intel_ringbuffer.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  35. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  36. * to give some inclination as to some of the magic values used in the various
  37. * workarounds!
  38. */
  39. #define CACHELINE_BYTES 64
  40. static inline int __ring_space(int head, int tail, int size)
  41. {
  42. int space = head - (tail + I915_RING_FREE_SPACE);
  43. if (space < 0)
  44. space += size;
  45. return space;
  46. }
  47. static inline int ring_space(struct intel_engine_cs *ring)
  48. {
  49. return __ring_space(ring->buffer->head & HEAD_ADDR, ring->buffer->tail, ring->buffer->size);
  50. }
  51. static bool intel_ring_stopped(struct intel_engine_cs *ring)
  52. {
  53. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  54. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  55. }
  56. void __intel_ring_advance(struct intel_engine_cs *ring)
  57. {
  58. ring->buffer->tail &= ring->buffer->size - 1;
  59. if (intel_ring_stopped(ring))
  60. return;
  61. ring->write_tail(ring, ring->buffer->tail);
  62. }
  63. static int
  64. gen2_render_ring_flush(struct intel_engine_cs *ring,
  65. u32 invalidate_domains,
  66. u32 flush_domains)
  67. {
  68. u32 cmd;
  69. int ret;
  70. cmd = MI_FLUSH;
  71. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  72. cmd |= MI_NO_WRITE_FLUSH;
  73. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  74. cmd |= MI_READ_FLUSH;
  75. ret = intel_ring_begin(ring, 2);
  76. if (ret)
  77. return ret;
  78. intel_ring_emit(ring, cmd);
  79. intel_ring_emit(ring, MI_NOOP);
  80. intel_ring_advance(ring);
  81. return 0;
  82. }
  83. static int
  84. gen4_render_ring_flush(struct intel_engine_cs *ring,
  85. u32 invalidate_domains,
  86. u32 flush_domains)
  87. {
  88. struct drm_device *dev = ring->dev;
  89. u32 cmd;
  90. int ret;
  91. /*
  92. * read/write caches:
  93. *
  94. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  95. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  96. * also flushed at 2d versus 3d pipeline switches.
  97. *
  98. * read-only caches:
  99. *
  100. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  101. * MI_READ_FLUSH is set, and is always flushed on 965.
  102. *
  103. * I915_GEM_DOMAIN_COMMAND may not exist?
  104. *
  105. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  106. * invalidated when MI_EXE_FLUSH is set.
  107. *
  108. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  109. * invalidated with every MI_FLUSH.
  110. *
  111. * TLBs:
  112. *
  113. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  114. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  115. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  116. * are flushed at any MI_FLUSH.
  117. */
  118. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  119. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  120. cmd &= ~MI_NO_WRITE_FLUSH;
  121. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  122. cmd |= MI_EXE_FLUSH;
  123. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  124. (IS_G4X(dev) || IS_GEN5(dev)))
  125. cmd |= MI_INVALIDATE_ISP;
  126. ret = intel_ring_begin(ring, 2);
  127. if (ret)
  128. return ret;
  129. intel_ring_emit(ring, cmd);
  130. intel_ring_emit(ring, MI_NOOP);
  131. intel_ring_advance(ring);
  132. return 0;
  133. }
  134. /**
  135. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  136. * implementing two workarounds on gen6. From section 1.4.7.1
  137. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  138. *
  139. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  140. * produced by non-pipelined state commands), software needs to first
  141. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  142. * 0.
  143. *
  144. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  145. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  146. *
  147. * And the workaround for these two requires this workaround first:
  148. *
  149. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  150. * BEFORE the pipe-control with a post-sync op and no write-cache
  151. * flushes.
  152. *
  153. * And this last workaround is tricky because of the requirements on
  154. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  155. * volume 2 part 1:
  156. *
  157. * "1 of the following must also be set:
  158. * - Render Target Cache Flush Enable ([12] of DW1)
  159. * - Depth Cache Flush Enable ([0] of DW1)
  160. * - Stall at Pixel Scoreboard ([1] of DW1)
  161. * - Depth Stall ([13] of DW1)
  162. * - Post-Sync Operation ([13] of DW1)
  163. * - Notify Enable ([8] of DW1)"
  164. *
  165. * The cache flushes require the workaround flush that triggered this
  166. * one, so we can't use it. Depth stall would trigger the same.
  167. * Post-sync nonzero is what triggered this second workaround, so we
  168. * can't use that one either. Notify enable is IRQs, which aren't
  169. * really our business. That leaves only stall at scoreboard.
  170. */
  171. static int
  172. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  173. {
  174. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  175. int ret;
  176. ret = intel_ring_begin(ring, 6);
  177. if (ret)
  178. return ret;
  179. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  180. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  181. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  182. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  183. intel_ring_emit(ring, 0); /* low dword */
  184. intel_ring_emit(ring, 0); /* high dword */
  185. intel_ring_emit(ring, MI_NOOP);
  186. intel_ring_advance(ring);
  187. ret = intel_ring_begin(ring, 6);
  188. if (ret)
  189. return ret;
  190. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  191. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  192. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  193. intel_ring_emit(ring, 0);
  194. intel_ring_emit(ring, 0);
  195. intel_ring_emit(ring, MI_NOOP);
  196. intel_ring_advance(ring);
  197. return 0;
  198. }
  199. static int
  200. gen6_render_ring_flush(struct intel_engine_cs *ring,
  201. u32 invalidate_domains, u32 flush_domains)
  202. {
  203. u32 flags = 0;
  204. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  205. int ret;
  206. /* Force SNB workarounds for PIPE_CONTROL flushes */
  207. ret = intel_emit_post_sync_nonzero_flush(ring);
  208. if (ret)
  209. return ret;
  210. /* Just flush everything. Experiments have shown that reducing the
  211. * number of bits based on the write domains has little performance
  212. * impact.
  213. */
  214. if (flush_domains) {
  215. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  216. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  217. /*
  218. * Ensure that any following seqno writes only happen
  219. * when the render cache is indeed flushed.
  220. */
  221. flags |= PIPE_CONTROL_CS_STALL;
  222. }
  223. if (invalidate_domains) {
  224. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  225. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  226. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  227. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  228. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  229. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  230. /*
  231. * TLB invalidate requires a post-sync write.
  232. */
  233. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  234. }
  235. ret = intel_ring_begin(ring, 4);
  236. if (ret)
  237. return ret;
  238. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  239. intel_ring_emit(ring, flags);
  240. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  241. intel_ring_emit(ring, 0);
  242. intel_ring_advance(ring);
  243. return 0;
  244. }
  245. static int
  246. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  247. {
  248. int ret;
  249. ret = intel_ring_begin(ring, 4);
  250. if (ret)
  251. return ret;
  252. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  253. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  254. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  255. intel_ring_emit(ring, 0);
  256. intel_ring_emit(ring, 0);
  257. intel_ring_advance(ring);
  258. return 0;
  259. }
  260. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  261. {
  262. int ret;
  263. if (!ring->fbc_dirty)
  264. return 0;
  265. ret = intel_ring_begin(ring, 6);
  266. if (ret)
  267. return ret;
  268. /* WaFbcNukeOn3DBlt:ivb/hsw */
  269. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  270. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  271. intel_ring_emit(ring, value);
  272. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  273. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  274. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  275. intel_ring_advance(ring);
  276. ring->fbc_dirty = false;
  277. return 0;
  278. }
  279. static int
  280. gen7_render_ring_flush(struct intel_engine_cs *ring,
  281. u32 invalidate_domains, u32 flush_domains)
  282. {
  283. u32 flags = 0;
  284. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  285. int ret;
  286. /*
  287. * Ensure that any following seqno writes only happen when the render
  288. * cache is indeed flushed.
  289. *
  290. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  291. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  292. * don't try to be clever and just set it unconditionally.
  293. */
  294. flags |= PIPE_CONTROL_CS_STALL;
  295. /* Just flush everything. Experiments have shown that reducing the
  296. * number of bits based on the write domains has little performance
  297. * impact.
  298. */
  299. if (flush_domains) {
  300. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  301. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  302. }
  303. if (invalidate_domains) {
  304. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  305. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  306. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  307. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  308. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  309. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  310. /*
  311. * TLB invalidate requires a post-sync write.
  312. */
  313. flags |= PIPE_CONTROL_QW_WRITE;
  314. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  315. /* Workaround: we must issue a pipe_control with CS-stall bit
  316. * set before a pipe_control command that has the state cache
  317. * invalidate bit set. */
  318. gen7_render_ring_cs_stall_wa(ring);
  319. }
  320. ret = intel_ring_begin(ring, 4);
  321. if (ret)
  322. return ret;
  323. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  324. intel_ring_emit(ring, flags);
  325. intel_ring_emit(ring, scratch_addr);
  326. intel_ring_emit(ring, 0);
  327. intel_ring_advance(ring);
  328. if (!invalidate_domains && flush_domains)
  329. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  330. return 0;
  331. }
  332. static int
  333. gen8_render_ring_flush(struct intel_engine_cs *ring,
  334. u32 invalidate_domains, u32 flush_domains)
  335. {
  336. u32 flags = 0;
  337. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  338. int ret;
  339. flags |= PIPE_CONTROL_CS_STALL;
  340. if (flush_domains) {
  341. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  342. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  343. }
  344. if (invalidate_domains) {
  345. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  346. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  347. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  348. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  349. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  350. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  351. flags |= PIPE_CONTROL_QW_WRITE;
  352. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  353. }
  354. ret = intel_ring_begin(ring, 6);
  355. if (ret)
  356. return ret;
  357. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  358. intel_ring_emit(ring, flags);
  359. intel_ring_emit(ring, scratch_addr);
  360. intel_ring_emit(ring, 0);
  361. intel_ring_emit(ring, 0);
  362. intel_ring_emit(ring, 0);
  363. intel_ring_advance(ring);
  364. return 0;
  365. }
  366. static void ring_write_tail(struct intel_engine_cs *ring,
  367. u32 value)
  368. {
  369. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  370. I915_WRITE_TAIL(ring, value);
  371. }
  372. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  373. {
  374. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  375. u64 acthd;
  376. if (INTEL_INFO(ring->dev)->gen >= 8)
  377. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  378. RING_ACTHD_UDW(ring->mmio_base));
  379. else if (INTEL_INFO(ring->dev)->gen >= 4)
  380. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  381. else
  382. acthd = I915_READ(ACTHD);
  383. return acthd;
  384. }
  385. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  386. {
  387. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  388. u32 addr;
  389. addr = dev_priv->status_page_dmah->busaddr;
  390. if (INTEL_INFO(ring->dev)->gen >= 4)
  391. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  392. I915_WRITE(HWS_PGA, addr);
  393. }
  394. static bool stop_ring(struct intel_engine_cs *ring)
  395. {
  396. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  397. if (!IS_GEN2(ring->dev)) {
  398. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  399. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  400. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  401. return false;
  402. }
  403. }
  404. I915_WRITE_CTL(ring, 0);
  405. I915_WRITE_HEAD(ring, 0);
  406. ring->write_tail(ring, 0);
  407. if (!IS_GEN2(ring->dev)) {
  408. (void)I915_READ_CTL(ring);
  409. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  410. }
  411. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  412. }
  413. static int init_ring_common(struct intel_engine_cs *ring)
  414. {
  415. struct drm_device *dev = ring->dev;
  416. struct drm_i915_private *dev_priv = dev->dev_private;
  417. struct drm_i915_gem_object *obj = ring->buffer->obj;
  418. int ret = 0;
  419. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  420. if (!stop_ring(ring)) {
  421. /* G45 ring initialization often fails to reset head to zero */
  422. DRM_DEBUG_KMS("%s head not reset to zero "
  423. "ctl %08x head %08x tail %08x start %08x\n",
  424. ring->name,
  425. I915_READ_CTL(ring),
  426. I915_READ_HEAD(ring),
  427. I915_READ_TAIL(ring),
  428. I915_READ_START(ring));
  429. if (!stop_ring(ring)) {
  430. DRM_ERROR("failed to set %s head to zero "
  431. "ctl %08x head %08x tail %08x start %08x\n",
  432. ring->name,
  433. I915_READ_CTL(ring),
  434. I915_READ_HEAD(ring),
  435. I915_READ_TAIL(ring),
  436. I915_READ_START(ring));
  437. ret = -EIO;
  438. goto out;
  439. }
  440. }
  441. if (I915_NEED_GFX_HWS(dev))
  442. intel_ring_setup_status_page(ring);
  443. else
  444. ring_setup_phys_status_page(ring);
  445. /* Initialize the ring. This must happen _after_ we've cleared the ring
  446. * registers with the above sequence (the readback of the HEAD registers
  447. * also enforces ordering), otherwise the hw might lose the new ring
  448. * register values. */
  449. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  450. I915_WRITE_CTL(ring,
  451. ((ring->buffer->size - PAGE_SIZE) & RING_NR_PAGES)
  452. | RING_VALID);
  453. /* If the head is still not zero, the ring is dead */
  454. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  455. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  456. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  457. DRM_ERROR("%s initialization failed "
  458. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  459. ring->name,
  460. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  461. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  462. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  463. ret = -EIO;
  464. goto out;
  465. }
  466. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  467. i915_kernel_lost_context(ring->dev);
  468. else {
  469. ring->buffer->head = I915_READ_HEAD(ring);
  470. ring->buffer->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  471. ring->buffer->space = ring_space(ring);
  472. ring->buffer->last_retired_head = -1;
  473. }
  474. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  475. out:
  476. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  477. return ret;
  478. }
  479. static int
  480. init_pipe_control(struct intel_engine_cs *ring)
  481. {
  482. int ret;
  483. if (ring->scratch.obj)
  484. return 0;
  485. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  486. if (ring->scratch.obj == NULL) {
  487. DRM_ERROR("Failed to allocate seqno page\n");
  488. ret = -ENOMEM;
  489. goto err;
  490. }
  491. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  492. if (ret)
  493. goto err_unref;
  494. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  495. if (ret)
  496. goto err_unref;
  497. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  498. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  499. if (ring->scratch.cpu_page == NULL) {
  500. ret = -ENOMEM;
  501. goto err_unpin;
  502. }
  503. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  504. ring->name, ring->scratch.gtt_offset);
  505. return 0;
  506. err_unpin:
  507. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  508. err_unref:
  509. drm_gem_object_unreference(&ring->scratch.obj->base);
  510. err:
  511. return ret;
  512. }
  513. static int init_render_ring(struct intel_engine_cs *ring)
  514. {
  515. struct drm_device *dev = ring->dev;
  516. struct drm_i915_private *dev_priv = dev->dev_private;
  517. int ret = init_ring_common(ring);
  518. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  519. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  520. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  521. /* We need to disable the AsyncFlip performance optimisations in order
  522. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  523. * programmed to '1' on all products.
  524. *
  525. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  526. */
  527. if (INTEL_INFO(dev)->gen >= 6)
  528. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  529. /* Required for the hardware to program scanline values for waiting */
  530. /* WaEnableFlushTlbInvalidationMode:snb */
  531. if (INTEL_INFO(dev)->gen == 6)
  532. I915_WRITE(GFX_MODE,
  533. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  534. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  535. if (IS_GEN7(dev))
  536. I915_WRITE(GFX_MODE_GEN7,
  537. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  538. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  539. if (INTEL_INFO(dev)->gen >= 5) {
  540. ret = init_pipe_control(ring);
  541. if (ret)
  542. return ret;
  543. }
  544. if (IS_GEN6(dev)) {
  545. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  546. * "If this bit is set, STCunit will have LRA as replacement
  547. * policy. [...] This bit must be reset. LRA replacement
  548. * policy is not supported."
  549. */
  550. I915_WRITE(CACHE_MODE_0,
  551. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  552. }
  553. if (INTEL_INFO(dev)->gen >= 6)
  554. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  555. if (HAS_L3_DPF(dev))
  556. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  557. return ret;
  558. }
  559. static void render_ring_cleanup(struct intel_engine_cs *ring)
  560. {
  561. struct drm_device *dev = ring->dev;
  562. if (ring->scratch.obj == NULL)
  563. return;
  564. if (INTEL_INFO(dev)->gen >= 5) {
  565. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  566. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  567. }
  568. drm_gem_object_unreference(&ring->scratch.obj->base);
  569. ring->scratch.obj = NULL;
  570. }
  571. static int gen6_signal(struct intel_engine_cs *signaller,
  572. unsigned int num_dwords)
  573. {
  574. struct drm_device *dev = signaller->dev;
  575. struct drm_i915_private *dev_priv = dev->dev_private;
  576. struct intel_engine_cs *useless;
  577. int i, ret;
  578. /* NB: In order to be able to do semaphore MBOX updates for varying
  579. * number of rings, it's easiest if we round up each individual update
  580. * to a multiple of 2 (since ring updates must always be a multiple of
  581. * 2) even though the actual update only requires 3 dwords.
  582. */
  583. #define MBOX_UPDATE_DWORDS 4
  584. if (i915_semaphore_is_enabled(dev))
  585. num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
  586. else
  587. return intel_ring_begin(signaller, num_dwords);
  588. ret = intel_ring_begin(signaller, num_dwords);
  589. if (ret)
  590. return ret;
  591. #undef MBOX_UPDATE_DWORDS
  592. for_each_ring(useless, dev_priv, i) {
  593. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  594. if (mbox_reg != GEN6_NOSYNC) {
  595. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  596. intel_ring_emit(signaller, mbox_reg);
  597. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  598. intel_ring_emit(signaller, MI_NOOP);
  599. } else {
  600. intel_ring_emit(signaller, MI_NOOP);
  601. intel_ring_emit(signaller, MI_NOOP);
  602. intel_ring_emit(signaller, MI_NOOP);
  603. intel_ring_emit(signaller, MI_NOOP);
  604. }
  605. }
  606. return 0;
  607. }
  608. /**
  609. * gen6_add_request - Update the semaphore mailbox registers
  610. *
  611. * @ring - ring that is adding a request
  612. * @seqno - return seqno stuck into the ring
  613. *
  614. * Update the mailbox registers in the *other* rings with the current seqno.
  615. * This acts like a signal in the canonical semaphore.
  616. */
  617. static int
  618. gen6_add_request(struct intel_engine_cs *ring)
  619. {
  620. int ret;
  621. ret = ring->semaphore.signal(ring, 4);
  622. if (ret)
  623. return ret;
  624. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  625. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  626. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  627. intel_ring_emit(ring, MI_USER_INTERRUPT);
  628. __intel_ring_advance(ring);
  629. return 0;
  630. }
  631. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  632. u32 seqno)
  633. {
  634. struct drm_i915_private *dev_priv = dev->dev_private;
  635. return dev_priv->last_seqno < seqno;
  636. }
  637. /**
  638. * intel_ring_sync - sync the waiter to the signaller on seqno
  639. *
  640. * @waiter - ring that is waiting
  641. * @signaller - ring which has, or will signal
  642. * @seqno - seqno which the waiter will block on
  643. */
  644. static int
  645. gen6_ring_sync(struct intel_engine_cs *waiter,
  646. struct intel_engine_cs *signaller,
  647. u32 seqno)
  648. {
  649. u32 dw1 = MI_SEMAPHORE_MBOX |
  650. MI_SEMAPHORE_COMPARE |
  651. MI_SEMAPHORE_REGISTER;
  652. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  653. int ret;
  654. /* Throughout all of the GEM code, seqno passed implies our current
  655. * seqno is >= the last seqno executed. However for hardware the
  656. * comparison is strictly greater than.
  657. */
  658. seqno -= 1;
  659. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  660. ret = intel_ring_begin(waiter, 4);
  661. if (ret)
  662. return ret;
  663. /* If seqno wrap happened, omit the wait with no-ops */
  664. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  665. intel_ring_emit(waiter, dw1 | wait_mbox);
  666. intel_ring_emit(waiter, seqno);
  667. intel_ring_emit(waiter, 0);
  668. intel_ring_emit(waiter, MI_NOOP);
  669. } else {
  670. intel_ring_emit(waiter, MI_NOOP);
  671. intel_ring_emit(waiter, MI_NOOP);
  672. intel_ring_emit(waiter, MI_NOOP);
  673. intel_ring_emit(waiter, MI_NOOP);
  674. }
  675. intel_ring_advance(waiter);
  676. return 0;
  677. }
  678. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  679. do { \
  680. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  681. PIPE_CONTROL_DEPTH_STALL); \
  682. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  683. intel_ring_emit(ring__, 0); \
  684. intel_ring_emit(ring__, 0); \
  685. } while (0)
  686. static int
  687. pc_render_add_request(struct intel_engine_cs *ring)
  688. {
  689. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  690. int ret;
  691. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  692. * incoherent with writes to memory, i.e. completely fubar,
  693. * so we need to use PIPE_NOTIFY instead.
  694. *
  695. * However, we also need to workaround the qword write
  696. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  697. * memory before requesting an interrupt.
  698. */
  699. ret = intel_ring_begin(ring, 32);
  700. if (ret)
  701. return ret;
  702. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  703. PIPE_CONTROL_WRITE_FLUSH |
  704. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  705. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  706. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  707. intel_ring_emit(ring, 0);
  708. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  709. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  710. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  711. scratch_addr += 2 * CACHELINE_BYTES;
  712. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  713. scratch_addr += 2 * CACHELINE_BYTES;
  714. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  715. scratch_addr += 2 * CACHELINE_BYTES;
  716. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  717. scratch_addr += 2 * CACHELINE_BYTES;
  718. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  719. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  720. PIPE_CONTROL_WRITE_FLUSH |
  721. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  722. PIPE_CONTROL_NOTIFY);
  723. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  724. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  725. intel_ring_emit(ring, 0);
  726. __intel_ring_advance(ring);
  727. return 0;
  728. }
  729. static u32
  730. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  731. {
  732. /* Workaround to force correct ordering between irq and seqno writes on
  733. * ivb (and maybe also on snb) by reading from a CS register (like
  734. * ACTHD) before reading the status page. */
  735. if (!lazy_coherency) {
  736. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  737. POSTING_READ(RING_ACTHD(ring->mmio_base));
  738. }
  739. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  740. }
  741. static u32
  742. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  743. {
  744. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  745. }
  746. static void
  747. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  748. {
  749. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  750. }
  751. static u32
  752. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  753. {
  754. return ring->scratch.cpu_page[0];
  755. }
  756. static void
  757. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  758. {
  759. ring->scratch.cpu_page[0] = seqno;
  760. }
  761. static bool
  762. gen5_ring_get_irq(struct intel_engine_cs *ring)
  763. {
  764. struct drm_device *dev = ring->dev;
  765. struct drm_i915_private *dev_priv = dev->dev_private;
  766. unsigned long flags;
  767. if (!dev->irq_enabled)
  768. return false;
  769. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  770. if (ring->irq_refcount++ == 0)
  771. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  772. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  773. return true;
  774. }
  775. static void
  776. gen5_ring_put_irq(struct intel_engine_cs *ring)
  777. {
  778. struct drm_device *dev = ring->dev;
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. unsigned long flags;
  781. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  782. if (--ring->irq_refcount == 0)
  783. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  784. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  785. }
  786. static bool
  787. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  788. {
  789. struct drm_device *dev = ring->dev;
  790. struct drm_i915_private *dev_priv = dev->dev_private;
  791. unsigned long flags;
  792. if (!dev->irq_enabled)
  793. return false;
  794. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  795. if (ring->irq_refcount++ == 0) {
  796. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  797. I915_WRITE(IMR, dev_priv->irq_mask);
  798. POSTING_READ(IMR);
  799. }
  800. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  801. return true;
  802. }
  803. static void
  804. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  805. {
  806. struct drm_device *dev = ring->dev;
  807. struct drm_i915_private *dev_priv = dev->dev_private;
  808. unsigned long flags;
  809. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  810. if (--ring->irq_refcount == 0) {
  811. dev_priv->irq_mask |= ring->irq_enable_mask;
  812. I915_WRITE(IMR, dev_priv->irq_mask);
  813. POSTING_READ(IMR);
  814. }
  815. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  816. }
  817. static bool
  818. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  819. {
  820. struct drm_device *dev = ring->dev;
  821. struct drm_i915_private *dev_priv = dev->dev_private;
  822. unsigned long flags;
  823. if (!dev->irq_enabled)
  824. return false;
  825. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  826. if (ring->irq_refcount++ == 0) {
  827. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  828. I915_WRITE16(IMR, dev_priv->irq_mask);
  829. POSTING_READ16(IMR);
  830. }
  831. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  832. return true;
  833. }
  834. static void
  835. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  836. {
  837. struct drm_device *dev = ring->dev;
  838. struct drm_i915_private *dev_priv = dev->dev_private;
  839. unsigned long flags;
  840. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  841. if (--ring->irq_refcount == 0) {
  842. dev_priv->irq_mask |= ring->irq_enable_mask;
  843. I915_WRITE16(IMR, dev_priv->irq_mask);
  844. POSTING_READ16(IMR);
  845. }
  846. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  847. }
  848. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  849. {
  850. struct drm_device *dev = ring->dev;
  851. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  852. u32 mmio = 0;
  853. /* The ring status page addresses are no longer next to the rest of
  854. * the ring registers as of gen7.
  855. */
  856. if (IS_GEN7(dev)) {
  857. switch (ring->id) {
  858. case RCS:
  859. mmio = RENDER_HWS_PGA_GEN7;
  860. break;
  861. case BCS:
  862. mmio = BLT_HWS_PGA_GEN7;
  863. break;
  864. /*
  865. * VCS2 actually doesn't exist on Gen7. Only shut up
  866. * gcc switch check warning
  867. */
  868. case VCS2:
  869. case VCS:
  870. mmio = BSD_HWS_PGA_GEN7;
  871. break;
  872. case VECS:
  873. mmio = VEBOX_HWS_PGA_GEN7;
  874. break;
  875. }
  876. } else if (IS_GEN6(ring->dev)) {
  877. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  878. } else {
  879. /* XXX: gen8 returns to sanity */
  880. mmio = RING_HWS_PGA(ring->mmio_base);
  881. }
  882. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  883. POSTING_READ(mmio);
  884. /*
  885. * Flush the TLB for this page
  886. *
  887. * FIXME: These two bits have disappeared on gen8, so a question
  888. * arises: do we still need this and if so how should we go about
  889. * invalidating the TLB?
  890. */
  891. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  892. u32 reg = RING_INSTPM(ring->mmio_base);
  893. /* ring should be idle before issuing a sync flush*/
  894. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  895. I915_WRITE(reg,
  896. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  897. INSTPM_SYNC_FLUSH));
  898. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  899. 1000))
  900. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  901. ring->name);
  902. }
  903. }
  904. static int
  905. bsd_ring_flush(struct intel_engine_cs *ring,
  906. u32 invalidate_domains,
  907. u32 flush_domains)
  908. {
  909. int ret;
  910. ret = intel_ring_begin(ring, 2);
  911. if (ret)
  912. return ret;
  913. intel_ring_emit(ring, MI_FLUSH);
  914. intel_ring_emit(ring, MI_NOOP);
  915. intel_ring_advance(ring);
  916. return 0;
  917. }
  918. static int
  919. i9xx_add_request(struct intel_engine_cs *ring)
  920. {
  921. int ret;
  922. ret = intel_ring_begin(ring, 4);
  923. if (ret)
  924. return ret;
  925. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  926. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  927. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  928. intel_ring_emit(ring, MI_USER_INTERRUPT);
  929. __intel_ring_advance(ring);
  930. return 0;
  931. }
  932. static bool
  933. gen6_ring_get_irq(struct intel_engine_cs *ring)
  934. {
  935. struct drm_device *dev = ring->dev;
  936. struct drm_i915_private *dev_priv = dev->dev_private;
  937. unsigned long flags;
  938. if (!dev->irq_enabled)
  939. return false;
  940. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  941. if (ring->irq_refcount++ == 0) {
  942. if (HAS_L3_DPF(dev) && ring->id == RCS)
  943. I915_WRITE_IMR(ring,
  944. ~(ring->irq_enable_mask |
  945. GT_PARITY_ERROR(dev)));
  946. else
  947. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  948. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  949. }
  950. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  951. return true;
  952. }
  953. static void
  954. gen6_ring_put_irq(struct intel_engine_cs *ring)
  955. {
  956. struct drm_device *dev = ring->dev;
  957. struct drm_i915_private *dev_priv = dev->dev_private;
  958. unsigned long flags;
  959. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  960. if (--ring->irq_refcount == 0) {
  961. if (HAS_L3_DPF(dev) && ring->id == RCS)
  962. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  963. else
  964. I915_WRITE_IMR(ring, ~0);
  965. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  966. }
  967. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  968. }
  969. static bool
  970. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  971. {
  972. struct drm_device *dev = ring->dev;
  973. struct drm_i915_private *dev_priv = dev->dev_private;
  974. unsigned long flags;
  975. if (!dev->irq_enabled)
  976. return false;
  977. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  978. if (ring->irq_refcount++ == 0) {
  979. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  980. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  981. }
  982. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  983. return true;
  984. }
  985. static void
  986. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  987. {
  988. struct drm_device *dev = ring->dev;
  989. struct drm_i915_private *dev_priv = dev->dev_private;
  990. unsigned long flags;
  991. if (!dev->irq_enabled)
  992. return;
  993. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  994. if (--ring->irq_refcount == 0) {
  995. I915_WRITE_IMR(ring, ~0);
  996. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  997. }
  998. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  999. }
  1000. static bool
  1001. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1002. {
  1003. struct drm_device *dev = ring->dev;
  1004. struct drm_i915_private *dev_priv = dev->dev_private;
  1005. unsigned long flags;
  1006. if (!dev->irq_enabled)
  1007. return false;
  1008. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1009. if (ring->irq_refcount++ == 0) {
  1010. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1011. I915_WRITE_IMR(ring,
  1012. ~(ring->irq_enable_mask |
  1013. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1014. } else {
  1015. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1016. }
  1017. POSTING_READ(RING_IMR(ring->mmio_base));
  1018. }
  1019. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1020. return true;
  1021. }
  1022. static void
  1023. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1024. {
  1025. struct drm_device *dev = ring->dev;
  1026. struct drm_i915_private *dev_priv = dev->dev_private;
  1027. unsigned long flags;
  1028. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1029. if (--ring->irq_refcount == 0) {
  1030. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1031. I915_WRITE_IMR(ring,
  1032. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1033. } else {
  1034. I915_WRITE_IMR(ring, ~0);
  1035. }
  1036. POSTING_READ(RING_IMR(ring->mmio_base));
  1037. }
  1038. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1039. }
  1040. static int
  1041. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1042. u64 offset, u32 length,
  1043. unsigned flags)
  1044. {
  1045. int ret;
  1046. ret = intel_ring_begin(ring, 2);
  1047. if (ret)
  1048. return ret;
  1049. intel_ring_emit(ring,
  1050. MI_BATCH_BUFFER_START |
  1051. MI_BATCH_GTT |
  1052. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1053. intel_ring_emit(ring, offset);
  1054. intel_ring_advance(ring);
  1055. return 0;
  1056. }
  1057. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1058. #define I830_BATCH_LIMIT (256*1024)
  1059. static int
  1060. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1061. u64 offset, u32 len,
  1062. unsigned flags)
  1063. {
  1064. int ret;
  1065. if (flags & I915_DISPATCH_PINNED) {
  1066. ret = intel_ring_begin(ring, 4);
  1067. if (ret)
  1068. return ret;
  1069. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1070. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1071. intel_ring_emit(ring, offset + len - 8);
  1072. intel_ring_emit(ring, MI_NOOP);
  1073. intel_ring_advance(ring);
  1074. } else {
  1075. u32 cs_offset = ring->scratch.gtt_offset;
  1076. if (len > I830_BATCH_LIMIT)
  1077. return -ENOSPC;
  1078. ret = intel_ring_begin(ring, 9+3);
  1079. if (ret)
  1080. return ret;
  1081. /* Blit the batch (which has now all relocs applied) to the stable batch
  1082. * scratch bo area (so that the CS never stumbles over its tlb
  1083. * invalidation bug) ... */
  1084. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1085. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1086. XY_SRC_COPY_BLT_WRITE_RGB);
  1087. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1088. intel_ring_emit(ring, 0);
  1089. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1090. intel_ring_emit(ring, cs_offset);
  1091. intel_ring_emit(ring, 0);
  1092. intel_ring_emit(ring, 4096);
  1093. intel_ring_emit(ring, offset);
  1094. intel_ring_emit(ring, MI_FLUSH);
  1095. /* ... and execute it. */
  1096. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1097. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1098. intel_ring_emit(ring, cs_offset + len - 8);
  1099. intel_ring_advance(ring);
  1100. }
  1101. return 0;
  1102. }
  1103. static int
  1104. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1105. u64 offset, u32 len,
  1106. unsigned flags)
  1107. {
  1108. int ret;
  1109. ret = intel_ring_begin(ring, 2);
  1110. if (ret)
  1111. return ret;
  1112. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1113. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1114. intel_ring_advance(ring);
  1115. return 0;
  1116. }
  1117. static void cleanup_status_page(struct intel_engine_cs *ring)
  1118. {
  1119. struct drm_i915_gem_object *obj;
  1120. obj = ring->status_page.obj;
  1121. if (obj == NULL)
  1122. return;
  1123. kunmap(sg_page(obj->pages->sgl));
  1124. i915_gem_object_ggtt_unpin(obj);
  1125. drm_gem_object_unreference(&obj->base);
  1126. ring->status_page.obj = NULL;
  1127. }
  1128. static int init_status_page(struct intel_engine_cs *ring)
  1129. {
  1130. struct drm_i915_gem_object *obj;
  1131. if ((obj = ring->status_page.obj) == NULL) {
  1132. int ret;
  1133. obj = i915_gem_alloc_object(ring->dev, 4096);
  1134. if (obj == NULL) {
  1135. DRM_ERROR("Failed to allocate status page\n");
  1136. return -ENOMEM;
  1137. }
  1138. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1139. if (ret)
  1140. goto err_unref;
  1141. ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
  1142. if (ret) {
  1143. err_unref:
  1144. drm_gem_object_unreference(&obj->base);
  1145. return ret;
  1146. }
  1147. ring->status_page.obj = obj;
  1148. }
  1149. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1150. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1151. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1152. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1153. ring->name, ring->status_page.gfx_addr);
  1154. return 0;
  1155. }
  1156. static int init_phys_status_page(struct intel_engine_cs *ring)
  1157. {
  1158. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1159. if (!dev_priv->status_page_dmah) {
  1160. dev_priv->status_page_dmah =
  1161. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1162. if (!dev_priv->status_page_dmah)
  1163. return -ENOMEM;
  1164. }
  1165. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1166. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1167. return 0;
  1168. }
  1169. static int allocate_ring_buffer(struct intel_engine_cs *ring)
  1170. {
  1171. struct drm_device *dev = ring->dev;
  1172. struct drm_i915_private *dev_priv = to_i915(dev);
  1173. struct drm_i915_gem_object *obj;
  1174. int ret;
  1175. if (ring->buffer->obj)
  1176. return 0;
  1177. obj = NULL;
  1178. if (!HAS_LLC(dev))
  1179. obj = i915_gem_object_create_stolen(dev, ring->buffer->size);
  1180. if (obj == NULL)
  1181. obj = i915_gem_alloc_object(dev, ring->buffer->size);
  1182. if (obj == NULL)
  1183. return -ENOMEM;
  1184. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1185. if (ret)
  1186. goto err_unref;
  1187. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1188. if (ret)
  1189. goto err_unpin;
  1190. ring->buffer->virtual_start =
  1191. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1192. ring->buffer->size);
  1193. if (ring->buffer->virtual_start == NULL) {
  1194. ret = -EINVAL;
  1195. goto err_unpin;
  1196. }
  1197. ring->buffer->obj = obj;
  1198. return 0;
  1199. err_unpin:
  1200. i915_gem_object_ggtt_unpin(obj);
  1201. err_unref:
  1202. drm_gem_object_unreference(&obj->base);
  1203. return ret;
  1204. }
  1205. static int intel_init_ring_buffer(struct drm_device *dev,
  1206. struct intel_engine_cs *ring)
  1207. {
  1208. struct intel_ringbuffer *ringbuf = ring->buffer;
  1209. int ret;
  1210. if (ringbuf == NULL) {
  1211. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1212. if (!ringbuf)
  1213. return -ENOMEM;
  1214. ring->buffer = ringbuf;
  1215. }
  1216. ring->dev = dev;
  1217. INIT_LIST_HEAD(&ring->active_list);
  1218. INIT_LIST_HEAD(&ring->request_list);
  1219. ring->buffer->size = 32 * PAGE_SIZE;
  1220. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1221. init_waitqueue_head(&ring->irq_queue);
  1222. if (I915_NEED_GFX_HWS(dev)) {
  1223. ret = init_status_page(ring);
  1224. if (ret)
  1225. goto error;
  1226. } else {
  1227. BUG_ON(ring->id != RCS);
  1228. ret = init_phys_status_page(ring);
  1229. if (ret)
  1230. goto error;
  1231. }
  1232. ret = allocate_ring_buffer(ring);
  1233. if (ret) {
  1234. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1235. goto error;
  1236. }
  1237. /* Workaround an erratum on the i830 which causes a hang if
  1238. * the TAIL pointer points to within the last 2 cachelines
  1239. * of the buffer.
  1240. */
  1241. ring->buffer->effective_size = ring->buffer->size;
  1242. if (IS_I830(dev) || IS_845G(dev))
  1243. ring->buffer->effective_size -= 2 * CACHELINE_BYTES;
  1244. ret = i915_cmd_parser_init_ring(ring);
  1245. if (ret)
  1246. goto error;
  1247. ret = ring->init(ring);
  1248. if (ret)
  1249. goto error;
  1250. return 0;
  1251. error:
  1252. kfree(ringbuf);
  1253. ring->buffer = NULL;
  1254. return ret;
  1255. }
  1256. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1257. {
  1258. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1259. if (ring->buffer->obj == NULL)
  1260. return;
  1261. intel_stop_ring_buffer(ring);
  1262. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1263. iounmap(ring->buffer->virtual_start);
  1264. i915_gem_object_ggtt_unpin(ring->buffer->obj);
  1265. drm_gem_object_unreference(&ring->buffer->obj->base);
  1266. ring->buffer->obj = NULL;
  1267. ring->preallocated_lazy_request = NULL;
  1268. ring->outstanding_lazy_seqno = 0;
  1269. if (ring->cleanup)
  1270. ring->cleanup(ring);
  1271. cleanup_status_page(ring);
  1272. i915_cmd_parser_fini_ring(ring);
  1273. kfree(ring->buffer);
  1274. ring->buffer = NULL;
  1275. }
  1276. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1277. {
  1278. struct drm_i915_gem_request *request;
  1279. u32 seqno = 0;
  1280. int ret;
  1281. if (ring->buffer->last_retired_head != -1) {
  1282. ring->buffer->head = ring->buffer->last_retired_head;
  1283. ring->buffer->last_retired_head = -1;
  1284. ring->buffer->space = ring_space(ring);
  1285. if (ring->buffer->space >= n)
  1286. return 0;
  1287. }
  1288. list_for_each_entry(request, &ring->request_list, list) {
  1289. if (__ring_space(request->tail, ring->buffer->tail, ring->buffer->size) >= n) {
  1290. seqno = request->seqno;
  1291. break;
  1292. }
  1293. }
  1294. if (seqno == 0)
  1295. return -ENOSPC;
  1296. ret = i915_wait_seqno(ring, seqno);
  1297. if (ret)
  1298. return ret;
  1299. i915_gem_retire_requests_ring(ring);
  1300. ring->buffer->head = ring->buffer->last_retired_head;
  1301. ring->buffer->last_retired_head = -1;
  1302. ring->buffer->space = ring_space(ring);
  1303. return 0;
  1304. }
  1305. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1306. {
  1307. struct drm_device *dev = ring->dev;
  1308. struct drm_i915_private *dev_priv = dev->dev_private;
  1309. unsigned long end;
  1310. int ret;
  1311. ret = intel_ring_wait_request(ring, n);
  1312. if (ret != -ENOSPC)
  1313. return ret;
  1314. /* force the tail write in case we have been skipping them */
  1315. __intel_ring_advance(ring);
  1316. /* With GEM the hangcheck timer should kick us out of the loop,
  1317. * leaving it early runs the risk of corrupting GEM state (due
  1318. * to running on almost untested codepaths). But on resume
  1319. * timers don't work yet, so prevent a complete hang in that
  1320. * case by choosing an insanely large timeout. */
  1321. end = jiffies + 60 * HZ;
  1322. trace_i915_ring_wait_begin(ring);
  1323. do {
  1324. ring->buffer->head = I915_READ_HEAD(ring);
  1325. ring->buffer->space = ring_space(ring);
  1326. if (ring->buffer->space >= n) {
  1327. ret = 0;
  1328. break;
  1329. }
  1330. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1331. dev->primary->master) {
  1332. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1333. if (master_priv->sarea_priv)
  1334. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1335. }
  1336. msleep(1);
  1337. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1338. ret = -ERESTARTSYS;
  1339. break;
  1340. }
  1341. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1342. dev_priv->mm.interruptible);
  1343. if (ret)
  1344. break;
  1345. if (time_after(jiffies, end)) {
  1346. ret = -EBUSY;
  1347. break;
  1348. }
  1349. } while (1);
  1350. trace_i915_ring_wait_end(ring);
  1351. return ret;
  1352. }
  1353. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1354. {
  1355. uint32_t __iomem *virt;
  1356. int rem = ring->buffer->size - ring->buffer->tail;
  1357. if (ring->buffer->space < rem) {
  1358. int ret = ring_wait_for_space(ring, rem);
  1359. if (ret)
  1360. return ret;
  1361. }
  1362. virt = ring->buffer->virtual_start + ring->buffer->tail;
  1363. rem /= 4;
  1364. while (rem--)
  1365. iowrite32(MI_NOOP, virt++);
  1366. ring->buffer->tail = 0;
  1367. ring->buffer->space = ring_space(ring);
  1368. return 0;
  1369. }
  1370. int intel_ring_idle(struct intel_engine_cs *ring)
  1371. {
  1372. u32 seqno;
  1373. int ret;
  1374. /* We need to add any requests required to flush the objects and ring */
  1375. if (ring->outstanding_lazy_seqno) {
  1376. ret = i915_add_request(ring, NULL);
  1377. if (ret)
  1378. return ret;
  1379. }
  1380. /* Wait upon the last request to be completed */
  1381. if (list_empty(&ring->request_list))
  1382. return 0;
  1383. seqno = list_entry(ring->request_list.prev,
  1384. struct drm_i915_gem_request,
  1385. list)->seqno;
  1386. return i915_wait_seqno(ring, seqno);
  1387. }
  1388. static int
  1389. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1390. {
  1391. if (ring->outstanding_lazy_seqno)
  1392. return 0;
  1393. if (ring->preallocated_lazy_request == NULL) {
  1394. struct drm_i915_gem_request *request;
  1395. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1396. if (request == NULL)
  1397. return -ENOMEM;
  1398. ring->preallocated_lazy_request = request;
  1399. }
  1400. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1401. }
  1402. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1403. int bytes)
  1404. {
  1405. int ret;
  1406. if (unlikely(ring->buffer->tail + bytes > ring->buffer->effective_size)) {
  1407. ret = intel_wrap_ring_buffer(ring);
  1408. if (unlikely(ret))
  1409. return ret;
  1410. }
  1411. if (unlikely(ring->buffer->space < bytes)) {
  1412. ret = ring_wait_for_space(ring, bytes);
  1413. if (unlikely(ret))
  1414. return ret;
  1415. }
  1416. return 0;
  1417. }
  1418. int intel_ring_begin(struct intel_engine_cs *ring,
  1419. int num_dwords)
  1420. {
  1421. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1422. int ret;
  1423. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1424. dev_priv->mm.interruptible);
  1425. if (ret)
  1426. return ret;
  1427. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1428. if (ret)
  1429. return ret;
  1430. /* Preallocate the olr before touching the ring */
  1431. ret = intel_ring_alloc_seqno(ring);
  1432. if (ret)
  1433. return ret;
  1434. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1435. return 0;
  1436. }
  1437. /* Align the ring tail to a cacheline boundary */
  1438. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1439. {
  1440. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1441. int ret;
  1442. if (num_dwords == 0)
  1443. return 0;
  1444. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1445. ret = intel_ring_begin(ring, num_dwords);
  1446. if (ret)
  1447. return ret;
  1448. while (num_dwords--)
  1449. intel_ring_emit(ring, MI_NOOP);
  1450. intel_ring_advance(ring);
  1451. return 0;
  1452. }
  1453. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1454. {
  1455. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1456. BUG_ON(ring->outstanding_lazy_seqno);
  1457. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1458. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1459. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1460. if (HAS_VEBOX(ring->dev))
  1461. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1462. }
  1463. ring->set_seqno(ring, seqno);
  1464. ring->hangcheck.seqno = seqno;
  1465. }
  1466. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1467. u32 value)
  1468. {
  1469. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1470. /* Every tail move must follow the sequence below */
  1471. /* Disable notification that the ring is IDLE. The GT
  1472. * will then assume that it is busy and bring it out of rc6.
  1473. */
  1474. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1475. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1476. /* Clear the context id. Here be magic! */
  1477. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1478. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1479. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1480. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1481. 50))
  1482. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1483. /* Now that the ring is fully powered up, update the tail */
  1484. I915_WRITE_TAIL(ring, value);
  1485. POSTING_READ(RING_TAIL(ring->mmio_base));
  1486. /* Let the ring send IDLE messages to the GT again,
  1487. * and so let it sleep to conserve power when idle.
  1488. */
  1489. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1490. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1491. }
  1492. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1493. u32 invalidate, u32 flush)
  1494. {
  1495. uint32_t cmd;
  1496. int ret;
  1497. ret = intel_ring_begin(ring, 4);
  1498. if (ret)
  1499. return ret;
  1500. cmd = MI_FLUSH_DW;
  1501. if (INTEL_INFO(ring->dev)->gen >= 8)
  1502. cmd += 1;
  1503. /*
  1504. * Bspec vol 1c.5 - video engine command streamer:
  1505. * "If ENABLED, all TLBs will be invalidated once the flush
  1506. * operation is complete. This bit is only valid when the
  1507. * Post-Sync Operation field is a value of 1h or 3h."
  1508. */
  1509. if (invalidate & I915_GEM_GPU_DOMAINS)
  1510. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1511. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1512. intel_ring_emit(ring, cmd);
  1513. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1514. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1515. intel_ring_emit(ring, 0); /* upper addr */
  1516. intel_ring_emit(ring, 0); /* value */
  1517. } else {
  1518. intel_ring_emit(ring, 0);
  1519. intel_ring_emit(ring, MI_NOOP);
  1520. }
  1521. intel_ring_advance(ring);
  1522. return 0;
  1523. }
  1524. static int
  1525. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1526. u64 offset, u32 len,
  1527. unsigned flags)
  1528. {
  1529. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1530. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1531. !(flags & I915_DISPATCH_SECURE);
  1532. int ret;
  1533. ret = intel_ring_begin(ring, 4);
  1534. if (ret)
  1535. return ret;
  1536. /* FIXME(BDW): Address space and security selectors. */
  1537. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1538. intel_ring_emit(ring, lower_32_bits(offset));
  1539. intel_ring_emit(ring, upper_32_bits(offset));
  1540. intel_ring_emit(ring, MI_NOOP);
  1541. intel_ring_advance(ring);
  1542. return 0;
  1543. }
  1544. static int
  1545. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1546. u64 offset, u32 len,
  1547. unsigned flags)
  1548. {
  1549. int ret;
  1550. ret = intel_ring_begin(ring, 2);
  1551. if (ret)
  1552. return ret;
  1553. intel_ring_emit(ring,
  1554. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1555. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1556. /* bit0-7 is the length on GEN6+ */
  1557. intel_ring_emit(ring, offset);
  1558. intel_ring_advance(ring);
  1559. return 0;
  1560. }
  1561. static int
  1562. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1563. u64 offset, u32 len,
  1564. unsigned flags)
  1565. {
  1566. int ret;
  1567. ret = intel_ring_begin(ring, 2);
  1568. if (ret)
  1569. return ret;
  1570. intel_ring_emit(ring,
  1571. MI_BATCH_BUFFER_START |
  1572. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1573. /* bit0-7 is the length on GEN6+ */
  1574. intel_ring_emit(ring, offset);
  1575. intel_ring_advance(ring);
  1576. return 0;
  1577. }
  1578. /* Blitter support (SandyBridge+) */
  1579. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1580. u32 invalidate, u32 flush)
  1581. {
  1582. struct drm_device *dev = ring->dev;
  1583. uint32_t cmd;
  1584. int ret;
  1585. ret = intel_ring_begin(ring, 4);
  1586. if (ret)
  1587. return ret;
  1588. cmd = MI_FLUSH_DW;
  1589. if (INTEL_INFO(ring->dev)->gen >= 8)
  1590. cmd += 1;
  1591. /*
  1592. * Bspec vol 1c.3 - blitter engine command streamer:
  1593. * "If ENABLED, all TLBs will be invalidated once the flush
  1594. * operation is complete. This bit is only valid when the
  1595. * Post-Sync Operation field is a value of 1h or 3h."
  1596. */
  1597. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1598. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1599. MI_FLUSH_DW_OP_STOREDW;
  1600. intel_ring_emit(ring, cmd);
  1601. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1602. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1603. intel_ring_emit(ring, 0); /* upper addr */
  1604. intel_ring_emit(ring, 0); /* value */
  1605. } else {
  1606. intel_ring_emit(ring, 0);
  1607. intel_ring_emit(ring, MI_NOOP);
  1608. }
  1609. intel_ring_advance(ring);
  1610. if (IS_GEN7(dev) && !invalidate && flush)
  1611. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1612. return 0;
  1613. }
  1614. int intel_init_render_ring_buffer(struct drm_device *dev)
  1615. {
  1616. struct drm_i915_private *dev_priv = dev->dev_private;
  1617. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1618. ring->name = "render ring";
  1619. ring->id = RCS;
  1620. ring->mmio_base = RENDER_RING_BASE;
  1621. if (INTEL_INFO(dev)->gen >= 6) {
  1622. ring->add_request = gen6_add_request;
  1623. ring->flush = gen7_render_ring_flush;
  1624. if (INTEL_INFO(dev)->gen == 6)
  1625. ring->flush = gen6_render_ring_flush;
  1626. if (INTEL_INFO(dev)->gen >= 8) {
  1627. ring->flush = gen8_render_ring_flush;
  1628. ring->irq_get = gen8_ring_get_irq;
  1629. ring->irq_put = gen8_ring_put_irq;
  1630. } else {
  1631. ring->irq_get = gen6_ring_get_irq;
  1632. ring->irq_put = gen6_ring_put_irq;
  1633. }
  1634. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1635. ring->get_seqno = gen6_ring_get_seqno;
  1636. ring->set_seqno = ring_set_seqno;
  1637. ring->semaphore.sync_to = gen6_ring_sync;
  1638. ring->semaphore.signal = gen6_signal;
  1639. /*
  1640. * The current semaphore is only applied on pre-gen8 platform.
  1641. * And there is no VCS2 ring on the pre-gen8 platform. So the
  1642. * semaphore between RCS and VCS2 is initialized as INVALID.
  1643. * Gen8 will initialize the sema between VCS2 and RCS later.
  1644. */
  1645. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1646. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1647. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1648. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1649. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1650. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1651. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1652. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1653. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1654. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1655. } else if (IS_GEN5(dev)) {
  1656. ring->add_request = pc_render_add_request;
  1657. ring->flush = gen4_render_ring_flush;
  1658. ring->get_seqno = pc_render_get_seqno;
  1659. ring->set_seqno = pc_render_set_seqno;
  1660. ring->irq_get = gen5_ring_get_irq;
  1661. ring->irq_put = gen5_ring_put_irq;
  1662. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1663. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1664. } else {
  1665. ring->add_request = i9xx_add_request;
  1666. if (INTEL_INFO(dev)->gen < 4)
  1667. ring->flush = gen2_render_ring_flush;
  1668. else
  1669. ring->flush = gen4_render_ring_flush;
  1670. ring->get_seqno = ring_get_seqno;
  1671. ring->set_seqno = ring_set_seqno;
  1672. if (IS_GEN2(dev)) {
  1673. ring->irq_get = i8xx_ring_get_irq;
  1674. ring->irq_put = i8xx_ring_put_irq;
  1675. } else {
  1676. ring->irq_get = i9xx_ring_get_irq;
  1677. ring->irq_put = i9xx_ring_put_irq;
  1678. }
  1679. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1680. }
  1681. ring->write_tail = ring_write_tail;
  1682. if (IS_HASWELL(dev))
  1683. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1684. else if (IS_GEN8(dev))
  1685. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1686. else if (INTEL_INFO(dev)->gen >= 6)
  1687. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1688. else if (INTEL_INFO(dev)->gen >= 4)
  1689. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1690. else if (IS_I830(dev) || IS_845G(dev))
  1691. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1692. else
  1693. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1694. ring->init = init_render_ring;
  1695. ring->cleanup = render_ring_cleanup;
  1696. /* Workaround batchbuffer to combat CS tlb bug. */
  1697. if (HAS_BROKEN_CS_TLB(dev)) {
  1698. struct drm_i915_gem_object *obj;
  1699. int ret;
  1700. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1701. if (obj == NULL) {
  1702. DRM_ERROR("Failed to allocate batch bo\n");
  1703. return -ENOMEM;
  1704. }
  1705. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1706. if (ret != 0) {
  1707. drm_gem_object_unreference(&obj->base);
  1708. DRM_ERROR("Failed to ping batch bo\n");
  1709. return ret;
  1710. }
  1711. ring->scratch.obj = obj;
  1712. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1713. }
  1714. return intel_init_ring_buffer(dev, ring);
  1715. }
  1716. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1717. {
  1718. struct drm_i915_private *dev_priv = dev->dev_private;
  1719. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1720. struct intel_ringbuffer *ringbuf = ring->buffer;
  1721. int ret;
  1722. if (ringbuf == NULL) {
  1723. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1724. if (!ringbuf)
  1725. return -ENOMEM;
  1726. ring->buffer = ringbuf;
  1727. }
  1728. ring->name = "render ring";
  1729. ring->id = RCS;
  1730. ring->mmio_base = RENDER_RING_BASE;
  1731. if (INTEL_INFO(dev)->gen >= 6) {
  1732. /* non-kms not supported on gen6+ */
  1733. ret = -ENODEV;
  1734. goto err_ringbuf;
  1735. }
  1736. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1737. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1738. * the special gen5 functions. */
  1739. ring->add_request = i9xx_add_request;
  1740. if (INTEL_INFO(dev)->gen < 4)
  1741. ring->flush = gen2_render_ring_flush;
  1742. else
  1743. ring->flush = gen4_render_ring_flush;
  1744. ring->get_seqno = ring_get_seqno;
  1745. ring->set_seqno = ring_set_seqno;
  1746. if (IS_GEN2(dev)) {
  1747. ring->irq_get = i8xx_ring_get_irq;
  1748. ring->irq_put = i8xx_ring_put_irq;
  1749. } else {
  1750. ring->irq_get = i9xx_ring_get_irq;
  1751. ring->irq_put = i9xx_ring_put_irq;
  1752. }
  1753. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1754. ring->write_tail = ring_write_tail;
  1755. if (INTEL_INFO(dev)->gen >= 4)
  1756. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1757. else if (IS_I830(dev) || IS_845G(dev))
  1758. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1759. else
  1760. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1761. ring->init = init_render_ring;
  1762. ring->cleanup = render_ring_cleanup;
  1763. ring->dev = dev;
  1764. INIT_LIST_HEAD(&ring->active_list);
  1765. INIT_LIST_HEAD(&ring->request_list);
  1766. ring->buffer->size = size;
  1767. ring->buffer->effective_size = ring->buffer->size;
  1768. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1769. ring->buffer->effective_size -= 2 * CACHELINE_BYTES;
  1770. ring->buffer->virtual_start = ioremap_wc(start, size);
  1771. if (ring->buffer->virtual_start == NULL) {
  1772. DRM_ERROR("can not ioremap virtual address for"
  1773. " ring buffer\n");
  1774. ret = -ENOMEM;
  1775. goto err_ringbuf;
  1776. }
  1777. if (!I915_NEED_GFX_HWS(dev)) {
  1778. ret = init_phys_status_page(ring);
  1779. if (ret)
  1780. goto err_vstart;
  1781. }
  1782. return 0;
  1783. err_vstart:
  1784. iounmap(ring->buffer->virtual_start);
  1785. err_ringbuf:
  1786. kfree(ringbuf);
  1787. ring->buffer = NULL;
  1788. return ret;
  1789. }
  1790. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1791. {
  1792. struct drm_i915_private *dev_priv = dev->dev_private;
  1793. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  1794. ring->name = "bsd ring";
  1795. ring->id = VCS;
  1796. ring->write_tail = ring_write_tail;
  1797. if (INTEL_INFO(dev)->gen >= 6) {
  1798. ring->mmio_base = GEN6_BSD_RING_BASE;
  1799. /* gen6 bsd needs a special wa for tail updates */
  1800. if (IS_GEN6(dev))
  1801. ring->write_tail = gen6_bsd_ring_write_tail;
  1802. ring->flush = gen6_bsd_ring_flush;
  1803. ring->add_request = gen6_add_request;
  1804. ring->get_seqno = gen6_ring_get_seqno;
  1805. ring->set_seqno = ring_set_seqno;
  1806. if (INTEL_INFO(dev)->gen >= 8) {
  1807. ring->irq_enable_mask =
  1808. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1809. ring->irq_get = gen8_ring_get_irq;
  1810. ring->irq_put = gen8_ring_put_irq;
  1811. ring->dispatch_execbuffer =
  1812. gen8_ring_dispatch_execbuffer;
  1813. } else {
  1814. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1815. ring->irq_get = gen6_ring_get_irq;
  1816. ring->irq_put = gen6_ring_put_irq;
  1817. ring->dispatch_execbuffer =
  1818. gen6_ring_dispatch_execbuffer;
  1819. }
  1820. ring->semaphore.sync_to = gen6_ring_sync;
  1821. ring->semaphore.signal = gen6_signal;
  1822. /*
  1823. * The current semaphore is only applied on pre-gen8 platform.
  1824. * And there is no VCS2 ring on the pre-gen8 platform. So the
  1825. * semaphore between VCS and VCS2 is initialized as INVALID.
  1826. * Gen8 will initialize the sema between VCS2 and VCS later.
  1827. */
  1828. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  1829. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1830. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  1831. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1832. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1833. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  1834. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  1835. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  1836. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  1837. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1838. } else {
  1839. ring->mmio_base = BSD_RING_BASE;
  1840. ring->flush = bsd_ring_flush;
  1841. ring->add_request = i9xx_add_request;
  1842. ring->get_seqno = ring_get_seqno;
  1843. ring->set_seqno = ring_set_seqno;
  1844. if (IS_GEN5(dev)) {
  1845. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1846. ring->irq_get = gen5_ring_get_irq;
  1847. ring->irq_put = gen5_ring_put_irq;
  1848. } else {
  1849. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1850. ring->irq_get = i9xx_ring_get_irq;
  1851. ring->irq_put = i9xx_ring_put_irq;
  1852. }
  1853. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1854. }
  1855. ring->init = init_ring_common;
  1856. return intel_init_ring_buffer(dev, ring);
  1857. }
  1858. /**
  1859. * Initialize the second BSD ring for Broadwell GT3.
  1860. * It is noted that this only exists on Broadwell GT3.
  1861. */
  1862. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  1863. {
  1864. struct drm_i915_private *dev_priv = dev->dev_private;
  1865. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  1866. if ((INTEL_INFO(dev)->gen != 8)) {
  1867. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  1868. return -EINVAL;
  1869. }
  1870. ring->name = "bds2_ring";
  1871. ring->id = VCS2;
  1872. ring->write_tail = ring_write_tail;
  1873. ring->mmio_base = GEN8_BSD2_RING_BASE;
  1874. ring->flush = gen6_bsd_ring_flush;
  1875. ring->add_request = gen6_add_request;
  1876. ring->get_seqno = gen6_ring_get_seqno;
  1877. ring->set_seqno = ring_set_seqno;
  1878. ring->irq_enable_mask =
  1879. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  1880. ring->irq_get = gen8_ring_get_irq;
  1881. ring->irq_put = gen8_ring_put_irq;
  1882. ring->dispatch_execbuffer =
  1883. gen8_ring_dispatch_execbuffer;
  1884. ring->semaphore.sync_to = gen6_ring_sync;
  1885. ring->semaphore.signal = gen6_signal;
  1886. /*
  1887. * The current semaphore is only applied on the pre-gen8. And there
  1888. * is no bsd2 ring on the pre-gen8. So now the semaphore_register
  1889. * between VCS2 and other ring is initialized as invalid.
  1890. * Gen8 will initialize the sema between VCS2 and other ring later.
  1891. */
  1892. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1893. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1894. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1895. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1896. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1897. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1898. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  1899. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  1900. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  1901. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1902. ring->init = init_ring_common;
  1903. return intel_init_ring_buffer(dev, ring);
  1904. }
  1905. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1906. {
  1907. struct drm_i915_private *dev_priv = dev->dev_private;
  1908. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  1909. ring->name = "blitter ring";
  1910. ring->id = BCS;
  1911. ring->mmio_base = BLT_RING_BASE;
  1912. ring->write_tail = ring_write_tail;
  1913. ring->flush = gen6_ring_flush;
  1914. ring->add_request = gen6_add_request;
  1915. ring->get_seqno = gen6_ring_get_seqno;
  1916. ring->set_seqno = ring_set_seqno;
  1917. if (INTEL_INFO(dev)->gen >= 8) {
  1918. ring->irq_enable_mask =
  1919. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1920. ring->irq_get = gen8_ring_get_irq;
  1921. ring->irq_put = gen8_ring_put_irq;
  1922. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1923. } else {
  1924. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1925. ring->irq_get = gen6_ring_get_irq;
  1926. ring->irq_put = gen6_ring_put_irq;
  1927. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1928. }
  1929. ring->semaphore.sync_to = gen6_ring_sync;
  1930. ring->semaphore.signal = gen6_signal;
  1931. /*
  1932. * The current semaphore is only applied on pre-gen8 platform. And
  1933. * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
  1934. * between BCS and VCS2 is initialized as INVALID.
  1935. * Gen8 will initialize the sema between BCS and VCS2 later.
  1936. */
  1937. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  1938. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  1939. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1940. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1941. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1942. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  1943. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  1944. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  1945. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  1946. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1947. ring->init = init_ring_common;
  1948. return intel_init_ring_buffer(dev, ring);
  1949. }
  1950. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1951. {
  1952. struct drm_i915_private *dev_priv = dev->dev_private;
  1953. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  1954. ring->name = "video enhancement ring";
  1955. ring->id = VECS;
  1956. ring->mmio_base = VEBOX_RING_BASE;
  1957. ring->write_tail = ring_write_tail;
  1958. ring->flush = gen6_ring_flush;
  1959. ring->add_request = gen6_add_request;
  1960. ring->get_seqno = gen6_ring_get_seqno;
  1961. ring->set_seqno = ring_set_seqno;
  1962. if (INTEL_INFO(dev)->gen >= 8) {
  1963. ring->irq_enable_mask =
  1964. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1965. ring->irq_get = gen8_ring_get_irq;
  1966. ring->irq_put = gen8_ring_put_irq;
  1967. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1968. } else {
  1969. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1970. ring->irq_get = hsw_vebox_get_irq;
  1971. ring->irq_put = hsw_vebox_put_irq;
  1972. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1973. }
  1974. ring->semaphore.sync_to = gen6_ring_sync;
  1975. ring->semaphore.signal = gen6_signal;
  1976. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  1977. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1978. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1979. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1980. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1981. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  1982. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  1983. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  1984. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  1985. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1986. ring->init = init_ring_common;
  1987. return intel_init_ring_buffer(dev, ring);
  1988. }
  1989. int
  1990. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  1991. {
  1992. int ret;
  1993. if (!ring->gpu_caches_dirty)
  1994. return 0;
  1995. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1996. if (ret)
  1997. return ret;
  1998. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1999. ring->gpu_caches_dirty = false;
  2000. return 0;
  2001. }
  2002. int
  2003. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2004. {
  2005. uint32_t flush_domains;
  2006. int ret;
  2007. flush_domains = 0;
  2008. if (ring->gpu_caches_dirty)
  2009. flush_domains = I915_GEM_GPU_DOMAINS;
  2010. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2011. if (ret)
  2012. return ret;
  2013. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2014. ring->gpu_caches_dirty = false;
  2015. return 0;
  2016. }
  2017. void
  2018. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2019. {
  2020. int ret;
  2021. if (!intel_ring_initialized(ring))
  2022. return;
  2023. ret = intel_ring_idle(ring);
  2024. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2025. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2026. ring->name, ret);
  2027. stop_ring(ring);
  2028. }