
  1524. return false;
  1525. for (o = 0; o < order; o++) {
  1526. /* At the next order, this order's pages become unavailable */
  1527. free_pages -= z->free_area[o].nr_free << o;
  1528. /* Require fewer higher order pages to be free */
  1529. min >>= 1;
  1530. if (free_pages <= min)
  1531. return false;
  1532. }
  1533. return true;
  1534. }
  1535. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  1536. int classzone_idx, int alloc_flags)
  1537. {
  1538. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1539. zone_page_state(z, NR_FREE_PAGES));
  1540. }
  1541. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  1542. unsigned long mark, int classzone_idx, int alloc_flags)
  1543. {
  1544. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1545. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1546. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1547. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1548. free_pages);
  1549. }
  1550. #ifdef CONFIG_NUMA
  1551. /*
  1552. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1553. * skip over zones that are not allowed by the cpuset, or that have
  1554. * been recently (in last second) found to be nearly full. See further
  1555. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1556. * that have to skip over a lot of full or unallowed zones.
  1557. *
  1558. * If the zonelist cache is present in the passed zonelist, then
  1559. * returns a pointer to the allowed node mask (either the current
  1560. * tasks mems_allowed, or node_states[N_MEMORY].)
  1561. *
  1562. * If the zonelist cache is not available for this zonelist, does
  1563. * nothing and returns NULL.
  1564. *
  1565. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1566. * a second since last zap'd) then we zap it out (clear its bits.)
  1567. *
  1568. * We hold off even calling zlc_setup, until after we've checked the
  1569. * first zone in the zonelist, on the theory that most allocations will
  1570. * be satisfied from that first zone, so best to examine that zone as
  1571. * quickly as we can.
  1572. */
  1573. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1574. {
  1575. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1576. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1577. zlc = zonelist->zlcache_ptr;
  1578. if (!zlc)
  1579. return NULL;
  1580. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1581. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1582. zlc->last_full_zap = jiffies;
  1583. }
  1584. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1585. &cpuset_current_mems_allowed :
  1586. &node_states[N_MEMORY];
  1587. return allowednodes;
  1588. }
  1589. /*
  1590. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1591. * if it is worth looking at further for free memory:
  1592. * 1) Check that the zone isn't thought to be full (doesn't have its
  1593. * bit set in the zonelist_cache fullzones BITMAP).
  1594. * 2) Check that the zones node (obtained from the zonelist_cache
  1595. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1596. * Return true (non-zero) if zone is worth looking at further, or
  1597. * else return false (zero) if it is not.
  1598. *
  1599. * This check -ignores- the distinction between various watermarks,
  1600. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1601. * found to be full for any variation of these watermarks, it will
  1602. * be considered full for up to one second by all requests, unless
  1603. * we are so low on memory on all allowed nodes that we are forced
  1604. * into the second scan of the zonelist.
  1605. *
  1606. * In the second scan we ignore this zonelist cache and exactly
  1607. * apply the watermarks to all zones, even it is slower to do so.
  1608. * We are low on memory in the second scan, and should leave no stone
  1609. * unturned looking for a free page.
  1610. */
  1611. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1612. nodemask_t *allowednodes)
  1613. {
  1614. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1615. int i; /* index of *z in zonelist zones */
  1616. int n; /* node that zone *z is on */
  1617. zlc = zonelist->zlcache_ptr;
  1618. if (!zlc)
  1619. return 1;
  1620. i = z - zonelist->_zonerefs;
  1621. n = zlc->z_to_n[i];
  1622. /* This zone is worth trying if it is allowed but not full */
  1623. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1624. }
  1625. /*
  1626. * Given 'z' scanning a zonelist, set the corresponding bit in
  1627. * zlc->fullzones, so that subsequent attempts to allocate a page
  1628. * from that zone don't waste time re-examining it.
  1629. */
  1630. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1631. {
  1632. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1633. int i; /* index of *z in zonelist zones */
  1634. zlc = zonelist->zlcache_ptr;
  1635. if (!zlc)
  1636. return;
  1637. i = z - zonelist->_zonerefs;
  1638. set_bit(i, zlc->fullzones);
  1639. }
  1640. /*
  1641. * clear all zones full, called after direct reclaim makes progress so that
  1642. * a zone that was recently full is not skipped over for up to a second
  1643. */
  1644. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1645. {
  1646. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1647. zlc = zonelist->zlcache_ptr;
  1648. if (!zlc)
  1649. return;
  1650. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1651. }
  1652. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1653. {
  1654. return local_zone->node == zone->node;
  1655. }
  1656. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1657. {
  1658. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  1659. RECLAIM_DISTANCE;
  1660. }
  1661. #else /* CONFIG_NUMA */
  1662. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1663. {
  1664. return NULL;
  1665. }
  1666. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1667. nodemask_t *allowednodes)
  1668. {
  1669. return 1;
  1670. }
  1671. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1672. {
  1673. }
  1674. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1675. {
  1676. }
  1677. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1678. {
  1679. return true;
  1680. }
  1681. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1682. {
  1683. return true;
  1684. }
  1685. #endif /* CONFIG_NUMA */
  1686. static void reset_alloc_batches(struct zone *preferred_zone)
  1687. {
  1688. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  1689. do {
  1690. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  1691. high_wmark_pages(zone) - low_wmark_pages(zone) -
  1692. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  1693. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1694. } while (zone++ != preferred_zone);
  1695. }
  1696. /*
  1697. * get_page_from_freelist goes through the zonelist trying to allocate
  1698. * a page.
  1699. */
  1700. static struct page *
  1701. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1702. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1703. struct zone *preferred_zone, int classzone_idx, int migratetype)
  1704. {
  1705. struct zoneref *z;
  1706. struct page *page = NULL;
  1707. struct zone *zone;
  1708. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1709. int zlc_active = 0; /* set if using zonelist_cache */
  1710. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1711. bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
  1712. (gfp_mask & __GFP_WRITE);
  1713. int nr_fair_skipped = 0;
  1714. bool zonelist_rescan;
  1715. zonelist_scan:
  1716. zonelist_rescan = false;
  1717. /*
  1718. * Scan zonelist, looking for a zone with enough free.
  1719. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  1720. */
  1721. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1722. high_zoneidx, nodemask) {
  1723. unsigned long mark;
  1724. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1725. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1726. continue;
  1727. if (cpusets_enabled() &&
  1728. (alloc_flags & ALLOC_CPUSET) &&
  1729. !cpuset_zone_allowed(zone, gfp_mask))
  1730. continue;
  1731. /*
  1732. * Distribute pages in proportion to the individual
  1733. * zone size to ensure fair page aging. The zone a
  1734. * page was allocated in should have no effect on the
  1735. * time the page has in memory before being reclaimed.
  1736. */
  1737. if (alloc_flags & ALLOC_FAIR) {
  1738. if (!zone_local(preferred_zone, zone))
  1739. break;
  1740. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  1741. nr_fair_skipped++;
  1742. continue;
  1743. }
  1744. }
  1745. /*
  1746. * When allocating a page cache page for writing, we
  1747. * want to get it from a zone that is within its dirty
  1748. * limit, such that no single zone holds more than its
  1749. * proportional share of globally allowed dirty pages.
  1750. * The dirty limits take into account the zone's
  1751. * lowmem reserves and high watermark so that kswapd
  1752. * should be able to balance it without having to
  1753. * write pages from its LRU list.
  1754. *
  1755. * This may look like it could increase pressure on
  1756. * lower zones by failing allocations in higher zones
  1757. * before they are full. But the pages that do spill
  1758. * over are limited as the lower zones are protected
  1759. * by this very same mechanism. It should not become
  1760. * a practical burden to them.
  1761. *
  1762. * XXX: For now, allow allocations to potentially
  1763. * exceed the per-zone dirty limit in the slowpath
  1764. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1765. * which is important when on a NUMA setup the allowed
  1766. * zones are together not big enough to reach the
  1767. * global limit. The proper fix for these situations
  1768. * will require awareness of zones in the
  1769. * dirty-throttling and the flusher threads.
  1770. */
  1771. if (consider_zone_dirty && !zone_dirty_ok(zone))
  1772. continue;
  1773. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1774. if (!zone_watermark_ok(zone, order, mark,
  1775. classzone_idx, alloc_flags)) {
  1776. int ret;
  1777. /* Checked here to keep the fast path fast */
  1778. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1779. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1780. goto try_this_zone;
  1781. if (IS_ENABLED(CONFIG_NUMA) &&
  1782. !did_zlc_setup && nr_online_nodes > 1) {
  1783. /*
  1784. * we do zlc_setup if there are multiple nodes
  1785. * and before considering the first zone allowed
  1786. * by the cpuset.
  1787. */
  1788. allowednodes = zlc_setup(zonelist, alloc_flags);
  1789. zlc_active = 1;
  1790. did_zlc_setup = 1;
  1791. }
  1792. if (zone_reclaim_mode == 0 ||
  1793. !zone_allows_reclaim(preferred_zone, zone))
  1794. goto this_zone_full;
  1795. /*
  1796. * As we may have just activated ZLC, check if the first
  1797. * eligible zone has failed zone_reclaim recently.
  1798. */
  1799. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1800. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1801. continue;
  1802. ret = zone_reclaim(zone, gfp_mask, order);
  1803. switch (ret) {
  1804. case ZONE_RECLAIM_NOSCAN:
  1805. /* did not scan */
  1806. continue;
  1807. case ZONE_RECLAIM_FULL:
  1808. /* scanned but unreclaimable */
  1809. continue;
  1810. default:
  1811. /* did we reclaim enough */
  1812. if (zone_watermark_ok(zone, order, mark,
  1813. classzone_idx, alloc_flags))
  1814. goto try_this_zone;
  1815. /*
  1816. * Failed to reclaim enough to meet watermark.
  1817. * Only mark the zone full if checking the min
  1818. * watermark or if we failed to reclaim just
  1819. * 1<<order pages or else the page allocator
  1820. * fastpath will prematurely mark zones full
  1821. * when the watermark is between the low and
  1822. * min watermarks.
  1823. */
  1824. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1825. ret == ZONE_RECLAIM_SOME)
  1826. goto this_zone_full;
  1827. continue;
  1828. }
  1829. }
  1830. try_this_zone:
  1831. page = buffered_rmqueue(preferred_zone, zone, order,
  1832. gfp_mask, migratetype);
  1833. if (page)
  1834. break;
  1835. this_zone_full:
  1836. if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
  1837. zlc_mark_zone_full(zonelist, z);
  1838. }
  1839. if (page) {
  1840. /*
  1841. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1842. * necessary to allocate the page. The expectation is
  1843. * that the caller is taking steps that will free more
  1844. * memory. The caller should avoid the page being used
  1845. * for !PFMEMALLOC purposes.
  1846. */
  1847. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1848. return page;
  1849. }
  1850. /*
  1851. * The first pass makes sure allocations are spread fairly within the
  1852. * local node. However, the local node might have free pages left
  1853. * after the fairness batches are exhausted, and remote zones haven't
  1854. * even been considered yet. Try once more without fairness, and
  1855. * include remote zones now, before entering the slowpath and waking
  1856. * kswapd: prefer spilling to a remote zone over swapping locally.
  1857. */
  1858. if (alloc_flags & ALLOC_FAIR) {
  1859. alloc_flags &= ~ALLOC_FAIR;
  1860. if (nr_fair_skipped) {
  1861. zonelist_rescan = true;
  1862. reset_alloc_batches(preferred_zone);
  1863. }
  1864. if (nr_online_nodes > 1)
  1865. zonelist_rescan = true;
  1866. }
  1867. if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
  1868. /* Disable zlc cache for second zonelist scan */
  1869. zlc_active = 0;
  1870. zonelist_rescan = true;
  1871. }
  1872. if (zonelist_rescan)
  1873. goto zonelist_scan;
  1874. return NULL;
  1875. }
  1876. /*
  1877. * Large machines with many possible nodes should not always dump per-node
  1878. * meminfo in irq context.
  1879. */
  1880. static inline bool should_suppress_show_mem(void)
  1881. {
  1882. bool ret = false;
  1883. #if NODES_SHIFT > 8
  1884. ret = in_interrupt();
  1885. #endif
  1886. return ret;
  1887. }
  1888. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1889. DEFAULT_RATELIMIT_INTERVAL,
  1890. DEFAULT_RATELIMIT_BURST);
  1891. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1892. {
  1893. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1894. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1895. debug_guardpage_minorder() > 0)
  1896. return;
  1897. /*
  1898. * This documents exceptions given to allocations in certain
  1899. * contexts that are allowed to allocate outside current's set
  1900. * of allowed nodes.
  1901. */
  1902. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1903. if (test_thread_flag(TIF_MEMDIE) ||
  1904. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1905. filter &= ~SHOW_MEM_FILTER_NODES;
  1906. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1907. filter &= ~SHOW_MEM_FILTER_NODES;
  1908. if (fmt) {
  1909. struct va_format vaf;
  1910. va_list args;
  1911. va_start(args, fmt);
  1912. vaf.fmt = fmt;
  1913. vaf.va = &args;
  1914. pr_warn("%pV", &vaf);
  1915. va_end(args);
  1916. }
  1917. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1918. current->comm, order, gfp_mask);
  1919. dump_stack();
  1920. if (!should_suppress_show_mem())
  1921. show_mem(filter);
  1922. }
  1923. static inline int
  1924. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1925. unsigned long did_some_progress,
  1926. unsigned long pages_reclaimed)
  1927. {
  1928. /* Do not loop if specifically requested */
  1929. if (gfp_mask & __GFP_NORETRY)
  1930. return 0;
  1931. /* Always retry if specifically requested */
  1932. if (gfp_mask & __GFP_NOFAIL)
  1933. return 1;
  1934. /*
  1935. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1936. * making forward progress without invoking OOM. Suspend also disables
  1937. * storage devices so kswapd will not help. Bail if we are suspending.
  1938. */
  1939. if (!did_some_progress && pm_suspended_storage())
  1940. return 0;
  1941. /*
  1942. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1943. * means __GFP_NOFAIL, but that may not be true in other
  1944. * implementations.
  1945. */
  1946. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1947. return 1;
  1948. /*
  1949. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1950. * specified, then we retry until we no longer reclaim any pages
  1951. * (above), or we've reclaimed an order of pages at least as
  1952. * large as the allocation's order. In both cases, if the
  1953. * allocation still fails, we stop retrying.
  1954. */
  1955. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1956. return 1;
  1957. return 0;
  1958. }
  1959. static inline struct page *
  1960. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1961. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1962. nodemask_t *nodemask, struct zone *preferred_zone,
  1963. int classzone_idx, int migratetype)
  1964. {
  1965. struct page *page;
  1966. /* Acquire the per-zone oom lock for each zone */
  1967. if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
  1968. schedule_timeout_uninterruptible(1);
  1969. return NULL;
  1970. }
  1971. /*
  1972. * PM-freezer should be notified that there might be an OOM killer on
  1973. * its way to kill and wake somebody up. This is too early and we might
  1974. * end up not killing anything but false positives are acceptable.
  1975. * See freeze_processes.
  1976. */
  1977. note_oom_kill();
  1978. /*
  1979. * Go through the zonelist yet one more time, keep very high watermark
  1980. * here, this is only to catch a parallel oom killing, we must fail if
  1981. * we're still under heavy pressure.
  1982. */
  1983. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1984. order, zonelist, high_zoneidx,
  1985. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1986. preferred_zone, classzone_idx, migratetype);
  1987. if (page)
  1988. goto out;
  1989. if (!(gfp_mask & __GFP_NOFAIL)) {
  1990. /* The OOM killer will not help higher order allocs */
  1991. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1992. goto out;
  1993. /* The OOM killer does not needlessly kill tasks for lowmem */
  1994. if (high_zoneidx < ZONE_NORMAL)
  1995. goto out;
  1996. /*
  1997. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1998. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1999. * The caller should handle page allocation failure by itself if
  2000. * it specifies __GFP_THISNODE.
  2001. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  2002. */
  2003. if (gfp_mask & __GFP_THISNODE)
  2004. goto out;
  2005. }
  2006. /* Exhausted what can be done so it's blamo time */
  2007. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  2008. out:
  2009. oom_zonelist_unlock(zonelist, gfp_mask);
  2010. return page;
  2011. }
  2012. #ifdef CONFIG_COMPACTION
  2013. /* Try memory compaction for high-order allocations before reclaim */
  2014. static struct page *
  2015. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2016. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2017. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2018. int classzone_idx, int migratetype, enum migrate_mode mode,
  2019. int *contended_compaction, bool *deferred_compaction)
  2020. {
  2021. unsigned long compact_result;
  2022. struct page *page;
  2023. if (!order)
  2024. return NULL;
  2025. current->flags |= PF_MEMALLOC;
  2026. compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
  2027. nodemask, mode,
  2028. contended_compaction,
  2029. alloc_flags, classzone_idx);
  2030. current->flags &= ~PF_MEMALLOC;
  2031. switch (compact_result) {
  2032. case COMPACT_DEFERRED:
  2033. *deferred_compaction = true;
  2034. /* fall-through */
  2035. case COMPACT_SKIPPED:
  2036. return NULL;
  2037. default:
  2038. break;
  2039. }
  2040. /*
  2041. * At least in one zone compaction wasn't deferred or skipped, so let's
  2042. * count a compaction stall
  2043. */
  2044. count_vm_event(COMPACTSTALL);
  2045. page = get_page_from_freelist(gfp_mask, nodemask,
  2046. order, zonelist, high_zoneidx,
  2047. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2048. preferred_zone, classzone_idx, migratetype);
  2049. if (page) {
  2050. struct zone *zone = page_zone(page);
  2051. zone->compact_blockskip_flush = false;
  2052. compaction_defer_reset(zone, order, true);
  2053. count_vm_event(COMPACTSUCCESS);
  2054. return page;
  2055. }
  2056. /*
  2057. * It's bad if compaction run occurs and fails. The most likely reason
  2058. * is that pages exist, but not enough to satisfy watermarks.
  2059. */
  2060. count_vm_event(COMPACTFAIL);
  2061. cond_resched();
  2062. return NULL;
  2063. }
  2064. #else
  2065. static inline struct page *
  2066. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2067. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2068. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2069. int classzone_idx, int migratetype, enum migrate_mode mode,
  2070. int *contended_compaction, bool *deferred_compaction)
  2071. {
  2072. return NULL;
  2073. }
  2074. #endif /* CONFIG_COMPACTION */
  2075. /* Perform direct synchronous page reclaim */
  2076. static int
  2077. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  2078. nodemask_t *nodemask)
  2079. {
  2080. struct reclaim_state reclaim_state;
  2081. int progress;
  2082. cond_resched();
  2083. /* We now go into synchronous reclaim */
  2084. cpuset_memory_pressure_bump();
  2085. current->flags |= PF_MEMALLOC;
  2086. lockdep_set_current_reclaim_state(gfp_mask);
  2087. reclaim_state.reclaimed_slab = 0;
  2088. current->reclaim_state = &reclaim_state;
  2089. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  2090. current->reclaim_state = NULL;
  2091. lockdep_clear_current_reclaim_state();
  2092. current->flags &= ~PF_MEMALLOC;
  2093. cond_resched();
  2094. return progress;
  2095. }
  2096. /* The really slow allocator path where we enter direct reclaim */
  2097. static inline struct page *
  2098. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2099. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2100. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2101. int classzone_idx, int migratetype, unsigned long *did_some_progress)
  2102. {
  2103. struct page *page = NULL;
  2104. bool drained = false;
  2105. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  2106. nodemask);
  2107. if (unlikely(!(*did_some_progress)))
  2108. return NULL;
  2109. /* After successful reclaim, reconsider all zones for allocation */
  2110. if (IS_ENABLED(CONFIG_NUMA))
  2111. zlc_clear_zones_full(zonelist);
  2112. retry:
  2113. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2114. zonelist, high_zoneidx,
  2115. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2116. preferred_zone, classzone_idx,
  2117. migratetype);
  2118. /*
  2119. * If an allocation failed after direct reclaim, it could be because
  2120. * pages are pinned on the per-cpu lists. Drain them and try again
  2121. */
  2122. if (!page && !drained) {
  2123. drain_all_pages(NULL);
  2124. drained = true;
  2125. goto retry;
  2126. }
  2127. return page;
  2128. }
  2129. /*
  2130. * This is called in the allocator slow-path if the allocation request is of
  2131. * sufficient urgency to ignore watermarks and take other desperate measures
  2132. */
  2133. static inline struct page *
  2134. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2135. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2136. nodemask_t *nodemask, struct zone *preferred_zone,
  2137. int classzone_idx, int migratetype)
  2138. {
  2139. struct page *page;
  2140. do {
  2141. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2142. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2143. preferred_zone, classzone_idx, migratetype);
  2144. if (!page && gfp_mask & __GFP_NOFAIL)
  2145. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2146. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2147. return page;
  2148. }
  2149. static void wake_all_kswapds(unsigned int order,
  2150. struct zonelist *zonelist,
  2151. enum zone_type high_zoneidx,
  2152. struct zone *preferred_zone,
  2153. nodemask_t *nodemask)
  2154. {
  2155. struct zoneref *z;
  2156. struct zone *zone;
  2157. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2158. high_zoneidx, nodemask)
  2159. wakeup_kswapd(zone, order, zone_idx(preferred_zone));
  2160. }
  2161. static inline int
  2162. gfp_to_alloc_flags(gfp_t gfp_mask)
  2163. {
  2164. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2165. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2166. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2167. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2168. /*
  2169. * The caller may dip into page reserves a bit more if the caller
  2170. * cannot run direct reclaim, or if the caller has realtime scheduling
  2171. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2172. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2173. */
  2174. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2175. if (atomic) {
  2176. /*
  2177. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2178. * if it can't schedule.
  2179. */
  2180. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2181. alloc_flags |= ALLOC_HARDER;
  2182. /*
  2183. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2184. * comment for __cpuset_node_allowed().
  2185. */
  2186. alloc_flags &= ~ALLOC_CPUSET;
  2187. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2188. alloc_flags |= ALLOC_HARDER;
  2189. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2190. if (gfp_mask & __GFP_MEMALLOC)
  2191. alloc_flags |= ALLOC_NO_WATERMARKS;
  2192. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2193. alloc_flags |= ALLOC_NO_WATERMARKS;
  2194. else if (!in_interrupt() &&
  2195. ((current->flags & PF_MEMALLOC) ||
  2196. unlikely(test_thread_flag(TIF_MEMDIE))))
  2197. alloc_flags |= ALLOC_NO_WATERMARKS;
  2198. }
  2199. #ifdef CONFIG_CMA
  2200. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2201. alloc_flags |= ALLOC_CMA;
  2202. #endif
  2203. return alloc_flags;
  2204. }
  2205. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2206. {
  2207. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2208. }
  2209. static inline struct page *
  2210. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2211. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2212. nodemask_t *nodemask, struct zone *preferred_zone,
  2213. int classzone_idx, int migratetype)
  2214. {
  2215. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2216. struct page *page = NULL;
  2217. int alloc_flags;
  2218. unsigned long pages_reclaimed = 0;
  2219. unsigned long did_some_progress;
  2220. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2221. bool deferred_compaction = false;
  2222. int contended_compaction = COMPACT_CONTENDED_NONE;
  2223. /*
  2224. * In the slowpath, we sanity check order to avoid ever trying to
  2225. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2226. * be using allocators in order of preference for an area that is
  2227. * too large.
  2228. */
  2229. if (order >= MAX_ORDER) {
  2230. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2231. return NULL;
  2232. }
  2233. /*
  2234. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2235. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2236. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2237. * using a larger set of nodes after it has established that the
  2238. * allowed per node queues are empty and that nodes are
  2239. * over allocated.
  2240. */
  2241. if (IS_ENABLED(CONFIG_NUMA) &&
  2242. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2243. goto nopage;
  2244. restart:
  2245. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2246. wake_all_kswapds(order, zonelist, high_zoneidx,
  2247. preferred_zone, nodemask);
  2248. /*
  2249. * OK, we're below the kswapd watermark and have kicked background
  2250. * reclaim. Now things get more complex, so set up alloc_flags according
  2251. * to how we want to proceed.
  2252. */
  2253. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2254. /*
  2255. * Find the true preferred zone if the allocation is unconstrained by
  2256. * cpusets.
  2257. */
  2258. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
  2259. struct zoneref *preferred_zoneref;
  2260. preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
  2261. NULL, &preferred_zone);
  2262. classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2263. }
  2264. rebalance:
  2265. /* This is the last chance, in general, before the goto nopage. */
  2266. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2267. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2268. preferred_zone, classzone_idx, migratetype);
  2269. if (page)
  2270. goto got_pg;
  2271. /* Allocate without watermarks if the context allows */
  2272. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2273. /*
  2274. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2275. * the allocation is high priority and these type of
  2276. * allocations are system rather than user orientated
  2277. */
  2278. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2279. page = __alloc_pages_high_priority(gfp_mask, order,
  2280. zonelist, high_zoneidx, nodemask,
  2281. preferred_zone, classzone_idx, migratetype);
  2282. if (page) {
  2283. goto got_pg;
  2284. }
  2285. }
  2286. /* Atomic allocations - we can't balance anything */
  2287. if (!wait) {
  2288. /*
  2289. * All existing users of the deprecated __GFP_NOFAIL are
  2290. * blockable, so warn of any new users that actually allow this
  2291. * type of allocation to fail.
  2292. */
  2293. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2294. goto nopage;
  2295. }
  2296. /* Avoid recursion of direct reclaim */
  2297. if (current->flags & PF_MEMALLOC)
  2298. goto nopage;
  2299. /* Avoid allocations with no watermarks from looping endlessly */
  2300. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2301. goto nopage;
  2302. /*
  2303. * Try direct compaction. The first pass is asynchronous. Subsequent
  2304. * attempts after direct reclaim are synchronous
  2305. */
  2306. page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
  2307. high_zoneidx, nodemask, alloc_flags,
  2308. preferred_zone,
  2309. classzone_idx, migratetype,
  2310. migration_mode, &contended_compaction,
  2311. &deferred_compaction);
  2312. if (page)
  2313. goto got_pg;
  2314. /* Checks for THP-specific high-order allocations */
  2315. if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
  2316. /*
  2317. * If compaction is deferred for high-order allocations, it is
  2318. * because sync compaction recently failed. If this is the case
  2319. * and the caller requested a THP allocation, we do not want
  2320. * to heavily disrupt the system, so we fail the allocation
  2321. * instead of entering direct reclaim.
  2322. */
  2323. if (deferred_compaction)
  2324. goto nopage;
  2325. /*
  2326. * In all zones where compaction was attempted (and not
  2327. * deferred or skipped), lock contention has been detected.
  2328. * For THP allocation we do not want to disrupt the others
  2329. * so we fallback to base pages instead.
  2330. */
  2331. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2332. goto nopage;
  2333. /*
  2334. * If compaction was aborted due to need_resched(), we do not
  2335. * want to further increase allocation latency, unless it is
  2336. * khugepaged trying to collapse.
  2337. */
  2338. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2339. && !(current->flags & PF_KTHREAD))
  2340. goto nopage;
  2341. }
  2342. /*
  2343. * It can become very expensive to allocate transparent hugepages at
  2344. * fault, so use asynchronous memory compaction for THP unless it is
  2345. * khugepaged trying to collapse.
  2346. */
  2347. if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
  2348. (current->flags & PF_KTHREAD))
  2349. migration_mode = MIGRATE_SYNC_LIGHT;
  2350. /* Try direct reclaim and then allocating */
  2351. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2352. zonelist, high_zoneidx,
  2353. nodemask,
  2354. alloc_flags, preferred_zone,
  2355. classzone_idx, migratetype,
  2356. &did_some_progress);
  2357. if (page)
  2358. goto got_pg;
  2359. /*
  2360. * If we failed to make any progress reclaiming, then we are
  2361. * running out of options and have to consider going OOM
  2362. */
  2363. if (!did_some_progress) {
  2364. if (oom_gfp_allowed(gfp_mask)) {
  2365. if (oom_killer_disabled)
  2366. goto nopage;
  2367. /* Coredumps can quickly deplete all memory reserves */
  2368. if ((current->flags & PF_DUMPCORE) &&
  2369. !(gfp_mask & __GFP_NOFAIL))
  2370. goto nopage;
  2371. page = __alloc_pages_may_oom(gfp_mask, order,
  2372. zonelist, high_zoneidx,
  2373. nodemask, preferred_zone,
  2374. classzone_idx, migratetype);
  2375. if (page)
  2376. goto got_pg;
  2377. if (!(gfp_mask & __GFP_NOFAIL)) {
  2378. /*
  2379. * The oom killer is not called for high-order
  2380. * allocations that may fail, so if no progress
  2381. * is being made, there are no other options and
  2382. * retrying is unlikely to help.
  2383. */
  2384. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2385. goto nopage;
  2386. /*
  2387. * The oom killer is not called for lowmem
  2388. * allocations to prevent needlessly killing
  2389. * innocent tasks.
  2390. */
  2391. if (high_zoneidx < ZONE_NORMAL)
  2392. goto nopage;
  2393. }
  2394. goto restart;
  2395. }
  2396. }
  2397. /* Check if we should retry the allocation */
  2398. pages_reclaimed += did_some_progress;
  2399. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2400. pages_reclaimed)) {
  2401. /* Wait for some write requests to complete then retry */
  2402. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2403. goto rebalance;
  2404. } else {
  2405. /*
  2406. * High-order allocations do not necessarily loop after
  2407. * direct reclaim and reclaim/compaction depends on compaction
  2408. * being called after reclaim so call directly if necessary
  2409. */
  2410. page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
  2411. high_zoneidx, nodemask, alloc_flags,
  2412. preferred_zone,
  2413. classzone_idx, migratetype,
  2414. migration_mode, &contended_compaction,
  2415. &deferred_compaction);
  2416. if (page)
  2417. goto got_pg;
  2418. }
  2419. nopage:
  2420. warn_alloc_failed(gfp_mask, order, NULL);
  2421. return page;
  2422. got_pg:
  2423. if (kmemcheck_enabled)
  2424. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2425. return page;
  2426. }
  2427. /*
  2428. * This is the 'heart' of the zoned buddy allocator.
  2429. */
  2430. struct page *
  2431. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2432. struct zonelist *zonelist, nodemask_t *nodemask)
  2433. {
  2434. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2435. struct zone *preferred_zone;
  2436. struct zoneref *preferred_zoneref;
  2437. struct page *page = NULL;
  2438. int migratetype = gfpflags_to_migratetype(gfp_mask);
  2439. unsigned int cpuset_mems_cookie;
  2440. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2441. int classzone_idx;
  2442. gfp_mask &= gfp_allowed_mask;
  2443. lockdep_trace_alloc(gfp_mask);
  2444. might_sleep_if(gfp_mask & __GFP_WAIT);
  2445. if (should_fail_alloc_page(gfp_mask, order))
  2446. return NULL;
  2447. /*
  2448. * Check the zones suitable for the gfp_mask contain at least one
  2449. * valid zone. It's possible to have an empty zonelist as a result
  2450. * of GFP_THISNODE and a memoryless node
  2451. */
  2452. if (unlikely(!zonelist->_zonerefs->zone))
  2453. return NULL;
  2454. if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
  2455. alloc_flags |= ALLOC_CMA;
  2456. retry_cpuset:
  2457. cpuset_mems_cookie = read_mems_allowed_begin();
  2458. /* The preferred zone is used for statistics later */
  2459. preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
  2460. nodemask ? : &cpuset_current_mems_allowed,
  2461. &preferred_zone);
  2462. if (!preferred_zone)
  2463. goto out;
  2464. classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2465. /* First allocation attempt */
  2466. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2467. zonelist, high_zoneidx, alloc_flags,
  2468. preferred_zone, classzone_idx, migratetype);
  2469. if (unlikely(!page)) {
  2470. /*
  2471. * Runtime PM, block IO and its error handling path
  2472. * can deadlock because I/O on the device might not
  2473. * complete.
  2474. */
  2475. gfp_mask = memalloc_noio_flags(gfp_mask);
  2476. page = __alloc_pages_slowpath(gfp_mask, order,
  2477. zonelist, high_zoneidx, nodemask,
  2478. preferred_zone, classzone_idx, migratetype);
  2479. }
  2480. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2481. out:
  2482. /*
  2483. * When updating a task's mems_allowed, it is possible to race with
  2484. * parallel threads in such a way that an allocation can fail while
  2485. * the mask is being updated. If a page allocation is about to fail,
  2486. * check if the cpuset changed during allocation and if so, retry.
  2487. */
  2488. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2489. goto retry_cpuset;
  2490. return page;
  2491. }
  2492. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2493. /*
  2494. * Common helper functions.
  2495. */
  2496. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2497. {
  2498. struct page *page;
  2499. /*
  2500. * __get_free_pages() returns a 32-bit address, which cannot represent
  2501. * a highmem page
  2502. */
  2503. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2504. page = alloc_pages(gfp_mask, order);
  2505. if (!page)
  2506. return 0;
  2507. return (unsigned long) page_address(page);
  2508. }
  2509. EXPORT_SYMBOL(__get_free_pages);
  2510. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2511. {
  2512. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2513. }
  2514. EXPORT_SYMBOL(get_zeroed_page);
  2515. void __free_pages(struct page *page, unsigned int order)
  2516. {
  2517. if (put_page_testzero(page)) {
  2518. if (order == 0)
  2519. free_hot_cold_page(page, false);
  2520. else
  2521. __free_pages_ok(page, order);
  2522. }
  2523. }
  2524. EXPORT_SYMBOL(__free_pages);
  2525. void free_pages(unsigned long addr, unsigned int order)
  2526. {
  2527. if (addr != 0) {
  2528. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2529. __free_pages(virt_to_page((void *)addr), order);
  2530. }
  2531. }
  2532. EXPORT_SYMBOL(free_pages);
  2533. /*
  2534. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2535. * of the current memory cgroup.
  2536. *
  2537. * It should be used when the caller would like to use kmalloc, but since the
  2538. * allocation is large, it has to fall back to the page allocator.
  2539. */
  2540. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2541. {
  2542. struct page *page;
  2543. struct mem_cgroup *memcg = NULL;
  2544. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2545. return NULL;
  2546. page = alloc_pages(gfp_mask, order);
  2547. memcg_kmem_commit_charge(page, memcg, order);
  2548. return page;
  2549. }
  2550. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2551. {
  2552. struct page *page;
  2553. struct mem_cgroup *memcg = NULL;
  2554. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2555. return NULL;
  2556. page = alloc_pages_node(nid, gfp_mask, order);
  2557. memcg_kmem_commit_charge(page, memcg, order);
  2558. return page;
  2559. }
  2560. /*
  2561. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2562. * alloc_kmem_pages.
  2563. */
  2564. void __free_kmem_pages(struct page *page, unsigned int order)
  2565. {
  2566. memcg_kmem_uncharge_pages(page, order);
  2567. __free_pages(page, order);
  2568. }
  2569. void free_kmem_pages(unsigned long addr, unsigned int order)
  2570. {
  2571. if (addr != 0) {
  2572. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2573. __free_kmem_pages(virt_to_page((void *)addr), order);
  2574. }
  2575. }
  2576. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2577. {
  2578. if (addr) {
  2579. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2580. unsigned long used = addr + PAGE_ALIGN(size);
  2581. split_page(virt_to_page((void *)addr), order);
  2582. while (used < alloc_end) {
  2583. free_page(used);
  2584. used += PAGE_SIZE;
  2585. }
  2586. }
  2587. return (void *)addr;
  2588. }
  2589. /**
  2590. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2591. * @size: the number of bytes to allocate
  2592. * @gfp_mask: GFP flags for the allocation
  2593. *
  2594. * This function is similar to alloc_pages(), except that it allocates the
  2595. * minimum number of pages to satisfy the request. alloc_pages() can only
  2596. * allocate memory in power-of-two pages.
  2597. *
  2598. * This function is also limited by MAX_ORDER.
  2599. *
  2600. * Memory allocated by this function must be released by free_pages_exact().
  2601. */
  2602. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2603. {
  2604. unsigned int order = get_order(size);
  2605. unsigned long addr;
  2606. addr = __get_free_pages(gfp_mask, order);
  2607. return make_alloc_exact(addr, order, size);
  2608. }
  2609. EXPORT_SYMBOL(alloc_pages_exact);
  2610. /**
  2611. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2612. * pages on a node.
  2613. * @nid: the preferred node ID where memory should be allocated
  2614. * @size: the number of bytes to allocate
  2615. * @gfp_mask: GFP flags for the allocation
  2616. *
  2617. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2618. * back.
  2619. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2620. * but is not exact.
  2621. */
  2622. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2623. {
  2624. unsigned order = get_order(size);
  2625. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2626. if (!p)
  2627. return NULL;
  2628. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2629. }
  2630. /**
  2631. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2632. * @virt: the value returned by alloc_pages_exact.
  2633. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2634. *
  2635. * Release the memory allocated by a previous call to alloc_pages_exact.
  2636. */
  2637. void free_pages_exact(void *virt, size_t size)
  2638. {
  2639. unsigned long addr = (unsigned long)virt;
  2640. unsigned long end = addr + PAGE_ALIGN(size);
  2641. while (addr < end) {
  2642. free_page(addr);
  2643. addr += PAGE_SIZE;
  2644. }
  2645. }
  2646. EXPORT_SYMBOL(free_pages_exact);
  2647. /**
  2648. * nr_free_zone_pages - count number of pages beyond high watermark
  2649. * @offset: The zone index of the highest zone
  2650. *
  2651. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2652. * high watermark within all zones at or below a given zone index. For each
  2653. * zone, the number of pages is calculated as:
  2654. * managed_pages - high_pages
  2655. */
  2656. static unsigned long nr_free_zone_pages(int offset)
  2657. {
  2658. struct zoneref *z;
  2659. struct zone *zone;
  2660. /* Just pick one node, since fallback list is circular */
  2661. unsigned long sum = 0;
  2662. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2663. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2664. unsigned long size = zone->managed_pages;
  2665. unsigned long high = high_wmark_pages(zone);
  2666. if (size > high)
  2667. sum += size - high;
  2668. }
  2669. return sum;
  2670. }
  2671. /**
  2672. * nr_free_buffer_pages - count number of pages beyond high watermark
  2673. *
  2674. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2675. * watermark within ZONE_DMA and ZONE_NORMAL.
  2676. */
  2677. unsigned long nr_free_buffer_pages(void)
  2678. {
  2679. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2680. }
  2681. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2682. /**
  2683. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2684. *
  2685. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2686. * high watermark within all zones.
  2687. */
  2688. unsigned long nr_free_pagecache_pages(void)
  2689. {
  2690. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2691. }
  2692. static inline void show_node(struct zone *zone)
  2693. {
  2694. if (IS_ENABLED(CONFIG_NUMA))
  2695. printk("Node %d ", zone_to_nid(zone));
  2696. }
  2697. void si_meminfo(struct sysinfo *val)
  2698. {
  2699. val->totalram = totalram_pages;
  2700. val->sharedram = global_page_state(NR_SHMEM);
  2701. val->freeram = global_page_state(NR_FREE_PAGES);
  2702. val->bufferram = nr_blockdev_pages();
  2703. val->totalhigh = totalhigh_pages;
  2704. val->freehigh = nr_free_highpages();
  2705. val->mem_unit = PAGE_SIZE;
  2706. }
  2707. EXPORT_SYMBOL(si_meminfo);
  2708. #ifdef CONFIG_NUMA
  2709. void si_meminfo_node(struct sysinfo *val, int nid)
  2710. {
  2711. int zone_type; /* needs to be signed */
  2712. unsigned long managed_pages = 0;
  2713. pg_data_t *pgdat = NODE_DATA(nid);
  2714. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2715. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2716. val->totalram = managed_pages;
  2717. val->sharedram = node_page_state(nid, NR_SHMEM);
  2718. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2719. #ifdef CONFIG_HIGHMEM
  2720. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2721. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2722. NR_FREE_PAGES);
  2723. #else
  2724. val->totalhigh = 0;
  2725. val->freehigh = 0;
  2726. #endif
  2727. val->mem_unit = PAGE_SIZE;
  2728. }
  2729. #endif
  2730. /*
  2731. * Determine whether the node should be displayed or not, depending on whether
  2732. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2733. */
  2734. bool skip_free_areas_node(unsigned int flags, int nid)
  2735. {
  2736. bool ret = false;
  2737. unsigned int cpuset_mems_cookie;
  2738. if (!(flags & SHOW_MEM_FILTER_NODES))
  2739. goto out;
  2740. do {
  2741. cpuset_mems_cookie = read_mems_allowed_begin();
  2742. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2743. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  2744. out:
  2745. return ret;
  2746. }
  2747. #define K(x) ((x) << (PAGE_SHIFT-10))
  2748. static void show_migration_types(unsigned char type)
  2749. {
  2750. static const char types[MIGRATE_TYPES] = {
  2751. [MIGRATE_UNMOVABLE] = 'U',
  2752. [MIGRATE_RECLAIMABLE] = 'E',
  2753. [MIGRATE_MOVABLE] = 'M',
  2754. [MIGRATE_RESERVE] = 'R',
  2755. #ifdef CONFIG_CMA
  2756. [MIGRATE_CMA] = 'C',
  2757. #endif
  2758. #ifdef CONFIG_MEMORY_ISOLATION
  2759. [MIGRATE_ISOLATE] = 'I',
  2760. #endif
  2761. };
  2762. char tmp[MIGRATE_TYPES + 1];
  2763. char *p = tmp;
  2764. int i;
  2765. for (i = 0; i < MIGRATE_TYPES; i++) {
  2766. if (type & (1 << i))
  2767. *p++ = types[i];
  2768. }
  2769. *p = '\0';
  2770. printk("(%s) ", tmp);
  2771. }
  2772. /*
  2773. * Show free area list (used inside shift_scroll-lock stuff)
  2774. * We also calculate the percentage fragmentation. We do this by counting the
  2775. * memory on each free list with the exception of the first item on the list.
  2776. * Suppresses nodes that are not allowed by current's cpuset if
  2777. * SHOW_MEM_FILTER_NODES is passed.
  2778. */
  2779. void show_free_areas(unsigned int filter)
  2780. {
  2781. int cpu;
  2782. struct zone *zone;
  2783. for_each_populated_zone(zone) {
  2784. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2785. continue;
  2786. show_node(zone);
  2787. printk("%s per-cpu:\n", zone->name);
  2788. for_each_online_cpu(cpu) {
  2789. struct per_cpu_pageset *pageset;
  2790. pageset = per_cpu_ptr(zone->pageset, cpu);
  2791. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2792. cpu, pageset->pcp.high,
  2793. pageset->pcp.batch, pageset->pcp.count);
  2794. }
  2795. }
  2796. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2797. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2798. " unevictable:%lu"
  2799. " dirty:%lu writeback:%lu unstable:%lu\n"
  2800. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2801. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2802. " free_cma:%lu\n",
  2803. global_page_state(NR_ACTIVE_ANON),
  2804. global_page_state(NR_INACTIVE_ANON),
  2805. global_page_state(NR_ISOLATED_ANON),
  2806. global_page_state(NR_ACTIVE_FILE),
  2807. global_page_state(NR_INACTIVE_FILE),
  2808. global_page_state(NR_ISOLATED_FILE),
  2809. global_page_state(NR_UNEVICTABLE),
  2810. global_page_state(NR_FILE_DIRTY),
  2811. global_page_state(NR_WRITEBACK),
  2812. global_page_state(NR_UNSTABLE_NFS),
  2813. global_page_state(NR_FREE_PAGES),
  2814. global_page_state(NR_SLAB_RECLAIMABLE),
  2815. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2816. global_page_state(NR_FILE_MAPPED),
  2817. global_page_state(NR_SHMEM),
  2818. global_page_state(NR_PAGETABLE),
  2819. global_page_state(NR_BOUNCE),
  2820. global_page_state(NR_FREE_CMA_PAGES));
  2821. for_each_populated_zone(zone) {
  2822. int i;
  2823. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2824. continue;
  2825. show_node(zone);
  2826. printk("%s"
  2827. " free:%lukB"
  2828. " min:%lukB"
  2829. " low:%lukB"
  2830. " high:%lukB"
  2831. " active_anon:%lukB"
  2832. " inactive_anon:%lukB"
  2833. " active_file:%lukB"
  2834. " inactive_file:%lukB"
  2835. " unevictable:%lukB"
  2836. " isolated(anon):%lukB"
  2837. " isolated(file):%lukB"
  2838. " present:%lukB"
  2839. " managed:%lukB"
  2840. " mlocked:%lukB"
  2841. " dirty:%lukB"
  2842. " writeback:%lukB"
  2843. " mapped:%lukB"
  2844. " shmem:%lukB"
  2845. " slab_reclaimable:%lukB"
  2846. " slab_unreclaimable:%lukB"
  2847. " kernel_stack:%lukB"
  2848. " pagetables:%lukB"
  2849. " unstable:%lukB"
  2850. " bounce:%lukB"
  2851. " free_cma:%lukB"
  2852. " writeback_tmp:%lukB"
  2853. " pages_scanned:%lu"
  2854. " all_unreclaimable? %s"
  2855. "\n",
  2856. zone->name,
  2857. K(zone_page_state(zone, NR_FREE_PAGES)),
  2858. K(min_wmark_pages(zone)),
  2859. K(low_wmark_pages(zone)),
  2860. K(high_wmark_pages(zone)),
  2861. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2862. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2863. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2864. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2865. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2866. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2867. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2868. K(zone->present_pages),
  2869. K(zone->managed_pages),
  2870. K(zone_page_state(zone, NR_MLOCK)),
  2871. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2872. K(zone_page_state(zone, NR_WRITEBACK)),
  2873. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2874. K(zone_page_state(zone, NR_SHMEM)),
  2875. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2876. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2877. zone_page_state(zone, NR_KERNEL_STACK) *
  2878. THREAD_SIZE / 1024,
  2879. K(zone_page_state(zone, NR_PAGETABLE)),
  2880. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2881. K(zone_page_state(zone, NR_BOUNCE)),
  2882. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2883. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2884. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  2885. (!zone_reclaimable(zone) ? "yes" : "no")
  2886. );
  2887. printk("lowmem_reserve[]:");
  2888. for (i = 0; i < MAX_NR_ZONES; i++)
  2889. printk(" %ld", zone->lowmem_reserve[i]);
  2890. printk("\n");
  2891. }
  2892. for_each_populated_zone(zone) {
  2893. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2894. unsigned char types[MAX_ORDER];
  2895. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2896. continue;
  2897. show_node(zone);
  2898. printk("%s: ", zone->name);
  2899. spin_lock_irqsave(&zone->lock, flags);
  2900. for (order = 0; order < MAX_ORDER; order++) {
  2901. struct free_area *area = &zone->free_area[order];
  2902. int type;
  2903. nr[order] = area->nr_free;
  2904. total += nr[order] << order;
  2905. types[order] = 0;
  2906. for (type = 0; type < MIGRATE_TYPES; type++) {
  2907. if (!list_empty(&area->free_list[type]))
  2908. types[order] |= 1 << type;
  2909. }
  2910. }
  2911. spin_unlock_irqrestore(&zone->lock, flags);
  2912. for (order = 0; order < MAX_ORDER; order++) {
  2913. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2914. if (nr[order])
  2915. show_migration_types(types[order]);
  2916. }
  2917. printk("= %lukB\n", K(total));
  2918. }
  2919. hugetlb_show_meminfo();
  2920. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2921. show_swap_cache_info();
  2922. }
  2923. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2924. {
  2925. zoneref->zone = zone;
  2926. zoneref->zone_idx = zone_idx(zone);
  2927. }
  2928. /*
  2929. * Builds allocation fallback zone lists.
  2930. *
  2931. * Add all populated zones of a node to the zonelist.
  2932. */
  2933. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2934. int nr_zones)
  2935. {
  2936. struct zone *zone;
  2937. enum zone_type zone_type = MAX_NR_ZONES;
  2938. do {
  2939. zone_type--;
  2940. zone = pgdat->node_zones + zone_type;
  2941. if (populated_zone(zone)) {
  2942. zoneref_set_zone(zone,
  2943. &zonelist->_zonerefs[nr_zones++]);
  2944. check_highest_zone(zone_type);
  2945. }
  2946. } while (zone_type);
  2947. return nr_zones;
  2948. }
  2949. /*
  2950. * zonelist_order:
  2951. * 0 = automatic detection of better ordering.
  2952. * 1 = order by ([node] distance, -zonetype)
  2953. * 2 = order by (-zonetype, [node] distance)
  2954. *
  2955. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2956. * the same zonelist. So only NUMA can configure this param.
  2957. */
  2958. #define ZONELIST_ORDER_DEFAULT 0
  2959. #define ZONELIST_ORDER_NODE 1
  2960. #define ZONELIST_ORDER_ZONE 2
  2961. /* zonelist order in the kernel.
  2962. * set_zonelist_order() will set this to NODE or ZONE.
  2963. */
  2964. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2965. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2966. #ifdef CONFIG_NUMA
  2967. /* The value user specified ....changed by config */
  2968. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2969. /* string for sysctl */
  2970. #define NUMA_ZONELIST_ORDER_LEN 16
  2971. char numa_zonelist_order[16] = "default";
  2972. /*
  2973. * interface for configure zonelist ordering.
  2974. * command line option "numa_zonelist_order"
  2975. * = "[dD]efault - default, automatic configuration.
  2976. * = "[nN]ode - order by node locality, then by zone within node
  2977. * = "[zZ]one - order by zone, then by locality within zone
  2978. */
  2979. static int __parse_numa_zonelist_order(char *s)
  2980. {
  2981. if (*s == 'd' || *s == 'D') {
  2982. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2983. } else if (*s == 'n' || *s == 'N') {
  2984. user_zonelist_order = ZONELIST_ORDER_NODE;
  2985. } else if (*s == 'z' || *s == 'Z') {
  2986. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2987. } else {
  2988. printk(KERN_WARNING
  2989. "Ignoring invalid numa_zonelist_order value: "
  2990. "%s\n", s);
  2991. return -EINVAL;
  2992. }
  2993. return 0;
  2994. }
  2995. static __init int setup_numa_zonelist_order(char *s)
  2996. {
  2997. int ret;
  2998. if (!s)
  2999. return 0;
  3000. ret = __parse_numa_zonelist_order(s);
  3001. if (ret == 0)
  3002. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3003. return ret;
  3004. }
  3005. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3006. /*
  3007. * sysctl handler for numa_zonelist_order
  3008. */
  3009. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3010. void __user *buffer, size_t *length,
  3011. loff_t *ppos)
  3012. {
  3013. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3014. int ret;
  3015. static DEFINE_MUTEX(zl_order_mutex);
  3016. mutex_lock(&zl_order_mutex);
  3017. if (write) {
  3018. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3019. ret = -EINVAL;
  3020. goto out;
  3021. }
  3022. strcpy(saved_string, (char *)table->data);
  3023. }
  3024. ret = proc_dostring(table, write, buffer, length, ppos);
  3025. if (ret)
  3026. goto out;
  3027. if (write) {
  3028. int oldval = user_zonelist_order;
  3029. ret = __parse_numa_zonelist_order((char *)table->data);
  3030. if (ret) {
  3031. /*
  3032. * bogus value. restore saved string
  3033. */
  3034. strncpy((char *)table->data, saved_string,
  3035. NUMA_ZONELIST_ORDER_LEN);
  3036. user_zonelist_order = oldval;
  3037. } else if (oldval != user_zonelist_order) {
  3038. mutex_lock(&zonelists_mutex);
  3039. build_all_zonelists(NULL, NULL);
  3040. mutex_unlock(&zonelists_mutex);
  3041. }
  3042. }
  3043. out:
  3044. mutex_unlock(&zl_order_mutex);
  3045. return ret;
  3046. }
  3047. #define MAX_NODE_LOAD (nr_online_nodes)
  3048. static int node_load[MAX_NUMNODES];
  3049. /**
  3050. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3051. * @node: node whose fallback list we're appending
  3052. * @used_node_mask: nodemask_t of already used nodes
  3053. *
  3054. * We use a number of factors to determine which is the next node that should
  3055. * appear on a given node's fallback list. The node should not have appeared
  3056. * already in @node's fallback list, and it should be the next closest node
  3057. * according to the distance array (which contains arbitrary distance values
  3058. * from each node to each node in the system), and should also prefer nodes
  3059. * with no CPUs, since presumably they'll have very little allocation pressure
  3060. * on them otherwise.
  3061. * It returns -1 if no node is found.
  3062. */
  3063. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3064. {
  3065. int n, val;
  3066. int min_val = INT_MAX;
  3067. int best_node = NUMA_NO_NODE;
  3068. const struct cpumask *tmp = cpumask_of_node(0);
  3069. /* Use the local node if we haven't already */
  3070. if (!node_isset(node, *used_node_mask)) {
  3071. node_set(node, *used_node_mask);
  3072. return node;
  3073. }
  3074. for_each_node_state(n, N_MEMORY) {
  3075. /* Don't want a node to appear more than once */
  3076. if (node_isset(n, *used_node_mask))
  3077. continue;
  3078. /* Use the distance array to find the distance */
  3079. val = node_distance(node, n);
  3080. /* Penalize nodes under us ("prefer the next node") */
  3081. val += (n < node);
  3082. /* Give preference to headless and unused nodes */
  3083. tmp = cpumask_of_node(n);
  3084. if (!cpumask_empty(tmp))
  3085. val += PENALTY_FOR_NODE_WITH_CPUS;
  3086. /* Slight preference for less loaded node */
  3087. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3088. val += node_load[n];
  3089. if (val < min_val) {
  3090. min_val = val;
  3091. best_node = n;
  3092. }
  3093. }
  3094. if (best_node >= 0)
  3095. node_set(best_node, *used_node_mask);
  3096. return best_node;
  3097. }
  3098. /*
  3099. * Build zonelists ordered by node and zones within node.
  3100. * This results in maximum locality--normal zone overflows into local
  3101. * DMA zone, if any--but risks exhausting DMA zone.
  3102. */
  3103. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3104. {
  3105. int j;
  3106. struct zonelist *zonelist;
  3107. zonelist = &pgdat->node_zonelists[0];
  3108. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3109. ;
  3110. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3111. zonelist->_zonerefs[j].zone = NULL;
  3112. zonelist->_zonerefs[j].zone_idx = 0;
  3113. }
  3114. /*
  3115. * Build gfp_thisnode zonelists
  3116. */
  3117. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3118. {
  3119. int j;
  3120. struct zonelist *zonelist;
  3121. zonelist = &pgdat->node_zonelists[1];
  3122. j = build_zonelists_node(pgdat, zonelist, 0);
  3123. zonelist->_zonerefs[j].zone = NULL;
  3124. zonelist->_zonerefs[j].zone_idx = 0;
  3125. }
  3126. /*
  3127. * Build zonelists ordered by zone and nodes within zones.
  3128. * This results in conserving DMA zone[s] until all Normal memory is
  3129. * exhausted, but results in overflowing to remote node while memory
  3130. * may still exist in local DMA zone.
  3131. */
  3132. static int node_order[MAX_NUMNODES];
  3133. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3134. {
  3135. int pos, j, node;
  3136. int zone_type; /* needs to be signed */
  3137. struct zone *z;
  3138. struct zonelist *zonelist;
  3139. zonelist = &pgdat->node_zonelists[0];
  3140. pos = 0;
  3141. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3142. for (j = 0; j < nr_nodes; j++) {
  3143. node = node_order[j];
  3144. z = &NODE_DATA(node)->node_zones[zone_type];
  3145. if (populated_zone(z)) {
  3146. zoneref_set_zone(z,
  3147. &zonelist->_zonerefs[pos++]);
  3148. check_highest_zone(zone_type);
  3149. }
  3150. }
  3151. }
  3152. zonelist->_zonerefs[pos].zone = NULL;
  3153. zonelist->_zonerefs[pos].zone_idx = 0;
  3154. }
  3155. #if defined(CONFIG_64BIT)
  3156. /*
  3157. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3158. * penalty to every machine in case the specialised case applies. Default
  3159. * to Node-ordering on 64-bit NUMA machines
  3160. */
  3161. static int default_zonelist_order(void)
  3162. {
  3163. return ZONELIST_ORDER_NODE;
  3164. }
  3165. #else
  3166. /*
  3167. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3168. * by the kernel. If processes running on node 0 deplete the low memory zone
  3169. * then reclaim will occur more frequency increasing stalls and potentially
  3170. * be easier to OOM if a large percentage of the zone is under writeback or
  3171. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3172. * Hence, default to zone ordering on 32-bit.
  3173. */
  3174. static int default_zonelist_order(void)
  3175. {
  3176. return ZONELIST_ORDER_ZONE;
  3177. }
  3178. #endif /* CONFIG_64BIT */
  3179. static void set_zonelist_order(void)
  3180. {
  3181. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3182. current_zonelist_order = default_zonelist_order();
  3183. else
  3184. current_zonelist_order = user_zonelist_order;
  3185. }
  3186. static void build_zonelists(pg_data_t *pgdat)
  3187. {
  3188. int j, node, load;
  3189. enum zone_type i;
  3190. nodemask_t used_mask;
  3191. int local_node, prev_node;
  3192. struct zonelist *zonelist;
  3193. int order = current_zonelist_order;
  3194. /* initialize zonelists */
  3195. for (i = 0; i < MAX_ZONELISTS; i++) {
  3196. zonelist = pgdat->node_zonelists + i;
  3197. zonelist->_zonerefs[0].zone = NULL;
  3198. zonelist->_zonerefs[0].zone_idx = 0;
  3199. }
  3200. /* NUMA-aware ordering of nodes */
  3201. local_node = pgdat->node_id;
  3202. load = nr_online_nodes;
  3203. prev_node = local_node;
  3204. nodes_clear(used_mask);
  3205. memset(node_order, 0, sizeof(node_order));
  3206. j = 0;
  3207. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3208. /*
  3209. * We don't want to pressure a particular node.
  3210. * So adding penalty to the first node in same
  3211. * distance group to make it round-robin.
  3212. */
  3213. if (node_distance(local_node, node) !=
  3214. node_distance(local_node, prev_node))
  3215. node_load[node] = load;
  3216. prev_node = node;
  3217. load--;
  3218. if (order == ZONELIST_ORDER_NODE)
  3219. build_zonelists_in_node_order(pgdat, node);
  3220. else
  3221. node_order[j++] = node; /* remember order */
  3222. }
  3223. if (order == ZONELIST_ORDER_ZONE) {
  3224. /* calculate node order -- i.e., DMA last! */
  3225. build_zonelists_in_zone_order(pgdat, j);
  3226. }
  3227. build_thisnode_zonelists(pgdat);
  3228. }
  3229. /* Construct the zonelist performance cache - see further mmzone.h */
  3230. static void build_zonelist_cache(pg_data_t *pgdat)
  3231. {
  3232. struct zonelist *zonelist;
  3233. struct zonelist_cache *zlc;
  3234. struct zoneref *z;
  3235. zonelist = &pgdat->node_zonelists[0];
  3236. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3237. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3238. for (z = zonelist->_zonerefs; z->zone; z++)
  3239. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3240. }
  3241. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3242. /*
  3243. * Return node id of node used for "local" allocations.
  3244. * I.e., first node id of first zone in arg node's generic zonelist.
  3245. * Used for initializing percpu 'numa_mem', which is used primarily
  3246. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3247. */
  3248. int local_memory_node(int node)
  3249. {
  3250. struct zone *zone;
  3251. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3252. gfp_zone(GFP_KERNEL),
  3253. NULL,
  3254. &zone);
  3255. return zone->node;
  3256. }
  3257. #endif
  3258. #else /* CONFIG_NUMA */
  3259. static void set_zonelist_order(void)
  3260. {
  3261. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3262. }
  3263. static void build_zonelists(pg_data_t *pgdat)
  3264. {
  3265. int node, local_node;
  3266. enum zone_type j;
  3267. struct zonelist *zonelist;
  3268. local_node = pgdat->node_id;
  3269. zonelist = &pgdat->node_zonelists[0];
  3270. j = build_zonelists_node(pgdat, zonelist, 0);
  3271. /*
  3272. * Now we build the zonelist so that it contains the zones
  3273. * of all the other nodes.
  3274. * We don't want to pressure a particular node, so when
  3275. * building the zones for node N, we make sure that the
  3276. * zones coming right after the local ones are those from
  3277. * node N+1 (modulo N)
  3278. */
  3279. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3280. if (!node_online(node))
  3281. continue;
  3282. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3283. }
  3284. for (node = 0; node < local_node; node++) {
  3285. if (!node_online(node))
  3286. continue;
  3287. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3288. }
  3289. zonelist->_zonerefs[j].zone = NULL;
  3290. zonelist->_zonerefs[j].zone_idx = 0;
  3291. }
  3292. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3293. static void build_zonelist_cache(pg_data_t *pgdat)
  3294. {
  3295. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3296. }
  3297. #endif /* CONFIG_NUMA */
  3298. /*
  3299. * Boot pageset table. One per cpu which is going to be used for all
  3300. * zones and all nodes. The parameters will be set in such a way
  3301. * that an item put on a list will immediately be handed over to
  3302. * the buddy list. This is safe since pageset manipulation is done
  3303. * with interrupts disabled.
  3304. *
  3305. * The boot_pagesets must be kept even after bootup is complete for
  3306. * unused processors and/or zones. They do play a role for bootstrapping
  3307. * hotplugged processors.
  3308. *
  3309. * zoneinfo_show() and maybe other functions do
  3310. * not check if the processor is online before following the pageset pointer.
  3311. * Other parts of the kernel may not check if the zone is available.
  3312. */
  3313. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3314. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3315. static void setup_zone_pageset(struct zone *zone);
  3316. /*
  3317. * Global mutex to protect against size modification of zonelists
  3318. * as well as to serialize pageset setup for the new populated zone.
  3319. */
  3320. DEFINE_MUTEX(zonelists_mutex);
  3321. /* return values int ....just for stop_machine() */
  3322. static int __build_all_zonelists(void *data)
  3323. {
  3324. int nid;
  3325. int cpu;
  3326. pg_data_t *self = data;
  3327. #ifdef CONFIG_NUMA
  3328. memset(node_load, 0, sizeof(node_load));
  3329. #endif
  3330. if (self && !node_online(self->node_id)) {
  3331. build_zonelists(self);
  3332. build_zonelist_cache(self);
  3333. }
  3334. for_each_online_node(nid) {
  3335. pg_data_t *pgdat = NODE_DATA(nid);
  3336. build_zonelists(pgdat);
  3337. build_zonelist_cache(pgdat);
  3338. }
  3339. /*
  3340. * Initialize the boot_pagesets that are going to be used
  3341. * for bootstrapping processors. The real pagesets for
  3342. * each zone will be allocated later when the per cpu
  3343. * allocator is available.
  3344. *
  3345. * boot_pagesets are used also for bootstrapping offline
  3346. * cpus if the system is already booted because the pagesets
  3347. * are needed to initialize allocators on a specific cpu too.
  3348. * F.e. the percpu allocator needs the page allocator which
  3349. * needs the percpu allocator in order to allocate its pagesets
  3350. * (a chicken-egg dilemma).
  3351. */
  3352. for_each_possible_cpu(cpu) {
  3353. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3354. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3355. /*
  3356. * We now know the "local memory node" for each node--
  3357. * i.e., the node of the first zone in the generic zonelist.
  3358. * Set up numa_mem percpu variable for on-line cpus. During
  3359. * boot, only the boot cpu should be on-line; we'll init the
  3360. * secondary cpus' numa_mem as they come on-line. During
  3361. * node/memory hotplug, we'll fixup all on-line cpus.
  3362. */
  3363. if (cpu_online(cpu))
  3364. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3365. #endif
  3366. }
  3367. return 0;
  3368. }
  3369. /*
  3370. * Called with zonelists_mutex held always
  3371. * unless system_state == SYSTEM_BOOTING.
  3372. */
  3373. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3374. {
  3375. set_zonelist_order();
  3376. if (system_state == SYSTEM_BOOTING) {
  3377. __build_all_zonelists(NULL);
  3378. mminit_verify_zonelist();
  3379. cpuset_init_current_mems_allowed();
  3380. } else {
  3381. #ifdef CONFIG_MEMORY_HOTPLUG
  3382. if (zone)
  3383. setup_zone_pageset(zone);
  3384. #endif
  3385. /* we have to stop all cpus to guarantee there is no user
  3386. of zonelist */
  3387. stop_machine(__build_all_zonelists, pgdat, NULL);
  3388. /* cpuset refresh routine should be here */
  3389. }
  3390. vm_total_pages = nr_free_pagecache_pages();
  3391. /*
  3392. * Disable grouping by mobility if the number of pages in the
  3393. * system is too low to allow the mechanism to work. It would be
  3394. * more accurate, but expensive to check per-zone. This check is
  3395. * made on memory-hotadd so a system can start with mobility
  3396. * disabled and enable it later
  3397. */
  3398. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3399. page_group_by_mobility_disabled = 1;
  3400. else
  3401. page_group_by_mobility_disabled = 0;
  3402. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3403. "Total pages: %ld\n",
  3404. nr_online_nodes,
  3405. zonelist_order_name[current_zonelist_order],
  3406. page_group_by_mobility_disabled ? "off" : "on",
  3407. vm_total_pages);
  3408. #ifdef CONFIG_NUMA
  3409. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3410. #endif
  3411. }
  3412. /*
  3413. * Helper functions to size the waitqueue hash table.
  3414. * Essentially these want to choose hash table sizes sufficiently
  3415. * large so that collisions trying to wait on pages are rare.
  3416. * But in fact, the number of active page waitqueues on typical
  3417. * systems is ridiculously low, less than 200. So this is even
  3418. * conservative, even though it seems large.
  3419. *
  3420. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3421. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3422. */
  3423. #define PAGES_PER_WAITQUEUE 256
  3424. #ifndef CONFIG_MEMORY_HOTPLUG
  3425. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3426. {
  3427. unsigned long size = 1;
  3428. pages /= PAGES_PER_WAITQUEUE;
  3429. while (size < pages)
  3430. size <<= 1;
  3431. /*
  3432. * Once we have dozens or even hundreds of threads sleeping
  3433. * on IO we've got bigger problems than wait queue collision.
  3434. * Limit the size of the wait table to a reasonable size.
  3435. */
  3436. size = min(size, 4096UL);
  3437. return max(size, 4UL);
  3438. }
  3439. #else
  3440. /*
  3441. * A zone's size might be changed by hot-add, so it is not possible to determine
  3442. * a suitable size for its wait_table. So we use the maximum size now.
  3443. *
  3444. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3445. *
  3446. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3447. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3448. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3449. *
  3450. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3451. * or more by the traditional way. (See above). It equals:
  3452. *
  3453. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3454. * ia64(16K page size) : = ( 8G + 4M)byte.
  3455. * powerpc (64K page size) : = (32G +16M)byte.
  3456. */
  3457. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3458. {
  3459. return 4096UL;
  3460. }
  3461. #endif
  3462. /*
  3463. * This is an integer logarithm so that shifts can be used later
  3464. * to extract the more random high bits from the multiplicative
  3465. * hash function before the remainder is taken.
  3466. */
  3467. static inline unsigned long wait_table_bits(unsigned long size)
  3468. {
  3469. return ffz(~size);
  3470. }
  3471. /*
  3472. * Check if a pageblock contains reserved pages
  3473. */
  3474. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3475. {
  3476. unsigned long pfn;
  3477. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3478. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3479. return 1;
  3480. }
  3481. return 0;
  3482. }
  3483. /*
  3484. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3485. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3486. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3487. * higher will lead to a bigger reserve which will get freed as contiguous
  3488. * blocks as reclaim kicks in
  3489. */
  3490. static void setup_zone_migrate_reserve(struct zone *zone)
  3491. {
  3492. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3493. struct page *page;
  3494. unsigned long block_migratetype;
  3495. int reserve;
  3496. int old_reserve;
  3497. /*
  3498. * Get the start pfn, end pfn and the number of blocks to reserve
  3499. * We have to be careful to be aligned to pageblock_nr_pages to
  3500. * make sure that we always check pfn_valid for the first page in
  3501. * the block.
  3502. */
  3503. start_pfn = zone->zone_start_pfn;
  3504. end_pfn = zone_end_pfn(zone);
  3505. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3506. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3507. pageblock_order;
  3508. /*
  3509. * Reserve blocks are generally in place to help high-order atomic
  3510. * allocations that are short-lived. A min_free_kbytes value that
  3511. * would result in more than 2 reserve blocks for atomic allocations
  3512. * is assumed to be in place to help anti-fragmentation for the
  3513. * future allocation of hugepages at runtime.
  3514. */
  3515. reserve = min(2, reserve);
  3516. old_reserve = zone->nr_migrate_reserve_block;
  3517. /* When memory hot-add, we almost always need to do nothing */
  3518. if (reserve == old_reserve)
  3519. return;
  3520. zone->nr_migrate_reserve_block = reserve;
  3521. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3522. if (!pfn_valid(pfn))
  3523. continue;
  3524. page = pfn_to_page(pfn);
  3525. /* Watch out for overlapping nodes */
  3526. if (page_to_nid(page) != zone_to_nid(zone))
  3527. continue;
  3528. block_migratetype = get_pageblock_migratetype(page);
  3529. /* Only test what is necessary when the reserves are not met */
  3530. if (reserve > 0) {
  3531. /*
  3532. * Blocks with reserved pages will never free, skip
  3533. * them.
  3534. */
  3535. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3536. if (pageblock_is_reserved(pfn, block_end_pfn))
  3537. continue;
  3538. /* If this block is reserved, account for it */
  3539. if (block_migratetype == MIGRATE_RESERVE) {
  3540. reserve--;
  3541. continue;
  3542. }
  3543. /* Suitable for reserving if this block is movable */
  3544. if (block_migratetype == MIGRATE_MOVABLE) {
  3545. set_pageblock_migratetype(page,
  3546. MIGRATE_RESERVE);
  3547. move_freepages_block(zone, page,
  3548. MIGRATE_RESERVE);
  3549. reserve--;
  3550. continue;
  3551. }
  3552. } else if (!old_reserve) {
  3553. /*
  3554. * At boot time we don't need to scan the whole zone
  3555. * for turning off MIGRATE_RESERVE.
  3556. */
  3557. break;
  3558. }
  3559. /*
  3560. * If the reserve is met and this is a previous reserved block,
  3561. * take it back
  3562. */
  3563. if (block_migratetype == MIGRATE_RESERVE) {
  3564. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3565. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3566. }
  3567. }
  3568. }
  3569. /*
  3570. * Initially all pages are reserved - free ones are freed
  3571. * up by free_all_bootmem() once the early boot process is
  3572. * done. Non-atomic initialization, single-pass.
  3573. */
  3574. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3575. unsigned long start_pfn, enum memmap_context context)
  3576. {
  3577. struct page *page;
  3578. unsigned long end_pfn = start_pfn + size;
  3579. unsigned long pfn;
  3580. struct zone *z;
  3581. if (highest_memmap_pfn < end_pfn - 1)
  3582. highest_memmap_pfn = end_pfn - 1;
  3583. z = &NODE_DATA(nid)->node_zones[zone];
  3584. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3585. /*
  3586. * There can be holes in boot-time mem_map[]s
  3587. * handed to this function. They do not
  3588. * exist on hotplugged memory.
  3589. */
  3590. if (context == MEMMAP_EARLY) {
  3591. if (!early_pfn_valid(pfn))
  3592. continue;
  3593. if (!early_pfn_in_nid(pfn, nid))
  3594. continue;
  3595. }
  3596. page = pfn_to_page(pfn);
  3597. set_page_links(page, zone, nid, pfn);
  3598. mminit_verify_page_links(page, zone, nid, pfn);
  3599. init_page_count(page);
  3600. page_mapcount_reset(page);
  3601. page_cpupid_reset_last(page);
  3602. SetPageReserved(page);
  3603. /*
  3604. * Mark the block movable so that blocks are reserved for
  3605. * movable at startup. This will force kernel allocations
  3606. * to reserve their blocks rather than leaking throughout
  3607. * the address space during boot when many long-lived
  3608. * kernel allocations are made. Later some blocks near
  3609. * the start are marked MIGRATE_RESERVE by
  3610. * setup_zone_migrate_reserve()
  3611. *
  3612. * bitmap is created for zone's valid pfn range. but memmap
  3613. * can be created for invalid pages (for alignment)
  3614. * check here not to call set_pageblock_migratetype() against
  3615. * pfn out of zone.
  3616. */
  3617. if ((z->zone_start_pfn <= pfn)
  3618. && (pfn < zone_end_pfn(z))
  3619. && !(pfn & (pageblock_nr_pages - 1)))
  3620. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3621. INIT_LIST_HEAD(&page->lru);
  3622. #ifdef WANT_PAGE_VIRTUAL
  3623. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3624. if (!is_highmem_idx(zone))
  3625. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3626. #endif
  3627. }
  3628. }
  3629. static void __meminit zone_init_free_lists(struct zone *zone)
  3630. {
  3631. unsigned int order, t;
  3632. for_each_migratetype_order(order, t) {
  3633. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3634. zone->free_area[order].nr_free = 0;
  3635. }
  3636. }
  3637. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3638. #define memmap_init(size, nid, zone, start_pfn) \
  3639. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3640. #endif
  3641. static int zone_batchsize(struct zone *zone)
  3642. {
  3643. #ifdef CONFIG_MMU
  3644. int batch;
  3645. /*
  3646. * The per-cpu-pages pools are set to around 1000th of the
  3647. * size of the zone. But no more than 1/2 of a meg.
  3648. *
  3649. * OK, so we don't know how big the cache is. So guess.
  3650. */
  3651. batch = zone->managed_pages / 1024;
  3652. if (batch * PAGE_SIZE > 512 * 1024)
  3653. batch = (512 * 1024) / PAGE_SIZE;
  3654. batch /= 4; /* We effectively *= 4 below */
  3655. if (batch < 1)
  3656. batch = 1;
  3657. /*
  3658. * Clamp the batch to a 2^n - 1 value. Having a power
  3659. * of 2 value was found to be more likely to have
  3660. * suboptimal cache aliasing properties in some cases.
  3661. *
  3662. * For example if 2 tasks are alternately allocating
  3663. * batches of pages, one task can end up with a lot
  3664. * of pages of one half of the possible page colors
  3665. * and the other with pages of the other colors.
  3666. */
  3667. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3668. return batch;
  3669. #else
  3670. /* The deferral and batching of frees should be suppressed under NOMMU
  3671. * conditions.
  3672. *
  3673. * The problem is that NOMMU needs to be able to allocate large chunks
  3674. * of contiguous memory as there's no hardware page translation to
  3675. * assemble apparent contiguous memory from discontiguous pages.
  3676. *
  3677. * Queueing large contiguous runs of pages for batching, however,
  3678. * causes the pages to actually be freed in smaller chunks. As there
  3679. * can be a significant delay between the individual batches being
  3680. * recycled, this leads to the once large chunks of space being
  3681. * fragmented and becoming unavailable for high-order allocations.
  3682. */
  3683. return 0;
  3684. #endif
  3685. }
  3686. /*
  3687. * pcp->high and pcp->batch values are related and dependent on one another:
  3688. * ->batch must never be higher then ->high.
  3689. * The following function updates them in a safe manner without read side
  3690. * locking.
  3691. *
  3692. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3693. * those fields changing asynchronously (acording the the above rule).
  3694. *
  3695. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3696. * outside of boot time (or some other assurance that no concurrent updaters
  3697. * exist).
  3698. */
  3699. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3700. unsigned long batch)
  3701. {
  3702. /* start with a fail safe value for batch */
  3703. pcp->batch = 1;
  3704. smp_wmb();
  3705. /* Update high, then batch, in order */
  3706. pcp->high = high;
  3707. smp_wmb();
  3708. pcp->batch = batch;
  3709. }
  3710. /* a companion to pageset_set_high() */
  3711. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3712. {
  3713. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3714. }
  3715. static void pageset_init(struct per_cpu_pageset *p)
  3716. {
  3717. struct per_cpu_pages *pcp;
  3718. int migratetype;
  3719. memset(p, 0, sizeof(*p));
  3720. pcp = &p->pcp;
  3721. pcp->count = 0;
  3722. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3723. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3724. }
  3725. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3726. {
  3727. pageset_init(p);
  3728. pageset_set_batch(p, batch);
  3729. }
  3730. /*
  3731. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3732. * to the value high for the pageset p.
  3733. */
  3734. static void pageset_set_high(struct per_cpu_pageset *p,
  3735. unsigned long high)
  3736. {
  3737. unsigned long batch = max(1UL, high / 4);
  3738. if ((high / 4) > (PAGE_SHIFT * 8))
  3739. batch = PAGE_SHIFT * 8;
  3740. pageset_update(&p->pcp, high, batch);
  3741. }
  3742. static void pageset_set_high_and_batch(struct zone *zone,
  3743. struct per_cpu_pageset *pcp)
  3744. {
  3745. if (percpu_pagelist_fraction)
  3746. pageset_set_high(pcp,
  3747. (zone->managed_pages /
  3748. percpu_pagelist_fraction));
  3749. else
  3750. pageset_set_batch(pcp, zone_batchsize(zone));
  3751. }
  3752. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3753. {
  3754. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3755. pageset_init(pcp);
  3756. pageset_set_high_and_batch(zone, pcp);
  3757. }
  3758. static void __meminit setup_zone_pageset(struct zone *zone)
  3759. {
  3760. int cpu;
  3761. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3762. for_each_possible_cpu(cpu)
  3763. zone_pageset_init(zone, cpu);
  3764. }
  3765. /*
  3766. * Allocate per cpu pagesets and initialize them.
  3767. * Before this call only boot pagesets were available.
  3768. */
  3769. void __init setup_per_cpu_pageset(void)
  3770. {
  3771. struct zone *zone;
  3772. for_each_populated_zone(zone)
  3773. setup_zone_pageset(zone);
  3774. }
  3775. static noinline __init_refok
  3776. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3777. {
  3778. int i;
  3779. size_t alloc_size;
  3780. /*
  3781. * The per-page waitqueue mechanism uses hashed waitqueues
  3782. * per zone.
  3783. */
  3784. zone->wait_table_hash_nr_entries =
  3785. wait_table_hash_nr_entries(zone_size_pages);
  3786. zone->wait_table_bits =
  3787. wait_table_bits(zone->wait_table_hash_nr_entries);
  3788. alloc_size = zone->wait_table_hash_nr_entries
  3789. * sizeof(wait_queue_head_t);
  3790. if (!slab_is_available()) {
  3791. zone->wait_table = (wait_queue_head_t *)
  3792. memblock_virt_alloc_node_nopanic(
  3793. alloc_size, zone->zone_pgdat->node_id);
  3794. } else {
  3795. /*
  3796. * This case means that a zone whose size was 0 gets new memory
  3797. * via memory hot-add.
  3798. * But it may be the case that a new node was hot-added. In
  3799. * this case vmalloc() will not be able to use this new node's
  3800. * memory - this wait_table must be initialized to use this new
  3801. * node itself as well.
  3802. * To use this new node's memory, further consideration will be
  3803. * necessary.
  3804. */
  3805. zone->wait_table = vmalloc(alloc_size);
  3806. }
  3807. if (!zone->wait_table)
  3808. return -ENOMEM;
  3809. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3810. init_waitqueue_head(zone->wait_table + i);
  3811. return 0;
  3812. }
  3813. static __meminit void zone_pcp_init(struct zone *zone)
  3814. {
  3815. /*
  3816. * per cpu subsystem is not up at this point. The following code
  3817. * relies on the ability of the linker to provide the
  3818. * offset of a (static) per cpu variable into the per cpu area.
  3819. */
  3820. zone->pageset = &boot_pageset;
  3821. if (populated_zone(zone))
  3822. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3823. zone->name, zone->present_pages,
  3824. zone_batchsize(zone));
  3825. }
  3826. int __meminit init_currently_empty_zone(struct zone *zone,
  3827. unsigned long zone_start_pfn,
  3828. unsigned long size,
  3829. enum memmap_context context)
  3830. {
  3831. struct pglist_data *pgdat = zone->zone_pgdat;
  3832. int ret;
  3833. ret = zone_wait_table_init(zone, size);
  3834. if (ret)
  3835. return ret;
  3836. pgdat->nr_zones = zone_idx(zone) + 1;
  3837. zone->zone_start_pfn = zone_start_pfn;
  3838. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3839. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3840. pgdat->node_id,
  3841. (unsigned long)zone_idx(zone),
  3842. zone_start_pfn, (zone_start_pfn + size));
  3843. zone_init_free_lists(zone);
  3844. return 0;
  3845. }
  3846. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3847. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3848. /*
  3849. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3850. */
  3851. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3852. {
  3853. unsigned long start_pfn, end_pfn;
  3854. int nid;
  3855. /*
  3856. * NOTE: The following SMP-unsafe globals are only used early in boot
  3857. * when the kernel is running single-threaded.
  3858. */
  3859. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3860. static int __meminitdata last_nid;
  3861. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3862. return last_nid;
  3863. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  3864. if (nid != -1) {
  3865. last_start_pfn = start_pfn;
  3866. last_end_pfn = end_pfn;
  3867. last_nid = nid;
  3868. }
  3869. return nid;
  3870. }
  3871. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3872. int __meminit early_pfn_to_nid(unsigned long pfn)
  3873. {
  3874. int nid;
  3875. nid = __early_pfn_to_nid(pfn);
  3876. if (nid >= 0)
  3877. return nid;
  3878. /* just returns 0 */
  3879. return 0;
  3880. }
  3881. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3882. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3883. {
  3884. int nid;
  3885. nid = __early_pfn_to_nid(pfn);
  3886. if (nid >= 0 && nid != node)
  3887. return false;
  3888. return true;
  3889. }
  3890. #endif
  3891. /**
  3892. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  3893. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3894. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  3895. *
  3896. * If an architecture guarantees that all ranges registered contain no holes
  3897. * and may be freed, this this function may be used instead of calling
  3898. * memblock_free_early_nid() manually.
  3899. */
  3900. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3901. {
  3902. unsigned long start_pfn, end_pfn;
  3903. int i, this_nid;
  3904. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3905. start_pfn = min(start_pfn, max_low_pfn);
  3906. end_pfn = min(end_pfn, max_low_pfn);
  3907. if (start_pfn < end_pfn)
  3908. memblock_free_early_nid(PFN_PHYS(start_pfn),
  3909. (end_pfn - start_pfn) << PAGE_SHIFT,
  3910. this_nid);
  3911. }
  3912. }
  3913. /**
  3914. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3915. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3916. *
  3917. * If an architecture guarantees that all ranges registered contain no holes and may
  3918. * be freed, this function may be used instead of calling memory_present() manually.
  3919. */
  3920. void __init sparse_memory_present_with_active_regions(int nid)
  3921. {
  3922. unsigned long start_pfn, end_pfn;
  3923. int i, this_nid;
  3924. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3925. memory_present(this_nid, start_pfn, end_pfn);
  3926. }
  3927. /**
  3928. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3929. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3930. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3931. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3932. *
  3933. * It returns the start and end page frame of a node based on information
  3934. * provided by memblock_set_node(). If called for a node
  3935. * with no available memory, a warning is printed and the start and end
  3936. * PFNs will be 0.
  3937. */
  3938. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3939. unsigned long *start_pfn, unsigned long *end_pfn)
  3940. {
  3941. unsigned long this_start_pfn, this_end_pfn;
  3942. int i;
  3943. *start_pfn = -1UL;
  3944. *end_pfn = 0;
  3945. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3946. *start_pfn = min(*start_pfn, this_start_pfn);
  3947. *end_pfn = max(*end_pfn, this_end_pfn);
  3948. }
  3949. if (*start_pfn == -1UL)
  3950. *start_pfn = 0;
  3951. }
  3952. /*
  3953. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3954. * assumption is made that zones within a node are ordered in monotonic
  3955. * increasing memory addresses so that the "highest" populated zone is used
  3956. */
  3957. static void __init find_usable_zone_for_movable(void)
  3958. {
  3959. int zone_index;
  3960. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3961. if (zone_index == ZONE_MOVABLE)
  3962. continue;
  3963. if (arch_zone_highest_possible_pfn[zone_index] >
  3964. arch_zone_lowest_possible_pfn[zone_index])
  3965. break;
  3966. }
  3967. VM_BUG_ON(zone_index == -1);
  3968. movable_zone = zone_index;
  3969. }
  3970. /*
  3971. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3972. * because it is sized independent of architecture. Unlike the other zones,
  3973. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3974. * in each node depending on the size of each node and how evenly kernelcore
  3975. * is distributed. This helper function adjusts the zone ranges
  3976. * provided by the architecture for a given node by using the end of the
  3977. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3978. * zones within a node are in order of monotonic increases memory addresses
  3979. */
  3980. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3981. unsigned long zone_type,
  3982. unsigned long node_start_pfn,
  3983. unsigned long node_end_pfn,
  3984. unsigned long *zone_start_pfn,
  3985. unsigned long *zone_end_pfn)
  3986. {
  3987. /* Only adjust if ZONE_MOVABLE is on this node */
  3988. if (zone_movable_pfn[nid]) {
  3989. /* Size ZONE_MOVABLE */
  3990. if (zone_type == ZONE_MOVABLE) {
  3991. *zone_start_pfn = zone_movable_pfn[nid];
  3992. *zone_end_pfn = min(node_end_pfn,
  3993. arch_zone_highest_possible_pfn[movable_zone]);
  3994. /* Adjust for ZONE_MOVABLE starting within this range */
  3995. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3996. *zone_end_pfn > zone_movable_pfn[nid]) {
  3997. *zone_end_pfn = zone_movable_pfn[nid];
  3998. /* Check if this whole range is within ZONE_MOVABLE */
  3999. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4000. *zone_start_pfn = *zone_end_pfn;
  4001. }
  4002. }
  4003. /*
  4004. * Return the number of pages a zone spans in a node, including holes
  4005. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4006. */
  4007. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4008. unsigned long zone_type,
  4009. unsigned long node_start_pfn,
  4010. unsigned long node_end_pfn,
  4011. unsigned long *ignored)
  4012. {
  4013. unsigned long zone_start_pfn, zone_end_pfn;
  4014. /* Get the start and end of the zone */
  4015. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4016. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4017. adjust_zone_range_for_zone_movable(nid, zone_type,
  4018. node_start_pfn, node_end_pfn,
  4019. &zone_start_pfn, &zone_end_pfn);
  4020. /* Check that this node has pages within the zone's required range */
  4021. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4022. return 0;
  4023. /* Move the zone boundaries inside the node if necessary */
  4024. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4025. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4026. /* Return the spanned pages */
  4027. return zone_end_pfn - zone_start_pfn;
  4028. }
  4029. /*
  4030. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4031. * then all holes in the requested range will be accounted for.
  4032. */
  4033. unsigned long __meminit __absent_pages_in_range(int nid,
  4034. unsigned long range_start_pfn,
  4035. unsigned long range_end_pfn)
  4036. {
  4037. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4038. unsigned long start_pfn, end_pfn;
  4039. int i;
  4040. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4041. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4042. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4043. nr_absent -= end_pfn - start_pfn;
  4044. }
  4045. return nr_absent;
  4046. }
  4047. /**
  4048. * absent_pages_in_range - Return number of page frames in holes within a range
  4049. * @start_pfn: The start PFN to start searching for holes
  4050. * @end_pfn: The end PFN to stop searching for holes
  4051. *
  4052. * It returns the number of pages frames in memory holes within a range.
  4053. */
  4054. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4055. unsigned long end_pfn)
  4056. {
  4057. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4058. }
  4059. /* Return the number of page frames in holes in a zone on a node */
  4060. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4061. unsigned long zone_type,
  4062. unsigned long node_start_pfn,
  4063. unsigned long node_end_pfn,
  4064. unsigned long *ignored)
  4065. {
  4066. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4067. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4068. unsigned long zone_start_pfn, zone_end_pfn;
  4069. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4070. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4071. adjust_zone_range_for_zone_movable(nid, zone_type,
  4072. node_start_pfn, node_end_pfn,
  4073. &zone_start_pfn, &zone_end_pfn);
  4074. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4075. }
  4076. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4077. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4078. unsigned long zone_type,
  4079. unsigned long node_start_pfn,
  4080. unsigned long node_end_pfn,
  4081. unsigned long *zones_size)
  4082. {
  4083. return zones_size[zone_type];
  4084. }
  4085. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4086. unsigned long zone_type,
  4087. unsigned long node_start_pfn,
  4088. unsigned long node_end_pfn,
  4089. unsigned long *zholes_size)
  4090. {
  4091. if (!zholes_size)
  4092. return 0;
  4093. return zholes_size[zone_type];
  4094. }
  4095. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4096. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4097. unsigned long node_start_pfn,
  4098. unsigned long node_end_pfn,
  4099. unsigned long *zones_size,
  4100. unsigned long *zholes_size)
  4101. {
  4102. unsigned long realtotalpages, totalpages = 0;
  4103. enum zone_type i;
  4104. for (i = 0; i < MAX_NR_ZONES; i++)
  4105. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4106. node_start_pfn,
  4107. node_end_pfn,
  4108. zones_size);
  4109. pgdat->node_spanned_pages = totalpages;
  4110. realtotalpages = totalpages;
  4111. for (i = 0; i < MAX_NR_ZONES; i++)
  4112. realtotalpages -=
  4113. zone_absent_pages_in_node(pgdat->node_id, i,
  4114. node_start_pfn, node_end_pfn,
  4115. zholes_size);
  4116. pgdat->node_present_pages = realtotalpages;
  4117. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4118. realtotalpages);
  4119. }
  4120. #ifndef CONFIG_SPARSEMEM
  4121. /*
  4122. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4123. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4124. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4125. * round what is now in bits to nearest long in bits, then return it in
  4126. * bytes.
  4127. */
  4128. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4129. {
  4130. unsigned long usemapsize;
  4131. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4132. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4133. usemapsize = usemapsize >> pageblock_order;
  4134. usemapsize *= NR_PAGEBLOCK_BITS;
  4135. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4136. return usemapsize / 8;
  4137. }
  4138. static void __init setup_usemap(struct pglist_data *pgdat,
  4139. struct zone *zone,
  4140. unsigned long zone_start_pfn,
  4141. unsigned long zonesize)
  4142. {
  4143. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4144. zone->pageblock_flags = NULL;
  4145. if (usemapsize)
  4146. zone->pageblock_flags =
  4147. memblock_virt_alloc_node_nopanic(usemapsize,
  4148. pgdat->node_id);
  4149. }
  4150. #else
  4151. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4152. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4153. #endif /* CONFIG_SPARSEMEM */
  4154. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4155. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4156. void __paginginit set_pageblock_order(void)
  4157. {
  4158. unsigned int order;
  4159. /* Check that pageblock_nr_pages has not already been setup */
  4160. if (pageblock_order)
  4161. return;
  4162. if (HPAGE_SHIFT > PAGE_SHIFT)
  4163. order = HUGETLB_PAGE_ORDER;
  4164. else
  4165. order = MAX_ORDER - 1;
  4166. /*
  4167. * Assume the largest contiguous order of interest is a huge page.
  4168. * This value may be variable depending on boot parameters on IA64 and
  4169. * powerpc.
  4170. */
  4171. pageblock_order = order;
  4172. }
  4173. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4174. /*
  4175. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4176. * is unused as pageblock_order is set at compile-time. See
  4177. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4178. * the kernel config
  4179. */
  4180. void __paginginit set_pageblock_order(void)
  4181. {
  4182. }
  4183. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4184. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4185. unsigned long present_pages)
  4186. {
  4187. unsigned long pages = spanned_pages;
  4188. /*
  4189. * Provide a more accurate estimation if there are holes within
  4190. * the zone and SPARSEMEM is in use. If there are holes within the
  4191. * zone, each populated memory region may cost us one or two extra
  4192. * memmap pages due to alignment because memmap pages for each
  4193. * populated regions may not naturally algined on page boundary.
  4194. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4195. */
  4196. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4197. IS_ENABLED(CONFIG_SPARSEMEM))
  4198. pages = present_pages;
  4199. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4200. }
  4201. /*
  4202. * Set up the zone data structures:
  4203. * - mark all pages reserved
  4204. * - mark all memory queues empty
  4205. * - clear the memory bitmaps
  4206. *
  4207. * NOTE: pgdat should get zeroed by caller.
  4208. */
  4209. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4210. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4211. unsigned long *zones_size, unsigned long *zholes_size)
  4212. {
  4213. enum zone_type j;
  4214. int nid = pgdat->node_id;
  4215. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4216. int ret;
  4217. pgdat_resize_init(pgdat);
  4218. #ifdef CONFIG_NUMA_BALANCING
  4219. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4220. pgdat->numabalancing_migrate_nr_pages = 0;
  4221. pgdat->numabalancing_migrate_next_window = jiffies;
  4222. #endif
  4223. init_waitqueue_head(&pgdat->kswapd_wait);
  4224. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4225. pgdat_page_ext_init(pgdat);
  4226. for (j = 0; j < MAX_NR_ZONES; j++) {
  4227. struct zone *zone = pgdat->node_zones + j;
  4228. unsigned long size, realsize, freesize, memmap_pages;
  4229. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4230. node_end_pfn, zones_size);
  4231. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4232. node_start_pfn,
  4233. node_end_pfn,
  4234. zholes_size);
  4235. /*
  4236. * Adjust freesize so that it accounts for how much memory
  4237. * is used by this zone for memmap. This affects the watermark
  4238. * and per-cpu initialisations
  4239. */
  4240. memmap_pages = calc_memmap_size(size, realsize);
  4241. if (freesize >= memmap_pages) {
  4242. freesize -= memmap_pages;
  4243. if (memmap_pages)
  4244. printk(KERN_DEBUG
  4245. " %s zone: %lu pages used for memmap\n",
  4246. zone_names[j], memmap_pages);
  4247. } else
  4248. printk(KERN_WARNING
  4249. " %s zone: %lu pages exceeds freesize %lu\n",
  4250. zone_names[j], memmap_pages, freesize);
  4251. /* Account for reserved pages */
  4252. if (j == 0 && freesize > dma_reserve) {
  4253. freesize -= dma_reserve;
  4254. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4255. zone_names[0], dma_reserve);
  4256. }
  4257. if (!is_highmem_idx(j))
  4258. nr_kernel_pages += freesize;
  4259. /* Charge for highmem memmap if there are enough kernel pages */
  4260. else if (nr_kernel_pages > memmap_pages * 2)
  4261. nr_kernel_pages -= memmap_pages;
  4262. nr_all_pages += freesize;
  4263. zone->spanned_pages = size;
  4264. zone->present_pages = realsize;
  4265. /*
  4266. * Set an approximate value for lowmem here, it will be adjusted
  4267. * when the bootmem allocator frees pages into the buddy system.
  4268. * And all highmem pages will be managed by the buddy system.
  4269. */
  4270. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4271. #ifdef CONFIG_NUMA
  4272. zone->node = nid;
  4273. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4274. / 100;
  4275. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4276. #endif
  4277. zone->name = zone_names[j];
  4278. spin_lock_init(&zone->lock);
  4279. spin_lock_init(&zone->lru_lock);
  4280. zone_seqlock_init(zone);
  4281. zone->zone_pgdat = pgdat;
  4282. zone_pcp_init(zone);
  4283. /* For bootup, initialized properly in watermark setup */
  4284. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4285. lruvec_init(&zone->lruvec);
  4286. if (!size)
  4287. continue;
  4288. set_pageblock_order();
  4289. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4290. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4291. size, MEMMAP_EARLY);
  4292. BUG_ON(ret);
  4293. memmap_init(size, nid, j, zone_start_pfn);
  4294. zone_start_pfn += size;
  4295. }
  4296. }
  4297. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4298. {
  4299. /* Skip empty nodes */
  4300. if (!pgdat->node_spanned_pages)
  4301. return;
  4302. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4303. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4304. if (!pgdat->node_mem_map) {
  4305. unsigned long size, start, end;
  4306. struct page *map;
  4307. /*
  4308. * The zone's endpoints aren't required to be MAX_ORDER
  4309. * aligned but the node_mem_map endpoints must be in order
  4310. * for the buddy allocator to function correctly.
  4311. */
  4312. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4313. end = pgdat_end_pfn(pgdat);
  4314. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4315. size = (end - start) * sizeof(struct page);
  4316. map = alloc_remap(pgdat->node_id, size);
  4317. if (!map)
  4318. map = memblock_virt_alloc_node_nopanic(size,
  4319. pgdat->node_id);
  4320. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4321. }
  4322. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4323. /*
  4324. * With no DISCONTIG, the global mem_map is just set as node 0's
  4325. */
  4326. if (pgdat == NODE_DATA(0)) {
  4327. mem_map = NODE_DATA(0)->node_mem_map;
  4328. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4329. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4330. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4331. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4332. }
  4333. #endif
  4334. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4335. }
  4336. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4337. unsigned long node_start_pfn, unsigned long *zholes_size)
  4338. {
  4339. pg_data_t *pgdat = NODE_DATA(nid);
  4340. unsigned long start_pfn = 0;
  4341. unsigned long end_pfn = 0;
  4342. /* pg_data_t should be reset to zero when it's allocated */
  4343. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4344. pgdat->node_id = nid;
  4345. pgdat->node_start_pfn = node_start_pfn;
  4346. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4347. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4348. printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
  4349. (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
  4350. #endif
  4351. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4352. zones_size, zholes_size);
  4353. alloc_node_mem_map(pgdat);
  4354. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4355. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4356. nid, (unsigned long)pgdat,
  4357. (unsigned long)pgdat->node_mem_map);
  4358. #endif
  4359. free_area_init_core(pgdat, start_pfn, end_pfn,
  4360. zones_size, zholes_size);
  4361. }
  4362. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4363. #if MAX_NUMNODES > 1
  4364. /*
  4365. * Figure out the number of possible node ids.
  4366. */
  4367. void __init setup_nr_node_ids(void)
  4368. {
  4369. unsigned int node;
  4370. unsigned int highest = 0;
  4371. for_each_node_mask(node, node_possible_map)
  4372. highest = node;
  4373. nr_node_ids = highest + 1;
  4374. }
  4375. #endif
  4376. /**
  4377. * node_map_pfn_alignment - determine the maximum internode alignment
  4378. *
  4379. * This function should be called after node map is populated and sorted.
  4380. * It calculates the maximum power of two alignment which can distinguish
  4381. * all the nodes.
  4382. *
  4383. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4384. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4385. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4386. * shifted, 1GiB is enough and this function will indicate so.
  4387. *
  4388. * This is used to test whether pfn -> nid mapping of the chosen memory
  4389. * model has fine enough granularity to avoid incorrect mapping for the
  4390. * populated node map.
  4391. *
  4392. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4393. * requirement (single node).
  4394. */
  4395. unsigned long __init node_map_pfn_alignment(void)
  4396. {
  4397. unsigned long accl_mask = 0, last_end = 0;
  4398. unsigned long start, end, mask;
  4399. int last_nid = -1;
  4400. int i, nid;
  4401. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4402. if (!start || last_nid < 0 || last_nid == nid) {
  4403. last_nid = nid;
  4404. last_end = end;
  4405. continue;
  4406. }
  4407. /*
  4408. * Start with a mask granular enough to pin-point to the
  4409. * start pfn and tick off bits one-by-one until it becomes
  4410. * too coarse to separate the current node from the last.
  4411. */
  4412. mask = ~((1 << __ffs(start)) - 1);
  4413. while (mask && last_end <= (start & (mask << 1)))
  4414. mask <<= 1;
  4415. /* accumulate all internode masks */
  4416. accl_mask |= mask;
  4417. }
  4418. /* convert mask to number of pages */
  4419. return ~accl_mask + 1;
  4420. }
  4421. /* Find the lowest pfn for a node */
  4422. static unsigned long __init find_min_pfn_for_node(int nid)
  4423. {
  4424. unsigned long min_pfn = ULONG_MAX;
  4425. unsigned long start_pfn;
  4426. int i;
  4427. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4428. min_pfn = min(min_pfn, start_pfn);
  4429. if (min_pfn == ULONG_MAX) {
  4430. printk(KERN_WARNING
  4431. "Could not find start_pfn for node %d\n", nid);
  4432. return 0;
  4433. }
  4434. return min_pfn;
  4435. }
  4436. /**
  4437. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4438. *
  4439. * It returns the minimum PFN based on information provided via
  4440. * memblock_set_node().
  4441. */
  4442. unsigned long __init find_min_pfn_with_active_regions(void)
  4443. {
  4444. return find_min_pfn_for_node(MAX_NUMNODES);
  4445. }
  4446. /*
  4447. * early_calculate_totalpages()
  4448. * Sum pages in active regions for movable zone.
  4449. * Populate N_MEMORY for calculating usable_nodes.
  4450. */
  4451. static unsigned long __init early_calculate_totalpages(void)
  4452. {
  4453. unsigned long totalpages = 0;
  4454. unsigned long start_pfn, end_pfn;
  4455. int i, nid;
  4456. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4457. unsigned long pages = end_pfn - start_pfn;
  4458. totalpages += pages;
  4459. if (pages)
  4460. node_set_state(nid, N_MEMORY);
  4461. }
  4462. return totalpages;
  4463. }
  4464. /*
  4465. * Find the PFN the Movable zone begins in each node. Kernel memory
  4466. * is spread evenly between nodes as long as the nodes have enough
  4467. * memory. When they don't, some nodes will have more kernelcore than
  4468. * others
  4469. */
  4470. static void __init find_zone_movable_pfns_for_nodes(void)
  4471. {
  4472. int i, nid;
  4473. unsigned long usable_startpfn;
  4474. unsigned long kernelcore_node, kernelcore_remaining;
  4475. /* save the state before borrow the nodemask */
  4476. nodemask_t saved_node_state = node_states[N_MEMORY];
  4477. unsigned long totalpages = early_calculate_totalpages();
  4478. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4479. struct memblock_region *r;
  4480. /* Need to find movable_zone earlier when movable_node is specified. */
  4481. find_usable_zone_for_movable();
  4482. /*
  4483. * If movable_node is specified, ignore kernelcore and movablecore
  4484. * options.
  4485. */
  4486. if (movable_node_is_enabled()) {
  4487. for_each_memblock(memory, r) {
  4488. if (!memblock_is_hotpluggable(r))
  4489. continue;
  4490. nid = r->nid;
  4491. usable_startpfn = PFN_DOWN(r->base);
  4492. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4493. min(usable_startpfn, zone_movable_pfn[nid]) :
  4494. usable_startpfn;
  4495. }
  4496. goto out2;
  4497. }
  4498. /*
  4499. * If movablecore=nn[KMG] was specified, calculate what size of
  4500. * kernelcore that corresponds so that memory usable for
  4501. * any allocation type is evenly spread. If both kernelcore
  4502. * and movablecore are specified, then the value of kernelcore
  4503. * will be used for required_kernelcore if it's greater than
  4504. * what movablecore would have allowed.
  4505. */
  4506. if (required_movablecore) {
  4507. unsigned long corepages;
  4508. /*
  4509. * Round-up so that ZONE_MOVABLE is at least as large as what
  4510. * was requested by the user
  4511. */
  4512. required_movablecore =
  4513. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4514. corepages = totalpages - required_movablecore;
  4515. required_kernelcore = max(required_kernelcore, corepages);
  4516. }
  4517. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4518. if (!required_kernelcore)
  4519. goto out;
  4520. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4521. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4522. restart:
  4523. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4524. kernelcore_node = required_kernelcore / usable_nodes;
  4525. for_each_node_state(nid, N_MEMORY) {
  4526. unsigned long start_pfn, end_pfn;
  4527. /*
  4528. * Recalculate kernelcore_node if the division per node
  4529. * now exceeds what is necessary to satisfy the requested
  4530. * amount of memory for the kernel
  4531. */
  4532. if (required_kernelcore < kernelcore_node)
  4533. kernelcore_node = required_kernelcore / usable_nodes;
  4534. /*
  4535. * As the map is walked, we track how much memory is usable
  4536. * by the kernel using kernelcore_remaining. When it is
  4537. * 0, the rest of the node is usable by ZONE_MOVABLE
  4538. */
  4539. kernelcore_remaining = kernelcore_node;
  4540. /* Go through each range of PFNs within this node */
  4541. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4542. unsigned long size_pages;
  4543. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4544. if (start_pfn >= end_pfn)
  4545. continue;
  4546. /* Account for what is only usable for kernelcore */
  4547. if (start_pfn < usable_startpfn) {
  4548. unsigned long kernel_pages;
  4549. kernel_pages = min(end_pfn, usable_startpfn)
  4550. - start_pfn;
  4551. kernelcore_remaining -= min(kernel_pages,
  4552. kernelcore_remaining);
  4553. required_kernelcore -= min(kernel_pages,
  4554. required_kernelcore);
  4555. /* Continue if range is now fully accounted */
  4556. if (end_pfn <= usable_startpfn) {
  4557. /*
  4558. * Push zone_movable_pfn to the end so
  4559. * that if we have to rebalance
  4560. * kernelcore across nodes, we will
  4561. * not double account here
  4562. */
  4563. zone_movable_pfn[nid] = end_pfn;
  4564. continue;
  4565. }
  4566. start_pfn = usable_startpfn;
  4567. }
  4568. /*
  4569. * The usable PFN range for ZONE_MOVABLE is from
  4570. * start_pfn->end_pfn. Calculate size_pages as the
  4571. * number of pages used as kernelcore
  4572. */
  4573. size_pages = end_pfn - start_pfn;
  4574. if (size_pages > kernelcore_remaining)
  4575. size_pages = kernelcore_remaining;
  4576. zone_movable_pfn[nid] = start_pfn + size_pages;
  4577. /*
  4578. * Some kernelcore has been met, update counts and
  4579. * break if the kernelcore for this node has been
  4580. * satisfied
  4581. */
  4582. required_kernelcore -= min(required_kernelcore,
  4583. size_pages);
  4584. kernelcore_remaining -= size_pages;
  4585. if (!kernelcore_remaining)
  4586. break;
  4587. }
  4588. }
  4589. /*
  4590. * If there is still required_kernelcore, we do another pass with one
  4591. * less node in the count. This will push zone_movable_pfn[nid] further
  4592. * along on the nodes that still have memory until kernelcore is
  4593. * satisfied
  4594. */
  4595. usable_nodes--;
  4596. if (usable_nodes && required_kernelcore > usable_nodes)
  4597. goto restart;
  4598. out2:
  4599. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4600. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4601. zone_movable_pfn[nid] =
  4602. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4603. out:
  4604. /* restore the node_state */
  4605. node_states[N_MEMORY] = saved_node_state;
  4606. }
  4607. /* Any regular or high memory on that node ? */
  4608. static void check_for_memory(pg_data_t *pgdat, int nid)
  4609. {
  4610. enum zone_type zone_type;
  4611. if (N_MEMORY == N_NORMAL_MEMORY)
  4612. return;
  4613. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4614. struct zone *zone = &pgdat->node_zones[zone_type];
  4615. if (populated_zone(zone)) {
  4616. node_set_state(nid, N_HIGH_MEMORY);
  4617. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4618. zone_type <= ZONE_NORMAL)
  4619. node_set_state(nid, N_NORMAL_MEMORY);
  4620. break;
  4621. }
  4622. }
  4623. }
  4624. /**
  4625. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4626. * @max_zone_pfn: an array of max PFNs for each zone
  4627. *
  4628. * This will call free_area_init_node() for each active node in the system.
  4629. * Using the page ranges provided by memblock_set_node(), the size of each
  4630. * zone in each node and their holes is calculated. If the maximum PFN
  4631. * between two adjacent zones match, it is assumed that the zone is empty.
  4632. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4633. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4634. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4635. * at arch_max_dma_pfn.
  4636. */
  4637. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4638. {
  4639. unsigned long start_pfn, end_pfn;
  4640. int i, nid;
  4641. /* Record where the zone boundaries are */
  4642. memset(arch_zone_lowest_possible_pfn, 0,
  4643. sizeof(arch_zone_lowest_possible_pfn));
  4644. memset(arch_zone_highest_possible_pfn, 0,
  4645. sizeof(arch_zone_highest_possible_pfn));
  4646. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4647. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4648. for (i = 1; i < MAX_NR_ZONES; i++) {
  4649. if (i == ZONE_MOVABLE)
  4650. continue;
  4651. arch_zone_lowest_possible_pfn[i] =
  4652. arch_zone_highest_possible_pfn[i-1];
  4653. arch_zone_highest_possible_pfn[i] =
  4654. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4655. }
  4656. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4657. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4658. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4659. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4660. find_zone_movable_pfns_for_nodes();
  4661. /* Print out the zone ranges */
  4662. pr_info("Zone ranges:\n");
  4663. for (i = 0; i < MAX_NR_ZONES; i++) {
  4664. if (i == ZONE_MOVABLE)
  4665. continue;
  4666. pr_info(" %-8s ", zone_names[i]);
  4667. if (arch_zone_lowest_possible_pfn[i] ==
  4668. arch_zone_highest_possible_pfn[i])
  4669. pr_cont("empty\n");
  4670. else
  4671. pr_cont("[mem %0#10lx-%0#10lx]\n",
  4672. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4673. (arch_zone_highest_possible_pfn[i]
  4674. << PAGE_SHIFT) - 1);
  4675. }
  4676. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4677. pr_info("Movable zone start for each node\n");
  4678. for (i = 0; i < MAX_NUMNODES; i++) {
  4679. if (zone_movable_pfn[i])
  4680. pr_info(" Node %d: %#010lx\n", i,
  4681. zone_movable_pfn[i] << PAGE_SHIFT);
  4682. }
  4683. /* Print out the early node map */
  4684. pr_info("Early memory node ranges\n");
  4685. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4686. pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4687. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4688. /* Initialise every node */
  4689. mminit_verify_pageflags_layout();
  4690. setup_nr_node_ids();
  4691. for_each_online_node(nid) {
  4692. pg_data_t *pgdat = NODE_DATA(nid);
  4693. free_area_init_node(nid, NULL,
  4694. find_min_pfn_for_node(nid), NULL);
  4695. /* Any memory on that node */
  4696. if (pgdat->node_present_pages)
  4697. node_set_state(nid, N_MEMORY);
  4698. check_for_memory(pgdat, nid);
  4699. }
  4700. }
  4701. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4702. {
  4703. unsigned long long coremem;
  4704. if (!p)
  4705. return -EINVAL;
  4706. coremem = memparse(p, &p);
  4707. *core = coremem >> PAGE_SHIFT;
  4708. /* Paranoid check that UL is enough for the coremem value */
  4709. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4710. return 0;
  4711. }
  4712. /*
  4713. * kernelcore=size sets the amount of memory for use for allocations that
  4714. * cannot be reclaimed or migrated.
  4715. */
  4716. static int __init cmdline_parse_kernelcore(char *p)
  4717. {
  4718. return cmdline_parse_core(p, &required_kernelcore);
  4719. }
  4720. /*
  4721. * movablecore=size sets the amount of memory for use for allocations that
  4722. * can be reclaimed or migrated.
  4723. */
  4724. static int __init cmdline_parse_movablecore(char *p)
  4725. {
  4726. return cmdline_parse_core(p, &required_movablecore);
  4727. }
  4728. early_param("kernelcore", cmdline_parse_kernelcore);
  4729. early_param("movablecore", cmdline_parse_movablecore);
  4730. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4731. void adjust_managed_page_count(struct page *page, long count)
  4732. {
  4733. spin_lock(&managed_page_count_lock);
  4734. page_zone(page)->managed_pages += count;
  4735. totalram_pages += count;
  4736. #ifdef CONFIG_HIGHMEM
  4737. if (PageHighMem(page))
  4738. totalhigh_pages += count;
  4739. #endif
  4740. spin_unlock(&managed_page_count_lock);
  4741. }
  4742. EXPORT_SYMBOL(adjust_managed_page_count);
  4743. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4744. {
  4745. void *pos;
  4746. unsigned long pages = 0;
  4747. start = (void *)PAGE_ALIGN((unsigned long)start);
  4748. end = (void *)((unsigned long)end & PAGE_MASK);
  4749. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4750. if ((unsigned int)poison <= 0xFF)
  4751. memset(pos, poison, PAGE_SIZE);
  4752. free_reserved_page(virt_to_page(pos));
  4753. }
  4754. if (pages && s)
  4755. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4756. s, pages << (PAGE_SHIFT - 10), start, end);
  4757. return pages;
  4758. }
  4759. EXPORT_SYMBOL(free_reserved_area);
  4760. #ifdef CONFIG_HIGHMEM
  4761. void free_highmem_page(struct page *page)
  4762. {
  4763. __free_reserved_page(page);
  4764. totalram_pages++;
  4765. page_zone(page)->managed_pages++;
  4766. totalhigh_pages++;
  4767. }
  4768. #endif
  4769. void __init mem_init_print_info(const char *str)
  4770. {
  4771. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4772. unsigned long init_code_size, init_data_size;
  4773. physpages = get_num_physpages();
  4774. codesize = _etext - _stext;
  4775. datasize = _edata - _sdata;
  4776. rosize = __end_rodata - __start_rodata;
  4777. bss_size = __bss_stop - __bss_start;
  4778. init_data_size = __init_end - __init_begin;
  4779. init_code_size = _einittext - _sinittext;
  4780. /*
  4781. * Detect special cases and adjust section sizes accordingly:
  4782. * 1) .init.* may be embedded into .data sections
  4783. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4784. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4785. * 3) .rodata.* may be embedded into .text or .data sections.
  4786. */
  4787. #define adj_init_size(start, end, size, pos, adj) \
  4788. do { \
  4789. if (start <= pos && pos < end && size > adj) \
  4790. size -= adj; \
  4791. } while (0)
  4792. adj_init_size(__init_begin, __init_end, init_data_size,
  4793. _sinittext, init_code_size);
  4794. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4795. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4796. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4797. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4798. #undef adj_init_size
  4799. pr_info("Memory: %luK/%luK available "
  4800. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4801. "%luK init, %luK bss, %luK reserved"
  4802. #ifdef CONFIG_HIGHMEM
  4803. ", %luK highmem"
  4804. #endif
  4805. "%s%s)\n",
  4806. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4807. codesize >> 10, datasize >> 10, rosize >> 10,
  4808. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4809. (physpages - totalram_pages) << (PAGE_SHIFT-10),
  4810. #ifdef CONFIG_HIGHMEM
  4811. totalhigh_pages << (PAGE_SHIFT-10),
  4812. #endif
  4813. str ? ", " : "", str ? str : "");
  4814. }
  4815. /**
  4816. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4817. * @new_dma_reserve: The number of pages to mark reserved
  4818. *
  4819. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4820. * In the DMA zone, a significant percentage may be consumed by kernel image
  4821. * and other unfreeable allocations which can skew the watermarks badly. This
  4822. * function may optionally be used to account for unfreeable pages in the
  4823. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4824. * smaller per-cpu batchsize.
  4825. */
  4826. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4827. {
  4828. dma_reserve = new_dma_reserve;
  4829. }
  4830. void __init free_area_init(unsigned long *zones_size)
  4831. {
  4832. free_area_init_node(0, zones_size,
  4833. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4834. }
  4835. static int page_alloc_cpu_notify(struct notifier_block *self,
  4836. unsigned long action, void *hcpu)
  4837. {
  4838. int cpu = (unsigned long)hcpu;
  4839. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4840. lru_add_drain_cpu(cpu);
  4841. drain_pages(cpu);
  4842. /*
  4843. * Spill the event counters of the dead processor
  4844. * into the current processors event counters.
  4845. * This artificially elevates the count of the current
  4846. * processor.
  4847. */
  4848. vm_events_fold_cpu(cpu);
  4849. /*
  4850. * Zero the differential counters of the dead processor
  4851. * so that the vm statistics are consistent.
  4852. *
  4853. * This is only okay since the processor is dead and cannot
  4854. * race with what we are doing.
  4855. */
  4856. cpu_vm_stats_fold(cpu);
  4857. }
  4858. return NOTIFY_OK;
  4859. }
  4860. void __init page_alloc_init(void)
  4861. {
  4862. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4863. }
  4864. /*
  4865. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4866. * or min_free_kbytes changes.
  4867. */
  4868. static void calculate_totalreserve_pages(void)
  4869. {
  4870. struct pglist_data *pgdat;
  4871. unsigned long reserve_pages = 0;
  4872. enum zone_type i, j;
  4873. for_each_online_pgdat(pgdat) {
  4874. for (i = 0; i < MAX_NR_ZONES; i++) {
  4875. struct zone *zone = pgdat->node_zones + i;
  4876. long max = 0;
  4877. /* Find valid and maximum lowmem_reserve in the zone */
  4878. for (j = i; j < MAX_NR_ZONES; j++) {
  4879. if (zone->lowmem_reserve[j] > max)
  4880. max = zone->lowmem_reserve[j];
  4881. }
  4882. /* we treat the high watermark as reserved pages. */
  4883. max += high_wmark_pages(zone);
  4884. if (max > zone->managed_pages)
  4885. max = zone->managed_pages;
  4886. reserve_pages += max;
  4887. /*
  4888. * Lowmem reserves are not available to
  4889. * GFP_HIGHUSER page cache allocations and
  4890. * kswapd tries to balance zones to their high
  4891. * watermark. As a result, neither should be
  4892. * regarded as dirtyable memory, to prevent a
  4893. * situation where reclaim has to clean pages
  4894. * in order to balance the zones.
  4895. */
  4896. zone->dirty_balance_reserve = max;
  4897. }
  4898. }
  4899. dirty_balance_reserve = reserve_pages;
  4900. totalreserve_pages = reserve_pages;
  4901. }
  4902. /*
  4903. * setup_per_zone_lowmem_reserve - called whenever
  4904. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4905. * has a correct pages reserved value, so an adequate number of
  4906. * pages are left in the zone after a successful __alloc_pages().
  4907. */
  4908. static void setup_per_zone_lowmem_reserve(void)
  4909. {
  4910. struct pglist_data *pgdat;
  4911. enum zone_type j, idx;
  4912. for_each_online_pgdat(pgdat) {
  4913. for (j = 0; j < MAX_NR_ZONES; j++) {
  4914. struct zone *zone = pgdat->node_zones + j;
  4915. unsigned long managed_pages = zone->managed_pages;
  4916. zone->lowmem_reserve[j] = 0;
  4917. idx = j;
  4918. while (idx) {
  4919. struct zone *lower_zone;
  4920. idx--;
  4921. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4922. sysctl_lowmem_reserve_ratio[idx] = 1;
  4923. lower_zone = pgdat->node_zones + idx;
  4924. lower_zone->lowmem_reserve[j] = managed_pages /
  4925. sysctl_lowmem_reserve_ratio[idx];
  4926. managed_pages += lower_zone->managed_pages;
  4927. }
  4928. }
  4929. }
  4930. /* update totalreserve_pages */
  4931. calculate_totalreserve_pages();
  4932. }
  4933. static void __setup_per_zone_wmarks(void)
  4934. {
  4935. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4936. unsigned long lowmem_pages = 0;
  4937. struct zone *zone;
  4938. unsigned long flags;
  4939. /* Calculate total number of !ZONE_HIGHMEM pages */
  4940. for_each_zone(zone) {
  4941. if (!is_highmem(zone))
  4942. lowmem_pages += zone->managed_pages;
  4943. }
  4944. for_each_zone(zone) {
  4945. u64 tmp;
  4946. spin_lock_irqsave(&zone->lock, flags);
  4947. tmp = (u64)pages_min * zone->managed_pages;
  4948. do_div(tmp, lowmem_pages);
  4949. if (is_highmem(zone)) {
  4950. /*
  4951. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4952. * need highmem pages, so cap pages_min to a small
  4953. * value here.
  4954. *
  4955. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4956. * deltas controls asynch page reclaim, and so should
  4957. * not be capped for highmem.
  4958. */
  4959. unsigned long min_pages;
  4960. min_pages = zone->managed_pages / 1024;
  4961. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4962. zone->watermark[WMARK_MIN] = min_pages;
  4963. } else {
  4964. /*
  4965. * If it's a lowmem zone, reserve a number of pages
  4966. * proportionate to the zone's size.
  4967. */
  4968. zone->watermark[WMARK_MIN] = tmp;
  4969. }
  4970. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4971. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4972. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  4973. high_wmark_pages(zone) - low_wmark_pages(zone) -
  4974. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  4975. setup_zone_migrate_reserve(zone);
  4976. spin_unlock_irqrestore(&zone->lock, flags);
  4977. }
  4978. /* update totalreserve_pages */
  4979. calculate_totalreserve_pages();
  4980. }
  4981. /**
  4982. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4983. * or when memory is hot-{added|removed}
  4984. *
  4985. * Ensures that the watermark[min,low,high] values for each zone are set
  4986. * correctly with respect to min_free_kbytes.
  4987. */
  4988. void setup_per_zone_wmarks(void)
  4989. {
  4990. mutex_lock(&zonelists_mutex);
  4991. __setup_per_zone_wmarks();
  4992. mutex_unlock(&zonelists_mutex);
  4993. }
  4994. /*
  4995. * The inactive anon list should be small enough that the VM never has to
  4996. * do too much work, but large enough that each inactive page has a chance
  4997. * to be referenced again before it is swapped out.
  4998. *
  4999. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  5000. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  5001. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  5002. * the anonymous pages are kept on the inactive list.
  5003. *
  5004. * total target max
  5005. * memory ratio inactive anon
  5006. * -------------------------------------
  5007. * 10MB 1 5MB
  5008. * 100MB 1 50MB
  5009. * 1GB 3 250MB
  5010. * 10GB 10 0.9GB
  5011. * 100GB 31 3GB
  5012. * 1TB 101 10GB
  5013. * 10TB 320 32GB
  5014. */
  5015. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5016. {
  5017. unsigned int gb, ratio;
  5018. /* Zone size in gigabytes */
  5019. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5020. if (gb)
  5021. ratio = int_sqrt(10 * gb);
  5022. else
  5023. ratio = 1;
  5024. zone->inactive_ratio = ratio;
  5025. }
  5026. static void __meminit setup_per_zone_inactive_ratio(void)
  5027. {
  5028. struct zone *zone;
  5029. for_each_zone(zone)
  5030. calculate_zone_inactive_ratio(zone);
  5031. }
  5032. /*
  5033. * Initialise min_free_kbytes.
  5034. *
  5035. * For small machines we want it small (128k min). For large machines
  5036. * we want it large (64MB max). But it is not linear, because network
  5037. * bandwidth does not increase linearly with machine size. We use
  5038. *
  5039. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5040. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5041. *
  5042. * which yields
  5043. *
  5044. * 16MB: 512k
  5045. * 32MB: 724k
  5046. * 64MB: 1024k
  5047. * 128MB: 1448k
  5048. * 256MB: 2048k
  5049. * 512MB: 2896k
  5050. * 1024MB: 4096k
  5051. * 2048MB: 5792k
  5052. * 4096MB: 8192k
  5053. * 8192MB: 11584k
  5054. * 16384MB: 16384k
  5055. */
  5056. int __meminit init_per_zone_wmark_min(void)
  5057. {
  5058. unsigned long lowmem_kbytes;
  5059. int new_min_free_kbytes;
  5060. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5061. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5062. if (new_min_free_kbytes > user_min_free_kbytes) {
  5063. min_free_kbytes = new_min_free_kbytes;
  5064. if (min_free_kbytes < 128)
  5065. min_free_kbytes = 128;
  5066. if (min_free_kbytes > 65536)
  5067. min_free_kbytes = 65536;
  5068. } else {
  5069. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5070. new_min_free_kbytes, user_min_free_kbytes);
  5071. }
  5072. setup_per_zone_wmarks();
  5073. refresh_zone_stat_thresholds();
  5074. setup_per_zone_lowmem_reserve();
  5075. setup_per_zone_inactive_ratio();
  5076. return 0;
  5077. }
  5078. module_init(init_per_zone_wmark_min)
  5079. /*
  5080. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5081. * that we can call two helper functions whenever min_free_kbytes
  5082. * changes.
  5083. */
  5084. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5085. void __user *buffer, size_t *length, loff_t *ppos)
  5086. {
  5087. int rc;
  5088. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5089. if (rc)
  5090. return rc;
  5091. if (write) {
  5092. user_min_free_kbytes = min_free_kbytes;
  5093. setup_per_zone_wmarks();
  5094. }
  5095. return 0;
  5096. }
  5097. #ifdef CONFIG_NUMA
  5098. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5099. void __user *buffer, size_t *length, loff_t *ppos)
  5100. {
  5101. struct zone *zone;
  5102. int rc;
  5103. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5104. if (rc)
  5105. return rc;
  5106. for_each_zone(zone)
  5107. zone->min_unmapped_pages = (zone->managed_pages *
  5108. sysctl_min_unmapped_ratio) / 100;
  5109. return 0;
  5110. }
  5111. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5112. void __user *buffer, size_t *length, loff_t *ppos)
  5113. {
  5114. struct zone *zone;
  5115. int rc;
  5116. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5117. if (rc)
  5118. return rc;
  5119. for_each_zone(zone)
  5120. zone->min_slab_pages = (zone->managed_pages *
  5121. sysctl_min_slab_ratio) / 100;
  5122. return 0;
  5123. }
  5124. #endif
  5125. /*
  5126. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5127. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5128. * whenever sysctl_lowmem_reserve_ratio changes.
  5129. *
  5130. * The reserve ratio obviously has absolutely no relation with the
  5131. * minimum watermarks. The lowmem reserve ratio can only make sense
  5132. * if in function of the boot time zone sizes.
  5133. */
  5134. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5135. void __user *buffer, size_t *length, loff_t *ppos)
  5136. {
  5137. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5138. setup_per_zone_lowmem_reserve();
  5139. return 0;
  5140. }
  5141. /*
  5142. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5143. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5144. * pagelist can have before it gets flushed back to buddy allocator.
  5145. */
  5146. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5147. void __user *buffer, size_t *length, loff_t *ppos)
  5148. {
  5149. struct zone *zone;
  5150. int old_percpu_pagelist_fraction;
  5151. int ret;
  5152. mutex_lock(&pcp_batch_high_lock);
  5153. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5154. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5155. if (!write || ret < 0)
  5156. goto out;
  5157. /* Sanity checking to avoid pcp imbalance */
  5158. if (percpu_pagelist_fraction &&
  5159. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5160. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5161. ret = -EINVAL;
  5162. goto out;
  5163. }
  5164. /* No change? */
  5165. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5166. goto out;
  5167. for_each_populated_zone(zone) {
  5168. unsigned int cpu;
  5169. for_each_possible_cpu(cpu)
  5170. pageset_set_high_and_batch(zone,
  5171. per_cpu_ptr(zone->pageset, cpu));
  5172. }
  5173. out:
  5174. mutex_unlock(&pcp_batch_high_lock);
  5175. return ret;
  5176. }
  5177. int hashdist = HASHDIST_DEFAULT;
  5178. #ifdef CONFIG_NUMA
  5179. static int __init set_hashdist(char *str)
  5180. {
  5181. if (!str)
  5182. return 0;
  5183. hashdist = simple_strtoul(str, &str, 0);
  5184. return 1;
  5185. }
  5186. __setup("hashdist=", set_hashdist);
  5187. #endif
  5188. /*
  5189. * allocate a large system hash table from bootmem
  5190. * - it is assumed that the hash table must contain an exact power-of-2
  5191. * quantity of entries
  5192. * - limit is the number of hash buckets, not the total allocation size
  5193. */
  5194. void *__init alloc_large_system_hash(const char *tablename,
  5195. unsigned long bucketsize,
  5196. unsigned long numentries,
  5197. int scale,
  5198. int flags,
  5199. unsigned int *_hash_shift,
  5200. unsigned int *_hash_mask,
  5201. unsigned long low_limit,
  5202. unsigned long high_limit)
  5203. {
  5204. unsigned long long max = high_limit;
  5205. unsigned long log2qty, size;
  5206. void *table = NULL;
  5207. /* allow the kernel cmdline to have a say */
  5208. if (!numentries) {
  5209. /* round applicable memory size up to nearest megabyte */
  5210. numentries = nr_kernel_pages;
  5211. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5212. if (PAGE_SHIFT < 20)
  5213. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5214. /* limit to 1 bucket per 2^scale bytes of low memory */
  5215. if (scale > PAGE_SHIFT)
  5216. numentries >>= (scale - PAGE_SHIFT);
  5217. else
  5218. numentries <<= (PAGE_SHIFT - scale);
  5219. /* Make sure we've got at least a 0-order allocation.. */
  5220. if (unlikely(flags & HASH_SMALL)) {
  5221. /* Makes no sense without HASH_EARLY */
  5222. WARN_ON(!(flags & HASH_EARLY));
  5223. if (!(numentries >> *_hash_shift)) {
  5224. numentries = 1UL << *_hash_shift;
  5225. BUG_ON(!numentries);
  5226. }
  5227. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5228. numentries = PAGE_SIZE / bucketsize;
  5229. }
  5230. numentries = roundup_pow_of_two(numentries);
  5231. /* limit allocation size to 1/16 total memory by default */
  5232. if (max == 0) {
  5233. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5234. do_div(max, bucketsize);
  5235. }
  5236. max = min(max, 0x80000000ULL);
  5237. if (numentries < low_limit)
  5238. numentries = low_limit;
  5239. if (numentries > max)
  5240. numentries = max;
  5241. log2qty = ilog2(numentries);
  5242. do {
  5243. size = bucketsize << log2qty;
  5244. if (flags & HASH_EARLY)
  5245. table = memblock_virt_alloc_nopanic(size, 0);
  5246. else if (hashdist)
  5247. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5248. else {
  5249. /*
  5250. * If bucketsize is not a power-of-two, we may free
  5251. * some pages at the end of hash table which
  5252. * alloc_pages_exact() automatically does
  5253. */
  5254. if (get_order(size) < MAX_ORDER) {
  5255. table = alloc_pages_exact(size, GFP_ATOMIC);
  5256. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5257. }
  5258. }
  5259. } while (!table && size > PAGE_SIZE && --log2qty);
  5260. if (!table)
  5261. panic("Failed to allocate %s hash table\n", tablename);
  5262. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5263. tablename,
  5264. (1UL << log2qty),
  5265. ilog2(size) - PAGE_SHIFT,
  5266. size);
  5267. if (_hash_shift)
  5268. *_hash_shift = log2qty;
  5269. if (_hash_mask)
  5270. *_hash_mask = (1 << log2qty) - 1;
  5271. return table;
  5272. }
  5273. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5274. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5275. unsigned long pfn)
  5276. {
  5277. #ifdef CONFIG_SPARSEMEM
  5278. return __pfn_to_section(pfn)->pageblock_flags;
  5279. #else
  5280. return zone->pageblock_flags;
  5281. #endif /* CONFIG_SPARSEMEM */
  5282. }
  5283. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5284. {
  5285. #ifdef CONFIG_SPARSEMEM
  5286. pfn &= (PAGES_PER_SECTION-1);
  5287. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5288. #else
  5289. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5290. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5291. #endif /* CONFIG_SPARSEMEM */
  5292. }
  5293. /**
  5294. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5295. * @page: The page within the block of interest
  5296. * @pfn: The target page frame number
  5297. * @end_bitidx: The last bit of interest to retrieve
  5298. * @mask: mask of bits that the caller is interested in
  5299. *
  5300. * Return: pageblock_bits flags
  5301. */
  5302. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5303. unsigned long end_bitidx,
  5304. unsigned long mask)
  5305. {
  5306. struct zone *zone;
  5307. unsigned long *bitmap;
  5308. unsigned long bitidx, word_bitidx;
  5309. unsigned long word;
  5310. zone = page_zone(page);
  5311. bitmap = get_pageblock_bitmap(zone, pfn);
  5312. bitidx = pfn_to_bitidx(zone, pfn);
  5313. word_bitidx = bitidx / BITS_PER_LONG;
  5314. bitidx &= (BITS_PER_LONG-1);
  5315. word = bitmap[word_bitidx];
  5316. bitidx += end_bitidx;
  5317. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5318. }
  5319. /**
  5320. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5321. * @page: The page within the block of interest
  5322. * @flags: The flags to set
  5323. * @pfn: The target page frame number
  5324. * @end_bitidx: The last bit of interest
  5325. * @mask: mask of bits that the caller is interested in
  5326. */
  5327. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5328. unsigned long pfn,
  5329. unsigned long end_bitidx,
  5330. unsigned long mask)
  5331. {
  5332. struct zone *zone;
  5333. unsigned long *bitmap;
  5334. unsigned long bitidx, word_bitidx;
  5335. unsigned long old_word, word;
  5336. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5337. zone = page_zone(page);
  5338. bitmap = get_pageblock_bitmap(zone, pfn);
  5339. bitidx = pfn_to_bitidx(zone, pfn);
  5340. word_bitidx = bitidx / BITS_PER_LONG;
  5341. bitidx &= (BITS_PER_LONG-1);
  5342. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5343. bitidx += end_bitidx;
  5344. mask <<= (BITS_PER_LONG - bitidx - 1);
  5345. flags <<= (BITS_PER_LONG - bitidx - 1);
  5346. word = ACCESS_ONCE(bitmap[word_bitidx]);
  5347. for (;;) {
  5348. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5349. if (word == old_word)
  5350. break;
  5351. word = old_word;
  5352. }
  5353. }
  5354. /*
  5355. * This function checks whether pageblock includes unmovable pages or not.
  5356. * If @count is not zero, it is okay to include less @count unmovable pages
  5357. *
  5358. * PageLRU check without isolation or lru_lock could race so that
  5359. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5360. * expect this function should be exact.
  5361. */
  5362. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5363. bool skip_hwpoisoned_pages)
  5364. {
  5365. unsigned long pfn, iter, found;
  5366. int mt;
  5367. /*
  5368. * For avoiding noise data, lru_add_drain_all() should be called
  5369. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5370. */
  5371. if (zone_idx(zone) == ZONE_MOVABLE)
  5372. return false;
  5373. mt = get_pageblock_migratetype(page);
  5374. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5375. return false;
  5376. pfn = page_to_pfn(page);
  5377. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5378. unsigned long check = pfn + iter;
  5379. if (!pfn_valid_within(check))
  5380. continue;
  5381. page = pfn_to_page(check);
  5382. /*
  5383. * Hugepages are not in LRU lists, but they're movable.
  5384. * We need not scan over tail pages bacause we don't
  5385. * handle each tail page individually in migration.
  5386. */
  5387. if (PageHuge(page)) {
  5388. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5389. continue;
  5390. }
  5391. /*
  5392. * We can't use page_count without pin a page
  5393. * because another CPU can free compound page.
  5394. * This check already skips compound tails of THP
  5395. * because their page->_count is zero at all time.
  5396. */
  5397. if (!atomic_read(&page->_count)) {
  5398. if (PageBuddy(page))
  5399. iter += (1 << page_order(page)) - 1;
  5400. continue;
  5401. }
  5402. /*
  5403. * The HWPoisoned page may be not in buddy system, and
  5404. * page_count() is not 0.
  5405. */
  5406. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5407. continue;
  5408. if (!PageLRU(page))
  5409. found++;
  5410. /*
  5411. * If there are RECLAIMABLE pages, we need to check it.
  5412. * But now, memory offline itself doesn't call shrink_slab()
  5413. * and it still to be fixed.
  5414. */
  5415. /*
  5416. * If the page is not RAM, page_count()should be 0.
  5417. * we don't need more check. This is an _used_ not-movable page.
  5418. *
  5419. * The problematic thing here is PG_reserved pages. PG_reserved
  5420. * is set to both of a memory hole page and a _used_ kernel
  5421. * page at boot.
  5422. */
  5423. if (found > count)
  5424. return true;
  5425. }
  5426. return false;
  5427. }
  5428. bool is_pageblock_removable_nolock(struct page *page)
  5429. {
  5430. struct zone *zone;
  5431. unsigned long pfn;
  5432. /*
  5433. * We have to be careful here because we are iterating over memory
  5434. * sections which are not zone aware so we might end up outside of
  5435. * the zone but still within the section.
  5436. * We have to take care about the node as well. If the node is offline
  5437. * its NODE_DATA will be NULL - see page_zone.
  5438. */
  5439. if (!node_online(page_to_nid(page)))
  5440. return false;
  5441. zone = page_zone(page);
  5442. pfn = page_to_pfn(page);
  5443. if (!zone_spans_pfn(zone, pfn))
  5444. return false;
  5445. return !has_unmovable_pages(zone, page, 0, true);
  5446. }
  5447. #ifdef CONFIG_CMA
  5448. static unsigned long pfn_max_align_down(unsigned long pfn)
  5449. {
  5450. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5451. pageblock_nr_pages) - 1);
  5452. }
  5453. static unsigned long pfn_max_align_up(unsigned long pfn)
  5454. {
  5455. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5456. pageblock_nr_pages));
  5457. }
  5458. /* [start, end) must belong to a single zone. */
  5459. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5460. unsigned long start, unsigned long end)
  5461. {
  5462. /* This function is based on compact_zone() from compaction.c. */
  5463. unsigned long nr_reclaimed;
  5464. unsigned long pfn = start;
  5465. unsigned int tries = 0;
  5466. int ret = 0;
  5467. migrate_prep();
  5468. while (pfn < end || !list_empty(&cc->migratepages)) {
  5469. if (fatal_signal_pending(current)) {
  5470. ret = -EINTR;
  5471. break;
  5472. }
  5473. if (list_empty(&cc->migratepages)) {
  5474. cc->nr_migratepages = 0;
  5475. pfn = isolate_migratepages_range(cc, pfn, end);
  5476. if (!pfn) {
  5477. ret = -EINTR;
  5478. break;
  5479. }
  5480. tries = 0;
  5481. } else if (++tries == 5) {
  5482. ret = ret < 0 ? ret : -EBUSY;
  5483. break;
  5484. }
  5485. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5486. &cc->migratepages);
  5487. cc->nr_migratepages -= nr_reclaimed;
  5488. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5489. NULL, 0, cc->mode, MR_CMA);
  5490. }
  5491. if (ret < 0) {
  5492. putback_movable_pages(&cc->migratepages);
  5493. return ret;
  5494. }
  5495. return 0;
  5496. }
  5497. /**
  5498. * alloc_contig_range() -- tries to allocate given range of pages
  5499. * @start: start PFN to allocate
  5500. * @end: one-past-the-last PFN to allocate
  5501. * @migratetype: migratetype of the underlaying pageblocks (either
  5502. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5503. * in range must have the same migratetype and it must
  5504. * be either of the two.
  5505. *
  5506. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5507. * aligned, however it's the caller's responsibility to guarantee that
  5508. * we are the only thread that changes migrate type of pageblocks the
  5509. * pages fall in.
  5510. *
  5511. * The PFN range must belong to a single zone.
  5512. *
  5513. * Returns zero on success or negative error code. On success all
  5514. * pages which PFN is in [start, end) are allocated for the caller and
  5515. * need to be freed with free_contig_range().
  5516. */
  5517. int alloc_contig_range(unsigned long start, unsigned long end,
  5518. unsigned migratetype)
  5519. {
  5520. unsigned long outer_start, outer_end;
  5521. int ret = 0, order;
  5522. struct compact_control cc = {
  5523. .nr_migratepages = 0,
  5524. .order = -1,
  5525. .zone = page_zone(pfn_to_page(start)),
  5526. .mode = MIGRATE_SYNC,
  5527. .ignore_skip_hint = true,
  5528. };
  5529. INIT_LIST_HEAD(&cc.migratepages);
  5530. /*
  5531. * What we do here is we mark all pageblocks in range as
  5532. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5533. * have different sizes, and due to the way page allocator
  5534. * work, we align the range to biggest of the two pages so
  5535. * that page allocator won't try to merge buddies from
  5536. * different pageblocks and change MIGRATE_ISOLATE to some
  5537. * other migration type.
  5538. *
  5539. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5540. * migrate the pages from an unaligned range (ie. pages that
  5541. * we are interested in). This will put all the pages in
  5542. * range back to page allocator as MIGRATE_ISOLATE.
  5543. *
  5544. * When this is done, we take the pages in range from page
  5545. * allocator removing them from the buddy system. This way
  5546. * page allocator will never consider using them.
  5547. *
  5548. * This lets us mark the pageblocks back as
  5549. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5550. * aligned range but not in the unaligned, original range are
  5551. * put back to page allocator so that buddy can use them.
  5552. */
  5553. ret = start_isolate_page_range(pfn_max_align_down(start),
  5554. pfn_max_align_up(end), migratetype,
  5555. false);
  5556. if (ret)
  5557. return ret;
  5558. ret = __alloc_contig_migrate_range(&cc, start, end);
  5559. if (ret)
  5560. goto done;
  5561. /*
  5562. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5563. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5564. * more, all pages in [start, end) are free in page allocator.
  5565. * What we are going to do is to allocate all pages from
  5566. * [start, end) (that is remove them from page allocator).
  5567. *
  5568. * The only problem is that pages at the beginning and at the
  5569. * end of interesting range may be not aligned with pages that
  5570. * page allocator holds, ie. they can be part of higher order
  5571. * pages. Because of this, we reserve the bigger range and
  5572. * once this is done free the pages we are not interested in.
  5573. *
  5574. * We don't have to hold zone->lock here because the pages are
  5575. * isolated thus they won't get removed from buddy.
  5576. */
  5577. lru_add_drain_all();
  5578. drain_all_pages(cc.zone);
  5579. order = 0;
  5580. outer_start = start;
  5581. while (!PageBuddy(pfn_to_page(outer_start))) {
  5582. if (++order >= MAX_ORDER) {
  5583. ret = -EBUSY;
  5584. goto done;
  5585. }
  5586. outer_start &= ~0UL << order;
  5587. }
  5588. /* Make sure the range is really isolated. */
  5589. if (test_pages_isolated(outer_start, end, false)) {
  5590. pr_info("%s: [%lx, %lx) PFNs busy\n",
  5591. __func__, outer_start, end);
  5592. ret = -EBUSY;
  5593. goto done;
  5594. }
  5595. /* Grab isolated pages from freelists. */
  5596. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5597. if (!outer_end) {
  5598. ret = -EBUSY;
  5599. goto done;
  5600. }
  5601. /* Free head and tail (if any) */
  5602. if (start != outer_start)
  5603. free_contig_range(outer_start, start - outer_start);
  5604. if (end != outer_end)
  5605. free_contig_range(end, outer_end - end);
  5606. done:
  5607. undo_isolate_page_range(pfn_max_align_down(start),
  5608. pfn_max_align_up(end), migratetype);
  5609. return ret;
  5610. }
  5611. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5612. {
  5613. unsigned int count = 0;
  5614. for (; nr_pages--; pfn++) {
  5615. struct page *page = pfn_to_page(pfn);
  5616. count += page_count(page) != 1;
  5617. __free_page(page);
  5618. }
  5619. WARN(count != 0, "%d pages are still in use!\n", count);
  5620. }
  5621. #endif
  5622. #ifdef CONFIG_MEMORY_HOTPLUG
  5623. /*
  5624. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5625. * page high values need to be recalulated.
  5626. */
  5627. void __meminit zone_pcp_update(struct zone *zone)
  5628. {
  5629. unsigned cpu;
  5630. mutex_lock(&pcp_batch_high_lock);
  5631. for_each_possible_cpu(cpu)
  5632. pageset_set_high_and_batch(zone,
  5633. per_cpu_ptr(zone->pageset, cpu));
  5634. mutex_unlock(&pcp_batch_high_lock);
  5635. }
  5636. #endif
  5637. void zone_pcp_reset(struct zone *zone)
  5638. {
  5639. unsigned long flags;
  5640. int cpu;
  5641. struct per_cpu_pageset *pset;
  5642. /* avoid races with drain_pages() */
  5643. local_irq_save(flags);
  5644. if (zone->pageset != &boot_pageset) {
  5645. for_each_online_cpu(cpu) {
  5646. pset = per_cpu_ptr(zone->pageset, cpu);
  5647. drain_zonestat(zone, pset);
  5648. }
  5649. free_percpu(zone->pageset);
  5650. zone->pageset = &boot_pageset;
  5651. }
  5652. local_irq_restore(flags);
  5653. }
  5654. #ifdef CONFIG_MEMORY_HOTREMOVE
  5655. /*
  5656. * All pages in the range must be isolated before calling this.
  5657. */
  5658. void
  5659. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5660. {
  5661. struct page *page;
  5662. struct zone *zone;
  5663. unsigned int order, i;
  5664. unsigned long pfn;
  5665. unsigned long flags;
  5666. /* find the first valid pfn */
  5667. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5668. if (pfn_valid(pfn))
  5669. break;
  5670. if (pfn == end_pfn)
  5671. return;
  5672. zone = page_zone(pfn_to_page(pfn));
  5673. spin_lock_irqsave(&zone->lock, flags);
  5674. pfn = start_pfn;
  5675. while (pfn < end_pfn) {
  5676. if (!pfn_valid(pfn)) {
  5677. pfn++;
  5678. continue;
  5679. }
  5680. page = pfn_to_page(pfn);
  5681. /*
  5682. * The HWPoisoned page may be not in buddy system, and
  5683. * page_count() is not 0.
  5684. */
  5685. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5686. pfn++;
  5687. SetPageReserved(page);
  5688. continue;
  5689. }
  5690. BUG_ON(page_count(page));
  5691. BUG_ON(!PageBuddy(page));
  5692. order = page_order(page);
  5693. #ifdef CONFIG_DEBUG_VM
  5694. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5695. pfn, 1 << order, end_pfn);
  5696. #endif
  5697. list_del(&page->lru);
  5698. rmv_page_order(page);
  5699. zone->free_area[order].nr_free--;
  5700. for (i = 0; i < (1 << order); i++)
  5701. SetPageReserved((page+i));
  5702. pfn += (1 << order);
  5703. }
  5704. spin_unlock_irqrestore(&zone->lock, flags);
  5705. }
  5706. #endif
  5707. #ifdef CONFIG_MEMORY_FAILURE
  5708. bool is_free_buddy_page(struct page *page)
  5709. {
  5710. struct zone *zone = page_zone(page);
  5711. unsigned long pfn = page_to_pfn(page);
  5712. unsigned long flags;
  5713. unsigned int order;
  5714. spin_lock_irqsave(&zone->lock, flags);
  5715. for (order = 0; order < MAX_ORDER; order++) {
  5716. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5717. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5718. break;
  5719. }
  5720. spin_unlock_irqrestore(&zone->lock, flags);
  5721. return order < MAX_ORDER;
  5722. }
  5723. #endif