free-space-cache.c 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2008 Red Hat. All rights reserved.
  4. */
  5. #include <linux/pagemap.h>
  6. #include <linux/sched.h>
  7. #include <linux/sched/signal.h>
  8. #include <linux/slab.h>
  9. #include <linux/math64.h>
  10. #include <linux/ratelimit.h>
  11. #include <linux/error-injection.h>
  12. #include <linux/sched/mm.h>
  13. #include "ctree.h"
  14. #include "free-space-cache.h"
  15. #include "transaction.h"
  16. #include "disk-io.h"
  17. #include "extent_io.h"
  18. #include "inode-map.h"
  19. #include "volumes.h"
  20. #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
  21. #define MAX_CACHE_BYTES_PER_GIG SZ_32K
  22. struct btrfs_trim_range {
  23. u64 start;
  24. u64 bytes;
  25. struct list_head list;
  26. };
  27. static int link_free_space(struct btrfs_free_space_ctl *ctl,
  28. struct btrfs_free_space *info);
  29. static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  30. struct btrfs_free_space *info);
  31. static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  32. struct btrfs_trans_handle *trans,
  33. struct btrfs_io_ctl *io_ctl,
  34. struct btrfs_path *path);
  35. static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  36. struct btrfs_path *path,
  37. u64 offset)
  38. {
  39. struct btrfs_fs_info *fs_info = root->fs_info;
  40. struct btrfs_key key;
  41. struct btrfs_key location;
  42. struct btrfs_disk_key disk_key;
  43. struct btrfs_free_space_header *header;
  44. struct extent_buffer *leaf;
  45. struct inode *inode = NULL;
  46. unsigned nofs_flag;
  47. int ret;
  48. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  49. key.offset = offset;
  50. key.type = 0;
  51. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  52. if (ret < 0)
  53. return ERR_PTR(ret);
  54. if (ret > 0) {
  55. btrfs_release_path(path);
  56. return ERR_PTR(-ENOENT);
  57. }
  58. leaf = path->nodes[0];
  59. header = btrfs_item_ptr(leaf, path->slots[0],
  60. struct btrfs_free_space_header);
  61. btrfs_free_space_key(leaf, header, &disk_key);
  62. btrfs_disk_key_to_cpu(&location, &disk_key);
  63. btrfs_release_path(path);
  64. /*
  65. * We are often under a trans handle at this point, so we need to make
  66. * sure NOFS is set to keep us from deadlocking.
  67. */
  68. nofs_flag = memalloc_nofs_save();
  69. inode = btrfs_iget(fs_info->sb, &location, root, NULL);
  70. memalloc_nofs_restore(nofs_flag);
  71. if (IS_ERR(inode))
  72. return inode;
  73. mapping_set_gfp_mask(inode->i_mapping,
  74. mapping_gfp_constraint(inode->i_mapping,
  75. ~(__GFP_FS | __GFP_HIGHMEM)));
  76. return inode;
  77. }
  78. struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
  79. struct btrfs_block_group_cache
  80. *block_group, struct btrfs_path *path)
  81. {
  82. struct inode *inode = NULL;
  83. u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
  84. spin_lock(&block_group->lock);
  85. if (block_group->inode)
  86. inode = igrab(block_group->inode);
  87. spin_unlock(&block_group->lock);
  88. if (inode)
  89. return inode;
  90. inode = __lookup_free_space_inode(fs_info->tree_root, path,
  91. block_group->key.objectid);
  92. if (IS_ERR(inode))
  93. return inode;
  94. spin_lock(&block_group->lock);
  95. if (!((BTRFS_I(inode)->flags & flags) == flags)) {
  96. btrfs_info(fs_info, "Old style space inode found, converting.");
  97. BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
  98. BTRFS_INODE_NODATACOW;
  99. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  100. }
  101. if (!block_group->iref) {
  102. block_group->inode = igrab(inode);
  103. block_group->iref = 1;
  104. }
  105. spin_unlock(&block_group->lock);
  106. return inode;
  107. }
  108. static int __create_free_space_inode(struct btrfs_root *root,
  109. struct btrfs_trans_handle *trans,
  110. struct btrfs_path *path,
  111. u64 ino, u64 offset)
  112. {
  113. struct btrfs_key key;
  114. struct btrfs_disk_key disk_key;
  115. struct btrfs_free_space_header *header;
  116. struct btrfs_inode_item *inode_item;
  117. struct extent_buffer *leaf;
  118. u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
  119. int ret;
  120. ret = btrfs_insert_empty_inode(trans, root, path, ino);
  121. if (ret)
  122. return ret;
  123. /* We inline crc's for the free disk space cache */
  124. if (ino != BTRFS_FREE_INO_OBJECTID)
  125. flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
  126. leaf = path->nodes[0];
  127. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  128. struct btrfs_inode_item);
  129. btrfs_item_key(leaf, &disk_key, path->slots[0]);
  130. memzero_extent_buffer(leaf, (unsigned long)inode_item,
  131. sizeof(*inode_item));
  132. btrfs_set_inode_generation(leaf, inode_item, trans->transid);
  133. btrfs_set_inode_size(leaf, inode_item, 0);
  134. btrfs_set_inode_nbytes(leaf, inode_item, 0);
  135. btrfs_set_inode_uid(leaf, inode_item, 0);
  136. btrfs_set_inode_gid(leaf, inode_item, 0);
  137. btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
  138. btrfs_set_inode_flags(leaf, inode_item, flags);
  139. btrfs_set_inode_nlink(leaf, inode_item, 1);
  140. btrfs_set_inode_transid(leaf, inode_item, trans->transid);
  141. btrfs_set_inode_block_group(leaf, inode_item, offset);
  142. btrfs_mark_buffer_dirty(leaf);
  143. btrfs_release_path(path);
  144. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  145. key.offset = offset;
  146. key.type = 0;
  147. ret = btrfs_insert_empty_item(trans, root, path, &key,
  148. sizeof(struct btrfs_free_space_header));
  149. if (ret < 0) {
  150. btrfs_release_path(path);
  151. return ret;
  152. }
  153. leaf = path->nodes[0];
  154. header = btrfs_item_ptr(leaf, path->slots[0],
  155. struct btrfs_free_space_header);
  156. memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
  157. btrfs_set_free_space_key(leaf, header, &disk_key);
  158. btrfs_mark_buffer_dirty(leaf);
  159. btrfs_release_path(path);
  160. return 0;
  161. }
  162. int create_free_space_inode(struct btrfs_fs_info *fs_info,
  163. struct btrfs_trans_handle *trans,
  164. struct btrfs_block_group_cache *block_group,
  165. struct btrfs_path *path)
  166. {
  167. int ret;
  168. u64 ino;
  169. ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
  170. if (ret < 0)
  171. return ret;
  172. return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
  173. block_group->key.objectid);
  174. }
  175. int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
  176. struct btrfs_block_rsv *rsv)
  177. {
  178. u64 needed_bytes;
  179. int ret;
  180. /* 1 for slack space, 1 for updating the inode */
  181. needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
  182. btrfs_calc_trans_metadata_size(fs_info, 1);
  183. spin_lock(&rsv->lock);
  184. if (rsv->reserved < needed_bytes)
  185. ret = -ENOSPC;
  186. else
  187. ret = 0;
  188. spin_unlock(&rsv->lock);
  189. return ret;
  190. }
  191. int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
  192. struct btrfs_block_group_cache *block_group,
  193. struct inode *inode)
  194. {
  195. struct btrfs_root *root = BTRFS_I(inode)->root;
  196. int ret = 0;
  197. bool locked = false;
  198. if (block_group) {
  199. struct btrfs_path *path = btrfs_alloc_path();
  200. if (!path) {
  201. ret = -ENOMEM;
  202. goto fail;
  203. }
  204. locked = true;
  205. mutex_lock(&trans->transaction->cache_write_mutex);
  206. if (!list_empty(&block_group->io_list)) {
  207. list_del_init(&block_group->io_list);
  208. btrfs_wait_cache_io(trans, block_group, path);
  209. btrfs_put_block_group(block_group);
  210. }
  211. /*
  212. * now that we've truncated the cache away, its no longer
  213. * setup or written
  214. */
  215. spin_lock(&block_group->lock);
  216. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  217. spin_unlock(&block_group->lock);
  218. btrfs_free_path(path);
  219. }
  220. btrfs_i_size_write(BTRFS_I(inode), 0);
  221. truncate_pagecache(inode, 0);
  222. /*
  223. * We skip the throttling logic for free space cache inodes, so we don't
  224. * need to check for -EAGAIN.
  225. */
  226. ret = btrfs_truncate_inode_items(trans, root, inode,
  227. 0, BTRFS_EXTENT_DATA_KEY);
  228. if (ret)
  229. goto fail;
  230. ret = btrfs_update_inode(trans, root, inode);
  231. fail:
  232. if (locked)
  233. mutex_unlock(&trans->transaction->cache_write_mutex);
  234. if (ret)
  235. btrfs_abort_transaction(trans, ret);
  236. return ret;
  237. }
  238. static void readahead_cache(struct inode *inode)
  239. {
  240. struct file_ra_state *ra;
  241. unsigned long last_index;
  242. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  243. if (!ra)
  244. return;
  245. file_ra_state_init(ra, inode->i_mapping);
  246. last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
  247. page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
  248. kfree(ra);
  249. }
  250. static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
  251. int write)
  252. {
  253. int num_pages;
  254. int check_crcs = 0;
  255. num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
  256. if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
  257. check_crcs = 1;
  258. /* Make sure we can fit our crcs and generation into the first page */
  259. if (write && check_crcs &&
  260. (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
  261. return -ENOSPC;
  262. memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
  263. io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
  264. if (!io_ctl->pages)
  265. return -ENOMEM;
  266. io_ctl->num_pages = num_pages;
  267. io_ctl->fs_info = btrfs_sb(inode->i_sb);
  268. io_ctl->check_crcs = check_crcs;
  269. io_ctl->inode = inode;
  270. return 0;
  271. }
  272. ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
  273. static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
  274. {
  275. kfree(io_ctl->pages);
  276. io_ctl->pages = NULL;
  277. }
  278. static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
  279. {
  280. if (io_ctl->cur) {
  281. io_ctl->cur = NULL;
  282. io_ctl->orig = NULL;
  283. }
  284. }
  285. static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
  286. {
  287. ASSERT(io_ctl->index < io_ctl->num_pages);
  288. io_ctl->page = io_ctl->pages[io_ctl->index++];
  289. io_ctl->cur = page_address(io_ctl->page);
  290. io_ctl->orig = io_ctl->cur;
  291. io_ctl->size = PAGE_SIZE;
  292. if (clear)
  293. clear_page(io_ctl->cur);
  294. }
  295. static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
  296. {
  297. int i;
  298. io_ctl_unmap_page(io_ctl);
  299. for (i = 0; i < io_ctl->num_pages; i++) {
  300. if (io_ctl->pages[i]) {
  301. ClearPageChecked(io_ctl->pages[i]);
  302. unlock_page(io_ctl->pages[i]);
  303. put_page(io_ctl->pages[i]);
  304. }
  305. }
  306. }
  307. static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
  308. int uptodate)
  309. {
  310. struct page *page;
  311. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  312. int i;
  313. for (i = 0; i < io_ctl->num_pages; i++) {
  314. page = find_or_create_page(inode->i_mapping, i, mask);
  315. if (!page) {
  316. io_ctl_drop_pages(io_ctl);
  317. return -ENOMEM;
  318. }
  319. io_ctl->pages[i] = page;
  320. if (uptodate && !PageUptodate(page)) {
  321. btrfs_readpage(NULL, page);
  322. lock_page(page);
  323. if (!PageUptodate(page)) {
  324. btrfs_err(BTRFS_I(inode)->root->fs_info,
  325. "error reading free space cache");
  326. io_ctl_drop_pages(io_ctl);
  327. return -EIO;
  328. }
  329. }
  330. }
  331. for (i = 0; i < io_ctl->num_pages; i++) {
  332. clear_page_dirty_for_io(io_ctl->pages[i]);
  333. set_page_extent_mapped(io_ctl->pages[i]);
  334. }
  335. return 0;
  336. }
  337. static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
  338. {
  339. __le64 *val;
  340. io_ctl_map_page(io_ctl, 1);
  341. /*
  342. * Skip the csum areas. If we don't check crcs then we just have a
  343. * 64bit chunk at the front of the first page.
  344. */
  345. if (io_ctl->check_crcs) {
  346. io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
  347. io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
  348. } else {
  349. io_ctl->cur += sizeof(u64);
  350. io_ctl->size -= sizeof(u64) * 2;
  351. }
  352. val = io_ctl->cur;
  353. *val = cpu_to_le64(generation);
  354. io_ctl->cur += sizeof(u64);
  355. }
  356. static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
  357. {
  358. __le64 *gen;
  359. /*
  360. * Skip the crc area. If we don't check crcs then we just have a 64bit
  361. * chunk at the front of the first page.
  362. */
  363. if (io_ctl->check_crcs) {
  364. io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
  365. io_ctl->size -= sizeof(u64) +
  366. (sizeof(u32) * io_ctl->num_pages);
  367. } else {
  368. io_ctl->cur += sizeof(u64);
  369. io_ctl->size -= sizeof(u64) * 2;
  370. }
  371. gen = io_ctl->cur;
  372. if (le64_to_cpu(*gen) != generation) {
  373. btrfs_err_rl(io_ctl->fs_info,
  374. "space cache generation (%llu) does not match inode (%llu)",
  375. *gen, generation);
  376. io_ctl_unmap_page(io_ctl);
  377. return -EIO;
  378. }
  379. io_ctl->cur += sizeof(u64);
  380. return 0;
  381. }
  382. static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
  383. {
  384. u32 *tmp;
  385. u32 crc = ~(u32)0;
  386. unsigned offset = 0;
  387. if (!io_ctl->check_crcs) {
  388. io_ctl_unmap_page(io_ctl);
  389. return;
  390. }
  391. if (index == 0)
  392. offset = sizeof(u32) * io_ctl->num_pages;
  393. crc = btrfs_csum_data(io_ctl->orig + offset, crc,
  394. PAGE_SIZE - offset);
  395. btrfs_csum_final(crc, (u8 *)&crc);
  396. io_ctl_unmap_page(io_ctl);
  397. tmp = page_address(io_ctl->pages[0]);
  398. tmp += index;
  399. *tmp = crc;
  400. }
  401. static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
  402. {
  403. u32 *tmp, val;
  404. u32 crc = ~(u32)0;
  405. unsigned offset = 0;
  406. if (!io_ctl->check_crcs) {
  407. io_ctl_map_page(io_ctl, 0);
  408. return 0;
  409. }
  410. if (index == 0)
  411. offset = sizeof(u32) * io_ctl->num_pages;
  412. tmp = page_address(io_ctl->pages[0]);
  413. tmp += index;
  414. val = *tmp;
  415. io_ctl_map_page(io_ctl, 0);
  416. crc = btrfs_csum_data(io_ctl->orig + offset, crc,
  417. PAGE_SIZE - offset);
  418. btrfs_csum_final(crc, (u8 *)&crc);
  419. if (val != crc) {
  420. btrfs_err_rl(io_ctl->fs_info,
  421. "csum mismatch on free space cache");
  422. io_ctl_unmap_page(io_ctl);
  423. return -EIO;
  424. }
  425. return 0;
  426. }
  427. static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
  428. void *bitmap)
  429. {
  430. struct btrfs_free_space_entry *entry;
  431. if (!io_ctl->cur)
  432. return -ENOSPC;
  433. entry = io_ctl->cur;
  434. entry->offset = cpu_to_le64(offset);
  435. entry->bytes = cpu_to_le64(bytes);
  436. entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
  437. BTRFS_FREE_SPACE_EXTENT;
  438. io_ctl->cur += sizeof(struct btrfs_free_space_entry);
  439. io_ctl->size -= sizeof(struct btrfs_free_space_entry);
  440. if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
  441. return 0;
  442. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  443. /* No more pages to map */
  444. if (io_ctl->index >= io_ctl->num_pages)
  445. return 0;
  446. /* map the next page */
  447. io_ctl_map_page(io_ctl, 1);
  448. return 0;
  449. }
  450. static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
  451. {
  452. if (!io_ctl->cur)
  453. return -ENOSPC;
  454. /*
  455. * If we aren't at the start of the current page, unmap this one and
  456. * map the next one if there is any left.
  457. */
  458. if (io_ctl->cur != io_ctl->orig) {
  459. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  460. if (io_ctl->index >= io_ctl->num_pages)
  461. return -ENOSPC;
  462. io_ctl_map_page(io_ctl, 0);
  463. }
  464. copy_page(io_ctl->cur, bitmap);
  465. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  466. if (io_ctl->index < io_ctl->num_pages)
  467. io_ctl_map_page(io_ctl, 0);
  468. return 0;
  469. }
  470. static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
  471. {
  472. /*
  473. * If we're not on the boundary we know we've modified the page and we
  474. * need to crc the page.
  475. */
  476. if (io_ctl->cur != io_ctl->orig)
  477. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  478. else
  479. io_ctl_unmap_page(io_ctl);
  480. while (io_ctl->index < io_ctl->num_pages) {
  481. io_ctl_map_page(io_ctl, 1);
  482. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  483. }
  484. }
  485. static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
  486. struct btrfs_free_space *entry, u8 *type)
  487. {
  488. struct btrfs_free_space_entry *e;
  489. int ret;
  490. if (!io_ctl->cur) {
  491. ret = io_ctl_check_crc(io_ctl, io_ctl->index);
  492. if (ret)
  493. return ret;
  494. }
  495. e = io_ctl->cur;
  496. entry->offset = le64_to_cpu(e->offset);
  497. entry->bytes = le64_to_cpu(e->bytes);
  498. *type = e->type;
  499. io_ctl->cur += sizeof(struct btrfs_free_space_entry);
  500. io_ctl->size -= sizeof(struct btrfs_free_space_entry);
  501. if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
  502. return 0;
  503. io_ctl_unmap_page(io_ctl);
  504. return 0;
  505. }
  506. static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
  507. struct btrfs_free_space *entry)
  508. {
  509. int ret;
  510. ret = io_ctl_check_crc(io_ctl, io_ctl->index);
  511. if (ret)
  512. return ret;
  513. copy_page(entry->bitmap, io_ctl->cur);
  514. io_ctl_unmap_page(io_ctl);
  515. return 0;
  516. }
  517. /*
  518. * Since we attach pinned extents after the fact we can have contiguous sections
  519. * of free space that are split up in entries. This poses a problem with the
  520. * tree logging stuff since it could have allocated across what appears to be 2
  521. * entries since we would have merged the entries when adding the pinned extents
  522. * back to the free space cache. So run through the space cache that we just
  523. * loaded and merge contiguous entries. This will make the log replay stuff not
  524. * blow up and it will make for nicer allocator behavior.
  525. */
  526. static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
  527. {
  528. struct btrfs_free_space *e, *prev = NULL;
  529. struct rb_node *n;
  530. again:
  531. spin_lock(&ctl->tree_lock);
  532. for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
  533. e = rb_entry(n, struct btrfs_free_space, offset_index);
  534. if (!prev)
  535. goto next;
  536. if (e->bitmap || prev->bitmap)
  537. goto next;
  538. if (prev->offset + prev->bytes == e->offset) {
  539. unlink_free_space(ctl, prev);
  540. unlink_free_space(ctl, e);
  541. prev->bytes += e->bytes;
  542. kmem_cache_free(btrfs_free_space_cachep, e);
  543. link_free_space(ctl, prev);
  544. prev = NULL;
  545. spin_unlock(&ctl->tree_lock);
  546. goto again;
  547. }
  548. next:
  549. prev = e;
  550. }
  551. spin_unlock(&ctl->tree_lock);
  552. }
  553. static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
  554. struct btrfs_free_space_ctl *ctl,
  555. struct btrfs_path *path, u64 offset)
  556. {
  557. struct btrfs_fs_info *fs_info = root->fs_info;
  558. struct btrfs_free_space_header *header;
  559. struct extent_buffer *leaf;
  560. struct btrfs_io_ctl io_ctl;
  561. struct btrfs_key key;
  562. struct btrfs_free_space *e, *n;
  563. LIST_HEAD(bitmaps);
  564. u64 num_entries;
  565. u64 num_bitmaps;
  566. u64 generation;
  567. u8 type;
  568. int ret = 0;
  569. /* Nothing in the space cache, goodbye */
  570. if (!i_size_read(inode))
  571. return 0;
  572. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  573. key.offset = offset;
  574. key.type = 0;
  575. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  576. if (ret < 0)
  577. return 0;
  578. else if (ret > 0) {
  579. btrfs_release_path(path);
  580. return 0;
  581. }
  582. ret = -1;
  583. leaf = path->nodes[0];
  584. header = btrfs_item_ptr(leaf, path->slots[0],
  585. struct btrfs_free_space_header);
  586. num_entries = btrfs_free_space_entries(leaf, header);
  587. num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
  588. generation = btrfs_free_space_generation(leaf, header);
  589. btrfs_release_path(path);
  590. if (!BTRFS_I(inode)->generation) {
  591. btrfs_info(fs_info,
  592. "the free space cache file (%llu) is invalid, skip it",
  593. offset);
  594. return 0;
  595. }
  596. if (BTRFS_I(inode)->generation != generation) {
  597. btrfs_err(fs_info,
  598. "free space inode generation (%llu) did not match free space cache generation (%llu)",
  599. BTRFS_I(inode)->generation, generation);
  600. return 0;
  601. }
  602. if (!num_entries)
  603. return 0;
  604. ret = io_ctl_init(&io_ctl, inode, 0);
  605. if (ret)
  606. return ret;
  607. readahead_cache(inode);
  608. ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
  609. if (ret)
  610. goto out;
  611. ret = io_ctl_check_crc(&io_ctl, 0);
  612. if (ret)
  613. goto free_cache;
  614. ret = io_ctl_check_generation(&io_ctl, generation);
  615. if (ret)
  616. goto free_cache;
  617. while (num_entries) {
  618. e = kmem_cache_zalloc(btrfs_free_space_cachep,
  619. GFP_NOFS);
  620. if (!e)
  621. goto free_cache;
  622. ret = io_ctl_read_entry(&io_ctl, e, &type);
  623. if (ret) {
  624. kmem_cache_free(btrfs_free_space_cachep, e);
  625. goto free_cache;
  626. }
  627. if (!e->bytes) {
  628. kmem_cache_free(btrfs_free_space_cachep, e);
  629. goto free_cache;
  630. }
  631. if (type == BTRFS_FREE_SPACE_EXTENT) {
  632. spin_lock(&ctl->tree_lock);
  633. ret = link_free_space(ctl, e);
  634. spin_unlock(&ctl->tree_lock);
  635. if (ret) {
  636. btrfs_err(fs_info,
  637. "Duplicate entries in free space cache, dumping");
  638. kmem_cache_free(btrfs_free_space_cachep, e);
  639. goto free_cache;
  640. }
  641. } else {
  642. ASSERT(num_bitmaps);
  643. num_bitmaps--;
  644. e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
  645. if (!e->bitmap) {
  646. kmem_cache_free(
  647. btrfs_free_space_cachep, e);
  648. goto free_cache;
  649. }
  650. spin_lock(&ctl->tree_lock);
  651. ret = link_free_space(ctl, e);
  652. ctl->total_bitmaps++;
  653. ctl->op->recalc_thresholds(ctl);
  654. spin_unlock(&ctl->tree_lock);
  655. if (ret) {
  656. btrfs_err(fs_info,
  657. "Duplicate entries in free space cache, dumping");
  658. kmem_cache_free(btrfs_free_space_cachep, e);
  659. goto free_cache;
  660. }
  661. list_add_tail(&e->list, &bitmaps);
  662. }
  663. num_entries--;
  664. }
  665. io_ctl_unmap_page(&io_ctl);
  666. /*
  667. * We add the bitmaps at the end of the entries in order that
  668. * the bitmap entries are added to the cache.
  669. */
  670. list_for_each_entry_safe(e, n, &bitmaps, list) {
  671. list_del_init(&e->list);
  672. ret = io_ctl_read_bitmap(&io_ctl, e);
  673. if (ret)
  674. goto free_cache;
  675. }
  676. io_ctl_drop_pages(&io_ctl);
  677. merge_space_tree(ctl);
  678. ret = 1;
  679. out:
  680. io_ctl_free(&io_ctl);
  681. return ret;
  682. free_cache:
  683. io_ctl_drop_pages(&io_ctl);
  684. __btrfs_remove_free_space_cache(ctl);
  685. goto out;
  686. }
  687. int load_free_space_cache(struct btrfs_fs_info *fs_info,
  688. struct btrfs_block_group_cache *block_group)
  689. {
  690. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  691. struct inode *inode;
  692. struct btrfs_path *path;
  693. int ret = 0;
  694. bool matched;
  695. u64 used = btrfs_block_group_used(&block_group->item);
  696. /*
  697. * If this block group has been marked to be cleared for one reason or
  698. * another then we can't trust the on disk cache, so just return.
  699. */
  700. spin_lock(&block_group->lock);
  701. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  702. spin_unlock(&block_group->lock);
  703. return 0;
  704. }
  705. spin_unlock(&block_group->lock);
  706. path = btrfs_alloc_path();
  707. if (!path)
  708. return 0;
  709. path->search_commit_root = 1;
  710. path->skip_locking = 1;
  711. inode = lookup_free_space_inode(fs_info, block_group, path);
  712. if (IS_ERR(inode)) {
  713. btrfs_free_path(path);
  714. return 0;
  715. }
  716. /* We may have converted the inode and made the cache invalid. */
  717. spin_lock(&block_group->lock);
  718. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  719. spin_unlock(&block_group->lock);
  720. btrfs_free_path(path);
  721. goto out;
  722. }
  723. spin_unlock(&block_group->lock);
  724. ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
  725. path, block_group->key.objectid);
  726. btrfs_free_path(path);
  727. if (ret <= 0)
  728. goto out;
  729. spin_lock(&ctl->tree_lock);
  730. matched = (ctl->free_space == (block_group->key.offset - used -
  731. block_group->bytes_super));
  732. spin_unlock(&ctl->tree_lock);
  733. if (!matched) {
  734. __btrfs_remove_free_space_cache(ctl);
  735. btrfs_warn(fs_info,
  736. "block group %llu has wrong amount of free space",
  737. block_group->key.objectid);
  738. ret = -1;
  739. }
  740. out:
  741. if (ret < 0) {
  742. /* This cache is bogus, make sure it gets cleared */
  743. spin_lock(&block_group->lock);
  744. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  745. spin_unlock(&block_group->lock);
  746. ret = 0;
  747. btrfs_warn(fs_info,
  748. "failed to load free space cache for block group %llu, rebuilding it now",
  749. block_group->key.objectid);
  750. }
  751. iput(inode);
  752. return ret;
  753. }
  754. static noinline_for_stack
  755. int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
  756. struct btrfs_free_space_ctl *ctl,
  757. struct btrfs_block_group_cache *block_group,
  758. int *entries, int *bitmaps,
  759. struct list_head *bitmap_list)
  760. {
  761. int ret;
  762. struct btrfs_free_cluster *cluster = NULL;
  763. struct btrfs_free_cluster *cluster_locked = NULL;
  764. struct rb_node *node = rb_first(&ctl->free_space_offset);
  765. struct btrfs_trim_range *trim_entry;
  766. /* Get the cluster for this block_group if it exists */
  767. if (block_group && !list_empty(&block_group->cluster_list)) {
  768. cluster = list_entry(block_group->cluster_list.next,
  769. struct btrfs_free_cluster,
  770. block_group_list);
  771. }
  772. if (!node && cluster) {
  773. cluster_locked = cluster;
  774. spin_lock(&cluster_locked->lock);
  775. node = rb_first(&cluster->root);
  776. cluster = NULL;
  777. }
  778. /* Write out the extent entries */
  779. while (node) {
  780. struct btrfs_free_space *e;
  781. e = rb_entry(node, struct btrfs_free_space, offset_index);
  782. *entries += 1;
  783. ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
  784. e->bitmap);
  785. if (ret)
  786. goto fail;
  787. if (e->bitmap) {
  788. list_add_tail(&e->list, bitmap_list);
  789. *bitmaps += 1;
  790. }
  791. node = rb_next(node);
  792. if (!node && cluster) {
  793. node = rb_first(&cluster->root);
  794. cluster_locked = cluster;
  795. spin_lock(&cluster_locked->lock);
  796. cluster = NULL;
  797. }
  798. }
  799. if (cluster_locked) {
  800. spin_unlock(&cluster_locked->lock);
  801. cluster_locked = NULL;
  802. }
  803. /*
  804. * Make sure we don't miss any range that was removed from our rbtree
  805. * because trimming is running. Otherwise after a umount+mount (or crash
  806. * after committing the transaction) we would leak free space and get
  807. * an inconsistent free space cache report from fsck.
  808. */
  809. list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
  810. ret = io_ctl_add_entry(io_ctl, trim_entry->start,
  811. trim_entry->bytes, NULL);
  812. if (ret)
  813. goto fail;
  814. *entries += 1;
  815. }
  816. return 0;
  817. fail:
  818. if (cluster_locked)
  819. spin_unlock(&cluster_locked->lock);
  820. return -ENOSPC;
  821. }
  822. static noinline_for_stack int
  823. update_cache_item(struct btrfs_trans_handle *trans,
  824. struct btrfs_root *root,
  825. struct inode *inode,
  826. struct btrfs_path *path, u64 offset,
  827. int entries, int bitmaps)
  828. {
  829. struct btrfs_key key;
  830. struct btrfs_free_space_header *header;
  831. struct extent_buffer *leaf;
  832. int ret;
  833. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  834. key.offset = offset;
  835. key.type = 0;
  836. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  837. if (ret < 0) {
  838. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
  839. EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
  840. goto fail;
  841. }
  842. leaf = path->nodes[0];
  843. if (ret > 0) {
  844. struct btrfs_key found_key;
  845. ASSERT(path->slots[0]);
  846. path->slots[0]--;
  847. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  848. if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
  849. found_key.offset != offset) {
  850. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
  851. inode->i_size - 1,
  852. EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
  853. NULL);
  854. btrfs_release_path(path);
  855. goto fail;
  856. }
  857. }
  858. BTRFS_I(inode)->generation = trans->transid;
  859. header = btrfs_item_ptr(leaf, path->slots[0],
  860. struct btrfs_free_space_header);
  861. btrfs_set_free_space_entries(leaf, header, entries);
  862. btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
  863. btrfs_set_free_space_generation(leaf, header, trans->transid);
  864. btrfs_mark_buffer_dirty(leaf);
  865. btrfs_release_path(path);
  866. return 0;
  867. fail:
  868. return -1;
  869. }
  870. static noinline_for_stack int
  871. write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
  872. struct btrfs_block_group_cache *block_group,
  873. struct btrfs_io_ctl *io_ctl,
  874. int *entries)
  875. {
  876. u64 start, extent_start, extent_end, len;
  877. struct extent_io_tree *unpin = NULL;
  878. int ret;
  879. if (!block_group)
  880. return 0;
  881. /*
  882. * We want to add any pinned extents to our free space cache
  883. * so we don't leak the space
  884. *
  885. * We shouldn't have switched the pinned extents yet so this is the
  886. * right one
  887. */
  888. unpin = fs_info->pinned_extents;
  889. start = block_group->key.objectid;
  890. while (start < block_group->key.objectid + block_group->key.offset) {
  891. ret = find_first_extent_bit(unpin, start,
  892. &extent_start, &extent_end,
  893. EXTENT_DIRTY, NULL);
  894. if (ret)
  895. return 0;
  896. /* This pinned extent is out of our range */
  897. if (extent_start >= block_group->key.objectid +
  898. block_group->key.offset)
  899. return 0;
  900. extent_start = max(extent_start, start);
  901. extent_end = min(block_group->key.objectid +
  902. block_group->key.offset, extent_end + 1);
  903. len = extent_end - extent_start;
  904. *entries += 1;
  905. ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
  906. if (ret)
  907. return -ENOSPC;
  908. start = extent_end;
  909. }
  910. return 0;
  911. }
  912. static noinline_for_stack int
  913. write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
  914. {
  915. struct btrfs_free_space *entry, *next;
  916. int ret;
  917. /* Write out the bitmaps */
  918. list_for_each_entry_safe(entry, next, bitmap_list, list) {
  919. ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
  920. if (ret)
  921. return -ENOSPC;
  922. list_del_init(&entry->list);
  923. }
  924. return 0;
  925. }
  926. static int flush_dirty_cache(struct inode *inode)
  927. {
  928. int ret;
  929. ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
  930. if (ret)
  931. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
  932. EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
  933. return ret;
  934. }
  935. static void noinline_for_stack
  936. cleanup_bitmap_list(struct list_head *bitmap_list)
  937. {
  938. struct btrfs_free_space *entry, *next;
  939. list_for_each_entry_safe(entry, next, bitmap_list, list)
  940. list_del_init(&entry->list);
  941. }
  942. static void noinline_for_stack
  943. cleanup_write_cache_enospc(struct inode *inode,
  944. struct btrfs_io_ctl *io_ctl,
  945. struct extent_state **cached_state)
  946. {
  947. io_ctl_drop_pages(io_ctl);
  948. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  949. i_size_read(inode) - 1, cached_state);
  950. }
  951. static int __btrfs_wait_cache_io(struct btrfs_root *root,
  952. struct btrfs_trans_handle *trans,
  953. struct btrfs_block_group_cache *block_group,
  954. struct btrfs_io_ctl *io_ctl,
  955. struct btrfs_path *path, u64 offset)
  956. {
  957. int ret;
  958. struct inode *inode = io_ctl->inode;
  959. if (!inode)
  960. return 0;
  961. /* Flush the dirty pages in the cache file. */
  962. ret = flush_dirty_cache(inode);
  963. if (ret)
  964. goto out;
  965. /* Update the cache item to tell everyone this cache file is valid. */
  966. ret = update_cache_item(trans, root, inode, path, offset,
  967. io_ctl->entries, io_ctl->bitmaps);
  968. out:
  969. io_ctl_free(io_ctl);
  970. if (ret) {
  971. invalidate_inode_pages2(inode->i_mapping);
  972. BTRFS_I(inode)->generation = 0;
  973. if (block_group) {
  974. #ifdef DEBUG
  975. btrfs_err(root->fs_info,
  976. "failed to write free space cache for block group %llu",
  977. block_group->key.objectid);
  978. #endif
  979. }
  980. }
  981. btrfs_update_inode(trans, root, inode);
  982. if (block_group) {
  983. /* the dirty list is protected by the dirty_bgs_lock */
  984. spin_lock(&trans->transaction->dirty_bgs_lock);
  985. /* the disk_cache_state is protected by the block group lock */
  986. spin_lock(&block_group->lock);
  987. /*
  988. * only mark this as written if we didn't get put back on
  989. * the dirty list while waiting for IO. Otherwise our
  990. * cache state won't be right, and we won't get written again
  991. */
  992. if (!ret && list_empty(&block_group->dirty_list))
  993. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  994. else if (ret)
  995. block_group->disk_cache_state = BTRFS_DC_ERROR;
  996. spin_unlock(&block_group->lock);
  997. spin_unlock(&trans->transaction->dirty_bgs_lock);
  998. io_ctl->inode = NULL;
  999. iput(inode);
  1000. }
  1001. return ret;
  1002. }
  1003. static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  1004. struct btrfs_trans_handle *trans,
  1005. struct btrfs_io_ctl *io_ctl,
  1006. struct btrfs_path *path)
  1007. {
  1008. return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
  1009. }
  1010. int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
  1011. struct btrfs_block_group_cache *block_group,
  1012. struct btrfs_path *path)
  1013. {
  1014. return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
  1015. block_group, &block_group->io_ctl,
  1016. path, block_group->key.objectid);
  1017. }
  1018. /**
  1019. * __btrfs_write_out_cache - write out cached info to an inode
  1020. * @root - the root the inode belongs to
  1021. * @ctl - the free space cache we are going to write out
  1022. * @block_group - the block_group for this cache if it belongs to a block_group
  1023. * @trans - the trans handle
  1024. *
  1025. * This function writes out a free space cache struct to disk for quick recovery
  1026. * on mount. This will return 0 if it was successful in writing the cache out,
  1027. * or an errno if it was not.
  1028. */
  1029. static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
  1030. struct btrfs_free_space_ctl *ctl,
  1031. struct btrfs_block_group_cache *block_group,
  1032. struct btrfs_io_ctl *io_ctl,
  1033. struct btrfs_trans_handle *trans)
  1034. {
  1035. struct btrfs_fs_info *fs_info = root->fs_info;
  1036. struct extent_state *cached_state = NULL;
  1037. LIST_HEAD(bitmap_list);
  1038. int entries = 0;
  1039. int bitmaps = 0;
  1040. int ret;
  1041. int must_iput = 0;
  1042. if (!i_size_read(inode))
  1043. return -EIO;
  1044. WARN_ON(io_ctl->pages);
  1045. ret = io_ctl_init(io_ctl, inode, 1);
  1046. if (ret)
  1047. return ret;
  1048. if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
  1049. down_write(&block_group->data_rwsem);
  1050. spin_lock(&block_group->lock);
  1051. if (block_group->delalloc_bytes) {
  1052. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  1053. spin_unlock(&block_group->lock);
  1054. up_write(&block_group->data_rwsem);
  1055. BTRFS_I(inode)->generation = 0;
  1056. ret = 0;
  1057. must_iput = 1;
  1058. goto out;
  1059. }
  1060. spin_unlock(&block_group->lock);
  1061. }
  1062. /* Lock all pages first so we can lock the extent safely. */
  1063. ret = io_ctl_prepare_pages(io_ctl, inode, 0);
  1064. if (ret)
  1065. goto out_unlock;
  1066. lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
  1067. &cached_state);
  1068. io_ctl_set_generation(io_ctl, trans->transid);
  1069. mutex_lock(&ctl->cache_writeout_mutex);
  1070. /* Write out the extent entries in the free space cache */
  1071. spin_lock(&ctl->tree_lock);
  1072. ret = write_cache_extent_entries(io_ctl, ctl,
  1073. block_group, &entries, &bitmaps,
  1074. &bitmap_list);
  1075. if (ret)
  1076. goto out_nospc_locked;
  1077. /*
  1078. * Some spaces that are freed in the current transaction are pinned,
  1079. * they will be added into free space cache after the transaction is
  1080. * committed, we shouldn't lose them.
  1081. *
  1082. * If this changes while we are working we'll get added back to
  1083. * the dirty list and redo it. No locking needed
  1084. */
  1085. ret = write_pinned_extent_entries(fs_info, block_group,
  1086. io_ctl, &entries);
  1087. if (ret)
  1088. goto out_nospc_locked;
  1089. /*
  1090. * At last, we write out all the bitmaps and keep cache_writeout_mutex
  1091. * locked while doing it because a concurrent trim can be manipulating
  1092. * or freeing the bitmap.
  1093. */
  1094. ret = write_bitmap_entries(io_ctl, &bitmap_list);
  1095. spin_unlock(&ctl->tree_lock);
  1096. mutex_unlock(&ctl->cache_writeout_mutex);
  1097. if (ret)
  1098. goto out_nospc;
  1099. /* Zero out the rest of the pages just to make sure */
  1100. io_ctl_zero_remaining_pages(io_ctl);
  1101. /* Everything is written out, now we dirty the pages in the file. */
  1102. ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
  1103. i_size_read(inode), &cached_state);
  1104. if (ret)
  1105. goto out_nospc;
  1106. if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
  1107. up_write(&block_group->data_rwsem);
  1108. /*
  1109. * Release the pages and unlock the extent, we will flush
  1110. * them out later
  1111. */
  1112. io_ctl_drop_pages(io_ctl);
  1113. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  1114. i_size_read(inode) - 1, &cached_state);
  1115. /*
  1116. * at this point the pages are under IO and we're happy,
  1117. * The caller is responsible for waiting on them and updating the
  1118. * the cache and the inode
  1119. */
  1120. io_ctl->entries = entries;
  1121. io_ctl->bitmaps = bitmaps;
  1122. ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
  1123. if (ret)
  1124. goto out;
  1125. return 0;
  1126. out:
  1127. io_ctl->inode = NULL;
  1128. io_ctl_free(io_ctl);
  1129. if (ret) {
  1130. invalidate_inode_pages2(inode->i_mapping);
  1131. BTRFS_I(inode)->generation = 0;
  1132. }
  1133. btrfs_update_inode(trans, root, inode);
  1134. if (must_iput)
  1135. iput(inode);
  1136. return ret;
  1137. out_nospc_locked:
  1138. cleanup_bitmap_list(&bitmap_list);
  1139. spin_unlock(&ctl->tree_lock);
  1140. mutex_unlock(&ctl->cache_writeout_mutex);
  1141. out_nospc:
  1142. cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
  1143. out_unlock:
  1144. if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
  1145. up_write(&block_group->data_rwsem);
  1146. goto out;
  1147. }
  1148. int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
  1149. struct btrfs_trans_handle *trans,
  1150. struct btrfs_block_group_cache *block_group,
  1151. struct btrfs_path *path)
  1152. {
  1153. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1154. struct inode *inode;
  1155. int ret = 0;
  1156. spin_lock(&block_group->lock);
  1157. if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
  1158. spin_unlock(&block_group->lock);
  1159. return 0;
  1160. }
  1161. spin_unlock(&block_group->lock);
  1162. inode = lookup_free_space_inode(fs_info, block_group, path);
  1163. if (IS_ERR(inode))
  1164. return 0;
  1165. ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
  1166. block_group, &block_group->io_ctl, trans);
  1167. if (ret) {
  1168. #ifdef DEBUG
  1169. btrfs_err(fs_info,
  1170. "failed to write free space cache for block group %llu",
  1171. block_group->key.objectid);
  1172. #endif
  1173. spin_lock(&block_group->lock);
  1174. block_group->disk_cache_state = BTRFS_DC_ERROR;
  1175. spin_unlock(&block_group->lock);
  1176. block_group->io_ctl.inode = NULL;
  1177. iput(inode);
  1178. }
  1179. /*
  1180. * if ret == 0 the caller is expected to call btrfs_wait_cache_io
  1181. * to wait for IO and put the inode
  1182. */
  1183. return ret;
  1184. }
  1185. static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
  1186. u64 offset)
  1187. {
  1188. ASSERT(offset >= bitmap_start);
  1189. offset -= bitmap_start;
  1190. return (unsigned long)(div_u64(offset, unit));
  1191. }
  1192. static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
  1193. {
  1194. return (unsigned long)(div_u64(bytes, unit));
  1195. }
  1196. static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
  1197. u64 offset)
  1198. {
  1199. u64 bitmap_start;
  1200. u64 bytes_per_bitmap;
  1201. bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
  1202. bitmap_start = offset - ctl->start;
  1203. bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
  1204. bitmap_start *= bytes_per_bitmap;
  1205. bitmap_start += ctl->start;
  1206. return bitmap_start;
  1207. }
  1208. static int tree_insert_offset(struct rb_root *root, u64 offset,
  1209. struct rb_node *node, int bitmap)
  1210. {
  1211. struct rb_node **p = &root->rb_node;
  1212. struct rb_node *parent = NULL;
  1213. struct btrfs_free_space *info;
  1214. while (*p) {
  1215. parent = *p;
  1216. info = rb_entry(parent, struct btrfs_free_space, offset_index);
  1217. if (offset < info->offset) {
  1218. p = &(*p)->rb_left;
  1219. } else if (offset > info->offset) {
  1220. p = &(*p)->rb_right;
  1221. } else {
  1222. /*
  1223. * we could have a bitmap entry and an extent entry
  1224. * share the same offset. If this is the case, we want
  1225. * the extent entry to always be found first if we do a
  1226. * linear search through the tree, since we want to have
  1227. * the quickest allocation time, and allocating from an
  1228. * extent is faster than allocating from a bitmap. So
  1229. * if we're inserting a bitmap and we find an entry at
  1230. * this offset, we want to go right, or after this entry
  1231. * logically. If we are inserting an extent and we've
  1232. * found a bitmap, we want to go left, or before
  1233. * logically.
  1234. */
  1235. if (bitmap) {
  1236. if (info->bitmap) {
  1237. WARN_ON_ONCE(1);
  1238. return -EEXIST;
  1239. }
  1240. p = &(*p)->rb_right;
  1241. } else {
  1242. if (!info->bitmap) {
  1243. WARN_ON_ONCE(1);
  1244. return -EEXIST;
  1245. }
  1246. p = &(*p)->rb_left;
  1247. }
  1248. }
  1249. }
  1250. rb_link_node(node, parent, p);
  1251. rb_insert_color(node, root);
  1252. return 0;
  1253. }
  1254. /*
  1255. * searches the tree for the given offset.
  1256. *
  1257. * fuzzy - If this is set, then we are trying to make an allocation, and we just
  1258. * want a section that has at least bytes size and comes at or after the given
  1259. * offset.
  1260. */
  1261. static struct btrfs_free_space *
  1262. tree_search_offset(struct btrfs_free_space_ctl *ctl,
  1263. u64 offset, int bitmap_only, int fuzzy)
  1264. {
  1265. struct rb_node *n = ctl->free_space_offset.rb_node;
  1266. struct btrfs_free_space *entry, *prev = NULL;
  1267. /* find entry that is closest to the 'offset' */
  1268. while (1) {
  1269. if (!n) {
  1270. entry = NULL;
  1271. break;
  1272. }
  1273. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  1274. prev = entry;
  1275. if (offset < entry->offset)
  1276. n = n->rb_left;
  1277. else if (offset > entry->offset)
  1278. n = n->rb_right;
  1279. else
  1280. break;
  1281. }
  1282. if (bitmap_only) {
  1283. if (!entry)
  1284. return NULL;
  1285. if (entry->bitmap)
  1286. return entry;
  1287. /*
  1288. * bitmap entry and extent entry may share same offset,
  1289. * in that case, bitmap entry comes after extent entry.
  1290. */
  1291. n = rb_next(n);
  1292. if (!n)
  1293. return NULL;
  1294. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  1295. if (entry->offset != offset)
  1296. return NULL;
  1297. WARN_ON(!entry->bitmap);
  1298. return entry;
  1299. } else if (entry) {
  1300. if (entry->bitmap) {
  1301. /*
  1302. * if previous extent entry covers the offset,
  1303. * we should return it instead of the bitmap entry
  1304. */
  1305. n = rb_prev(&entry->offset_index);
  1306. if (n) {
  1307. prev = rb_entry(n, struct btrfs_free_space,
  1308. offset_index);
  1309. if (!prev->bitmap &&
  1310. prev->offset + prev->bytes > offset)
  1311. entry = prev;
  1312. }
  1313. }
  1314. return entry;
  1315. }
  1316. if (!prev)
  1317. return NULL;
  1318. /* find last entry before the 'offset' */
  1319. entry = prev;
  1320. if (entry->offset > offset) {
  1321. n = rb_prev(&entry->offset_index);
  1322. if (n) {
  1323. entry = rb_entry(n, struct btrfs_free_space,
  1324. offset_index);
  1325. ASSERT(entry->offset <= offset);
  1326. } else {
  1327. if (fuzzy)
  1328. return entry;
  1329. else
  1330. return NULL;
  1331. }
  1332. }
  1333. if (entry->bitmap) {
  1334. n = rb_prev(&entry->offset_index);
  1335. if (n) {
  1336. prev = rb_entry(n, struct btrfs_free_space,
  1337. offset_index);
  1338. if (!prev->bitmap &&
  1339. prev->offset + prev->bytes > offset)
  1340. return prev;
  1341. }
  1342. if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
  1343. return entry;
  1344. } else if (entry->offset + entry->bytes > offset)
  1345. return entry;
  1346. if (!fuzzy)
  1347. return NULL;
  1348. while (1) {
  1349. if (entry->bitmap) {
  1350. if (entry->offset + BITS_PER_BITMAP *
  1351. ctl->unit > offset)
  1352. break;
  1353. } else {
  1354. if (entry->offset + entry->bytes > offset)
  1355. break;
  1356. }
  1357. n = rb_next(&entry->offset_index);
  1358. if (!n)
  1359. return NULL;
  1360. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  1361. }
  1362. return entry;
  1363. }
  1364. static inline void
  1365. __unlink_free_space(struct btrfs_free_space_ctl *ctl,
  1366. struct btrfs_free_space *info)
  1367. {
  1368. rb_erase(&info->offset_index, &ctl->free_space_offset);
  1369. ctl->free_extents--;
  1370. }
  1371. static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  1372. struct btrfs_free_space *info)
  1373. {
  1374. __unlink_free_space(ctl, info);
  1375. ctl->free_space -= info->bytes;
  1376. }
  1377. static int link_free_space(struct btrfs_free_space_ctl *ctl,
  1378. struct btrfs_free_space *info)
  1379. {
  1380. int ret = 0;
  1381. ASSERT(info->bytes || info->bitmap);
  1382. ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
  1383. &info->offset_index, (info->bitmap != NULL));
  1384. if (ret)
  1385. return ret;
  1386. ctl->free_space += info->bytes;
  1387. ctl->free_extents++;
  1388. return ret;
  1389. }
  1390. static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
  1391. {
  1392. struct btrfs_block_group_cache *block_group = ctl->private;
  1393. u64 max_bytes;
  1394. u64 bitmap_bytes;
  1395. u64 extent_bytes;
  1396. u64 size = block_group->key.offset;
  1397. u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
  1398. u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
  1399. max_bitmaps = max_t(u64, max_bitmaps, 1);
  1400. ASSERT(ctl->total_bitmaps <= max_bitmaps);
  1401. /*
  1402. * The goal is to keep the total amount of memory used per 1gb of space
  1403. * at or below 32k, so we need to adjust how much memory we allow to be
  1404. * used by extent based free space tracking
  1405. */
  1406. if (size < SZ_1G)
  1407. max_bytes = MAX_CACHE_BYTES_PER_GIG;
  1408. else
  1409. max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
  1410. /*
  1411. * we want to account for 1 more bitmap than what we have so we can make
  1412. * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
  1413. * we add more bitmaps.
  1414. */
  1415. bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
  1416. if (bitmap_bytes >= max_bytes) {
  1417. ctl->extents_thresh = 0;
  1418. return;
  1419. }
  1420. /*
  1421. * we want the extent entry threshold to always be at most 1/2 the max
  1422. * bytes we can have, or whatever is less than that.
  1423. */
  1424. extent_bytes = max_bytes - bitmap_bytes;
  1425. extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
  1426. ctl->extents_thresh =
  1427. div_u64(extent_bytes, sizeof(struct btrfs_free_space));
  1428. }
  1429. static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  1430. struct btrfs_free_space *info,
  1431. u64 offset, u64 bytes)
  1432. {
  1433. unsigned long start, count;
  1434. start = offset_to_bit(info->offset, ctl->unit, offset);
  1435. count = bytes_to_bits(bytes, ctl->unit);
  1436. ASSERT(start + count <= BITS_PER_BITMAP);
  1437. bitmap_clear(info->bitmap, start, count);
  1438. info->bytes -= bytes;
  1439. if (info->max_extent_size > ctl->unit)
  1440. info->max_extent_size = 0;
  1441. }
  1442. static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  1443. struct btrfs_free_space *info, u64 offset,
  1444. u64 bytes)
  1445. {
  1446. __bitmap_clear_bits(ctl, info, offset, bytes);
  1447. ctl->free_space -= bytes;
  1448. }
  1449. static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
  1450. struct btrfs_free_space *info, u64 offset,
  1451. u64 bytes)
  1452. {
  1453. unsigned long start, count;
  1454. start = offset_to_bit(info->offset, ctl->unit, offset);
  1455. count = bytes_to_bits(bytes, ctl->unit);
  1456. ASSERT(start + count <= BITS_PER_BITMAP);
  1457. bitmap_set(info->bitmap, start, count);
  1458. info->bytes += bytes;
  1459. ctl->free_space += bytes;
  1460. }
  1461. /*
  1462. * If we can not find suitable extent, we will use bytes to record
  1463. * the size of the max extent.
  1464. */
  1465. static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  1466. struct btrfs_free_space *bitmap_info, u64 *offset,
  1467. u64 *bytes, bool for_alloc)
  1468. {
  1469. unsigned long found_bits = 0;
  1470. unsigned long max_bits = 0;
  1471. unsigned long bits, i;
  1472. unsigned long next_zero;
  1473. unsigned long extent_bits;
  1474. /*
  1475. * Skip searching the bitmap if we don't have a contiguous section that
  1476. * is large enough for this allocation.
  1477. */
  1478. if (for_alloc &&
  1479. bitmap_info->max_extent_size &&
  1480. bitmap_info->max_extent_size < *bytes) {
  1481. *bytes = bitmap_info->max_extent_size;
  1482. return -1;
  1483. }
  1484. i = offset_to_bit(bitmap_info->offset, ctl->unit,
  1485. max_t(u64, *offset, bitmap_info->offset));
  1486. bits = bytes_to_bits(*bytes, ctl->unit);
  1487. for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
  1488. if (for_alloc && bits == 1) {
  1489. found_bits = 1;
  1490. break;
  1491. }
  1492. next_zero = find_next_zero_bit(bitmap_info->bitmap,
  1493. BITS_PER_BITMAP, i);
  1494. extent_bits = next_zero - i;
  1495. if (extent_bits >= bits) {
  1496. found_bits = extent_bits;
  1497. break;
  1498. } else if (extent_bits > max_bits) {
  1499. max_bits = extent_bits;
  1500. }
  1501. i = next_zero;
  1502. }
  1503. if (found_bits) {
  1504. *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
  1505. *bytes = (u64)(found_bits) * ctl->unit;
  1506. return 0;
  1507. }
  1508. *bytes = (u64)(max_bits) * ctl->unit;
  1509. bitmap_info->max_extent_size = *bytes;
  1510. return -1;
  1511. }
  1512. static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
  1513. {
  1514. if (entry->bitmap)
  1515. return entry->max_extent_size;
  1516. return entry->bytes;
  1517. }
  1518. /* Cache the size of the max extent in bytes */
  1519. static struct btrfs_free_space *
  1520. find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
  1521. unsigned long align, u64 *max_extent_size)
  1522. {
  1523. struct btrfs_free_space *entry;
  1524. struct rb_node *node;
  1525. u64 tmp;
  1526. u64 align_off;
  1527. int ret;
  1528. if (!ctl->free_space_offset.rb_node)
  1529. goto out;
  1530. entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
  1531. if (!entry)
  1532. goto out;
  1533. for (node = &entry->offset_index; node; node = rb_next(node)) {
  1534. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1535. if (entry->bytes < *bytes) {
  1536. *max_extent_size = max(get_max_extent_size(entry),
  1537. *max_extent_size);
  1538. continue;
  1539. }
  1540. /* make sure the space returned is big enough
  1541. * to match our requested alignment
  1542. */
  1543. if (*bytes >= align) {
  1544. tmp = entry->offset - ctl->start + align - 1;
  1545. tmp = div64_u64(tmp, align);
  1546. tmp = tmp * align + ctl->start;
  1547. align_off = tmp - entry->offset;
  1548. } else {
  1549. align_off = 0;
  1550. tmp = entry->offset;
  1551. }
  1552. if (entry->bytes < *bytes + align_off) {
  1553. *max_extent_size = max(get_max_extent_size(entry),
  1554. *max_extent_size);
  1555. continue;
  1556. }
  1557. if (entry->bitmap) {
  1558. u64 size = *bytes;
  1559. ret = search_bitmap(ctl, entry, &tmp, &size, true);
  1560. if (!ret) {
  1561. *offset = tmp;
  1562. *bytes = size;
  1563. return entry;
  1564. } else {
  1565. *max_extent_size =
  1566. max(get_max_extent_size(entry),
  1567. *max_extent_size);
  1568. }
  1569. continue;
  1570. }
  1571. *offset = tmp;
  1572. *bytes = entry->bytes - align_off;
  1573. return entry;
  1574. }
  1575. out:
  1576. return NULL;
  1577. }
  1578. static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
  1579. struct btrfs_free_space *info, u64 offset)
  1580. {
  1581. info->offset = offset_to_bitmap(ctl, offset);
  1582. info->bytes = 0;
  1583. INIT_LIST_HEAD(&info->list);
  1584. link_free_space(ctl, info);
  1585. ctl->total_bitmaps++;
  1586. ctl->op->recalc_thresholds(ctl);
  1587. }
  1588. static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  1589. struct btrfs_free_space *bitmap_info)
  1590. {
  1591. unlink_free_space(ctl, bitmap_info);
  1592. kfree(bitmap_info->bitmap);
  1593. kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
  1594. ctl->total_bitmaps--;
  1595. ctl->op->recalc_thresholds(ctl);
  1596. }
  1597. static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
  1598. struct btrfs_free_space *bitmap_info,
  1599. u64 *offset, u64 *bytes)
  1600. {
  1601. u64 end;
  1602. u64 search_start, search_bytes;
  1603. int ret;
  1604. again:
  1605. end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
  1606. /*
  1607. * We need to search for bits in this bitmap. We could only cover some
  1608. * of the extent in this bitmap thanks to how we add space, so we need
  1609. * to search for as much as it as we can and clear that amount, and then
  1610. * go searching for the next bit.
  1611. */
  1612. search_start = *offset;
  1613. search_bytes = ctl->unit;
  1614. search_bytes = min(search_bytes, end - search_start + 1);
  1615. ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
  1616. false);
  1617. if (ret < 0 || search_start != *offset)
  1618. return -EINVAL;
  1619. /* We may have found more bits than what we need */
  1620. search_bytes = min(search_bytes, *bytes);
  1621. /* Cannot clear past the end of the bitmap */
  1622. search_bytes = min(search_bytes, end - search_start + 1);
  1623. bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
  1624. *offset += search_bytes;
  1625. *bytes -= search_bytes;
  1626. if (*bytes) {
  1627. struct rb_node *next = rb_next(&bitmap_info->offset_index);
  1628. if (!bitmap_info->bytes)
  1629. free_bitmap(ctl, bitmap_info);
  1630. /*
  1631. * no entry after this bitmap, but we still have bytes to
  1632. * remove, so something has gone wrong.
  1633. */
  1634. if (!next)
  1635. return -EINVAL;
  1636. bitmap_info = rb_entry(next, struct btrfs_free_space,
  1637. offset_index);
  1638. /*
  1639. * if the next entry isn't a bitmap we need to return to let the
  1640. * extent stuff do its work.
  1641. */
  1642. if (!bitmap_info->bitmap)
  1643. return -EAGAIN;
  1644. /*
  1645. * Ok the next item is a bitmap, but it may not actually hold
  1646. * the information for the rest of this free space stuff, so
  1647. * look for it, and if we don't find it return so we can try
  1648. * everything over again.
  1649. */
  1650. search_start = *offset;
  1651. search_bytes = ctl->unit;
  1652. ret = search_bitmap(ctl, bitmap_info, &search_start,
  1653. &search_bytes, false);
  1654. if (ret < 0 || search_start != *offset)
  1655. return -EAGAIN;
  1656. goto again;
  1657. } else if (!bitmap_info->bytes)
  1658. free_bitmap(ctl, bitmap_info);
  1659. return 0;
  1660. }
  1661. static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
  1662. struct btrfs_free_space *info, u64 offset,
  1663. u64 bytes)
  1664. {
  1665. u64 bytes_to_set = 0;
  1666. u64 end;
  1667. end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
  1668. bytes_to_set = min(end - offset, bytes);
  1669. bitmap_set_bits(ctl, info, offset, bytes_to_set);
  1670. /*
  1671. * We set some bytes, we have no idea what the max extent size is
  1672. * anymore.
  1673. */
  1674. info->max_extent_size = 0;
  1675. return bytes_to_set;
  1676. }
  1677. static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
  1678. struct btrfs_free_space *info)
  1679. {
  1680. struct btrfs_block_group_cache *block_group = ctl->private;
  1681. struct btrfs_fs_info *fs_info = block_group->fs_info;
  1682. bool forced = false;
  1683. #ifdef CONFIG_BTRFS_DEBUG
  1684. if (btrfs_should_fragment_free_space(block_group))
  1685. forced = true;
  1686. #endif
  1687. /*
  1688. * If we are below the extents threshold then we can add this as an
  1689. * extent, and don't have to deal with the bitmap
  1690. */
  1691. if (!forced && ctl->free_extents < ctl->extents_thresh) {
  1692. /*
  1693. * If this block group has some small extents we don't want to
  1694. * use up all of our free slots in the cache with them, we want
  1695. * to reserve them to larger extents, however if we have plenty
  1696. * of cache left then go ahead an dadd them, no sense in adding
  1697. * the overhead of a bitmap if we don't have to.
  1698. */
  1699. if (info->bytes <= fs_info->sectorsize * 4) {
  1700. if (ctl->free_extents * 2 <= ctl->extents_thresh)
  1701. return false;
  1702. } else {
  1703. return false;
  1704. }
  1705. }
  1706. /*
  1707. * The original block groups from mkfs can be really small, like 8
  1708. * megabytes, so don't bother with a bitmap for those entries. However
  1709. * some block groups can be smaller than what a bitmap would cover but
  1710. * are still large enough that they could overflow the 32k memory limit,
  1711. * so allow those block groups to still be allowed to have a bitmap
  1712. * entry.
  1713. */
  1714. if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
  1715. return false;
  1716. return true;
  1717. }
  1718. static const struct btrfs_free_space_op free_space_op = {
  1719. .recalc_thresholds = recalculate_thresholds,
  1720. .use_bitmap = use_bitmap,
  1721. };
  1722. static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
  1723. struct btrfs_free_space *info)
  1724. {
  1725. struct btrfs_free_space *bitmap_info;
  1726. struct btrfs_block_group_cache *block_group = NULL;
  1727. int added = 0;
  1728. u64 bytes, offset, bytes_added;
  1729. int ret;
  1730. bytes = info->bytes;
  1731. offset = info->offset;
  1732. if (!ctl->op->use_bitmap(ctl, info))
  1733. return 0;
  1734. if (ctl->op == &free_space_op)
  1735. block_group = ctl->private;
  1736. again:
  1737. /*
  1738. * Since we link bitmaps right into the cluster we need to see if we
  1739. * have a cluster here, and if so and it has our bitmap we need to add
  1740. * the free space to that bitmap.
  1741. */
  1742. if (block_group && !list_empty(&block_group->cluster_list)) {
  1743. struct btrfs_free_cluster *cluster;
  1744. struct rb_node *node;
  1745. struct btrfs_free_space *entry;
  1746. cluster = list_entry(block_group->cluster_list.next,
  1747. struct btrfs_free_cluster,
  1748. block_group_list);
  1749. spin_lock(&cluster->lock);
  1750. node = rb_first(&cluster->root);
  1751. if (!node) {
  1752. spin_unlock(&cluster->lock);
  1753. goto no_cluster_bitmap;
  1754. }
  1755. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1756. if (!entry->bitmap) {
  1757. spin_unlock(&cluster->lock);
  1758. goto no_cluster_bitmap;
  1759. }
  1760. if (entry->offset == offset_to_bitmap(ctl, offset)) {
  1761. bytes_added = add_bytes_to_bitmap(ctl, entry,
  1762. offset, bytes);
  1763. bytes -= bytes_added;
  1764. offset += bytes_added;
  1765. }
  1766. spin_unlock(&cluster->lock);
  1767. if (!bytes) {
  1768. ret = 1;
  1769. goto out;
  1770. }
  1771. }
  1772. no_cluster_bitmap:
  1773. bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
  1774. 1, 0);
  1775. if (!bitmap_info) {
  1776. ASSERT(added == 0);
  1777. goto new_bitmap;
  1778. }
  1779. bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
  1780. bytes -= bytes_added;
  1781. offset += bytes_added;
  1782. added = 0;
  1783. if (!bytes) {
  1784. ret = 1;
  1785. goto out;
  1786. } else
  1787. goto again;
  1788. new_bitmap:
  1789. if (info && info->bitmap) {
  1790. add_new_bitmap(ctl, info, offset);
  1791. added = 1;
  1792. info = NULL;
  1793. goto again;
  1794. } else {
  1795. spin_unlock(&ctl->tree_lock);
  1796. /* no pre-allocated info, allocate a new one */
  1797. if (!info) {
  1798. info = kmem_cache_zalloc(btrfs_free_space_cachep,
  1799. GFP_NOFS);
  1800. if (!info) {
  1801. spin_lock(&ctl->tree_lock);
  1802. ret = -ENOMEM;
  1803. goto out;
  1804. }
  1805. }
  1806. /* allocate the bitmap */
  1807. info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
  1808. spin_lock(&ctl->tree_lock);
  1809. if (!info->bitmap) {
  1810. ret = -ENOMEM;
  1811. goto out;
  1812. }
  1813. goto again;
  1814. }
  1815. out:
  1816. if (info) {
  1817. if (info->bitmap)
  1818. kfree(info->bitmap);
  1819. kmem_cache_free(btrfs_free_space_cachep, info);
  1820. }
  1821. return ret;
  1822. }
  1823. static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
  1824. struct btrfs_free_space *info, bool update_stat)
  1825. {
  1826. struct btrfs_free_space *left_info;
  1827. struct btrfs_free_space *right_info;
  1828. bool merged = false;
  1829. u64 offset = info->offset;
  1830. u64 bytes = info->bytes;
  1831. /*
  1832. * first we want to see if there is free space adjacent to the range we
  1833. * are adding, if there is remove that struct and add a new one to
  1834. * cover the entire range
  1835. */
  1836. right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
  1837. if (right_info && rb_prev(&right_info->offset_index))
  1838. left_info = rb_entry(rb_prev(&right_info->offset_index),
  1839. struct btrfs_free_space, offset_index);
  1840. else
  1841. left_info = tree_search_offset(ctl, offset - 1, 0, 0);
  1842. if (right_info && !right_info->bitmap) {
  1843. if (update_stat)
  1844. unlink_free_space(ctl, right_info);
  1845. else
  1846. __unlink_free_space(ctl, right_info);
  1847. info->bytes += right_info->bytes;
  1848. kmem_cache_free(btrfs_free_space_cachep, right_info);
  1849. merged = true;
  1850. }
  1851. if (left_info && !left_info->bitmap &&
  1852. left_info->offset + left_info->bytes == offset) {
  1853. if (update_stat)
  1854. unlink_free_space(ctl, left_info);
  1855. else
  1856. __unlink_free_space(ctl, left_info);
  1857. info->offset = left_info->offset;
  1858. info->bytes += left_info->bytes;
  1859. kmem_cache_free(btrfs_free_space_cachep, left_info);
  1860. merged = true;
  1861. }
  1862. return merged;
  1863. }
  1864. static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
  1865. struct btrfs_free_space *info,
  1866. bool update_stat)
  1867. {
  1868. struct btrfs_free_space *bitmap;
  1869. unsigned long i;
  1870. unsigned long j;
  1871. const u64 end = info->offset + info->bytes;
  1872. const u64 bitmap_offset = offset_to_bitmap(ctl, end);
  1873. u64 bytes;
  1874. bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
  1875. if (!bitmap)
  1876. return false;
  1877. i = offset_to_bit(bitmap->offset, ctl->unit, end);
  1878. j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
  1879. if (j == i)
  1880. return false;
  1881. bytes = (j - i) * ctl->unit;
  1882. info->bytes += bytes;
  1883. if (update_stat)
  1884. bitmap_clear_bits(ctl, bitmap, end, bytes);
  1885. else
  1886. __bitmap_clear_bits(ctl, bitmap, end, bytes);
  1887. if (!bitmap->bytes)
  1888. free_bitmap(ctl, bitmap);
  1889. return true;
  1890. }
  1891. static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
  1892. struct btrfs_free_space *info,
  1893. bool update_stat)
  1894. {
  1895. struct btrfs_free_space *bitmap;
  1896. u64 bitmap_offset;
  1897. unsigned long i;
  1898. unsigned long j;
  1899. unsigned long prev_j;
  1900. u64 bytes;
  1901. bitmap_offset = offset_to_bitmap(ctl, info->offset);
  1902. /* If we're on a boundary, try the previous logical bitmap. */
  1903. if (bitmap_offset == info->offset) {
  1904. if (info->offset == 0)
  1905. return false;
  1906. bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
  1907. }
  1908. bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
  1909. if (!bitmap)
  1910. return false;
  1911. i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
  1912. j = 0;
  1913. prev_j = (unsigned long)-1;
  1914. for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
  1915. if (j > i)
  1916. break;
  1917. prev_j = j;
  1918. }
  1919. if (prev_j == i)
  1920. return false;
  1921. if (prev_j == (unsigned long)-1)
  1922. bytes = (i + 1) * ctl->unit;
  1923. else
  1924. bytes = (i - prev_j) * ctl->unit;
  1925. info->offset -= bytes;
  1926. info->bytes += bytes;
  1927. if (update_stat)
  1928. bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
  1929. else
  1930. __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
  1931. if (!bitmap->bytes)
  1932. free_bitmap(ctl, bitmap);
  1933. return true;
  1934. }
  1935. /*
  1936. * We prefer always to allocate from extent entries, both for clustered and
  1937. * non-clustered allocation requests. So when attempting to add a new extent
  1938. * entry, try to see if there's adjacent free space in bitmap entries, and if
  1939. * there is, migrate that space from the bitmaps to the extent.
  1940. * Like this we get better chances of satisfying space allocation requests
  1941. * because we attempt to satisfy them based on a single cache entry, and never
  1942. * on 2 or more entries - even if the entries represent a contiguous free space
  1943. * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
  1944. * ends).
  1945. */
  1946. static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
  1947. struct btrfs_free_space *info,
  1948. bool update_stat)
  1949. {
  1950. /*
  1951. * Only work with disconnected entries, as we can change their offset,
  1952. * and must be extent entries.
  1953. */
  1954. ASSERT(!info->bitmap);
  1955. ASSERT(RB_EMPTY_NODE(&info->offset_index));
  1956. if (ctl->total_bitmaps > 0) {
  1957. bool stole_end;
  1958. bool stole_front = false;
  1959. stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
  1960. if (ctl->total_bitmaps > 0)
  1961. stole_front = steal_from_bitmap_to_front(ctl, info,
  1962. update_stat);
  1963. if (stole_end || stole_front)
  1964. try_merge_free_space(ctl, info, update_stat);
  1965. }
  1966. }
  1967. int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
  1968. struct btrfs_free_space_ctl *ctl,
  1969. u64 offset, u64 bytes)
  1970. {
  1971. struct btrfs_free_space *info;
  1972. int ret = 0;
  1973. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  1974. if (!info)
  1975. return -ENOMEM;
  1976. info->offset = offset;
  1977. info->bytes = bytes;
  1978. RB_CLEAR_NODE(&info->offset_index);
  1979. spin_lock(&ctl->tree_lock);
  1980. if (try_merge_free_space(ctl, info, true))
  1981. goto link;
  1982. /*
  1983. * There was no extent directly to the left or right of this new
  1984. * extent then we know we're going to have to allocate a new extent, so
  1985. * before we do that see if we need to drop this into a bitmap
  1986. */
  1987. ret = insert_into_bitmap(ctl, info);
  1988. if (ret < 0) {
  1989. goto out;
  1990. } else if (ret) {
  1991. ret = 0;
  1992. goto out;
  1993. }
  1994. link:
  1995. /*
  1996. * Only steal free space from adjacent bitmaps if we're sure we're not
  1997. * going to add the new free space to existing bitmap entries - because
  1998. * that would mean unnecessary work that would be reverted. Therefore
  1999. * attempt to steal space from bitmaps if we're adding an extent entry.
  2000. */
  2001. steal_from_bitmap(ctl, info, true);
  2002. ret = link_free_space(ctl, info);
  2003. if (ret)
  2004. kmem_cache_free(btrfs_free_space_cachep, info);
  2005. out:
  2006. spin_unlock(&ctl->tree_lock);
  2007. if (ret) {
  2008. btrfs_crit(fs_info, "unable to add free space :%d", ret);
  2009. ASSERT(ret != -EEXIST);
  2010. }
  2011. return ret;
  2012. }
  2013. int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
  2014. u64 offset, u64 bytes)
  2015. {
  2016. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2017. struct btrfs_free_space *info;
  2018. int ret;
  2019. bool re_search = false;
  2020. spin_lock(&ctl->tree_lock);
  2021. again:
  2022. ret = 0;
  2023. if (!bytes)
  2024. goto out_lock;
  2025. info = tree_search_offset(ctl, offset, 0, 0);
  2026. if (!info) {
  2027. /*
  2028. * oops didn't find an extent that matched the space we wanted
  2029. * to remove, look for a bitmap instead
  2030. */
  2031. info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
  2032. 1, 0);
  2033. if (!info) {
  2034. /*
  2035. * If we found a partial bit of our free space in a
  2036. * bitmap but then couldn't find the other part this may
  2037. * be a problem, so WARN about it.
  2038. */
  2039. WARN_ON(re_search);
  2040. goto out_lock;
  2041. }
  2042. }
  2043. re_search = false;
  2044. if (!info->bitmap) {
  2045. unlink_free_space(ctl, info);
  2046. if (offset == info->offset) {
  2047. u64 to_free = min(bytes, info->bytes);
  2048. info->bytes -= to_free;
  2049. info->offset += to_free;
  2050. if (info->bytes) {
  2051. ret = link_free_space(ctl, info);
  2052. WARN_ON(ret);
  2053. } else {
  2054. kmem_cache_free(btrfs_free_space_cachep, info);
  2055. }
  2056. offset += to_free;
  2057. bytes -= to_free;
  2058. goto again;
  2059. } else {
  2060. u64 old_end = info->bytes + info->offset;
  2061. info->bytes = offset - info->offset;
  2062. ret = link_free_space(ctl, info);
  2063. WARN_ON(ret);
  2064. if (ret)
  2065. goto out_lock;
  2066. /* Not enough bytes in this entry to satisfy us */
  2067. if (old_end < offset + bytes) {
  2068. bytes -= old_end - offset;
  2069. offset = old_end;
  2070. goto again;
  2071. } else if (old_end == offset + bytes) {
  2072. /* all done */
  2073. goto out_lock;
  2074. }
  2075. spin_unlock(&ctl->tree_lock);
  2076. ret = btrfs_add_free_space(block_group, offset + bytes,
  2077. old_end - (offset + bytes));
  2078. WARN_ON(ret);
  2079. goto out;
  2080. }
  2081. }
  2082. ret = remove_from_bitmap(ctl, info, &offset, &bytes);
  2083. if (ret == -EAGAIN) {
  2084. re_search = true;
  2085. goto again;
  2086. }
  2087. out_lock:
  2088. spin_unlock(&ctl->tree_lock);
  2089. out:
  2090. return ret;
  2091. }
  2092. void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
  2093. u64 bytes)
  2094. {
  2095. struct btrfs_fs_info *fs_info = block_group->fs_info;
  2096. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2097. struct btrfs_free_space *info;
  2098. struct rb_node *n;
  2099. int count = 0;
  2100. spin_lock(&ctl->tree_lock);
  2101. for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
  2102. info = rb_entry(n, struct btrfs_free_space, offset_index);
  2103. if (info->bytes >= bytes && !block_group->ro)
  2104. count++;
  2105. btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
  2106. info->offset, info->bytes,
  2107. (info->bitmap) ? "yes" : "no");
  2108. }
  2109. spin_unlock(&ctl->tree_lock);
  2110. btrfs_info(fs_info, "block group has cluster?: %s",
  2111. list_empty(&block_group->cluster_list) ? "no" : "yes");
  2112. btrfs_info(fs_info,
  2113. "%d blocks of free space at or bigger than bytes is", count);
  2114. }
  2115. void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
  2116. {
  2117. struct btrfs_fs_info *fs_info = block_group->fs_info;
  2118. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2119. spin_lock_init(&ctl->tree_lock);
  2120. ctl->unit = fs_info->sectorsize;
  2121. ctl->start = block_group->key.objectid;
  2122. ctl->private = block_group;
  2123. ctl->op = &free_space_op;
  2124. INIT_LIST_HEAD(&ctl->trimming_ranges);
  2125. mutex_init(&ctl->cache_writeout_mutex);
  2126. /*
  2127. * we only want to have 32k of ram per block group for keeping
  2128. * track of free space, and if we pass 1/2 of that we want to
  2129. * start converting things over to using bitmaps
  2130. */
  2131. ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
  2132. }
  2133. /*
  2134. * for a given cluster, put all of its extents back into the free
  2135. * space cache. If the block group passed doesn't match the block group
  2136. * pointed to by the cluster, someone else raced in and freed the
  2137. * cluster already. In that case, we just return without changing anything
  2138. */
  2139. static int
  2140. __btrfs_return_cluster_to_free_space(
  2141. struct btrfs_block_group_cache *block_group,
  2142. struct btrfs_free_cluster *cluster)
  2143. {
  2144. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2145. struct btrfs_free_space *entry;
  2146. struct rb_node *node;
  2147. spin_lock(&cluster->lock);
  2148. if (cluster->block_group != block_group)
  2149. goto out;
  2150. cluster->block_group = NULL;
  2151. cluster->window_start = 0;
  2152. list_del_init(&cluster->block_group_list);
  2153. node = rb_first(&cluster->root);
  2154. while (node) {
  2155. bool bitmap;
  2156. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  2157. node = rb_next(&entry->offset_index);
  2158. rb_erase(&entry->offset_index, &cluster->root);
  2159. RB_CLEAR_NODE(&entry->offset_index);
  2160. bitmap = (entry->bitmap != NULL);
  2161. if (!bitmap) {
  2162. try_merge_free_space(ctl, entry, false);
  2163. steal_from_bitmap(ctl, entry, false);
  2164. }
  2165. tree_insert_offset(&ctl->free_space_offset,
  2166. entry->offset, &entry->offset_index, bitmap);
  2167. }
  2168. cluster->root = RB_ROOT;
  2169. out:
  2170. spin_unlock(&cluster->lock);
  2171. btrfs_put_block_group(block_group);
  2172. return 0;
  2173. }
  2174. static void __btrfs_remove_free_space_cache_locked(
  2175. struct btrfs_free_space_ctl *ctl)
  2176. {
  2177. struct btrfs_free_space *info;
  2178. struct rb_node *node;
  2179. while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
  2180. info = rb_entry(node, struct btrfs_free_space, offset_index);
  2181. if (!info->bitmap) {
  2182. unlink_free_space(ctl, info);
  2183. kmem_cache_free(btrfs_free_space_cachep, info);
  2184. } else {
  2185. free_bitmap(ctl, info);
  2186. }
  2187. cond_resched_lock(&ctl->tree_lock);
  2188. }
  2189. }
  2190. void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
  2191. {
  2192. spin_lock(&ctl->tree_lock);
  2193. __btrfs_remove_free_space_cache_locked(ctl);
  2194. spin_unlock(&ctl->tree_lock);
  2195. }
  2196. void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
  2197. {
  2198. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2199. struct btrfs_free_cluster *cluster;
  2200. struct list_head *head;
  2201. spin_lock(&ctl->tree_lock);
  2202. while ((head = block_group->cluster_list.next) !=
  2203. &block_group->cluster_list) {
  2204. cluster = list_entry(head, struct btrfs_free_cluster,
  2205. block_group_list);
  2206. WARN_ON(cluster->block_group != block_group);
  2207. __btrfs_return_cluster_to_free_space(block_group, cluster);
  2208. cond_resched_lock(&ctl->tree_lock);
  2209. }
  2210. __btrfs_remove_free_space_cache_locked(ctl);
  2211. spin_unlock(&ctl->tree_lock);
  2212. }
  2213. u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
  2214. u64 offset, u64 bytes, u64 empty_size,
  2215. u64 *max_extent_size)
  2216. {
  2217. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2218. struct btrfs_free_space *entry = NULL;
  2219. u64 bytes_search = bytes + empty_size;
  2220. u64 ret = 0;
  2221. u64 align_gap = 0;
  2222. u64 align_gap_len = 0;
  2223. spin_lock(&ctl->tree_lock);
  2224. entry = find_free_space(ctl, &offset, &bytes_search,
  2225. block_group->full_stripe_len, max_extent_size);
  2226. if (!entry)
  2227. goto out;
  2228. ret = offset;
  2229. if (entry->bitmap) {
  2230. bitmap_clear_bits(ctl, entry, offset, bytes);
  2231. if (!entry->bytes)
  2232. free_bitmap(ctl, entry);
  2233. } else {
  2234. unlink_free_space(ctl, entry);
  2235. align_gap_len = offset - entry->offset;
  2236. align_gap = entry->offset;
  2237. entry->offset = offset + bytes;
  2238. WARN_ON(entry->bytes < bytes + align_gap_len);
  2239. entry->bytes -= bytes + align_gap_len;
  2240. if (!entry->bytes)
  2241. kmem_cache_free(btrfs_free_space_cachep, entry);
  2242. else
  2243. link_free_space(ctl, entry);
  2244. }
  2245. out:
  2246. spin_unlock(&ctl->tree_lock);
  2247. if (align_gap_len)
  2248. __btrfs_add_free_space(block_group->fs_info, ctl,
  2249. align_gap, align_gap_len);
  2250. return ret;
  2251. }
  2252. /*
  2253. * given a cluster, put all of its extents back into the free space
  2254. * cache. If a block group is passed, this function will only free
  2255. * a cluster that belongs to the passed block group.
  2256. *
  2257. * Otherwise, it'll get a reference on the block group pointed to by the
  2258. * cluster and remove the cluster from it.
  2259. */
  2260. int btrfs_return_cluster_to_free_space(
  2261. struct btrfs_block_group_cache *block_group,
  2262. struct btrfs_free_cluster *cluster)
  2263. {
  2264. struct btrfs_free_space_ctl *ctl;
  2265. int ret;
  2266. /* first, get a safe pointer to the block group */
  2267. spin_lock(&cluster->lock);
  2268. if (!block_group) {
  2269. block_group = cluster->block_group;
  2270. if (!block_group) {
  2271. spin_unlock(&cluster->lock);
  2272. return 0;
  2273. }
  2274. } else if (cluster->block_group != block_group) {
  2275. /* someone else has already freed it don't redo their work */
  2276. spin_unlock(&cluster->lock);
  2277. return 0;
  2278. }
  2279. atomic_inc(&block_group->count);
  2280. spin_unlock(&cluster->lock);
  2281. ctl = block_group->free_space_ctl;
  2282. /* now return any extents the cluster had on it */
  2283. spin_lock(&ctl->tree_lock);
  2284. ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
  2285. spin_unlock(&ctl->tree_lock);
  2286. /* finally drop our ref */
  2287. btrfs_put_block_group(block_group);
  2288. return ret;
  2289. }
  2290. static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
  2291. struct btrfs_free_cluster *cluster,
  2292. struct btrfs_free_space *entry,
  2293. u64 bytes, u64 min_start,
  2294. u64 *max_extent_size)
  2295. {
  2296. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2297. int err;
  2298. u64 search_start = cluster->window_start;
  2299. u64 search_bytes = bytes;
  2300. u64 ret = 0;
  2301. search_start = min_start;
  2302. search_bytes = bytes;
  2303. err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
  2304. if (err) {
  2305. *max_extent_size = max(get_max_extent_size(entry),
  2306. *max_extent_size);
  2307. return 0;
  2308. }
  2309. ret = search_start;
  2310. __bitmap_clear_bits(ctl, entry, ret, bytes);
  2311. return ret;
  2312. }
  2313. /*
  2314. * given a cluster, try to allocate 'bytes' from it, returns 0
  2315. * if it couldn't find anything suitably large, or a logical disk offset
  2316. * if things worked out
  2317. */
  2318. u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
  2319. struct btrfs_free_cluster *cluster, u64 bytes,
  2320. u64 min_start, u64 *max_extent_size)
  2321. {
  2322. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2323. struct btrfs_free_space *entry = NULL;
  2324. struct rb_node *node;
  2325. u64 ret = 0;
  2326. spin_lock(&cluster->lock);
  2327. if (bytes > cluster->max_size)
  2328. goto out;
  2329. if (cluster->block_group != block_group)
  2330. goto out;
  2331. node = rb_first(&cluster->root);
  2332. if (!node)
  2333. goto out;
  2334. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  2335. while (1) {
  2336. if (entry->bytes < bytes)
  2337. *max_extent_size = max(get_max_extent_size(entry),
  2338. *max_extent_size);
  2339. if (entry->bytes < bytes ||
  2340. (!entry->bitmap && entry->offset < min_start)) {
  2341. node = rb_next(&entry->offset_index);
  2342. if (!node)
  2343. break;
  2344. entry = rb_entry(node, struct btrfs_free_space,
  2345. offset_index);
  2346. continue;
  2347. }
  2348. if (entry->bitmap) {
  2349. ret = btrfs_alloc_from_bitmap(block_group,
  2350. cluster, entry, bytes,
  2351. cluster->window_start,
  2352. max_extent_size);
  2353. if (ret == 0) {
  2354. node = rb_next(&entry->offset_index);
  2355. if (!node)
  2356. break;
  2357. entry = rb_entry(node, struct btrfs_free_space,
  2358. offset_index);
  2359. continue;
  2360. }
  2361. cluster->window_start += bytes;
  2362. } else {
  2363. ret = entry->offset;
  2364. entry->offset += bytes;
  2365. entry->bytes -= bytes;
  2366. }
  2367. if (entry->bytes == 0)
  2368. rb_erase(&entry->offset_index, &cluster->root);
  2369. break;
  2370. }
  2371. out:
  2372. spin_unlock(&cluster->lock);
  2373. if (!ret)
  2374. return 0;
  2375. spin_lock(&ctl->tree_lock);
  2376. ctl->free_space -= bytes;
  2377. if (entry->bytes == 0) {
  2378. ctl->free_extents--;
  2379. if (entry->bitmap) {
  2380. kfree(entry->bitmap);
  2381. ctl->total_bitmaps--;
  2382. ctl->op->recalc_thresholds(ctl);
  2383. }
  2384. kmem_cache_free(btrfs_free_space_cachep, entry);
  2385. }
  2386. spin_unlock(&ctl->tree_lock);
  2387. return ret;
  2388. }
  2389. static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
  2390. struct btrfs_free_space *entry,
  2391. struct btrfs_free_cluster *cluster,
  2392. u64 offset, u64 bytes,
  2393. u64 cont1_bytes, u64 min_bytes)
  2394. {
  2395. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2396. unsigned long next_zero;
  2397. unsigned long i;
  2398. unsigned long want_bits;
  2399. unsigned long min_bits;
  2400. unsigned long found_bits;
  2401. unsigned long max_bits = 0;
  2402. unsigned long start = 0;
  2403. unsigned long total_found = 0;
  2404. int ret;
  2405. i = offset_to_bit(entry->offset, ctl->unit,
  2406. max_t(u64, offset, entry->offset));
  2407. want_bits = bytes_to_bits(bytes, ctl->unit);
  2408. min_bits = bytes_to_bits(min_bytes, ctl->unit);
  2409. /*
  2410. * Don't bother looking for a cluster in this bitmap if it's heavily
  2411. * fragmented.
  2412. */
  2413. if (entry->max_extent_size &&
  2414. entry->max_extent_size < cont1_bytes)
  2415. return -ENOSPC;
  2416. again:
  2417. found_bits = 0;
  2418. for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
  2419. next_zero = find_next_zero_bit(entry->bitmap,
  2420. BITS_PER_BITMAP, i);
  2421. if (next_zero - i >= min_bits) {
  2422. found_bits = next_zero - i;
  2423. if (found_bits > max_bits)
  2424. max_bits = found_bits;
  2425. break;
  2426. }
  2427. if (next_zero - i > max_bits)
  2428. max_bits = next_zero - i;
  2429. i = next_zero;
  2430. }
  2431. if (!found_bits) {
  2432. entry->max_extent_size = (u64)max_bits * ctl->unit;
  2433. return -ENOSPC;
  2434. }
  2435. if (!total_found) {
  2436. start = i;
  2437. cluster->max_size = 0;
  2438. }
  2439. total_found += found_bits;
  2440. if (cluster->max_size < found_bits * ctl->unit)
  2441. cluster->max_size = found_bits * ctl->unit;
  2442. if (total_found < want_bits || cluster->max_size < cont1_bytes) {
  2443. i = next_zero + 1;
  2444. goto again;
  2445. }
  2446. cluster->window_start = start * ctl->unit + entry->offset;
  2447. rb_erase(&entry->offset_index, &ctl->free_space_offset);
  2448. ret = tree_insert_offset(&cluster->root, entry->offset,
  2449. &entry->offset_index, 1);
  2450. ASSERT(!ret); /* -EEXIST; Logic error */
  2451. trace_btrfs_setup_cluster(block_group, cluster,
  2452. total_found * ctl->unit, 1);
  2453. return 0;
  2454. }
  2455. /*
  2456. * This searches the block group for just extents to fill the cluster with.
  2457. * Try to find a cluster with at least bytes total bytes, at least one
  2458. * extent of cont1_bytes, and other clusters of at least min_bytes.
  2459. */
  2460. static noinline int
  2461. setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
  2462. struct btrfs_free_cluster *cluster,
  2463. struct list_head *bitmaps, u64 offset, u64 bytes,
  2464. u64 cont1_bytes, u64 min_bytes)
  2465. {
  2466. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2467. struct btrfs_free_space *first = NULL;
  2468. struct btrfs_free_space *entry = NULL;
  2469. struct btrfs_free_space *last;
  2470. struct rb_node *node;
  2471. u64 window_free;
  2472. u64 max_extent;
  2473. u64 total_size = 0;
  2474. entry = tree_search_offset(ctl, offset, 0, 1);
  2475. if (!entry)
  2476. return -ENOSPC;
  2477. /*
  2478. * We don't want bitmaps, so just move along until we find a normal
  2479. * extent entry.
  2480. */
  2481. while (entry->bitmap || entry->bytes < min_bytes) {
  2482. if (entry->bitmap && list_empty(&entry->list))
  2483. list_add_tail(&entry->list, bitmaps);
  2484. node = rb_next(&entry->offset_index);
  2485. if (!node)
  2486. return -ENOSPC;
  2487. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  2488. }
  2489. window_free = entry->bytes;
  2490. max_extent = entry->bytes;
  2491. first = entry;
  2492. last = entry;
  2493. for (node = rb_next(&entry->offset_index); node;
  2494. node = rb_next(&entry->offset_index)) {
  2495. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  2496. if (entry->bitmap) {
  2497. if (list_empty(&entry->list))
  2498. list_add_tail(&entry->list, bitmaps);
  2499. continue;
  2500. }
  2501. if (entry->bytes < min_bytes)
  2502. continue;
  2503. last = entry;
  2504. window_free += entry->bytes;
  2505. if (entry->bytes > max_extent)
  2506. max_extent = entry->bytes;
  2507. }
  2508. if (window_free < bytes || max_extent < cont1_bytes)
  2509. return -ENOSPC;
  2510. cluster->window_start = first->offset;
  2511. node = &first->offset_index;
  2512. /*
  2513. * now we've found our entries, pull them out of the free space
  2514. * cache and put them into the cluster rbtree
  2515. */
  2516. do {
  2517. int ret;
  2518. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  2519. node = rb_next(&entry->offset_index);
  2520. if (entry->bitmap || entry->bytes < min_bytes)
  2521. continue;
  2522. rb_erase(&entry->offset_index, &ctl->free_space_offset);
  2523. ret = tree_insert_offset(&cluster->root, entry->offset,
  2524. &entry->offset_index, 0);
  2525. total_size += entry->bytes;
  2526. ASSERT(!ret); /* -EEXIST; Logic error */
  2527. } while (node && entry != last);
  2528. cluster->max_size = max_extent;
  2529. trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
  2530. return 0;
  2531. }
  2532. /*
  2533. * This specifically looks for bitmaps that may work in the cluster, we assume
  2534. * that we have already failed to find extents that will work.
  2535. */
  2536. static noinline int
  2537. setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
  2538. struct btrfs_free_cluster *cluster,
  2539. struct list_head *bitmaps, u64 offset, u64 bytes,
  2540. u64 cont1_bytes, u64 min_bytes)
  2541. {
  2542. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2543. struct btrfs_free_space *entry = NULL;
  2544. int ret = -ENOSPC;
  2545. u64 bitmap_offset = offset_to_bitmap(ctl, offset);
  2546. if (ctl->total_bitmaps == 0)
  2547. return -ENOSPC;
  2548. /*
  2549. * The bitmap that covers offset won't be in the list unless offset
  2550. * is just its start offset.
  2551. */
  2552. if (!list_empty(bitmaps))
  2553. entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
  2554. if (!entry || entry->offset != bitmap_offset) {
  2555. entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
  2556. if (entry && list_empty(&entry->list))
  2557. list_add(&entry->list, bitmaps);
  2558. }
  2559. list_for_each_entry(entry, bitmaps, list) {
  2560. if (entry->bytes < bytes)
  2561. continue;
  2562. ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
  2563. bytes, cont1_bytes, min_bytes);
  2564. if (!ret)
  2565. return 0;
  2566. }
  2567. /*
  2568. * The bitmaps list has all the bitmaps that record free space
  2569. * starting after offset, so no more search is required.
  2570. */
  2571. return -ENOSPC;
  2572. }
  2573. /*
  2574. * here we try to find a cluster of blocks in a block group. The goal
  2575. * is to find at least bytes+empty_size.
  2576. * We might not find them all in one contiguous area.
  2577. *
  2578. * returns zero and sets up cluster if things worked out, otherwise
  2579. * it returns -enospc
  2580. */
  2581. int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
  2582. struct btrfs_block_group_cache *block_group,
  2583. struct btrfs_free_cluster *cluster,
  2584. u64 offset, u64 bytes, u64 empty_size)
  2585. {
  2586. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2587. struct btrfs_free_space *entry, *tmp;
  2588. LIST_HEAD(bitmaps);
  2589. u64 min_bytes;
  2590. u64 cont1_bytes;
  2591. int ret;
  2592. /*
  2593. * Choose the minimum extent size we'll require for this
  2594. * cluster. For SSD_SPREAD, don't allow any fragmentation.
  2595. * For metadata, allow allocates with smaller extents. For
  2596. * data, keep it dense.
  2597. */
  2598. if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
  2599. cont1_bytes = min_bytes = bytes + empty_size;
  2600. } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
  2601. cont1_bytes = bytes;
  2602. min_bytes = fs_info->sectorsize;
  2603. } else {
  2604. cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
  2605. min_bytes = fs_info->sectorsize;
  2606. }
  2607. spin_lock(&ctl->tree_lock);
  2608. /*
  2609. * If we know we don't have enough space to make a cluster don't even
  2610. * bother doing all the work to try and find one.
  2611. */
  2612. if (ctl->free_space < bytes) {
  2613. spin_unlock(&ctl->tree_lock);
  2614. return -ENOSPC;
  2615. }
  2616. spin_lock(&cluster->lock);
  2617. /* someone already found a cluster, hooray */
  2618. if (cluster->block_group) {
  2619. ret = 0;
  2620. goto out;
  2621. }
  2622. trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
  2623. min_bytes);
  2624. ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
  2625. bytes + empty_size,
  2626. cont1_bytes, min_bytes);
  2627. if (ret)
  2628. ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
  2629. offset, bytes + empty_size,
  2630. cont1_bytes, min_bytes);
  2631. /* Clear our temporary list */
  2632. list_for_each_entry_safe(entry, tmp, &bitmaps, list)
  2633. list_del_init(&entry->list);
  2634. if (!ret) {
  2635. atomic_inc(&block_group->count);
  2636. list_add_tail(&cluster->block_group_list,
  2637. &block_group->cluster_list);
  2638. cluster->block_group = block_group;
  2639. } else {
  2640. trace_btrfs_failed_cluster_setup(block_group);
  2641. }
  2642. out:
  2643. spin_unlock(&cluster->lock);
  2644. spin_unlock(&ctl->tree_lock);
  2645. return ret;
  2646. }
  2647. /*
  2648. * simple code to zero out a cluster
  2649. */
  2650. void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
  2651. {
  2652. spin_lock_init(&cluster->lock);
  2653. spin_lock_init(&cluster->refill_lock);
  2654. cluster->root = RB_ROOT;
  2655. cluster->max_size = 0;
  2656. cluster->fragmented = false;
  2657. INIT_LIST_HEAD(&cluster->block_group_list);
  2658. cluster->block_group = NULL;
  2659. }
  2660. static int do_trimming(struct btrfs_block_group_cache *block_group,
  2661. u64 *total_trimmed, u64 start, u64 bytes,
  2662. u64 reserved_start, u64 reserved_bytes,
  2663. struct btrfs_trim_range *trim_entry)
  2664. {
  2665. struct btrfs_space_info *space_info = block_group->space_info;
  2666. struct btrfs_fs_info *fs_info = block_group->fs_info;
  2667. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2668. int ret;
  2669. int update = 0;
  2670. u64 trimmed = 0;
  2671. spin_lock(&space_info->lock);
  2672. spin_lock(&block_group->lock);
  2673. if (!block_group->ro) {
  2674. block_group->reserved += reserved_bytes;
  2675. space_info->bytes_reserved += reserved_bytes;
  2676. update = 1;
  2677. }
  2678. spin_unlock(&block_group->lock);
  2679. spin_unlock(&space_info->lock);
  2680. ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
  2681. if (!ret)
  2682. *total_trimmed += trimmed;
  2683. mutex_lock(&ctl->cache_writeout_mutex);
  2684. btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
  2685. list_del(&trim_entry->list);
  2686. mutex_unlock(&ctl->cache_writeout_mutex);
  2687. if (update) {
  2688. spin_lock(&space_info->lock);
  2689. spin_lock(&block_group->lock);
  2690. if (block_group->ro)
  2691. space_info->bytes_readonly += reserved_bytes;
  2692. block_group->reserved -= reserved_bytes;
  2693. space_info->bytes_reserved -= reserved_bytes;
  2694. spin_unlock(&space_info->lock);
  2695. spin_unlock(&block_group->lock);
  2696. }
  2697. return ret;
  2698. }
  2699. static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
  2700. u64 *total_trimmed, u64 start, u64 end, u64 minlen)
  2701. {
  2702. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2703. struct btrfs_free_space *entry;
  2704. struct rb_node *node;
  2705. int ret = 0;
  2706. u64 extent_start;
  2707. u64 extent_bytes;
  2708. u64 bytes;
  2709. while (start < end) {
  2710. struct btrfs_trim_range trim_entry;
  2711. mutex_lock(&ctl->cache_writeout_mutex);
  2712. spin_lock(&ctl->tree_lock);
  2713. if (ctl->free_space < minlen) {
  2714. spin_unlock(&ctl->tree_lock);
  2715. mutex_unlock(&ctl->cache_writeout_mutex);
  2716. break;
  2717. }
  2718. entry = tree_search_offset(ctl, start, 0, 1);
  2719. if (!entry) {
  2720. spin_unlock(&ctl->tree_lock);
  2721. mutex_unlock(&ctl->cache_writeout_mutex);
  2722. break;
  2723. }
  2724. /* skip bitmaps */
  2725. while (entry->bitmap) {
  2726. node = rb_next(&entry->offset_index);
  2727. if (!node) {
  2728. spin_unlock(&ctl->tree_lock);
  2729. mutex_unlock(&ctl->cache_writeout_mutex);
  2730. goto out;
  2731. }
  2732. entry = rb_entry(node, struct btrfs_free_space,
  2733. offset_index);
  2734. }
  2735. if (entry->offset >= end) {
  2736. spin_unlock(&ctl->tree_lock);
  2737. mutex_unlock(&ctl->cache_writeout_mutex);
  2738. break;
  2739. }
  2740. extent_start = entry->offset;
  2741. extent_bytes = entry->bytes;
  2742. start = max(start, extent_start);
  2743. bytes = min(extent_start + extent_bytes, end) - start;
  2744. if (bytes < minlen) {
  2745. spin_unlock(&ctl->tree_lock);
  2746. mutex_unlock(&ctl->cache_writeout_mutex);
  2747. goto next;
  2748. }
  2749. unlink_free_space(ctl, entry);
  2750. kmem_cache_free(btrfs_free_space_cachep, entry);
  2751. spin_unlock(&ctl->tree_lock);
  2752. trim_entry.start = extent_start;
  2753. trim_entry.bytes = extent_bytes;
  2754. list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
  2755. mutex_unlock(&ctl->cache_writeout_mutex);
  2756. ret = do_trimming(block_group, total_trimmed, start, bytes,
  2757. extent_start, extent_bytes, &trim_entry);
  2758. if (ret)
  2759. break;
  2760. next:
  2761. start += bytes;
  2762. if (fatal_signal_pending(current)) {
  2763. ret = -ERESTARTSYS;
  2764. break;
  2765. }
  2766. cond_resched();
  2767. }
  2768. out:
  2769. return ret;
  2770. }
  2771. static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
  2772. u64 *total_trimmed, u64 start, u64 end, u64 minlen)
  2773. {
  2774. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2775. struct btrfs_free_space *entry;
  2776. int ret = 0;
  2777. int ret2;
  2778. u64 bytes;
  2779. u64 offset = offset_to_bitmap(ctl, start);
  2780. while (offset < end) {
  2781. bool next_bitmap = false;
  2782. struct btrfs_trim_range trim_entry;
  2783. mutex_lock(&ctl->cache_writeout_mutex);
  2784. spin_lock(&ctl->tree_lock);
  2785. if (ctl->free_space < minlen) {
  2786. spin_unlock(&ctl->tree_lock);
  2787. mutex_unlock(&ctl->cache_writeout_mutex);
  2788. break;
  2789. }
  2790. entry = tree_search_offset(ctl, offset, 1, 0);
  2791. if (!entry) {
  2792. spin_unlock(&ctl->tree_lock);
  2793. mutex_unlock(&ctl->cache_writeout_mutex);
  2794. next_bitmap = true;
  2795. goto next;
  2796. }
  2797. bytes = minlen;
  2798. ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
  2799. if (ret2 || start >= end) {
  2800. spin_unlock(&ctl->tree_lock);
  2801. mutex_unlock(&ctl->cache_writeout_mutex);
  2802. next_bitmap = true;
  2803. goto next;
  2804. }
  2805. bytes = min(bytes, end - start);
  2806. if (bytes < minlen) {
  2807. spin_unlock(&ctl->tree_lock);
  2808. mutex_unlock(&ctl->cache_writeout_mutex);
  2809. goto next;
  2810. }
  2811. bitmap_clear_bits(ctl, entry, start, bytes);
  2812. if (entry->bytes == 0)
  2813. free_bitmap(ctl, entry);
  2814. spin_unlock(&ctl->tree_lock);
  2815. trim_entry.start = start;
  2816. trim_entry.bytes = bytes;
  2817. list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
  2818. mutex_unlock(&ctl->cache_writeout_mutex);
  2819. ret = do_trimming(block_group, total_trimmed, start, bytes,
  2820. start, bytes, &trim_entry);
  2821. if (ret)
  2822. break;
  2823. next:
  2824. if (next_bitmap) {
  2825. offset += BITS_PER_BITMAP * ctl->unit;
  2826. } else {
  2827. start += bytes;
  2828. if (start >= offset + BITS_PER_BITMAP * ctl->unit)
  2829. offset += BITS_PER_BITMAP * ctl->unit;
  2830. }
  2831. if (fatal_signal_pending(current)) {
  2832. ret = -ERESTARTSYS;
  2833. break;
  2834. }
  2835. cond_resched();
  2836. }
  2837. return ret;
  2838. }
  2839. void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
  2840. {
  2841. atomic_inc(&cache->trimming);
  2842. }
  2843. void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
  2844. {
  2845. struct btrfs_fs_info *fs_info = block_group->fs_info;
  2846. struct extent_map_tree *em_tree;
  2847. struct extent_map *em;
  2848. bool cleanup;
  2849. spin_lock(&block_group->lock);
  2850. cleanup = (atomic_dec_and_test(&block_group->trimming) &&
  2851. block_group->removed);
  2852. spin_unlock(&block_group->lock);
  2853. if (cleanup) {
  2854. mutex_lock(&fs_info->chunk_mutex);
  2855. em_tree = &fs_info->mapping_tree.map_tree;
  2856. write_lock(&em_tree->lock);
  2857. em = lookup_extent_mapping(em_tree, block_group->key.objectid,
  2858. 1);
  2859. BUG_ON(!em); /* logic error, can't happen */
  2860. /*
  2861. * remove_extent_mapping() will delete us from the pinned_chunks
  2862. * list, which is protected by the chunk mutex.
  2863. */
  2864. remove_extent_mapping(em_tree, em);
  2865. write_unlock(&em_tree->lock);
  2866. mutex_unlock(&fs_info->chunk_mutex);
  2867. /* once for us and once for the tree */
  2868. free_extent_map(em);
  2869. free_extent_map(em);
  2870. /*
  2871. * We've left one free space entry and other tasks trimming
  2872. * this block group have left 1 entry each one. Free them.
  2873. */
  2874. __btrfs_remove_free_space_cache(block_group->free_space_ctl);
  2875. }
  2876. }
  2877. int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
  2878. u64 *trimmed, u64 start, u64 end, u64 minlen)
  2879. {
  2880. int ret;
  2881. *trimmed = 0;
  2882. spin_lock(&block_group->lock);
  2883. if (block_group->removed) {
  2884. spin_unlock(&block_group->lock);
  2885. return 0;
  2886. }
  2887. btrfs_get_block_group_trimming(block_group);
  2888. spin_unlock(&block_group->lock);
  2889. ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
  2890. if (ret)
  2891. goto out;
  2892. ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
  2893. out:
  2894. btrfs_put_block_group_trimming(block_group);
  2895. return ret;
  2896. }
  2897. /*
  2898. * Find the left-most item in the cache tree, and then return the
  2899. * smallest inode number in the item.
  2900. *
  2901. * Note: the returned inode number may not be the smallest one in
  2902. * the tree, if the left-most item is a bitmap.
  2903. */
  2904. u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
  2905. {
  2906. struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
  2907. struct btrfs_free_space *entry = NULL;
  2908. u64 ino = 0;
  2909. spin_lock(&ctl->tree_lock);
  2910. if (RB_EMPTY_ROOT(&ctl->free_space_offset))
  2911. goto out;
  2912. entry = rb_entry(rb_first(&ctl->free_space_offset),
  2913. struct btrfs_free_space, offset_index);
  2914. if (!entry->bitmap) {
  2915. ino = entry->offset;
  2916. unlink_free_space(ctl, entry);
  2917. entry->offset++;
  2918. entry->bytes--;
  2919. if (!entry->bytes)
  2920. kmem_cache_free(btrfs_free_space_cachep, entry);
  2921. else
  2922. link_free_space(ctl, entry);
  2923. } else {
  2924. u64 offset = 0;
  2925. u64 count = 1;
  2926. int ret;
  2927. ret = search_bitmap(ctl, entry, &offset, &count, true);
  2928. /* Logic error; Should be empty if it can't find anything */
  2929. ASSERT(!ret);
  2930. ino = offset;
  2931. bitmap_clear_bits(ctl, entry, offset, 1);
  2932. if (entry->bytes == 0)
  2933. free_bitmap(ctl, entry);
  2934. }
  2935. out:
  2936. spin_unlock(&ctl->tree_lock);
  2937. return ino;
  2938. }
  2939. struct inode *lookup_free_ino_inode(struct btrfs_root *root,
  2940. struct btrfs_path *path)
  2941. {
  2942. struct inode *inode = NULL;
  2943. spin_lock(&root->ino_cache_lock);
  2944. if (root->ino_cache_inode)
  2945. inode = igrab(root->ino_cache_inode);
  2946. spin_unlock(&root->ino_cache_lock);
  2947. if (inode)
  2948. return inode;
  2949. inode = __lookup_free_space_inode(root, path, 0);
  2950. if (IS_ERR(inode))
  2951. return inode;
  2952. spin_lock(&root->ino_cache_lock);
  2953. if (!btrfs_fs_closing(root->fs_info))
  2954. root->ino_cache_inode = igrab(inode);
  2955. spin_unlock(&root->ino_cache_lock);
  2956. return inode;
  2957. }
  2958. int create_free_ino_inode(struct btrfs_root *root,
  2959. struct btrfs_trans_handle *trans,
  2960. struct btrfs_path *path)
  2961. {
  2962. return __create_free_space_inode(root, trans, path,
  2963. BTRFS_FREE_INO_OBJECTID, 0);
  2964. }
  2965. int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2966. {
  2967. struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
  2968. struct btrfs_path *path;
  2969. struct inode *inode;
  2970. int ret = 0;
  2971. u64 root_gen = btrfs_root_generation(&root->root_item);
  2972. if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
  2973. return 0;
  2974. /*
  2975. * If we're unmounting then just return, since this does a search on the
  2976. * normal root and not the commit root and we could deadlock.
  2977. */
  2978. if (btrfs_fs_closing(fs_info))
  2979. return 0;
  2980. path = btrfs_alloc_path();
  2981. if (!path)
  2982. return 0;
  2983. inode = lookup_free_ino_inode(root, path);
  2984. if (IS_ERR(inode))
  2985. goto out;
  2986. if (root_gen != BTRFS_I(inode)->generation)
  2987. goto out_put;
  2988. ret = __load_free_space_cache(root, inode, ctl, path, 0);
  2989. if (ret < 0)
  2990. btrfs_err(fs_info,
  2991. "failed to load free ino cache for root %llu",
  2992. root->root_key.objectid);
  2993. out_put:
  2994. iput(inode);
  2995. out:
  2996. btrfs_free_path(path);
  2997. return ret;
  2998. }
  2999. int btrfs_write_out_ino_cache(struct btrfs_root *root,
  3000. struct btrfs_trans_handle *trans,
  3001. struct btrfs_path *path,
  3002. struct inode *inode)
  3003. {
  3004. struct btrfs_fs_info *fs_info = root->fs_info;
  3005. struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
  3006. int ret;
  3007. struct btrfs_io_ctl io_ctl;
  3008. bool release_metadata = true;
  3009. if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
  3010. return 0;
  3011. memset(&io_ctl, 0, sizeof(io_ctl));
  3012. ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
  3013. if (!ret) {
  3014. /*
  3015. * At this point writepages() didn't error out, so our metadata
  3016. * reservation is released when the writeback finishes, at
  3017. * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
  3018. * with or without an error.
  3019. */
  3020. release_metadata = false;
  3021. ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
  3022. }
  3023. if (ret) {
  3024. if (release_metadata)
  3025. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  3026. inode->i_size, true);
  3027. #ifdef DEBUG
  3028. btrfs_err(fs_info,
  3029. "failed to write free ino cache for root %llu",
  3030. root->root_key.objectid);
  3031. #endif
  3032. }
  3033. return ret;
  3034. }
  3035. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3036. /*
  3037. * Use this if you need to make a bitmap or extent entry specifically, it
  3038. * doesn't do any of the merging that add_free_space does, this acts a lot like
  3039. * how the free space cache loading stuff works, so you can get really weird
  3040. * configurations.
  3041. */
  3042. int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
  3043. u64 offset, u64 bytes, bool bitmap)
  3044. {
  3045. struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
  3046. struct btrfs_free_space *info = NULL, *bitmap_info;
  3047. void *map = NULL;
  3048. u64 bytes_added;
  3049. int ret;
  3050. again:
  3051. if (!info) {
  3052. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  3053. if (!info)
  3054. return -ENOMEM;
  3055. }
  3056. if (!bitmap) {
  3057. spin_lock(&ctl->tree_lock);
  3058. info->offset = offset;
  3059. info->bytes = bytes;
  3060. info->max_extent_size = 0;
  3061. ret = link_free_space(ctl, info);
  3062. spin_unlock(&ctl->tree_lock);
  3063. if (ret)
  3064. kmem_cache_free(btrfs_free_space_cachep, info);
  3065. return ret;
  3066. }
  3067. if (!map) {
  3068. map = kzalloc(PAGE_SIZE, GFP_NOFS);
  3069. if (!map) {
  3070. kmem_cache_free(btrfs_free_space_cachep, info);
  3071. return -ENOMEM;
  3072. }
  3073. }
  3074. spin_lock(&ctl->tree_lock);
  3075. bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
  3076. 1, 0);
  3077. if (!bitmap_info) {
  3078. info->bitmap = map;
  3079. map = NULL;
  3080. add_new_bitmap(ctl, info, offset);
  3081. bitmap_info = info;
  3082. info = NULL;
  3083. }
  3084. bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
  3085. bytes -= bytes_added;
  3086. offset += bytes_added;
  3087. spin_unlock(&ctl->tree_lock);
  3088. if (bytes)
  3089. goto again;
  3090. if (info)
  3091. kmem_cache_free(btrfs_free_space_cachep, info);
  3092. if (map)
  3093. kfree(map);
  3094. return 0;
  3095. }
  3096. /*
  3097. * Checks to see if the given range is in the free space cache. This is really
  3098. * just used to check the absence of space, so if there is free space in the
  3099. * range at all we will return 1.
  3100. */
  3101. int test_check_exists(struct btrfs_block_group_cache *cache,
  3102. u64 offset, u64 bytes)
  3103. {
  3104. struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
  3105. struct btrfs_free_space *info;
  3106. int ret = 0;
  3107. spin_lock(&ctl->tree_lock);
  3108. info = tree_search_offset(ctl, offset, 0, 0);
  3109. if (!info) {
  3110. info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
  3111. 1, 0);
  3112. if (!info)
  3113. goto out;
  3114. }
  3115. have_info:
  3116. if (info->bitmap) {
  3117. u64 bit_off, bit_bytes;
  3118. struct rb_node *n;
  3119. struct btrfs_free_space *tmp;
  3120. bit_off = offset;
  3121. bit_bytes = ctl->unit;
  3122. ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
  3123. if (!ret) {
  3124. if (bit_off == offset) {
  3125. ret = 1;
  3126. goto out;
  3127. } else if (bit_off > offset &&
  3128. offset + bytes > bit_off) {
  3129. ret = 1;
  3130. goto out;
  3131. }
  3132. }
  3133. n = rb_prev(&info->offset_index);
  3134. while (n) {
  3135. tmp = rb_entry(n, struct btrfs_free_space,
  3136. offset_index);
  3137. if (tmp->offset + tmp->bytes < offset)
  3138. break;
  3139. if (offset + bytes < tmp->offset) {
  3140. n = rb_prev(&tmp->offset_index);
  3141. continue;
  3142. }
  3143. info = tmp;
  3144. goto have_info;
  3145. }
  3146. n = rb_next(&info->offset_index);
  3147. while (n) {
  3148. tmp = rb_entry(n, struct btrfs_free_space,
  3149. offset_index);
  3150. if (offset + bytes < tmp->offset)
  3151. break;
  3152. if (tmp->offset + tmp->bytes < offset) {
  3153. n = rb_next(&tmp->offset_index);
  3154. continue;
  3155. }
  3156. info = tmp;
  3157. goto have_info;
  3158. }
  3159. ret = 0;
  3160. goto out;
  3161. }
  3162. if (info->offset == offset) {
  3163. ret = 1;
  3164. goto out;
  3165. }
  3166. if (offset > info->offset && offset < info->offset + info->bytes)
  3167. ret = 1;
  3168. out:
  3169. spin_unlock(&ctl->tree_lock);
  3170. return ret;
  3171. }
  3172. #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */