mmu.c 113 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. #undef MMU_DEBUG
  58. #ifdef MMU_DEBUG
  59. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  60. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  61. #else
  62. #define pgprintk(x...) do { } while (0)
  63. #define rmap_printk(x...) do { } while (0)
  64. #endif
  65. #ifdef MMU_DEBUG
  66. static bool dbg = 0;
  67. module_param(dbg, bool, 0644);
  68. #endif
  69. #ifndef MMU_DEBUG
  70. #define ASSERT(x) do { } while (0)
  71. #else
  72. #define ASSERT(x) \
  73. if (!(x)) { \
  74. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  75. __FILE__, __LINE__, #x); \
  76. }
  77. #endif
  78. #define PTE_PREFETCH_NUM 8
  79. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  80. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  81. #define PT64_LEVEL_BITS 9
  82. #define PT64_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  84. #define PT64_INDEX(address, level)\
  85. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  86. #define PT32_LEVEL_BITS 10
  87. #define PT32_LEVEL_SHIFT(level) \
  88. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  89. #define PT32_LVL_OFFSET_MASK(level) \
  90. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  91. * PT32_LEVEL_BITS))) - 1))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT64_LVL_ADDR_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT64_LVL_OFFSET_MASK(level) \
  101. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  102. * PT64_LEVEL_BITS))) - 1))
  103. #define PT32_BASE_ADDR_MASK PAGE_MASK
  104. #define PT32_DIR_BASE_ADDR_MASK \
  105. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  106. #define PT32_LVL_ADDR_MASK(level) \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT32_LEVEL_BITS))) - 1))
  109. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  110. | shadow_x_mask | shadow_nx_mask)
  111. #define ACC_EXEC_MASK 1
  112. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  113. #define ACC_USER_MASK PT_USER_MASK
  114. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  115. #include <trace/events/kvm.h>
  116. #define CREATE_TRACE_POINTS
  117. #include "mmutrace.h"
  118. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  119. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  120. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  121. /* make pte_list_desc fit well in cache line */
  122. #define PTE_LIST_EXT 3
  123. struct pte_list_desc {
  124. u64 *sptes[PTE_LIST_EXT];
  125. struct pte_list_desc *more;
  126. };
  127. struct kvm_shadow_walk_iterator {
  128. u64 addr;
  129. hpa_t shadow_addr;
  130. u64 *sptep;
  131. int level;
  132. unsigned index;
  133. };
  134. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  135. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  136. shadow_walk_okay(&(_walker)); \
  137. shadow_walk_next(&(_walker)))
  138. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  139. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  140. shadow_walk_okay(&(_walker)) && \
  141. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  142. __shadow_walk_next(&(_walker), spte))
  143. static struct kmem_cache *pte_list_desc_cache;
  144. static struct kmem_cache *mmu_page_header_cache;
  145. static struct percpu_counter kvm_total_used_mmu_pages;
  146. static u64 __read_mostly shadow_nx_mask;
  147. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  148. static u64 __read_mostly shadow_user_mask;
  149. static u64 __read_mostly shadow_accessed_mask;
  150. static u64 __read_mostly shadow_dirty_mask;
  151. static u64 __read_mostly shadow_mmio_mask;
  152. static void mmu_spte_set(u64 *sptep, u64 spte);
  153. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  154. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  155. {
  156. shadow_mmio_mask = mmio_mask;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  159. /*
  160. * the low bit of the generation number is always presumed to be zero.
  161. * This disables mmio caching during memslot updates. The concept is
  162. * similar to a seqcount but instead of retrying the access we just punt
  163. * and ignore the cache.
  164. *
  165. * spte bits 3-11 are used as bits 1-9 of the generation number,
  166. * the bits 52-61 are used as bits 10-19 of the generation number.
  167. */
  168. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  169. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  170. #define MMIO_GEN_SHIFT 20
  171. #define MMIO_GEN_LOW_SHIFT 10
  172. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  173. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  174. #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
  175. static u64 generation_mmio_spte_mask(unsigned int gen)
  176. {
  177. u64 mask;
  178. WARN_ON(gen > MMIO_MAX_GEN);
  179. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  180. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  181. return mask;
  182. }
  183. static unsigned int get_mmio_spte_generation(u64 spte)
  184. {
  185. unsigned int gen;
  186. spte &= ~shadow_mmio_mask;
  187. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  188. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  189. return gen;
  190. }
  191. static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
  192. {
  193. return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
  194. }
  195. static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
  196. unsigned access)
  197. {
  198. unsigned int gen = kvm_current_mmio_generation(kvm);
  199. u64 mask = generation_mmio_spte_mask(gen);
  200. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  201. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  202. trace_mark_mmio_spte(sptep, gfn, access, gen);
  203. mmu_spte_set(sptep, mask);
  204. }
  205. static bool is_mmio_spte(u64 spte)
  206. {
  207. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  208. }
  209. static gfn_t get_mmio_spte_gfn(u64 spte)
  210. {
  211. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  212. return (spte & ~mask) >> PAGE_SHIFT;
  213. }
  214. static unsigned get_mmio_spte_access(u64 spte)
  215. {
  216. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  217. return (spte & ~mask) & ~PAGE_MASK;
  218. }
  219. static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  220. pfn_t pfn, unsigned access)
  221. {
  222. if (unlikely(is_noslot_pfn(pfn))) {
  223. mark_mmio_spte(kvm, sptep, gfn, access);
  224. return true;
  225. }
  226. return false;
  227. }
  228. static bool check_mmio_spte(struct kvm *kvm, u64 spte)
  229. {
  230. unsigned int kvm_gen, spte_gen;
  231. kvm_gen = kvm_current_mmio_generation(kvm);
  232. spte_gen = get_mmio_spte_generation(spte);
  233. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  234. return likely(kvm_gen == spte_gen);
  235. }
  236. static inline u64 rsvd_bits(int s, int e)
  237. {
  238. return ((1ULL << (e - s + 1)) - 1) << s;
  239. }
  240. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  241. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  242. {
  243. shadow_user_mask = user_mask;
  244. shadow_accessed_mask = accessed_mask;
  245. shadow_dirty_mask = dirty_mask;
  246. shadow_nx_mask = nx_mask;
  247. shadow_x_mask = x_mask;
  248. }
  249. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  250. static int is_cpuid_PSE36(void)
  251. {
  252. return 1;
  253. }
  254. static int is_nx(struct kvm_vcpu *vcpu)
  255. {
  256. return vcpu->arch.efer & EFER_NX;
  257. }
  258. static int is_shadow_present_pte(u64 pte)
  259. {
  260. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  261. }
  262. static int is_large_pte(u64 pte)
  263. {
  264. return pte & PT_PAGE_SIZE_MASK;
  265. }
  266. static int is_rmap_spte(u64 pte)
  267. {
  268. return is_shadow_present_pte(pte);
  269. }
  270. static int is_last_spte(u64 pte, int level)
  271. {
  272. if (level == PT_PAGE_TABLE_LEVEL)
  273. return 1;
  274. if (is_large_pte(pte))
  275. return 1;
  276. return 0;
  277. }
  278. static pfn_t spte_to_pfn(u64 pte)
  279. {
  280. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  281. }
  282. static gfn_t pse36_gfn_delta(u32 gpte)
  283. {
  284. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  285. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  286. }
  287. #ifdef CONFIG_X86_64
  288. static void __set_spte(u64 *sptep, u64 spte)
  289. {
  290. *sptep = spte;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. *sptep = spte;
  295. }
  296. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  297. {
  298. return xchg(sptep, spte);
  299. }
  300. static u64 __get_spte_lockless(u64 *sptep)
  301. {
  302. return ACCESS_ONCE(*sptep);
  303. }
  304. static bool __check_direct_spte_mmio_pf(u64 spte)
  305. {
  306. /* It is valid if the spte is zapped. */
  307. return spte == 0ull;
  308. }
  309. #else
  310. union split_spte {
  311. struct {
  312. u32 spte_low;
  313. u32 spte_high;
  314. };
  315. u64 spte;
  316. };
  317. static void count_spte_clear(u64 *sptep, u64 spte)
  318. {
  319. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  320. if (is_shadow_present_pte(spte))
  321. return;
  322. /* Ensure the spte is completely set before we increase the count */
  323. smp_wmb();
  324. sp->clear_spte_count++;
  325. }
  326. static void __set_spte(u64 *sptep, u64 spte)
  327. {
  328. union split_spte *ssptep, sspte;
  329. ssptep = (union split_spte *)sptep;
  330. sspte = (union split_spte)spte;
  331. ssptep->spte_high = sspte.spte_high;
  332. /*
  333. * If we map the spte from nonpresent to present, We should store
  334. * the high bits firstly, then set present bit, so cpu can not
  335. * fetch this spte while we are setting the spte.
  336. */
  337. smp_wmb();
  338. ssptep->spte_low = sspte.spte_low;
  339. }
  340. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  341. {
  342. union split_spte *ssptep, sspte;
  343. ssptep = (union split_spte *)sptep;
  344. sspte = (union split_spte)spte;
  345. ssptep->spte_low = sspte.spte_low;
  346. /*
  347. * If we map the spte from present to nonpresent, we should clear
  348. * present bit firstly to avoid vcpu fetch the old high bits.
  349. */
  350. smp_wmb();
  351. ssptep->spte_high = sspte.spte_high;
  352. count_spte_clear(sptep, spte);
  353. }
  354. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  355. {
  356. union split_spte *ssptep, sspte, orig;
  357. ssptep = (union split_spte *)sptep;
  358. sspte = (union split_spte)spte;
  359. /* xchg acts as a barrier before the setting of the high bits */
  360. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  361. orig.spte_high = ssptep->spte_high;
  362. ssptep->spte_high = sspte.spte_high;
  363. count_spte_clear(sptep, spte);
  364. return orig.spte;
  365. }
  366. /*
  367. * The idea using the light way get the spte on x86_32 guest is from
  368. * gup_get_pte(arch/x86/mm/gup.c).
  369. *
  370. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  371. * coalesces them and we are running out of the MMU lock. Therefore
  372. * we need to protect against in-progress updates of the spte.
  373. *
  374. * Reading the spte while an update is in progress may get the old value
  375. * for the high part of the spte. The race is fine for a present->non-present
  376. * change (because the high part of the spte is ignored for non-present spte),
  377. * but for a present->present change we must reread the spte.
  378. *
  379. * All such changes are done in two steps (present->non-present and
  380. * non-present->present), hence it is enough to count the number of
  381. * present->non-present updates: if it changed while reading the spte,
  382. * we might have hit the race. This is done using clear_spte_count.
  383. */
  384. static u64 __get_spte_lockless(u64 *sptep)
  385. {
  386. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  387. union split_spte spte, *orig = (union split_spte *)sptep;
  388. int count;
  389. retry:
  390. count = sp->clear_spte_count;
  391. smp_rmb();
  392. spte.spte_low = orig->spte_low;
  393. smp_rmb();
  394. spte.spte_high = orig->spte_high;
  395. smp_rmb();
  396. if (unlikely(spte.spte_low != orig->spte_low ||
  397. count != sp->clear_spte_count))
  398. goto retry;
  399. return spte.spte;
  400. }
  401. static bool __check_direct_spte_mmio_pf(u64 spte)
  402. {
  403. union split_spte sspte = (union split_spte)spte;
  404. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  405. /* It is valid if the spte is zapped. */
  406. if (spte == 0ull)
  407. return true;
  408. /* It is valid if the spte is being zapped. */
  409. if (sspte.spte_low == 0ull &&
  410. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  411. return true;
  412. return false;
  413. }
  414. #endif
  415. static bool spte_is_locklessly_modifiable(u64 spte)
  416. {
  417. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  418. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  419. }
  420. static bool spte_has_volatile_bits(u64 spte)
  421. {
  422. /*
  423. * Always atomicly update spte if it can be updated
  424. * out of mmu-lock, it can ensure dirty bit is not lost,
  425. * also, it can help us to get a stable is_writable_pte()
  426. * to ensure tlb flush is not missed.
  427. */
  428. if (spte_is_locklessly_modifiable(spte))
  429. return true;
  430. if (!shadow_accessed_mask)
  431. return false;
  432. if (!is_shadow_present_pte(spte))
  433. return false;
  434. if ((spte & shadow_accessed_mask) &&
  435. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  436. return false;
  437. return true;
  438. }
  439. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  440. {
  441. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  442. }
  443. /* Rules for using mmu_spte_set:
  444. * Set the sptep from nonpresent to present.
  445. * Note: the sptep being assigned *must* be either not present
  446. * or in a state where the hardware will not attempt to update
  447. * the spte.
  448. */
  449. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  450. {
  451. WARN_ON(is_shadow_present_pte(*sptep));
  452. __set_spte(sptep, new_spte);
  453. }
  454. /* Rules for using mmu_spte_update:
  455. * Update the state bits, it means the mapped pfn is not changged.
  456. *
  457. * Whenever we overwrite a writable spte with a read-only one we
  458. * should flush remote TLBs. Otherwise rmap_write_protect
  459. * will find a read-only spte, even though the writable spte
  460. * might be cached on a CPU's TLB, the return value indicates this
  461. * case.
  462. */
  463. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  464. {
  465. u64 old_spte = *sptep;
  466. bool ret = false;
  467. WARN_ON(!is_rmap_spte(new_spte));
  468. if (!is_shadow_present_pte(old_spte)) {
  469. mmu_spte_set(sptep, new_spte);
  470. return ret;
  471. }
  472. if (!spte_has_volatile_bits(old_spte))
  473. __update_clear_spte_fast(sptep, new_spte);
  474. else
  475. old_spte = __update_clear_spte_slow(sptep, new_spte);
  476. /*
  477. * For the spte updated out of mmu-lock is safe, since
  478. * we always atomicly update it, see the comments in
  479. * spte_has_volatile_bits().
  480. */
  481. if (spte_is_locklessly_modifiable(old_spte) &&
  482. !is_writable_pte(new_spte))
  483. ret = true;
  484. if (!shadow_accessed_mask)
  485. return ret;
  486. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  487. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  488. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  489. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  490. return ret;
  491. }
  492. /*
  493. * Rules for using mmu_spte_clear_track_bits:
  494. * It sets the sptep from present to nonpresent, and track the
  495. * state bits, it is used to clear the last level sptep.
  496. */
  497. static int mmu_spte_clear_track_bits(u64 *sptep)
  498. {
  499. pfn_t pfn;
  500. u64 old_spte = *sptep;
  501. if (!spte_has_volatile_bits(old_spte))
  502. __update_clear_spte_fast(sptep, 0ull);
  503. else
  504. old_spte = __update_clear_spte_slow(sptep, 0ull);
  505. if (!is_rmap_spte(old_spte))
  506. return 0;
  507. pfn = spte_to_pfn(old_spte);
  508. /*
  509. * KVM does not hold the refcount of the page used by
  510. * kvm mmu, before reclaiming the page, we should
  511. * unmap it from mmu first.
  512. */
  513. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  514. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  515. kvm_set_pfn_accessed(pfn);
  516. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  517. kvm_set_pfn_dirty(pfn);
  518. return 1;
  519. }
  520. /*
  521. * Rules for using mmu_spte_clear_no_track:
  522. * Directly clear spte without caring the state bits of sptep,
  523. * it is used to set the upper level spte.
  524. */
  525. static void mmu_spte_clear_no_track(u64 *sptep)
  526. {
  527. __update_clear_spte_fast(sptep, 0ull);
  528. }
  529. static u64 mmu_spte_get_lockless(u64 *sptep)
  530. {
  531. return __get_spte_lockless(sptep);
  532. }
  533. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  534. {
  535. /*
  536. * Prevent page table teardown by making any free-er wait during
  537. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  538. */
  539. local_irq_disable();
  540. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  541. /*
  542. * Make sure a following spte read is not reordered ahead of the write
  543. * to vcpu->mode.
  544. */
  545. smp_mb();
  546. }
  547. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  548. {
  549. /*
  550. * Make sure the write to vcpu->mode is not reordered in front of
  551. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  552. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  553. */
  554. smp_mb();
  555. vcpu->mode = OUTSIDE_GUEST_MODE;
  556. local_irq_enable();
  557. }
  558. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  559. struct kmem_cache *base_cache, int min)
  560. {
  561. void *obj;
  562. if (cache->nobjs >= min)
  563. return 0;
  564. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  565. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  566. if (!obj)
  567. return -ENOMEM;
  568. cache->objects[cache->nobjs++] = obj;
  569. }
  570. return 0;
  571. }
  572. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  573. {
  574. return cache->nobjs;
  575. }
  576. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  577. struct kmem_cache *cache)
  578. {
  579. while (mc->nobjs)
  580. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  581. }
  582. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  583. int min)
  584. {
  585. void *page;
  586. if (cache->nobjs >= min)
  587. return 0;
  588. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  589. page = (void *)__get_free_page(GFP_KERNEL);
  590. if (!page)
  591. return -ENOMEM;
  592. cache->objects[cache->nobjs++] = page;
  593. }
  594. return 0;
  595. }
  596. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  597. {
  598. while (mc->nobjs)
  599. free_page((unsigned long)mc->objects[--mc->nobjs]);
  600. }
  601. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  602. {
  603. int r;
  604. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  605. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  606. if (r)
  607. goto out;
  608. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  609. if (r)
  610. goto out;
  611. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  612. mmu_page_header_cache, 4);
  613. out:
  614. return r;
  615. }
  616. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  617. {
  618. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  619. pte_list_desc_cache);
  620. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  621. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  622. mmu_page_header_cache);
  623. }
  624. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  625. {
  626. void *p;
  627. BUG_ON(!mc->nobjs);
  628. p = mc->objects[--mc->nobjs];
  629. return p;
  630. }
  631. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  632. {
  633. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  634. }
  635. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  636. {
  637. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  638. }
  639. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  640. {
  641. if (!sp->role.direct)
  642. return sp->gfns[index];
  643. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  644. }
  645. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  646. {
  647. if (sp->role.direct)
  648. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  649. else
  650. sp->gfns[index] = gfn;
  651. }
  652. /*
  653. * Return the pointer to the large page information for a given gfn,
  654. * handling slots that are not large page aligned.
  655. */
  656. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  657. struct kvm_memory_slot *slot,
  658. int level)
  659. {
  660. unsigned long idx;
  661. idx = gfn_to_index(gfn, slot->base_gfn, level);
  662. return &slot->arch.lpage_info[level - 2][idx];
  663. }
  664. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  665. {
  666. struct kvm_memory_slot *slot;
  667. struct kvm_lpage_info *linfo;
  668. int i;
  669. slot = gfn_to_memslot(kvm, gfn);
  670. for (i = PT_DIRECTORY_LEVEL;
  671. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  672. linfo = lpage_info_slot(gfn, slot, i);
  673. linfo->write_count += 1;
  674. }
  675. kvm->arch.indirect_shadow_pages++;
  676. }
  677. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  678. {
  679. struct kvm_memory_slot *slot;
  680. struct kvm_lpage_info *linfo;
  681. int i;
  682. slot = gfn_to_memslot(kvm, gfn);
  683. for (i = PT_DIRECTORY_LEVEL;
  684. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  685. linfo = lpage_info_slot(gfn, slot, i);
  686. linfo->write_count -= 1;
  687. WARN_ON(linfo->write_count < 0);
  688. }
  689. kvm->arch.indirect_shadow_pages--;
  690. }
  691. static int has_wrprotected_page(struct kvm *kvm,
  692. gfn_t gfn,
  693. int level)
  694. {
  695. struct kvm_memory_slot *slot;
  696. struct kvm_lpage_info *linfo;
  697. slot = gfn_to_memslot(kvm, gfn);
  698. if (slot) {
  699. linfo = lpage_info_slot(gfn, slot, level);
  700. return linfo->write_count;
  701. }
  702. return 1;
  703. }
  704. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  705. {
  706. unsigned long page_size;
  707. int i, ret = 0;
  708. page_size = kvm_host_page_size(kvm, gfn);
  709. for (i = PT_PAGE_TABLE_LEVEL;
  710. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  711. if (page_size >= KVM_HPAGE_SIZE(i))
  712. ret = i;
  713. else
  714. break;
  715. }
  716. return ret;
  717. }
  718. static struct kvm_memory_slot *
  719. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  720. bool no_dirty_log)
  721. {
  722. struct kvm_memory_slot *slot;
  723. slot = gfn_to_memslot(vcpu->kvm, gfn);
  724. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  725. (no_dirty_log && slot->dirty_bitmap))
  726. slot = NULL;
  727. return slot;
  728. }
  729. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  730. {
  731. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  732. }
  733. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  734. {
  735. int host_level, level, max_level;
  736. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  737. if (host_level == PT_PAGE_TABLE_LEVEL)
  738. return host_level;
  739. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  740. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  741. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  742. break;
  743. return level - 1;
  744. }
  745. /*
  746. * Pte mapping structures:
  747. *
  748. * If pte_list bit zero is zero, then pte_list point to the spte.
  749. *
  750. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  751. * pte_list_desc containing more mappings.
  752. *
  753. * Returns the number of pte entries before the spte was added or zero if
  754. * the spte was not added.
  755. *
  756. */
  757. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  758. unsigned long *pte_list)
  759. {
  760. struct pte_list_desc *desc;
  761. int i, count = 0;
  762. if (!*pte_list) {
  763. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  764. *pte_list = (unsigned long)spte;
  765. } else if (!(*pte_list & 1)) {
  766. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  767. desc = mmu_alloc_pte_list_desc(vcpu);
  768. desc->sptes[0] = (u64 *)*pte_list;
  769. desc->sptes[1] = spte;
  770. *pte_list = (unsigned long)desc | 1;
  771. ++count;
  772. } else {
  773. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  774. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  775. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  776. desc = desc->more;
  777. count += PTE_LIST_EXT;
  778. }
  779. if (desc->sptes[PTE_LIST_EXT-1]) {
  780. desc->more = mmu_alloc_pte_list_desc(vcpu);
  781. desc = desc->more;
  782. }
  783. for (i = 0; desc->sptes[i]; ++i)
  784. ++count;
  785. desc->sptes[i] = spte;
  786. }
  787. return count;
  788. }
  789. static void
  790. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  791. int i, struct pte_list_desc *prev_desc)
  792. {
  793. int j;
  794. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  795. ;
  796. desc->sptes[i] = desc->sptes[j];
  797. desc->sptes[j] = NULL;
  798. if (j != 0)
  799. return;
  800. if (!prev_desc && !desc->more)
  801. *pte_list = (unsigned long)desc->sptes[0];
  802. else
  803. if (prev_desc)
  804. prev_desc->more = desc->more;
  805. else
  806. *pte_list = (unsigned long)desc->more | 1;
  807. mmu_free_pte_list_desc(desc);
  808. }
  809. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  810. {
  811. struct pte_list_desc *desc;
  812. struct pte_list_desc *prev_desc;
  813. int i;
  814. if (!*pte_list) {
  815. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  816. BUG();
  817. } else if (!(*pte_list & 1)) {
  818. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  819. if ((u64 *)*pte_list != spte) {
  820. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  821. BUG();
  822. }
  823. *pte_list = 0;
  824. } else {
  825. rmap_printk("pte_list_remove: %p many->many\n", spte);
  826. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  827. prev_desc = NULL;
  828. while (desc) {
  829. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  830. if (desc->sptes[i] == spte) {
  831. pte_list_desc_remove_entry(pte_list,
  832. desc, i,
  833. prev_desc);
  834. return;
  835. }
  836. prev_desc = desc;
  837. desc = desc->more;
  838. }
  839. pr_err("pte_list_remove: %p many->many\n", spte);
  840. BUG();
  841. }
  842. }
  843. typedef void (*pte_list_walk_fn) (u64 *spte);
  844. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  845. {
  846. struct pte_list_desc *desc;
  847. int i;
  848. if (!*pte_list)
  849. return;
  850. if (!(*pte_list & 1))
  851. return fn((u64 *)*pte_list);
  852. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  853. while (desc) {
  854. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  855. fn(desc->sptes[i]);
  856. desc = desc->more;
  857. }
  858. }
  859. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  860. struct kvm_memory_slot *slot)
  861. {
  862. unsigned long idx;
  863. idx = gfn_to_index(gfn, slot->base_gfn, level);
  864. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  865. }
  866. /*
  867. * Take gfn and return the reverse mapping to it.
  868. */
  869. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  870. {
  871. struct kvm_memory_slot *slot;
  872. slot = gfn_to_memslot(kvm, gfn);
  873. return __gfn_to_rmap(gfn, level, slot);
  874. }
  875. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  876. {
  877. struct kvm_mmu_memory_cache *cache;
  878. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  879. return mmu_memory_cache_free_objects(cache);
  880. }
  881. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  882. {
  883. struct kvm_mmu_page *sp;
  884. unsigned long *rmapp;
  885. sp = page_header(__pa(spte));
  886. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  887. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  888. return pte_list_add(vcpu, spte, rmapp);
  889. }
  890. static void rmap_remove(struct kvm *kvm, u64 *spte)
  891. {
  892. struct kvm_mmu_page *sp;
  893. gfn_t gfn;
  894. unsigned long *rmapp;
  895. sp = page_header(__pa(spte));
  896. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  897. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  898. pte_list_remove(spte, rmapp);
  899. }
  900. /*
  901. * Used by the following functions to iterate through the sptes linked by a
  902. * rmap. All fields are private and not assumed to be used outside.
  903. */
  904. struct rmap_iterator {
  905. /* private fields */
  906. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  907. int pos; /* index of the sptep */
  908. };
  909. /*
  910. * Iteration must be started by this function. This should also be used after
  911. * removing/dropping sptes from the rmap link because in such cases the
  912. * information in the itererator may not be valid.
  913. *
  914. * Returns sptep if found, NULL otherwise.
  915. */
  916. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  917. {
  918. if (!rmap)
  919. return NULL;
  920. if (!(rmap & 1)) {
  921. iter->desc = NULL;
  922. return (u64 *)rmap;
  923. }
  924. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  925. iter->pos = 0;
  926. return iter->desc->sptes[iter->pos];
  927. }
  928. /*
  929. * Must be used with a valid iterator: e.g. after rmap_get_first().
  930. *
  931. * Returns sptep if found, NULL otherwise.
  932. */
  933. static u64 *rmap_get_next(struct rmap_iterator *iter)
  934. {
  935. if (iter->desc) {
  936. if (iter->pos < PTE_LIST_EXT - 1) {
  937. u64 *sptep;
  938. ++iter->pos;
  939. sptep = iter->desc->sptes[iter->pos];
  940. if (sptep)
  941. return sptep;
  942. }
  943. iter->desc = iter->desc->more;
  944. if (iter->desc) {
  945. iter->pos = 0;
  946. /* desc->sptes[0] cannot be NULL */
  947. return iter->desc->sptes[iter->pos];
  948. }
  949. }
  950. return NULL;
  951. }
  952. static void drop_spte(struct kvm *kvm, u64 *sptep)
  953. {
  954. if (mmu_spte_clear_track_bits(sptep))
  955. rmap_remove(kvm, sptep);
  956. }
  957. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  958. {
  959. if (is_large_pte(*sptep)) {
  960. WARN_ON(page_header(__pa(sptep))->role.level ==
  961. PT_PAGE_TABLE_LEVEL);
  962. drop_spte(kvm, sptep);
  963. --kvm->stat.lpages;
  964. return true;
  965. }
  966. return false;
  967. }
  968. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  969. {
  970. if (__drop_large_spte(vcpu->kvm, sptep))
  971. kvm_flush_remote_tlbs(vcpu->kvm);
  972. }
  973. /*
  974. * Write-protect on the specified @sptep, @pt_protect indicates whether
  975. * spte write-protection is caused by protecting shadow page table.
  976. *
  977. * Note: write protection is difference between drity logging and spte
  978. * protection:
  979. * - for dirty logging, the spte can be set to writable at anytime if
  980. * its dirty bitmap is properly set.
  981. * - for spte protection, the spte can be writable only after unsync-ing
  982. * shadow page.
  983. *
  984. * Return true if tlb need be flushed.
  985. */
  986. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  987. {
  988. u64 spte = *sptep;
  989. if (!is_writable_pte(spte) &&
  990. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  991. return false;
  992. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  993. if (pt_protect)
  994. spte &= ~SPTE_MMU_WRITEABLE;
  995. spte = spte & ~PT_WRITABLE_MASK;
  996. return mmu_spte_update(sptep, spte);
  997. }
  998. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  999. bool pt_protect)
  1000. {
  1001. u64 *sptep;
  1002. struct rmap_iterator iter;
  1003. bool flush = false;
  1004. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1005. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1006. flush |= spte_write_protect(kvm, sptep, pt_protect);
  1007. sptep = rmap_get_next(&iter);
  1008. }
  1009. return flush;
  1010. }
  1011. /**
  1012. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1013. * @kvm: kvm instance
  1014. * @slot: slot to protect
  1015. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1016. * @mask: indicates which pages we should protect
  1017. *
  1018. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1019. * logging we do not have any such mappings.
  1020. */
  1021. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1022. struct kvm_memory_slot *slot,
  1023. gfn_t gfn_offset, unsigned long mask)
  1024. {
  1025. unsigned long *rmapp;
  1026. while (mask) {
  1027. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1028. PT_PAGE_TABLE_LEVEL, slot);
  1029. __rmap_write_protect(kvm, rmapp, false);
  1030. /* clear the first set bit */
  1031. mask &= mask - 1;
  1032. }
  1033. }
  1034. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  1035. {
  1036. struct kvm_memory_slot *slot;
  1037. unsigned long *rmapp;
  1038. int i;
  1039. bool write_protected = false;
  1040. slot = gfn_to_memslot(kvm, gfn);
  1041. for (i = PT_PAGE_TABLE_LEVEL;
  1042. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  1043. rmapp = __gfn_to_rmap(gfn, i, slot);
  1044. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  1045. }
  1046. return write_protected;
  1047. }
  1048. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1049. struct kvm_memory_slot *slot, unsigned long data)
  1050. {
  1051. u64 *sptep;
  1052. struct rmap_iterator iter;
  1053. int need_tlb_flush = 0;
  1054. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1055. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1056. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1057. drop_spte(kvm, sptep);
  1058. need_tlb_flush = 1;
  1059. }
  1060. return need_tlb_flush;
  1061. }
  1062. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1063. struct kvm_memory_slot *slot, unsigned long data)
  1064. {
  1065. u64 *sptep;
  1066. struct rmap_iterator iter;
  1067. int need_flush = 0;
  1068. u64 new_spte;
  1069. pte_t *ptep = (pte_t *)data;
  1070. pfn_t new_pfn;
  1071. WARN_ON(pte_huge(*ptep));
  1072. new_pfn = pte_pfn(*ptep);
  1073. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1074. BUG_ON(!is_shadow_present_pte(*sptep));
  1075. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1076. need_flush = 1;
  1077. if (pte_write(*ptep)) {
  1078. drop_spte(kvm, sptep);
  1079. sptep = rmap_get_first(*rmapp, &iter);
  1080. } else {
  1081. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1082. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1083. new_spte &= ~PT_WRITABLE_MASK;
  1084. new_spte &= ~SPTE_HOST_WRITEABLE;
  1085. new_spte &= ~shadow_accessed_mask;
  1086. mmu_spte_clear_track_bits(sptep);
  1087. mmu_spte_set(sptep, new_spte);
  1088. sptep = rmap_get_next(&iter);
  1089. }
  1090. }
  1091. if (need_flush)
  1092. kvm_flush_remote_tlbs(kvm);
  1093. return 0;
  1094. }
  1095. static int kvm_handle_hva_range(struct kvm *kvm,
  1096. unsigned long start,
  1097. unsigned long end,
  1098. unsigned long data,
  1099. int (*handler)(struct kvm *kvm,
  1100. unsigned long *rmapp,
  1101. struct kvm_memory_slot *slot,
  1102. unsigned long data))
  1103. {
  1104. int j;
  1105. int ret = 0;
  1106. struct kvm_memslots *slots;
  1107. struct kvm_memory_slot *memslot;
  1108. slots = kvm_memslots(kvm);
  1109. kvm_for_each_memslot(memslot, slots) {
  1110. unsigned long hva_start, hva_end;
  1111. gfn_t gfn_start, gfn_end;
  1112. hva_start = max(start, memslot->userspace_addr);
  1113. hva_end = min(end, memslot->userspace_addr +
  1114. (memslot->npages << PAGE_SHIFT));
  1115. if (hva_start >= hva_end)
  1116. continue;
  1117. /*
  1118. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1119. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1120. */
  1121. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1122. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1123. for (j = PT_PAGE_TABLE_LEVEL;
  1124. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1125. unsigned long idx, idx_end;
  1126. unsigned long *rmapp;
  1127. /*
  1128. * {idx(page_j) | page_j intersects with
  1129. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1130. */
  1131. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1132. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1133. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1134. for (; idx <= idx_end; ++idx)
  1135. ret |= handler(kvm, rmapp++, memslot, data);
  1136. }
  1137. }
  1138. return ret;
  1139. }
  1140. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1141. unsigned long data,
  1142. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1143. struct kvm_memory_slot *slot,
  1144. unsigned long data))
  1145. {
  1146. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1147. }
  1148. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1149. {
  1150. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1151. }
  1152. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1153. {
  1154. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1155. }
  1156. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1157. {
  1158. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1159. }
  1160. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1161. struct kvm_memory_slot *slot, unsigned long data)
  1162. {
  1163. u64 *sptep;
  1164. struct rmap_iterator uninitialized_var(iter);
  1165. int young = 0;
  1166. /*
  1167. * In case of absence of EPT Access and Dirty Bits supports,
  1168. * emulate the accessed bit for EPT, by checking if this page has
  1169. * an EPT mapping, and clearing it if it does. On the next access,
  1170. * a new EPT mapping will be established.
  1171. * This has some overhead, but not as much as the cost of swapping
  1172. * out actively used pages or breaking up actively used hugepages.
  1173. */
  1174. if (!shadow_accessed_mask) {
  1175. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1176. goto out;
  1177. }
  1178. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1179. sptep = rmap_get_next(&iter)) {
  1180. BUG_ON(!is_shadow_present_pte(*sptep));
  1181. if (*sptep & shadow_accessed_mask) {
  1182. young = 1;
  1183. clear_bit((ffs(shadow_accessed_mask) - 1),
  1184. (unsigned long *)sptep);
  1185. }
  1186. }
  1187. out:
  1188. /* @data has hva passed to kvm_age_hva(). */
  1189. trace_kvm_age_page(data, slot, young);
  1190. return young;
  1191. }
  1192. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1193. struct kvm_memory_slot *slot, unsigned long data)
  1194. {
  1195. u64 *sptep;
  1196. struct rmap_iterator iter;
  1197. int young = 0;
  1198. /*
  1199. * If there's no access bit in the secondary pte set by the
  1200. * hardware it's up to gup-fast/gup to set the access bit in
  1201. * the primary pte or in the page structure.
  1202. */
  1203. if (!shadow_accessed_mask)
  1204. goto out;
  1205. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1206. sptep = rmap_get_next(&iter)) {
  1207. BUG_ON(!is_shadow_present_pte(*sptep));
  1208. if (*sptep & shadow_accessed_mask) {
  1209. young = 1;
  1210. break;
  1211. }
  1212. }
  1213. out:
  1214. return young;
  1215. }
  1216. #define RMAP_RECYCLE_THRESHOLD 1000
  1217. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1218. {
  1219. unsigned long *rmapp;
  1220. struct kvm_mmu_page *sp;
  1221. sp = page_header(__pa(spte));
  1222. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1223. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1224. kvm_flush_remote_tlbs(vcpu->kvm);
  1225. }
  1226. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1227. {
  1228. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1229. }
  1230. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1231. {
  1232. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1233. }
  1234. #ifdef MMU_DEBUG
  1235. static int is_empty_shadow_page(u64 *spt)
  1236. {
  1237. u64 *pos;
  1238. u64 *end;
  1239. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1240. if (is_shadow_present_pte(*pos)) {
  1241. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1242. pos, *pos);
  1243. return 0;
  1244. }
  1245. return 1;
  1246. }
  1247. #endif
  1248. /*
  1249. * This value is the sum of all of the kvm instances's
  1250. * kvm->arch.n_used_mmu_pages values. We need a global,
  1251. * aggregate version in order to make the slab shrinker
  1252. * faster
  1253. */
  1254. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1255. {
  1256. kvm->arch.n_used_mmu_pages += nr;
  1257. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1258. }
  1259. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1260. {
  1261. ASSERT(is_empty_shadow_page(sp->spt));
  1262. hlist_del(&sp->hash_link);
  1263. list_del(&sp->link);
  1264. free_page((unsigned long)sp->spt);
  1265. if (!sp->role.direct)
  1266. free_page((unsigned long)sp->gfns);
  1267. kmem_cache_free(mmu_page_header_cache, sp);
  1268. }
  1269. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1270. {
  1271. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1272. }
  1273. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1274. struct kvm_mmu_page *sp, u64 *parent_pte)
  1275. {
  1276. if (!parent_pte)
  1277. return;
  1278. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1279. }
  1280. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1281. u64 *parent_pte)
  1282. {
  1283. pte_list_remove(parent_pte, &sp->parent_ptes);
  1284. }
  1285. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1286. u64 *parent_pte)
  1287. {
  1288. mmu_page_remove_parent_pte(sp, parent_pte);
  1289. mmu_spte_clear_no_track(parent_pte);
  1290. }
  1291. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1292. u64 *parent_pte, int direct)
  1293. {
  1294. struct kvm_mmu_page *sp;
  1295. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1296. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1297. if (!direct)
  1298. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1299. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1300. /*
  1301. * The active_mmu_pages list is the FIFO list, do not move the
  1302. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1303. * this feature. See the comments in kvm_zap_obsolete_pages().
  1304. */
  1305. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1306. sp->parent_ptes = 0;
  1307. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1308. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1309. return sp;
  1310. }
  1311. static void mark_unsync(u64 *spte);
  1312. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1313. {
  1314. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1315. }
  1316. static void mark_unsync(u64 *spte)
  1317. {
  1318. struct kvm_mmu_page *sp;
  1319. unsigned int index;
  1320. sp = page_header(__pa(spte));
  1321. index = spte - sp->spt;
  1322. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1323. return;
  1324. if (sp->unsync_children++)
  1325. return;
  1326. kvm_mmu_mark_parents_unsync(sp);
  1327. }
  1328. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1329. struct kvm_mmu_page *sp)
  1330. {
  1331. return 1;
  1332. }
  1333. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1334. {
  1335. }
  1336. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1337. struct kvm_mmu_page *sp, u64 *spte,
  1338. const void *pte)
  1339. {
  1340. WARN_ON(1);
  1341. }
  1342. #define KVM_PAGE_ARRAY_NR 16
  1343. struct kvm_mmu_pages {
  1344. struct mmu_page_and_offset {
  1345. struct kvm_mmu_page *sp;
  1346. unsigned int idx;
  1347. } page[KVM_PAGE_ARRAY_NR];
  1348. unsigned int nr;
  1349. };
  1350. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1351. int idx)
  1352. {
  1353. int i;
  1354. if (sp->unsync)
  1355. for (i=0; i < pvec->nr; i++)
  1356. if (pvec->page[i].sp == sp)
  1357. return 0;
  1358. pvec->page[pvec->nr].sp = sp;
  1359. pvec->page[pvec->nr].idx = idx;
  1360. pvec->nr++;
  1361. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1362. }
  1363. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1364. struct kvm_mmu_pages *pvec)
  1365. {
  1366. int i, ret, nr_unsync_leaf = 0;
  1367. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1368. struct kvm_mmu_page *child;
  1369. u64 ent = sp->spt[i];
  1370. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1371. goto clear_child_bitmap;
  1372. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1373. if (child->unsync_children) {
  1374. if (mmu_pages_add(pvec, child, i))
  1375. return -ENOSPC;
  1376. ret = __mmu_unsync_walk(child, pvec);
  1377. if (!ret)
  1378. goto clear_child_bitmap;
  1379. else if (ret > 0)
  1380. nr_unsync_leaf += ret;
  1381. else
  1382. return ret;
  1383. } else if (child->unsync) {
  1384. nr_unsync_leaf++;
  1385. if (mmu_pages_add(pvec, child, i))
  1386. return -ENOSPC;
  1387. } else
  1388. goto clear_child_bitmap;
  1389. continue;
  1390. clear_child_bitmap:
  1391. __clear_bit(i, sp->unsync_child_bitmap);
  1392. sp->unsync_children--;
  1393. WARN_ON((int)sp->unsync_children < 0);
  1394. }
  1395. return nr_unsync_leaf;
  1396. }
  1397. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1398. struct kvm_mmu_pages *pvec)
  1399. {
  1400. if (!sp->unsync_children)
  1401. return 0;
  1402. mmu_pages_add(pvec, sp, 0);
  1403. return __mmu_unsync_walk(sp, pvec);
  1404. }
  1405. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1406. {
  1407. WARN_ON(!sp->unsync);
  1408. trace_kvm_mmu_sync_page(sp);
  1409. sp->unsync = 0;
  1410. --kvm->stat.mmu_unsync;
  1411. }
  1412. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1413. struct list_head *invalid_list);
  1414. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1415. struct list_head *invalid_list);
  1416. /*
  1417. * NOTE: we should pay more attention on the zapped-obsolete page
  1418. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1419. * since it has been deleted from active_mmu_pages but still can be found
  1420. * at hast list.
  1421. *
  1422. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1423. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1424. * all the obsolete pages.
  1425. */
  1426. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1427. hlist_for_each_entry(_sp, \
  1428. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1429. if ((_sp)->gfn != (_gfn)) {} else
  1430. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1431. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1432. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1433. /* @sp->gfn should be write-protected at the call site */
  1434. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1435. struct list_head *invalid_list, bool clear_unsync)
  1436. {
  1437. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1438. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1439. return 1;
  1440. }
  1441. if (clear_unsync)
  1442. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1443. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1444. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1445. return 1;
  1446. }
  1447. kvm_mmu_flush_tlb(vcpu);
  1448. return 0;
  1449. }
  1450. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1451. struct kvm_mmu_page *sp)
  1452. {
  1453. LIST_HEAD(invalid_list);
  1454. int ret;
  1455. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1456. if (ret)
  1457. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1458. return ret;
  1459. }
  1460. #ifdef CONFIG_KVM_MMU_AUDIT
  1461. #include "mmu_audit.c"
  1462. #else
  1463. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1464. static void mmu_audit_disable(void) { }
  1465. #endif
  1466. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1467. struct list_head *invalid_list)
  1468. {
  1469. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1470. }
  1471. /* @gfn should be write-protected at the call site */
  1472. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1473. {
  1474. struct kvm_mmu_page *s;
  1475. LIST_HEAD(invalid_list);
  1476. bool flush = false;
  1477. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1478. if (!s->unsync)
  1479. continue;
  1480. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1481. kvm_unlink_unsync_page(vcpu->kvm, s);
  1482. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1483. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1484. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1485. continue;
  1486. }
  1487. flush = true;
  1488. }
  1489. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1490. if (flush)
  1491. kvm_mmu_flush_tlb(vcpu);
  1492. }
  1493. struct mmu_page_path {
  1494. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1495. unsigned int idx[PT64_ROOT_LEVEL-1];
  1496. };
  1497. #define for_each_sp(pvec, sp, parents, i) \
  1498. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1499. sp = pvec.page[i].sp; \
  1500. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1501. i = mmu_pages_next(&pvec, &parents, i))
  1502. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1503. struct mmu_page_path *parents,
  1504. int i)
  1505. {
  1506. int n;
  1507. for (n = i+1; n < pvec->nr; n++) {
  1508. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1509. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1510. parents->idx[0] = pvec->page[n].idx;
  1511. return n;
  1512. }
  1513. parents->parent[sp->role.level-2] = sp;
  1514. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1515. }
  1516. return n;
  1517. }
  1518. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1519. {
  1520. struct kvm_mmu_page *sp;
  1521. unsigned int level = 0;
  1522. do {
  1523. unsigned int idx = parents->idx[level];
  1524. sp = parents->parent[level];
  1525. if (!sp)
  1526. return;
  1527. --sp->unsync_children;
  1528. WARN_ON((int)sp->unsync_children < 0);
  1529. __clear_bit(idx, sp->unsync_child_bitmap);
  1530. level++;
  1531. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1532. }
  1533. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1534. struct mmu_page_path *parents,
  1535. struct kvm_mmu_pages *pvec)
  1536. {
  1537. parents->parent[parent->role.level-1] = NULL;
  1538. pvec->nr = 0;
  1539. }
  1540. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1541. struct kvm_mmu_page *parent)
  1542. {
  1543. int i;
  1544. struct kvm_mmu_page *sp;
  1545. struct mmu_page_path parents;
  1546. struct kvm_mmu_pages pages;
  1547. LIST_HEAD(invalid_list);
  1548. kvm_mmu_pages_init(parent, &parents, &pages);
  1549. while (mmu_unsync_walk(parent, &pages)) {
  1550. bool protected = false;
  1551. for_each_sp(pages, sp, parents, i)
  1552. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1553. if (protected)
  1554. kvm_flush_remote_tlbs(vcpu->kvm);
  1555. for_each_sp(pages, sp, parents, i) {
  1556. kvm_sync_page(vcpu, sp, &invalid_list);
  1557. mmu_pages_clear_parents(&parents);
  1558. }
  1559. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1560. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1561. kvm_mmu_pages_init(parent, &parents, &pages);
  1562. }
  1563. }
  1564. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1565. {
  1566. int i;
  1567. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1568. sp->spt[i] = 0ull;
  1569. }
  1570. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1571. {
  1572. sp->write_flooding_count = 0;
  1573. }
  1574. static void clear_sp_write_flooding_count(u64 *spte)
  1575. {
  1576. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1577. __clear_sp_write_flooding_count(sp);
  1578. }
  1579. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1580. {
  1581. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1582. }
  1583. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1584. gfn_t gfn,
  1585. gva_t gaddr,
  1586. unsigned level,
  1587. int direct,
  1588. unsigned access,
  1589. u64 *parent_pte)
  1590. {
  1591. union kvm_mmu_page_role role;
  1592. unsigned quadrant;
  1593. struct kvm_mmu_page *sp;
  1594. bool need_sync = false;
  1595. role = vcpu->arch.mmu.base_role;
  1596. role.level = level;
  1597. role.direct = direct;
  1598. if (role.direct)
  1599. role.cr4_pae = 0;
  1600. role.access = access;
  1601. if (!vcpu->arch.mmu.direct_map
  1602. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1603. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1604. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1605. role.quadrant = quadrant;
  1606. }
  1607. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1608. if (is_obsolete_sp(vcpu->kvm, sp))
  1609. continue;
  1610. if (!need_sync && sp->unsync)
  1611. need_sync = true;
  1612. if (sp->role.word != role.word)
  1613. continue;
  1614. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1615. break;
  1616. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1617. if (sp->unsync_children) {
  1618. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1619. kvm_mmu_mark_parents_unsync(sp);
  1620. } else if (sp->unsync)
  1621. kvm_mmu_mark_parents_unsync(sp);
  1622. __clear_sp_write_flooding_count(sp);
  1623. trace_kvm_mmu_get_page(sp, false);
  1624. return sp;
  1625. }
  1626. ++vcpu->kvm->stat.mmu_cache_miss;
  1627. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1628. if (!sp)
  1629. return sp;
  1630. sp->gfn = gfn;
  1631. sp->role = role;
  1632. hlist_add_head(&sp->hash_link,
  1633. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1634. if (!direct) {
  1635. if (rmap_write_protect(vcpu->kvm, gfn))
  1636. kvm_flush_remote_tlbs(vcpu->kvm);
  1637. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1638. kvm_sync_pages(vcpu, gfn);
  1639. account_shadowed(vcpu->kvm, gfn);
  1640. }
  1641. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1642. init_shadow_page_table(sp);
  1643. trace_kvm_mmu_get_page(sp, true);
  1644. return sp;
  1645. }
  1646. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1647. struct kvm_vcpu *vcpu, u64 addr)
  1648. {
  1649. iterator->addr = addr;
  1650. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1651. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1652. if (iterator->level == PT64_ROOT_LEVEL &&
  1653. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1654. !vcpu->arch.mmu.direct_map)
  1655. --iterator->level;
  1656. if (iterator->level == PT32E_ROOT_LEVEL) {
  1657. iterator->shadow_addr
  1658. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1659. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1660. --iterator->level;
  1661. if (!iterator->shadow_addr)
  1662. iterator->level = 0;
  1663. }
  1664. }
  1665. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1666. {
  1667. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1668. return false;
  1669. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1670. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1671. return true;
  1672. }
  1673. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1674. u64 spte)
  1675. {
  1676. if (is_last_spte(spte, iterator->level)) {
  1677. iterator->level = 0;
  1678. return;
  1679. }
  1680. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1681. --iterator->level;
  1682. }
  1683. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1684. {
  1685. return __shadow_walk_next(iterator, *iterator->sptep);
  1686. }
  1687. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1688. {
  1689. u64 spte;
  1690. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1691. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1692. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1693. shadow_user_mask | shadow_x_mask;
  1694. if (accessed)
  1695. spte |= shadow_accessed_mask;
  1696. mmu_spte_set(sptep, spte);
  1697. }
  1698. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1699. unsigned direct_access)
  1700. {
  1701. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1702. struct kvm_mmu_page *child;
  1703. /*
  1704. * For the direct sp, if the guest pte's dirty bit
  1705. * changed form clean to dirty, it will corrupt the
  1706. * sp's access: allow writable in the read-only sp,
  1707. * so we should update the spte at this point to get
  1708. * a new sp with the correct access.
  1709. */
  1710. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1711. if (child->role.access == direct_access)
  1712. return;
  1713. drop_parent_pte(child, sptep);
  1714. kvm_flush_remote_tlbs(vcpu->kvm);
  1715. }
  1716. }
  1717. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1718. u64 *spte)
  1719. {
  1720. u64 pte;
  1721. struct kvm_mmu_page *child;
  1722. pte = *spte;
  1723. if (is_shadow_present_pte(pte)) {
  1724. if (is_last_spte(pte, sp->role.level)) {
  1725. drop_spte(kvm, spte);
  1726. if (is_large_pte(pte))
  1727. --kvm->stat.lpages;
  1728. } else {
  1729. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1730. drop_parent_pte(child, spte);
  1731. }
  1732. return true;
  1733. }
  1734. if (is_mmio_spte(pte))
  1735. mmu_spte_clear_no_track(spte);
  1736. return false;
  1737. }
  1738. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1739. struct kvm_mmu_page *sp)
  1740. {
  1741. unsigned i;
  1742. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1743. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1744. }
  1745. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1746. {
  1747. mmu_page_remove_parent_pte(sp, parent_pte);
  1748. }
  1749. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1750. {
  1751. u64 *sptep;
  1752. struct rmap_iterator iter;
  1753. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1754. drop_parent_pte(sp, sptep);
  1755. }
  1756. static int mmu_zap_unsync_children(struct kvm *kvm,
  1757. struct kvm_mmu_page *parent,
  1758. struct list_head *invalid_list)
  1759. {
  1760. int i, zapped = 0;
  1761. struct mmu_page_path parents;
  1762. struct kvm_mmu_pages pages;
  1763. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1764. return 0;
  1765. kvm_mmu_pages_init(parent, &parents, &pages);
  1766. while (mmu_unsync_walk(parent, &pages)) {
  1767. struct kvm_mmu_page *sp;
  1768. for_each_sp(pages, sp, parents, i) {
  1769. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1770. mmu_pages_clear_parents(&parents);
  1771. zapped++;
  1772. }
  1773. kvm_mmu_pages_init(parent, &parents, &pages);
  1774. }
  1775. return zapped;
  1776. }
  1777. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1778. struct list_head *invalid_list)
  1779. {
  1780. int ret;
  1781. trace_kvm_mmu_prepare_zap_page(sp);
  1782. ++kvm->stat.mmu_shadow_zapped;
  1783. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1784. kvm_mmu_page_unlink_children(kvm, sp);
  1785. kvm_mmu_unlink_parents(kvm, sp);
  1786. if (!sp->role.invalid && !sp->role.direct)
  1787. unaccount_shadowed(kvm, sp->gfn);
  1788. if (sp->unsync)
  1789. kvm_unlink_unsync_page(kvm, sp);
  1790. if (!sp->root_count) {
  1791. /* Count self */
  1792. ret++;
  1793. list_move(&sp->link, invalid_list);
  1794. kvm_mod_used_mmu_pages(kvm, -1);
  1795. } else {
  1796. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1797. /*
  1798. * The obsolete pages can not be used on any vcpus.
  1799. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1800. */
  1801. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1802. kvm_reload_remote_mmus(kvm);
  1803. }
  1804. sp->role.invalid = 1;
  1805. return ret;
  1806. }
  1807. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1808. struct list_head *invalid_list)
  1809. {
  1810. struct kvm_mmu_page *sp, *nsp;
  1811. if (list_empty(invalid_list))
  1812. return;
  1813. /*
  1814. * wmb: make sure everyone sees our modifications to the page tables
  1815. * rmb: make sure we see changes to vcpu->mode
  1816. */
  1817. smp_mb();
  1818. /*
  1819. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1820. * page table walks.
  1821. */
  1822. kvm_flush_remote_tlbs(kvm);
  1823. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1824. WARN_ON(!sp->role.invalid || sp->root_count);
  1825. kvm_mmu_free_page(sp);
  1826. }
  1827. }
  1828. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1829. struct list_head *invalid_list)
  1830. {
  1831. struct kvm_mmu_page *sp;
  1832. if (list_empty(&kvm->arch.active_mmu_pages))
  1833. return false;
  1834. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1835. struct kvm_mmu_page, link);
  1836. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1837. return true;
  1838. }
  1839. /*
  1840. * Changing the number of mmu pages allocated to the vm
  1841. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1842. */
  1843. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1844. {
  1845. LIST_HEAD(invalid_list);
  1846. spin_lock(&kvm->mmu_lock);
  1847. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1848. /* Need to free some mmu pages to achieve the goal. */
  1849. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1850. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1851. break;
  1852. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1853. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1854. }
  1855. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1856. spin_unlock(&kvm->mmu_lock);
  1857. }
  1858. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1859. {
  1860. struct kvm_mmu_page *sp;
  1861. LIST_HEAD(invalid_list);
  1862. int r;
  1863. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1864. r = 0;
  1865. spin_lock(&kvm->mmu_lock);
  1866. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1867. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1868. sp->role.word);
  1869. r = 1;
  1870. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1871. }
  1872. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1873. spin_unlock(&kvm->mmu_lock);
  1874. return r;
  1875. }
  1876. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1877. /*
  1878. * The function is based on mtrr_type_lookup() in
  1879. * arch/x86/kernel/cpu/mtrr/generic.c
  1880. */
  1881. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1882. u64 start, u64 end)
  1883. {
  1884. int i;
  1885. u64 base, mask;
  1886. u8 prev_match, curr_match;
  1887. int num_var_ranges = KVM_NR_VAR_MTRR;
  1888. if (!mtrr_state->enabled)
  1889. return 0xFF;
  1890. /* Make end inclusive end, instead of exclusive */
  1891. end--;
  1892. /* Look in fixed ranges. Just return the type as per start */
  1893. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1894. int idx;
  1895. if (start < 0x80000) {
  1896. idx = 0;
  1897. idx += (start >> 16);
  1898. return mtrr_state->fixed_ranges[idx];
  1899. } else if (start < 0xC0000) {
  1900. idx = 1 * 8;
  1901. idx += ((start - 0x80000) >> 14);
  1902. return mtrr_state->fixed_ranges[idx];
  1903. } else if (start < 0x1000000) {
  1904. idx = 3 * 8;
  1905. idx += ((start - 0xC0000) >> 12);
  1906. return mtrr_state->fixed_ranges[idx];
  1907. }
  1908. }
  1909. /*
  1910. * Look in variable ranges
  1911. * Look of multiple ranges matching this address and pick type
  1912. * as per MTRR precedence
  1913. */
  1914. if (!(mtrr_state->enabled & 2))
  1915. return mtrr_state->def_type;
  1916. prev_match = 0xFF;
  1917. for (i = 0; i < num_var_ranges; ++i) {
  1918. unsigned short start_state, end_state;
  1919. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1920. continue;
  1921. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1922. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1923. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1924. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1925. start_state = ((start & mask) == (base & mask));
  1926. end_state = ((end & mask) == (base & mask));
  1927. if (start_state != end_state)
  1928. return 0xFE;
  1929. if ((start & mask) != (base & mask))
  1930. continue;
  1931. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1932. if (prev_match == 0xFF) {
  1933. prev_match = curr_match;
  1934. continue;
  1935. }
  1936. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1937. curr_match == MTRR_TYPE_UNCACHABLE)
  1938. return MTRR_TYPE_UNCACHABLE;
  1939. if ((prev_match == MTRR_TYPE_WRBACK &&
  1940. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1941. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1942. curr_match == MTRR_TYPE_WRBACK)) {
  1943. prev_match = MTRR_TYPE_WRTHROUGH;
  1944. curr_match = MTRR_TYPE_WRTHROUGH;
  1945. }
  1946. if (prev_match != curr_match)
  1947. return MTRR_TYPE_UNCACHABLE;
  1948. }
  1949. if (prev_match != 0xFF)
  1950. return prev_match;
  1951. return mtrr_state->def_type;
  1952. }
  1953. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1954. {
  1955. u8 mtrr;
  1956. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1957. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1958. if (mtrr == 0xfe || mtrr == 0xff)
  1959. mtrr = MTRR_TYPE_WRBACK;
  1960. return mtrr;
  1961. }
  1962. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1963. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1964. {
  1965. trace_kvm_mmu_unsync_page(sp);
  1966. ++vcpu->kvm->stat.mmu_unsync;
  1967. sp->unsync = 1;
  1968. kvm_mmu_mark_parents_unsync(sp);
  1969. }
  1970. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1971. {
  1972. struct kvm_mmu_page *s;
  1973. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1974. if (s->unsync)
  1975. continue;
  1976. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1977. __kvm_unsync_page(vcpu, s);
  1978. }
  1979. }
  1980. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1981. bool can_unsync)
  1982. {
  1983. struct kvm_mmu_page *s;
  1984. bool need_unsync = false;
  1985. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1986. if (!can_unsync)
  1987. return 1;
  1988. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1989. return 1;
  1990. if (!s->unsync)
  1991. need_unsync = true;
  1992. }
  1993. if (need_unsync)
  1994. kvm_unsync_pages(vcpu, gfn);
  1995. return 0;
  1996. }
  1997. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1998. unsigned pte_access, int level,
  1999. gfn_t gfn, pfn_t pfn, bool speculative,
  2000. bool can_unsync, bool host_writable)
  2001. {
  2002. u64 spte;
  2003. int ret = 0;
  2004. if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
  2005. return 0;
  2006. spte = PT_PRESENT_MASK;
  2007. if (!speculative)
  2008. spte |= shadow_accessed_mask;
  2009. if (pte_access & ACC_EXEC_MASK)
  2010. spte |= shadow_x_mask;
  2011. else
  2012. spte |= shadow_nx_mask;
  2013. if (pte_access & ACC_USER_MASK)
  2014. spte |= shadow_user_mask;
  2015. if (level > PT_PAGE_TABLE_LEVEL)
  2016. spte |= PT_PAGE_SIZE_MASK;
  2017. if (tdp_enabled)
  2018. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2019. kvm_is_mmio_pfn(pfn));
  2020. if (host_writable)
  2021. spte |= SPTE_HOST_WRITEABLE;
  2022. else
  2023. pte_access &= ~ACC_WRITE_MASK;
  2024. spte |= (u64)pfn << PAGE_SHIFT;
  2025. if (pte_access & ACC_WRITE_MASK) {
  2026. /*
  2027. * Other vcpu creates new sp in the window between
  2028. * mapping_level() and acquiring mmu-lock. We can
  2029. * allow guest to retry the access, the mapping can
  2030. * be fixed if guest refault.
  2031. */
  2032. if (level > PT_PAGE_TABLE_LEVEL &&
  2033. has_wrprotected_page(vcpu->kvm, gfn, level))
  2034. goto done;
  2035. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2036. /*
  2037. * Optimization: for pte sync, if spte was writable the hash
  2038. * lookup is unnecessary (and expensive). Write protection
  2039. * is responsibility of mmu_get_page / kvm_sync_page.
  2040. * Same reasoning can be applied to dirty page accounting.
  2041. */
  2042. if (!can_unsync && is_writable_pte(*sptep))
  2043. goto set_pte;
  2044. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2045. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2046. __func__, gfn);
  2047. ret = 1;
  2048. pte_access &= ~ACC_WRITE_MASK;
  2049. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2050. }
  2051. }
  2052. if (pte_access & ACC_WRITE_MASK)
  2053. mark_page_dirty(vcpu->kvm, gfn);
  2054. set_pte:
  2055. if (mmu_spte_update(sptep, spte))
  2056. kvm_flush_remote_tlbs(vcpu->kvm);
  2057. done:
  2058. return ret;
  2059. }
  2060. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2061. unsigned pte_access, int write_fault, int *emulate,
  2062. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2063. bool host_writable)
  2064. {
  2065. int was_rmapped = 0;
  2066. int rmap_count;
  2067. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2068. *sptep, write_fault, gfn);
  2069. if (is_rmap_spte(*sptep)) {
  2070. /*
  2071. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2072. * the parent of the now unreachable PTE.
  2073. */
  2074. if (level > PT_PAGE_TABLE_LEVEL &&
  2075. !is_large_pte(*sptep)) {
  2076. struct kvm_mmu_page *child;
  2077. u64 pte = *sptep;
  2078. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2079. drop_parent_pte(child, sptep);
  2080. kvm_flush_remote_tlbs(vcpu->kvm);
  2081. } else if (pfn != spte_to_pfn(*sptep)) {
  2082. pgprintk("hfn old %llx new %llx\n",
  2083. spte_to_pfn(*sptep), pfn);
  2084. drop_spte(vcpu->kvm, sptep);
  2085. kvm_flush_remote_tlbs(vcpu->kvm);
  2086. } else
  2087. was_rmapped = 1;
  2088. }
  2089. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2090. true, host_writable)) {
  2091. if (write_fault)
  2092. *emulate = 1;
  2093. kvm_mmu_flush_tlb(vcpu);
  2094. }
  2095. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2096. *emulate = 1;
  2097. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2098. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2099. is_large_pte(*sptep)? "2MB" : "4kB",
  2100. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2101. *sptep, sptep);
  2102. if (!was_rmapped && is_large_pte(*sptep))
  2103. ++vcpu->kvm->stat.lpages;
  2104. if (is_shadow_present_pte(*sptep)) {
  2105. if (!was_rmapped) {
  2106. rmap_count = rmap_add(vcpu, sptep, gfn);
  2107. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2108. rmap_recycle(vcpu, sptep, gfn);
  2109. }
  2110. }
  2111. kvm_release_pfn_clean(pfn);
  2112. }
  2113. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2114. bool no_dirty_log)
  2115. {
  2116. struct kvm_memory_slot *slot;
  2117. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2118. if (!slot)
  2119. return KVM_PFN_ERR_FAULT;
  2120. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2121. }
  2122. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2123. struct kvm_mmu_page *sp,
  2124. u64 *start, u64 *end)
  2125. {
  2126. struct page *pages[PTE_PREFETCH_NUM];
  2127. unsigned access = sp->role.access;
  2128. int i, ret;
  2129. gfn_t gfn;
  2130. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2131. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2132. return -1;
  2133. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2134. if (ret <= 0)
  2135. return -1;
  2136. for (i = 0; i < ret; i++, gfn++, start++)
  2137. mmu_set_spte(vcpu, start, access, 0, NULL,
  2138. sp->role.level, gfn, page_to_pfn(pages[i]),
  2139. true, true);
  2140. return 0;
  2141. }
  2142. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2143. struct kvm_mmu_page *sp, u64 *sptep)
  2144. {
  2145. u64 *spte, *start = NULL;
  2146. int i;
  2147. WARN_ON(!sp->role.direct);
  2148. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2149. spte = sp->spt + i;
  2150. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2151. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2152. if (!start)
  2153. continue;
  2154. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2155. break;
  2156. start = NULL;
  2157. } else if (!start)
  2158. start = spte;
  2159. }
  2160. }
  2161. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2162. {
  2163. struct kvm_mmu_page *sp;
  2164. /*
  2165. * Since it's no accessed bit on EPT, it's no way to
  2166. * distinguish between actually accessed translations
  2167. * and prefetched, so disable pte prefetch if EPT is
  2168. * enabled.
  2169. */
  2170. if (!shadow_accessed_mask)
  2171. return;
  2172. sp = page_header(__pa(sptep));
  2173. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2174. return;
  2175. __direct_pte_prefetch(vcpu, sp, sptep);
  2176. }
  2177. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2178. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2179. bool prefault)
  2180. {
  2181. struct kvm_shadow_walk_iterator iterator;
  2182. struct kvm_mmu_page *sp;
  2183. int emulate = 0;
  2184. gfn_t pseudo_gfn;
  2185. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2186. return 0;
  2187. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2188. if (iterator.level == level) {
  2189. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2190. write, &emulate, level, gfn, pfn,
  2191. prefault, map_writable);
  2192. direct_pte_prefetch(vcpu, iterator.sptep);
  2193. ++vcpu->stat.pf_fixed;
  2194. break;
  2195. }
  2196. drop_large_spte(vcpu, iterator.sptep);
  2197. if (!is_shadow_present_pte(*iterator.sptep)) {
  2198. u64 base_addr = iterator.addr;
  2199. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2200. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2201. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2202. iterator.level - 1,
  2203. 1, ACC_ALL, iterator.sptep);
  2204. link_shadow_page(iterator.sptep, sp, true);
  2205. }
  2206. }
  2207. return emulate;
  2208. }
  2209. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2210. {
  2211. siginfo_t info;
  2212. info.si_signo = SIGBUS;
  2213. info.si_errno = 0;
  2214. info.si_code = BUS_MCEERR_AR;
  2215. info.si_addr = (void __user *)address;
  2216. info.si_addr_lsb = PAGE_SHIFT;
  2217. send_sig_info(SIGBUS, &info, tsk);
  2218. }
  2219. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2220. {
  2221. /*
  2222. * Do not cache the mmio info caused by writing the readonly gfn
  2223. * into the spte otherwise read access on readonly gfn also can
  2224. * caused mmio page fault and treat it as mmio access.
  2225. * Return 1 to tell kvm to emulate it.
  2226. */
  2227. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2228. return 1;
  2229. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2230. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2231. return 0;
  2232. }
  2233. return -EFAULT;
  2234. }
  2235. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2236. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2237. {
  2238. pfn_t pfn = *pfnp;
  2239. gfn_t gfn = *gfnp;
  2240. int level = *levelp;
  2241. /*
  2242. * Check if it's a transparent hugepage. If this would be an
  2243. * hugetlbfs page, level wouldn't be set to
  2244. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2245. * here.
  2246. */
  2247. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2248. level == PT_PAGE_TABLE_LEVEL &&
  2249. PageTransCompound(pfn_to_page(pfn)) &&
  2250. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2251. unsigned long mask;
  2252. /*
  2253. * mmu_notifier_retry was successful and we hold the
  2254. * mmu_lock here, so the pmd can't become splitting
  2255. * from under us, and in turn
  2256. * __split_huge_page_refcount() can't run from under
  2257. * us and we can safely transfer the refcount from
  2258. * PG_tail to PG_head as we switch the pfn to tail to
  2259. * head.
  2260. */
  2261. *levelp = level = PT_DIRECTORY_LEVEL;
  2262. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2263. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2264. if (pfn & mask) {
  2265. gfn &= ~mask;
  2266. *gfnp = gfn;
  2267. kvm_release_pfn_clean(pfn);
  2268. pfn &= ~mask;
  2269. kvm_get_pfn(pfn);
  2270. *pfnp = pfn;
  2271. }
  2272. }
  2273. }
  2274. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2275. pfn_t pfn, unsigned access, int *ret_val)
  2276. {
  2277. bool ret = true;
  2278. /* The pfn is invalid, report the error! */
  2279. if (unlikely(is_error_pfn(pfn))) {
  2280. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2281. goto exit;
  2282. }
  2283. if (unlikely(is_noslot_pfn(pfn)))
  2284. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2285. ret = false;
  2286. exit:
  2287. return ret;
  2288. }
  2289. static bool page_fault_can_be_fast(u32 error_code)
  2290. {
  2291. /*
  2292. * Do not fix the mmio spte with invalid generation number which
  2293. * need to be updated by slow page fault path.
  2294. */
  2295. if (unlikely(error_code & PFERR_RSVD_MASK))
  2296. return false;
  2297. /*
  2298. * #PF can be fast only if the shadow page table is present and it
  2299. * is caused by write-protect, that means we just need change the
  2300. * W bit of the spte which can be done out of mmu-lock.
  2301. */
  2302. if (!(error_code & PFERR_PRESENT_MASK) ||
  2303. !(error_code & PFERR_WRITE_MASK))
  2304. return false;
  2305. return true;
  2306. }
  2307. static bool
  2308. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2309. u64 *sptep, u64 spte)
  2310. {
  2311. gfn_t gfn;
  2312. WARN_ON(!sp->role.direct);
  2313. /*
  2314. * The gfn of direct spte is stable since it is calculated
  2315. * by sp->gfn.
  2316. */
  2317. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2318. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2319. mark_page_dirty(vcpu->kvm, gfn);
  2320. return true;
  2321. }
  2322. /*
  2323. * Return value:
  2324. * - true: let the vcpu to access on the same address again.
  2325. * - false: let the real page fault path to fix it.
  2326. */
  2327. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2328. u32 error_code)
  2329. {
  2330. struct kvm_shadow_walk_iterator iterator;
  2331. struct kvm_mmu_page *sp;
  2332. bool ret = false;
  2333. u64 spte = 0ull;
  2334. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2335. return false;
  2336. if (!page_fault_can_be_fast(error_code))
  2337. return false;
  2338. walk_shadow_page_lockless_begin(vcpu);
  2339. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2340. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2341. break;
  2342. /*
  2343. * If the mapping has been changed, let the vcpu fault on the
  2344. * same address again.
  2345. */
  2346. if (!is_rmap_spte(spte)) {
  2347. ret = true;
  2348. goto exit;
  2349. }
  2350. sp = page_header(__pa(iterator.sptep));
  2351. if (!is_last_spte(spte, sp->role.level))
  2352. goto exit;
  2353. /*
  2354. * Check if it is a spurious fault caused by TLB lazily flushed.
  2355. *
  2356. * Need not check the access of upper level table entries since
  2357. * they are always ACC_ALL.
  2358. */
  2359. if (is_writable_pte(spte)) {
  2360. ret = true;
  2361. goto exit;
  2362. }
  2363. /*
  2364. * Currently, to simplify the code, only the spte write-protected
  2365. * by dirty-log can be fast fixed.
  2366. */
  2367. if (!spte_is_locklessly_modifiable(spte))
  2368. goto exit;
  2369. /*
  2370. * Do not fix write-permission on the large spte since we only dirty
  2371. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2372. * that means other pages are missed if its slot is dirty-logged.
  2373. *
  2374. * Instead, we let the slow page fault path create a normal spte to
  2375. * fix the access.
  2376. *
  2377. * See the comments in kvm_arch_commit_memory_region().
  2378. */
  2379. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2380. goto exit;
  2381. /*
  2382. * Currently, fast page fault only works for direct mapping since
  2383. * the gfn is not stable for indirect shadow page.
  2384. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2385. */
  2386. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2387. exit:
  2388. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2389. spte, ret);
  2390. walk_shadow_page_lockless_end(vcpu);
  2391. return ret;
  2392. }
  2393. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2394. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2395. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2396. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2397. gfn_t gfn, bool prefault)
  2398. {
  2399. int r;
  2400. int level;
  2401. int force_pt_level;
  2402. pfn_t pfn;
  2403. unsigned long mmu_seq;
  2404. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2405. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2406. if (likely(!force_pt_level)) {
  2407. level = mapping_level(vcpu, gfn);
  2408. /*
  2409. * This path builds a PAE pagetable - so we can map
  2410. * 2mb pages at maximum. Therefore check if the level
  2411. * is larger than that.
  2412. */
  2413. if (level > PT_DIRECTORY_LEVEL)
  2414. level = PT_DIRECTORY_LEVEL;
  2415. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2416. } else
  2417. level = PT_PAGE_TABLE_LEVEL;
  2418. if (fast_page_fault(vcpu, v, level, error_code))
  2419. return 0;
  2420. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2421. smp_rmb();
  2422. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2423. return 0;
  2424. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2425. return r;
  2426. spin_lock(&vcpu->kvm->mmu_lock);
  2427. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2428. goto out_unlock;
  2429. make_mmu_pages_available(vcpu);
  2430. if (likely(!force_pt_level))
  2431. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2432. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2433. prefault);
  2434. spin_unlock(&vcpu->kvm->mmu_lock);
  2435. return r;
  2436. out_unlock:
  2437. spin_unlock(&vcpu->kvm->mmu_lock);
  2438. kvm_release_pfn_clean(pfn);
  2439. return 0;
  2440. }
  2441. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2442. {
  2443. int i;
  2444. struct kvm_mmu_page *sp;
  2445. LIST_HEAD(invalid_list);
  2446. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2447. return;
  2448. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2449. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2450. vcpu->arch.mmu.direct_map)) {
  2451. hpa_t root = vcpu->arch.mmu.root_hpa;
  2452. spin_lock(&vcpu->kvm->mmu_lock);
  2453. sp = page_header(root);
  2454. --sp->root_count;
  2455. if (!sp->root_count && sp->role.invalid) {
  2456. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2457. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2458. }
  2459. spin_unlock(&vcpu->kvm->mmu_lock);
  2460. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2461. return;
  2462. }
  2463. spin_lock(&vcpu->kvm->mmu_lock);
  2464. for (i = 0; i < 4; ++i) {
  2465. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2466. if (root) {
  2467. root &= PT64_BASE_ADDR_MASK;
  2468. sp = page_header(root);
  2469. --sp->root_count;
  2470. if (!sp->root_count && sp->role.invalid)
  2471. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2472. &invalid_list);
  2473. }
  2474. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2475. }
  2476. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2477. spin_unlock(&vcpu->kvm->mmu_lock);
  2478. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2479. }
  2480. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2481. {
  2482. int ret = 0;
  2483. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2484. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2485. ret = 1;
  2486. }
  2487. return ret;
  2488. }
  2489. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2490. {
  2491. struct kvm_mmu_page *sp;
  2492. unsigned i;
  2493. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2494. spin_lock(&vcpu->kvm->mmu_lock);
  2495. make_mmu_pages_available(vcpu);
  2496. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2497. 1, ACC_ALL, NULL);
  2498. ++sp->root_count;
  2499. spin_unlock(&vcpu->kvm->mmu_lock);
  2500. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2501. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2502. for (i = 0; i < 4; ++i) {
  2503. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2504. ASSERT(!VALID_PAGE(root));
  2505. spin_lock(&vcpu->kvm->mmu_lock);
  2506. make_mmu_pages_available(vcpu);
  2507. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2508. i << 30,
  2509. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2510. NULL);
  2511. root = __pa(sp->spt);
  2512. ++sp->root_count;
  2513. spin_unlock(&vcpu->kvm->mmu_lock);
  2514. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2515. }
  2516. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2517. } else
  2518. BUG();
  2519. return 0;
  2520. }
  2521. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2522. {
  2523. struct kvm_mmu_page *sp;
  2524. u64 pdptr, pm_mask;
  2525. gfn_t root_gfn;
  2526. int i;
  2527. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2528. if (mmu_check_root(vcpu, root_gfn))
  2529. return 1;
  2530. /*
  2531. * Do we shadow a long mode page table? If so we need to
  2532. * write-protect the guests page table root.
  2533. */
  2534. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2535. hpa_t root = vcpu->arch.mmu.root_hpa;
  2536. ASSERT(!VALID_PAGE(root));
  2537. spin_lock(&vcpu->kvm->mmu_lock);
  2538. make_mmu_pages_available(vcpu);
  2539. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2540. 0, ACC_ALL, NULL);
  2541. root = __pa(sp->spt);
  2542. ++sp->root_count;
  2543. spin_unlock(&vcpu->kvm->mmu_lock);
  2544. vcpu->arch.mmu.root_hpa = root;
  2545. return 0;
  2546. }
  2547. /*
  2548. * We shadow a 32 bit page table. This may be a legacy 2-level
  2549. * or a PAE 3-level page table. In either case we need to be aware that
  2550. * the shadow page table may be a PAE or a long mode page table.
  2551. */
  2552. pm_mask = PT_PRESENT_MASK;
  2553. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2554. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2555. for (i = 0; i < 4; ++i) {
  2556. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2557. ASSERT(!VALID_PAGE(root));
  2558. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2559. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2560. if (!is_present_gpte(pdptr)) {
  2561. vcpu->arch.mmu.pae_root[i] = 0;
  2562. continue;
  2563. }
  2564. root_gfn = pdptr >> PAGE_SHIFT;
  2565. if (mmu_check_root(vcpu, root_gfn))
  2566. return 1;
  2567. }
  2568. spin_lock(&vcpu->kvm->mmu_lock);
  2569. make_mmu_pages_available(vcpu);
  2570. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2571. PT32_ROOT_LEVEL, 0,
  2572. ACC_ALL, NULL);
  2573. root = __pa(sp->spt);
  2574. ++sp->root_count;
  2575. spin_unlock(&vcpu->kvm->mmu_lock);
  2576. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2577. }
  2578. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2579. /*
  2580. * If we shadow a 32 bit page table with a long mode page
  2581. * table we enter this path.
  2582. */
  2583. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2584. if (vcpu->arch.mmu.lm_root == NULL) {
  2585. /*
  2586. * The additional page necessary for this is only
  2587. * allocated on demand.
  2588. */
  2589. u64 *lm_root;
  2590. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2591. if (lm_root == NULL)
  2592. return 1;
  2593. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2594. vcpu->arch.mmu.lm_root = lm_root;
  2595. }
  2596. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2597. }
  2598. return 0;
  2599. }
  2600. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2601. {
  2602. if (vcpu->arch.mmu.direct_map)
  2603. return mmu_alloc_direct_roots(vcpu);
  2604. else
  2605. return mmu_alloc_shadow_roots(vcpu);
  2606. }
  2607. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2608. {
  2609. int i;
  2610. struct kvm_mmu_page *sp;
  2611. if (vcpu->arch.mmu.direct_map)
  2612. return;
  2613. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2614. return;
  2615. vcpu_clear_mmio_info(vcpu, ~0ul);
  2616. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2617. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2618. hpa_t root = vcpu->arch.mmu.root_hpa;
  2619. sp = page_header(root);
  2620. mmu_sync_children(vcpu, sp);
  2621. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2622. return;
  2623. }
  2624. for (i = 0; i < 4; ++i) {
  2625. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2626. if (root && VALID_PAGE(root)) {
  2627. root &= PT64_BASE_ADDR_MASK;
  2628. sp = page_header(root);
  2629. mmu_sync_children(vcpu, sp);
  2630. }
  2631. }
  2632. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2633. }
  2634. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2635. {
  2636. spin_lock(&vcpu->kvm->mmu_lock);
  2637. mmu_sync_roots(vcpu);
  2638. spin_unlock(&vcpu->kvm->mmu_lock);
  2639. }
  2640. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2641. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2642. u32 access, struct x86_exception *exception)
  2643. {
  2644. if (exception)
  2645. exception->error_code = 0;
  2646. return vaddr;
  2647. }
  2648. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2649. u32 access,
  2650. struct x86_exception *exception)
  2651. {
  2652. if (exception)
  2653. exception->error_code = 0;
  2654. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2655. }
  2656. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2657. {
  2658. if (direct)
  2659. return vcpu_match_mmio_gpa(vcpu, addr);
  2660. return vcpu_match_mmio_gva(vcpu, addr);
  2661. }
  2662. /*
  2663. * On direct hosts, the last spte is only allows two states
  2664. * for mmio page fault:
  2665. * - It is the mmio spte
  2666. * - It is zapped or it is being zapped.
  2667. *
  2668. * This function completely checks the spte when the last spte
  2669. * is not the mmio spte.
  2670. */
  2671. static bool check_direct_spte_mmio_pf(u64 spte)
  2672. {
  2673. return __check_direct_spte_mmio_pf(spte);
  2674. }
  2675. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2676. {
  2677. struct kvm_shadow_walk_iterator iterator;
  2678. u64 spte = 0ull;
  2679. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2680. return spte;
  2681. walk_shadow_page_lockless_begin(vcpu);
  2682. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2683. if (!is_shadow_present_pte(spte))
  2684. break;
  2685. walk_shadow_page_lockless_end(vcpu);
  2686. return spte;
  2687. }
  2688. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2689. {
  2690. u64 spte;
  2691. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2692. return RET_MMIO_PF_EMULATE;
  2693. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2694. if (is_mmio_spte(spte)) {
  2695. gfn_t gfn = get_mmio_spte_gfn(spte);
  2696. unsigned access = get_mmio_spte_access(spte);
  2697. if (!check_mmio_spte(vcpu->kvm, spte))
  2698. return RET_MMIO_PF_INVALID;
  2699. if (direct)
  2700. addr = 0;
  2701. trace_handle_mmio_page_fault(addr, gfn, access);
  2702. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2703. return RET_MMIO_PF_EMULATE;
  2704. }
  2705. /*
  2706. * It's ok if the gva is remapped by other cpus on shadow guest,
  2707. * it's a BUG if the gfn is not a mmio page.
  2708. */
  2709. if (direct && !check_direct_spte_mmio_pf(spte))
  2710. return RET_MMIO_PF_BUG;
  2711. /*
  2712. * If the page table is zapped by other cpus, let CPU fault again on
  2713. * the address.
  2714. */
  2715. return RET_MMIO_PF_RETRY;
  2716. }
  2717. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2718. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2719. u32 error_code, bool direct)
  2720. {
  2721. int ret;
  2722. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2723. WARN_ON(ret == RET_MMIO_PF_BUG);
  2724. return ret;
  2725. }
  2726. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2727. u32 error_code, bool prefault)
  2728. {
  2729. gfn_t gfn;
  2730. int r;
  2731. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2732. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2733. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2734. if (likely(r != RET_MMIO_PF_INVALID))
  2735. return r;
  2736. }
  2737. r = mmu_topup_memory_caches(vcpu);
  2738. if (r)
  2739. return r;
  2740. ASSERT(vcpu);
  2741. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2742. gfn = gva >> PAGE_SHIFT;
  2743. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2744. error_code, gfn, prefault);
  2745. }
  2746. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2747. {
  2748. struct kvm_arch_async_pf arch;
  2749. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2750. arch.gfn = gfn;
  2751. arch.direct_map = vcpu->arch.mmu.direct_map;
  2752. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2753. return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
  2754. }
  2755. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2756. {
  2757. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2758. kvm_event_needs_reinjection(vcpu)))
  2759. return false;
  2760. return kvm_x86_ops->interrupt_allowed(vcpu);
  2761. }
  2762. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2763. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2764. {
  2765. bool async;
  2766. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2767. if (!async)
  2768. return false; /* *pfn has correct page already */
  2769. if (!prefault && can_do_async_pf(vcpu)) {
  2770. trace_kvm_try_async_get_page(gva, gfn);
  2771. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2772. trace_kvm_async_pf_doublefault(gva, gfn);
  2773. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2774. return true;
  2775. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2776. return true;
  2777. }
  2778. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2779. return false;
  2780. }
  2781. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2782. bool prefault)
  2783. {
  2784. pfn_t pfn;
  2785. int r;
  2786. int level;
  2787. int force_pt_level;
  2788. gfn_t gfn = gpa >> PAGE_SHIFT;
  2789. unsigned long mmu_seq;
  2790. int write = error_code & PFERR_WRITE_MASK;
  2791. bool map_writable;
  2792. ASSERT(vcpu);
  2793. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2794. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2795. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2796. if (likely(r != RET_MMIO_PF_INVALID))
  2797. return r;
  2798. }
  2799. r = mmu_topup_memory_caches(vcpu);
  2800. if (r)
  2801. return r;
  2802. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2803. if (likely(!force_pt_level)) {
  2804. level = mapping_level(vcpu, gfn);
  2805. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2806. } else
  2807. level = PT_PAGE_TABLE_LEVEL;
  2808. if (fast_page_fault(vcpu, gpa, level, error_code))
  2809. return 0;
  2810. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2811. smp_rmb();
  2812. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2813. return 0;
  2814. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2815. return r;
  2816. spin_lock(&vcpu->kvm->mmu_lock);
  2817. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2818. goto out_unlock;
  2819. make_mmu_pages_available(vcpu);
  2820. if (likely(!force_pt_level))
  2821. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2822. r = __direct_map(vcpu, gpa, write, map_writable,
  2823. level, gfn, pfn, prefault);
  2824. spin_unlock(&vcpu->kvm->mmu_lock);
  2825. return r;
  2826. out_unlock:
  2827. spin_unlock(&vcpu->kvm->mmu_lock);
  2828. kvm_release_pfn_clean(pfn);
  2829. return 0;
  2830. }
  2831. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2832. struct kvm_mmu *context)
  2833. {
  2834. context->page_fault = nonpaging_page_fault;
  2835. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2836. context->sync_page = nonpaging_sync_page;
  2837. context->invlpg = nonpaging_invlpg;
  2838. context->update_pte = nonpaging_update_pte;
  2839. context->root_level = 0;
  2840. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2841. context->root_hpa = INVALID_PAGE;
  2842. context->direct_map = true;
  2843. context->nx = false;
  2844. }
  2845. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2846. {
  2847. ++vcpu->stat.tlb_flush;
  2848. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2849. }
  2850. EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
  2851. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2852. {
  2853. mmu_free_roots(vcpu);
  2854. }
  2855. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2856. {
  2857. return kvm_read_cr3(vcpu);
  2858. }
  2859. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2860. struct x86_exception *fault)
  2861. {
  2862. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2863. }
  2864. static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  2865. unsigned access, int *nr_present)
  2866. {
  2867. if (unlikely(is_mmio_spte(*sptep))) {
  2868. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2869. mmu_spte_clear_no_track(sptep);
  2870. return true;
  2871. }
  2872. (*nr_present)++;
  2873. mark_mmio_spte(kvm, sptep, gfn, access);
  2874. return true;
  2875. }
  2876. return false;
  2877. }
  2878. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2879. {
  2880. unsigned index;
  2881. index = level - 1;
  2882. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2883. return mmu->last_pte_bitmap & (1 << index);
  2884. }
  2885. #define PTTYPE_EPT 18 /* arbitrary */
  2886. #define PTTYPE PTTYPE_EPT
  2887. #include "paging_tmpl.h"
  2888. #undef PTTYPE
  2889. #define PTTYPE 64
  2890. #include "paging_tmpl.h"
  2891. #undef PTTYPE
  2892. #define PTTYPE 32
  2893. #include "paging_tmpl.h"
  2894. #undef PTTYPE
  2895. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2896. struct kvm_mmu *context)
  2897. {
  2898. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2899. u64 exb_bit_rsvd = 0;
  2900. u64 gbpages_bit_rsvd = 0;
  2901. context->bad_mt_xwr = 0;
  2902. if (!context->nx)
  2903. exb_bit_rsvd = rsvd_bits(63, 63);
  2904. if (!guest_cpuid_has_gbpages(vcpu))
  2905. gbpages_bit_rsvd = rsvd_bits(7, 7);
  2906. switch (context->root_level) {
  2907. case PT32_ROOT_LEVEL:
  2908. /* no rsvd bits for 2 level 4K page table entries */
  2909. context->rsvd_bits_mask[0][1] = 0;
  2910. context->rsvd_bits_mask[0][0] = 0;
  2911. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2912. if (!is_pse(vcpu)) {
  2913. context->rsvd_bits_mask[1][1] = 0;
  2914. break;
  2915. }
  2916. if (is_cpuid_PSE36())
  2917. /* 36bits PSE 4MB page */
  2918. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2919. else
  2920. /* 32 bits PSE 4MB page */
  2921. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2922. break;
  2923. case PT32E_ROOT_LEVEL:
  2924. context->rsvd_bits_mask[0][2] =
  2925. rsvd_bits(maxphyaddr, 63) |
  2926. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  2927. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2928. rsvd_bits(maxphyaddr, 62); /* PDE */
  2929. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2930. rsvd_bits(maxphyaddr, 62); /* PTE */
  2931. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2932. rsvd_bits(maxphyaddr, 62) |
  2933. rsvd_bits(13, 20); /* large page */
  2934. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2935. break;
  2936. case PT64_ROOT_LEVEL:
  2937. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2938. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
  2939. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2940. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
  2941. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2942. rsvd_bits(maxphyaddr, 51);
  2943. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2944. rsvd_bits(maxphyaddr, 51);
  2945. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2946. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2947. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  2948. rsvd_bits(13, 29);
  2949. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2950. rsvd_bits(maxphyaddr, 51) |
  2951. rsvd_bits(13, 20); /* large page */
  2952. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2953. break;
  2954. }
  2955. }
  2956. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  2957. struct kvm_mmu *context, bool execonly)
  2958. {
  2959. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2960. int pte;
  2961. context->rsvd_bits_mask[0][3] =
  2962. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  2963. context->rsvd_bits_mask[0][2] =
  2964. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  2965. context->rsvd_bits_mask[0][1] =
  2966. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  2967. context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  2968. /* large page */
  2969. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2970. context->rsvd_bits_mask[1][2] =
  2971. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  2972. context->rsvd_bits_mask[1][1] =
  2973. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  2974. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2975. for (pte = 0; pte < 64; pte++) {
  2976. int rwx_bits = pte & 7;
  2977. int mt = pte >> 3;
  2978. if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
  2979. rwx_bits == 0x2 || rwx_bits == 0x6 ||
  2980. (rwx_bits == 0x4 && !execonly))
  2981. context->bad_mt_xwr |= (1ull << pte);
  2982. }
  2983. }
  2984. void update_permission_bitmask(struct kvm_vcpu *vcpu,
  2985. struct kvm_mmu *mmu, bool ept)
  2986. {
  2987. unsigned bit, byte, pfec;
  2988. u8 map;
  2989. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  2990. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2991. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  2992. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2993. pfec = byte << 1;
  2994. map = 0;
  2995. wf = pfec & PFERR_WRITE_MASK;
  2996. uf = pfec & PFERR_USER_MASK;
  2997. ff = pfec & PFERR_FETCH_MASK;
  2998. /*
  2999. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3000. * subject to SMAP restrictions, and cleared otherwise. The
  3001. * bit is only meaningful if the SMAP bit is set in CR4.
  3002. */
  3003. smapf = !(pfec & PFERR_RSVD_MASK);
  3004. for (bit = 0; bit < 8; ++bit) {
  3005. x = bit & ACC_EXEC_MASK;
  3006. w = bit & ACC_WRITE_MASK;
  3007. u = bit & ACC_USER_MASK;
  3008. if (!ept) {
  3009. /* Not really needed: !nx will cause pte.nx to fault */
  3010. x |= !mmu->nx;
  3011. /* Allow supervisor writes if !cr0.wp */
  3012. w |= !is_write_protection(vcpu) && !uf;
  3013. /* Disallow supervisor fetches of user code if cr4.smep */
  3014. x &= !(cr4_smep && u && !uf);
  3015. /*
  3016. * SMAP:kernel-mode data accesses from user-mode
  3017. * mappings should fault. A fault is considered
  3018. * as a SMAP violation if all of the following
  3019. * conditions are ture:
  3020. * - X86_CR4_SMAP is set in CR4
  3021. * - An user page is accessed
  3022. * - Page fault in kernel mode
  3023. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3024. *
  3025. * Here, we cover the first three conditions.
  3026. * The fourth is computed dynamically in
  3027. * permission_fault() and is in smapf.
  3028. *
  3029. * Also, SMAP does not affect instruction
  3030. * fetches, add the !ff check here to make it
  3031. * clearer.
  3032. */
  3033. smap = cr4_smap && u && !uf && !ff;
  3034. } else
  3035. /* Not really needed: no U/S accesses on ept */
  3036. u = 1;
  3037. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3038. (smapf && smap);
  3039. map |= fault << bit;
  3040. }
  3041. mmu->permissions[byte] = map;
  3042. }
  3043. }
  3044. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3045. {
  3046. u8 map;
  3047. unsigned level, root_level = mmu->root_level;
  3048. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3049. if (root_level == PT32E_ROOT_LEVEL)
  3050. --root_level;
  3051. /* PT_PAGE_TABLE_LEVEL always terminates */
  3052. map = 1 | (1 << ps_set_index);
  3053. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3054. if (level <= PT_PDPE_LEVEL
  3055. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3056. map |= 1 << (ps_set_index | (level - 1));
  3057. }
  3058. mmu->last_pte_bitmap = map;
  3059. }
  3060. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3061. struct kvm_mmu *context,
  3062. int level)
  3063. {
  3064. context->nx = is_nx(vcpu);
  3065. context->root_level = level;
  3066. reset_rsvds_bits_mask(vcpu, context);
  3067. update_permission_bitmask(vcpu, context, false);
  3068. update_last_pte_bitmap(vcpu, context);
  3069. ASSERT(is_pae(vcpu));
  3070. context->page_fault = paging64_page_fault;
  3071. context->gva_to_gpa = paging64_gva_to_gpa;
  3072. context->sync_page = paging64_sync_page;
  3073. context->invlpg = paging64_invlpg;
  3074. context->update_pte = paging64_update_pte;
  3075. context->shadow_root_level = level;
  3076. context->root_hpa = INVALID_PAGE;
  3077. context->direct_map = false;
  3078. }
  3079. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3080. struct kvm_mmu *context)
  3081. {
  3082. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3083. }
  3084. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3085. struct kvm_mmu *context)
  3086. {
  3087. context->nx = false;
  3088. context->root_level = PT32_ROOT_LEVEL;
  3089. reset_rsvds_bits_mask(vcpu, context);
  3090. update_permission_bitmask(vcpu, context, false);
  3091. update_last_pte_bitmap(vcpu, context);
  3092. context->page_fault = paging32_page_fault;
  3093. context->gva_to_gpa = paging32_gva_to_gpa;
  3094. context->sync_page = paging32_sync_page;
  3095. context->invlpg = paging32_invlpg;
  3096. context->update_pte = paging32_update_pte;
  3097. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3098. context->root_hpa = INVALID_PAGE;
  3099. context->direct_map = false;
  3100. }
  3101. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3102. struct kvm_mmu *context)
  3103. {
  3104. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3105. }
  3106. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3107. {
  3108. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  3109. context->base_role.word = 0;
  3110. context->page_fault = tdp_page_fault;
  3111. context->sync_page = nonpaging_sync_page;
  3112. context->invlpg = nonpaging_invlpg;
  3113. context->update_pte = nonpaging_update_pte;
  3114. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3115. context->root_hpa = INVALID_PAGE;
  3116. context->direct_map = true;
  3117. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3118. context->get_cr3 = get_cr3;
  3119. context->get_pdptr = kvm_pdptr_read;
  3120. context->inject_page_fault = kvm_inject_page_fault;
  3121. if (!is_paging(vcpu)) {
  3122. context->nx = false;
  3123. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3124. context->root_level = 0;
  3125. } else if (is_long_mode(vcpu)) {
  3126. context->nx = is_nx(vcpu);
  3127. context->root_level = PT64_ROOT_LEVEL;
  3128. reset_rsvds_bits_mask(vcpu, context);
  3129. context->gva_to_gpa = paging64_gva_to_gpa;
  3130. } else if (is_pae(vcpu)) {
  3131. context->nx = is_nx(vcpu);
  3132. context->root_level = PT32E_ROOT_LEVEL;
  3133. reset_rsvds_bits_mask(vcpu, context);
  3134. context->gva_to_gpa = paging64_gva_to_gpa;
  3135. } else {
  3136. context->nx = false;
  3137. context->root_level = PT32_ROOT_LEVEL;
  3138. reset_rsvds_bits_mask(vcpu, context);
  3139. context->gva_to_gpa = paging32_gva_to_gpa;
  3140. }
  3141. update_permission_bitmask(vcpu, context, false);
  3142. update_last_pte_bitmap(vcpu, context);
  3143. }
  3144. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3145. {
  3146. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3147. ASSERT(vcpu);
  3148. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3149. if (!is_paging(vcpu))
  3150. nonpaging_init_context(vcpu, context);
  3151. else if (is_long_mode(vcpu))
  3152. paging64_init_context(vcpu, context);
  3153. else if (is_pae(vcpu))
  3154. paging32E_init_context(vcpu, context);
  3155. else
  3156. paging32_init_context(vcpu, context);
  3157. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3158. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3159. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3160. vcpu->arch.mmu.base_role.smep_andnot_wp
  3161. = smep && !is_write_protection(vcpu);
  3162. }
  3163. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3164. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
  3165. bool execonly)
  3166. {
  3167. ASSERT(vcpu);
  3168. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3169. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3170. context->nx = true;
  3171. context->page_fault = ept_page_fault;
  3172. context->gva_to_gpa = ept_gva_to_gpa;
  3173. context->sync_page = ept_sync_page;
  3174. context->invlpg = ept_invlpg;
  3175. context->update_pte = ept_update_pte;
  3176. context->root_level = context->shadow_root_level;
  3177. context->root_hpa = INVALID_PAGE;
  3178. context->direct_map = false;
  3179. update_permission_bitmask(vcpu, context, true);
  3180. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3181. }
  3182. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3183. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3184. {
  3185. kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3186. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3187. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3188. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3189. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3190. }
  3191. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3192. {
  3193. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3194. g_context->get_cr3 = get_cr3;
  3195. g_context->get_pdptr = kvm_pdptr_read;
  3196. g_context->inject_page_fault = kvm_inject_page_fault;
  3197. /*
  3198. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3199. * translation of l2_gpa to l1_gpa addresses is done using the
  3200. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3201. * functions between mmu and nested_mmu are swapped.
  3202. */
  3203. if (!is_paging(vcpu)) {
  3204. g_context->nx = false;
  3205. g_context->root_level = 0;
  3206. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3207. } else if (is_long_mode(vcpu)) {
  3208. g_context->nx = is_nx(vcpu);
  3209. g_context->root_level = PT64_ROOT_LEVEL;
  3210. reset_rsvds_bits_mask(vcpu, g_context);
  3211. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3212. } else if (is_pae(vcpu)) {
  3213. g_context->nx = is_nx(vcpu);
  3214. g_context->root_level = PT32E_ROOT_LEVEL;
  3215. reset_rsvds_bits_mask(vcpu, g_context);
  3216. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3217. } else {
  3218. g_context->nx = false;
  3219. g_context->root_level = PT32_ROOT_LEVEL;
  3220. reset_rsvds_bits_mask(vcpu, g_context);
  3221. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3222. }
  3223. update_permission_bitmask(vcpu, g_context, false);
  3224. update_last_pte_bitmap(vcpu, g_context);
  3225. }
  3226. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3227. {
  3228. if (mmu_is_nested(vcpu))
  3229. return init_kvm_nested_mmu(vcpu);
  3230. else if (tdp_enabled)
  3231. return init_kvm_tdp_mmu(vcpu);
  3232. else
  3233. return init_kvm_softmmu(vcpu);
  3234. }
  3235. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3236. {
  3237. ASSERT(vcpu);
  3238. kvm_mmu_unload(vcpu);
  3239. init_kvm_mmu(vcpu);
  3240. }
  3241. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3242. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3243. {
  3244. int r;
  3245. r = mmu_topup_memory_caches(vcpu);
  3246. if (r)
  3247. goto out;
  3248. r = mmu_alloc_roots(vcpu);
  3249. kvm_mmu_sync_roots(vcpu);
  3250. if (r)
  3251. goto out;
  3252. /* set_cr3() should ensure TLB has been flushed */
  3253. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3254. out:
  3255. return r;
  3256. }
  3257. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3258. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3259. {
  3260. mmu_free_roots(vcpu);
  3261. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3262. }
  3263. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3264. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3265. struct kvm_mmu_page *sp, u64 *spte,
  3266. const void *new)
  3267. {
  3268. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3269. ++vcpu->kvm->stat.mmu_pde_zapped;
  3270. return;
  3271. }
  3272. ++vcpu->kvm->stat.mmu_pte_updated;
  3273. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3274. }
  3275. static bool need_remote_flush(u64 old, u64 new)
  3276. {
  3277. if (!is_shadow_present_pte(old))
  3278. return false;
  3279. if (!is_shadow_present_pte(new))
  3280. return true;
  3281. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3282. return true;
  3283. old ^= shadow_nx_mask;
  3284. new ^= shadow_nx_mask;
  3285. return (old & ~new & PT64_PERM_MASK) != 0;
  3286. }
  3287. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3288. bool remote_flush, bool local_flush)
  3289. {
  3290. if (zap_page)
  3291. return;
  3292. if (remote_flush)
  3293. kvm_flush_remote_tlbs(vcpu->kvm);
  3294. else if (local_flush)
  3295. kvm_mmu_flush_tlb(vcpu);
  3296. }
  3297. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3298. const u8 *new, int *bytes)
  3299. {
  3300. u64 gentry;
  3301. int r;
  3302. /*
  3303. * Assume that the pte write on a page table of the same type
  3304. * as the current vcpu paging mode since we update the sptes only
  3305. * when they have the same mode.
  3306. */
  3307. if (is_pae(vcpu) && *bytes == 4) {
  3308. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3309. *gpa &= ~(gpa_t)7;
  3310. *bytes = 8;
  3311. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3312. if (r)
  3313. gentry = 0;
  3314. new = (const u8 *)&gentry;
  3315. }
  3316. switch (*bytes) {
  3317. case 4:
  3318. gentry = *(const u32 *)new;
  3319. break;
  3320. case 8:
  3321. gentry = *(const u64 *)new;
  3322. break;
  3323. default:
  3324. gentry = 0;
  3325. break;
  3326. }
  3327. return gentry;
  3328. }
  3329. /*
  3330. * If we're seeing too many writes to a page, it may no longer be a page table,
  3331. * or we may be forking, in which case it is better to unmap the page.
  3332. */
  3333. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3334. {
  3335. /*
  3336. * Skip write-flooding detected for the sp whose level is 1, because
  3337. * it can become unsync, then the guest page is not write-protected.
  3338. */
  3339. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3340. return false;
  3341. return ++sp->write_flooding_count >= 3;
  3342. }
  3343. /*
  3344. * Misaligned accesses are too much trouble to fix up; also, they usually
  3345. * indicate a page is not used as a page table.
  3346. */
  3347. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3348. int bytes)
  3349. {
  3350. unsigned offset, pte_size, misaligned;
  3351. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3352. gpa, bytes, sp->role.word);
  3353. offset = offset_in_page(gpa);
  3354. pte_size = sp->role.cr4_pae ? 8 : 4;
  3355. /*
  3356. * Sometimes, the OS only writes the last one bytes to update status
  3357. * bits, for example, in linux, andb instruction is used in clear_bit().
  3358. */
  3359. if (!(offset & (pte_size - 1)) && bytes == 1)
  3360. return false;
  3361. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3362. misaligned |= bytes < 4;
  3363. return misaligned;
  3364. }
  3365. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3366. {
  3367. unsigned page_offset, quadrant;
  3368. u64 *spte;
  3369. int level;
  3370. page_offset = offset_in_page(gpa);
  3371. level = sp->role.level;
  3372. *nspte = 1;
  3373. if (!sp->role.cr4_pae) {
  3374. page_offset <<= 1; /* 32->64 */
  3375. /*
  3376. * A 32-bit pde maps 4MB while the shadow pdes map
  3377. * only 2MB. So we need to double the offset again
  3378. * and zap two pdes instead of one.
  3379. */
  3380. if (level == PT32_ROOT_LEVEL) {
  3381. page_offset &= ~7; /* kill rounding error */
  3382. page_offset <<= 1;
  3383. *nspte = 2;
  3384. }
  3385. quadrant = page_offset >> PAGE_SHIFT;
  3386. page_offset &= ~PAGE_MASK;
  3387. if (quadrant != sp->role.quadrant)
  3388. return NULL;
  3389. }
  3390. spte = &sp->spt[page_offset / sizeof(*spte)];
  3391. return spte;
  3392. }
  3393. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3394. const u8 *new, int bytes)
  3395. {
  3396. gfn_t gfn = gpa >> PAGE_SHIFT;
  3397. union kvm_mmu_page_role mask = { .word = 0 };
  3398. struct kvm_mmu_page *sp;
  3399. LIST_HEAD(invalid_list);
  3400. u64 entry, gentry, *spte;
  3401. int npte;
  3402. bool remote_flush, local_flush, zap_page;
  3403. /*
  3404. * If we don't have indirect shadow pages, it means no page is
  3405. * write-protected, so we can exit simply.
  3406. */
  3407. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3408. return;
  3409. zap_page = remote_flush = local_flush = false;
  3410. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3411. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3412. /*
  3413. * No need to care whether allocation memory is successful
  3414. * or not since pte prefetch is skiped if it does not have
  3415. * enough objects in the cache.
  3416. */
  3417. mmu_topup_memory_caches(vcpu);
  3418. spin_lock(&vcpu->kvm->mmu_lock);
  3419. ++vcpu->kvm->stat.mmu_pte_write;
  3420. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3421. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3422. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3423. if (detect_write_misaligned(sp, gpa, bytes) ||
  3424. detect_write_flooding(sp)) {
  3425. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3426. &invalid_list);
  3427. ++vcpu->kvm->stat.mmu_flooded;
  3428. continue;
  3429. }
  3430. spte = get_written_sptes(sp, gpa, &npte);
  3431. if (!spte)
  3432. continue;
  3433. local_flush = true;
  3434. while (npte--) {
  3435. entry = *spte;
  3436. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3437. if (gentry &&
  3438. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3439. & mask.word) && rmap_can_add(vcpu))
  3440. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3441. if (need_remote_flush(entry, *spte))
  3442. remote_flush = true;
  3443. ++spte;
  3444. }
  3445. }
  3446. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3447. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3448. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3449. spin_unlock(&vcpu->kvm->mmu_lock);
  3450. }
  3451. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3452. {
  3453. gpa_t gpa;
  3454. int r;
  3455. if (vcpu->arch.mmu.direct_map)
  3456. return 0;
  3457. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3458. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3459. return r;
  3460. }
  3461. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3462. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3463. {
  3464. LIST_HEAD(invalid_list);
  3465. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3466. return;
  3467. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3468. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3469. break;
  3470. ++vcpu->kvm->stat.mmu_recycled;
  3471. }
  3472. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3473. }
  3474. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3475. {
  3476. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3477. return vcpu_match_mmio_gpa(vcpu, addr);
  3478. return vcpu_match_mmio_gva(vcpu, addr);
  3479. }
  3480. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3481. void *insn, int insn_len)
  3482. {
  3483. int r, emulation_type = EMULTYPE_RETRY;
  3484. enum emulation_result er;
  3485. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3486. if (r < 0)
  3487. goto out;
  3488. if (!r) {
  3489. r = 1;
  3490. goto out;
  3491. }
  3492. if (is_mmio_page_fault(vcpu, cr2))
  3493. emulation_type = 0;
  3494. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3495. switch (er) {
  3496. case EMULATE_DONE:
  3497. return 1;
  3498. case EMULATE_USER_EXIT:
  3499. ++vcpu->stat.mmio_exits;
  3500. /* fall through */
  3501. case EMULATE_FAIL:
  3502. return 0;
  3503. default:
  3504. BUG();
  3505. }
  3506. out:
  3507. return r;
  3508. }
  3509. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3510. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3511. {
  3512. vcpu->arch.mmu.invlpg(vcpu, gva);
  3513. kvm_mmu_flush_tlb(vcpu);
  3514. ++vcpu->stat.invlpg;
  3515. }
  3516. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3517. void kvm_enable_tdp(void)
  3518. {
  3519. tdp_enabled = true;
  3520. }
  3521. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3522. void kvm_disable_tdp(void)
  3523. {
  3524. tdp_enabled = false;
  3525. }
  3526. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3527. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3528. {
  3529. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3530. if (vcpu->arch.mmu.lm_root != NULL)
  3531. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3532. }
  3533. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3534. {
  3535. struct page *page;
  3536. int i;
  3537. ASSERT(vcpu);
  3538. /*
  3539. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3540. * Therefore we need to allocate shadow page tables in the first
  3541. * 4GB of memory, which happens to fit the DMA32 zone.
  3542. */
  3543. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3544. if (!page)
  3545. return -ENOMEM;
  3546. vcpu->arch.mmu.pae_root = page_address(page);
  3547. for (i = 0; i < 4; ++i)
  3548. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3549. return 0;
  3550. }
  3551. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3552. {
  3553. ASSERT(vcpu);
  3554. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3555. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3556. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3557. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3558. return alloc_mmu_pages(vcpu);
  3559. }
  3560. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3561. {
  3562. ASSERT(vcpu);
  3563. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3564. init_kvm_mmu(vcpu);
  3565. }
  3566. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3567. {
  3568. struct kvm_memory_slot *memslot;
  3569. gfn_t last_gfn;
  3570. int i;
  3571. memslot = id_to_memslot(kvm->memslots, slot);
  3572. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3573. spin_lock(&kvm->mmu_lock);
  3574. for (i = PT_PAGE_TABLE_LEVEL;
  3575. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3576. unsigned long *rmapp;
  3577. unsigned long last_index, index;
  3578. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3579. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3580. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3581. if (*rmapp)
  3582. __rmap_write_protect(kvm, rmapp, false);
  3583. if (need_resched() || spin_needbreak(&kvm->mmu_lock))
  3584. cond_resched_lock(&kvm->mmu_lock);
  3585. }
  3586. }
  3587. spin_unlock(&kvm->mmu_lock);
  3588. /*
  3589. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3590. * which do tlb flush out of mmu-lock should be serialized by
  3591. * kvm->slots_lock otherwise tlb flush would be missed.
  3592. */
  3593. lockdep_assert_held(&kvm->slots_lock);
  3594. /*
  3595. * We can flush all the TLBs out of the mmu lock without TLB
  3596. * corruption since we just change the spte from writable to
  3597. * readonly so that we only need to care the case of changing
  3598. * spte from present to present (changing the spte from present
  3599. * to nonpresent will flush all the TLBs immediately), in other
  3600. * words, the only case we care is mmu_spte_update() where we
  3601. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3602. * instead of PT_WRITABLE_MASK, that means it does not depend
  3603. * on PT_WRITABLE_MASK anymore.
  3604. */
  3605. kvm_flush_remote_tlbs(kvm);
  3606. }
  3607. #define BATCH_ZAP_PAGES 10
  3608. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3609. {
  3610. struct kvm_mmu_page *sp, *node;
  3611. int batch = 0;
  3612. restart:
  3613. list_for_each_entry_safe_reverse(sp, node,
  3614. &kvm->arch.active_mmu_pages, link) {
  3615. int ret;
  3616. /*
  3617. * No obsolete page exists before new created page since
  3618. * active_mmu_pages is the FIFO list.
  3619. */
  3620. if (!is_obsolete_sp(kvm, sp))
  3621. break;
  3622. /*
  3623. * Since we are reversely walking the list and the invalid
  3624. * list will be moved to the head, skip the invalid page
  3625. * can help us to avoid the infinity list walking.
  3626. */
  3627. if (sp->role.invalid)
  3628. continue;
  3629. /*
  3630. * Need not flush tlb since we only zap the sp with invalid
  3631. * generation number.
  3632. */
  3633. if (batch >= BATCH_ZAP_PAGES &&
  3634. cond_resched_lock(&kvm->mmu_lock)) {
  3635. batch = 0;
  3636. goto restart;
  3637. }
  3638. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3639. &kvm->arch.zapped_obsolete_pages);
  3640. batch += ret;
  3641. if (ret)
  3642. goto restart;
  3643. }
  3644. /*
  3645. * Should flush tlb before free page tables since lockless-walking
  3646. * may use the pages.
  3647. */
  3648. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3649. }
  3650. /*
  3651. * Fast invalidate all shadow pages and use lock-break technique
  3652. * to zap obsolete pages.
  3653. *
  3654. * It's required when memslot is being deleted or VM is being
  3655. * destroyed, in these cases, we should ensure that KVM MMU does
  3656. * not use any resource of the being-deleted slot or all slots
  3657. * after calling the function.
  3658. */
  3659. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3660. {
  3661. spin_lock(&kvm->mmu_lock);
  3662. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3663. kvm->arch.mmu_valid_gen++;
  3664. /*
  3665. * Notify all vcpus to reload its shadow page table
  3666. * and flush TLB. Then all vcpus will switch to new
  3667. * shadow page table with the new mmu_valid_gen.
  3668. *
  3669. * Note: we should do this under the protection of
  3670. * mmu-lock, otherwise, vcpu would purge shadow page
  3671. * but miss tlb flush.
  3672. */
  3673. kvm_reload_remote_mmus(kvm);
  3674. kvm_zap_obsolete_pages(kvm);
  3675. spin_unlock(&kvm->mmu_lock);
  3676. }
  3677. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  3678. {
  3679. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  3680. }
  3681. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
  3682. {
  3683. /*
  3684. * The very rare case: if the generation-number is round,
  3685. * zap all shadow pages.
  3686. */
  3687. if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
  3688. printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
  3689. kvm_mmu_invalidate_zap_all_pages(kvm);
  3690. }
  3691. }
  3692. static unsigned long
  3693. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  3694. {
  3695. struct kvm *kvm;
  3696. int nr_to_scan = sc->nr_to_scan;
  3697. unsigned long freed = 0;
  3698. spin_lock(&kvm_lock);
  3699. list_for_each_entry(kvm, &vm_list, vm_list) {
  3700. int idx;
  3701. LIST_HEAD(invalid_list);
  3702. /*
  3703. * Never scan more than sc->nr_to_scan VM instances.
  3704. * Will not hit this condition practically since we do not try
  3705. * to shrink more than one VM and it is very unlikely to see
  3706. * !n_used_mmu_pages so many times.
  3707. */
  3708. if (!nr_to_scan--)
  3709. break;
  3710. /*
  3711. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3712. * here. We may skip a VM instance errorneosly, but we do not
  3713. * want to shrink a VM that only started to populate its MMU
  3714. * anyway.
  3715. */
  3716. if (!kvm->arch.n_used_mmu_pages &&
  3717. !kvm_has_zapped_obsolete_pages(kvm))
  3718. continue;
  3719. idx = srcu_read_lock(&kvm->srcu);
  3720. spin_lock(&kvm->mmu_lock);
  3721. if (kvm_has_zapped_obsolete_pages(kvm)) {
  3722. kvm_mmu_commit_zap_page(kvm,
  3723. &kvm->arch.zapped_obsolete_pages);
  3724. goto unlock;
  3725. }
  3726. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  3727. freed++;
  3728. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3729. unlock:
  3730. spin_unlock(&kvm->mmu_lock);
  3731. srcu_read_unlock(&kvm->srcu, idx);
  3732. /*
  3733. * unfair on small ones
  3734. * per-vm shrinkers cry out
  3735. * sadness comes quickly
  3736. */
  3737. list_move_tail(&kvm->vm_list, &vm_list);
  3738. break;
  3739. }
  3740. spin_unlock(&kvm_lock);
  3741. return freed;
  3742. }
  3743. static unsigned long
  3744. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  3745. {
  3746. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3747. }
  3748. static struct shrinker mmu_shrinker = {
  3749. .count_objects = mmu_shrink_count,
  3750. .scan_objects = mmu_shrink_scan,
  3751. .seeks = DEFAULT_SEEKS * 10,
  3752. };
  3753. static void mmu_destroy_caches(void)
  3754. {
  3755. if (pte_list_desc_cache)
  3756. kmem_cache_destroy(pte_list_desc_cache);
  3757. if (mmu_page_header_cache)
  3758. kmem_cache_destroy(mmu_page_header_cache);
  3759. }
  3760. int kvm_mmu_module_init(void)
  3761. {
  3762. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3763. sizeof(struct pte_list_desc),
  3764. 0, 0, NULL);
  3765. if (!pte_list_desc_cache)
  3766. goto nomem;
  3767. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3768. sizeof(struct kvm_mmu_page),
  3769. 0, 0, NULL);
  3770. if (!mmu_page_header_cache)
  3771. goto nomem;
  3772. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3773. goto nomem;
  3774. register_shrinker(&mmu_shrinker);
  3775. return 0;
  3776. nomem:
  3777. mmu_destroy_caches();
  3778. return -ENOMEM;
  3779. }
  3780. /*
  3781. * Caculate mmu pages needed for kvm.
  3782. */
  3783. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3784. {
  3785. unsigned int nr_mmu_pages;
  3786. unsigned int nr_pages = 0;
  3787. struct kvm_memslots *slots;
  3788. struct kvm_memory_slot *memslot;
  3789. slots = kvm_memslots(kvm);
  3790. kvm_for_each_memslot(memslot, slots)
  3791. nr_pages += memslot->npages;
  3792. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3793. nr_mmu_pages = max(nr_mmu_pages,
  3794. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3795. return nr_mmu_pages;
  3796. }
  3797. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3798. {
  3799. struct kvm_shadow_walk_iterator iterator;
  3800. u64 spte;
  3801. int nr_sptes = 0;
  3802. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3803. return nr_sptes;
  3804. walk_shadow_page_lockless_begin(vcpu);
  3805. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3806. sptes[iterator.level-1] = spte;
  3807. nr_sptes++;
  3808. if (!is_shadow_present_pte(spte))
  3809. break;
  3810. }
  3811. walk_shadow_page_lockless_end(vcpu);
  3812. return nr_sptes;
  3813. }
  3814. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3815. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3816. {
  3817. ASSERT(vcpu);
  3818. kvm_mmu_unload(vcpu);
  3819. free_mmu_pages(vcpu);
  3820. mmu_free_memory_caches(vcpu);
  3821. }
  3822. void kvm_mmu_module_exit(void)
  3823. {
  3824. mmu_destroy_caches();
  3825. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3826. unregister_shrinker(&mmu_shrinker);
  3827. mmu_audit_disable();
  3828. }