net_namespace.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/workqueue.h>
  3. #include <linux/rtnetlink.h>
  4. #include <linux/cache.h>
  5. #include <linux/slab.h>
  6. #include <linux/list.h>
  7. #include <linux/delay.h>
  8. #include <linux/sched.h>
  9. #include <linux/idr.h>
  10. #include <linux/rculist.h>
  11. #include <linux/nsproxy.h>
  12. #include <linux/fs.h>
  13. #include <linux/proc_ns.h>
  14. #include <linux/file.h>
  15. #include <linux/export.h>
  16. #include <linux/user_namespace.h>
  17. #include <linux/net_namespace.h>
  18. #include <linux/sched/task.h>
  19. #include <net/sock.h>
  20. #include <net/netlink.h>
  21. #include <net/net_namespace.h>
  22. #include <net/netns/generic.h>
  23. /*
  24. * Our network namespace constructor/destructor lists
  25. */
  26. static LIST_HEAD(pernet_list);
  27. static struct list_head *first_device = &pernet_list;
  28. DEFINE_MUTEX(net_mutex);
  29. LIST_HEAD(net_namespace_list);
  30. EXPORT_SYMBOL_GPL(net_namespace_list);
  31. struct net init_net = {
  32. .count = ATOMIC_INIT(1),
  33. .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
  34. };
  35. EXPORT_SYMBOL(init_net);
  36. static bool init_net_initialized;
  37. #define MIN_PERNET_OPS_ID \
  38. ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
  39. #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
  40. static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
  41. static struct net_generic *net_alloc_generic(void)
  42. {
  43. struct net_generic *ng;
  44. unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
  45. ng = kzalloc(generic_size, GFP_KERNEL);
  46. if (ng)
  47. ng->s.len = max_gen_ptrs;
  48. return ng;
  49. }
  50. static int net_assign_generic(struct net *net, unsigned int id, void *data)
  51. {
  52. struct net_generic *ng, *old_ng;
  53. BUG_ON(!mutex_is_locked(&net_mutex));
  54. BUG_ON(id < MIN_PERNET_OPS_ID);
  55. old_ng = rcu_dereference_protected(net->gen,
  56. lockdep_is_held(&net_mutex));
  57. if (old_ng->s.len > id) {
  58. old_ng->ptr[id] = data;
  59. return 0;
  60. }
  61. ng = net_alloc_generic();
  62. if (ng == NULL)
  63. return -ENOMEM;
  64. /*
  65. * Some synchronisation notes:
  66. *
  67. * The net_generic explores the net->gen array inside rcu
  68. * read section. Besides once set the net->gen->ptr[x]
  69. * pointer never changes (see rules in netns/generic.h).
  70. *
  71. * That said, we simply duplicate this array and schedule
  72. * the old copy for kfree after a grace period.
  73. */
  74. memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
  75. (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
  76. ng->ptr[id] = data;
  77. rcu_assign_pointer(net->gen, ng);
  78. kfree_rcu(old_ng, s.rcu);
  79. return 0;
  80. }
  81. static int ops_init(const struct pernet_operations *ops, struct net *net)
  82. {
  83. int err = -ENOMEM;
  84. void *data = NULL;
  85. if (ops->id && ops->size) {
  86. data = kzalloc(ops->size, GFP_KERNEL);
  87. if (!data)
  88. goto out;
  89. err = net_assign_generic(net, *ops->id, data);
  90. if (err)
  91. goto cleanup;
  92. }
  93. err = 0;
  94. if (ops->init)
  95. err = ops->init(net);
  96. if (!err)
  97. return 0;
  98. cleanup:
  99. kfree(data);
  100. out:
  101. return err;
  102. }
  103. static void ops_free(const struct pernet_operations *ops, struct net *net)
  104. {
  105. if (ops->id && ops->size) {
  106. kfree(net_generic(net, *ops->id));
  107. }
  108. }
  109. static void ops_exit_list(const struct pernet_operations *ops,
  110. struct list_head *net_exit_list)
  111. {
  112. struct net *net;
  113. if (ops->exit) {
  114. list_for_each_entry(net, net_exit_list, exit_list)
  115. ops->exit(net);
  116. }
  117. if (ops->exit_batch)
  118. ops->exit_batch(net_exit_list);
  119. }
  120. static void ops_free_list(const struct pernet_operations *ops,
  121. struct list_head *net_exit_list)
  122. {
  123. struct net *net;
  124. if (ops->size && ops->id) {
  125. list_for_each_entry(net, net_exit_list, exit_list)
  126. ops_free(ops, net);
  127. }
  128. }
  129. /* should be called with nsid_lock held */
  130. static int alloc_netid(struct net *net, struct net *peer, int reqid)
  131. {
  132. int min = 0, max = 0;
  133. if (reqid >= 0) {
  134. min = reqid;
  135. max = reqid + 1;
  136. }
  137. return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
  138. }
  139. /* This function is used by idr_for_each(). If net is equal to peer, the
  140. * function returns the id so that idr_for_each() stops. Because we cannot
  141. * returns the id 0 (idr_for_each() will not stop), we return the magic value
  142. * NET_ID_ZERO (-1) for it.
  143. */
  144. #define NET_ID_ZERO -1
  145. static int net_eq_idr(int id, void *net, void *peer)
  146. {
  147. if (net_eq(net, peer))
  148. return id ? : NET_ID_ZERO;
  149. return 0;
  150. }
  151. /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
  152. * is set to true, thus the caller knows that the new id must be notified via
  153. * rtnl.
  154. */
  155. static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
  156. {
  157. int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
  158. bool alloc_it = *alloc;
  159. *alloc = false;
  160. /* Magic value for id 0. */
  161. if (id == NET_ID_ZERO)
  162. return 0;
  163. if (id > 0)
  164. return id;
  165. if (alloc_it) {
  166. id = alloc_netid(net, peer, -1);
  167. *alloc = true;
  168. return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
  169. }
  170. return NETNSA_NSID_NOT_ASSIGNED;
  171. }
  172. /* should be called with nsid_lock held */
  173. static int __peernet2id(struct net *net, struct net *peer)
  174. {
  175. bool no = false;
  176. return __peernet2id_alloc(net, peer, &no);
  177. }
  178. static void rtnl_net_notifyid(struct net *net, int cmd, int id);
  179. /* This function returns the id of a peer netns. If no id is assigned, one will
  180. * be allocated and returned.
  181. */
  182. int peernet2id_alloc(struct net *net, struct net *peer)
  183. {
  184. bool alloc;
  185. int id;
  186. if (atomic_read(&net->count) == 0)
  187. return NETNSA_NSID_NOT_ASSIGNED;
  188. spin_lock_bh(&net->nsid_lock);
  189. alloc = atomic_read(&peer->count) == 0 ? false : true;
  190. id = __peernet2id_alloc(net, peer, &alloc);
  191. spin_unlock_bh(&net->nsid_lock);
  192. if (alloc && id >= 0)
  193. rtnl_net_notifyid(net, RTM_NEWNSID, id);
  194. return id;
  195. }
  196. /* This function returns, if assigned, the id of a peer netns. */
  197. int peernet2id(struct net *net, struct net *peer)
  198. {
  199. int id;
  200. spin_lock_bh(&net->nsid_lock);
  201. id = __peernet2id(net, peer);
  202. spin_unlock_bh(&net->nsid_lock);
  203. return id;
  204. }
  205. EXPORT_SYMBOL(peernet2id);
  206. /* This function returns true is the peer netns has an id assigned into the
  207. * current netns.
  208. */
  209. bool peernet_has_id(struct net *net, struct net *peer)
  210. {
  211. return peernet2id(net, peer) >= 0;
  212. }
  213. struct net *get_net_ns_by_id(struct net *net, int id)
  214. {
  215. struct net *peer;
  216. if (id < 0)
  217. return NULL;
  218. rcu_read_lock();
  219. spin_lock_bh(&net->nsid_lock);
  220. peer = idr_find(&net->netns_ids, id);
  221. if (peer)
  222. get_net(peer);
  223. spin_unlock_bh(&net->nsid_lock);
  224. rcu_read_unlock();
  225. return peer;
  226. }
  227. /*
  228. * setup_net runs the initializers for the network namespace object.
  229. */
  230. static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
  231. {
  232. /* Must be called with net_mutex held */
  233. const struct pernet_operations *ops, *saved_ops;
  234. int error = 0;
  235. LIST_HEAD(net_exit_list);
  236. atomic_set(&net->count, 1);
  237. atomic_set(&net->passive, 1);
  238. net->dev_base_seq = 1;
  239. net->user_ns = user_ns;
  240. idr_init(&net->netns_ids);
  241. spin_lock_init(&net->nsid_lock);
  242. list_for_each_entry(ops, &pernet_list, list) {
  243. error = ops_init(ops, net);
  244. if (error < 0)
  245. goto out_undo;
  246. }
  247. out:
  248. return error;
  249. out_undo:
  250. /* Walk through the list backwards calling the exit functions
  251. * for the pernet modules whose init functions did not fail.
  252. */
  253. list_add(&net->exit_list, &net_exit_list);
  254. saved_ops = ops;
  255. list_for_each_entry_continue_reverse(ops, &pernet_list, list)
  256. ops_exit_list(ops, &net_exit_list);
  257. ops = saved_ops;
  258. list_for_each_entry_continue_reverse(ops, &pernet_list, list)
  259. ops_free_list(ops, &net_exit_list);
  260. rcu_barrier();
  261. goto out;
  262. }
  263. static int __net_init net_defaults_init_net(struct net *net)
  264. {
  265. net->core.sysctl_somaxconn = SOMAXCONN;
  266. return 0;
  267. }
  268. static struct pernet_operations net_defaults_ops = {
  269. .init = net_defaults_init_net,
  270. };
  271. static __init int net_defaults_init(void)
  272. {
  273. if (register_pernet_subsys(&net_defaults_ops))
  274. panic("Cannot initialize net default settings");
  275. return 0;
  276. }
  277. core_initcall(net_defaults_init);
  278. #ifdef CONFIG_NET_NS
  279. static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
  280. {
  281. return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
  282. }
  283. static void dec_net_namespaces(struct ucounts *ucounts)
  284. {
  285. dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
  286. }
  287. static struct kmem_cache *net_cachep;
  288. static struct workqueue_struct *netns_wq;
  289. static struct net *net_alloc(void)
  290. {
  291. struct net *net = NULL;
  292. struct net_generic *ng;
  293. ng = net_alloc_generic();
  294. if (!ng)
  295. goto out;
  296. net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
  297. if (!net)
  298. goto out_free;
  299. rcu_assign_pointer(net->gen, ng);
  300. out:
  301. return net;
  302. out_free:
  303. kfree(ng);
  304. goto out;
  305. }
  306. static void net_free(struct net *net)
  307. {
  308. kfree(rcu_access_pointer(net->gen));
  309. kmem_cache_free(net_cachep, net);
  310. }
  311. void net_drop_ns(void *p)
  312. {
  313. struct net *ns = p;
  314. if (ns && atomic_dec_and_test(&ns->passive))
  315. net_free(ns);
  316. }
  317. struct net *copy_net_ns(unsigned long flags,
  318. struct user_namespace *user_ns, struct net *old_net)
  319. {
  320. struct ucounts *ucounts;
  321. struct net *net;
  322. int rv;
  323. if (!(flags & CLONE_NEWNET))
  324. return get_net(old_net);
  325. ucounts = inc_net_namespaces(user_ns);
  326. if (!ucounts)
  327. return ERR_PTR(-ENOSPC);
  328. net = net_alloc();
  329. if (!net) {
  330. dec_net_namespaces(ucounts);
  331. return ERR_PTR(-ENOMEM);
  332. }
  333. get_user_ns(user_ns);
  334. rv = mutex_lock_killable(&net_mutex);
  335. if (rv < 0) {
  336. net_free(net);
  337. dec_net_namespaces(ucounts);
  338. put_user_ns(user_ns);
  339. return ERR_PTR(rv);
  340. }
  341. net->ucounts = ucounts;
  342. rv = setup_net(net, user_ns);
  343. if (rv == 0) {
  344. rtnl_lock();
  345. list_add_tail_rcu(&net->list, &net_namespace_list);
  346. rtnl_unlock();
  347. }
  348. mutex_unlock(&net_mutex);
  349. if (rv < 0) {
  350. dec_net_namespaces(ucounts);
  351. put_user_ns(user_ns);
  352. net_drop_ns(net);
  353. return ERR_PTR(rv);
  354. }
  355. return net;
  356. }
  357. static DEFINE_SPINLOCK(cleanup_list_lock);
  358. static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
  359. static void cleanup_net(struct work_struct *work)
  360. {
  361. const struct pernet_operations *ops;
  362. struct net *net, *tmp;
  363. struct list_head net_kill_list;
  364. LIST_HEAD(net_exit_list);
  365. /* Atomically snapshot the list of namespaces to cleanup */
  366. spin_lock_irq(&cleanup_list_lock);
  367. list_replace_init(&cleanup_list, &net_kill_list);
  368. spin_unlock_irq(&cleanup_list_lock);
  369. mutex_lock(&net_mutex);
  370. /* Don't let anyone else find us. */
  371. rtnl_lock();
  372. list_for_each_entry(net, &net_kill_list, cleanup_list) {
  373. list_del_rcu(&net->list);
  374. list_add_tail(&net->exit_list, &net_exit_list);
  375. for_each_net(tmp) {
  376. int id;
  377. spin_lock_bh(&tmp->nsid_lock);
  378. id = __peernet2id(tmp, net);
  379. if (id >= 0)
  380. idr_remove(&tmp->netns_ids, id);
  381. spin_unlock_bh(&tmp->nsid_lock);
  382. if (id >= 0)
  383. rtnl_net_notifyid(tmp, RTM_DELNSID, id);
  384. }
  385. spin_lock_bh(&net->nsid_lock);
  386. idr_destroy(&net->netns_ids);
  387. spin_unlock_bh(&net->nsid_lock);
  388. }
  389. rtnl_unlock();
  390. /*
  391. * Another CPU might be rcu-iterating the list, wait for it.
  392. * This needs to be before calling the exit() notifiers, so
  393. * the rcu_barrier() below isn't sufficient alone.
  394. */
  395. synchronize_rcu();
  396. /* Run all of the network namespace exit methods */
  397. list_for_each_entry_reverse(ops, &pernet_list, list)
  398. ops_exit_list(ops, &net_exit_list);
  399. /* Free the net generic variables */
  400. list_for_each_entry_reverse(ops, &pernet_list, list)
  401. ops_free_list(ops, &net_exit_list);
  402. mutex_unlock(&net_mutex);
  403. /* Ensure there are no outstanding rcu callbacks using this
  404. * network namespace.
  405. */
  406. rcu_barrier();
  407. /* Finally it is safe to free my network namespace structure */
  408. list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
  409. list_del_init(&net->exit_list);
  410. dec_net_namespaces(net->ucounts);
  411. put_user_ns(net->user_ns);
  412. net_drop_ns(net);
  413. }
  414. }
  415. static DECLARE_WORK(net_cleanup_work, cleanup_net);
  416. void __put_net(struct net *net)
  417. {
  418. /* Cleanup the network namespace in process context */
  419. unsigned long flags;
  420. spin_lock_irqsave(&cleanup_list_lock, flags);
  421. list_add(&net->cleanup_list, &cleanup_list);
  422. spin_unlock_irqrestore(&cleanup_list_lock, flags);
  423. queue_work(netns_wq, &net_cleanup_work);
  424. }
  425. EXPORT_SYMBOL_GPL(__put_net);
  426. struct net *get_net_ns_by_fd(int fd)
  427. {
  428. struct file *file;
  429. struct ns_common *ns;
  430. struct net *net;
  431. file = proc_ns_fget(fd);
  432. if (IS_ERR(file))
  433. return ERR_CAST(file);
  434. ns = get_proc_ns(file_inode(file));
  435. if (ns->ops == &netns_operations)
  436. net = get_net(container_of(ns, struct net, ns));
  437. else
  438. net = ERR_PTR(-EINVAL);
  439. fput(file);
  440. return net;
  441. }
  442. #else
  443. struct net *get_net_ns_by_fd(int fd)
  444. {
  445. return ERR_PTR(-EINVAL);
  446. }
  447. #endif
  448. EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
  449. struct net *get_net_ns_by_pid(pid_t pid)
  450. {
  451. struct task_struct *tsk;
  452. struct net *net;
  453. /* Lookup the network namespace */
  454. net = ERR_PTR(-ESRCH);
  455. rcu_read_lock();
  456. tsk = find_task_by_vpid(pid);
  457. if (tsk) {
  458. struct nsproxy *nsproxy;
  459. task_lock(tsk);
  460. nsproxy = tsk->nsproxy;
  461. if (nsproxy)
  462. net = get_net(nsproxy->net_ns);
  463. task_unlock(tsk);
  464. }
  465. rcu_read_unlock();
  466. return net;
  467. }
  468. EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
  469. static __net_init int net_ns_net_init(struct net *net)
  470. {
  471. #ifdef CONFIG_NET_NS
  472. net->ns.ops = &netns_operations;
  473. #endif
  474. return ns_alloc_inum(&net->ns);
  475. }
  476. static __net_exit void net_ns_net_exit(struct net *net)
  477. {
  478. ns_free_inum(&net->ns);
  479. }
  480. static struct pernet_operations __net_initdata net_ns_ops = {
  481. .init = net_ns_net_init,
  482. .exit = net_ns_net_exit,
  483. };
  484. static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
  485. [NETNSA_NONE] = { .type = NLA_UNSPEC },
  486. [NETNSA_NSID] = { .type = NLA_S32 },
  487. [NETNSA_PID] = { .type = NLA_U32 },
  488. [NETNSA_FD] = { .type = NLA_U32 },
  489. };
  490. static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
  491. struct netlink_ext_ack *extack)
  492. {
  493. struct net *net = sock_net(skb->sk);
  494. struct nlattr *tb[NETNSA_MAX + 1];
  495. struct nlattr *nla;
  496. struct net *peer;
  497. int nsid, err;
  498. err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
  499. rtnl_net_policy, extack);
  500. if (err < 0)
  501. return err;
  502. if (!tb[NETNSA_NSID]) {
  503. NL_SET_ERR_MSG(extack, "nsid is missing");
  504. return -EINVAL;
  505. }
  506. nsid = nla_get_s32(tb[NETNSA_NSID]);
  507. if (tb[NETNSA_PID]) {
  508. peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
  509. nla = tb[NETNSA_PID];
  510. } else if (tb[NETNSA_FD]) {
  511. peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
  512. nla = tb[NETNSA_FD];
  513. } else {
  514. NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
  515. return -EINVAL;
  516. }
  517. if (IS_ERR(peer)) {
  518. NL_SET_BAD_ATTR(extack, nla);
  519. NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
  520. return PTR_ERR(peer);
  521. }
  522. spin_lock_bh(&net->nsid_lock);
  523. if (__peernet2id(net, peer) >= 0) {
  524. spin_unlock_bh(&net->nsid_lock);
  525. err = -EEXIST;
  526. NL_SET_BAD_ATTR(extack, nla);
  527. NL_SET_ERR_MSG(extack,
  528. "Peer netns already has a nsid assigned");
  529. goto out;
  530. }
  531. err = alloc_netid(net, peer, nsid);
  532. spin_unlock_bh(&net->nsid_lock);
  533. if (err >= 0) {
  534. rtnl_net_notifyid(net, RTM_NEWNSID, err);
  535. err = 0;
  536. } else if (err == -ENOSPC && nsid >= 0) {
  537. err = -EEXIST;
  538. NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
  539. NL_SET_ERR_MSG(extack, "The specified nsid is already used");
  540. }
  541. out:
  542. put_net(peer);
  543. return err;
  544. }
  545. static int rtnl_net_get_size(void)
  546. {
  547. return NLMSG_ALIGN(sizeof(struct rtgenmsg))
  548. + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
  549. ;
  550. }
  551. static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
  552. int cmd, struct net *net, int nsid)
  553. {
  554. struct nlmsghdr *nlh;
  555. struct rtgenmsg *rth;
  556. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
  557. if (!nlh)
  558. return -EMSGSIZE;
  559. rth = nlmsg_data(nlh);
  560. rth->rtgen_family = AF_UNSPEC;
  561. if (nla_put_s32(skb, NETNSA_NSID, nsid))
  562. goto nla_put_failure;
  563. nlmsg_end(skb, nlh);
  564. return 0;
  565. nla_put_failure:
  566. nlmsg_cancel(skb, nlh);
  567. return -EMSGSIZE;
  568. }
  569. static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
  570. struct netlink_ext_ack *extack)
  571. {
  572. struct net *net = sock_net(skb->sk);
  573. struct nlattr *tb[NETNSA_MAX + 1];
  574. struct nlattr *nla;
  575. struct sk_buff *msg;
  576. struct net *peer;
  577. int err, id;
  578. err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
  579. rtnl_net_policy, extack);
  580. if (err < 0)
  581. return err;
  582. if (tb[NETNSA_PID]) {
  583. peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
  584. nla = tb[NETNSA_PID];
  585. } else if (tb[NETNSA_FD]) {
  586. peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
  587. nla = tb[NETNSA_FD];
  588. } else {
  589. NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
  590. return -EINVAL;
  591. }
  592. if (IS_ERR(peer)) {
  593. NL_SET_BAD_ATTR(extack, nla);
  594. NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
  595. return PTR_ERR(peer);
  596. }
  597. msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
  598. if (!msg) {
  599. err = -ENOMEM;
  600. goto out;
  601. }
  602. id = peernet2id(net, peer);
  603. err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
  604. RTM_NEWNSID, net, id);
  605. if (err < 0)
  606. goto err_out;
  607. err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
  608. goto out;
  609. err_out:
  610. nlmsg_free(msg);
  611. out:
  612. put_net(peer);
  613. return err;
  614. }
  615. struct rtnl_net_dump_cb {
  616. struct net *net;
  617. struct sk_buff *skb;
  618. struct netlink_callback *cb;
  619. int idx;
  620. int s_idx;
  621. };
  622. static int rtnl_net_dumpid_one(int id, void *peer, void *data)
  623. {
  624. struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
  625. int ret;
  626. if (net_cb->idx < net_cb->s_idx)
  627. goto cont;
  628. ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
  629. net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
  630. RTM_NEWNSID, net_cb->net, id);
  631. if (ret < 0)
  632. return ret;
  633. cont:
  634. net_cb->idx++;
  635. return 0;
  636. }
  637. static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
  638. {
  639. struct net *net = sock_net(skb->sk);
  640. struct rtnl_net_dump_cb net_cb = {
  641. .net = net,
  642. .skb = skb,
  643. .cb = cb,
  644. .idx = 0,
  645. .s_idx = cb->args[0],
  646. };
  647. spin_lock_bh(&net->nsid_lock);
  648. idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
  649. spin_unlock_bh(&net->nsid_lock);
  650. cb->args[0] = net_cb.idx;
  651. return skb->len;
  652. }
  653. static void rtnl_net_notifyid(struct net *net, int cmd, int id)
  654. {
  655. struct sk_buff *msg;
  656. int err = -ENOMEM;
  657. msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
  658. if (!msg)
  659. goto out;
  660. err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
  661. if (err < 0)
  662. goto err_out;
  663. rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
  664. return;
  665. err_out:
  666. nlmsg_free(msg);
  667. out:
  668. rtnl_set_sk_err(net, RTNLGRP_NSID, err);
  669. }
  670. static int __init net_ns_init(void)
  671. {
  672. struct net_generic *ng;
  673. #ifdef CONFIG_NET_NS
  674. net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
  675. SMP_CACHE_BYTES,
  676. SLAB_PANIC, NULL);
  677. /* Create workqueue for cleanup */
  678. netns_wq = create_singlethread_workqueue("netns");
  679. if (!netns_wq)
  680. panic("Could not create netns workq");
  681. #endif
  682. ng = net_alloc_generic();
  683. if (!ng)
  684. panic("Could not allocate generic netns");
  685. rcu_assign_pointer(init_net.gen, ng);
  686. mutex_lock(&net_mutex);
  687. if (setup_net(&init_net, &init_user_ns))
  688. panic("Could not setup the initial network namespace");
  689. init_net_initialized = true;
  690. rtnl_lock();
  691. list_add_tail_rcu(&init_net.list, &net_namespace_list);
  692. rtnl_unlock();
  693. mutex_unlock(&net_mutex);
  694. register_pernet_subsys(&net_ns_ops);
  695. rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
  696. rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
  697. NULL);
  698. return 0;
  699. }
  700. pure_initcall(net_ns_init);
  701. #ifdef CONFIG_NET_NS
  702. static int __register_pernet_operations(struct list_head *list,
  703. struct pernet_operations *ops)
  704. {
  705. struct net *net;
  706. int error;
  707. LIST_HEAD(net_exit_list);
  708. list_add_tail(&ops->list, list);
  709. if (ops->init || (ops->id && ops->size)) {
  710. for_each_net(net) {
  711. error = ops_init(ops, net);
  712. if (error)
  713. goto out_undo;
  714. list_add_tail(&net->exit_list, &net_exit_list);
  715. }
  716. }
  717. return 0;
  718. out_undo:
  719. /* If I have an error cleanup all namespaces I initialized */
  720. list_del(&ops->list);
  721. ops_exit_list(ops, &net_exit_list);
  722. ops_free_list(ops, &net_exit_list);
  723. return error;
  724. }
  725. static void __unregister_pernet_operations(struct pernet_operations *ops)
  726. {
  727. struct net *net;
  728. LIST_HEAD(net_exit_list);
  729. list_del(&ops->list);
  730. for_each_net(net)
  731. list_add_tail(&net->exit_list, &net_exit_list);
  732. ops_exit_list(ops, &net_exit_list);
  733. ops_free_list(ops, &net_exit_list);
  734. }
  735. #else
  736. static int __register_pernet_operations(struct list_head *list,
  737. struct pernet_operations *ops)
  738. {
  739. if (!init_net_initialized) {
  740. list_add_tail(&ops->list, list);
  741. return 0;
  742. }
  743. return ops_init(ops, &init_net);
  744. }
  745. static void __unregister_pernet_operations(struct pernet_operations *ops)
  746. {
  747. if (!init_net_initialized) {
  748. list_del(&ops->list);
  749. } else {
  750. LIST_HEAD(net_exit_list);
  751. list_add(&init_net.exit_list, &net_exit_list);
  752. ops_exit_list(ops, &net_exit_list);
  753. ops_free_list(ops, &net_exit_list);
  754. }
  755. }
  756. #endif /* CONFIG_NET_NS */
  757. static DEFINE_IDA(net_generic_ids);
  758. static int register_pernet_operations(struct list_head *list,
  759. struct pernet_operations *ops)
  760. {
  761. int error;
  762. if (ops->id) {
  763. again:
  764. error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
  765. if (error < 0) {
  766. if (error == -EAGAIN) {
  767. ida_pre_get(&net_generic_ids, GFP_KERNEL);
  768. goto again;
  769. }
  770. return error;
  771. }
  772. max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
  773. }
  774. error = __register_pernet_operations(list, ops);
  775. if (error) {
  776. rcu_barrier();
  777. if (ops->id)
  778. ida_remove(&net_generic_ids, *ops->id);
  779. }
  780. return error;
  781. }
  782. static void unregister_pernet_operations(struct pernet_operations *ops)
  783. {
  784. __unregister_pernet_operations(ops);
  785. rcu_barrier();
  786. if (ops->id)
  787. ida_remove(&net_generic_ids, *ops->id);
  788. }
  789. /**
  790. * register_pernet_subsys - register a network namespace subsystem
  791. * @ops: pernet operations structure for the subsystem
  792. *
  793. * Register a subsystem which has init and exit functions
  794. * that are called when network namespaces are created and
  795. * destroyed respectively.
  796. *
  797. * When registered all network namespace init functions are
  798. * called for every existing network namespace. Allowing kernel
  799. * modules to have a race free view of the set of network namespaces.
  800. *
  801. * When a new network namespace is created all of the init
  802. * methods are called in the order in which they were registered.
  803. *
  804. * When a network namespace is destroyed all of the exit methods
  805. * are called in the reverse of the order with which they were
  806. * registered.
  807. */
  808. int register_pernet_subsys(struct pernet_operations *ops)
  809. {
  810. int error;
  811. mutex_lock(&net_mutex);
  812. error = register_pernet_operations(first_device, ops);
  813. mutex_unlock(&net_mutex);
  814. return error;
  815. }
  816. EXPORT_SYMBOL_GPL(register_pernet_subsys);
  817. /**
  818. * unregister_pernet_subsys - unregister a network namespace subsystem
  819. * @ops: pernet operations structure to manipulate
  820. *
  821. * Remove the pernet operations structure from the list to be
  822. * used when network namespaces are created or destroyed. In
  823. * addition run the exit method for all existing network
  824. * namespaces.
  825. */
  826. void unregister_pernet_subsys(struct pernet_operations *ops)
  827. {
  828. mutex_lock(&net_mutex);
  829. unregister_pernet_operations(ops);
  830. mutex_unlock(&net_mutex);
  831. }
  832. EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
  833. /**
  834. * register_pernet_device - register a network namespace device
  835. * @ops: pernet operations structure for the subsystem
  836. *
  837. * Register a device which has init and exit functions
  838. * that are called when network namespaces are created and
  839. * destroyed respectively.
  840. *
  841. * When registered all network namespace init functions are
  842. * called for every existing network namespace. Allowing kernel
  843. * modules to have a race free view of the set of network namespaces.
  844. *
  845. * When a new network namespace is created all of the init
  846. * methods are called in the order in which they were registered.
  847. *
  848. * When a network namespace is destroyed all of the exit methods
  849. * are called in the reverse of the order with which they were
  850. * registered.
  851. */
  852. int register_pernet_device(struct pernet_operations *ops)
  853. {
  854. int error;
  855. mutex_lock(&net_mutex);
  856. error = register_pernet_operations(&pernet_list, ops);
  857. if (!error && (first_device == &pernet_list))
  858. first_device = &ops->list;
  859. mutex_unlock(&net_mutex);
  860. return error;
  861. }
  862. EXPORT_SYMBOL_GPL(register_pernet_device);
  863. /**
  864. * unregister_pernet_device - unregister a network namespace netdevice
  865. * @ops: pernet operations structure to manipulate
  866. *
  867. * Remove the pernet operations structure from the list to be
  868. * used when network namespaces are created or destroyed. In
  869. * addition run the exit method for all existing network
  870. * namespaces.
  871. */
  872. void unregister_pernet_device(struct pernet_operations *ops)
  873. {
  874. mutex_lock(&net_mutex);
  875. if (&ops->list == first_device)
  876. first_device = first_device->next;
  877. unregister_pernet_operations(ops);
  878. mutex_unlock(&net_mutex);
  879. }
  880. EXPORT_SYMBOL_GPL(unregister_pernet_device);
  881. #ifdef CONFIG_NET_NS
  882. static struct ns_common *netns_get(struct task_struct *task)
  883. {
  884. struct net *net = NULL;
  885. struct nsproxy *nsproxy;
  886. task_lock(task);
  887. nsproxy = task->nsproxy;
  888. if (nsproxy)
  889. net = get_net(nsproxy->net_ns);
  890. task_unlock(task);
  891. return net ? &net->ns : NULL;
  892. }
  893. static inline struct net *to_net_ns(struct ns_common *ns)
  894. {
  895. return container_of(ns, struct net, ns);
  896. }
  897. static void netns_put(struct ns_common *ns)
  898. {
  899. put_net(to_net_ns(ns));
  900. }
  901. static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  902. {
  903. struct net *net = to_net_ns(ns);
  904. if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
  905. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  906. return -EPERM;
  907. put_net(nsproxy->net_ns);
  908. nsproxy->net_ns = get_net(net);
  909. return 0;
  910. }
  911. static struct user_namespace *netns_owner(struct ns_common *ns)
  912. {
  913. return to_net_ns(ns)->user_ns;
  914. }
  915. const struct proc_ns_operations netns_operations = {
  916. .name = "net",
  917. .type = CLONE_NEWNET,
  918. .get = netns_get,
  919. .put = netns_put,
  920. .install = netns_install,
  921. .owner = netns_owner,
  922. };
  923. #endif